Section 3.7
Groundwater and Soils

SECTION SUMMARY
The NOI/NOP (Appendix A of this Draft EIS/EIR) determined that impacts related to potentially
encountering existing soil and groundwater contamination (including contamination associated with a site
listed on the Cortese List) during construction could adversely affect human health and could be
significant. This section describes existing groundwater and soils conditions in the Project area and
vicinity, applicable regulations, and assesses how the construction and operation of the proposed Project
or an alternative would potentially impact or have an adverse effect on public health and safety.

Potential impacts on surface water and marine water quality (including the potential impacts associated
with the excavation of marine sediment during dredging) are addressed in Section 3.11, Water Quality,
Sediments, and Oceanography.

Section 3.7, Groundwater and Soils, provides the following:

- a description of the existing groundwater and soil conditions, a summary of findings from
 previous soil and groundwater investigations, and a description of potential site contamination;
- a description of applicable local, state, and federal regulations and policies regarding hazardous
 materials or hazardous substances that may require special handling if encountered in soil or
 groundwater during construction of the proposed Project or alternative;
- a discussion on the methodology used to determine whether the proposed Project or alternatives
 result in impacts on groundwater or soil;
- an impact analysis of the proposed Project and alternatives; and
- a description of any mitigation measures proposed to reduce any potential impacts and residual
 impacts, as applicable.

Key Points of Section 3.7:
The proposed Project would implement physical improvements at the existing Everport Container
Terminal and backland expansion areas. Operations of the proposed Project would be consistent with that
of other container terminals and other uses in the Project area.

Construction at the 22-acre and 1.5 acre backlands expansion areas could encounter contaminants
associated with past uses in those areas, which could result in the handling, transport, remediation, and/or
disposal of contaminated groundwater and/or soil. If any contaminated groundwater and/or soils is found
during construction it would be removed and/or remediated in accordance with all applicable federal,
state, and local laws and regulations and in accordance with the regulatory lead agency(ies) (e.g., U.S.
Environmental Protection Agency [EPA], State Department of Toxic Substances Control [DTSC], and
Los Angeles Regional Water Quality Control Board [LARWQCB]). Therefore, impacts related to groundwater and soils were determined be less than significant or have no impact.
3.7.1 Introduction

The NOI/NOP (Appendix A of this Draft EIS/EIR) determined that potential impacts related to routine transport, use, or disposal of hazardous materials and hazardous emissions would be less than significant. As such, those impacts are not discussed here. The NOI/NOP determined that impacts related to encountering existing hazardous materials (groundwater and soil contamination) that may be present at the backland expansion areas could be potentially significant, and these impacts are addressed herein. This section describes the existing groundwater and soil conditions in the Project area, including groundwater and soil contamination, and evaluates the impact of these conditions from the proposed Project and alternatives. The environmental setting is based on a review of published reports, hazardous materials databases, as well as a review of previously completed technical reports in the Port area.

3.7.2 Environmental Setting

The Project site is located at Berths 226-236 on an area of approximately 229 acres on Terminal Island. The Project site encompasses the existing Everport Container Terminal (approximately 205 acres), as well as two expansion areas, a 22-acre area located between Terminal Way and Cannery Street, and a 1.5-acre area located behind Berths 236. Terminal Island is a flat, almost entirely manmade feature that envelopes a naturally occurring sand bar that was called Rattlesnake Island. The land area was increased greatly by placement of fill (imported and/or dredged material) prior to World War II, as well as smaller increases since, and is predominantly compacted fine-grained sand and silt.

According to the Port of Los Angeles Master Plan Update (August 2013), there are two basic types of sedimentary material found in the harbor: unconsolidated sediments and underlying clay-shale bedrock. The unconsolidated sediments are subdivided into two groups: 1) naturally occurring, which were deposited throughout San Pedro Bay prior to development of the harbor, and 2) surficial sediments, which have been deposited by way of dredging activities conducted throughout the harbor’s various channels and basins.

The Project area is predominantly underlain by shallow unconfined groundwater that has historically occurred at depths as shallow as 5 feet below ground surface (bgs), although groundwater beneath the Project site has recently been measured from 7-10 feet bgs. Groundwater beneath the Project site is subject to tidal influences. Spills of petroleum products and hazardous substances, due to long-term industrial land use, have resulted in contamination of some surface soils and shallow groundwater.

3.7.2.1 Groundwater

The Project site is located within the West Coast Basin of the Los Angeles Coastal Groundwater Basin. Four major aquifers - the Sunnyside, Silverado, Lynwood, and Gage - are present within the West Coast Basin and are used for industrial and municipal water supply outside the harbor area. The West Coast Basin covers approximately 140 square miles and is bound to the north by the Baldwin Hills and Ballona Escarpment, on the east by the Newport-Inglewood Uplift, on the west by the Santa Monica Bay, and on the south by the San Pedro Bay and Palos Verdes Hills. Aquifers in the West Coast Basin are typically confined and receive recharge from the saltwater intrusion barrier injection wells and from adjacent groundwater basins (Water Replenishment District of Southern
California, 2005). Sediments underlying the West Coast Basin consist primarily of nearshore marine or estuarine sediments, which were deposited in the early San Pedro embayment. In the Port area, these sediments were subsequently dredged and placed at their current location as fill material (LAHD, 2011).

The shallowest water-bearing aquifer that occurs in the Project area is the Gage aquifer, which is composed of fine- to medium-grained sand and silty sand. Because Terminal Island is hydraulically separated from the Gage aquifer by the Main Channel, Cerritos Channel, and seawater intrusion barrier, the Gage aquifer is not considered an important potable groundwater resource beneath the Project site.

Groundwater beneath the Project site is generally present at a depth of 7-10 feet bgs and flow directions, gradients, and depths are locally influenced by tidal variations (Exxon, 2015; TRC, 2008b).

The LARWQCB Resolution No. 98-18, dated November 2, 1998, modified the regulatory provisions of the Water Quality Control Plan for the Los Angeles Region by removing the beneficial use designation (de-designation) from groundwater underlying the Ports of Los Angeles and Long Beach. Therefore, the groundwater underlying the Project site was included in this de-designation (LARWQCB, 1999). The shallow groundwater beneath the Project site is not considered a source of potable water, and it is unlikely to be considered a source in the future.

3.7.2.2 Soil Conditions

Prior to development of the Los Angeles Harbor, extensive estuarine deposits were present at the mouth of Bixby Slough, Dominguez Channel, and the Los Angeles River. The organic tidal muds were dredged extensively and mostly covered with imported fill (California Department of Conservation, 1998). Therefore, the subsurface soils underlying the surface soils consist of dredged fill material underlain by naturally deposited alluvial soils that overlay the Malaga mudstone of the Miocene Monterey Formation. Dredging and filling operations have modified these native sediments to create extensive landmasses of dredged fill material that support numerous harbor facilities. Soil descriptions are derived from geotechnical studies conducted within the Project area by various consultants.

Sediments in the Harbor have been extensively sampled in support of harbor channel deepening and potential offshore expansion investigations. Bore-hole data and soil analyses generally indicate the presence of medium-dense to dense sand-silt mixtures below 2 to 4 feet of organic mud on the harbor bottom. Silty sand is the predominant material. Sediment grain size and sand percentage vary slightly, but show a general trend toward increased amounts of silt and clay landward toward Terminal Island (LAHD, 2011).

3.7.2.3 Groundwater and Soil Investigations

The following section summarizes the environmental setting for certain areas located within the boundary of the Project site. Site conditions, including general groundwater and soils conditions, contamination, and remediation activities, are summarized from various environmental assessments and hazardous materials evaluation reports conducted on sites within the Project footprint. Site conditions described herein and in the referenced reports are representative of the 2013 CEQA baseline and NEPA baseline.
conditions for determining the significance of impacts. Figure 3.7-1 illustrates the areas of potential concern within the Project site.

Existing Everport Container Terminal

A review of the GeoTracker and EnviroStor databases identified two Waste Discharge Requirements (WDRs) within the boundaries of the existing Everport Container Terminal, one issued for past maintenance dredging of Berths 226-231, and the second issued to Refiners Marking Company (100 Seaside Avenue). The WDRs establish requirements for the placement of materials in land or waters of the state, but do not document that a contaminant release has occurred. In addition, a database search was conducted in January 2016 (EDR, 2016) for the project area, including the existing Everport Container Terminal, that identified a potential total petroleum hydrocarbon (TPH) site (BP Oil) at 100 Seaside Avenue, and a historic underground storage tank (UST) site located at 301 Terminal Way (additional information is provided in Section 3.7.2.5 below). The historical location of 100 Seaside Avenue is in an area of the existing terminal that would not be excavated or disturbed (a triangular area west of Ferry Street and south of State Route [SR]-47). The historic UST list identifies past locations of USTs, but does not indicate a leak or contamination (EDR, 2016). There are no reports of leaking tanks or other contaminant releases within the terminal boundaries in GeoTracker or EnviroStor.

22-Acre Backlands Expansion Area

Former Canner’s Steam Company Plant – Soil and Groundwater

The former Canner’s Steam Company Plant, located within the 22-acre backlands expansion area, was constructed in 1951 to provide steam to Van Camp and StarKist fish processing operations at nearby locations. The steam plant generated steam in boilers fueled by fuel oils, with water processed on-site, and piped the steam to the fish processing plants. The steam plant included two large above ground storage tanks (ASTs) (120,000 gallons each) for fuel oils, drums for gasoline storage, storage tanks for water treatment compounds, and areas for the storage of paints, lubricants, boiler treatment chemicals, and scrap metal.

In November 2001, a site investigation was performed to assess whether an abandoned 10,000-gallon UST, reportedly used by a shipyard for fuel oil storage prior to 1951, was still present beneath the concrete floor inside the steam plant building (TRC, 2008a). A geophysical investigation of the reported UST location identified no evidence suggesting the presence of a UST (TRC, 2007). The investigation found that the UST would have predated the construction of that portion of the steam plant building and, given the shallow depth of groundwater (approximately 10 feet bgs), could have been removed during preparations for steam plant construction in 1951 (Conservtech, 2001).
Figure 3.7-1 Areas of Potential Concern

Berths 226-236 [Everport] Container Terminal Improvements Project

Aerial Source: County of Los Angeles, 2012
In 2001, 49 borings were advanced using a direct-push drilling equipment to assess subsurface soil and groundwater conditions beneath the site. Most of the collected soil samples were analyzed for TPH and some were analyzed for volatile organic compounds (VOCs). Soil samples from the area of the water treatment system at the site were analyzed for pH, selected metals including copper and zinc, and major cations and anions. Fourteen groundwater samples were analyzed for TPH, and four of the samples were analyzed for the full target analyte list of VOCs. The soil sample results indicated hydrocarbon impact was limited mainly to the northwest corner of the site, in the immediate vicinity of the two former ASTs. Concentrations of copper and zinc in the soil samples were below regulatory (California Code of Regulations Title 22) limits. Groundwater sample results indicated the hydrocarbon impact extended to groundwater in the vicinity of the two former ASTs (TRC, 2007).

In May 2002, an additional round of sampling and analysis was performed to assess the western and northwestern portion of the site and assess the potential presence of liquid-phase hydrocarbons (LPH). Soil samples were evaluated for TPH and/or Title 22 metals, and groundwater samples were analyzed for TPH. Analytical results of the soil and groundwater samples indicated hydrocarbon impact extended mainly to the north of the two former ASTs. Concentrations of regulated metals in TPH-affected soil samples were below regulatory limits (California Code of Regulations Title 22). LPH was measured on the groundwater surface in one well, and visual evidence of LPH was observed in several other groundwater samples taken from three additional borings. Perimeter groundwater grab samples indicated the extent of the dissolved-phase hydrocarbon plume in groundwater did not extend substantially beyond the area beneath and to the north of the former large ASTs (TRC, 2007).

In May 2004, five more groundwater monitoring wells and one groundwater extraction well were installed, and soil samples were collected from the vadose zone and analyzed during drilling of the wells. In addition, seven groundwater-saturated soil samples from three wells were collected and analyzed. Free product or LPH was observed during the installation of several wells. The soil samples were analyzed for TPH, benzene, toluene, ethylbenzene, and xylenes (BTEX), and fuel oxygenates methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA). TPH results closest to the former ASTs indicated the presence of fuel oil in the vadose zone, in the saturated zone, and minor BTEX concentrations. Hydrocarbons and VOCs were not detected in the vadose zone soil samples to the north, east, and west (TRC, 2007). Manual bailing and automated LPH recovery from wells containing LPH was initiated in June 2004. Automated recovery was discontinued in mid-April 2006 (TRC, 2007).

