# Appendix B3 Health Risk Assessment

#### Contents

| 1.0 Introduction                                                                    | 1          |
|-------------------------------------------------------------------------------------|------------|
| 2.0 Emissions Development                                                           | 2          |
| 2.1 Construction Emission Sources                                                   | 2          |
| 2.2 Operational Emission Sources                                                    | 2          |
| 2.3 Emission Calculation Approach                                                   | 3          |
| 2.3.1 Averaging Periods for TAC Emissions                                           | 3          |
| 2.3.2 CEQA Baseline                                                                 | 4          |
| 2.4 Project Emission Trends                                                         | 4          |
| 2.4.1 Emission Factor Trends                                                        | 5          |
| 2.4.2 Activity Level Trends                                                         | 6          |
| 2.4.3 TAC Emission Rates                                                            | 7          |
| 3.0 Receptor Locations                                                              | 19         |
| 4.0 Dispersion Model Selection and Inputs                                           |            |
| 4.1 Emission Source Representation                                                  |            |
| 4.2 Meteorological Data                                                             |            |
| 4.3 Model Options                                                                   |            |
| 5.0 Calculation of Health Risks                                                     |            |
| 5.1 Toxicity Factors                                                                |            |
| 5.2 Mortality and Morbidity                                                         |            |
| 5.3 Cancer Burden                                                                   |            |
| 5.4 Exposure Scenarios for Individual Lifetime Cancer Risk                          |            |
| 6.0 Significance Criteria for Project Health Risks                                  |            |
| 7.0 Predicted Incremental Health Impacts                                            |            |
| 7.1 Proposed Project Incremental Impacts                                            |            |
| 7.1.1 Unmitigated Impacts                                                           |            |
| 7.1.2 Mitigated Impacts                                                             |            |
| 7.2 Alternatives                                                                    | 73         |
| 7.2.1 Unmitigated Impacts                                                           | 73         |
| 7.2.2 Mitigated Impacts                                                             |            |
| 8.0 Risk Uncertainty                                                                |            |
| 9.0 References                                                                      |            |
| Berths 212-214 (YTI) Container Terminal Improvements<br>Project B3-i<br>ICF00070.13 | March 2014 |

#### List of Tables

| Table 2-1. Speciation Profiles for PM10                                                              | 8   |
|------------------------------------------------------------------------------------------------------|-----|
| Table 2-2. Speciation Profiles for TOG                                                               | 9   |
| Table 2-3. Toxic Air Contaminant Emissions by Source – NOP CEQA Baseline                             | 0   |
| Table 2-4. Toxic Air Contaminant Emissions by Source – Future CEQA Baseline                          | 1   |
| Table 2-5. Toxic Air Contaminant Emissions by Source – NEPA Baseline and Unmitigated Alternative 2   | 2   |
|                                                                                                      | 2   |
| Table 2-6. Toxic Air Contaminant Emissions by Source – Proposed Project, Unmitigated 1               | 3   |
| Table 2-7. Toxic Air Contaminant Emissions by Source – Proposed Project, Mitigated                   | 4   |
| Table 2-8. Toxic Air Contaminant Emissions by Source – Alternative 1, Unmitigated1                   | 5   |
| Table 2-9. Toxic Air Contaminant Emissions by Source – Alternative 2, Mitigated 1                    | 6   |
| Table 2-10. Toxic Air Contaminant Emissions by Source – Alternative 3, Unmitigated 1                 | 7   |
| Table 2-11. Toxic Air Contaminant Emissions by Source – Alternative 3, Mitigated 1                   | 8   |
| Table 3-1. Sensitive Receptors                                                                       |     |
| Table 4-1. AERMOD Source Release Parameters                                                          | \$2 |
| Table 4-2. Temporal Distribution of Emissions for CEQA Baseline, NEPA Baseline, Proposed Project,    |     |
| and Alternatives                                                                                     |     |
| Table 5-1. Toxicity Factors Used in the HRA    3                                                     | 6   |
| Table 5-2. Exposure Assumptions for Individual Lifetime Cancer Risk                                  | 19  |
| Table 7-1. Maximum Incremental CEQA Health Impacts Associated with the Proposed Project without      |     |
| Mitigation4                                                                                          | 3   |
| Table 7-2. Source Contributions to Cancer Risk at the CEQA Increment MEIs – Proposed Project without | ıt  |
| Mitigation4                                                                                          | 4   |
| Table 7-3. Maximum Incremental NEPA Health Impacts Associated With the Proposed Project Without      |     |
| Mitigation5                                                                                          | 6   |
| Table 7-4. Maximum Incremental CEQA Health Impacts Associated with the Proposed Project with         |     |
| Mitigation6                                                                                          | 63  |
| Table 7-5. Source Contributions to Cancer Risk at the CEQA Increment MEIs – Proposed Project with    |     |
| Mitigation                                                                                           | 64  |
| Table 7-6. Maximum Incremental CEQA Health Impacts Associated with Alternative 1, No Project         |     |
| Alternative                                                                                          | '3  |
| Table 7-7. Maximum Incremental CEQA Health Impacts Associated with Alternative 2, No Federal         |     |
| Action Alternative without Mitigation7                                                               |     |
| Table 7-8. Maximum Incremental CEQA Health Impacts Associated with Alternative 3, Reduced Project    | ct  |
| Alternative without Mitigation7                                                                      | '9  |
| Table 7-9. Maximum Incremental NEPA Health Impacts Associated with Alternative 3, Reduced Project    |     |
| Alternative without Mitigation                                                                       | \$1 |
| Table 7-10. Maximum Incremental CEQA Health Impacts Associated with Alternative 2, No Federal        |     |
| Action Alternative with Mitigation                                                                   | \$4 |
| Table 7-11. Maximum Incremental CEQA Health Impacts Associated with Alternative 3, Reduced           |     |
| Project Alternative with Mitigation                                                                  | \$7 |
| Berths 212-214 (YTI) Container Terminal Improvements                                                 |     |
| Project B3-ii March 201<br>ICF00070.13                                                               | 14  |

### List of Figures

| Figure 3-1. Coarse and Fine Receptor Grids                                                          | 29            |
|-----------------------------------------------------------------------------------------------------|---------------|
| Figure 3-2. Sensitive Receptor Locations                                                            | 30            |
| Figure 7-1. MEI Locations for CEQA Health Increments - Proposed Project without Mitigation          | 45            |
| Figure 7-2. Isopleths of Residential Lifetime Cancer Risk: NOP CEQA Baseline                        | 46            |
| Figure 7-3. Isopleths of Occupational Lifetime Cancer Risk: NOP CEQA Baseline                       | 47            |
| Figure 7-4. Isopleths of Residential Lifetime Cancer Risk: Future CEQA Baseline                     | 48            |
| Figure 7-5. Isopleths of Occupational Lifetime Cancer Risk: Future CEQA Baseline                    | 49            |
| Figure 7-6. Isopleths of Residential Lifetime Cancer Risk: Absolute Proposed Project without Mitiga | ation         |
|                                                                                                     | 50            |
| Figure 7-7. Isopleths of Occupational Lifetime Cancer Risk: Absolute Proposed Project without       |               |
| Mitigation                                                                                          | 51            |
| Figure 7-8. Isopleths of Residential Lifetime Cancer Risk: Proposed Project without Mitigation Minu |               |
| NOP CEQA Baseline                                                                                   |               |
| Figure 7-9. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project without Mitigation Mi  | inus          |
| NOP CEQA Baseline                                                                                   | 53            |
| Figure 7-10. Isopleths of Residential Lifetime Cancer Risk: Proposed Project without Mitigation Min | aus           |
| Future CEQA Baseline                                                                                | 54            |
| Figure 7-11. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project without Mitigation M  | <b>1</b> inus |
| Future CEQA Baseline                                                                                | 55            |
| Figure 7-12. MEI Locations for NEPA Health Increments - Proposed Project without Mitigation         | 58            |
| Figure 7-13. Isopleths of Residential Lifetime Cancer Risk: NEPA Baseline                           | 59            |
| Figure 7-14. Isopleths of Occupational Lifetime Cancer Risk: NEPA Baseline                          | 60            |
| Figure 7-15. Isopleths of Residential Lifetime Cancer Risk: Proposed Project without Mitigation Mi  | nus           |
| NEPA Baseline                                                                                       | 61            |
| Figure 7-16. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project without Mitigation N  | Minus         |
| NEPA Baseline                                                                                       | 62            |
| Figure 7-17. MEI Locations for CEQA Health Increments - Proposed Project with Mitigation            | 66            |
| Figure 7-18. Isopleths of Residential Lifetime Cancer Risk: Absolute Proposed Project with Mitigati | on 67         |
| Figure 7-19. Isopleths of Occupational Lifetime Cancer Risk: Absolute Proposed Project with Mitiga  | ation         |
|                                                                                                     | 68            |
| Figure 7-20. Isopleths of Residential Lifetime Cancer Risk: Proposed Project with Mitigation Minus  | NOP           |
| CEQA Baseline                                                                                       |               |
| Figure 7-21. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project with Mitigation Mini  | us            |
| NOP CEQA Baseline                                                                                   | 70            |
| Figure 7-22. Isopleths of Residential Lifetime Cancer Risk: Proposed Project with Mitigation Minus  |               |
| Future CEQA Baseline                                                                                |               |
| Figure 7-23. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project with Mitigation Mini  | us            |
| Future CEQA Baseline                                                                                | 72            |
| Figure 7-24. MEI Locations for CEQA Health Increments - Alternative 1, No Project Alternative       | 75            |

| Figure 7-25. MEI Locations for CEQA Health Increments – Alternative 2, No Federal Action Alternative |
|------------------------------------------------------------------------------------------------------|
| without Mitigation                                                                                   |
| Figure 7-26. MEI Locations for CEQA Health Increments – Alternative 3, Reduced Project Alternative   |
| without Mitigation                                                                                   |
| Figure 7-27. MEI Locations for NEPA Health Increments – Alternative 3, Reduced Project Alternative   |
| without Mitigation                                                                                   |
| Figure 7-28. MEI Locations for CEQA Health Increments – Alternative 2, No Federal Action Alternative |
| with Mitigation                                                                                      |
| Figure 7-29. MEI Locations for CEQA Health Increments – Alternative 3, Reduced Project Alternative   |
| with Mitigation                                                                                      |

# 1.0 Introduction

This appendix describes the methods and results of a health risk assessment (HRA) that evaluates potential public health effects from toxic air contaminant (TAC) emissions that would be generated during the construction and operation of the proposed Project and alternatives for the Berths 212-214 (YTI) Container Terminal. The HRA evaluated health risks associated with the following scenarios:

- Notice of Preparation (NOP) CEQA Baseline (January1, 2012 through December 31, 2012) baseline at the time of the NOP;
- Future CEQA Baseline used only in the evaluation of cancer risk and cancer burden, as described in Section 2.3.2;
- NEPA Baseline equivalent to Alternative 2 without mitigation;
- Proposed Project without and with mitigation;
- Alternative 1, No Project without mitigation;
- Alternative 2, No Federal Action, without and with mitigation; and
- Alternative 3, Reduced Project, without and with mitigation.

The HRA was conducted in accordance with a Protocol prepared previously by the Port and reviewed and approved by both CARB and SCAQMD (LAHD 2005). The Port protocol is based on the methodology in OEHHA's Air Toxics Hot Spots Program Risk Assessment Guidelines (OEHHA 2003), Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and Assessment Act (AB2588) (SCAQMD 2011a), and Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Emissions (SCAQMD 2003). The Hotspots Analysis and Reporting Program (HARP) model Version 1.4f (CARB 2012) used in the HRA incorporates the methods in these guidance documents.

The HRA analyzed proposed Project and alternative TAC emissions and human exposure to the TAC emissions during the 70-year period from 2015 to 2084. TACs are compounds that are known or suspected to cause adverse health effects after short-term (acute) or long-term (chronic) exposure. The HRA includes an evaluation of four different types of health effects: individual lifetime cancer risk, cancer burden, chronic noncancer hazard index, and acute noncancer hazard index.

The HRA was developed using a five-step process to estimate incremental health impact results: (1) quantify proposed Project, alternative, and baseline emissions; (2) identify ground-level receptor locations that may be affected by emissions, including a regular receptor grid as well as specific sensitive receptor locations nearby such as schools, hospitals, convalescent homes, or daycare centers; (3) perform dispersion modeling analyses to estimate ambient TAC concentrations at each receptor location; (4) characterize the potential health risk at each receptor location; and (5) evaluate incremental health risk values by comparing potential health risk posed by the proposed Projects relative to CEQA and NEPA baselines. The following sections provide additional details on the methods used to complete each step of the HRA.

# 2.0 Emissions Development

#### 2.1 Construction Emission Sources

The following emission sources associated with onsite construction activities were included in the HRA:

- Off-road construction equipment: land-based equipment and marine-based equipment (dredging and pile driving equipment);
- On-road construction vehicles (haul trucks, delivery trucks);
- Crane delivery ship used to deliver shore-side gantry cranes;
- Harbor craft: tugboats (used to position dredging barges and scows) and dive boats; and
- Asphalt paving: fugitive VOC emissions.

In accordance with SCAQMD guidance (SCAQMD 2005), only onsite construction emissions were included in the HRA. Construction emissions were not modeled for the CEQA baseline and Alternative 1 because those scenarios would have no construction activities.

### 2.2 **Operational Emission Sources**

Both on-site and off-site emission sources were included in the modeling of operational emissions. The following emission sources associated with operational activities were included in the HRA:

- Container ships transiting to and from berth. Ship transit emission sources are comprised of propulsion and auxiliary engines and boiler exhaust. Ship transit in SCAQMD waters consists of transit in the fairway, precautionary zone, and the harbor. Ships transiting were modeled as far as the SCAB overwater boundary, approximately 40 nautical miles.
- Container ships hoteling while at berth and at anchorage in the harbor. Ship hoteling emission sources are comprised of ship auxiliary engines (except when using AMP) and boiler exhaust; propulsion engines would be turned off.
- Tugboats used to assist container ships between the Port breakwater and the berth. Two tugboats were assumed to assist each ship. Tugboat emission sources are comprised of propulsion and auxiliary engines.
- On-road trucks driving on near-Port roads, at the YTI terminal, and idling onterminal and at the YTI terminal gate. Truck transit emission sources are comprised of exhaust, brake wear, and tire wear. Trucks were modeled as far as approximately 3 miles north of the terminal, a distance established in prior LAHD NEPA/CEQA documents as sufficient to capture maximum concentrations for container terminal projects (LAHD 2011a).
- Locomotives switching and idling at the TICTF on-dock rail yard, and line haul locomotives pulling trains between the TICTF on-dock rail yard and the Alameda

Corridor. Locomotives traveling were modeled as far as approximately 3 miles north of the terminal.

- Cargo handling equipment (CHE) operating at the YTI terminal and TICTF, including forklifts, rubber-tired gantry cranes, top handlers, and yard tractors.
- Transport refrigeration units (TRUs) operating at the TICTF.
- Worker vehicles driving to and from the YTI terminal. Worker vehicle emission sources are comprised of exhaust, brake wear, and tire wear. Worker vehicles were modeled as far as approximately 3 miles north of the terminal.

#### 2.3 Emission Calculation Approach

### 2.3.1 Averaging Periods for TAC Emissions

The following averaging periods were used to determine toxic air contaminant emission rates for the NEPA baseline, proposed Project, and alternatives:

- Annual emission rates averaged over a 70-year exposure period (2015-2084) were used to determine cancer risk for residential, recreational, and sensitive receptors. To estimate annual average TAC emissions over the 70-year exposure period, equipment activity levels were interpolated between analysis years (2015, 2016, 2017, 2020, and 2026) and held constant at 2026 levels for all years beyond 2026. Similarly, emission factors were interpolated between evaluation years and held constant after the last available emission factor evaluation year.
- Annual emission rates averaged over a 40-year exposure period (2015-2054) were used to determine cancer risk for occupational receptors. The approach for calculating a 40-year average is similar to that described above for the 70-year average.
- Maximum annual emission rates were used to determine chronic hazard indices for all receptor types. The maximum emissions were selected from the project analysis years 2015, 2016, 2017, 2020, and 2026. To ensure the capture of maximum TAC concentrations in the HRA, maximum annual emissions were modeled for each emission source category, even if the maximum emissions would not occur in the same analysis year. For example, maximum construction emissions were determined separately for diesel exhaust and all other sources. These maximum emissions were conservatively modeled together in the HRA even if they would occur during different construction analysis years. Similarly, maximum operational emissions were determined separately for automobile diesel exhaust, all other automobile emissions, cargo handling equipment, harborcraft, line haul locomotives, OGV boilers during anchorage, OGV diesel exhaust during anchorage, OGV boilers during hoteling, OGV diesel exhaust during hoteling, OGV boilers during transit, OGV diesel exhaust during transit, truck diesel exhaust, all other truck emissions, transport refrigeration units, and yard locomotives. These maximum emissions were conservatively modeled

together in the HRA even if they would occur during different analysis years.

• Peak 1-hour emission rates were used to determine acute hazard indices for all receptor types. The peak emissions were selected from the project analysis years 2015, 2016, 2017, 2020, and 2026. To ensure the capture of maximum TAC concentrations in the HRA, peak 1-hour emissions were modeled for each emission source category, even if the maximum emissions would not occur simultaneously. The approach for selecting peak 1-hour emission rates by source category is similar to that described above for maximum annual emission rates.

#### 2.3.2 CEQA Baseline

A primary and a secondary methodology were used to develop the CEQA baseline TAC emissions. The primary approach is referred to as the NOP CEQA baseline, and the secondary approach is referred to as the Future CEQA baseline. The NOP CEQA baseline was used in the evaluation of all health effects in this HRA (cancer risk, cancer burden, chronic and acute noncancer effects). The Future CEQA baseline was used only in the evaluation of cancer risk and cancer burden.

To better apprise the public and decision makers of the Project's environmental impacts under CEQA, the predicted cancer risk and cancer burden for the proposed Project and alternatives are compared to both the NOP CEQA baseline and the Future CEQA baseline. The NOP CEQA baseline uses 2012 YTI terminal activity levels and 2012 emission factors; in other words, it represents actual 2012 operational emissions. The Future CEQA baseline also uses 2012 YTI terminal activity levels, but uses emission factors averaged over a 70-year exposure period (2012-2081) for residential cancer risk, or a 40 year exposure period (2012-2051) for occupational cancer risk. These long-term average emission factors incorporate the effects of existing air quality regulations on future equipment emissions.

The NOP CEQA baseline cancer risk is typically higher than the Future CEQA baseline cancer risk, because emission factors for port-related equipment generally decline over time in response to existing air quality regulations and assumptions regarding equipment fleet turnover. This declining trend in emissions is accounted for in the Future CEQA baseline but not the NOP CEQA baseline.

The Future CEQA baseline is not used in the evaluation of chronic and acute noncancer effects. Chronic and acute noncancer effects are based on annual and hourly emissions, respectively. These emission periods occur entirely within the 2012 baseline year, and therefore are represented by the NOP CEQA baseline.

### 2.4 Project Emission Trends

The extended period of analysis (up to 70 years for cancer risk) required predictions of the future operational characteristics of the proposed emission sources. Two of the more important factors that would affect future emissions from Project sources and that were integrated into the analysis are:

- Reductions in emission factors due to (a) the incidental phase-in of cleaner vehicles or equipment due to normal fleet turnover; (b) the future phase-in of cleaner fuels as required by existing regulations or agreements; and (c) the future phase-in of cleaner engines as required by existing regulations or agreements.
- Increased vehicle and equipment activity levels due to anticipated increases in container throughput.

These two opposing trends that influence future year emission calculations are discussed in the following sections.

#### 2.4.1 Emission Factor Trends

The methodology for determining emission factors for each emission source category is described in Section 3.2.4.1 of the EIS/EIR and in Appendix B1, and therefore is not reproduced in this appendix. The following summarizes long-term emission factor trends pertinent to the HRA:

- Off-road Construction Equipment. Emission factors were derived from the CARB Off-road 2011 Emissions Inventory Database for equipment representative of the SCAB (CARB 2011a). The CARB database output shows that, on a per-horsepower-hour basis, emission factors will steadily decline in future years as older equipment is replaced with newer, cleaner equipment that meets the already-adopted future state and federal off-road engine emission standards.
- **On-Road Construction Vehicles.** Emission factors were generated by the EMFAC2011 on-road mobile source emission factor model for a truck fleet representative of the SCAB (CARB 2011a). The EMFAC2011 model output shows that, on a per-mile basis, emission factors will steadily decline in future years as older trucks are replaced with newer, cleaner trucks that meet the required state and federal on-road engine emission standards.
- **Crane Delivery Ships.** Emission factors were obtained from the 2012 Port Emissions Inventory (Port EI) (LAHD 2012a). The emission factors were assumed to remain constant during both construction years.
- **Harbor Craft.** Emission factors were derived based on the USEPA standards for marine compression-ignition engines. Emission factors were assumed to remain constant during the construction period, but would steadily decline in future operational years as older tugboats are replaced with newer, cleaner tugboats per required state regulations.
- Container Ships. Emission factors were obtained from the 2012 Port EI (LAHD 2012a). Emission factors for propulsion and auxiliary engines are dependent on engine tier, which in turn is dependent upon engine age. Starcrest provided the average age of vessels that called at the YTI terminal in 2012. Since most of the vessels were on average 10 years old, emission factors corresponding to IMO Tier 1 for slow speed diesel propulsion engines (model years 2000 to 2010) and IMO Tier 1 for medium speed diesel auxiliary engines were used in the analysis. Since there is no confirmation that newer ships would visit the terminal in future years, engine emission factors were assumed to remain constant in future years. Per CARB regulatory requirements, the sulfur content of fuel was assumed to

decrease from 0.5% in the baseline year to 0.1% in future years, thereby resulting in diesel particulate matter (DPM) reduction (CARB 2011b). In addition, container ships were assumed to comply with increasing requirements per CARB's shore power regulation, thereby reducing DPM emissions while hoteling at berth (CARB 2007).

- **On-Road Container Trucks.** Emission factors were generated by the EMFAC2011 on-road mobile source emission factor model (CARB 2011a). EMFAC2011 was run by Starcrest using the Port fleet mix for the baseline and future proposed Project and alternative years. Emission factors of PM10 exhaust are predicted to rise slightly above 2012 levels in future years as the fleet which contained a large percentage of new trucks in 2012 because of the Port's Clean Truck Program ages and reaches equilibrium with regard to fleet turnover. The percentage of container trucks using alternative fuels was conservatively assumed to remain at 10 percent for all future years even though it is likely that percentage will rise, resulting in a lower cancer risk.
- **Locomotives.** Line haul locomotive emission factors were obtained from the USEPA (USEPA 2009) and assume a gradual replacement of older locomotives with cleaner, newer locomotives in the future. The emission factors for PHL switch locomotives at the on-dock rail yard were based on PHL's 2012 switch engine fleet and fleet turnover assumptions for future project analysis years. As a result, the emission factors for PHL and line haul locomotives are predicted to decline in future years.
- **CHE.** Emission factors were derived from CARB's CHE inventory model (CARB 2011a). Emission factors will steadily decline in future years as older equipment are replaced with newer, cleaner equipment that meet the required state and federal off-road engine emission standards.
- **TRUs.** DPM emission factors were obtained from CARB's TRU inventory (CARB 2011a); VOC emission factors were obtained from CalEEMod (CAPCOA 2013). Emission factors will steadily decline in future years as older equipment are replaced with newer, cleaner equipment that meet the required state and federal off-road engine emission standards.
- Worker Vehicles. Emission factors were derived from EMFAC2011 (CARB 2011a). EMFAC2011 shows that emission factors will steadily decline in future years as older vehicles are replaced with newer, cleaner vehicles that meet the required state and federal vehicle engine emission standards.
- Asphalt Paving. The VOC off-gas emission factor for asphalt paving was obtained from CalEEMod (CAPCOA 2013). The emission factor per acre paved was assumed to remain constant during the construction period.

### 2.4.2 Activity Level Trends

Examples of activity levels include the container throughput at the terminal, the number of train and truck trips needed to move the containers, on-site equipment usage, truck/vehicle miles Berths 212-214 (YTI) Container Terminal Improvements Project B3-6 March 2014 ICF00070.13 traveled (VMT), and truck travel speeds. For the NOP CEQA baseline and Future CEQA baseline scenarios, 2012 throughput levels were used and held constant over the entire 70-year analysis period. Activity levels for each emission source category are presented in Section 3.2.4.1 in the EIS/EIR and in Appendix B1.

YTI provided the facility throughput and container ship activity used in the HRA. The transportation study (Appendix D) provided the train, truck, and worker trip data used in the HRA. Tugboat activity would increase with the increase in container ships. CHE and TRU activity would increase with projected container throughput increase. The following summarizes the trends in future activity levels for the proposed Project and alternatives:

- Proposed Project: Terminal throughput would increase from 996,109 twentyfoot equivalent units (TEU) in the 2012 baseline year to 1,913,000 TEU in the final analysis year, 2026. Overall ship calls would increase from 162 ship calls in 2012 to 206 ship calls in 2026, and larger ships would be accommodated at the terminal in the future. Annual train trips to and from the on-dock rail yard would increase from 725 trains per year in 2012 to 1,269 trains per year in 2026. The average train length was assumed to increase from 8,000 feet per train in 2012 to 8,660 feet per train in 2026, requiring proportionally more locomotives per train. Annual truck trips would increase from 907,176 trips per year in 2012 to 1,347,939 trips per year in 2026.
- Alternative 1, Alternative 2, and NEPA Baseline: Terminal throughput would increase from 996,109 twenty-foot equivalent units (TEU) in the 2012 baseline year to 1,692,000 TEU in the final analysis year, 2026. Overall ship calls would not increase and larger ships would be accommodated at the terminal in the future. Annual train trips to and from the on-dock rail yard would increase from 725 trains per year in 2012 to 1,075 trains per year in 2026. The average train length was assumed to increase from 8,000 feet per train in 2012 to 8,660 feet per train in 2026, requiring proportionally more locomotives per train. Annual truck trips would increase from 907,176 trips per year in 2012 to 1,222,690 trips per year in 2026.
- Alternative 3: Terminal throughput would increase from 996,109 twenty-foot equivalent units (TEU) in the 2012 baseline year to 1,913,000 TEU in the final analysis year, 2026. Overall ship calls would increase from 162 ship calls in 2012 to 232 ship calls in 2026, and larger ships would not be accommodated at the terminal in the future. Annual train trips to and from the on-dock rail yard would increase from 725 trains per year in 2012 to 1,269 trains per year in 2026. The average train length was assumed to increase from 8,000 feet per train in 2012 to 8,660 feet per train in 2026, requiring proportionally more locomotives per train. Annual truck trips would increase from 907,176 trips per year in 2012 to 1,347,939 trips per year in 2026.

### 2.4.3 TAC Emission Rates

Diesel internal combustion engines (ICEs) represent the biggest source of TAC emissions associated with the proposed Project and alternatives. Diesel ICEs include construction equipment, ship propulsion and auxiliary engines, harborcraft, diesel container trucks,

locomotives, CHE, and TRUs. For the determination of cancer risk and chronic hazard indices, OEHHA and CARB use DPM from ICEs as a surrogate for total diesel exhaust. The inhalation cancer potency factor and chronic non-cancer reference exposure level (REL) for DPM, established by OEHHA and CARB, account for the individual toxic species contained in total diesel ICE exhaust. Therefore, it was not necessary to further speciate diesel ICE exhaust into its chemical components for the determination of cancer risk and chronic noncancer hazard indices.

Sources other than diesel ICEs include ship boilers, tire and brake wear, alternative-fueled trucks, gasoline worker vehicles, and asphalt paving off-gas. For these sources, total organic gas (TOG) and PM10 emissions were speciated into their individual TAC components for the determination of cancer risk and chronic hazard indices. Speciation profiles were based on those developed by CARB (CARB 2014). Table 2-1 presents the speciation profiles that were used to convert PM10 emissions into individual TACs. Table 2-2 presents the speciation profiles that were used to convert PM10 convert TOG emissions into individual TACs.

OEHHA and CARB have not established an acute REL for DPM. Therefore, peak 1-hour TOG and PM10 emissions from all sources, including diesel ICEs, were speciated into their individual TAC components for the determination of acute hazard indices.

|                                     |                |                                   |                                                |                                              | Weigh                                  | t Percent                                                                                  |                                |                                 |                                     |
|-------------------------------------|----------------|-----------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|-------------------------------------|
| Toxic Air<br>Contaminant            | HARP<br>TAC ID | Profile<br>112<br>Ship<br>Boilers | Profile<br>114<br>Ship<br>Aux.<br>Engines<br>a | Profile 119<br>Harbor-<br>craft <sup>a</sup> | Profile<br>123<br>Alt. Fuel<br>Engines | Profile 425<br>Diesel IC<br>Engines <sup>a</sup>                                           | Profile<br>472<br>Tire<br>Wear | Profile<br>473<br>Brake<br>Wear | Profile<br>400<br>Gasoline<br>Autos |
| Ammonia                             | 7664417        |                                   |                                                |                                              |                                        | 0.34                                                                                       | 0.019                          | 0.003                           |                                     |
| Arsenic                             | 7440382        | 0.54                              | 0.54                                           |                                              |                                        | 0.0005                                                                                     |                                | 0.001                           |                                     |
| Cadmium                             | 7440439        | 0.05                              | 0.05                                           |                                              |                                        | 0.004                                                                                      |                                |                                 |                                     |
| Chlorine                            | 7782505        |                                   |                                                |                                              |                                        |                                                                                            | 0.78                           | 0.15                            | 7                                   |
| Copper                              | 7440508        |                                   |                                                |                                              | 0.05                                   | 0.0025                                                                                     | 0.049                          | 1.15                            | 0.05                                |
| Hexavalent<br>Chromium <sup>b</sup> | 18540299       | 0.027                             | 0.027                                          |                                              | 0.0025                                 | 0.00006                                                                                    | 0.00015                        | 0.006                           | 0.0025                              |
| Lead                                | 7439921        | 0.55                              | 0.55                                           |                                              |                                        | 0.0042                                                                                     | 0.016                          | 0.005                           |                                     |
| Manganese                           | 7439965        |                                   |                                                |                                              | 0.05                                   | 0.004                                                                                      | 0.01                           | 0.17                            | 0.05                                |
| Mercury                             | 7439976        |                                   |                                                |                                              |                                        | 0.003                                                                                      |                                |                                 |                                     |
| Nickel                              | 7440020        | 0.05                              | 0.05                                           |                                              | 0.05                                   | 0.0019                                                                                     | 0.005                          | 0.066                           | 0.05                                |
| Selenium                            | 7782492        | 0.05                              | 0.05                                           |                                              |                                        | 0.001                                                                                      | 0.002                          | 0.002                           |                                     |
| Sulfates                            | 9960           | 25                                | 25                                             | 15                                           | 45                                     | 1.74                                                                                       | 0.25                           |                                 | 45                                  |
| Vanadium                            | 7440622        |                                   |                                                | 0.55                                         |                                        | 0.0029                                                                                     |                                | 0.066                           |                                     |
| Applicable sourc                    | ces:           | Ship<br>boilers                   | Ship aux.<br>engines                           | Tugboats,<br>construction<br>harborcraft     | LNG<br>trucks                          | Ship main<br>engines,<br>locomotives,<br>CHE, trucks,<br>TRU,<br>construction<br>equipment | Tire<br>Wear                   | Brake<br>Wear                   | Worker<br>vehicles                  |

 Table 2-1.
 Speciation Profiles for PM10

|             |        |         | Weight Percent |                    |           |                      |         |         |          |
|-------------|--------|---------|----------------|--------------------|-----------|----------------------|---------|---------|----------|
|             |        |         | Profile        |                    |           |                      |         |         |          |
|             |        |         | 114            |                    |           |                      |         |         |          |
|             |        | Profile | Ship           |                    | Profile   |                      | Profile | Profile | Profile  |
|             |        | 112     | Aux.           | Profile 119        | 123       | Profile 425          | 472     | 473     | 400      |
| Toxic Air   | HARP   | Ship    | Engines        | Harbor-            | Alt. Fuel | Diesel IC            | Tire    | Brake   | Gasoline |
| Contaminant | TAC ID | Boilers | а              | craft <sup>a</sup> | Engines   | Engines <sup>a</sup> | Wear    | Wear    | Autos    |

Notes:

a. Profiles No. 114, 119, and 425 were only used for the determination of the acute hazard index. For the determination of cancer risk and chronic hazard index, DPM emissions were used without speciation because CARB provides toxicity factors for DPM as a whole (CARB 2013).

b. Hexavalent chromium is assumed to be 5 percent of total chromium, according to CARB's AB2588 Technical Support Document (CARB 1989), page 57.

c. TACs contributing a negligible amount to the total health risk results were screened out of the HRA and are not shown in this table. d. Source for speciation profiles: CARB 2014.

|                          |                |                             |                                     | Weight Percer             | nt                                                                                                         |                                   |
|--------------------------|----------------|-----------------------------|-------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Toxic Air<br>Contaminant | HARP<br>TAC ID | Profile 504<br>Ship Boilers | Profile 719<br>Alt. Fuel<br>Engines | Profile 760<br>Oil Vapors | Profile 818<br>Diesel IC<br>Engines <sup>a</sup>                                                           | Profile 2105<br>Gasoline<br>Autos |
| Acetaldehyde             | 75070          |                             | 0.029                               |                           | 7.35                                                                                                       | 0.28                              |
| Acrolein                 | 107028         |                             |                                     |                           |                                                                                                            | 0.13                              |
| Benzene                  | 71432          | 1.91                        | 0.11                                |                           | 2.00                                                                                                       | 2.47                              |
| 1,3-Butadiene            | 106990         |                             |                                     |                           | 0.19                                                                                                       | 0.55                              |
| Chlorobenzene            | 108907         | 0.044                       |                                     |                           |                                                                                                            |                                   |
| Ethylbenzene             | 100414         | 0.062                       | 0.0098                              |                           | 0.31                                                                                                       | 1.05                              |
| Formaldehyde             | 50000          | 0.088                       | 0.80                                |                           | 14.71                                                                                                      | 0.016                             |
| n-Hexane                 | 110543         | 1.40                        | 0.020                               | 9                         | 0.16                                                                                                       | 1.60                              |
| Methyl Alcohol           | 67561          |                             |                                     |                           | 0.03                                                                                                       | 0.12                              |
| Methyl Ethyl Ketone      | 78933          |                             |                                     |                           | 1.48                                                                                                       | 0.018                             |
| Naphthalene              | 91203          | 0.062                       |                                     |                           | 0.085                                                                                                      | 0.047                             |
| Propylene                | 115071         | 4.02                        | 1.66                                |                           | 2.60                                                                                                       | 3.06                              |
| Styrene                  | 100425         |                             |                                     |                           | 0.058                                                                                                      | 0.12                              |
| Toluene                  | 108883         | 1.90                        | 0.039                               |                           | 1.47                                                                                                       | 5.76                              |
| Xylenes                  | 1330207        | 0.97                        | 0.039                               |                           | 1.04                                                                                                       | 4.80                              |
| Applicable sources:      |                | Ship boilers                | LNG trucks                          | Asphalt off-<br>gas       | Ship main & aux<br>engines, tugboats,<br>locomotives,<br>CHE, trucks,<br>TRU,<br>construction<br>equipment | Worker<br>vehicles                |

Table 2-2. Speciation Profiles for TOG

|                                                                                                                                                                                        |                   |                    | Weight Percent     |                     |                         |              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|--------------------|---------------------|-------------------------|--------------|--|--|--|
|                                                                                                                                                                                        |                   |                    | Profile 719        |                     | Profile 818             | Profile 2105 |  |  |  |
| Toxic Air                                                                                                                                                                              | HARP              | Profile 504        | Alt. Fuel          | Profile 760         | Diesel IC               | Gasoline     |  |  |  |
| Contaminant                                                                                                                                                                            | TAC ID            | Ship Boilers       | Engines            | Oil Vapors          | Engines <sup>a</sup>    | Autos        |  |  |  |
| Notes:                                                                                                                                                                                 |                   |                    |                    |                     |                         |              |  |  |  |
| a. Profile No. 818 was                                                                                                                                                                 | only used for th  | e determination of | f the acute hazard | index. For the det  | ermination of cance     | er risk and  |  |  |  |
| chronic hazard index,                                                                                                                                                                  | DPM emissions     | were used withou   | t speciation becau | se the ARB provid   | es toxicity factors for | or DPM as a  |  |  |  |
| whole (ARB 2013).                                                                                                                                                                      |                   |                    | -                  | -                   | -                       |              |  |  |  |
| b. TOG - total organic                                                                                                                                                                 | gas, of which V   | OC is a subset.    |                    |                     |                         |              |  |  |  |
| c. For Profile No. 504                                                                                                                                                                 | , TOG is 83.47 p  | ercent VOC.        |                    |                     |                         |              |  |  |  |
| d. For Profile No. 719                                                                                                                                                                 | , TOG is 9.14 pe  | rcent VOC.         |                    |                     |                         |              |  |  |  |
| e. For Profile No. 760                                                                                                                                                                 | · •               |                    |                    |                     |                         |              |  |  |  |
| f. For Profile No. 818.                                                                                                                                                                | · ·               |                    |                    |                     |                         |              |  |  |  |
|                                                                                                                                                                                        | 1                 |                    |                    |                     |                         |              |  |  |  |
| g. For Profile No. 2105, TOG is 80.12 percent VOC.<br>h. TACs contributing a negligible amount to the total health risk results were screened out of the HRA and are not shown in this |                   |                    |                    |                     |                         |              |  |  |  |
| table.                                                                                                                                                                                 | a negligible anto |                    | and fish results w | cre sereened out or | the fifth fund the h    |              |  |  |  |
| i. Source for speciatio                                                                                                                                                                | n profiles, ADD   | 2014               |                    |                     |                         |              |  |  |  |

Table 2-3 through Table 2-11 present the 70-year annual average, 40-year annual average, maximum annual, and maximum 1-hour TAC emission rates used in the HRA for the baseline scenarios and project alternatives. Each emission rate represents the summed emissions from all construction and operational sources within the dispersion modeling domain for the indicated averaging period.

Table 2-3. Toxic Air Contaminant Emissions by Source - NOP CEQA Baseline

|                              |             | TAC Emission Rates |                 |  |
|------------------------------|-------------|--------------------|-----------------|--|
|                              |             | 2012 Annual        | 2012 Maximum 1- |  |
| <b>Toxic Air Contaminant</b> | HARP TAC ID | (lb/yr)            | Hour (lb/hr)    |  |
| Acetaldehyde                 | 75070       | 4.00E+00           | 2.84E+01        |  |
| Acrolein                     | 107028      | 7.48E-01           | 2.19E-04        |  |
| Ammonia                      | 7664417     | 1.37E-01           | 4.28E-01        |  |
| Arsenic                      | 7440382     | 1.45E+01           | 1.16E-01        |  |
| Benzene                      | 71432       | 5.51E+01           | 7.78E+00        |  |
| 1,3-Butadiene                | 106990      | 3.08E+00           | 7.36E-01        |  |
| Cadmium                      | 7440439     | 1.34E+00           | 1.57E-02        |  |
| Chlorine                     | 7782505     | 7.05E+00           | 1.58E-03        |  |
| Chlorobenzene                | 108907      | 7.47E-01           | 7.93E-04        |  |
| Copper                       | 7440508     | 1.25E+01           | 5.87E-03        |  |
| Diesel PM (DPM) <sup>a</sup> | 9901        | 2.95E+04           | 0.00E+00        |  |
| Ethylbenzene                 | 100414      | 7.78E+00           | 1.18E+00        |  |
| Formaldehyde                 | 50000       | 6.69E+01           | 5.69E+01        |  |
| n-Hexane                     | 110543      | 3.44E+01           | 6.36E-01        |  |
| Hexavalent Chromium          | 18540299    | 7.92E-01           | 5.85E-03        |  |
| Lead                         | 7439921     | 1.49E+01           | 1.23E-01        |  |
| Manganese                    | 7439965     | 1.91E+00           | 5.49E-03        |  |
| Mercury                      | 7439976     | 0.00E+00           | 3.81E-03        |  |

|                              |             | TAC Emission Rates |                 |  |
|------------------------------|-------------|--------------------|-----------------|--|
|                              |             | 2012 Annual        | 2012 Maximum 1- |  |
| <b>Toxic Air Contaminant</b> | HARP TAC ID | (lb/yr)            | Hour (lb/hr)    |  |
| Methyl Alcohol               | 67561       | 6.91E-01           | 1.16E-01        |  |
| Methyl Ethyl Ketone          | 78933       | 1.03E-01           | 5.71E+00        |  |
| Naphthalene                  | 91203       | 1.31E+00           | 3.30E-01        |  |
| Nickel                       | 7440020     | 2.13E+00           | 1.33E-02        |  |
| Propylene                    | 115071      | 2.22E+02           | 1.02E+01        |  |
| Selenium                     | 7782492     | 1.37E+00           | 1.19E-02        |  |
| Styrene                      | 100425      | 6.94E-01           | 2.25E-01        |  |
| Sulfates                     | 9960        | 7.25E+02           | 7.63E+00        |  |
| Toluene                      | 108883      | 6.79E+01           | 5.74E+00        |  |
| Vanadium                     | 7440622     | 6.98E-01           | 6.45E-03        |  |
| Xylenes                      | 1330207     | 4.68E+01           | 4.05E+00        |  |
| Notes:                       | •           |                    |                 |  |

Notes:

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are speciated into their individual TAC components.

b. This table includes emissions within the dispersion modeling domain.

| Table 2-4. | Toxic Air Contaminant | Emissions by Source | e – Future CEQA Baseline |
|------------|-----------------------|---------------------|--------------------------|
|------------|-----------------------|---------------------|--------------------------|

|                              |             | TAC Emis        | sion Rates      |  |
|------------------------------|-------------|-----------------|-----------------|--|
|                              |             | 70-Year Average | 40-Year Average |  |
| <b>Toxic Air Contaminant</b> | HARP TAC ID | (lb/yr)         | (lb/yr)         |  |
| Acetaldehyde                 | 75070       | 2.77E+00        | 2.96E+00        |  |
| Acrolein                     | 107028      | 2.39E-01        | 2.72E-01        |  |
| Ammonia                      | 7664417     | 1.37E-01        | 1.37E-01        |  |
| Arsenic                      | 7440382     | 1.00E+01        | 1.01E+01        |  |
| Benzene                      | 71432       | 4.50E+01        | 4.61E+01        |  |
| 1,3-Butadiene                | 106990      | 9.84E-01        | 1.12E+00        |  |
| Cadmium                      | 7440439     | 9.25E-01        | 9.34E-01        |  |
| Chlorine                     | 7782505     | 6.75E+00        | 6.75E+00        |  |
| Chlorobenzene                | 108907      | 7.47E-01        | 7.47E-01        |  |
| Copper                       | 7440508     | 1.25E+01        | 1.25E+01        |  |
| Diesel PM (DPM)              | 9901        | 1.52E+04        | 1.58E+04        |  |
| Ethylbenzene                 | 100414      | 3.69E+00        | 3.99E+00        |  |
| Formaldehyde                 | 50000       | 6.28E+01        | 6.59E+01        |  |
| n-Hexane                     | 110543      | 2.81E+01        | 2.86E+01        |  |
| Hexavalent Chromium          | 18540299    | 5.67E-01        | 5.72E-01        |  |
| Lead                         | 7439921     | 1.03E+01        | 1.04E+01        |  |
| Manganese                    | 7439965     | 1.92E+00        | 1.92E+00        |  |
| Mercury                      | 7439976     | 0.00E+00        | 0.00E+00        |  |
| Methyl Alcohol               | 67561       | 2.21E-01        | 2.51E-01        |  |
| Methyl Ethyl Ketone          | 78933       | 3.29E-02        | 3.74E-02        |  |
| Naphthalene                  | 91203       | 1.13E+00        | 1.14E+00        |  |
| Nickel                       | 7440020     | 1.72E+00        | 1.73E+00        |  |
| Propylene                    | 115071      | 2.01E+02        | 2.09E+02        |  |

|                                                                         |             | TAC Emission Rates |                 |  |  |  |  |
|-------------------------------------------------------------------------|-------------|--------------------|-----------------|--|--|--|--|
|                                                                         |             | 70-Year Average    | 40-Year Average |  |  |  |  |
| <b>Toxic Air Contaminant</b>                                            | HARP TAC ID | (lb/yr)            | (lb/yr)         |  |  |  |  |
| Selenium                                                                | 7782492     | 9.57E-01           | 9.66E-01        |  |  |  |  |
| Styrene                                                                 | 100425      | 2.22E-01           | 2.52E-01        |  |  |  |  |
| Sulfates                                                                | 9960        | 5.25E+02           | 5.31E+02        |  |  |  |  |
| Toluene                                                                 | 108883      | 4.55E+01           | 4.71E+01        |  |  |  |  |
| Vanadium                                                                | 7440622     | 6.98E-01           | 6.98E-01        |  |  |  |  |
| Xylenes                                                                 | 1330207     | 2.81E+01           | 2.95E+01        |  |  |  |  |
| Notes:                                                                  | ·           |                    |                 |  |  |  |  |
| a. This table includes emissions within the dispersion modeling domain. |             |                    |                 |  |  |  |  |

#### Table 2-5. Toxic Air Contaminant Emissions by Source – NEPA Baseline and Unmitigated Alternative 2

|                              |          | TAC Emission Rates      |          |          |              |  |  |
|------------------------------|----------|-------------------------|----------|----------|--------------|--|--|
|                              |          | 70-Year 40-Year Maximum |          |          |              |  |  |
|                              | HARP TAC | Average                 | Average  | Annual   | Maximum 1-   |  |  |
| Toxic Air Contaminant        | ID       | (lb/yr)                 | (lb/yr)  | (lb/yr)  | Hour (lb/hr) |  |  |
| Acetaldehyde                 | 75070    | 3.82E+00                | 3.92E+00 | 5.12E+00 | 3.57E+01     |  |  |
| Acrolein                     | 107028   | 3.53E-01                | 3.75E-01 | 6.56E-01 | 2.02E-04     |  |  |
| Ammonia                      | 7664417  | 1.89E-01                | 1.86E-01 | 1.94E-01 | 3.83E-01     |  |  |
| Arsenic                      | 7440382  | 9.61E+00                | 9.62E+00 | 9.99E+00 | 1.01E-01     |  |  |
| Benzene                      | 71432    | 4.93E+01                | 4.99E+01 | 5.86E+01 | 9.76E+00     |  |  |
| 1,3-Butadiene                | 106990   | 1.46E+00                | 1.54E+00 | 2.70E+00 | 9.22E-01     |  |  |
| Cadmium                      | 7440439  | 8.89E-01                | 8.90E-01 | 9.24E-01 | 1.39E-02     |  |  |
| Chlorine                     | 7782505  | 9.54E+00                | 9.39E+00 | 9.77E+00 | 2.17E-03     |  |  |
| Chlorobenzene                | 108907   | 7.27E-01                | 7.28E-01 | 7.56E-01 | 1.11E-03     |  |  |
| Copper                       | 7440508  | 1.75E+01                | 1.72E+01 | 1.80E+01 | 6.70E-03     |  |  |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 1.80E+04                | 1.83E+04 | 2.25E+04 | 0.00E+00     |  |  |
| Ethylbenzene                 | 100414   | 4.84E+00                | 5.03E+00 | 7.50E+00 | 1.48E+00     |  |  |
| Formaldehyde                 | 50000    | 8.44E+01                | 8.61E+01 | 1.02E+02 | 7.14E+01     |  |  |
| n-Hexane                     | 110543   | 3.00E+01                | 3.08E+01 | 5.71E+01 | 1.55E+00     |  |  |
| Hexavalent Chromium          | 18540299 | 5.75E-01                | 5.74E-01 | 5.96E-01 | 5.11E-03     |  |  |
| Lead                         | 7439921  | 9.97E+00                | 9.98E+00 | 1.04E+01 | 1.07E-01     |  |  |
| Manganese                    | 7439965  | 2.69E+00                | 2.65E+00 | 2.77E+00 | 5.14E-03     |  |  |
| Mercury                      | 7439976  | 0.00E+00                | 0.00E+00 | 0.00E+00 | 3.41E-03     |  |  |
| Methyl Alcohol               | 67561    | 3.26E-01                | 3.46E-01 | 6.05E-01 | 1.46E-01     |  |  |
| Methyl Ethyl Ketone          | 78933    | 4.87E-02                | 5.17E-02 | 9.04E-02 | 7.16E+00     |  |  |
| Naphthalene                  | 91203    | 1.14E+00                | 1.15E+00 | 1.29E+00 | 4.14E-01     |  |  |
| Nickel                       | 7440020  | 2.00E+00                | 1.98E+00 | 2.07E+00 | 1.17E-02     |  |  |
| Propylene                    | 115071   | 2.48E+02                | 2.52E+02 | 2.95E+02 | 1.27E+01     |  |  |
| Selenium                     | 7782492  | 9.34E-01                | 9.34E-01 | 9.70E-01 | 1.05E-02     |  |  |
| Styrene                      | 100425   | 3.28E-01                | 3.48E-01 | 6.08E-01 | 2.81E-01     |  |  |
| Sulfates                     | 9960     | 5.32E+02                | 5.32E+02 | 5.55E+02 | 6.75E+00     |  |  |
| Toluene                      | 108883   | 5.07E+01                | 5.18E+01 | 6.60E+01 | 7.20E+00     |  |  |

Berths 212-214 (YTI) Container Terminal Improvements Project ICF00070.13

|                       |          | TAC Emission Rates |                         |          |              |  |  |
|-----------------------|----------|--------------------|-------------------------|----------|--------------|--|--|
|                       |          | 70-Year            | 70-Year 40-Year Maximum |          |              |  |  |
|                       | HARP TAC | Average            | Average                 | Annual   | Maximum 1-   |  |  |
| Toxic Air Contaminant | ID       | (lb/yr)            | (lb/yr)                 | (lb/yr)  | Hour (lb/hr) |  |  |
| Vanadium              | 7440622  | 9.77E-01           | 9.62E-01                | 1.00E+00 | 7.00E-03     |  |  |
| Xylenes               | 1330207  | 3.29E+01           | 3.38E+01                | 4.54E+01 | 5.08E+00     |  |  |
| Notes:                |          |                    |                         |          |              |  |  |
|                       | • • •    | 1                  |                         | · · · 11 |              |  |  |

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are speciated into their individual TAC components.

b. This table includes emissions within the dispersion modeling domain.