In March 2007, the last round of site characterization was performed. A total of 10 soil borings were advanced and a total of 26 soil samples were collected and analyzed for TPH as gasoline, diesel, and oil. TPH as gasoline, diesel, and/or oil were detected in at least one sample, and VOCs including ethylbenzene, isopropylbenzene, naphthalene, n-propylbenzene, toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and total xylenes were each detected in at least one of the soil samples. The detected VOCs are generally found in fuel oil, and their presence in the subsurface is consistent with a fuel oil release. Chlorinated VOCs and fuel oxygenates were not detected in the soil samples (TRC, 2007).
In October 2007, a Site Conceptual Model (SCM), a Site Assessment Work Plan, and a Preliminary Remedial Action Plan (RAP) were prepared for the former Canner’s Steam Company facility, located at 249 Cannery Street, at the request of the LARWQCB (TRC, 2007). The SCM section of the SCM/RAP document evaluated and characterized the soil contaminations, evaluated the LPH and dissolved-phase hydrocarbon plumes and its rate of travel, identified pathways of potential exposure (primarily direct exposure by workers), and estimated the amount of LPH that may be present in the subsurface (7,536 gallons of fuel oil). The Work Plan section of the document described additional site assessment activities to further assess conditions of the site and to better facilitate determining the best site closure options. The RAP evaluated three alternative remediation approaches: 1) Manual LPH recovery followed by monitored natural attenuation; 2) Excavation and off-site treatment or disposal; and, 3) Enhanced in-situ bioremediation. The RAP recommended remediation as follows:

- Excavation of accessible impacted soils to depths of 10 to 12 feet bgs and transport for off-site thermal treatment or off-site disposal.
- Addition of Oxygen Release Compound (ORC) to the excavation below the groundwater level to promote bioremediation of the remaining hydrocarbons.
- Addition of three recovery/injection trenches in the excavation during backfilling to be used to recover remaining LPH or to inject additional ORC as needed.

The LARWQCB, in letters dated August 4, 2008 and October 22, 2008, approved the RAP, subject to the following conditions:

- Established minimum cleanup targets (provided in Table 1 of the letter).
- Required quarterly reports starting October 10, 2008.
- Required annual technical report on remediation progress.
- Required WDRs from the LARWQCB.

In November 2008, a Supplemental Site Assessment Report was prepared to characterize soil and groundwater conditions prior to remediation (TRC, 2008b). The report found that groundwater beneath the site is hydraulically influenced by tides, LPH was generally not noted except during the trough in groundwater elevation fluctuations (maximum LPH thickness of approximately 0.01 feet), and that groundwater flow direction changes with tidal influence (during high tides, groundwater flow beneath the former Canner’s Steam Company Plant is to the northwest, and during low tides, groundwater flow direction shifts to the east). In April 2009, another Supplemental Site Assessment Report was prepared, which found that based on a dewatering pilot test, the site has relatively low groundwater recharge rates, which indicated an extensive dewatering effort would not be appropriate (TRC, 2009). The report also concluded that the addition of RegenOx, an in-situ oxidizing agent, to the subsurface was a viable remedial alternative to reduce residual petroleum hydrocarbons in soil and groundwater (TRC, 2009).

From July 2 through September 28, 2012, remediation of the contaminated soil at the former Canner’s Steam Company Plant occurred, and is documented in the January 15, 2013 Remediation Documentation Report (TRC, 2013). The remediation included the following:
• Approximately 6,402 tons of soils were excavated and hauled off-site for disposal;
• Approximately 16,888 gallons of hydrocarbon-impacted groundwater were pumped out of the excavation and hauled off-site for disposal.
• RegenOx and ORC were added to the excavation; and five injection and monitoring wells were installed.

Soil samples for petroleum hydrocarbons were below LARWQCB cleanup goals with the exception of four excavation bottom samples where additional RegenOx and ORC were injected. RegenOx facilitates in-situ oxidation of organic compounds, and ORC enhances in-situ aerobic bioremediation of petroleum hydrocarbons in groundwater or saturated soils. Post-excavation dissolved-phase hydrocarbon concentrations in groundwater (as indicated by TPH-D) decreased significantly compared to pre-excavation concentrations, but some still exceeded clean-up goals.

On April 17, 2014, additional remediation activities were proposed by TRC to expedite groundwater cleanup and progress toward site closure. These proposed remediation activities included additional groundwater extraction, followed by injection of additional ORC materials into the remedial excavation area using existing injection wells (TRC, 2014).

On June 27, 2014, the LARWQCB issued a revised WDR permit for the additional remediation activities and an approval to modify the groundwater sampling program (TRC, 2015). On July 23 and 24, 2014, a groundwater injection event was performed to further facilitate aerobic bioremediation of dissolved-phase petroleum hydrocarbons in the former remedial excavation area. The injection was conducted in accordance with the WDR permit dated October 20, 2010 (revised June 27, 2014). A total of 900 pounds of ORC were injected.

The former Canner’s Steam Company Plant site is currently undergoing remedial monitoring and the Fourth Quarter 2014 monitoring report (TRC, 2015), based on sampling on December 10 and 11, 2014, found the following:

• LPH was not observed in the wells during this sampling event.
• Concentrations of TPH-G (TPH as gasoline) were not detected above laboratory detection limits during this sampling event.
• TPH-D (TPH as diesel) was detected in five wells at a maximum concentration of 750 micrograms per liter (μg/L) (well IW-5). Concentrations decreased in well IW-5 from 1,600 μg/L in September 2014 to 750 μg/L in December 2014. Slight decreases in concentrations were observed in wells IW-2, IW-3, IW-4 between September and December 2014. These decreases were likely the result of the ORC injection performed on July 23 and 24, 2014.
• Concentrations of TPH-MO (TPH as motor oil) were detected or estimated in four wells at a maximum concentration of 540 μg/L (well IW-2).
• Benzene and MTBE were not detected above laboratory detection limits during this sampling event.
• Additional VOCs and SVOCs were detected during this sampling event for Bromoform (1.2 μg/L) and Dibromomethane (0.3 μg/L –estimated).
Monitoring to continue through Second Quarter 2015 followed by a site closure request.

The former Canner’s Steam Company Plant site has undergone extensive soil and groundwater remediation, and the groundwater at the site is currently monitoring on a quarterly basis. In March 2015, representatives of the former Canner’s Stream Company Plant sent the LARWQCB a memorandum documenting the rationale for regulatory case closure for the former plant site (TRC, 2015). The LARWQCB required an additional well and monitoring, which was subsequently completed in December 2015. The well was sampled and was determined to be below laboratory detection limits for various petroleum hydrocarbon compounds. In January 2016, Canners requested case closure, and the matter is currently under consideration by the LARWQCB (TRC, 2016).

Former Canners Steam Plant – Asbestos, Lead-Based Paint, and Other Hazardous Materials

The former Canner’s Steam Company Plant, built in 1951, produced and distributed steam to various fish processing companies in the vicinity via subsurface pipes. The main steam plant building consists of a 117 x 125-foot steel frame structure with 3/8-inch thick cement panels covering exterior walls. The building floor is made of concrete with sub-grade trenches for fuel oil and water supply lines. Steam was produced in boilers within the plant. The primary steam distribution lines consist of two 14-inch pipes located beneath Cannery Street, between Barracuda and South Seaside Streets, and beneath Barracuda Street, south of Cannery Street. Approximately nine lateral extensions, from 25 to 100 feet in length, extend from the main 14-inch line to individual parcels located along Cannery and Barracuda Streets (Kleinfelder, 2005). Asbestos-containing materials (ACM) were used as insulation to minimize heat loss on various steam plant equipment, including boilers, tanks, and piping. ACM was also used in the steam plant structure; including floor tiles, window putty, and exterior cement panels. Lead-based paints (LBP) and lead-containing paint (LCP) were also used in various locations in the plant.

In 2004, a Hazardous Building Materials survey was conducted of the former Canner’s Steam Company Plant and associated steam distribution lines located beneath the street on Cannery Street, Barracuda Street, and the alley between Tuna and Ways Street (Kleinfelder, 2005). Samples of suspected ACM and LBP were collected and analyzed. Location, type, and quantity of the ACM and LBP were documented in a Hazardous Building Materials Survey Report (Kleinfelder, 2005), which included the following key findings:

- ACM is present in floor tiles, pipe insulation, tank insulation, boiler insulation, steam pipe insulation (in Canner Street, Barracuda Street, vaults), roof mastic, and cement exterior panels.
- Recommend ACM abatement prior to demolition.
- Some LBP and LCP in damaged conditions can be stabilized or abated prior to demo. If stabilized, LBP and LCP might be able to be disposed of as non-hazardous construction and demolition waste.
- Fluorescent light tubes, ballasts, and electrical thermostats can contain polychlorinated biphenyls (PCBs) and should be removed and disposed of by a license hazardous waste contractor.
In 2008, an additional hazardous materials survey was conducted to complement the findings of the 2005 Kleinfelder survey (TRC, 2008a). The objective of the survey was to quantify and locate known hazardous materials, as well as to provide additional sampling of suspected ACM, LBP, mercury fluorescent lights, mercury-containing HVAC (heating, ventilation and air conditioning) thermostats, and PCB-containing light ballasts. Key findings of the survey are as follows:

- ACM is present in tank insulation, pipe insulation, pipe gaskets, fitting gaskets, duct gaskets, equipment gaskets, insulation caulking, packing insulation, pipe insulation debris, gasket debris, and exterior window putty.
- Subsurface water supply, waste piping, and electrical conduits may contain asbestos, and may be encountered during grading or excavation.
- LBP in poor to intact condition was identified on various metal equipment and connectors, framing, support legs, wood siding, and asphalt striping.
- Fluorescent light fixtures (approximately 25) may have ballasts that contain PCBs and are considered hazardous.
- Fluorescent tubes (approximately 80) and eight high intensity discharge bulbs were located inside the building. These and mercury-containing HVAC thermostats must be disposed of in accordance with Title 22 Chapter 11 of the California Building Code.

In 2009, the South Coast Air Quality Management District (SCAQMD) issued a Notice to Comply to the former Canners Steam Company Plant owners, which required compliance with Rule 1403 through the submittal of a Procedure 5 Plan (Procedure 5 Plans are required to clean-up any disturbed ACM) and the abatement of ACM that had become dislodged and remained in friable condition on the former steam plant site (Canners, 2009).

In 2010, an evaluation of the condition of the ACM at the steam plant was conducted, and noted that ACM is weathered, deteriorated, or physically damaged resulting in the exposure and availability to the environment for ready mobilization of friable asbestos or previously contained but now exposed asbestos fibers (TRC, 2010). The report determined that various ACM located on outside equipment at the plant poses an imminent risk of human exposure and consequent danger to human health. The report recommended abatement of the risk and specified removal approaches.

Interior ACM and ACM associated with exterior equipment were removed in 2012, but exterior building panels, roof mastic, and window and door putty still contain asbestos (TRC, 2011 and 2012).

1.5-Acre Backlands Expansion Area

The vacant 1.5 acre backlands expansion area is located adjacent to the former ExxonMobil Southwestern Terminal One (near Berths 238, 239, 240-B, and 240-C), and was historically used by the terminal for aboveground storage. The ExxonMobil site is now PBF Energy; however, for the purposes of the analysis in this section, it is referred to as the ‘ExxonMobil site.’ Groundwater beneath the 1.5-acre area is approximately 7 feet bgs (ExxonMobil, 2015).
There is an open remediation site at Southwestern Terminal One. The LARWQCB issued a Cleanup and Abatement Order for the site in 1999 (No. 99-003) related to the presence of free hydrocarbon product in the groundwater surface under a portion of the site and petroleum hydrocarbons present in near-surface soil throughout the site. Investigations conducted in 1999 determined that free hydrocarbon product (FHP) was also present at the southern end of the existing Everport Container Terminal (approximately near the roadability facility) and the 1.5-acre expansion area (average FHP thickness ranging from 1.3 to 2.8 feet). A full-scale free hydrocarbon product recovery system and vapor extraction system was initiated and has been in operation at the ExxonMobil site beginning in 1996. The system continues to remove free hydrocarbon product from the ExxonMobil site and nearby areas. At the end of the Fourth Quarter 2014, approximately 661,656 gallons of FHP had been removed (ExxonMobil, 2015) since the system began operation in 1996. Furthermore, the FHP plume beneath the southern portion of the Everport Container Terminal and the 1.5-acre expansion area has been reduced in size and thickness, with FHP thickness now ranging from zero to 0.35 feet (ExxonMobil, 2015). Remediation is ongoing.