#### Table 2-6. Toxic Air Contaminant Emissions by Source – Proposed Project, Unmitigated

|                              |          |                         | TAC Em   | ission Rates |              |  |  |
|------------------------------|----------|-------------------------|----------|--------------|--------------|--|--|
|                              |          | 70-Year 40-Year Maximum |          |              |              |  |  |
|                              | HARP TAC | Average                 | Average  | Annual       | Maximum 1-   |  |  |
| Toxic Air Contaminant        | ID       | (lb/yr)                 | (lb/yr)  | (lb/yr)      | Hour (lb/hr) |  |  |
| Acetaldehyde                 | 75070    | 4.20E+00                | 4.30E+00 | 5.55E+00     | 3.69E+01     |  |  |
| Acrolein                     | 107028   | 3.90E-01                | 4.10E-01 | 6.55E-01     | 2.01E-04     |  |  |
| Ammonia                      | 7664417  | 2.09E-01                | 2.05E-01 | 2.15E-01     | 3.96E-01     |  |  |
| Arsenic                      | 7440382  | 1.02E+01                | 1.02E+01 | 1.02E+01     | 1.21E-01     |  |  |
| Benzene                      | 71432    | 5.30E+01                | 5.35E+01 | 6.09E+01     | 1.01E+01     |  |  |
| 1,3-Butadiene                | 106990   | 1.61E+00                | 1.69E+00 | 2.70E+00     | 9.55E-01     |  |  |
| Cadmium                      | 7440439  | 9.43E-01                | 9.41E-01 | 9.46E-01     | 1.58E-02     |  |  |
| Chlorine                     | 7782505  | 1.06E+01                | 1.03E+01 | 1.08E+01     | 2.41E-03     |  |  |
| Chlorobenzene                | 108907   | 7.72E-01                | 7.70E-01 | 7.74E-01     | 1.15E-03     |  |  |
| Copper                       | 7440508  | 1.93E+01                | 1.90E+01 | 1.99E+01     | 7.23E-03     |  |  |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 1.94E+04                | 1.97E+04 | 2.58E+04     | 0.00E+00     |  |  |
| Ethylbenzene                 | 100414   | 5.30E+00                | 5.47E+00 | 7.66E+00     | 1.53E+00     |  |  |
| Formaldehyde                 | 50000    | 9.28E+01                | 9.44E+01 | 1.14E+02     | 7.39E+01     |  |  |
| n-Hexane                     | 110543   | 3.21E+01                | 3.28E+01 | 5.98E+01     | 8.43E-01     |  |  |
| Hexavalent Chromium          | 18540299 | 6.14E-01                | 6.11E-01 | 6.19E-01     | 6.10E-03     |  |  |
| Lead                         | 7439921  | 1.06E+01                | 1.06E+01 | 1.06E+01     | 1.27E-01     |  |  |
| Manganese                    | 7439965  | 2.97E+00                | 2.92E+00 | 3.07E+00     | 5.37E-03     |  |  |
| Mercury                      | 7439976  | 0.00E+00                | 0.00E+00 | 0.00E+00     | 3.53E-03     |  |  |
| Methyl Alcohol               | 67561    | 3.60E-01                | 3.78E-01 | 6.05E-01     | 1.51E-01     |  |  |
| Methyl Ethyl Ketone          | 78933    | 5.38E-02                | 5.65E-02 | 9.04E-02     | 7.42E+00     |  |  |
| Naphthalene                  | 91203    | 1.22E+00                | 1.22E+00 | 1.32E+00     | 4.28E-01     |  |  |
| Nickel                       | 7440020  | 2.17E+00                | 2.15E+00 | 2.22E+00     | 1.36E-02     |  |  |
| Propylene                    | 115071   | 2.70E+02                | 2.73E+02 | 3.21E+02     | 1.32E+01     |  |  |
| Selenium                     | 7782492  | 9.93E-01                | 9.90E-01 | 9.97E-01     | 1.23E-02     |  |  |
| Styrene                      | 100425   | 3.62E-01                | 3.80E-01 | 6.08E-01     | 2.91E-01     |  |  |
| Sulfates                     | 9960     | 5.68E+02                | 5.67E+02 | 5.76E+02     | 7.73E+00     |  |  |
| Toluene                      | 108883   | 5.46E+01                | 5.55E+01 | 6.73E+01     | 7.45E+00     |  |  |
| Vanadium                     | 7440622  | 1.08E+00                | 1.06E+00 | 1.11E+00     | 7.14E-03     |  |  |

Berths 212-214 (YTI) Container Terminal Improvements Project ICF00070.13

|                       |                | TAC Emission Rates            |                               |                              |                            |  |  |  |  |
|-----------------------|----------------|-------------------------------|-------------------------------|------------------------------|----------------------------|--|--|--|--|
| Toxic Air Contaminant | HARP TAC<br>ID | 70-Year<br>Average<br>(lb/yr) | 40-Year<br>Average<br>(lb/yr) | Maximum<br>Annual<br>(lb/yr) | Maximum 1-<br>Hour (lb/hr) |  |  |  |  |
| Xylenes               | 1330207        | 3.56E+01                      | 3.64E+01                      | 4.63E+01                     | 5.26E+00                   |  |  |  |  |
| Notes:                |                |                               |                               |                              |                            |  |  |  |  |

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are speciated into their individual TAC components.

b. This table includes emissions within the dispersion modeling domain.

|                              |          | TAC Emission Rates |          |          |              |  |
|------------------------------|----------|--------------------|----------|----------|--------------|--|
|                              |          | 70-Year            | 40-Year  | Maximum  |              |  |
|                              | HARP TAC | Average            | Average  | Annual   | Maximum 1-   |  |
| Toxic Air Contaminant        | ID       | (lb/yr)            | (lb/yr)  | (lb/yr)  | Hour (lb/hr) |  |
| Acetaldehyde                 | 75070    | 4.20E+00           | 4.30E+00 | 5.55E+00 | 3.62E+01     |  |
| Acrolein                     | 107028   | 3.90E-01           | 4.10E-01 | 6.55E-01 | 2.01E-04     |  |
| Ammonia                      | 7664417  | 2.09E-01           | 2.05E-01 | 2.15E-01 | 3.67E-01     |  |
| Arsenic                      | 7440382  | 1.02E+01           | 1.02E+01 | 1.02E+01 | 1.21E-01     |  |
| Benzene                      | 71432    | 5.30E+01           | 5.35E+01 | 6.09E+01 | 9.90E+00     |  |
| 1,3-Butadiene                | 106990   | 1.61E+00           | 1.69E+00 | 2.70E+00 | 9.35E-01     |  |
| Cadmium                      | 7440439  | 9.43E-01           | 9.41E-01 | 9.46E-01 | 1.55E-02     |  |
| Chlorine                     | 7782505  | 1.06E+01           | 1.03E+01 | 1.08E+01 | 2.41E-03     |  |
| Chlorobenzene                | 108907   | 7.72E-01           | 7.70E-01 | 7.74E-01 | 1.15E-03     |  |
| Copper                       | 7440508  | 1.93E+01           | 1.90E+01 | 1.99E+01 | 7.01E-03     |  |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 1.82E+04           | 1.86E+04 | 2.34E+04 | 0.00E+00     |  |
| Ethylbenzene                 | 100414   | 5.30E+00           | 5.47E+00 | 7.66E+00 | 1.50E+00     |  |
| Formaldehyde                 | 50000    | 9.28E+01           | 9.44E+01 | 1.14E+02 | 7.24E+01     |  |
| n-Hexane                     | 110543   | 3.21E+01           | 3.28E+01 | 5.98E+01 | 1.74E+00     |  |
| Hexavalent Chromium          | 18540299 | 6.14E-01           | 6.11E-01 | 6.19E-01 | 6.10E-03     |  |
| Lead                         | 7439921  | 1.06E+01           | 1.06E+01 | 1.06E+01 | 1.27E-01     |  |
| Manganese                    | 7439965  | 2.97E+00           | 2.92E+00 | 3.07E+00 | 5.01E-03     |  |
| Mercury                      | 7439976  | 0.00E+00           | 0.00E+00 | 0.00E+00 | 3.26E-03     |  |
| Methyl Alcohol               | 67561    | 3.60E-01           | 3.78E-01 | 6.05E-01 | 1.48E-01     |  |
| Methyl Ethyl Ketone          | 78933    | 5.38E-02           | 5.65E-02 | 9.04E-02 | 7.26E+00     |  |
| Naphthalene                  | 91203    | 1.22E+00           | 1.22E+00 | 1.32E+00 | 4.20E-01     |  |
| Nickel                       | 7440020  | 2.17E+00           | 2.15E+00 | 2.22E+00 | 1.35E-02     |  |
| Propylene                    | 115071   | 2.70E+02           | 2.73E+02 | 3.21E+02 | 1.29E+01     |  |
| Selenium                     | 7782492  | 9.93E-01           | 9.90E-01 | 9.97E-01 | 1.22E-02     |  |
| Styrene                      | 100425   | 3.62E-01           | 3.80E-01 | 6.08E-01 | 2.85E-01     |  |
| Sulfates                     | 9960     | 5.68E+02           | 5.67E+02 | 5.76E+02 | 7.58E+00     |  |
| Toluene                      | 108883   | 5.46E+01           | 5.55E+01 | 6.73E+01 | 7.30E+00     |  |
| Vanadium                     | 7440622  | 1.08E+00           | 1.06E+00 | 1.11E+00 | 6.88E-03     |  |
| Xylenes                      | 1330207  | 3.56E+01           | 3.64E+01 | 4.63E+01 | 5.15E+00     |  |

| Table 2-7. | Toxic Air   | Contaminant | Emissions b | v Source - | - Proposed | Project. M | itigated |
|------------|-------------|-------------|-------------|------------|------------|------------|----------|
|            | 10/110 1111 | Contannant  |             | Joouree    | roposea    | 110,000,00 | nugueeu  |

|                                                 |                                                                         | TAC Emission Rates |                    |                     |              |  |  |  |
|-------------------------------------------------|-------------------------------------------------------------------------|--------------------|--------------------|---------------------|--------------|--|--|--|
|                                                 | HARP TAC                                                                | 70-Year<br>Average | 40-Year<br>Average | Maximum<br>Annual   | Maximum 1-   |  |  |  |
| Toxic Air Contaminant                           | ID                                                                      | (lb/yr)            | (lb/yr)            | (lb/yr)             | Hour (lb/hr) |  |  |  |
| Notes:                                          |                                                                         |                    |                    |                     |              |  |  |  |
| a. Maximum 1-hour DPM emissi                    | ons are reported a                                                      | as zero because    | 1-hour DPM em      | issions from all so | ources are   |  |  |  |
| speciated into their individual TAC components. |                                                                         |                    |                    |                     |              |  |  |  |
| b. This table includes emissions                | b. This table includes emissions within the dispersion modeling domain. |                    |                    |                     |              |  |  |  |

|                              |          | TAC Emission Rates |          |          |              |  |  |
|------------------------------|----------|--------------------|----------|----------|--------------|--|--|
|                              |          | 70-Year            |          |          |              |  |  |
|                              | HARP TAC | Average            | Average  | Annual   | Maximum 1-   |  |  |
| Toxic Air Contaminant        | ID       | (lb/yr)            | (lb/yr)  | (lb/yr)  | Hour (lb/hr) |  |  |
| Acetaldehyde                 | 75070    | 3.82E+00           | 3.92E+00 | 5.12E+00 | 3.55E+01     |  |  |
| Acrolein                     | 107028   | 3.53E-01           | 3.75E-01 | 6.56E-01 | 2.02E-04     |  |  |
| Ammonia                      | 7664417  | 1.89E-01           | 1.86E-01 | 1.94E-01 | 3.81E-01     |  |  |
| Arsenic                      | 7440382  | 9.61E+00           | 9.62E+00 | 9.99E+00 | 1.01E-02     |  |  |
| Benzene                      | 71432    | 4.93E+01           | 4.99E+01 | 5.86E+01 | 9.72E+00     |  |  |
| 1,3-Butadiene                | 106990   | 1.46E+00           | 1.54E+00 | 2.70E+00 | 9.18E-0      |  |  |
| Cadmium                      | 7440439  | 8.89E-01           | 8.90E-01 | 9.24E-01 | 1.38E-02     |  |  |
| Chlorine                     | 7782505  | 9.54E+00           | 9.39E+00 | 9.77E+00 | 2.17E-0.     |  |  |
| Chlorobenzene                | 108907   | 7.27E-01           | 7.28E-01 | 7.56E-01 | 1.11E-0.     |  |  |
| Copper                       | 7440508  | 1.75E+01           | 1.72E+01 | 1.80E+01 | 6.68E-0.     |  |  |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 1.80E+04           | 1.83E+04 | 2.24E+04 | 0.00E+0      |  |  |
| Ethylbenzene                 | 100414   | 4.84E+00           | 5.03E+00 | 7.50E+00 | 1.48E+0      |  |  |
| Formaldehyde                 | 50000    | 8.44E+01           | 8.61E+01 | 1.02E+02 | 7.11E+0      |  |  |
| n-Hexane                     | 110543   | 2.94E+01           | 2.98E+01 | 3.44E+01 | 7.96E-0      |  |  |
| Hexavalent Chromium          | 18540299 | 5.75E-01           | 5.74E-01 | 5.96E-01 | 5.11E-0      |  |  |
| Lead                         | 7439921  | 9.97E+00           | 9.98E+00 | 1.04E+01 | 1.07E-0      |  |  |
| Manganese                    | 7439965  | 2.69E+00           | 2.65E+00 | 2.77E+00 | 5.12E-0      |  |  |
| Mercury                      | 7439976  | 0.00E+00           | 0.00E+00 | 0.00E+00 | 3.39E-0      |  |  |
| Methyl Alcohol               | 67561    | 3.26E-01           | 3.46E-01 | 6.05E-01 | 1.45E-0      |  |  |
| Methyl Ethyl Ketone          | 78933    | 4.87E-02           | 5.17E-02 | 9.04E-02 | 7.13E+0      |  |  |
| Naphthalene                  | 91203    | 1.14E+00           | 1.15E+00 | 1.29E+00 | 4.12E-0      |  |  |
| Nickel                       | 7440020  | 2.00E+00           | 1.98E+00 | 2.07E+00 | 1.17E-02     |  |  |
| Propylene                    | 115071   | 2.48E+02           | 2.52E+02 | 2.95E+02 | 1.27E+0      |  |  |
| Selenium                     | 7782492  | 9.34E-01           | 9.34E-01 | 9.70E-01 | 1.04E-02     |  |  |
| Styrene                      | 100425   | 3.28E-01           | 3.48E-01 | 6.08E-01 | 2.80E-0      |  |  |
| Sulfates                     | 9960     | 5.32E+02           | 5.32E+02 | 5.55E+02 | 6.74E+0      |  |  |
| Toluene                      | 108883   | 5.07E+01           | 5.18E+01 | 6.60E+01 | 7.17E+0      |  |  |
| Vanadium                     | 7440622  | 9.77E-01           | 9.62E-01 | 1.00E+00 | 6.98E-0      |  |  |
| Xylenes                      | 1330207  | 3.29E+01           | 3.38E+01 | 4.54E+01 | 5.06E+0      |  |  |
| Notes:                       |          |                    |          |          | -            |  |  |

Table 2-8. Toxic Air Contaminant Emissions by Source – Alternative 1, Unmitigated

Notes:

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are

|                                                                         |          | TAC Emission Rates |                    |                   |              |  |  |  |
|-------------------------------------------------------------------------|----------|--------------------|--------------------|-------------------|--------------|--|--|--|
|                                                                         | HARP TAC | 70-Year<br>Average | 40-Year<br>Average | Maximum<br>Annual | Maximum 1-   |  |  |  |
| Toxic Air Contaminant                                                   | ID       | (lb/yr)            | (lb/yr)            | (lb/yr)           | Hour (lb/hr) |  |  |  |
| speciated into their individual TAC components.                         |          |                    |                    |                   |              |  |  |  |
| b. This table includes emissions within the dispersion modeling domain. |          |                    |                    |                   |              |  |  |  |

 Table 2-9. Toxic Air Contaminant Emissions by Source – Alternative 2, Mitigated

|                              |          | TAC Emission Rates |                    |                   |              |  |
|------------------------------|----------|--------------------|--------------------|-------------------|--------------|--|
|                              | HARP TAC | 70-Year<br>Average | 40-Year<br>Average | Maximum<br>Annual | Maximum 1-   |  |
| Toxic Air Contaminant        | ID       | (lb/yr)            | (lb/yr)            | (lb/yr)           | Hour (lb/hr) |  |
| Acetaldehyde                 | 75070    | 3.82E+00           | 3.92E+00           | 5.12E+00          | 3.52E+01     |  |
| Acrolein                     | 107028   | 3.53E-01           | 3.75E-01           | 6.56E-01          | 2.02E-04     |  |
| Ammonia                      | 7664417  | 1.89E-01           | 1.86E-01           | 1.94E-01          | 3.62E-01     |  |
| Arsenic                      | 7440382  | 9.61E+00           | 9.62E+00           | 9.99E+00          | 1.01E-01     |  |
| Benzene                      | 71432    | 4.93E+01           | 4.99E+01           | 5.86E+01          | 9.62E+00     |  |
| 1,3-Butadiene                | 106990   | 1.46E+00           | 1.54E+00           | 2.70E+00          | 9.09E-01     |  |
| Cadmium                      | 7440439  | 8.89E-01           | 8.90E-01           | 9.24E-01          | 1.36E-02     |  |
| Chlorine                     | 7782505  | 9.54E+00           | 9.39E+00           | 9.77E+00          | 2.17E-03     |  |
| Chlorobenzene                | 108907   | 7.27E-01           | 7.28E-01           | 7.56E-01          | 1.11E-03     |  |
| Copper                       | 7440508  | 1.75E+01           | 1.72E+01           | 1.80E+01          | 6.54E-03     |  |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 1.70E+04           | 1.74E+04           | 2.19E+04          | 0.00E+00     |  |
| Ethylbenzene                 | 100414   | 4.84E+00           | 5.03E+00           | 7.50E+00          | 1.46E+00     |  |
| Formaldehyde                 | 50000    | 8.44E+01           | 8.61E+01           | 1.02E+02          | 7.04E+01     |  |
| n-Hexane                     | 110543   | 3.00E+01           | 3.08E+01           | 5.71E+01          | 1.54E+00     |  |
| Hexavalent Chromium          | 18540299 | 5.75E-01           | 5.74E-01           | 5.96E-01          | 5.11E-03     |  |
| Lead                         | 7439921  | 9.97E+00           | 9.98E+00           | 1.04E+01          | 1.07E-01     |  |
| Manganese                    | 7439965  | 2.69E+00           | 2.65E+00           | 2.77E+00          | 4.89E-03     |  |
| Mercury                      | 7439976  | 0.00E+00           | 0.00E+00           | 0.00E+00          | 3.22E-03     |  |
| Methyl Alcohol               | 67561    | 3.26E-01           | 3.46E-01           | 6.05E-01          | 1.44E-01     |  |
| Methyl Ethyl Ketone          | 78933    | 4.87E-02           | 5.17E-02           | 9.04E-02          | 7.06E+00     |  |
| Naphthalene                  | 91203    | 1.14E+00           | 1.15E+00           | 1.29E+00          | 4.08E-01     |  |
| Nickel                       | 7440020  | 2.00E+00           | 1.98E+00           | 2.07E+00          | 1.16E-02     |  |
| Propylene                    | 115071   | 2.48E+02           | 2.52E+02           | 2.95E+02          | 1.26E+01     |  |
| Selenium                     | 7782492  | 9.34E-01           | 9.34E-01           | 9.70E-01          | 1.04E-02     |  |
| Styrene                      | 100425   | 3.28E-01           | 3.48E-01           | 6.08E-01          | 2.78E-01     |  |
| Sulfates                     | 9960     | 5.32E+02           | 5.32E+02           | 5.55E+02          | 6.64E+00     |  |
| Toluene                      | 108883   | 5.07E+01           | 5.18E+01           | 6.60E+01          | 7.10E+00     |  |
| Vanadium                     | 7440622  | 9.77E-01           | 9.62E-01           | 1.00E+00          | 6.82E-03     |  |
| Xylenes                      | 1330207  | 3.29E+01           | 3.38E+01           | 4.54E+01          | 5.01E+00     |  |

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are speciated into their individual TAC components.

|                                                                         |          | TAC Emission Rates                                        |         |         |              |  |  |
|-------------------------------------------------------------------------|----------|-----------------------------------------------------------|---------|---------|--------------|--|--|
|                                                                         | HARP TAC | 70-Year 40-Year Maximum<br>Average Average Annual Maximum |         |         |              |  |  |
| Toxic Air Contaminant                                                   | ID       | (lb/yr)                                                   | (lb/yr) | (lb/yr) | Hour (lb/hr) |  |  |
| b. This table includes emissions within the dispersion modeling domain. |          |                                                           |         |         |              |  |  |

 Table 2-10. Toxic Air Contaminant Emissions by Source – Alternative 3, Unmitigated

|                              |          |          | TAC Em   | ission Rates |              |
|------------------------------|----------|----------|----------|--------------|--------------|
|                              |          | 70-Year  | 40-Year  | Maximum      |              |
|                              | HARP TAC | Average  | Average  | Annual       | Maximum 1-   |
| Toxic Air Contaminant        | ID       | (lb/yr)  | (lb/yr)  | (lb/yr)      | Hour (lb/hr) |
| Acetaldehyde                 | 75070    | 4.20E+00 | 4.30E+00 | 5.55E+00     | 4.78E+01     |
| Acrolein                     | 107028   | 3.90E-01 | 4.10E-01 | 6.55E-01     | 2.01E-04     |
| Ammonia                      | 7664417  | 2.09E-01 | 2.05E-01 | 2.15E-01     | 5.10E-01     |
| Arsenic                      | 7440382  | 1.15E+01 | 1.14E+01 | 1.16E+01     | 1.36E-01     |
| Benzene                      | 71432    | 5.71E+01 | 5.74E+01 | 6.53E+01     | 1.31E+01     |
| 1,3-Butadiene                | 106990   | 1.61E+00 | 1.69E+00 | 2.70E+00     | 1.24E+00     |
| Cadmium                      | 7440439  | 1.06E+00 | 1.05E+00 | 1.07E+00     | 1.86E-02     |
| Chlorine                     | 7782505  | 1.06E+01 | 1.03E+01 | 1.08E+01     | 2.41E-03     |
| Chlorobenzene                | 108907   | 8.67E-01 | 8.61E-01 | 8.75E-01     | 1.46E-03     |
| Copper                       | 7440508  | 1.93E+01 | 1.90E+01 | 1.99E+01     | 8.07E-03     |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 2.11E+04 | 2.13E+04 | 2.70E+04     | 0.00E+00     |
| Ethylbenzene                 | 100414   | 5.43E+00 | 5.59E+00 | 7.80E+00     | 1.99E+00     |
| Formaldehyde                 | 50000    | 9.30E+01 | 9.46E+01 | 1.14E+02     | 9.57E+01     |
| n-Hexane                     | 110543   | 3.51E+01 | 3.57E+01 | 6.31E+01     | 1.20E+00     |
| Hexavalent Chromium          | 18540299 | 6.77E-01 | 6.71E-01 | 6.86E-01     | 6.86E-03     |
| Lead                         | 7439921  | 1.19E+01 | 1.18E+01 | 1.20E+01     | 1.44E-01     |
| Manganese                    | 7439965  | 2.97E+00 | 2.92E+00 | 3.07E+00     | 6.71E-03     |
| Mercury                      | 7439976  | 0.00E+00 | 0.00E+00 | 0.00E+00     | 4.54E-03     |
| Methyl Alcohol               | 67561    | 3.60E-01 | 3.78E-01 | 6.05E-01     | 1.95E-01     |
| Methyl Ethyl Ketone          | 78933    | 5.38E-02 | 5.65E-02 | 9.04E-02     | 9.61E+00     |
| Naphthalene                  | 91203    | 1.35E+00 | 1.35E+00 | 1.46E+00     | 5.55E-01     |
| Nickel                       | 7440020  | 2.29E+00 | 2.26E+00 | 2.34E+00     | 1.56E-02     |
| Propylene                    | 115071   | 2.78E+02 | 2.82E+02 | 3.30E+02     | 1.71E+01     |
| Selenium                     | 7782492  | 1.11E+00 | 1.10E+00 | 1.12E+00     | 1.40E-02     |
| Styrene                      | 100425   | 3.62E-01 | 3.80E-01 | 6.08E-01     | 3.77E-01     |
| Sulfates                     | 9960     | 6.26E+02 | 6.22E+02 | 6.38E+02     | 9.00E+00     |
| Toluene                      | 108883   | 5.87E+01 | 5.94E+01 | 7.17E+01     | 9.66E+00     |
| Vanadium                     | 7440622  | 1.08E+00 | 1.06E+00 | 1.11E+00     | 8.12E-03     |
| Xylenes                      | 1330207  | 3.77E+01 | 3.84E+01 | 4.86E+01     | 6.81E+00     |