Current remedial actions occurring at the ExxonMobil site include implementation of a fluid migration barrier extension approved by the LARWQCB in August 2013 as a preventative measure to limit any potential for future free product migration, quarterly groundwater and surface water monitoring and sampling, and free hydrocarbon product monitoring and recovery of light non-aqueous phase liquids in on-site wells (California Regional Water Quality Control Board Los Angeles Region, 2013). Monitoring wells that are located within the southern portion of the Project site would be protected in place and the operator of the Everport Container Terminal would continue to coordinate with ExxonMobil in regards to monitoring activities.

3.7.2.4 Hazardous Material Sites Compiled Pursuant To Government Code Section 65962.5

The provisions in Government Code Section 65962.5 are commonly referred to as the "Cortese List" (after the Legislator who authored the legislation that enacted it). Because this statute was enacted over twenty years ago, some of the provisions refer to agency activities that were conducted many years ago and are no longer being implemented and, in some cases, the information to be included in the Cortese List does not exist. While Government Code Section 65962.5 makes reference to the preparation of a “list,” many changes have occurred related to web-based information access since 1992 and this information is now largely available on the Internet sites of the responsible organizations (CalEPA, 2015). The California Environmental Protection Agency (CalEPA) has identified the data resources that provide information regarding the facilities or sites identified as meeting the "Cortese List" requirements (CalEPA, 2015b).

- List of Hazardous Waste and Substances sites from Department of Toxic Substances Control (DTSC) EnviroStor database.
- List of Leaking Underground Storage Tank Sites by County and Fiscal Year from State Water Board GeoTracker database.
- List of solid waste disposal sites identified by the State Water Resources Control Board (SWRCB) with waste constituents above hazardous waste levels outside the waste management unit.
3.7.2.5 Potential Site Contamination

Readily available and reasonably ascertainable federal, state, tribal, and local government agency records were reviewed using a regulatory records database report provided by Environmental Data Resources, Inc. (EDR, 2016) for the Project site. The EDR database report identified approximately 50 sites (multiple facility names at the same address are considered one site) in various environmental databases within the search radius of 1/8 mile. Of the identified sites, most were determined to represent a lesser potential environmental concern due to the distance from the Project area, the nature of the database they were listed in, site status, etc. However, four sites appear to have been located within the 22-acre expansion area that could be of potential environmental
concern to the proposed Project due to the potential to encounter contamination that
might still be present. The former Canner’s Steam Company Plant is one of the four. In
addition to the sites discussed under the Soil and Groundwater Investigations section
above (former Canners Steam Company), three potential environmental sites of concern
(as identified in the EDR report) that could be encountered during Project construction
(Pan Pacific Fisheries, CHB Foods, and Vinten Jas) are described below:

Pan Pacific Fisheries (Site D112 in the EDR report). The site address is listed in the
EDR report as 204 Cannery Street; however, this address is not listed in the City’s Zone
Information and Map Access System (ZIMAS). The entire northern parcel along
Cannery Street between Tuna Street and Ways Street is listed as 241 E. Cannery Street,
which is within the expansion area. The site is listed in the EDR report in the SWEEPS
database, which is an older database (1990s) of USTs (which does not include current
leaking USTs) that was kept by the SWRCB. The current GeoTracker database
maintained by the SWRCB does not show any current listing for a leaking UST within
the 22-acre expansion area. However, because there is a listing under the SWEEPS in the
EDR, for purposes of this environmental document, it is assumed that a UST may be
present on the 22-acre parcel bounded by Terminal Way, Ways Street, Cannery Street,
and Tuna Street.

CHB Foods and Vinten Jas (Sites D and F70 in the 2016 EDR report). These sites appear
to be located at the now vacant existing lot located east of the intersection of Cannery
Street and Seaside Avenue. These sites were determined to be of potential environmental
concern to the proposed Project due to the potential to encounter contamination that
could still be present (related to possible presence of USTs or remaining contamination).

In addition to the sites that appear to be in the 22-acre expansion area, the EDR identified
additional sites near the expansion area. Three sites appear to be located south of the
Project site (Site P: StarKist located at 181 Wharf Street; Site E81: Pan Pacific located at
338 Cannery Street; and Site V624: Pazco located at 991 Barracuda Street), one site is
located to the east of the Project site (Site I213: Exxon Mobile Pipeline located near 551
Pilchard Street), and two sites are located near the terminal’s portion of the Terminal
Island Container Transfer Facility (TICTF) yard (Site J135: Proctor and Gamble located
at 651 New Dock Street, and Site J191: Hiura America located at 720 New Dock Street).

StarKist, Pan Pacific, and Pazco (Sites P, E81, and V624 in the EDR report). These sites
are located south of the 22-acre expansion area, and were determined to be a possible
environmental concern for being on the SWEEPS list or Leaking Underground Storage
Tank list.

Exxon Mobile Pipeline (Site I213 in the EDR report). This site is located east of the
project site and was the location of a pipeline rupture in 2006. There is a small
possibility that leaked product could have migrated to the Project site due to proximity.

Proctor and Gamble and Hiura America (Sites J135 and J191 in the EDR report). These
sites are located to the north of the terminals TICTF boundary, and were determined to be
a possible environmental concern for being on the SWEEPS list or having encountered
contaminated soils.

In addition to the above sites, the EDR report included a Cortese list check, and the
Project Site is not included on the Cortese list.
3.7.3 Applicable Regulations

Depending on the type and degree of contamination that is present in soil and groundwater, any of several governmental agencies may have jurisdiction over the Project site. Generally, the agency with the most direct statutory authority over the affected media is designated as the lead for purposes of overseeing any necessary investigation or remediation. Typically, sites that are nominally contaminated with hazardous materials remain in the jurisdiction of local hazardous materials agencies, such as the Los Angeles City or County Fire Department. Sites that have more heavily contaminated soils are more likely to fall under the jurisdiction of Department of Toxic Substances Control (DTSC), which is authorized to administer the federal hazardous waste program under the Resource Conservation and Recovery Act, and is also responsible for administering the State Superfund Program, under the Hazardous Substance Account Act. The DTSC provides guidelines for cleanup oversight through an environmental oversight agreement for government agencies or a voluntary cleanup agreement for private parties. Sites that have contaminated groundwater fall within the jurisdiction of the LARWQCB and are subject to the requirements of the Porter-Cologne Water Quality Control Act. Refer to Section 3.11, Water Quality, Sediments, and Oceanography, for applicable regulations that address the potential impacts on surface water, which could affect groundwater. The following is a list of groundwater and soil applicable laws:

3.7.3.1 Resource Conservation and Recovery Act of 1976 (42 USC Sections 6901–6987)

The goal of the Resource Conservation and Recovery Act of 1976 (RCRA) is the protection of human health and the environment, the reduction of waste, the conservation of energy and natural resources, and the elimination of the generation of hazardous waste as expeditiously as possible. The Hazardous and Solid Waste Amendments of 1984 significantly expanded the scope of RCRA by adding new corrective action requirements, land disposal restrictions, and technical requirements. The corresponding regulations in 40 Code of Federal Regulations (CFR) 260–299 provide the general framework for managing hazardous waste, including requirements for entities that generate, store, transport, treat, and dispose of hazardous waste. Under RCRA, asbestos is not regulated as hazardous waste, but considered a “non-RCRA,” or “California-only” hazardous waste.

3.7.3.2 Comprehensive Environmental Response, Compensation, and Liability Act of 1980

Proper site characterization and site remediation of hazardous materials is regulated by the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the state Hazardous Substances Account Act (Health and Safety Code Section 25300, et seq.). Additional requirements for hazardous materials are specified under Health and Safety Code Section 25501, hazardous substances under 40 CFR 116, and priority toxic pollutants under 40 CFR 122.

CERCLA, commonly known as Superfund, authorizes EPA to respond to releases, or threatened releases, of hazardous substances that may endanger public health, welfare, or the environment. CERCLA also enables EPA to force parties responsible for environmental contamination to clean it up or to reimburse the Superfund for response or
remediation costs incurred by EPA. The Superfund Amendments and Reauthorization Act of 1986 revised various sections of CERCLA, extended the taxing authority for the Superfund and created a free-standing law, Superfund Amendments and Reauthorization Act Title III, also known as the Emergency Planning and Community Right-to-Know Act.

3.7.3.3 California Code of Regulations, Title 22, Chapter 11, Section 66261 et seq.

California Code of Regulations (CCR) Title 22, Chapter 11, Article 2, Section 66261 defines a hazardous material as a substance or combination of substances that, because of its quantity, concentration, or physical, chemical, or infectious characteristics, may either:

1. cause, or significantly contribute to, an increase in mortality or an increase in serious irreversible or incapacitating reversible illness; or
2. pose a substantial present or potential hazard to human health or environment when improperly treated, stored, transported, or disposed of or otherwise managed. According to CCR Title 22 (Chapter 11, Article 3), substances having a characteristic of toxicity, ignitability, corrosivity, or reactivity are considered hazardous.

3.7.3.4 California Code of Regulations, Title 8—Industrial Relations

Occupational safety standards exist in federal and state laws to minimize worker safety risks from both physical and chemical hazards in the workplace. The California Division of Occupational Safety and Health (CalOSHA) and the federal OSHA are the agencies responsible for assuring worker safety in the workplace. CalOSHA assumes primary responsibility for developing and enforcing standards for safe workplaces and work practices. These standards would be applicable to construction activities of the proposed Project.

3.7.3.5 Hazardous Waste Control Law (California Health and Safety Code, Division 20, Chapter 6.5)

DTSC is authorized by EPA to enforce and implement federal hazardous materials laws and regulations. Most state hazardous materials regulations are contained in Title 22 of the CCR. DTSC provides cleanup and action levels for subsurface contamination; these levels are equal to, or more restrictive than, federal levels. DTSC acts as the lead agency for some soil and groundwater cleanup projects and has developed land disposal restrictions and treatment standards for hazardous waste disposal in California.

DTSC is responsible for the enforcement of the Hazardous Waste Control Law, which implements the federal RCRA cradle-to-grave waste management system in California. California hazardous waste regulations can be found in Title 22, Division 4.5, “Environmental Health Standards for the Management of Hazardous Wastes.”

CalEPA’s DTSC classifies ACM as hazardous waste if it is friable and contains one percent or more asbestos (CCR, Title 22, Section 66261.24). Non-friable bulk asbestos-containing waste is considered by DTSC as nonhazardous regardless of its asbestos content, so it is not subject to regulation under CCR, Title 22, Division 4.5. DTSC regulates the packaging, on-site accumulation, transportation (through standards...
applicable to transporters of hazardous waste), and disposal of asbestos when it is a hazardous waste.

3.7.3.6 Porter-Cologne Water Quality Control Act

Sites that have contaminated groundwater fall within the jurisdiction of the LARWQCB and are subject to the requirements of the Porter-Cologne Water Quality Control Act. Contaminated groundwater that is proposed to be discharged to surface waters or to a publicly owned treatment works would be subject to the applicable provisions of the Clean Water Act (CWA), including permitting and possibly pretreatment requirements. A National Pollution Discharge Elimination System (NPDES) permit is required to discharge pumped groundwater to surface waters, including local storm drains, in accordance with California Water Code Section 13260. Additional restrictions may be imposed upon discharges to waterbodies that are listed as impaired under Section 303(d) of the CWA, including San Pedro Bay.