Notes:

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are speciated into their individual TAC components.

b. This table includes emissions within the dispersion modeling domain.

|                              |          |          | TAC Em   | ission Rates |              |
|------------------------------|----------|----------|----------|--------------|--------------|
|                              |          | 70-Year  | 40-Year  | Maximum      |              |
|                              | HARP TAC | Average  | Average  | Annual       | Maximum 1-   |
| Toxic Air Contaminant        | ID       | (lb/yr)  | (lb/yr)  | (lb/yr)      | Hour (lb/hr) |
| Acetaldehyde                 | 75070    | 4.20E+00 | 4.30E+00 | 5.55E+00     | 4.67E+01     |
| Acrolein                     | 107028   | 3.90E-01 | 4.10E-01 | 6.55E-01     | 2.01E-04     |
| Ammonia                      | 7664417  | 2.09E-01 | 2.05E-01 | 2.15E-01     | 4.63E-01     |
| Arsenic                      | 7440382  | 1.15E+01 | 1.14E+01 | 1.16E+01     | 1.36E-01     |
| Benzene                      | 71432    | 5.71E+01 | 5.74E+01 | 6.53E+01     | 1.28E+01     |
| 1,3-Butadiene                | 106990   | 1.61E+00 | 1.69E+00 | 2.70E+00     | 1.21E+00     |
| Cadmium                      | 7440439  | 1.06E+00 | 1.05E+00 | 1.07E+00     | 1.80E-02     |
| Chlorine                     | 7782505  | 1.06E+01 | 1.03E+01 | 1.08E+01     | 2.41E-03     |
| Chlorobenzene                | 108907   | 8.67E-01 | 8.61E-01 | 8.75E-01     | 1.46E-03     |
| Copper                       | 7440508  | 1.93E+01 | 1.90E+01 | 1.99E+01     | 7.72E-03     |
| Diesel PM (DPM) <sup>a</sup> | 9901     | 1.99E+04 | 2.02E+04 | 2.50E+04     | 0.00E+00     |
| Ethylbenzene                 | 100414   | 5.43E+00 | 5.59E+00 | 7.80E+00     | 1.94E+00     |
| Formaldehyde                 | 50000    | 9.30E+01 | 9.46E+01 | 1.14E+02     | 9.35E+0      |
| n-Hexane                     | 110543   | 3.51E+01 | 3.57E+01 | 6.31E+01     | 1.98E+00     |
| Hexavalent Chromium          | 18540299 | 6.77E-01 | 6.71E-01 | 6.86E-01     | 6.85E-03     |
| Lead                         | 7439921  | 1.19E+01 | 1.18E+01 | 1.20E+01     | 1.43E-01     |
| Manganese                    | 7439965  | 2.97E+00 | 2.92E+00 | 3.07E+00     | 6.16E-03     |
| Mercury                      | 7439976  | 0.00E+00 | 0.00E+00 | 0.00E+00     | 4.12E-0.     |
| Methyl Alcohol               | 67561    | 3.60E-01 | 3.78E-01 | 6.05E-01     | 1.91E-0      |
| Methyl Ethyl Ketone          | 78933    | 5.38E-02 | 5.65E-02 | 9.04E-02     | 9.38E+00     |
| Naphthalene                  | 91203    | 1.35E+00 | 1.35E+00 | 1.46E+00     | 5.42E-0      |
| Nickel                       | 7440020  | 2.29E+00 | 2.26E+00 | 2.34E+00     | 1.54E-02     |
| Propylene                    | 115071   | 2.78E+02 | 2.82E+02 | 3.30E+02     | 1.67E+0      |
| Selenium                     | 7782492  | 1.11E+00 | 1.10E+00 | 1.12E+00     | 1.39E-02     |
| Styrene                      | 100425   | 3.62E-01 | 3.80E-01 | 6.08E-01     | 3.69E-0      |
| Sulfates                     | 9960     | 6.26E+02 | 6.22E+02 | 6.38E+02     | 8.76E+00     |
| Toluene                      | 108883   | 5.87E+01 | 5.94E+01 | 7.17E+01     | 9.43E+00     |
| Vanadium                     | 7440622  | 1.08E+00 | 1.06E+00 | 1.11E+00     | 7.71E-0.     |
| Xylenes                      | 1330207  | 3.77E+01 | 3.84E+01 | 4.86E+01     | 6.66E+00     |
| Notes:                       | •        | 1        | 1        |              |              |

Table 2-11. Toxic Air Contaminant Emissions by Source – Alternative 3, Mitigated

a. Maximum 1-hour DPM emissions are reported as zero because 1-hour DPM emissions from all sources are speciated into their individual TAC components.

b. This table includes emissions within the dispersion modeling domain.

## 3.0 Receptor Locations

This HRA analyzes the health effects associated with TAC emissions from project and alternative-related sources at a variety of locations (receptors) throughout the project area, including at the locations of potential exposure of residents, offsite workers, recreational users, students, and sensitive member of the public. The analysis utilized a coarse grid of 1,412 receptor points. The coarse grid consisted of an inner grid, with receptors positioned every 250 meters and covering an area of 5 km x 6.5 km, surrounded by an outer grid, with receptors positioned every 500 meters and covering an area of 11 km x 11.5 km. Multiple fine grids, with receptors to obtain HRA results to the nearest 50 meters. Figure 3-1 presents the coarse and fine receptor grids used in the HRA.

In addition, TAC concentrations were modeled at 212 discrete sensitive receptor locations of special concern, such as schools, child care centers, convalescent homes, and hospitals in the vicinity of the terminal site. Figure 3-2 shows the locations of the sensitive receptors included in the analysis, and Table 3-1 presents a list of all sensitive receptors cross-referenced by the number used to identify their location in Figure 3-2.

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                 | Street Address                | City, State, Zip        | Category |
|-----------------|--------------|--------------|--------------------------------------|-------------------------------|-------------------------|----------|
| 1               | 380863       | 3732991      | 15th Street Elementary<br>School     | 1527 Mesa St                  | San Pedro, CA<br>90731  | School   |
| 2               | 378541       | 3733938      | 7th Street Elementary School         | 1570 W. 7th St                | San Pedro, CA<br>90731  | School   |
| 3               | 390978       | 3738503      | Abraham Lincoln Elementary<br>School | 1175 E 11th St                | Long Beach, CA<br>90813 | School   |
| 4               | 379271       | 3732975      | Academy of the Two Hearts<br>School  | 1540 S. Walker<br>Ave         | San Pedro, CA<br>90731  | School   |
| 5               | 380162       | 3730867      | Angel's Gate Hight School            | 3607 S. Gaffey St             | San Pedro, CA<br>90731  | School   |
| 6               | 389448       | 3738624      | Artesia Well Preparatory<br>Academy  | 1235 Pacific Ave              | Long Beach, CA<br>90813 | School   |
| 7               | 383095       | 3739869      | Avalon High School                   | 1425 N Avalon<br>Blvd         | Wilmington, CA<br>90744 | School   |
| 8               | 379660       | 3734797      | Bandini Street Elementary<br>School  | 425 N. Bandini St             | San Pedro, CA<br>90731  | School   |
| 9               | 382813       | 3738058      | Banning New Elementary<br>School #1  | 500 North Island<br>Ave.      | Wilmington, CA<br>90744 | School   |
| 10              | 380681       | 3734795      | Barton Hill Elementary<br>School     | 423 N. Pacific<br>Ave         | San Pedro, CA<br>90731  | School   |
| 11              | 388765       | 3741760      | Birney Elementary School             | 710 W. Spring St              | Long Beach, CA<br>90806 | School   |
| 12              | 385308       | 3746652      | Broadacres Elementary<br>School      | 19424 South<br>Broadacres Ave | Carson, CA<br>90746     | School   |
| 13              | 392109       | 3737595      | Burbank Elementary                   | 501 Junipero Ave              | Long Beach, CA<br>90814 | School   |

 Table 3-1.
 Sensitive Receptors

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                                           | Street Address          | City, State, Zip                    | Category |
|-----------------|--------------|--------------|----------------------------------------------------------------|-------------------------|-------------------------------------|----------|
| 14              | 390224       | 3740330      | Burnett Elementary                                             | 565 East Hill St.       | Long Beach, CA<br>90806             | School   |
| 15              | 380154       | 3733793      | Cabrillo Avenue Elementary<br>School                           | 732 S. Cabrillo<br>Ave  | San Pedro, CA<br>90731              | School   |
| 16              | 389538       | 3740963      | Cambodian Christian                                            | 2474 Pacific Ave        | Long Beach, CA<br>90806             | School   |
| 17              | 388742       | 3737045      | Cesar Chavez Elementary                                        | 730 West Third<br>St.   | Long Beach, CA<br>90802             | School   |
| 18              | 378649       | 3736024      | Christ Lutheran Elementary<br>School                           | 28850 S. Western<br>Ave | Rancho Palos<br>Verdes, CA<br>90275 | School   |
| 19              | 392096       | 3737727      | City Christian School                                          | 2209 E 6th St           | Long Beach, CA<br>90814             | School   |
| 20              | 388630       | 3747767      | Colin L Powell Academy for<br>Success                          | 150 Victoria St         | Long Beach, CA<br>90805             | School   |
| 21              | 391439       | 3738927      | Creative Arts Daycare and<br>Elementary School                 | 1423 Walnut Ave         | Long Beach, CA<br>90813             | School   |
| 22              | 378441       | 3735152      | Crestwood Street Elementary<br>School                          | 1946 W.<br>Crestwood St | Rancho Palos<br>Verdes, CA<br>90275 | School   |
| 23              | 387444       | 3742469      | Daniel Webster Elementary<br>School                            | 1755 W 32nd<br>Way      | Long Beach, CA<br>90810             | School   |
| 24              | 385244       | 3744652      | Del Amo Elementary School                                      | 21228 Water St          | Carson, CA<br>90745                 | School   |
| 25              | 387564       | 3744579      | Dominguez Elementary<br>School                                 | 21250 Santa Fe<br>Ave   | Carson, CA<br>90810                 | School   |
| 26              | 388749       | 3737794      | Edison Elementary                                              | 625 Maine Ave.          | Long Beach, CA<br>90802             | School   |
| 27              | 386969       | 3740593      | Elizabeth Hudson Elementary<br>School                          | 2335 Webster<br>Ave     | Long Beach, CA<br>90810             | School   |
| 28              | 378377       | 3739433      | Eshelman Avenue School                                         | 25902 Eshelman<br>Ave   | Lomita, CA<br>90717                 | School   |
| 29              | 383262       | 3739680      | First Baptist Christian School                                 | 1360 Broad Ave          | Wilmington, CA<br>90744             | School   |
| 30              | 389624       | 3738317      | First Baptist Church School                                    | 1000 Pine Ave           | Long Beach, CA<br>90813             | School   |
| 31              | 390180       | 3738228      | First Lutheran Day Care,<br>Preschool and Elementary<br>School | 946 Linden Ave          | Long Beach, CA<br>90813             | School   |
| 32              | 378510       | 3739856      | Fleming Middle School                                          | 242 Walnut St           | Lomita, CA<br>90717                 | School   |
| 33              | 390951       | 3737680      | Franklin Classical Middle                                      | 540 Cerritos Ave.       | Long Beach, CA<br>90802             | School   |
| 34              | 382778       | 3739398      | Fries Ave. Elementary School                                   | 1301 N Fries Ave        | Wilmington, CA<br>90744             | School   |
| 35              | 389389       | 3738887      | George Washington Middle<br>School                             | 1450 Cedar Ave          | Long Beach, CA<br>90813             | School   |
| 36              | 382180       | 3739100      | Gulf Avenue Elementary<br>School                               | 828 W. L St             | Wilmington, CA<br>90744             | School   |
| 37              | 379361       | 3740015      | Harbor City Elementary                                         | 1508 254th St           | Harbor City, CA                     | School   |

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | <b>Receptor Description</b>                    | Street Address              | City, State, Zip                    | Category |
|-----------------|--------------|--------------|------------------------------------------------|-----------------------------|-------------------------------------|----------|
|                 |              |              | School                                         |                             | 90710                               |          |
| 38              | 380678       | 3735343      | Harbor Occupational Center                     | 740 N. Pacific<br>Ave.      | San Pedro, CA<br>90731              | School   |
| 39              | 381835       | 3737984      | Hawaiian Avenue Elementary<br>School           | 540 Hawaiian<br>Ave         | Wilmington, CA<br>90744             | School   |
| 40              | 384377       | 3739369      | Holy Family Preschool and<br>Elementary School | 1122 E Robidoux<br>St       | Wilmington, CA<br>90744             | School   |
| 41              | 389535       | 3741054      | Holy Innocents Elementary<br>School            | 2500 Pacific Ave            | Long Beach, CA<br>90806             | School   |
| 42              | 379332       | 3734589      | Holy Trinity Elementary<br>School              | 1226 W. Santa<br>Cruz St    | San Pedro, CA<br>90732              | School   |
| 43              | 379760       | 3736916      | J F Cooper High School                         | 2210 N. Taper<br>Ave        | San Pedro, CA<br>90731              | School   |
| 44              | 389686       | 3741436      | Jackie Robinson Academy                        | 2750 Pine Ave               | Long Beach, CA<br>90806             | School   |
| 45              | 387724       | 3740376      | James Garfield Elementary<br>School            | 2240 Baltic Ave             | Long Beach, CA<br>90810             | School   |
| 46              | 391464       | 3739299      | John G Whittier Elementary<br>School           | 1761 Walnut Ave             | Long Beach, CA<br>90813             | School   |
| 47              | 387943       | 3742041      | John Muir Elementary School                    | 3038 Delta Ave              | Long Beach, CA<br>90810             | School   |
| 48              | 387255       | 3739936      | Juan Rodriguez Cabrillo High<br>School         | 2001 Santa Fe<br>Ave        | Long Beach, CA<br>90810             | School   |
| 49              | 389235       | 3740749      | Lafayette Elementary School                    | 2445 Chestnut<br>Ave        | Long Beach, CA<br>90806             | School   |
| 50              | 379517       | 3732375      | Leland Street Elementary<br>School             | 2120 S. Leland St           | San Pedro, CA<br>90731              | School   |
| 51              | 390207       | 3737910      | Long Beach Montessori<br>School                | 525 E. 7th St               | Long Beach, CA<br>90813             | School   |
| 52              | 379407       | 3739022      | Lorenz Hillside School                         | 1516 Anaheim St             | Harbor City, CA<br>90710            | School   |
| 53              | 386753       | 3739676      | Mary Bethune School                            | 2101 San Gabriel<br>Ave     | Long Beach, CA<br>90810             | School   |
| 54              | 391293       | 3739859      | Mary Butler Elementary                         | 1400 E 20th St              | Long Beach, CA<br>90806             | School   |
| 55              | 380014       | 3733758      | Mary Star of the Sea<br>Elementary School      | 717 S. Cabrillo<br>Ave      | San Pedro, CA<br>90731              | School   |
| 56              | 379954       | 3733809      | Mary Star of the Sea High<br>School            | 810 W. 8th St               | San Pedro, CA<br>90731              | School   |
| 57              | 376898       | 3735657      | Miraleste Intermediate School                  | 29323 Palos<br>Verdes Dr. E | Rancho Palos<br>Verdes, CA<br>90275 | School   |
| 58              | 377333       | 3735407      | Miraleste Satellite Elementary<br>School       | 6245 Via Canada             | Rancho Palos<br>Verdes, CA<br>90275 | School   |
| 59              | 380299       | 3740161      | Normont Elementary School                      | 1001 253rd St               | Harbor City, CA<br>90710            | School   |
| 60              | 389875       | 3741853      | Oakwood Academy                                | 2951 Long Beach<br>Blvd     | Long Beach, CA<br>90806             | School   |
| 61              | 381988       | 3739995      | Pacific Harbor Christian                       | 1530 N.                     | Wilmington, CA                      | School   |

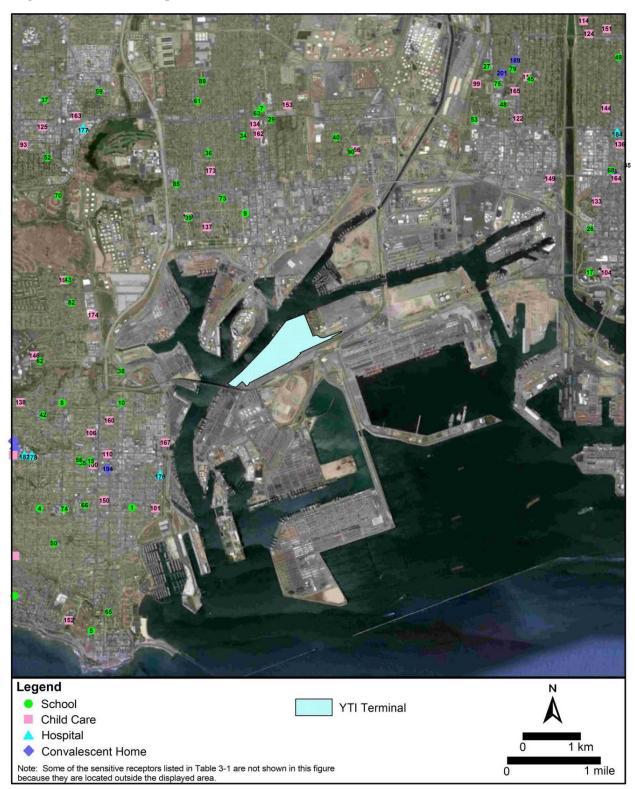
| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                                                 | Street Address              | City, State, Zip        | Category |
|-----------------|--------------|--------------|----------------------------------------------------------------------|-----------------------------|-------------------------|----------|
|                 |              |              | School                                                               | Wilmington Blvd             | 90744                   |          |
| 62              | 379279       | 3735517      | Park Western Place<br>Elementary School                              | 1214 Park<br>Western Place  | San Pedro, CA<br>90732  | School   |
| 63              | 383012       | 3739783      | Phineas Banning Senior High<br>School                                | 1527 Lakme Ave              | Wilmington, CA<br>90744 | School   |
| 64              | 390353       | 3739073      | Polytechnic High School                                              | 1600Atlantic Ave.           | Long Beach, CA<br>90813 | School   |
| 65              | 380461       | 3731193      | Pt. Fermin Elementary School                                         | 3333 Kerckhoff<br>Ave       | San Pedro, CA<br>90731  | School   |
| 66              | 380049       | 3733031      | R H Dana Middle School                                               | 1501 S. Cabrillo            | San Pedro, CA<br>90731  | School   |
| 67              | 378187       | 3736987      | R S Dodson Middle School                                             | 28014 Montereine<br>Dr      | San Pedro, CA<br>90731  | School   |
| 68              | 389106       | 3738800      | Regency High School                                                  | 490 W. 14th<br>Street       | Long Beach, CA<br>90813 | School   |
| 69              | 389796       | 3738044      | Renaissance High School for<br>the Arts                              | 235 East Eighth<br>St.      | Long Beach, CA<br>90813 | School   |
| 70              | 379594       | 3738367      | Rolling Hills Preparatory<br>School                                  | 1 Rolling Hills<br>Prep Way | San Pedro, CA<br>90732  | School   |
| 71              | 390160       | 3739058      | Roosevelt Elementary                                                 | 1574 Linden Ave.            | Long Beach, CA<br>90813 | School   |
| 72              | 390631       | 3737633      | Saint Anthony Preschool /<br>Elementary                              | 855 East Fifth St.          | Long Beach, CA<br>90802 | School   |
| 73              | 382425       | 3738317      | Saints Peter & Paul School                                           | 706 Bay View<br>Ave         | Wilmington, CA<br>90744 | School   |
| 74              | 379699       | 3732970      | San Pedro High School                                                | 1001 W. 15th St             | San Pedro, CA<br>90731  | School   |
| 75              | 387156       | 3740295      | Savannah Academy                                                     | 2152 W Hill St              | Long Beach, CA<br>90810 | School   |
| 76              | 390368       | 3747404      | Select Community Day<br>(Secondary)                                  | 5869 Atlantic<br>Ave.       | Long Beach, CA<br>90802 | School   |
| 77              | 391437       | 3740427      | Signal Hill Elementary<br>School                                     | 2285 Walnut Ave             | Long Beach, CA<br>90806 | School   |
| 78              | 390538       | 3737763      | St. Anthony High<br>School/Constellation<br>Community Charter Middle | 620 Olive Ave.              | Long Beach, CA<br>90802 | School   |
| 79              | 387420       | 3740551      | St. Lucy School                                                      | 2320 Cota Ave               | Long Beach, CA<br>90810 | School   |
| 80              | 390299       | 3737645      | Stevenson Elementary                                                 | 515 Lime Ave.               | Long Beach, CA<br>90802 | School   |
| 81              | 388905       | 3745866      | Sutter Elementary School                                             | 5075 Daisy Ave              | Long Beach, CA<br>90805 | School   |
| 82              | 379821       | 3736524      | Taper Avenue Elementary<br>School                                    | 1824 N. Taper<br>Ave        | San Pedro, CA<br>90731  | School   |
| 83              | 389624       | 3738615      | The New City School                                                  | 1230 Pine Ave               | Long Beach, CA<br>90813 | School   |
| 84              | 378750       | 3733896      | Trinity Luthern School                                               | 1450 W. 7th St              | San Pedro, CA<br>90731  | School   |
| 85              | 381627       | 3738566      | Vermont Christian School                                             | 931 Frigate Ave             | Wilmington, CA<br>90744 | School   |