3.7.3.7 Unified Hazardous Waste and Hazardous Materials Management Regulatory Program (Unified Program) (California Health and Safety Code, Chapter 6.11, Sections 25404–25404.9)

This program consolidates, coordinates, and makes consistent the administrative requirements, permits, inspections, and enforcement activities of the environmental and emergency response programs and provides authority to the Certified Unified Program Agency (CUPA). The CUPA for the City of Los Angeles is the City of Los Angeles Fire Department (LAFD), Bureau of Fire Prevention and Public Safety. The LAFD has entered into an agreement with the Los Angeles County Fire Department (LACFD) to perform the hazardous waste component of the Unified Program. Specifically, this is the LACFD Health Hazardous Materials Division. The CUPA has the responsibility and authority to implement and enforce the requirements listed in Chapter 6.5 (commencing with Section 25100), Chapter 6.67 (commencing with Section 25270), Chapter 6.7 (commencing with Section 25280), Chapter 6.95 (commencing with Section 25500), and Sections 25404.1 and 25404.2., including the following:

- **Hazardous Materials Business Plans (HMBP)/Hazardous Materials Inventory Statements (HMIS).** HMBPs contain basic information on the location, type, quantity, and health risks of hazardous materials and/or waste. Each business must prepare a HMBP if that business uses, handles, or stores a hazardous material and/or waste or an extremely hazardous material in quantities greater than or equal to the following:
 - 55 gallons for a liquid;
 - 500 pounds of a solid;
 - 200 cubic feet for any compressed gas; or
 - threshold planning quantities of an extremely hazardous substance.

HMIS is a hazardous materials chemical inventory that contains the following information pertaining to hazardous materials handled:

- Manufacturer’s name;
- Chemical name, trade names, hazardous ingredients;
Los Angeles Harbor Department

Section 3.7 Groundwater and Soils

• Hazard classification;
• Material Safety Data Sheets (MSDS);
• Identification numbers;
• Maximum quantity stored; and
• Storage conditions related to storage type, temperature, and pressure.

Hazardous Waste Generator Program. This program regulates businesses that generate any amount of a hazardous waste. Proper handling, recycling, treating, storing, and disposing of hazardous waste are key elements to this program. This element is handled by the LACFD Health and Hazardous Materials Division.

3.7.3.8 Toxic Substances Control Act

In 1976, the federal Toxic Substances Control Act (TSCA) (15 U.S.C. secs. 2601–2671) established a system of evaluation in order to identify chemicals which may pose hazards. TSCA also established a process by which public exposure to hazards may be reduced through manufacturing, distribution, use and disposal restrictions or labeling of products. Under TSCA (40 CFR 763), EPA has enacted strict requirements on the use, handling and disposal of ACM. These regulations include the phase out of “friable asbestos” and ACM in new construction materials beginning in 1979 (40 CFR 763). Friable asbestos may be found in pre-1979 construction. In addition, due to potential adverse health effects in exposed persons, in 1989 EPA banned most uses of asbestos in the United States.

Lead exposure is regulated at the federal and state levels and by various agencies. The EPA has been mandated to protect building occupants from the hazards associated with LBP. Under Section 402(a)(1) of TSCA, the EPA has developed disposal standards for LBP wastes.

Due to their hazardous properties, all aspects of PCBs are strictly regulated by EPA under TSCA. TSCA also contains provisions controlling the continued use and disposal of existing PCB-containing equipment. The disposal of PCB wastes is regulated by TSCA (40 CFR 761), which contains life cycle provisions similar to those in RCRA.

3.7.3.9 South Coast Air Quality Management District

SCAQMD Rule 1166 (Volatile Organic Compound Emissions from Decontamination of Soil), requires that an approved mitigation plan be obtained from SCAQMD prior to commencing any of the following activities:

- The excavation of an underground storage tank or piping which has stored volatile organic compounds (VOCs).
- The excavation or grading of soil containing VOC material including gasoline, diesel, crude oil, lubricant, waste oil, adhesive, paint, stain, solvent, resin, monomer, and/or any other material containing VOC.
- The handling or storage of VOC contaminated soil (soil which registers >50 ppm or greater using an organic vapor analyzer calibrated with hexane).

Rule 1166 also includes plans designed to deal with the handling/transportation of VOC-contaminated soils.
SCAQMD Rule 1403 (Asbestos Emissions from Demolition/Renovation Activities) specifies work practices to limit asbestos emissions from building demolition and renovation activities including the removal and disturbance of ACM. This rule is generally designed to protect uses surrounding demolition or renovation activities from exposure to asbestos emissions. Rule 1403 requires of any facility being demolished or renovated for the presence of all friable and Class I and Class II non-friable ACM. Rule 1403 also establishes notification procedures, removal procedures, handling operations, and warning label requirements. Approved procedures for ACM removal to protect surrounding uses identified in Rule 1403 include HEPA filtration, the glovebag method, wetting, and some methods of dry removal.

3.7.4 Impacts and Mitigation Measures

3.7.4.1 Methodology

Groundwater and surface soil impacts have been evaluated with respect to several general parameters, including groundwater quality and soil contaminants. The impact of the proposed Project and the alternatives on each of these parameters has been evaluated with respect to the significance criteria listed below.

The assessment of impacts is also based on regulatory controls and on the assumptions that the proposed Project would include, as applicable, the following:

- An individual NPDES permit for stormwater discharges or coverage under the General Construction Activity Storm Water Permit would be obtained for the proposed Project or alternatives. Refer to Section 3.11.3 for information on the NPDES regulations.

- The contractor would prepare a SPCC Plan and an Oil Spill Contingency Plan (OSCP), which would be reviewed and approved by the CDFW Office of Spill Prevention and Response, in consultation with other responsible agencies. The SPCC Plan would detail and implement spill prevention and control measures to prevent oil spills from reaching navigable waters. The OSCP would identify and plan as necessary for contingency measures that would minimize damage to water quality and provide for restoration to pre-spill conditions. Refer to Section 3.11.3 for information on the OSCP.

- All contaminated soil and groundwater encountered during or prior to construction of the proposed Project or alternative would be handled, transported, remediated, and/or disposed of in accordance with the LAHD protocols and all applicable federal, state, and local laws and regulations.

Potential impacts of construction and operations on surface water and marine water quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography.

CEQA Baseline

Section 15125 of the CEQA Guidelines requires EIRs to include a description of the physical environmental conditions in the vicinity of a project that exist at the time of the NOP. These environmental conditions normally would constitute the baseline physical conditions by which the CEQA lead agency determines if an impact is significant. The NOP for the proposed Project was published in October 2014. For purposes of this Draft EIS/EIR, the CEQA baseline takes into account the throughput for the 12-month calendar.
year preceding NOP publication (January through December 2013) in order to provide a
representative characterization of terminal activity levels throughout the complete
calendar year preceding release of the NOP. In 2013, the Everport Container Terminal
encompassed approximately 205 acres (181 acres under its long-term lease plus an
additional 25 acres on month-to-month space assignment), supported eight cranes,
handled approximately 1.24 million TEUs, and had 166 vessel calls. The CEQA baseline
conditions are also described in Section 2.7.1 and summarized in Table 2-1 in Chapter 2,
Project Description.

The CEQA baseline represents the setting at a fixed point in time. The CEQA baseline
differs from the No Project Alternative (Alternative 2) in that the No Project Alternative
addresses what is likely to happen at the Project site over time, starting from the existing
conditions. Therefore, the No Project Alternative allows for growth at the Project site
that could be expected to occur without additional approvals, whereas the CEQA baseline
does not.

NEPA Baseline

For the purposes of this Draft EIS/EIR, the evaluation of significance under NEPA is
defined by comparing the proposed Project or other alternatives to the NEPA baseline.
The NEPA baseline conditions are described in Section 2.7.2 and summarized in Table 2-
1 in Chapter 2, Project Description. The NEPA baseline condition for determining
significance of impacts includes the full range of construction and operational activities
the applicant could implement and is likely to implement absent a federal action, in this
case the issuance of a DA permit.

Unlike the CEQA baseline, which is defined by conditions at a point in time, the NEPA
baseline is not bound by statute to a “flat” or “no-growth” scenario. Instead, the NEPA
baseline is dynamic and includes increases in operations that are projected to occur
absent a federal permit. Federal permit decisions focus on direct impacts of the proposed
Project permit area to the aquatic environment, as well as indirect and cumulative impacts
in the uplands determined to be within the scope of federal control and responsibility.
Significance of the proposed Project or the alternatives under NEPA is determined by
comparing the proposed Project or the alternatives to the NEPA baseline.

The NEPA baseline, for purposes of this Draft EIS/EIR, is the same as the No Federal
Action Alternative. Under the No Federal Action Alternative (Alternative 1), no
dredging, dredged material disposal, in-water pile installation, or crane raising or
installation would occur, and the existing terminal capacity would not be increased. The
No Federal Action Alternative includes the installation of AMP vaults along the wharf
and the addition of 23.5 acres of additional backlands (addition of the 1.5-acre area at the
southern end of the terminal and the 22-acre backland expansion area) to improve
efficiency (these improvements could occur absent a federal permit).

The NEPA baseline assumes that by 2038 the terminal would handle up to approximately
1,818,000 TEUs annually, accommodate 208 annual ship calls at two existing berths, and
utilize eight cranes.

3.7.4.2 Threshold of Significance

Significance criteria used in this assessment are based on the *L.A. CEQA Thresholds
Guide* (City of Los Angeles, 2006) and other criteria applicable to Port projects. There
are no specific NEPA thresholds associated with groundwater and soils, and therefore the CEQA criteria have been adopted by NEPA for this project. The effects of a project or alternative on groundwater and soil resources are considered to be significant if the proposed Project or alternative would result in any of the following:

GW-1: Exposure of soils containing toxic substances and/or petroleum hydrocarbons, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency for the site.

GW-2: Changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of solid or groundwater contamination, which would increase risk of harm to humans.

3.7.4.3 Impact Determination

Proposed Project

Impact GW-1: Implementation of the proposed Project could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.

Based upon the past hazardous materials site investigations and the EDR report, there have been some historical activities within portions of the Project site (backland expansion areas) that have resulted in releases of contamination or that have installed infrastructure that could pose hazardous conditions if disturbed during construction.

Existing Terminal Area

Excavation within the existing terminal would be required to install infrastructure to support the raised cranes, new cranes, and AMP, such as installation of electrical conduits or vaults. The new infrastructure would be placed at relative shallow depths (up to 4.5 feet for conduits, and up to 12 feet for vaults) within the existing backland areas near the wharf, and are not expected to encounter contaminated soils or groundwater. Further, no contaminant releases have been reported in GeoTracker or EnviroStor in the vicinity of other backlands improvements, such as the existing in-gate that would be removed (potential impacts associated with the new gate complex in the 22-acre expansion area are discussed below).

22-Acre Backland Expansion Area

As described above in Section 3.7.2.3, past activities at the former Canner’s Steam Company Plant resulted in soil and groundwater contamination (from fuel oils) beneath the northern portion of the site and an area off-site to the north. However, the soil contamination has been removed, groundwater has undergone several phases of remediation (removal of LPH, groundwater extraction and disposal, and placement of oxidizing compounds to facilitate breakdown of remaining hydrocarbons), which have reduced the majority of contamination associated with past operations of the former Canner’s Steam Company Plant to below the standards set by the LARWQCB (some groundwater samples still exceed the LARWQCB standards, but were the subject of
additional remediation efforts in 2014). The groundwater in the vicinity of the steam
plant is currently being monitored on a quarterly basis, and a closure request to the
LARWQCB is currently under consideration (TRC, 2016). Although there are small
amounts of hydrocarbons still present at several groundwater sampling locations in
excess of the clean-up standards set by the RWQCB, most construction within the 22-
acre backlands expansion area, including the former Canner’s Steam Company Plant site,
would involve excavations to approximately 3 feet bgs, and would not encounter
groundwater, which is present in this expansion area at a depth ranging from 8-10 feet
bgs depending on tidal fluctuations (groundwater beneath the Project site varies
according to tidal fluctuations due to proximity to harbor waters). The soil and
groundwater investigations for the former Canner’s Steam Company Plant summarized
above, including documentation of a possible historic UST beneath the boiler area in the
steam plant (this UST was searched for in a past investigation but not discovered),
indicates that the soil contamination associated with former Canner’s Steam Company
Plant operations has been remediated.

ACM was utilized throughout the former Canner’s Steam Company Plant to improve
efficiency (asbestos has been used in insulation for industrial operations to minimize heat
loss), and as part of the building structure. ACM was abated from the site in the past, in
compliance with Rule 1403; but some ACM still remains (including exterior cement
panels, exterior window putty, roof mastic, and steam distribution pipes located in the
alley north of the steam plant, Cannery Street, Seaside Avenue, and Barracuda Street);
however, remaining ACM in the former Canner’s Steam Company Plant and steam
distribution pipes within the 22-acre expansion area will be removed in accordance with
applicable laws, regulations, and rules prior to demolition and excavation activities,
which would prevent releases of friable asbestos to the environment during backlands
development. Further, compliance with OSHA requirements would ensure workers are
protected from exposure during abatement activities.