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                           | Street Address             | City, State, Zip         | Category   |
|-----------------|--------------|--------------|------------------------------------------------|----------------------------|--------------------------|------------|
| 86              | 378837       | 3731468      | White Point Elementary<br>School               | 1410 Silvius Ave           | San Pedro, CA<br>90731   | School     |
| 87              | 378709       | 3734317      | Willenberg Special Education                   | 308 S. Weymouth Ave.       | San Pedro, CA<br>90731   | School     |
| 88              | 387129       | 3741587      | William Logan Stephens<br>Middle School        | 1830 W<br>Columbia St      | Long Beach, CA<br>90810  | School     |
| 89              | 382074       | 3740337      | Wilmington Middle School                       | 1700 Gulf Ave              | Wilmington, CA<br>90744  | School     |
| 90              | 384631       | 3739119      | Wilmington Park Elementary<br>School           | 1140 Mahar Ave             | Wilmington, CA<br>90744  | School     |
| 91              | 389921       | 3738609      | 12TH STREET HEAD<br>START                      | 1212 LONG<br>BEACH BLVD    | Long Beach, CA<br>90806  | Child Care |
| 92              | 390052       | 3737368      | A LOVE 4 LEARNING<br>ACADEMY                   | 306 ELM<br>AVENUE          | Long Beach, CA<br>90802  | Child Care |
| 93              | 378996       | 3739241      | Armstrong Academy                              | 1682 Anaheim St            | Harbor City, CA<br>90710 | Child Care |
| 94              | 390315       | 3739619      | Atlantic Headstart                             | 1862 Atlantic Ave          | Long Beach, CA<br>90806  | Child Care |
| 95              | 392120       | 3737740      | BETHANY PRESCHOOL                              | 2217 EAST 6TH<br>ST.       | Long Beach, CA<br>90814  | Child Care |
| 96              | 384531       | 3743755      | Blessing's Child Care                          | 1422 E Bach St             | Carson, CA<br>90745      | Child Care |
| 97              | 378469       | 3734936      | Brighter Days Montessori                       | 1903 W.<br>Summerland St   | San Pedro, CA<br>90732   | Child Care |
| 98              | 391267       | 3739145      | Bundle of Joy Daycare 2                        | 1330 E 16th St             | Long Beach, CA<br>90813  | Child Care |
| 99              | 386795       | 3740292      | CABRILLO CHILD<br>DEVELOPMENT CENTER           | 2205 SAN<br>GABRIEL AVE.   | Long Beach, CA<br>90810  | Child Care |
| 100             | 380186       | 3733726      | Cabrillo Early Education<br>Center             | 741 W. 8th St              | San Pedro, CA<br>90731   | Child Care |
| 101             | 381264       | 3732980      | Carmen's Cry Baby Care                         | 1509 S. Palos<br>Verdes St | San Pedro, CA<br>90731   | Child Care |
| 102             | 391870       | 3737404      | Carousel Preschool                             | 366 Cherry Ave             | Long Beach, CA<br>90802  | Child Care |
| 103             | 390062       | 3738250      | Child Care Center At St Mary<br>Medical Center | 930 Elm Ave                | Long Beach, CA<br>90813  | Child Care |
| 104             | 389026       | 3737038      | Childtime Learning Center                      | 1 World Trade<br>Ctr # 199 | Long Beach, CA<br>90813  | Child Care |
| 105             | 389481       | 3741039      | Comprehensive Child<br>Development             | 2565 Pacific Ave.          | Long Beach, CA<br>90806  | Child Care |
| 106             | 380158       | 3734275      | Compreshensive Child<br>Development            | 769 W. 3rd St              | San Pedro, CA<br>90731   | Child Care |
| 107             | 379694       | 3736911      | Cooper Community Day<br>School                 | 2210 Taper Ave             | San Pedro, CA<br>90731   | Child Care |
| 108             | 393175       | 3738811      | CORONADO HEAD START<br>CHILD CARE CENTER       | 1395<br>CORONADO<br>STREET | Long Beach, CA<br>90804  | Child Care |
| 109             | 378816       | 3733895      | Dahlquist Preschool                            | 1420 W. 7th St             | San Pedro, CA<br>90731   | Child Care |
| 110             | 380440       | 3733911      | Day Star Early Learning                        | 631 W. 6th St              | San Pedro, CA            | Child Care |

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | <b>Receptor Description</b>                          | Street Address                | City, State, Zip         | Category   |
|-----------------|--------------|--------------|------------------------------------------------------|-------------------------------|--------------------------|------------|
|                 |              |              | Center                                               |                               | 90731                    |            |
| 111             | 389981       | 3738882      | ELM STREET HEAD<br>START                             | 1425 & 1429<br>ELM AVENUE     | Long Beach, CA<br>90806  | Child Care |
| 112             | 387241       | 3744204      | First Baptist Preschool and Daycare                  | 2679 E Carson St              | Long Beach, CA<br>90810  | Child Care |
| 113             | 392325       | 3738423      | First Foursquare Church<br>Preschool                 | 2416 E 11th St                | Long Beach, CA<br>90804  | Child Care |
| 114             | 388635       | 3741379      | Fords Family Day Care                                | 2726 San<br>Francisco Ave     | Long Beach, CA<br>90806  | Child Care |
| 115             | 387670       | 3740411      | GARFIELD HEAD START                                  | 2240 BALTIC<br>AVENUE         | Long Beach, CA<br>90810  | Child Care |
| 116             | 391565       | 3738529      | GAVIOTA HEAD START                                   | 1131 GAVIOTA<br>STREET        | Long Beach, CA<br>90813  | Child Care |
| 117             | 378851       | 3732160      | Good Shepherd Preschool                              | 1350 W. 25th St               | San Pedro, CA<br>90732   | Child Care |
| 118             | 392941       | 3737474      | Great Beginnings                                     | 3027 E. 4th St.               | Long Beach, CA<br>90814  | Child Care |
| 119             | 381827       | 3738004      | Hawaiian Avenue Children's<br>Center                 | 909 W. D St                   | Wilmington, CA<br>90744  | Child Care |
| 120             | 392873       | 3738988      | Huntington Academy -<br>Preschool                    | 2935 E.<br>Spaulding St.      | Long Beach, CA<br>90804  | Child Care |
| 121             | 391036       | 3739334      | Jenkins Day Care                                     | 1720 Cerritos Ave             | Long Beach, CA<br>90813  | Child Care |
| 122             | 387506       | 3739696      | JOB CORP HEAD START                                  | 1903 SANTA FE<br>AVE.         | Long Beach, CA<br>90810  | Child Care |
| 123             | 390594       | 3738247      | Kelly's Care                                         | 943 N<br>Washington Pl        | Long Beach, CA<br>90813  | Child Care |
| 124             | 388725       | 3741155      | Kelly's Kids Daycare Center                          | 855 W Willow St               | Long Beach, CA<br>90806  | Child Care |
| 125             | 379320       | 3739551      | Learning Garden Preschool                            | 1518 Pacific<br>Coast Hwy     | Harbor City, CA<br>90710 | Child Care |
| 126             | 387305       | 3743542      | Little Greenwood Daycare                             | 22114 S Carlerik<br>Ave       | Long Beach, CA<br>90810  | Child Care |
| 127             | 389578       | 3738196      | LITTLE LIGHTHOUSE<br>EDUCATIONAL<br>CHILDCARE CENTER | 911 PINE<br>AVENUE            | Long Beach, CA<br>90813  | Child Care |
| 128             | 389940       | 3740373      | LONG BEACH BLVD<br>HEAD START                        | 2236 LONG<br>BEACH BLVD.      | Long Beach, CA<br>90806  | Child Care |
| 129             | 390373       | 3740260      | LONG BEACH CENTER<br>FOR CHILD<br>DEVELOPMENT        | 622 E. HILL<br>STREET         | Long Beach, CA<br>90806  | Child Care |
| 130             | 390533       | 3740347      | LONG BEACH CHILD<br>DEVELOPMENT CENTER               | 2222 OLIVE<br>AVE             | Long Beach, CA<br>90806  | Child Care |
| 131             | 391238       | 3739449      | LONG BEACH CITY<br>COLLEGE CHILD<br>DEVELOPMENT-PCC  | 1305 E. PACIFIC<br>COAST HWY. | Long Beach, CA<br>90806  | Child Care |
| 132             | 390344       | 3741430      | Long Beach Day Nursery                               | 2801 Atlantic Ave             | Long Beach, CA<br>90806  | Child Care |
| 133             | 388856       | 3738266      | Lucy's Baby Care                                     | 940 Maine Ave                 | Long Beach, CA           | Child Care |

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                             | Street Address          | City, State, Zip        | Category   |
|-----------------|--------------|--------------|--------------------------------------------------|-------------------------|-------------------------|------------|
|                 |              |              |                                                  |                         | 90813                   |            |
| 134             | 382973       | 3739597      | Munchkin Center                                  | 1348 N Marine<br>Ave    | Wilmington, CA<br>90744 | Child Care |
| 135             | 391193       | 3739243      | My Three Kids Tons of Fun<br>Day Care            | 1240 E 17th St          | Long Beach, CA<br>90813 | Child Care |
| 136             | 389258       | 3739250      | N 2 Lil Folkz                                    | 1624 Chestnut<br>Ave    | Long Beach, CA<br>90813 | Child Care |
| 137             | 382152       | 3737824      | New Harbor Vista Child<br>Development Center     | 909 W D St              | Wilmington, CA<br>90744 | Child Care |
| 138             | 378944       | 3734805      | Nursery Rhymes Day Care                          | 1410 W. Ofarrell<br>St  | San Pedro, CA<br>90732  | Child Care |
| 139             | 389533       | 3741212      | Oakwood Children's Center                        | 2650 Pacific Ave        | Long Beach, CA<br>90806 | Child Care |
| 140             | 378566       | 3732624      | Ocean View Preschool                             | 1900 S. Western<br>Ave  | San Pedro, CA<br>90732  | Child Care |
| 141             | 388859       | 3742514      | Old King Cole Day Care                           | 3300 Oregon Ave         | Long Beach, CA<br>90806 | Child Care |
| 142             | 391720       | 3737833      | Ole King Cole Dev Center                         | 1814 E 7th St           | Long Beach, CA<br>90813 | Child Care |
| 143             | 392206       | 3737391      | Our Saviour's Lutheran<br>Preschool              | 370 Junipero Ave        | Long Beach, CA<br>90814 | Child Care |
| 144             | 389020       | 3739872      | P.A.L. Family Day Care                           | 1980 Daisy Ave          | Long Beach, CA<br>90806 | Child Care |
| 145             | 389472       | 3740264      | PACIFIC HEAD START                               | 2179 PACIFIC<br>AVE     | Long Beach, CA<br>90806 | Child Care |
| 146             | 379181       | 3735610      | Park Western Place Children's<br>Center          | 1220 Park<br>Western Pl | San Pedro, CA<br>90732  | Child Care |
| 147             | 393415       | 3737474      | Phases - An Early Learning<br>Comp.              | 404 Newport Ave         | Long Beach, CA<br>90814 | Child Care |
| 148             | 389579       | 3738221      | PINE HEAD START                                  | 927 PINE AVE.           | Long Beach, CA<br>90813 | Child Care |
| 149             | 388059       | 3738658      | PLAY HOUSE, THE                                  | 1301 W. 12TH<br>STREET  | Long Beach, CA<br>90813 | Child Care |
| 150             | 380385       | 3733112      | Robin's Nest Day Care                            | 645 W. 14th St          | San Pedro, CA<br>90731  | Child Care |
| 151             | 389036       | 3741241      | Ruiz Family Daycare                              | 2670 Daisy Ave          | Long Beach, CA<br>90806 | Child Care |
| 152             | 379775       | 3731051      | San Pedro - Wilmington Early<br>Education Center | 920 W. 36th St          | San Pedro, CA<br>90731  | Child Care |
| 153             | 383537       | 3739930      | Sanchez Family Child Care                        | 1443 Deepwater<br>Ave   | Wilmington, CA<br>90744 | Child Care |
| 154             | 387465       | 3742345      | Sanders Teeny Tiny<br>Preschool                  | 3211 Santa Fe<br>Ave    | Long Beach, CA<br>90810 | Child Care |
| 155             | 391533       | 3740443      | SIGNAL HILL HEAD<br>START                        | 2285 WALNUT<br>AVENUE   | Long Beach, CA<br>90806 | Child Care |
| 156             | 393117       | 3738872      | SIMPLY KARE CHILD<br>DEVELOPMENT CENTER          | 1406 OBISPO<br>AVENUE   | Long Beach, CA<br>90804 | Child Care |
| 157             | 390623       | 3740004      | Smart & Manageable                               | 2054 Myrtle Ave         | Long Beach, CA<br>90806 | Child Care |
| 158             | 378296       | 3733672      | St. Peter's Episcopal Day                        | 1648 W. 9th St          | San Pedro, CA           | Child Care |

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                                                                                 | Street Address              | City, State, Zip         | Category   |
|-----------------|--------------|--------------|------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|------------|
|                 |              |              | School                                                                                               |                             | 90731                    |            |
| 159             | 389847       | 3741751      | Tender Child Care                                                                                    | 211 E 29th St               | Long Beach, CA<br>90806  | Child Care |
| 160             | 380473       | 3734491      | Toberman Child Care Center                                                                           | 131 N. Grand Ave            | San Pedro, CA<br>90731   | Child Care |
| 161             | 391450       | 3738224      | Vincent Family Child Care                                                                            | 925 Walnut Ave              | Long Beach, CA<br>90813  | Child Care |
| 162             | 383041       | 3739433      | VOA/CESAR CHAVEZ<br>HEAD START                                                                       | 1269 N.<br>AVALON<br>STREET | Wilmington, CA<br>90744  | Child Care |
| 163             | 379899       | 3739740      | Volunteers of America-Parent<br>Child Center                                                         | 1135 257th St               | Harbor City, CA<br>90710 | Child Care |
| 164             | 389193       | 3738664      | WEST ANAHEIM CHILD<br>CARE CENTER                                                                    | 440 W.<br>ANAHEIM<br>STREET | Long Beach, CA<br>90813  | Child Care |
| 165             | 387452       | 3740167      | West Child Development<br>Center                                                                     | 2125 Santa Fe<br>Ave.       | Long Beach, CA<br>90810  | Child Care |
| 166             | 384704       | 3739154      | Wilmington Park Children's<br>Center                                                                 | 1419 E Young St             | Wilmington, CA<br>90744  | Child Care |
| 167             | 381437       | 3734112      | World Tots LA Day Care<br>Center                                                                     | 100 W. 5th St               | San Pedro, CA<br>90731   | Child Care |
| 168             | 390296       | 3737362      | YMCA GLB FAIRFIELD<br>3RD STREET PRESCHOOL                                                           | 607 E. 3RD<br>STREET        | Long Beach, CA<br>90802  | Child Care |
| 169             | 389517       | 3739600      | YOUNG HORIZONS<br>CHILD DEVELOPMENT<br>CENTERS                                                       | 1840 Pacific Ave            | Long Beach, CA<br>90806  | Child Care |
| 170             | 389536       | 3740757      | YOUNG HORIZONS<br>CHILD DEVELOPMENT<br>CENTERS                                                       | 1840 Pacific Ave            | Long Beach, CA<br>90806  | Child Care |
| 171             | 390248       | 3737686      | YOUNG HORIZONS<br>CHILD DEVELOPMENT<br>CENTERS                                                       | 1840 Pacific Ave            | Long Beach, CA<br>90806  | Child Care |
| 172             | 389459       | 3737689      | YOUNG HORIZONS/EL<br>JARDIN DE LA<br>FELICIDAD                                                       | 507 PACIFIC<br>AVE.         | Long Beach, CA<br>90813  | Child Care |
| 173             | 382217       | 3738795      | Yvette's Daycare                                                                                     | 815 W. Opp St               | Wilmington, CA<br>90744  | Child Care |
| 174             | 380194       | 3736308      | YWCA Venture Park Pre-<br>School                                                                     | 1921 N. Gaffey St           | San Pedro, CA<br>90731   | Child Care |
| 175             | 389978       | 3741459      | Earl & Lorraine Miller<br>Children's Hospital; Long<br>Beach Memorial Medical<br>Center and Hospital | 2801 Atlantic Ave           | Long Beach, CA<br>90806  | Hospital   |
| 176             | 381348       | 3733563      | Harbor View House                                                                                    | 921 S. Beacon St            | San Pedro, CA<br>90731   | Hospital   |
| 177             | 380022       | 3739531      | Kaiser Permanente<br>Foundation Hospital                                                             | 25825 S. Vermont<br>Ave     | Harbor City, CA<br>90710 | Hospital   |
| 178             | 379142       | 3733893      | Little Company of Mary San<br>Pedro Hospital                                                         | 1300 W. 7th St              | San Pedro, CA<br>90732   | Hospital   |
| 179             | 389449       | 3739338      | Long Beach Doctors Hospital                                                                          | 1725 Pacific Ave            | Long Beach, CA           | Hospital   |


| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                                                          | Street Address                | City, State, Zip        | Category     |
|-----------------|--------------|--------------|-------------------------------------------------------------------------------|-------------------------------|-------------------------|--------------|
|                 |              |              |                                                                               |                               | 90813                   |              |
| 180             | 389539       | 3741329      | Pacific Hospital of Long<br>Beach (Hospital and<br>Convalescent/Nursing Home) | 2776 Pacific Ave              | Long Beach, CA<br>90806 | Hospital     |
| 181             | 378675       | 3738902      | Palos Verdes Health Care<br>Center                                            | 26303 Western<br>Ave          | Lomita, CA<br>90717     | Hospital     |
| 182             | 379012       | 3733899      | San Pedro Peninsula Hospital                                                  | 1300 W. 7th St                | San Pedro, CA<br>90732  | Hospital     |
| 183             | 390167       | 3738394      | St Mary Medical Center<br>(Hospital and<br>Convalescent/Nursing Home)         | 1050 Linden Ave               | Long Beach, CA<br>90813 | Hospital     |
| 184             | 389215       | 3739462      | Tom Redgate Memorial<br>Hospital                                              | 1775 Chestnut<br>Ave          | Long Beach, CA<br>90813 | Hospital     |
| 185             | 390353       | 3741373      | Akin's Post Acute Rehab<br>Hospital; Atlantic Memorial<br>Healthcare Center   | 2750 Atlantic Ave             | Long Beach, CA<br>90806 | Convalescent |
| 186             | 390863       | 3737410      | BELLAGIO MANOR                                                                | 1046 EAST 4TH<br>ST.          | Long Beach, CA<br>90802 | Convalescent |
| 187             | 389789       | 3736894      | BREAKERS OF LONG<br>BEACH, THE                                                | 210 E OCEAN<br>BLVD           | Long Beach, CA<br>90802 | Convalescent |
| 188             | 392607       | 3736849      | BROADWAY BY THE SEA                                                           | 2725 EAST<br>BROADWAY         | Long Beach, CA<br>90803 | Convalescent |
| 189             | 387455       | 3740696      | BURNETT HOME CARE                                                             | 1740 WEST<br>BURNETT ST.      | Long Beach, CA<br>90810 | Convalescent |
| 190             | 390450       | 3740328      | CARUTHERS ROYALE<br>CARE                                                      | 2204 LIME AVE.                | Long Beach, CA<br>90806 | Convalescent |
| 191             | 391831       | 3737625      | Colonial Care Center                                                          | 1913 E. 5th St.               | Long Beach, CA<br>90802 | Convalescent |
| 192             | 392139       | 3739609      | Courtyard Care Center                                                         | 1880 Dawson<br>Avenue         | Long Beach, CA<br>90806 | Convalescent |
| 193             | 391831       | 3737516      | CROFTON MANOR INN                                                             | 1950 E. 5TH ST.               | Long Beach, CA<br>90802 | Convalescent |
| 194             | 380445       | 3733657      | Crow Flora Boarding & Care<br>Homes                                           | 624 W. 9th St                 | San Pedro, CA<br>90731  | Convalescent |
| 195             | 389709       | 3742434      | DELUXE GUEST HOME                                                             | 3260 PINE AVE.                | Long Beach, CA<br>90806 | Convalescent |
| 196             | 389709       | 3742485      | DELUXE GUEST HOME II                                                          | 3266 PINE<br>AVENUE           | Long Beach, CA<br>90806 | Convalescent |
| 197             | 392556       | 3737484      | EDGEWATER<br>CONVALESCENT<br>HOSPITAL                                         | 2625 EAST<br>FOURTH<br>STREET | Long Beach, CA<br>90814 | Convalescent |
| 198             | 389119       | 3738782      | Harbor View Rehabilitation<br>Center                                          | 490 W. 14TH<br>Street         | Long Beach, CA<br>90813 | Convalescent |
| 199             | 389648       | 3738051      | HEALTHVIEW - PINE<br>VILLA ASSISTED LIVING                                    | 117 EAST 8TH<br>STREET        | Long Beach, CA<br>90813 | Convalescent |
| 200             | 378561       | 3732407      | LITTLE SISTERS OF THE<br>POOR                                                 | 2100 S. Western<br>Ave.       | San Pedro, CA<br>90732  | Convalescent |
| 201             | 387231       | 3740475      | LORAM MANOR                                                                   | 1925 GEMINI<br>STREET         | Long Beach, CA<br>90810 | Convalescent |
| 202             | 378821       | 3734136      | Los Palos Convalescent                                                        | 1430 W 6th St                 | San Pedro, CA           | Convalescent |

| Receptor<br>No. | UTM X<br>(m) | UTM Y<br>(m) | Receptor Description                  | Street Address              | City, State, Zip        | Category     |
|-----------------|--------------|--------------|---------------------------------------|-----------------------------|-------------------------|--------------|
|                 |              |              | Hospital                              |                             | 90731                   |              |
| 203             | 390456       | 3738401      | OLIVE TREE HOME                       | 1035 OLIVE<br>STREET        | Long Beach, CA<br>90813 | Convalescent |
| 204             | 388555       | 3741719      | RMR RESIDENTIAL CARE<br>FACILITY, LLC | 2900 DE<br>FOREST<br>AVENUE | Long Beach, CA<br>90806 | Convalescent |
| 205             | 389478       | 3741347      | Royal Care Skilled Nursing<br>Center  | 2725 Pacific<br>Avenue      | Long Beach, CA<br>90806 | Convalescent |
| 206             | 392046       | 3737494      | RUBY'S GUEST HOME                     | 2125 E. 4TH<br>STREET       | Long Beach, CA<br>90814 | Convalescent |
| 207             | 387541       | 3742481      | Santa Fe Convalescent                 | 3294 Santa Fe<br>Ave        | Long Beach, CA<br>90810 | Convalescent |
| 208             | 378848       | 3734004      | Seacrest Convalescent<br>Hospital     | 1416 W 6th St               | San Pedro, CA<br>90731  | Convalescent |
| 209             | 391434       | 3738574      | Skylight Convalescent<br>Hospital     | 1201 Walnut<br>Avenue       | Long Beach, CA<br>90813 | Convalescent |
| 210             | 390475       | 3738176      | Villa Maria Care Center               | 723 E 9th St                | Long Beach, CA<br>90813 | Convalescent |
| 211             | 393252       | 3736734      | VILLA REDONDO CARE<br>HOME            | 237 REDONDO<br>AVENUE       | Long Beach, CA<br>90803 | Convalescent |
| 212             | 391819       | 3737006      | Wells House                           | 245 CHERRY<br>AVENUE        | Long Beach, CA<br>90802 | Convalescent |

Figure 3-1. Coarse and Fine Receptor Grids



Figure 3-2. Sensitive Receptor Locations



Maximally exposed individual (MEI) locations were selected from the modeled receptor grids for five different receptor types: residential, occupational, sensitive, student, and recreational. The selection methodology for the MEI locations was:

- The residential MEI was selected from all receptors in residential or residentially-zoned areas that did not fall on roads.
- The occupational MEI was selected from all receptors outside the proposed Project boundary that did not fall on roads.
- The sensitive MEI was selected from all identified schools, day care centers, convalescent homes, hospitals, and other identified sensitive receptors in the surrounding area.
- The student MEI was selected from all identified elementary, middle, and high schools in the surrounding area.
- The recreational MEI was selected from all receptors not over water and outside Port of Los Angeles property that did not fall on roads, but including receptors located within the Wilmington and San Pedro Waterfront recreational areas.

## 4.0 Dispersion Model Selection and Inputs

The air dispersion modeling was performed using the USEPA AERMOD dispersion model, version 12345, based on the Guideline on Air Quality Models (USEPA, 2005). The AERMOD model is a steady-state, multiple-source, Gaussian dispersion model designed for use with emission sources situated in terrain where ground elevations can exceed the stack heights of the emission sources. The AERMOD model requires hourly meteorological data consisting of wind vector, wind speed, temperature, stability class, and mixing height. The selection of the AERMOD model is well suited based on (1) the general acceptance by the modeling community and regulatory agencies of its ability to provide reasonable results for large industrial complexes with multiple emission sources, (2) a consideration of the availability of annual sets of hourly meteorological data for use by AERMOD, and (3) the ability of the model to handle the various physical characteristics of project emission sources, including, point, area, line, and volume source types. AERMOD is approved by the USEPA and SCAQMD for analysis of mobile sources.

### 4.1 Emission Source Representation

The AERMOD modeling analysis for the HRA evaluated the proposed Project- and alternativerelated construction and operational emission sources identified in Sections 2.1 and 2.2. Table 4-1 presents the AERMOD source release parameters for each source type. Appendix B2 presents a more detailed discussion of the development of the source release parameters. For compatibility with the HARP model, the emission sources were grouped in AERMOD and modeled with "unit" emission rates of 1 gram per second. The actual TAC emission rates for each source group were modeled in HARP.