In addition to asbestos, LBP in poor to intact condition has been documented within the
former Canner’s Steam Company Plant, as have ballasts potentially containing PCBs, and
other electrical devices containing mercury. Consistent with standard practices and
applicable laws and regulations, LBP would be stabilized or removed prior to demolition,
and properly disposed of. PCB-containing ballasts and mercury-containing devices
would also be properly removed and disposed of prior to demolition.

In addition, based on review of the EDR report, which identified facilities that have
generated, handled, or disposed of hazardous materials or that have reported releases,
within one-mile of the former Canner’s Steam Company Plant, three sites have been
identified as a potential contamination area within in the 22-acre backland expansion
area. The first, a historic UST associated with the former Pan Pacific Fisheries located at
204 Cannery Street, may still be present or release product that could be encountered
during backlands construction activities. Further, other potential sources of
contamination occur within the 22-acre expansion area (former CHB Foods and Vinten
Jas sites described in Section 3.7.2.5 above), or near the Project site boundaries (see
Section 3.7.2.5). Due to past uses in or near the 22-acre expansion area, there is a
potential for contamination associated with past uses to be encountered during
construction.
1.5-Acre Backlands Expansion Area

As described above in Section 3.7.2.3, the vacant 1.5-acre backlands expansion area was historically part of the ExxonMobil Southwestern Terminal One and housed four ASTs. The site is currently undergoing groundwater remediation as part of the ongoing remediation at the Southwestern Terminal One. Depth to groundwater at the 1.5-acre backland site is approximately 7 feet bgs and some samples located near the area’s northern boundary indicate that groundwater could have small amounts of FHP present. Backlands construction at the 1.5-acre site would occur to depths approximately 3 feet below the elevation of the paved terminal, and is not expected to encounter groundwater or FHP.

CEQA Impact Determination

Although the proposed Project would include pile installation and dredging in the water along Berths 226-232, these activities would not disturb existing groundwater and/or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Raising of up to five of the existing cranes and installation of five new cranes along the existing wharf would not expose subsurface areas and would therefore not have any potential to encounter existing soil contamination. Installation of infrastructure to support the raised and new cranes, AMP vaults, and related improvements within the backlands would occur at relatively shallow depths (up to 4.5 feet for conduit, and up to 12 feet for vaults), in areas where contamination has not been reported or documented, or in locations where soil contamination has been remediated. Because of this, improvements to the existing terminal, including electrical infrastructure and utilities, are not expected to expose persons to soil or groundwater contaminants.

ACM at the former Canner’s Steam Company Plant, including steam distribution pipes located in the alley north of the steam plant, Cannery Street, Seaside Avenue, and Barracuda Street within the 22-acre expansion area that may contain asbestos, would be abated prior to demolition in accordance with all applicable laws, regulations, and rules; and demolition and site excavation activities would therefore not cause a release of asbestos to the environment. Similarly, LBP at the former Canner’s Steam Company Plant would be stabilized, and/or removed and properly disposed of prior to demolition, which would prevent release of lead to the environment during demolition. Potential PCB-containing ballasts and mercury-containing devices within the former Canner’s Steam Company Plant building would be removed and properly disposed of in accordance with applicable laws, regulations, and requirements prior to demolition, and these materials would not be released to the environment from demolition.

The majority of excavations associated with development of the 22-acre backlands expansion area would occur in the upper 3 feet of the site, including site excavation and grading, soil compaction, and base and pavement installation. The backland improvements are not expected to encounter contaminated groundwater and/or soil from past leaks from the fuel oil tanks at the former Canner’s Steam Company Plant because the contaminated soil has been delineated and remediated, groundwater contamination has been largely remediated, and these excavations would not reach groundwater depths. However, there may be a limited number of infrastructure improvements that could extend into the groundwater zone, such as stormwater conveyance and management devices (e.g., Standard Urban Stormwater Management Plan [SUSMP] devices), or removal of existing infrastructure or utilities. Further, although known groundwater and
soil contamination has been largely addressed, there is still a potential for excavation within the 22-acre area to encounter previously unknown or undocumented groundwater and/or soil contamination, which could include contamination associated with a past UST at the former Canner’s Steam Company Plant that was unable to be located, the UST reported to be associated with the former Pan Pacific Fisheries, and possible past contaminations associated with other past uses. Such encounters could result in adverse impacts on construction personnel, and potentially existing operations personnel depending on the locations.

All contaminated groundwater and/or soil encountered during construction of the proposed Project would be handled, transported, remediated, or disposed of in accordance with all applicable federal, state, and local laws and regulations and in accordance with the regulatory lead agencies’ (e.g., EPA, DTSC, LARWQCB, and LACFD) requirements pertaining to site investigation, testing, and treatment, and adherence to a contamination contingency plan. Therefore, with adherence to existing laws and regulations, exposure associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency for the site, would be less than significant under CEQA.

As mentioned in Chapter 2, Project Description, backlands improvements would include site preparation and asphalt paving at the Project site, which would serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface contamination that might exist. As such, backland improvements would not result in the potential for exposure of terminal operating personnel and the public to underlying contaminants, relative to existing conditions.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA include installing king and sheet piles, dredging and disposing of dredge materials, raising up to five existing cranes, adding five new cranes, and improving backlands within 100-feet of the water’s edge, including infrastructure. The NEPA baseline includes backlands expansion and AMP installation, but does not include pile installation, dredging and sediment disposal, or raising and new cranes.

Pile installation and dredging would occur in the water along Berths 226-232, which would not occur under the NEPA baseline. However, pile installation and dredging would not disturb existing groundwater or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). The raising of up to five existing cranes and the installation of five new cranes atop the existing wharf would not result in removal of pavement or expose subsurface areas, and would therefore not have any potential to encounter existing groundwater or soil contamination. Installation of infrastructure to support the raised and new cranes within existing backlands near the wharf would occur at relatively shallow depths (up to 4.5 feet for conduit and up to 12 feet for vaults), and in
locations where soil and groundwater contamination have not been documented or confirmed. The Project site has undergone substantial disturbance and development over the last century based on a review of historic topographic maps (EDR, 2016b) and much of the existing subsurface soils are likely comprised of imported fill and dredged sediments.

The proposed Project would expand the terminal backlands into the 22-acre and 1.5-acre expansion areas and construct related improvements; however, these features are located outside of the federal permit area and are also included in the NEPA baseline. Because the NEPA baseline includes the same backlands expansion and improvements, the proposed Project would not result in any incremental impacts associated with backlands expansion. The proposed Project would include installation of electrical infrastructure to within the existing terminal to support the raised and new cranes, which are not included in the NEPA baseline. However, the new electrical infrastructure would be located outside of the permit area and therefore, based on the above, the proposed Project would not result in short-term or long-term exposure of people or the environment to result in significant impacts related to toxic substances or contaminants, and significant impacts would not occur under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

Impact GW-2: Construction and operation of the proposed Project would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.

As discussed under Impact GW-1, groundwater and soil in the 22-acre and 1.5-acre backland expansion areas of the Project site have been affected by contaminants as a result of past uses. Although much of the contamination in the backland expansion areas has been remediated in accordance with the requirements of state and local governments, it is possible that pockets of contamination still exist. Excavation and grading activities in these areas, and potentially other areas with unknown contamination, could encounter contaminated groundwater or soil. However, the removal of contaminated soil or limited dewatering of contaminated groundwater in the case of infrastructure that extends into the water table (such as SUSMP devices) would be localized to the site and not expected to cause remaining contamination to migrate to off-site areas, or adversely affect existing groundwater remediation or monitoring activities because it would remove potential sources or groundwater contamination, if encountered.

The 22-acre and 1.5-acre expansion areas within the Project site include unpaved areas that allow rainfall and runoff to percolate, and these areas would be paved as part of the proposed Project. Backlands improvements under the proposed Project would include site preparation and asphalt paving at the expansion areas, which would serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface contamination that might exist. This is considered a benefit relative to baseline conditions. As such,
backland improvements are not expected to affect the movement or extent of soil or groundwater contamination that might be present, and would not result in the potential for exposure of terminal operating personnel and the public to underlying contaminants, if present. Due to limited potential for dewatering and the increase in impermeable surface within the backlands expansion areas, the proposed Project is expected to have a minimal effect on existing groundwater remediation and monitoring efforts, and would not exacerbate existing contamination, if present.

Operation of the proposed Project would comply with all applicable existing regulations, and not require subsurface excavation; therefore, terminal operations would not encounter, affect, move, or increase the level of subsurface contamination.

CEQA Impact Determination

The proposed Project is not expected to change the rate, direction, or extent of existing groundwater and/or soil contamination. None of the in-water (e.g., dredging) or over-water construction (e.g. installation of new cranes or raising existing cranes) would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal, contaminated groundwater and/or soil are not expected to be encountered during installation of infrastructure. However, should any unknown contaminated groundwater and/or soil be encountered during construction in backland expansion areas, it would be remediated in compliance with federal, state, and local requirements. In addition, operation of the proposed Project would comply with all applicable regulations governing use and handling of hazardous materials. No permanent dewatering systems are anticipated with the implementation of the proposed Project. Further, increased impervious surfaces in the backland expansion areas relative to existing conditions would have the effect of lessening infiltration through contamination (if present), which is considered a beneficial effect. Therefore, construction and operation of the proposed Project would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA include installing king and sheet piles, dredging and disposing of dredge materials, raising up to five of the existing cranes, adding five new cranes, and improving backlands within 100-feet of the water’s edge, including infrastructure. The NEPA baseline includes backlands expansion and installation of AMP along the wharf, but does not include pile installation, dredging and sediment disposal, or raising and new cranes.

None of the in-water or over-water construction would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal, contaminated groundwater and/or soil is not expected to be encountered during installation of infrastructure within the federal permit area. However, if unknown contaminated groundwater and/or soil are encountered during construction within the
federal permit area, it would be remediated in compliance with applicable requirements. Therefore, no significant impact would occur.

Terminal operations would comply with all applicable regulations governing use and handling of hazardous materials, and operations would not result in subsurface excavations. Therefore, construction and operation of the proposed Project would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

Alternative 1 – No Federal Action

Alternative 1 is a NEPA-required no action alternative for purposes of this Draft EIS/EIR. Alternative 1 includes the activities that would occur absent a DA permit and could include improvements that require a local permit, such as backlands expansion and AMP installation. Absent a DA permit, no dredging, dredged material disposal, in-water pile installation, or raising and new crane installation would occur. The existing terminal’s ability to handle larger ships (compared to current terminal constraints) would be facilitated by activities that require a DA permit (dredging, in-water pile driving, raising cranes, and new cranes). Therefore, without the activities that address the constraints of the terminal’s berths (the existing berth depths cannot accommodate vessels larger than about 8,000 TEUs, and deeper berths would allow the terminal to service larger ships), the existing terminal berth capacity would not be increased. The No Federal Action Alternative includes 23.5 acres of additional backlands to improve efficiency and installation of AMP to reduce at-berth vessel emission, which could occur absent a federal permit.

The Everport Container Terminal under Alternative 1 would continue to operate with expanded backlands (approximately 228 acres) where cargo containers are loaded to/from vessels, temporarily stored on backlands, and transferred to/from trucks or on-dock rail. Based on the throughput projections, the Project site is expected to operate at its capacity of approximately 1,818,000 TEUs by 2038.

Impact GW-1: Implementation of Alternative 1 could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.

Alternative 1 would not include in-water or over-water improvements, but like the proposed Project, would include installation of AMP and expanded backlands in the 22-acre and 1.5-acre expansion areas, and related improvements. Terminal operations would increase from current levels under this alternative but would not exceed the terminals existing capacity of approximately 1.8 million TEUs. As a result, future terminal operation would have a greater number of employees and stored containers relative to existing conditions. Groundwater and soil within the Project site have been affected by
contaminants as a result of past uses within the backlands expansion areas. According to
hazardous materials site investigation documents reviewed, remediation of contaminated
groundwater and soil has occurred; however, there could still be unknown contamination
present in the expansion areas that could be encountered during construction within the
backland expansion areas.