 Table 4-1. AERMOD Source Release Parameters

|                                                                                 | AERMOD<br>Source | Release<br>Height | Source                          | Initial<br>Vertical<br>Dimension | Initial<br>Horizontal<br>Dimension | Exit<br>Velocity | Exit<br>Temperature | Stack<br>Diameter |
|---------------------------------------------------------------------------------|------------------|-------------------|---------------------------------|----------------------------------|------------------------------------|------------------|---------------------|-------------------|
| Source Description                                                              | Туре             | ( <b>m</b> )      | Spacing (m)                     | (m) <sup>a</sup>                 | (m) <sup>b</sup>                   | (m/s)            | (K)                 | ( <b>m</b> )      |
| Construction Sources                                                            | 1                |                   |                                 |                                  |                                    |                  |                     |                   |
| Crane delivery ship<br>hoteling – auxiliary<br>engines                          | point            | 37.19             |                                 |                                  |                                    | 9.14             | 572                 | 0.39              |
| Harbor craft <sup>d</sup>                                                       | poly-area        | 15.24             |                                 | 3.54                             |                                    |                  |                     |                   |
| Off-road construction equipment <sup>d</sup>                                    | poly-area        | 4.57              |                                 | 1.06                             |                                    |                  |                     |                   |
| Haul/delivery trucks<br>idling and transiting<br>onsite <sup>d</sup>            | poly-area        | 4.57              |                                 | 1.06                             |                                    |                  |                     |                   |
| Asphalt Paving                                                                  | poly-area        | 1.0               |                                 | 0.23                             |                                    |                  |                     |                   |
| <b>Operational Sources</b>                                                      |                  |                   | •                               | •                                | •                                  |                  |                     |                   |
|                                                                                 |                  | 59.13             | 100 in harbor                   | 13.75                            | 46.5                               |                  |                     |                   |
| Ship transit: propulsion<br>engines, auxiliary<br>engines, auxiliary            | volume           | 49.07             | 300 in<br>precautionary<br>zone | 11.41                            | 139.5                              |                  |                     |                   |
| boilers <sup>e</sup>                                                            |                  | 49.07             | 1,000 in<br>fairway             | 11.41                            | 465.1                              |                  |                     |                   |
| Ship hoteling: auxiliary engines <sup>e</sup>                                   | point            | 44.01             |                                 |                                  |                                    | 7.7              | 578                 | 0.47              |
| Ship hoteling: boilers <sup>e</sup>                                             | point            | 44.01             |                                 |                                  |                                    | 18.2             | 559                 | 0.49              |
| Ship hoteling at<br>anchorage: auxiliary<br>engines and boilers <sup>e</sup>    | poly-area        | 44.01             |                                 | 10.23                            |                                    |                  |                     |                   |
| Tugboats: propulsion<br>and auxiliary engines <sup>f</sup>                      | volume           | 15.24             | 100                             | 3.54                             | 46.5                               |                  |                     |                   |
| Locomotives transit:<br>day (6am-6pm)                                           | volume           | 5.6 <sup>g</sup>  | 50                              | 2.60 <sup>h</sup>                | 23.3                               |                  |                     |                   |
| Locomotives transit:<br>night (6pm-6am)                                         | volume           | 14.6 <sup>g</sup> | 50                              | 6.79 <sup>h</sup>                | 23.3                               |                  |                     |                   |
| Container trucks:<br>idling at in/out gate,<br>driving on terminal <sup>i</sup> | poly-area        | 4.57              |                                 | 1.06                             |                                    |                  |                     |                   |
| Container trucks transit offsite                                                | line             | 4.57              |                                 | 1.06                             |                                    |                  |                     |                   |
| Cargo handling<br>equipment, TRUs <sup>i</sup>                                  | poly-area        | 4.57              |                                 | 1.06                             |                                    |                  |                     |                   |
| Worker vehicles onsite                                                          | poly-area        | 0.61              |                                 | 1.06                             |                                    |                  |                     |                   |
| Worker vehicles off-sit <sup>e</sup>                                            | line             | 0.61              |                                 | 1.06                             |                                    |                  |                     |                   |

Notes:

a. The initial vertical dimension of the plume ( $\sigma_z$ ) was estimated by dividing the initial vertical thickness by 4.3 for elevated releases and by 2.15 for ground-based releases.

b. The initial horizontal dimension  $(\sigma_y)$  is the source spacing divided by a standard deviation of 2.15.

c. Crane delivery ship hoteling was modeled using the point source parameters for a <3,000 TEU hoteling container ship, as compiled by LAHD (LAHD 2008).

d. Release height and initial vertical dimension are consistent with prior LAHD documents (LAHD 2008; LAHD 2011a).

e. Source of ship parameters: LAHD APL EIR/EIS for release height and China Shipping EIR/EIS for other parameters.

f. Source of tugboat parameters: LAHD APL EIR/EIS for release height.

g. Source of locomotive release height: Roseville Railyard Study, page G-3.

h. Source: Roseville Railyard Study divided source height by 2.15 (page 40).

| Source Description                                                                                                                     | AERMOD<br>Source<br>Type | Release<br>Height | Source<br>Spacing (m) | Initial<br>Vertical<br>Dimension<br>(m) <sup>a</sup> | Initial<br>Horizontal<br>Dimension<br>(m) <sup>b</sup> | Exit<br>Velocity<br>(m/s) | Exit<br>Temperature | Stack<br>Diameter |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-----------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------|---------------------|-------------------|
| Source Description                                                                                                                     | туре                     | (m)               | Spacing (III)         | (111)                                                | (m)                                                    | (III/S)                   | (K)                 | (m)               |
| i. Consistent with prior LAHD documents.<br>j. Source of worker vehicle parameters: Consistent with LAHD recommendations (LAHD 2012b). |                          |                   |                       |                                                      |                                                        |                           |                     |                   |
| J. Source of worker vehic                                                                                                              | e parameters.            | Consistent        | with LAND lett        | minentiations                                        | (LAID 20120                                            | ·).                       |                     |                   |

Appendix B2 Figures 3-1A and 3-1B show the sizes and locations of the modeled emission sources over a base map of the project vicinity.

### 4.2 Meteorological Data

The dominant terrain features and water bodies that may influence wind patterns in this part of the Los Angeles Basin include the Pacific Ocean to the west, the hills of the Palos Verdes Peninsula to the west/southwest, and the San Pedro Bay and shipping channels to the south of the study area. Although the area in the immediate vicinity of the Ports of Los Angeles (POLA or the Port) and Long Beach (POLB) is generally flat, these terrain features water bodies may result in significant variations in wind patterns over relatively short distances (LAHD 2010).

POLA and POLB currently operate monitoring stations that collect meteorological data from several locations within port boundaries. The data sets contain hourly observations of wind speed, wind direction, temperature, atmospheric stability, and mixing height recorded at each of the monitoring stations in the network. The meteorological data stations to the west of the Palos Verdes Hills and within approximately 5 kilometers of the San Pedro Bay generally exhibit predominant winds from the northwest and from the south or southeast. The consistency of the predominant winds among these stations indicates that the Palo Verdes Hills are channeling the winds from the northwest and that the San Pedro Bay and shipping channels influence the winds from the south and southeast (LAHD 2010).

For this dispersion analysis, the meteorological data collected at the Terminal Island Treatment Plant (TITP) was used for dispersion modeling. TITP is located just south of the YTI terminal on Pier 300, less than 0.5 miles from the center of the YTI terminal. The data used was collected between September 2006 and August 2007, and was processed and provided by Environ (Environ 2013).

The meteorological data were processed using the USEPA's approved AERMET (version 12345) meteorological data preprocessor for the AERMOD dispersion model. AERMET uses three steps to preprocess and combine the surface and upper-air soundings to output the data in a format which is compatible with the AERMOD model. The first step extracts the data and performs a brief quality assurance check of the data. The second step merges the meteorological data sets. The third step outputs the data in AERMOD-compatible format while also incorporating surface characteristics surrounding the collection or application site.

The output from the AERMET model consists of two separate files: the surface conditions file and a vertical profile dataset. AERMOD utilizes these two files in the dispersion modeling algorithm to predict pollutant concentrations resulting from a source's emissions. As part of the effort to process the 2006-2007 meteorological data for the latest version of AERMOD (version 12345), the data were compared to the more recent meteorological data collected during years 2009 to 2012. It was determined that the 2006-2007 data period is representative in comparison to the 2009 to 2012 data period. To reach this conclusion, Environ evaluated the completeness of the data by quarter, the average wind speed, and visually examined the wind pattern based on wind roses. The evaluation showed that the average wind speed and wind pattern of the original data period is very similar to that of the 2009 to 2012 data period across the stations at both POLA and POLB. Therefore it was concluded that the original data period is representative (Environ 2013).

### 4.3 Model Options

Regulatory default technical options were selected for the AERMOD model. Use of these options follows the USEPA modeling guidance (USEPA, 2009; and 40 CFR, Appendix W; November 2005). Receptor and source base elevations were determined from USGS National Elevation Dataset (NED) files using AERMAP, version 11103 (USEPA 2011). All coordinates were referenced to UTM NAD83, Zone 11.

Table 4-2 presents the temporal distribution of emissions used in AERMOD for estimating peak 1-hour and annual average concentrations for the HRA. Emissions were assumed to be uniformly distributed during the specific time periods described in the table. The temporal distribution assumptions are identical for the CEQA baseline, NEPA baseline, proposed Project, and project alternatives.

| Temporal Distribution        |
|------------------------------|
| 7:00 am – 6:00 pm            |
| 24 hours per day             |
| 10 percent 6:00 am – 9:00 am |
| 42 percent 9:00 am – 3:00 pm |
| 18 percent 3:00 pm – 7:00 pm |
| 30 percent 7:00 pm – 6:00 am |
| 24 hours per day             |
| 7:00 am – 3:00 am            |
| 24 hours per day             |
| 23 percent 6:00 am – 9:00 am |
| 29 percent 9:00 am – 3:00 pm |
| 34 percent 3:00 pm – 7:00 pm |
| 14 percent 7:00 pm – 6:00 am |
|                              |

 Table 4-2. Temporal Distribution of Emissions for CEQA Baseline, NEPA Baseline, Proposed Project, and Alternatives.

Notes:

a. There is no construction for the CEQA baseline and Alternative 1.

b. The temporal distributions for container trucks and worker trips were derived from the traffic study (Appendix D).

## 5.0 Calculation of Health Risks

This HRA used HARP Version 1.4f to perform all health risk calculations based on the concentrations per unit emission rate predicted by AERMOD. HARP calculated values for individual lifetime cancer risk, chronic hazard index, and acute hazard index at each modeled receptor for the CEQA baseline, NEPA baseline, and proposed Project alternatives. Because HARP is not directly compatible with AERMOD output file format, it was necessary to reformat the AERMOD output using the ARB's HARP On-Ramp software (CARB 2009) prior to running HARP.

### 5.1 Toxicity Factors

An inhalation cancer potency factor represents the probability that a person will contract cancer from the continuous inhalation of one milligram (mg) of a chemical per kilogram (kg) of body weight per day over a period of 70 years. Inhalation potency factors were used by HARP to calculate individual lifetime cancer risk using the risk assessment algorithms defined in OEHHA (OEHHA 2003).

To assess the potential for non-cancer health effects resulting from chronic and acute inhalation exposure, OEHHA has established RELs (CARB 2013). An REL is an estimate of the continuous inhalation exposure concentration to which the human population (including sensitive subgroups) may be exposed without appreciable risk of experiencing adverse non-cancer effects. The chronic hazard index is the sum of the chemical-specific chronic hazard quotients affecting a particular target organ. The acute hazard index is the sum of the chemical-specific acute hazard quotients affecting a particular target organ. A hazard quotient is a chemical's predicted concentration divided by its REL. A separate hazard index is calculated for each target organ affected by the TACs because not all TACs affect the same target organ. A hazard index below 1.0 for all affected target organs indicates that adverse non-cancer health effects are not expected.

In addition to the inhalation exposure pathway, several noninhalation exposure pathways were also incorporated in the HRA, including dermal adsorption, soil ingestion, home-grown produce ingestion (residential and sensitive receptors only), and mother's milk ingestion (residential and sensitive receptors only). The TACs evaluated for noninhalation pathways include arsenic, cadmium, hexavalent chromium, lead, mercury, and nickel from all sources except diesel IC engines. For diesel IC engines, the inhalation toxicity factors for DPM already include the effects from exposure to whole diesel exhaust, so a separate evaluation of noninhalation pathways is unnecessary. The various exposure parameters and settings used in HARP for the noninhalation exposure pathways are consistent with SCAQMD guidelines (SCAQMD 2005). The results of this analysis show that the contributions of the noninhalation exposure pathways to the HRA results are negligible compared to the inhalation pathway. Table 5-1 presents the toxicity factors used in this HRA.

| Toxic Air<br>Contaminant            | HARP<br>TAC ID | Inhalation<br>Cancer<br>Potency<br>Factor<br>(mg/kg-d) <sup>-1</sup> | Chronic<br>Inhalation<br>REL (µg/m <sup>3</sup> ) | Target Organ<br>for Chronic<br>Exposure | Acute<br>Inhalation<br>REL (μg/m <sup>3</sup> ) | Target Organ<br>for Acute<br>Exposure |
|-------------------------------------|----------------|----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------|
| Acetaldehyde                        | 75070          | 0.01                                                                 | 140                                               | I                                       | 470                                             | D,I                                   |
| Acrolein                            | 107028         | _                                                                    | 0.35                                              | Ι                                       | 2.5                                             | D,I                                   |
| Ammonia                             | 7664417        | —                                                                    | 200                                               | Ι                                       | 3,200                                           | D,I                                   |
| Arsenic <sup>b</sup>                | 7440382        | 12                                                                   | 0.015                                             | B,C,G,I,J                               | 0.2                                             | B,C,G                                 |
| Benzene                             | 71432          | 0.1                                                                  | 60                                                | C,E,G                                   | 1,300                                           | E,F,C                                 |
| 1,3-Butadiene                       | 106990         | 0.6                                                                  | 2                                                 | С                                       | 660                                             | С                                     |
| Cadmium <sup>b</sup>                | 7440439        | 15                                                                   | 0.02                                              | I,M                                     |                                                 | —                                     |
| Chlorine                            | 7782505        | _                                                                    | 0.2                                               | Ι                                       | 210                                             | D,I                                   |
| Chlorobenzene                       | 108907         |                                                                      | 1,000                                             | A,C,M                                   |                                                 | _                                     |
| Copper                              | 7440508        |                                                                      |                                                   |                                         | 100                                             | Ι                                     |
| Diesel PM (DPM) <sup>a</sup>        | 9901           | 1.1                                                                  | 5                                                 | Ι                                       |                                                 | —                                     |
| Ethylbenzene                        | 100414         | 0.0087                                                               | 2,000                                             | A,C,L,M                                 | —                                               | —                                     |
| Formaldehyde                        | 50000          | 0.021                                                                | 9                                                 | Ι                                       | 55                                              | D                                     |
| n-Hexane                            | 110543         | —                                                                    | 7,000                                             | G                                       | —                                               | —                                     |
| Hexavalent<br>Chromium <sup>b</sup> | 18540299       | 510                                                                  | 0.2                                               | E,I                                     | —                                               | —                                     |
| Lead <sup>b</sup>                   | 7439921        | 0.042                                                                | —                                                 | —                                       | —                                               | —                                     |
| Manganese                           | 7439965        | —                                                                    | 0.09                                              | G                                       | —                                               | —                                     |
| Mercury <sup>b</sup>                | 7439976        | —                                                                    | 0.03                                              | C,G,M                                   | 0.6                                             | C,G                                   |
| Methyl Alcohol                      | 67561          | —                                                                    | 4,000                                             | С                                       | 28,000                                          | G                                     |
| Methyl Ethyl<br>Ketone              | 78933          | —                                                                    | —                                                 | —                                       | 13,000                                          | D,I                                   |
| Naphthalene                         | 91203          | 0.12                                                                 | 9                                                 | Ι                                       | _                                               | _                                     |
| Nickel <sup>b</sup>                 | 7440020        | 0.91                                                                 | 0.014                                             | C,E,I                                   | 0.2                                             | F                                     |
| Propylene                           | 115071         | _                                                                    | 3,000                                             | Ι                                       |                                                 | I                                     |
| Selenium                            | 7782492        | —                                                                    | 20                                                | A,B,G                                   | _                                               | _                                     |
| Styrene                             | 100425         | —                                                                    | 900                                               | G                                       | 21,000                                          | C,D,I                                 |
| Sulfates                            | 9960           | _                                                                    |                                                   | _                                       | 120                                             | Ι                                     |
| Toluene                             | 108883         | —                                                                    | 300                                               | C,G,I                                   | 37,000                                          | C,D,G,I                               |
| Vanadium                            | 7440622        | _                                                                    | —                                                 |                                         | 30                                              | D,I                                   |
| Xylenes<br>Notes:                   | 1330207        | —                                                                    | 700                                               | D,G,I                                   | 22,000                                          | D,G,I                                 |

Table 5-1. Toxicity Factors Used in the HRA

Notes:

<sup>a</sup> For diesel internal combustion engines, only DPM emissions were evaluated for cancer risk and chronic hazard indices, because DPM is a surrogate for the combined health effects associated with exposure to diesel exhaust emissions. For all other emission sources, emissions of the 28 other toxic air contaminants were evaluated for cancer risk and chronic hazard indices. For the acute hazard indices, DPM was not evaluated; rather, emissions of the 28 other toxic air contaminants were evaluated for all emission sources (including diesel internal combustion engines).

<sup>b</sup> Arsenic, cadmium, hexavalent chromium, lead, mercury, and nickel were also evaluated for noninhalation exposure pathways. For arsenic, the cancer risk oral slope factor is 1.5 (mg/kg/day)<sup>-1</sup>, and the noncancer chronic oral REL is 0.0000035 mg/kg/day. For cadmium, the noncancer chronic oral REL is 0.0005 mg/kg/day. For hexavalent chromium, the cancer risk oral slope factor is 0.5 (mg/kg/day)<sup>-1</sup>, and the noncancer chronic oral REL is 0.02 mg/kg/day. For lead, the cancer risk oral slope factor is 0.0085 (mg/kg/day)<sup>-1</sup>. For mercury, the noncancer chronic oral REL is 0.00016 mg/kg/day. For nickel, the noncancer chronic oral REL is 0.011 mg/kg/day. The deposition rate was assumed to be the HARP default of 0.02 meters per second (controlled sources). <sup>c</sup> Key to non-cancer acute and chronic exposure target organs:

A. Alimentary Tract

| Β. | Cardiovascular | System |
|----|----------------|--------|

- C. Reproductive/Developmental System
- D. Eye
- E. Hematologic System
- F. Immune System
- G. Nervous System

- I. Respiratory System J. Skin K. Bone
- L. Endocrine System M. Kidney

### 5.2 Mortality and Morbidity

The LAHD has previously included analyses of PM-related mortality in the TraPac, China Shipping, and San Pedro Waterfront EIRs. The latter two documents utilized a methodology published by CARB (2006b), which was primarily developed for large geographic areas such as air basins or the entire state. In 2008, CARB noted that the methods for applying calculations of mortality to a project-level scale were not fully developed, and that such applications should include explicit statements regarding the uncertainties and limitations. Notwithstanding these uncertainties, the LAHD has received requests from individuals, environmental groups, the SCAQMD, OEHHA, and the CARB to include separate quantitative assessments of project-related PM-attributable mortality as well as morbidity in their CEQA analyses.

In response to these requests LAHD developed a methodology to calculate mortality and morbidity from project emissions (LAHD 2011b), which generally follows the approach used by CARB to estimate state-wide health impacts from ports and goods movement in California (CARB 2006a and CARB 2006b), incorporating CARB's methodology for mortality (CARB 2010). In the 2006 analysis, CARB focused on PM and ozone because these are the criteria pollutants for which sufficient evidence of mortality and morbidity effects exists. Modeling changes in ozone concentrations usually requires information on emissions from all sources within a region (for example, the SCAB), and is therefore not considered appropriate for project-level analyses. Therefore, the methodology for project-level studies conducted for LAHD CEQA documents focuses on the health effects associated with changes in PM concentrations. Focusing on PM is also consistent with CARB studies of mortality and morbidity impacts from California ports (CARB 2006a, CARB 2006b, and CARB 2010).

The SCAQMD's localized significance threshold for a 24-hour  $PM_{2.5}$  concentration is 2.5 µg/m<sup>3</sup> for operational impacts (SCAQMD 2011b). This value is only 7 percent of the 24-hour NAAQS and 21 percent of the annual CAAQS (there is no 24-hour CAAQS for  $PM_{2.5}$ ). This value is based on CARB guidance and epidemiological studies showing significant toxicity (resulting in mortality and morbidity) related to exposure to fine particles. Because mortality and morbidity studies represent major inputs used by CARB and USEPA to set CAAQS and NAAQS, project-level mortality and morbidity is presented in LAHD CEQA documents as a further elaboration of local PM impacts which are already addressed. Therefore, mortality and morbidity is quantified only if a  $PM_{2.5}$  concentration significance finding is identified as part of the air quality impact analysis of project operation.

If dispersion modeling of ambient air quality concentrations during proposed Project or alternatives operation (Impact AQ-4) identifies a significant impact for 24-hour PM<sub>2.5</sub> mortality and morbidity would be quantified per the following methodology:

• Mortality is calculated using the relative risk factor of a 10% increase in premature deaths per year (mortality rate) per 10  $\mu$ g/m<sup>3</sup> increase in PM<sub>2.5</sub> concentration (CARB 2008). Morbidity calculations will follow the general methodology and available concentration-response data described by CARB (CARB 2006b).

- Morbidity endpoints that are calculated on an annual basis will be based on project-specific incremental annual PM<sub>2.5</sub> concentrations (e.g., project minus Baseline). Morbidity endpoints that require estimates of daily impacts will be based on daily average PM<sub>2.5</sub> concentrations. The specific health effects endpoints evaluated include:
  - Hospital admissions for chronic obstructive pulmonary disease;
  - Hospital admissions for pneumonia;
  - Hospital admissions for cardiovascular disease;
  - Acute bronchitis;
  - Hospital admissions for asthma;
  - Emergency Room visits for asthma;
  - Asthma attacks;
  - Lower respiratory symptoms;
  - Work loss days; and
  - Minor restricted activity days.

To address mortality and morbidity over the multiple years of a project's lease, the annual incidence for each endpoint will be summed to provide an estimate of the aggregate effects attributable to a project's incremental PM emissions.

Since the adoption of the LAHD methodology for evaluating morbidity and mortality, CARB has updated its approach to estimating premature death associated with exposure to fine particulate matter (CARB 2010). In the updated methodology, CARB relies on the current methods outlined by USEPA (USEPA 2010) in Quantitative Health Risk Assessment for Particulate Matter, from which CARB integrated several key factors. Three key elements of this updated approach include: a) limiting the evaluation to cardiovascular disease-related mortality, b) adoption of an annual average  $PM_{2.5}$  threshold concentration of 5.8 µg/m<sup>3</sup> ("CARB PM<sub>2.5</sub> threshold") for quantifying mortality, and c) revision of the coefficient used to relate mortality to changes in  $PM_{2.5}$  concentrations.

### 5.3 Cancer Burden

Cancer burden is an estimate of the expected number of additional cancer cases in a population exposed to project- or alternative-generated TAC emissions. Whereas cancer risk represents the probability of an individual developing cancer, cancer burden estimates the number of individuals that could be expected to contract cancer. The cancer burden is calculated by multiplying the individual lifetime cancer risk increment by the population exposed to that level of incremental risk, calculated at the census tract or block level. The exposed population is defined as the number of persons within a facility's zone of impact, which is defined by the LAHD as the area within the facility's one in a million cancer risk isopleth. Consistent with this definition, cancer burden is calculated only if the proposed Project or alternative is associated with cancer risk increments of one in a million or above.

## 5.4 Exposure Scenarios for Individual Lifetime Cancer Risk

For the cancer risk evaluation, the frequency and duration of exposure to TACs are assumed to be directly proportional to the risk. Therefore, this HRA used specific exposure assumptions for each receptor type, as described below.

**Residential and Sensitive Receptors.** Cancer risks for residential and sensitive receptors were estimated using the breathing rates described in the CARB Recommended Interim Risk Management Policy for Inhalation-Based Residential Cancer Risk (CARB 2004). The HRA determined residential and sensitive receptor cancer risks by using a breathing rate of 302 liters per kilogram day (corresponding to an 80<sup>th</sup> percentile value) and an exposure duration of 24 hours per day, 350 days per year over 70 years.

**Occupational Impacts.** Workers generally do not spend as much time within the region of a project as do residents. The SCAQMD, therefore, allows an exposure adjustment for workers (SCAQMD 2005). Lifetime occupational exposure is based on a worker presence of 8 hours per day, 245 days per year for 40 years (OEHHA 2003). The breathing rate for workers is equal to 447 L/kg-day, which equates to 149 L/kg-day over an 8-hour workday (OEHHA 2003).

**Student Impacts.** SCAQMD's policy is to evaluate student cancer risk based upon a full 70 years of exposure. However, students actually spend a far more limited portion of their lives at a given school than 70 years. Accordingly, student exposures were calculated based on a student presence of 6 hours per day, 180 days per year for 6 years. The breathing rate of children is equal to 581 L/kg-day (OEHHA 2003).

**Recreational User Impacts.** Exposures for recreational users were estimated based on an exposure frequency of 2 hours per day, 350 days per year, and an exposure duration of 70 years. The breathing rate of a person engaged in recreational activities is assumed to be a "heavy activity" rate equal to 1,097 L/kg-day, which was obtained from the USEPA Exposure Factors Handbook (USEPA 1997).

Table 5-2 summarizes the primary exposure assumptions used to calculate individual lifetime cancer risk by receptor type.

| Deconton Trino | Exposure F  | requency    | <b>Exposure Duration</b> | <b>Breathing Rate</b> |
|----------------|-------------|-------------|--------------------------|-----------------------|
| Receptor Type  | (Hours/Day) | (Days/Year) | (Years)                  | (L/kg-day)            |
| Residential    | 24          | 350         | 70                       | 302                   |
| Occupational   | 8           | 245         | 40                       | 447                   |
| Sensitive      | 24          | 350         | 70                       | 302                   |
| Student        | 6           | 180         | 6                        | 581                   |
| Recreational   | 2           | 350         | 70                       | 1,097                 |

#### Table 5-2. Exposure Assumptions for Individual Lifetime Cancer Risk

Notes:

a) The residential breathing rate of 302 L/kg BW-day represents the 80th percentile breathing rate. For informational purposes, residential cancer risks were also calculated for a 95th percentile ("high end") breathing rate of 393 L/kg BW-day (OEHHA 2003).

b) The occupational exposure frequency of 245 days/year represents 5 days/week, 49 weeks/year. The occupational breathing rate of 447 L/kg BW-day equates to 149 L/kg BW-day over an 8-hour work day (OEHHA 2003).c) The student breathing rate of 581 L/kg BW-day represents the high end child breathing rate (OEHHA 2003).

Berths 212-214 (YTI) Container Terminal Improvements

| Decentor Type                                                                                                  | Exposure Fi                              | requency               | <b>Exposure Duration</b>  | <b>Breathing Rate</b> |  |  |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------|---------------------------|-----------------------|--|--|--|
| Receptor Type                                                                                                  | (Hours/Day) (Days/Year) (Years)          |                        | (Years)                   | (L/kg-day)            |  |  |  |
| d) The recreational breathing rate of 1,097 L/kg BW-day represents a "heavy activity" breathing rate, which is |                                          |                        |                           |                       |  |  |  |
| derived from a breathir                                                                                        | ng rate of 3.2 m <sup>3</sup> /hr (and a | assuming a 70-kg adu   | lt) as reported in the US | EPA Exposure Factors  |  |  |  |
| Handbook (USEPA 1997). This recreational breathing rate is conservative because it assumes that an individual  |                                          |                        |                           |                       |  |  |  |
| could sustain the maxim                                                                                        | num hourly breathing rat                 | te for 2 consecutive h | ours.                     |                       |  |  |  |

# 6.0 Significance Criteria for Project Health Risks

The LAHD has adopted the significance threshold of 10 in a million as being an acceptable level of cancer risk increment for receptors. Based on this threshold, a project would produce less than significant cancer risk impacts if the maximum incremental cancer risk due to the project is less than 10 in 1 million ( $10 \times 10^{-6}$ ). The LAHD has also adopted the air quality significance threshold for cancer burden of 0.5 excess cancer cases in areas with project-attributable cancer risk above one in a million ( $1 \times 10^{-6}$ ) (SCAQMD 2011b). In addition, the LAHD has adopted the significance threshold of 1.0 for chronic and acute non-cancer hazard indices; a project would produce less than significant non-cancer impacts if the chronic and/or acute hazard index is less than 1.0 (SCAQMD 2011b).

For the determination of significance from a CEQA standpoint, this HRA determined the incremental change in health effects due to the proposed Project and alternatives by estimating the net change in impacts between each project/alternative scenario and NOP CEQA baseline and Future CEQA baseline conditions. These incremental health effects values were compared to the significance thresholds described above. If either increment (project minus NOP CEQA baseline, or project minus Future CEQA baseline) would exceed a significance threshold, the impact would be considered significant.

For the determination of significance from a NEPA standpoint, this HRA determined the incremental change in health effects due to the proposed Project and alternatives by estimating the net change in impacts between each project/alternative scenario and NEPA baseline condition. These incremental health effects values were compared to the significance thresholds described above.

# 7.0 Predicted Incremental Health Impacts

## 7.1 Proposed Project Incremental Impacts

The proposed Project, NOP CEQA Baseline, Future CEQA Baseline, and NEPA Baseline maximum estimated health risks are provided below, as well as the CEQA incremental impact and NEPA incremental impact. Incremental impacts are the proposed Project minus the appropriate baseline.

### 7.1.1 Unmitigated Impacts

#### 7.1.1.1 CEQA Incremental Impacts

Table 7-1 presents the maximum CEQA health impacts associated with the proposed Project without mitigation. The results for cancer risk include the maximum risk from the proposed Project alone (prior to subtracting baseline), the maximum risk from the NOP CEQA baseline, the maximum NOP CEQA cancer risk increment (Project minus NOP CEQA baseline), the maximum risk from the Future CEQA baseline, and the maximum Future CEQA cancer risk increment (Project minus For chronic and acute noncancer effects include the maximum hazard index from the proposed Project alone (prior to subtracting baseline), the maximum hazard index from the NOP CEQA baseline, and the maximum NOP CEQA hazard index increment (Project minus NOP CEQA baseline). The results for chronic and acute noncancer burden include the estimated number of additional cancer cases associated with the proposed Project relative to the NOP CEQA baseline (NOP CEQA increment) and the estimated number of additional cancer cases associated with the proposed Project relative to the Future CEQA baseline (Future CEQA baseline). The table shows the following:

- Cancer Risk
  - In relation to the NOP CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the occupational receptor. Cancer risk at the occupational receptor would exceed the significance threshold.

The maximum impacted occupational receptor would be located about 1,000 feet northeast of the YTI terminal truck out-gate, on industrial Port property, just north of the entry/exit road and TICTF storage tracks. Sources driving impacts at this receptor would be container trucks travelling in and out of the terminal.

 In relation to the Future CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the marina-based residential and occupational receptors. Cancer risk at the marina-based residential and occupational receptors would exceed the significance threshold.

The maximum impacted residential receptor would be at the marina liveaboards (locations where people live on boats) in the Cerritos Channel, near Anchorage Street, just west of the Henry Ford and Schuyler Heim bridges. Cancer risk at this receptor would be driven by locomotives traveling across and beyond the Henry Ford Bridge and drayage trucks driving across and beyond the Schuyler Heim Bridge.

The maximum impacted occupational receptor would be located about 1,000 feet northeast of the YTI terminal truck out-gate, on industrial Port property, just north of the entry/exit road and TICTF storage tracks.

Sources driving impacts at this receptor would be container trucks travelling in and out of the terminal.

Although live-aboard residents would be maximally impacted by the proposed Project, in general, these residents are not expected to stay in their locations for 70 years like traditional land-based residential populations considered under an HRA. Therefore, although residential cancer risk impact determinations were based on the maximum impacted receptors – in this case live-aboard residents – this analysis also identifies, for informational purposes, the impact at the maximum impacted land-side residential receptor.

- Cancer Burden
  - In relation to the NOP CEQA baseline, the cancer burden increment is predicted to be less than the significance threshold.
  - In relation to the Future CEQA baseline, the cancer burden increment is predicted to be less than the significance threshold.
- Chronic and Acute Impacts
  - Because chronic and acute hazard indices are based on annual and peak hour exposures instead of lifetime exposures like cancer risk, they are determined by comparing project-related impacts only to the NOP CEQA baseline, which is the baseline at the time of the NOP in 2012.
  - The maximum chronic hazard index is predicted to be less than significant for all receptor types.
  - The maximum acute hazard index is predicted to be less than significant for all receptor types.
- Particulates: Morbidity and Mortality
  - Operation of the proposed Project would result in a maximum off-site 24hour  $PM_{2.5}$  concentration increment that would not exceed the SCAQMD significance threshold of 2.5  $\mu$ g/m<sup>3</sup> (see EIR/EIS Section 3.2.4). Because the operational  $PM_{2.5}$  concentrations would be less than significant and would not exceed the Port's criterion for calculating morbidity and mortality attributable to PM, potential mortality and morbidity effects were not quantified for the proposed Project.

Table 7-2 shows the percent contribution to cancer risk for the NOP and Future CEQA increments for each modeled source group associated with residential and offsite occupational exposure. The NOP and Future CEQA increments would be less than 1 for non-cancer chronic and acute impacts and are therefore not presented in the table.

Figure 7-1 shows the locations of the maximally exposed individuals (MEIs) for cancer, chronic non-cancer, and acute non-cancer incremental impacts.

Figure 7-2 through Figure 7-5 show the cancer risk isopleths for the NOP CEQA baseline for residential and occupational receptors, and the Future CEQA baseline for residential and occupational receptors, respectively.

Figure 7-6 through Figure 7-11 show the unmitigated absolute proposed Project cancer risk for residential and occupational receptors, the unmitigated NOP CEQA cancer risk increment for residential and occupational receptors, and the unmitigated Future CEQA cancer risk increment for residential and occupational receptors.

|                 |               | Maximum Predicted Impact |                       |                                 |                  |                   |                      |  |
|-----------------|---------------|--------------------------|-----------------------|---------------------------------|------------------|-------------------|----------------------|--|
| Health          | Receptor      | Proposed                 | NOP CEQA              | NOP CEQA                        | Future CEQA      | Future CEQA       | Significance         |  |
| Impact          | Туре          | Project                  | Baseline              | Increment                       | Baseline         | Increment         | Threshold            |  |
|                 | Residential - | $23 \times 10-6$         | $26 \times 10-6$      | 5 × 10-6                        | 19 × 10-6        | 6 × 10-6          |                      |  |
|                 | on Land       | 23 in a million          | 26 in a million       | 5 in a million                  | 19 in a million  | 6 in a million    |                      |  |
|                 | Residential - | $37 \times 10-6$         | 85 	imes 10-6         | <0                              | $25 \times 10-6$ | 11 × 10-6         |                      |  |
|                 | in Marina     | 37 in a million          | 85 in a million       |                                 | 25 in a million  | 11 in a million   |                      |  |
|                 |               | $94 \times 10$ -6        | 75 	imes 10-6         | 19 × 10-6                       | 63 × 10-6        | 31 × 10-6         | 10 10                |  |
| Cancer          | Occupational  | 94 in a million          | 75 in a million       | 19 in a million                 | 63 in a million  | 31 in a million   | 10 × 10-6<br>10 in a |  |
| Risk            |               | 10 	imes 10-6            | $23 \times 10$ -6     | <0                              | $8 \times 10$ -6 | 3 × 10-6          | million              |  |
|                 | Sensitive     | 10 in a million          | 23 in a million       |                                 | 8 in a million   | 3 in a million    |                      |  |
|                 |               | 0.7 	imes 10-6           | 0.7 	imes 10-6        | 0.07 	imes 10-6                 | 0.7 	imes 10-6   | 0.07 	imes 10-6   |                      |  |
|                 | Student       | 0.7 in a million         | 0.7 in a million      | 0.07 in a million               | 0.7 in a million | 0.07 in a million |                      |  |
|                 |               | $17 \times 10$ -6        | $39 \times 10$ -6     | $2 \times 10-6$                 | $12 \times 10-6$ | $5 \times 10-6$   |                      |  |
|                 | Recreational  | 17 in a million          | 39 in a million       | 2 in a million                  | 12 in a million  | 5 in a million    |                      |  |
|                 |               | Proposed                 | NOP CEQA              |                                 |                  |                   |                      |  |
|                 |               | Project                  | Baseline <sup>3</sup> | NOP CEQA Increment <sup>3</sup> |                  |                   |                      |  |
|                 | Residential - | 0                        |                       |                                 |                  |                   |                      |  |
|                 | on Land       | 0.09                     | 0.1                   |                                 | <0               |                   |                      |  |
| Chronic         | Residential - |                          |                       |                                 |                  |                   | 1                    |  |
| Hazard<br>Index | in Marina     | 0.1                      | 0.2                   |                                 | <0               |                   | 1                    |  |
| maex            | Occupational  | 0.6                      | 0.4                   |                                 | 0.2              |                   |                      |  |
|                 | Sensitive     | 0.08                     | 0.1                   |                                 | <0               |                   |                      |  |
|                 | Student       | 0.08                     | 0.1                   |                                 | <0               |                   |                      |  |
|                 | Recreational  | 0.1                      | 0.2                   |                                 | 0.004            |                   |                      |  |
|                 | Residential - |                          |                       |                                 |                  |                   |                      |  |
|                 | on Land       | 0.5                      | 0.4                   |                                 | 0.1              |                   |                      |  |
| Acute           | Residential - |                          |                       |                                 |                  |                   |                      |  |
| Acute<br>Hazard | in Marina     | 0.7                      | 0.6                   |                                 | 0.3              |                   | 1                    |  |
| Index           | Occupational  | 1.1                      | 0.9                   |                                 | 0.6              |                   | 1                    |  |
|                 | Sensitive     | 0.5                      | 0.3                   |                                 | 0.1              |                   |                      |  |
|                 | Student       | 0.4                      | 0.3                   |                                 | 0.1              |                   |                      |  |
|                 | Recreational  | 0.7                      | 0.6                   |                                 | 0.3              |                   |                      |  |

| Table 7-1. Maximum Incremental CEQA Health Impacts Associated with the Proposed Project without |
|-------------------------------------------------------------------------------------------------|
| Mitigation                                                                                      |

Berths 212-214 (YTI) Container Terminal Improvements Project ICF00070.13

|                  |                  |                     | Maximum Predicted Impact |                                |                |               |                          |                           |
|------------------|------------------|---------------------|--------------------------|--------------------------------|----------------|---------------|--------------------------|---------------------------|
| Health<br>Impact | Receptor<br>Type | Proposed<br>Project | NOP CEQA<br>Baseline     | NOP CEQA<br>Increment          | Future<br>Base | CEQA<br>eline | Future CEQA<br>Increment | Significance<br>Threshold |
| Cancer           |                  |                     |                          | NOP CEQA Increment Future CEQA |                | iture CEQA    |                          |                           |
| Burden           |                  |                     |                          |                                |                |               | Increment                | 0.5                       |
| Duruen           |                  |                     |                          | 0.002                          |                |               | 0.20                     |                           |

#### Notes:

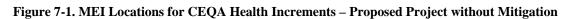
1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.

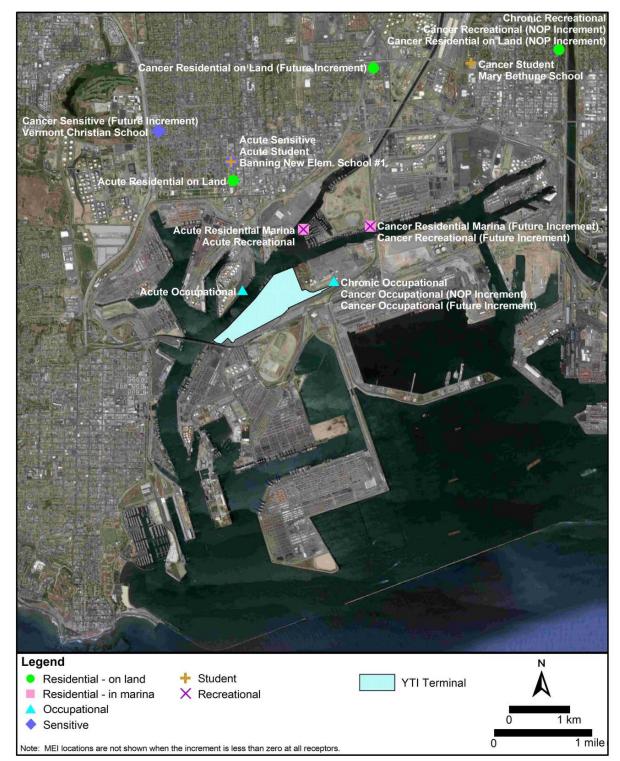
2. The NOP CEQA increment represents the Project minus NOP CEQA baseline. The Future CEQA increment represents the Project minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing project-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.

4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the Project and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.


6. Construction emissions were modeled with the operational emissions for the determination of health impacts.


7. An increment less than zero means the Project impact would be less than the baseline impact at all modeled receptors.

# Table 7-2. Source Contributions to Cancer Risk at the CEQA Increment MEIs – Proposed Project without Mitigation

| Cancer Risk MEI Receptor                                     |                                      |                                         |                                       |                                          |  |  |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|--|--|
| Source Category                                              | Residential NOP<br>CEQA<br>Increment | Residential<br>Future CEQA<br>Increment | Occupational<br>NOP CEQA<br>Increment | Occupational<br>Future CEQA<br>Increment |  |  |
|                                                              |                                      |                                         |                                       |                                          |  |  |
| Container Ships - Anchorage                                  | 0.2%                                 | 0.2%                                    | 0.0%                                  | 0.0%                                     |  |  |
| Container Ships - Hoteling                                   | 1.8%                                 | 3.9%                                    | 0.7%                                  | 0.7%                                     |  |  |
| Container Ships - Transit                                    | 3.2%                                 | 4.0%                                    | 0.6%                                  | 0.6%                                     |  |  |
| Container Ships - Total                                      | 5.1%                                 | 8.2%                                    | 1.4%                                  | 1.4%                                     |  |  |
| Assist Tugboats                                              | 0.2%                                 | 0.4%                                    | 0.1%                                  | 0.1%                                     |  |  |
| Locomotives                                                  | 2.0%                                 | 64.8%                                   | 13.3%                                 | 13.3%                                    |  |  |
| Container Trucks - Off Site                                  | 91.5%                                | 21.7%                                   | 80.1%                                 | 80.1%                                    |  |  |
| Container Trucks - On Site                                   | 0.3%                                 | 1.6%                                    | 2.8%                                  | 2.8%                                     |  |  |
| Container Trucks - Total                                     | 91.8%                                | 23.3%                                   | 82.9%                                 | 82.9%                                    |  |  |
| Cargo Handling Equipment                                     | 0.8%                                 | 2.7%                                    | 1.2%                                  | 1.2%                                     |  |  |
| Construction Activity                                        | 0.1%                                 | 0.2%                                    | 0.1%                                  | 0.1%                                     |  |  |
| Transport Refrigeration Units                                | 0.0%                                 | 0.1%                                    | 0.1%                                  | 0.1%                                     |  |  |
| Worker Trips                                                 | 0.1%                                 | 0.2%                                    | 0.9%                                  | 0.9%                                     |  |  |
| Worker Trips           Note: Contributions are from proposed |                                      |                                         | 0.9%                                  | 0.                                       |  |  |

Berths 212-214 (YTI) Container Terminal Improvements





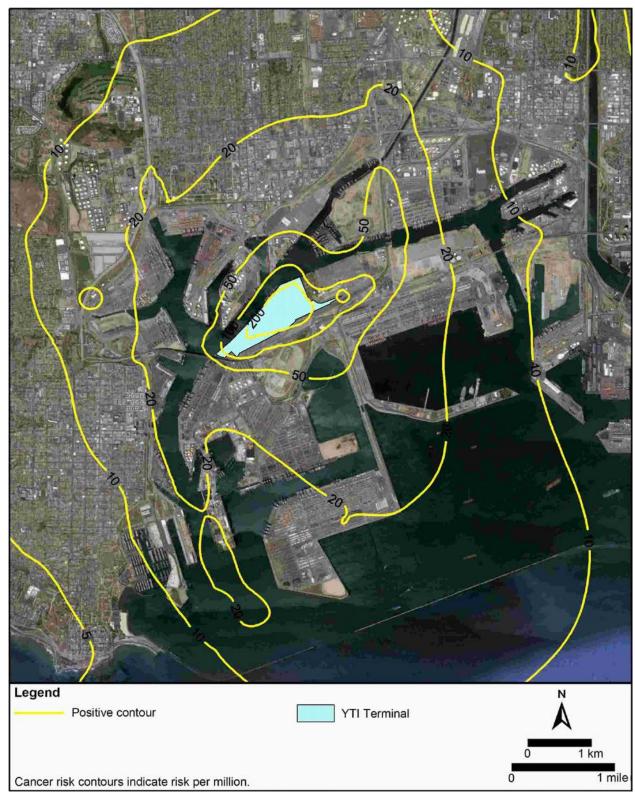



Figure 7-2. Isopleths of Residential Lifetime Cancer Risk: NOP CEQA Baseline

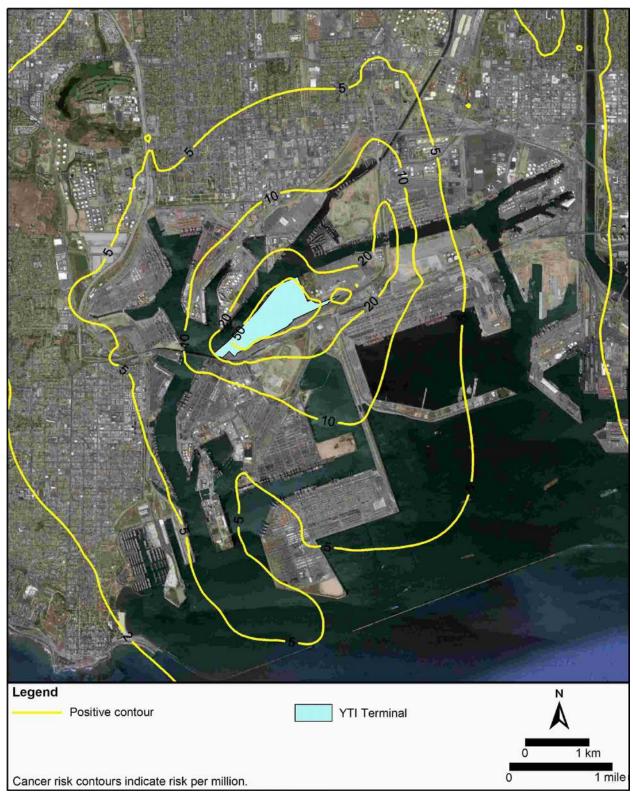



Figure 7-3. Isopleths of Occupational Lifetime Cancer Risk: NOP CEQA Baseline

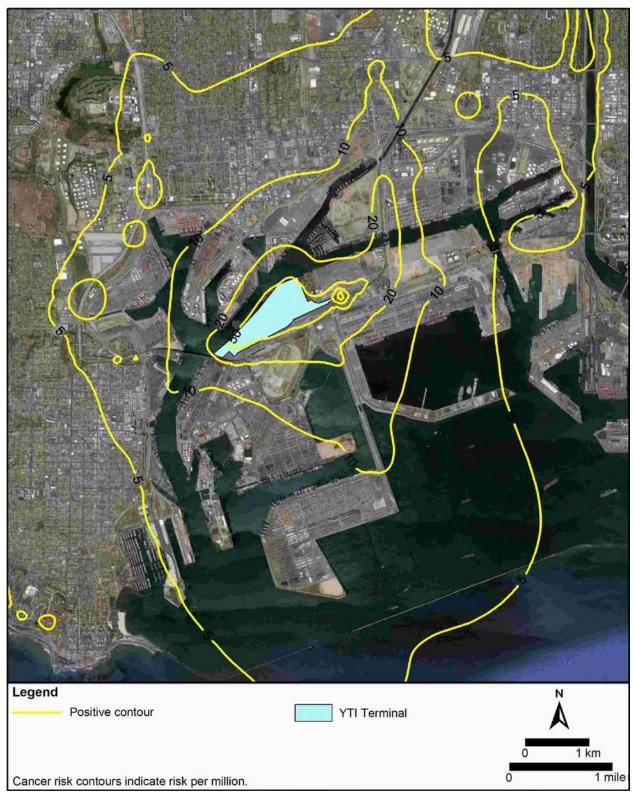



Figure 7-4. Isopleths of Residential Lifetime Cancer Risk: Future CEQA Baseline

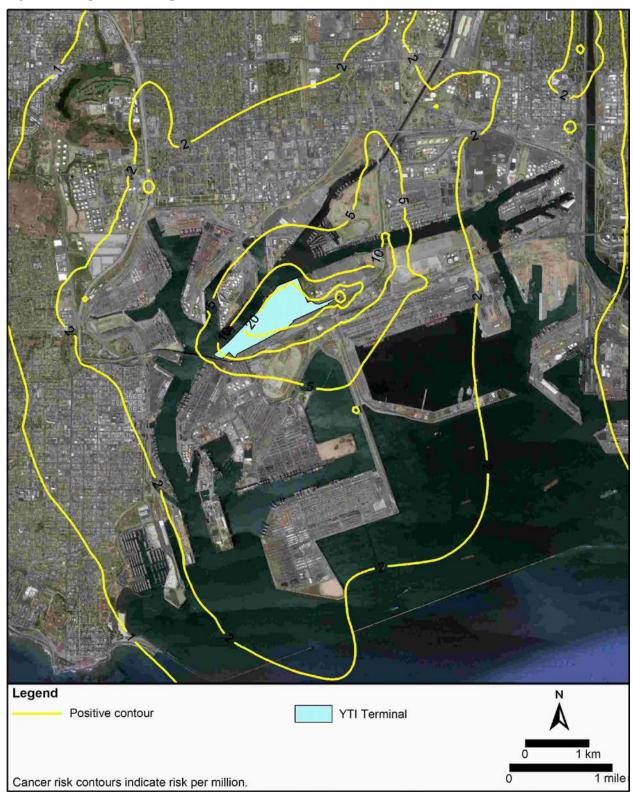



Figure 7-5. Isopleths of Occupational Lifetime Cancer Risk: Future CEQA Baseline

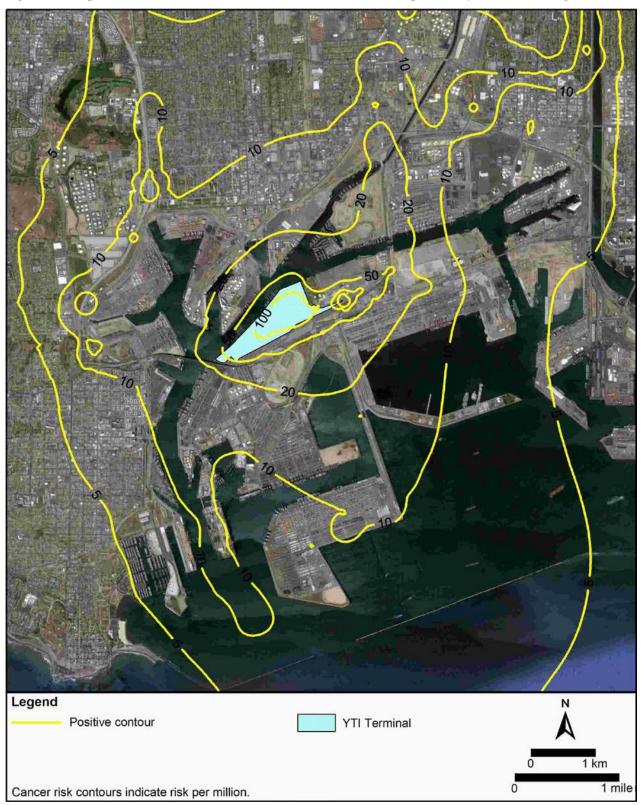



Figure 7-6. Isopleths of Residential Lifetime Cancer Risk: Absolute Proposed Project without Mitigation