CEQA Impact Determination

As discussed under the proposed Project, ACM at the former Canner’s Steam Company
Plant, including steam distribution pipes located in the alley north of the steam plant,
Cannery Street, Seaside Avenue, and Barracuda Street within the 22-acre expansion
would be abated prior to demolition in accordance with all applicable laws, regulations,
and rules. Therefore, demolition and site excavation activities for backlands expansion
associated with Alternative 1 would therefore not release asbestos to the environment.
Similarly, LBP at the former Canner’s Steam Company Plant would be stabilized, and/or
removed and properly disposed of prior to demolition, which would prevent release of
lead to the environment during demolition. Potential PCB-containing ballasts and
mercury-containing devices within the former Canner’s Steam Company Plant building
would be removed and properly disposed of in accordance with applicable laws,
regulations, and requirements prior to demolition, and these materials would not be
released to the environment from demolition.

As with the proposed Project, the backland improvements under Alternative 1 are not
expected to encounter contaminated soil or groundwater from past leaks from the fuel oil
tanks at the former Canner’s Steam Company Plant because the contaminated soil has
been delineated and remediated, groundwater contamination has been largely remediated,
and excavation for backlands improvements would not reach groundwater depths
(backland improvements can result in excavation to approximately 3 feet bgs whereas
groundwater depths range from 8 to 10 feet bgs). However, there may be a limited
numbers of infrastructure improvements under Alternative 1 that could extend into the
groundwater zone, such as stormwater conveyance and management devices (e.g.,
SUSMP devices), or removal of existing infrastructure or utilities. Further, although
known groundwater and soil contamination has been largely addressed, there is still a
potential for excavation within the 22-acre area to encounter previously unknown or
undocumented groundwater and/or soil contamination, which could include contamination
associated with a past UST at the former Canner’s Steam Company Plant that was unable
to be located, a historic UST reported to be associated with the former Pan Pacific
Fisheries, and past uses in the 22-acre area. All contaminated groundwater and/or soil
encountered during construction of Alternative 1 would be handled, transported,
remediated, or disposed of in accordance with all applicable federal, state, and local laws
and regulations and in accordance with the regulatory lead agencies’ (e.g., EPA, DTSC,
LARWQCB, and LACFD) requirements pertaining to site investigation, testing, and
treatment, and adherence to a contamination contingency plan. Therefore, with
adherence to existing laws and regulations, exposure associated with prior uses, which
would be deleterious to humans, based on regulatory standards established by the lead
agency for the site, would be less than significant under CEQA.

In addition, backlands improvements under Alternative 1 would include site preparation
and asphalt paving at the expansion areas, which would serve as a barrier to prevent
exposure of terminal personnel to unknown subsurface contamination that might be
present. As such, backland improvements would not result in the potential for exposure
of terminal operating personnel and the public to underlying contaminants, relative to
existing conditions.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

Alternative 1 would not include any in-water or over-water construction, and would not
include new infrastructure or features within 100-feet of the water’s edge. Although
Alternative 1 would include backlands expansion, these features are located outside of
the federal permit area and are also included in the NEPA baseline. Similarly,
installation of AMP is included in the NEPA baseline. Therefore, there would be no
incremental difference between Alternative 1 and the NEPA baseline. As a consequence,
Alternative 1 would result in no impact under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

No impacts would occur.

Impact GW-2: Construction and operation of Alternative 1 would not
result in changes in the rate or direction of movement of existing
contaminants; expansion of the area affected by contaminants; or
increased level of soil or groundwater contamination, which would
increase risk of harm to humans.

As with the proposed Project, Alternative 1 would expand the terminals backlands onto
the 22-acre and 1.5-acre backland expansion areas. As mentioned under Impact GW-1,
groundwater and soil within the Project site footprint have been affected by contaminants
as a result of past uses within the expansion areas. Groundwater and soil remediation has
occurred throughout the Project site, but it is possible that pockets of unconfirmed
contamination related to past uses still exist. Backlands improvements under Alternative
1 would include site preparation and asphalt paving at the expansion areas, which would
serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface
contamination that might exist. This is considered a benefit relative to baseline
conditions. As such, backland improvements are not expected to affect the movement or
extent of soil or groundwater contamination that might be present, and would not result in
the potential for exposure of terminal personnel and the public to underlying
contaminants. As with the proposed Project, due to limited potential for dewatering and
the increase in impermeable surface within the backlands expansion areas, Alternative 1
is expected to have a minimal effect on existing groundwater remediation and monitoring
efforts.
CEQA Impact Determination

Alternative 1 is not expected to change the rate, direction, or extent of existing soils and/or groundwater contamination. Should any contaminated soil or groundwater be encountered during construction in upland areas, it would be remediated in compliance with federal, state, and local requirements. Additionally, no permanent dewatering systems are anticipated with the implementation of Alternative 1. Further, increased impervious surfaces in the backland expansion areas would have the effect of lessening infiltration through contamination (if present), which is considered a beneficial effect. Therefore, construction and operation of Alternative 1 would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The No Federal Action Alternative would involve the same construction activities and operations as would occur under the NEPA baseline. Therefore, there would be no incremental difference between Alternative 1 and the NEPA baseline. As a consequence, Alternative 1 would result in no impact under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

No impacts would occur.

Alternative 2 – No Project

Alternative 2 is a CEQA-only alternative. The No Project Alternative is not evaluated under NEPA because NEPA requires an evaluation of the No Federal Action alternative (see Section 2.9.1.2), which is Alternative 1 and analyzed above. Section 15126.6(e) of the State CEQA Guidelines requires the analysis of a no-project alternative. This no project analysis must discuss the existing conditions as well as what would be reasonably expected to occur in the foreseeable future if the proposed Project is not approved.

Under Alternative 2, no construction activities would occur in-water, over-water, or in backland areas. LAHD would not implement any terminal improvements or increases in backland acreage. No new cranes or the raising of existing cranes would be implemented and no dredging would occur. Further, the current lease that expires in 2028 is assumed to be extended to 2038, because the existing lease contains a 10-year lease extension option.

Under the No Project Alternative, the existing Everport Container Terminal would continue to operate as an approximately 205-acre container terminal. Based on the
throughput projections for the Port, the Project site is expected to operate at its capacity of approximately 1,818,000 TEUs with 208 annual ship calls by 2038.

Impact GW-1: Implementation of Alternative 2 would not expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.

Alternative 2 would not result in any construction-related activities; therefore, there would be no construction impacts. Under Alternative 2, terminal operations would continue within the existing terminal boundaries. Throughput would increase relative to existing conditions, and the terminal would cease operations in 2038.

CEQA Impact Determination

Alternative 2 would not result in any construction activities that could encounter contaminated groundwater or soils. Although terminal operations under Alternative 2 would continue within the existing terminal boundaries and throughput and vessel calls would increase relative to the CEQA baseline, none of the terminal activities would require excavations within the terminal. As a consequence, operations would not result in exposure of people to expose groundwater or soils containing toxic substances or contaminants, relative to baseline conditions. There would be no impact under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

No impacts would occur.

NEPA Impact Determination

The impacts of the No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action Alternative (Alternative 1 in this document).

Mitigation Measures

Mitigation measures are not applicable.

Residual Impacts

An impact determination is not applicable.

Impact GW-2: Operation of Alternative 2 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans

Alternative 2 would not result in any construction-related activities. Under Alternative 2, terminal operations would continue within the existing terminal boundaries. Throughput
would increase relative to existing conditions, and the terminal would cease operations in 2038.

CEQA Impact Determination

Alternative 2 would not result in any construction activities that could encounter groundwater or otherwise influence the rate or flow of groundwater or contaminants. Although terminal operations under Alternative 2 would continue within the existing terminal boundaries and throughput would increase, none of the terminal activities would require excavations into the terminal’s subsurface. As a consequence, operations would not result in changes to the rate or flow of groundwater containing toxic substances or contaminants, nor would it result in an increase in groundwater contaminants. There would be no impact under CEQA.

Mitigation Measures
No mitigation is required.

Residual Impacts
No impacts would occur.

NEPA Impact Determination

The impacts of the No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action Alternative (Alternative 1 in this document).

Mitigation Measures
Mitigation measures are not applicable.

Residual Impacts
An impact determination is not applicable.

Alternative 3 – Reduced Project: Reduced Wharf Improvements

Under Alternative 3, there would be two operating berths after construction, similar to the proposed Project; but Berths 230-232 would remain at the existing depth (-45 feet plus two feet of overdepth), which would eliminate the need for sheet pile placement at this operating berth. Under this alternative, dredging along Berths 226-229 would occur as described for the proposed Project. This alternative would require less dredging (by approximately 8,000 cubic yards for a total of about 30,000 cubic yards) and less sheet pile driving and a slightly shorter construction period than the proposed Project. Based on the throughput projections, this alternative is expected to operate at its capacity of approximately 2,225,000 TEUs by 2038, similar to the proposed Project. However, while the terminal could handle similar levels of cargo, the reduced project alternative would not achieve the same level of efficient operations as achieved by the proposed Project. This alternative would include the raising of up to five existing cranes and installation of five new cranes. Berths 226-229 would accommodate the largest vessels (16,000 TEUs). The existing design depth that would remain at Berths 230-232 would only be capable of handling vessels up to 8,000 TEUs. Other proposed Project elements, such as installation of AMP and backland improvements would be implemented under
this alternative. Under this alternative, 208 vessels would call on the terminal by 2038, which is the same number or annual vessel calls as the proposed Project.

Impact GW-1: Implementation of Alternative 3 could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.

Alternative 3 contains the same features as the proposed Project, with the exception that no dredging or sheet pile installation would occur along Berths 230-232. Due to the reduced level of wharf work, Alternative 3 would dredge approximately 30,000 cubic yards of sediments, rather than 38,000 cubic yards under the proposed Project. Alternative 3 would also expand the terminal backlands by 23.5 acres. As with the proposed Project, groundwater and soils within the two backland expansion areas have been affected by contaminants as a result of past uses within these areas. Soil remediation has occurred for known contamination areas within the 22-acre area and is ongoing in the vicinity of the 1.5-acre backland expansion area. As with the proposed Project, it is possible that pockets of contamination still exist, and excavation and other construction-related activities within the backland expansion areas could disturb or expose contaminated soils.

CEQA Impact Determination

Although Alternative 3 would include pile installation and dredging in the water along Berths 226-229, these activities would not disturb existing soil or groundwater contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Installation of new cranes and the raising of up to five existing cranes along the existing wharf would not expose subsurface areas, and would therefore not have any potential to encounter known soil contamination. Installation of infrastructure to support the raised and new cranes, AMP vaults, and related improvements within the backlands would occur at relatively shallow depths (up to 4.5 feet for conduit, and up to 12 feet for vaults), in areas where contamination has not been reported or documented or confirmed, or in locations where soil contamination has been remediated. Because of this, improvements to the existing terminal, including electrical infrastructure and utilities, are not expected to expose persons to groundwater or soil contaminants.

As discussed under the proposed Project, ACM at the former Canner’s Steam Company Plant, including steam distribution pipes located in the alley north of the steam plant, Cannery Street, Seaside Avenue, and Barracuda Street within the 22-acre expansion would be abated prior to demolition in accordance with all applicable laws, regulations, and rules; and demolition and site excavation activities associated with Alternative 3 would therefore not cause a release of asbestos to the environment. Similarly, LBP at the former Canner’s Steam Company Plant would be stabilized, and/or removed and properly disposed of prior to demolition, which would prevent release of lead to the environment during demolition. Potential PCB-containing ballasts and mercury-containing devices within the former Canner’s Steam Company Plant building would be removed and properly disposed of in accordance with applicable laws, regulations, and requirements prior to demolition, and these materials would not be released to the environment from demolition or site excavation activities.
As with the proposed Project, the backland improvements under Alternative 3 are not expected to encounter contaminated groundwater or soil from past leaks from the fuel oil tanks at the former Canner’s Steam Company Plant because the contaminated soil has been delineated and remediated, groundwater contamination has been largely remediated, and these excavations would not reach groundwater depths. However, there may be a limited number of infrastructure improvements under Alternative 3 that could extend into the groundwater zone, such as stormwater conveyance and management devices (e.g., SUSMP devices), or removal of existing infrastructure or utilities. Further, although known groundwater and soil contamination has been largely addressed, there is still a potential for excavation within the 22-acre area to encounter unknown or undocumented groundwater and/or soil contamination, which could include contamination associated with a past UST at the former Canner’s Steam Company Plant that was unable to be located, a historic UST reported to be associated with the former Pan Pacific Fisheries, and possible past contaminations associated with other past uses. All contaminated groundwater and/or soil encountered during construction of Alternative 3 would be handled, transported, remediated, or disposed of in accordance with all applicable federal, state, and local laws and regulations and in accordance with the regulatory lead agencies’ (e.g., EPA, DTSC, LARWQCB, and LACFD) requirements pertaining to site investigation, testing, and treatment, and adherence to a contamination contingency plan. Therefore, with adherence to existing laws and regulations, exposure associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency for the site, would be less than significant under CEQA.

In addition, backlands improvements under Alternative 3 would include site preparation and asphalt paving at the expansion areas, which would serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface contamination that might exist. As such, backland improvements would not result in the potential for exposure of terminal operating personnel and the public to underlying contaminants, relative to existing conditions.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA include installing king and sheet piles, dredging and disposing of dredge materials, raising of up to five existing cranes, adding five new cranes, and improving backlands within 100-feet of the water’s edge, including infrastructure. The NEPA baseline includes backlands expansion and AMP installation, but does not include pile installation, dredging and sediment disposal, or raising and new cranes.

Pile installation and dredging under Alternative 3 would occur in the water along Berths 226-229, which would not occur under the NEPA baseline. However, pile installation and dredging would not disturb existing groundwater or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Installation of new cranes and raising of existing cranes atop the existing wharf would not result in removal of pavement or
expose subsurface areas, and would therefore not have any potential to result in encountering existing groundwater or soil contamination. Installation of infrastructure to support the raised and new cranes within existing backlands would occur at relatively shallow depths (up to 4.5 feet for conduit and up to 12 feet for vaults), and in locations where groundwater and/or soil contamination have not been documented or confirmed. The Project site has undergone substantial disturbance and development over the last century based on a review of historic topographic maps and existing subsurface soils are likely comprised of imported fill and dredges sediments (EDR, 2016b).

Although the Alternative 3 would include backlands expansion, these features are located outside of the federal permit area and are also included in the NEPA baseline. Therefore, there would be no incremental difference in backlands development under Alternative 3 and the NEPA baseline. As a consequence, Alternative 3 would not result in significant impacts under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

Impact GW-2: Construction and operation of Alternative 3 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.

None of the in-water or over-water construction under Alternative 3 would affect groundwater. Similarly, installation of support infrastructure within the vicinity of the wharf is not expected to encounter contaminated groundwater or soil because infrastructure placement would be shallow and contaminant releases have not been documented or confirmed in this area.

As discussed under the proposed Project, groundwater and soil within the two backland expansion areas under Alternative 3 have been affected by contaminants as a result of past uses within these areas. Soil remediation of known contamination has occurred within the 22-acre area and is ongoing in the vicinity of the 1.5-acre backland expansion area. Under Alternative 3, it is possible that pockets of contamination still exist, and excavation and other construction-related activities within the backland expansion areas could disturb or expose contaminated soils. Backlands improvements under Alternative 3 would include site preparation and asphalt paving at the expansion areas, which would serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface contamination that might exist. This is considered a benefit relative to baseline conditions. As such, backland improvements are not expected to affect the movement or extent of soil or groundwater contamination that might be present, and would not result in the potential for exposure of terminal operating personnel and the public to underlying contaminants, relative to existing conditions.

Operation of the terminal under Alternative 3 would comply with all applicable existing regulations, and would occur entirely above the paved portions of the expanded terminal,
which would prevent Alternative 3 operations from affecting or expanding any potential areas affected by contamination, or increasing the level of contamination.

CEQA Impact Determination

Alternative 3 is not expected to change the rate, direction, or extent of existing groundwater and/or soil contamination. None of the in-water or over-water construction under Alternative 3 would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal and the shallow depth of new infrastructure to support the raised and new cranes, contaminated soil and groundwater are not expected to be encountered during installation of infrastructure in the vicinity of the existing wharf. Should any contaminated groundwater or soil be encountered during construction in backland expansion areas, it would be remediated in compliance with federal, state, and local requirements. In addition, operation of the terminal under Alternative 3 would comply with all applicable regulations governing use and handling of hazardous materials.

No permanent dewatering systems are anticipated with the implementation of the proposed Project. Further, increased impervious surfaces in the backland expansion areas relative to existing conditions would have the effect of lessening infiltration through contamination (if present), which is considered a beneficial effect. Therefore, construction and operation of the terminal under Alternative 3 would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA under Alternative 3 include constructing king and sheet piles, dredging and disposing of dredge materials, raising of up to five existing cranes, adding five new cranes, and improving backlands within 100-feet of the water’s edge, including infrastructure. The NEPA baseline includes backlands expansion and installation of AMP along the wharf, but does not include pile installation, dredging and sediment disposal, or raised and new cranes.

Under Alternative 3, none of the in-water or over-water construction would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal and the shallow depth of new infrastructure to support the raised and new cranes, contaminated groundwater and/or soil is not expected to be encountered during installation of infrastructure within the federal permit area. However, if unknown contaminated groundwater and/or soil is encountered during construction within the federal permit area, it would be remediated in compliance with applicable requirements. Further, since the backlands expansion areas are also included in the NEPA baseline, no impact would occur.
Terminal operations under Alternative 3 would comply with all applicable regulations governing use and handling of hazardous materials, and operations would not result in subsurface excavations. Therefore, construction and operation of the terminal under Alternative 3 would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

Alternative 4 – Reduced Project: No Backlands Improvements

Under Alternative 4 there would be two operating berths after construction, similar to the proposed Project. This alternative would require the same dredging as the proposed Project. Up to five of the existing cranes would be raised and five new cranes installed, as well as AMP. This alternative would not include any backland expansion. Based on the throughput projections, this alternative is expected to operate at its capacity of 2,115,133 TEUs by 2038, slightly less than the proposed Project. However, while the terminal could handle similar levels of cargo, this reduced project alternative would not achieve the same level of efficient operations as achieved by the proposed Project. This alternative would accommodate the largest vessels (16,000 TEUs) at Berths 226-229. The new design depth at Berths 230-232 would be capable of handling vessels up to 10,000 TEUs. Under this alternative, 208 vessels would call on the terminal in 2038, which is the same as the proposed Project.

Impact GW-1: Implementation of Alternative 4 would not expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.

Alternative 4 contains the same in-water and over-water features as the proposed Project, but would not expand the existing terminal backlands.

CEQA Impact Determination

Although the proposed Project would include pile installation and dredging in the water along Berths 226-229 and Berths 230-232 these activities would not disturb existing groundwater or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Installation of five new cranes and the raising of up to five of the existing cranes along the existing wharf would not expose subsurface areas and would therefore not have any potential to encounter existing soil contamination. Installation of infrastructure to support the raised and new cranes and AMP vaults would occur at relatively shallow depths (up to 4.5 feet for conduit, and up to 12 feet for vaults) and in locations where soil contamination has not been reported or documented or confirmed. Because of this, in-water, over-water, and support improvements to the existing terminal, including electrical infrastructure and utilities, are not expected to expose persons to groundwater or soil contaminants.
Alternative 4 would not expand backlands, and would therefore not result in any potential to encounter unknown subsurface contamination that may exist on the 22-acre and 1.5-acre backland expansion areas.

Operation of Alternative 4 would occur on the existing terminal, and although throughput would increase, terminal operations would not expose personnel to increased level of exposure to soil or groundwater contaminants. Based on the above, neither construction nor operation would result in significant impacts under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

Pile installation and dredging under Alternative 4 would occur in the water along Berths 226-229 and Berths 230-232, which would not occur under the NEPA baseline. However, pile installation and dredging would not disturb existing groundwater or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Installation of new cranes and the raising of existing cranes along the existing wharf would not expose subsurface areas beneath existing pavement and would therefore not have any potential to encounter existing groundwater or soil contamination. Installation of infrastructure to support the raised and new cranes within the backlands would occur at relatively shallow depths (up to 4.5 feet for conduit and up to 12 feet for vaults), and in locations where groundwater and soil contamination have not been documented or confirmed.

Alternative 4 would not include backlands expansion and would not encounter subsurface contamination that may be present in the expansion areas. Therefore, Alternative 4 would not result in significant impacts under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

Impact GW-2: Alternative 4 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.

None of the in-water or over-water construction under Alternative 4 would affect groundwater. Similarly, installation of support infrastructure within the vicinity of the wharf is not expected to encounter contaminated soil or groundwater because
infrastructure placement would be shallow and contaminant releases have not been documented or confirmed in this area.

Alternative 4 would not include backlands expansion and would not encounter subsurface contamination that may be present in the expansion areas.

Operation of the terminal under Alternative 4 would comply with all applicable existing regulations, and would occur entirely above the paved portions of the expanded terminal, which would prevent Alternative 4 operations from affecting or expanding any potential areas affected by contamination, or increasing the level of contamination.

CEQA Impact Determination

Alternative 4 is not expected to change the rate, direction, or extent of existing groundwater and/or soil contamination. None of the in-water or over-water construction under Alternative 4 would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal and the shallow depth of new infrastructure to support the raised and new cranes, contaminated groundwater and soil are not expected to be encountered during installation of infrastructure in the vicinity of the existing wharf. In addition, operation of the terminal under Alternative 4 would comply with all applicable regulations governing use and handling of hazardous materials.

Therefore, construction and operation of the terminal under Alternative 4 would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA under Alternative 4 include installing king and sheet piles, dredging and disposing of dredge materials, raising of existing crane, adding five new cranes, and installing infrastructure improvements within 100-feet of the water’s edge. The NEPA baseline includes backlands expansion and installation of AMP along the wharf, but does not include pile installation, dredging and sediment disposal, or raised and new cranes.

Under Alternative 4, none of the in-water or over-water construction would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal and the shallow depth of new infrastructure to support the raised and new cranes, contaminated groundwater and soil is not expected to be encountered during installation of infrastructure within the federal permit area.

Terminal operations under Alternative 4 would comply with all applicable regulations governing use and handling of hazardous materials, and operations would not result in subsurface excavations. Therefore, construction and operation of the terminal under
Alternative 4 would not result in expansion of the existing area affected by contaminants, and impacts would be less than significant under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

Alternative 5 – Expanded On-Dock Railyard: Wharf and Backland Improvements with an Expanded TICTF

Alternative 5 would be the same as the proposed Project, but with an additional on-dock rail track at the TICTF. Under Alternative 5, there would be two operating berths after construction and the terminal would add 23.5 acres of backlands, similar to the proposed Project. This alternative would require the same dredging as the proposed Project. This alternative would accommodate the largest vessels (16,000 TEUs) at Berths 226-229. The new design depth at Berths 230-232 would be capable of handling vessels up to 10,000 TEUs. Based on the throughput projections, this alternative is expected to operate at its capacity of approximately 2,379,525 TEUs by 2038, the same as the proposed Project. Under this project alternative, the terminal would have added capacity at the TICTF and be able to transport a greater number of containers via rail than the proposed Project. Under this alternative, 208 vessels would call on the terminal in 2038, which is the same as the proposed Project.

Impact GW-1: Implementation of Alternative 5 could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.

In addition to containing the same in-water, over-water, and backlands expansions as the proposed Project, Alternative 5 would also include a new rail assembly line at the TICTF to allow increases in on-dock rail capacity.

CEQA Impact Determination

Although Alternative 5 would include pile installation and dredging in the water along Berths 226-229 and Berths 230-232, these activities would not disturb existing groundwater or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Installation of five new cranes and the raising of up to five of the existing cranes along the existing wharf would not expose subsurface areas and would therefore not have any potential to encounter existing soil contamination. Installation of infrastructure to support the raised and new cranes, AMP vaults, and related improvements within the backlands would occur at relatively shallow depths (up to 4.5 feet for conduit, and up to 12 feet for vaults), in areas where contamination has not been documented or confirmed, or in locations where soil contamination has been remediated. Because of this, improvements to the existing terminal, including electrical infrastructure and utilities, are not expected to expose persons to groundwater or soil contaminants.
As discussed under the proposed Project, ACM at the former Canner’s Steam Company Plant, including steam distribution pipes located in the alley north of the steam plant, Cannery Street, Seaside Avenue, and Barracuda Street within the 22-acre expansion would be abated prior to demolition in accordance with all applicable laws, regulations, and rules; and demolition and site excavation activities associated with Alternative 5 would therefore not cause a release of asbestos to the environment. Similarly, LBP at the former Canner’s Steam Company Plant would be stabilized, and/or removed and properly disposed of prior to demolition, which would prevent release of lead to the environment during demolition. Potential PCB-containing ballasts and mercury-containing devices within the former Canner’s Steam Company Plant building would be removed and properly disposed of in accordance with applicable laws, regulations, and requirements prior to demolition, and these materials would not be released to the environment from demolition.

The backland improvements under Alternative 5 are not expected to encounter contaminated groundwater or soil from past leaks from the fuel oil tanks at the former Canner’s Steam Company Plant because the contaminated soil has been delineated and remediated, groundwater contamination has been largely remediated, and these excavations would not reach groundwater depths. However, there may be a limited number of infrastructure improvements under Alternative 5 that could extend into the groundwater zone, such as stormwater conveyance and management devices (e.g. SUSMP devices), or removal of existing infrastructure or utilities. Further, although known soil and groundwater contamination has been largely addressed, there is still a potential for excavation within the 22-acre area to encounter unknown or undocumented groundwater and/or soil contamination, which could include contamination associated with a past UST at the former Canner’s Steam Company Plant that was unable to be located, a historic UST reported to be associated with the former Pan Pacific Fisheries, and possible past contaminations associated with other past uses. All contaminated groundwater and/or soil encountered during construction of Alternative 5 would be handled, transported, remediated, or disposed of in accordance with all applicable federal, state, and local laws and regulations and in accordance with the regulatory lead agencies’ (e.g., EPA, DTSC, LARWQCB, and LACFD) requirements pertaining to site investigation, testing, and treatment, and adherence to a contamination contingency plan. Therefore, with adherence to existing laws and regulations, exposure associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency for the site, would be less than significant under CEQA.

Alternative 5 would include the installation of a new rail line at the TICTF. The new rail line would be installed between existing rails, and would involve pavement removal, excavation to approximately 3 feet bgs, soil compaction, placement of base, installation of rail ties and track, and repaving. No contaminant spills have been documented at the TICTF in the 2016 EDR report; however, some indications of potential contamination were identified near the periphery of the Everport portion of TICTF. As a consequence, there is a potential to encounter contaminated soil during installation of the new rail line at TICTF (new rail installation would require excavation to approximately 3 feet bgs, which would not encounter groundwater).

Backlands improvements under Alternative 5 would include site preparation and asphalt paving at the expansion areas, which would serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface contamination that might exist. As such, backland improvements would not result in the potential for exposure of terminal personnel.
operating personnel and the public to underlying contaminants, relative to existing conditions.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA include installing king and sheet piles, dredging and disposing of dredge materials, raising of up to five existing cranes, adding five new cranes, and constructing backlands improvements within 100-feet of the water’s edge, including installing infrastructure. The NEPA baseline includes backlands expansion and AMP installation, but does not include pile installation, dredging and sediment disposal, or raised and new cranes.

Pile installation and dredging under Alternative 5 would occur in the water along Berths 226-232, which would not occur under the NEPA baseline. However, pile installation and dredging would not disturb existing groundwater or soil contamination in upland areas (impacts related to dredging and sediment quality are addressed in Section 3.11, Water Quality, Sediments, and Oceanography). Installation of new cranes and raising of existing cranes atop the existing wharf would not result in pavement removal or expose subsurface areas, and would therefore not have any potential to result in encountering existing groundwater or soil contamination. Installation of infrastructure in existing backlands to support the raised and new cranes would occur at relatively shallow depths (up to 4.5 feet for conduit and up to 12 feet for vaults) and in locations where groundwater and soil contamination have not been documented. Similarly, the new rail line at TICTF would occur at relatively shallow depths (up to 3 feet), and in locations where groundwater and soil contamination have not been documented. The Project site has undergone substantial disturbance and development over the last century based on a review of historic topographic maps (EDR, 2016b) and much of the existing subsurface soils are likely comprised of imported fill and dredged sediments.

Although Alternative 5 would include backlands expansion, these features are located outside of the federal permit area and are also included in the NEPA baseline. Therefore, there would be no incremental difference between backlands activities under Alternative 5 and the NEPA baseline. As a consequence, Alternative 5 would not result in significant impacts under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.
Impact GW-2: Construction and operation of Alternative 5 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.

As discussed above, none of the in-water or over-water construction would affect groundwater. Similarly, installation of support infrastructure within the vicinity of the wharf is not expected to encounter contaminated soil or groundwater because infrastructure placement would be shallow and contaminant releases have not been documented in this area.

As discussed under the proposed Project, groundwater and soil within the two backland expansion areas under Alternative 5 have been affected by contaminants as a result of past uses within these areas. Soil remediation of known contamination has occurred within the 22-acre area and is ongoing in the vicinity of the 1.5-acre backland expansion area. Under Alternative 5, it is possible that pockets of contamination still exist, and excavation and other construction-related activities within the backland expansion areas could disturb or expose contaminated soils. However, the removal of contaminated soil or limited dewatering of contaminated groundwater in the case of infrastructure that extends into the water table (such as SUSMP devices) would be localized to the site and not expected to cause remaining contamination to migrate to off-site areas, or adversely affect existing groundwater remediation or monitoring activities because it would remove potential sources or groundwater contamination, if encountered.

The 22-acre and 1.5-acre expansion areas under Alternative 5 include unpaved areas that allow rainfall and runoff to percolate, and these areas would be paved as part of Alternative 5. Backlands improvements under Alternative 5 would include site preparation and asphalt paving at the expansion areas, which would serve as a barrier to prevent the exposure of terminal personnel to unknown subsurface contamination that might exist. This is considered a benefit relative to baseline conditions. As such, backland improvements are not expected to affect the movement or extent of soil or groundwater contamination that might be present, and would not result in the potential for exposure of terminal operating personnel and the public to underlying contaminants, if present. Operation of the terminal under Alternative 5 would comply with all applicable existing regulations, and would occur entirely above the paved portions of the expanded terminal, which would prevent Alternative 5 operations from affecting or expanding any potential areas affected by contamination, or increasing the level of contamination.

CEQA Impact Determination

Alternative 5 is not expected to change the rate, direction, or extent of existing soils and/or groundwater contamination. None of the in-water or over-water construction under Alternative 5 would affect groundwater. Based on the lack of documented or confirmed contamination in the existing Everport Container Terminal, contaminated soil and groundwater is not expected to be encountered during installation of infrastructure in the vicinity of the existing wharf. As discussed above, unknown contamination could be present at the two backland expansion areas and the periphery of the Everport portion of the TICTF. Should any contaminated groundwater or soil be encountered during construction in backland expansion areas or TICTF, it would be remediated in
compliance with federal, state, and local requirements. In addition, operation of the
terminal under Alternative 5 would comply with all applicable regulations governing use
and handling of hazardous materials.

No permanent dewatering systems are anticipated with the implementation of the
proposed Project. Further, increased impervious surfaces in the backland expansion areas
relative to existing conditions would have the effect of lessening infiltration through
contamination (if present), which is considered a beneficial effect. Therefore,
construction and operation of the terminal under Alternative 5 would not result in
expansion of the existing area affected by contaminants, and impacts would be less than
significant under CEQA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.

NEPA Impact Determination

The Project elements to be analyzed under NEPA under Alternative 5 include installing
king and sheet piles, dredging and disposing of dredge materials, raising of up to five of
the existing cranes, adding five new cranes, and improving backlands within 100-feet of
the water’s edge, including infrastructure. The NEPA baseline includes backlands
expansion and installation of AMP along the wharf, but does not include pile installation,
dredging and sediment disposal, or raised and new cranes.

Under Alternative 5, none of the in-water or over-water construction would affect
groundwater. Based on the lack of documented or confirmed contamination in the
existing Everport Container Terminal, contaminated groundwater and/or soil is not
expected to be encountered during installation of infrastructure within the federal permit
area. Any unknown contaminated groundwater and/or soils encountered during
construction within the backland expansion areas would be remediated in compliance
with applicable requirements, and since the backlands expansion areas are also included
in the NEPA baseline, no impact would occur.

Terminal operations under Alternative 5 would comply with all applicable regulations
governing use and handling of hazardous materials, and operations would not result in
subsurface excavations. Therefore, construction and operation of the terminal under
Alternative 5 would not result in expansion of the existing area affected by contaminants,
and impacts would be less than significant under NEPA.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.
3.7.4.4 Summary of Impact Determinations

Table 3.7-1 summarizes the CEQA and NEPA impact determinations of the proposed Project and alternatives related to groundwater and soils, as described in the detailed discussion above. This summary table is intended to facilitate easy comparison between the potential impacts of the proposed Project and the alternatives with respect to these resources. Identified potential impacts may be based on federal, state, or City significance criteria; LAHD criteria; and the scientific judgment of the report preparers.

For each impact threshold, the table describes the impact, notes the CEQA and NEPA impact determinations, describes any applicable mitigation measures, and notes the residual impacts. All impacts, whether significant or not, are included in this table.
Table 3.7-1: Summary Matrix of Potential Impacts and Mitigation Measures for Groundwater and Soils Associated with the Proposed Project and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project</td>
<td>GW-1: Implementation of the proposed Project could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
</tr>
<tr>
<td>GW-2:</td>
<td>Construction and operation of the proposed Project would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
</tr>
<tr>
<td>Alternative 1 – No Federal Action</td>
<td>GW-1: Implementation of Alternative 1 could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GW-2:</td>
<td>Construction and operation of Alternative 1 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>Alternative 2 – No Project</td>
<td>GW-1: Implementation of Alternative 2 would not expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>CEQA: No impact</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: No impact</td>
</tr>
</tbody>
</table>
Table 3.7-1: Summary Matrix of Potential Impacts and Mitigation Measures for Groundwater and Soils Associated with the Proposed Project and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>NEPA: Not Applicable</td>
<td>NEPA: Mitigation not applicable</td>
<td>NEPA: Not Applicable</td>
</tr>
<tr>
<td>GW-2:</td>
<td>Operation of Alternative 2 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans</td>
<td>CEQA: No impact</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td>NEPA: Not Applicable</td>
<td>NEPA: Mitigation not applicable</td>
<td>NEPA: Not Applicable</td>
<td></td>
</tr>
<tr>
<td>Alternative 3 – Reduced Project: Reduced Wharf Improvements</td>
<td>GW-1: Implementation of Alternative 3 could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
<td></td>
</tr>
<tr>
<td>GW-2:</td>
<td>Construction and operation of Alternative 3 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
<td></td>
</tr>
<tr>
<td>Alternative 4 – Reduced Project: No Backlands Improvements</td>
<td>GW-1: Implementation of Alternative 4 would not expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7-1: Summary Matrix of Potential Impacts and Mitigation Measures for Groundwater and Soils Associated with the Proposed Project and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW-2:</td>
<td>Construction and operation of Alternative 4 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
</tr>
<tr>
<td>GW-1:</td>
<td>Implementation of Alternative 5 could expose soils containing toxic substances, associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
</tr>
<tr>
<td>GW-2:</td>
<td>Construction and operation of Alternative 5 would not result in changes in the rate or direction of movement of existing contaminants; expansion of the area affected by contaminants; or increased level of soil or groundwater contamination, which would increase risk of harm to humans.</td>
<td>CEQA: Less than significant</td>
<td>CEQA: No mitigation is required.</td>
<td>CEQA: Less than significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant</td>
<td>NEPA: No mitigation is required.</td>
<td>NEPA: Less than significant</td>
</tr>
</tbody>
</table>
3.7.4.5 Mitigation Monitoring

All contaminated groundwater and/or soil encountered during construction of the proposed project and Alternatives 3 and 5 would be handled, transported, remediated, or disposed of in accordance with all applicable federal, state, and local laws and regulations and in accordance with the regulatory lead agencies’ (e.g., EPA, DTSC, LARWQCB, and LACFD) requirements. Therefore, with adherence to existing laws and regulations, exposure associated with prior uses, which would be deleterious to humans, based on regulatory standards established by the lead agency for the site, would be less than significant. In the absence of significant impacts, mitigation measures are not required.

3.7.5 Significant Unavoidable Impacts

No significant unavoidable impacts on Groundwater and Soils would occur during construction or operation of the proposed Project or alternatives.
This page left intentionally blank