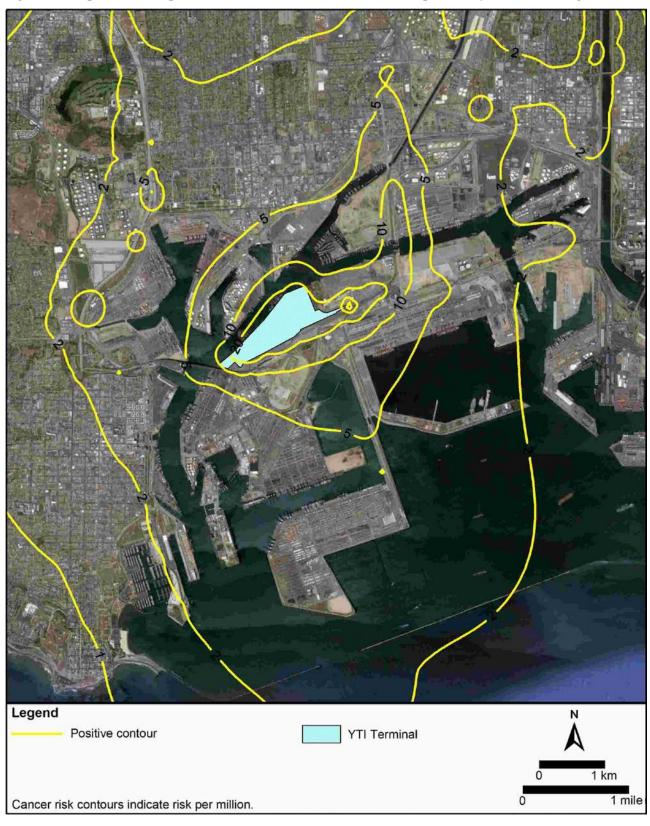



Figure 7-7. Isopleths of Occupational Lifetime Cancer Risk: Absolute Proposed Project without Mitigation

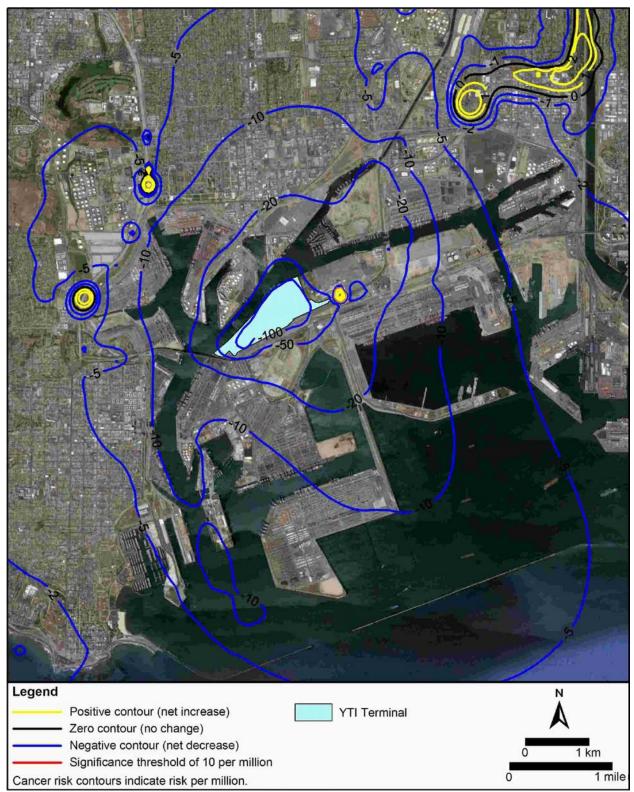



Figure 7-8. Isopleths of Residential Lifetime Cancer Risk: Proposed Project without Mitigation Minus NOP CEQA Baseline

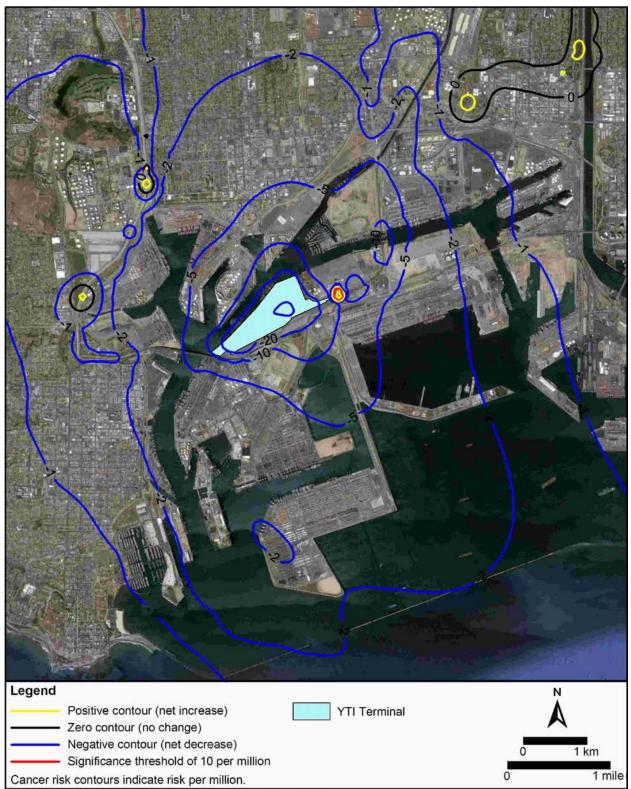



Figure 7-9. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project without Mitigation Minus NOP CEQA Baseline

Legend Ν Positive contour (net increase) **YTI** Terminal Significance threshold of 10 per million 1 km 0 1 mile 0 Cancer risk contours indicate risk per million.

Figure 7-10. Isopleths of Residential Lifetime Cancer Risk: Proposed Project without Mitigation Minus Future CEQA Baseline

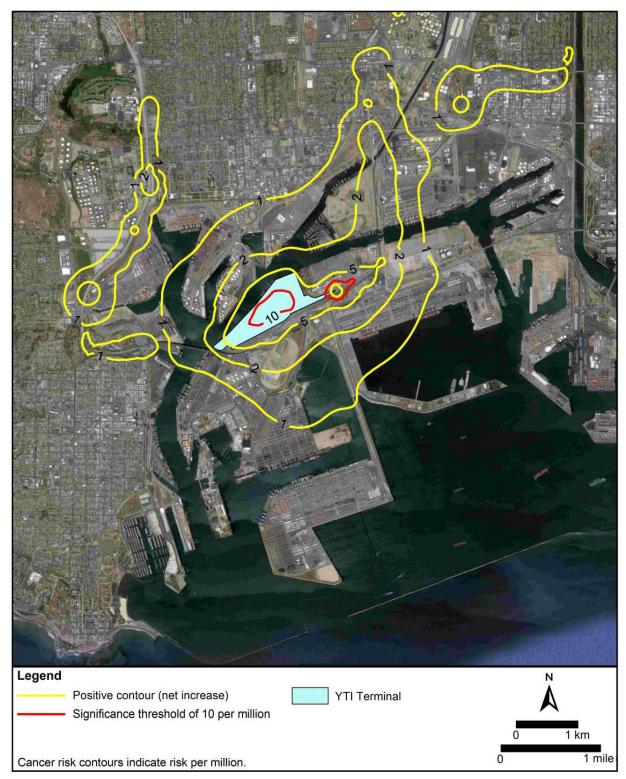



Figure 7-11. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project without Mitigation Minus Future CEQA Baseline

#### 7.1.1.2 NEPA Incremental Impacts

Table 7-3 presents the maximum NEPA health impacts associated with the proposed Project without mitigation. The results for cancer risk and noncancer effects include the maximum impact from the proposed Project alone (prior to subtracting baseline), the maximum impact from the NEPA baseline, and the maximum NEPA increment (Project minus NEPA baseline). The results for cancer burden include the estimated additional number of cancer cases associated with the proposed Project relative to the NEPA baseline (NEPA increment). The table shows the following:

- Cancer Risk The maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types.
- Cancer burden The cancer burden NEPA increment is predicted to be less than the significance threshold.
- The maximum chronic hazard index is predicted to be less than the significance threshold at all receptor types.
- The maximum acute hazard index is predicted to be less than the significance threshold at all receptor types.

A table showing the percent contribution to the NEPA increment is not included because all impacts under NEPA would be below significance thresholds.

Figure 7-12 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer incremental impacts.

Figure 7-13 and Figure 7-14 show the cancer risk isopleths for the NEPA baseline for residential and occupational receptors, respectively. Figure 7-15 and Figure 7-16 show the unmitigated NEPA increment for residential and occupational receptors, respectively.

|               |                      | Max               | Maximum Predicted Impact |                  |                   |  |
|---------------|----------------------|-------------------|--------------------------|------------------|-------------------|--|
|               |                      | Proposed          |                          |                  | Significance      |  |
| Health Impact | <b>Receptor Type</b> | Project           | NEPA Baseline            | NEPA Increment   | Threshold         |  |
|               | Residential -        | $23 \times 10$ -6 | 21 × 10-6                | 3 × 10-6         |                   |  |
|               | on Land              | 23 in a million   | 21 in a million          | 3 in a million   |                   |  |
|               | Residential -        | $37 \times 10-6$  | 33 × 10-6                | $4 \times 10-6$  |                   |  |
|               | in Marina            | 37 in a million   | 33 in a million          | 4 in a million   |                   |  |
|               |                      | $94 \times 10$ -6 | 85 × 10-6                | 9 × 10-6         |                   |  |
|               | Occupational         | 94 in a million   | 85 in a million          | 9 in a million   |                   |  |
|               |                      | 10×10-6           | 9 × 10-6                 | 1 × 10-6         |                   |  |
|               | Sensitive            | 10 in a million   | 9 in a million           | 1 in a million   |                   |  |
|               |                      | 0.7 × 10-6        | 0.5 × 10-6               | 0.2 × 10-6       |                   |  |
|               | Student              | 0.7 in a million  | 0.5 in a million         | 0.2 in a million | $10 \times 10$ -6 |  |
| Cancer Risk   | Recreational         | $17 \times 10-6$  | 15 × 10-6                | 2×10-6           | 10 in a million   |  |

 Table 7-3. Maximum Incremental NEPA Health Impacts Associated With the Proposed Project Without

 Mitigation

|                |                      | Ma              |                 |                |              |
|----------------|----------------------|-----------------|-----------------|----------------|--------------|
|                |                      | Proposed        |                 |                | Significance |
| Health Impact  | <b>Receptor Type</b> | Project         | NEPA Baseline   | NEPA Increment | Threshold    |
|                |                      | 17 in a million | 15 in a million | 2 in a million |              |
|                | Residential -        |                 |                 |                |              |
|                | on Land              | 0.09            | 0.08            | 0.007          |              |
|                | Residential -        |                 |                 |                |              |
|                | in Marina            | 0.1             | 0.1             | 0.004          |              |
|                | Occupational         | 0.6             | 0.5             | 0.2            |              |
|                | Sensitive            | 0.08            | 0.07            | 0.005          |              |
| Chronic Hazard | Student              | 0.08            | 0.07            | 0.006          |              |
| Index          | Recreational         | 0.1             | 0.1             | 0.01           | 1            |
|                | Residential -        |                 |                 |                |              |
|                | on Land              | 0.5             | 0.4             | 0.1            |              |
|                | Residential -        |                 |                 |                |              |
|                | in Marina            | 0.7             | 0.6             | 0.3            |              |
|                | Occupational         | 1.1             | 1.0             | 0.6            |              |
|                | Sensitive            | 0.5             | 0.4             | 0.1            |              |
| Acute Hazard   | Student              | 0.4             | 0.3             | 0.1            |              |
| Index          | Recreational         | 0.7             | 0.6             | 0.3            | 1            |
|                |                      |                 |                 |                |              |
| Cancer Burden  |                      |                 |                 | NEPA Increment | 0.5          |
|                |                      |                 |                 | 0.04           |              |

#### Notes:

1. The NEPA increment represents the Project minus NEPA baseline.

2. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

3. The displayed values for the Project and baseline impacts do not necessarily subtract to equal the displayed

NEPA increment because they may occur at different receptor locations.

4. Construction emissions were modeled with the operational emissions for the determination of health impacts.

5. An increment less than zero means the Project impact would be less than the baseline impact at all modeled receptors.

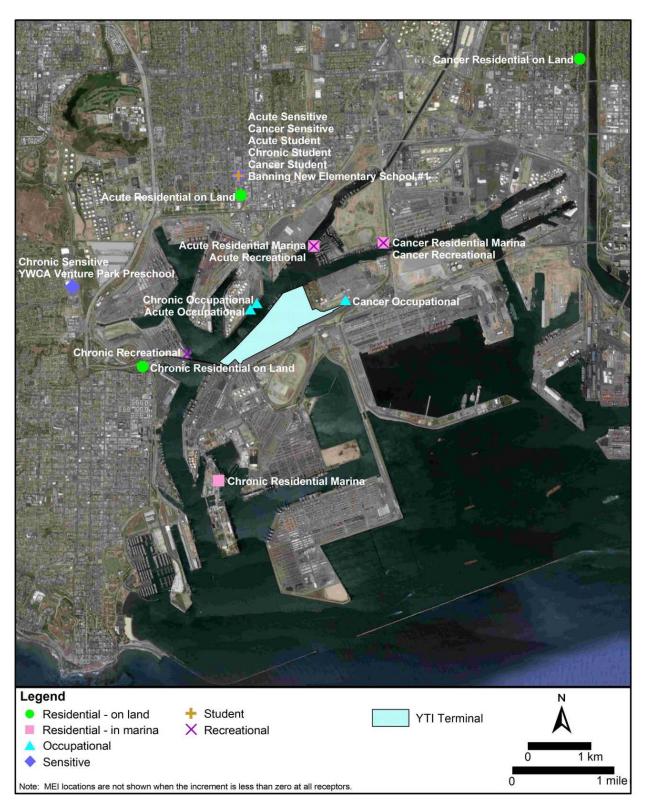



Figure 7-12. MEI Locations for NEPA Health Increments – Proposed Project without Mitigation

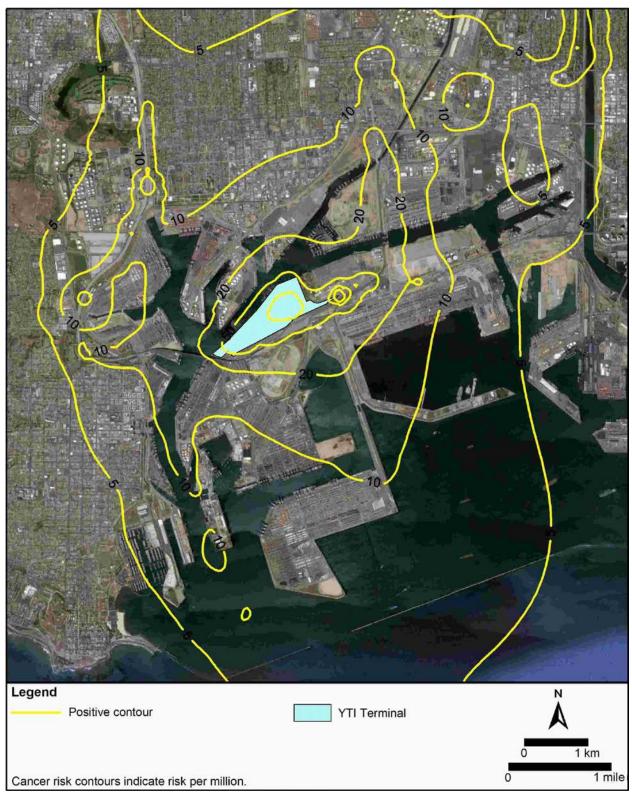



Figure 7-13. Isopleths of Residential Lifetime Cancer Risk: NEPA Baseline

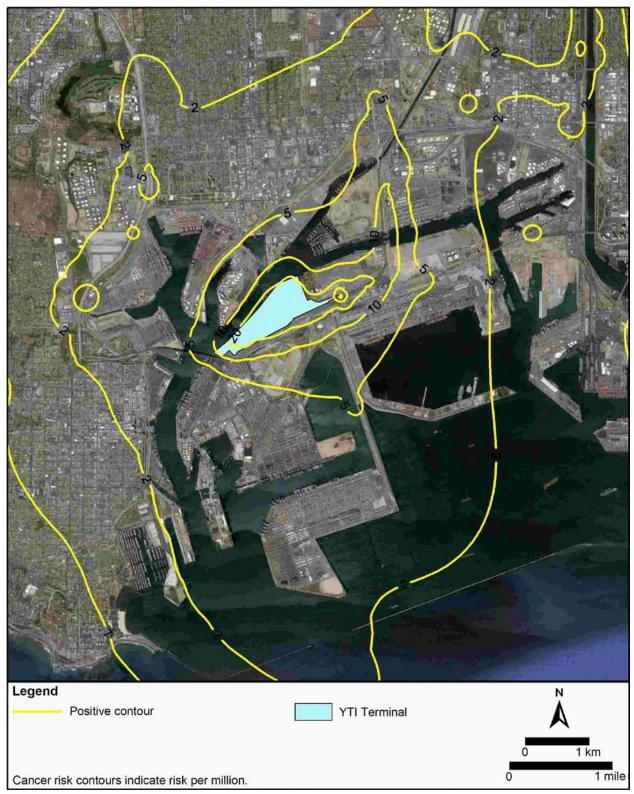



Figure 7-14. Isopleths of Occupational Lifetime Cancer Risk: NEPA Baseline

Legend Ν Positive contour (net increase) **YTI** Terminal Significance threshold of 10 per million 1 km 0 1 mile 0 Cancer risk contours indicate risk per million.

Figure 7-15. Isopleths of Residential Lifetime Cancer Risk: Proposed Project without Mitigation Minus NEPA Baseline

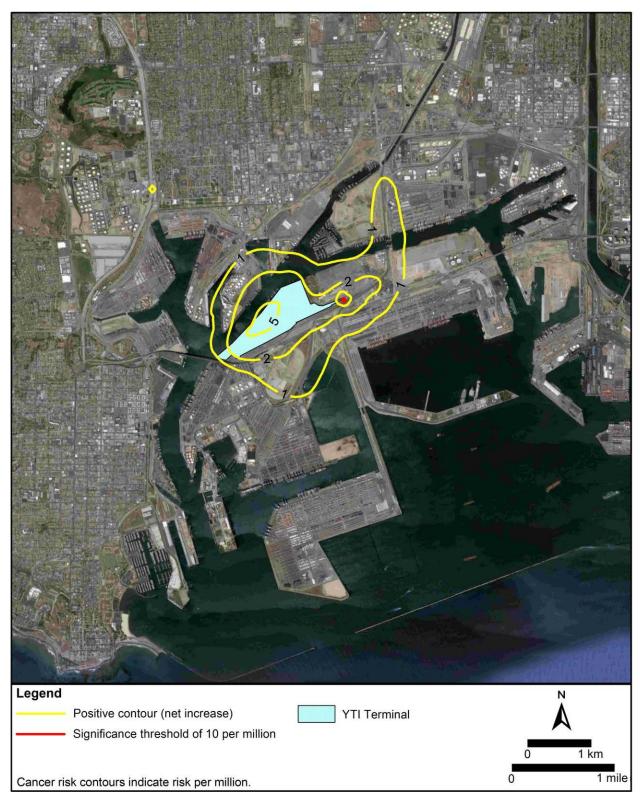



Figure 7-16. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project without Mitigation Minus NEPA Baseline

### 7.1.2 Mitigated Impacts

#### 7.1.2.1 CEQA Incremental Impacts

Table 7-4 presents the maximum CEQA health impacts associated with the mitigated proposed Project. The table shows that in relation to the NOP CEQA baseline, cancer risk would not change appreciably from the unmitigated scenario because cancer risk would be driven by truck exhaust, for which mitigation beyond the Clean Truck Program is not feasible. The table also shows that in relation to the Future CEQA baseline, cancer risk would not change appreciably from the unmitigated scenario because cancer risk would be driven by locomotive and truck exhaust, for which project-level mitigation not feasible. EIS/EIR Section 3.2.4 contains a detailed discussion of mitigation measures.

Table 7-5 shows the percent contribution to cancer risk for the NOP and Future CEQA increments for each modeled source group associated with residential and offsite occupational exposure. The NOP and Future CEQA increments would be less than 1 for non-cancer chronic and acute impacts and are therefore not presented in the table.

Figure 7-17 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer incremental impacts, following mitigation.

Figure 7-18 through Figure 7-23 show isopleths of the mitigated absolute proposed Project cancer risks for residential and occupational receptors, the mitigated NOP CEQA cancer risk increments for residential and occupational receptors, and the mitigated Future CEQA cancer risk increments for residential and occupational receptors, respectively.

|                   |                          | Maximum Predicted Impact     |                                   |                                 |                              |                            |                                 |
|-------------------|--------------------------|------------------------------|-----------------------------------|---------------------------------|------------------------------|----------------------------|---------------------------------|
| Health<br>Impact  | Receptor<br>Type         | Proposed<br>Project          | NOP CEQA<br>Baseline              | NOP CEQA<br>Increment           | Future CEQA<br>Baseline      | Future CEQA<br>Increment   | Significance<br>Threshold       |
|                   | Residential -<br>on Land | 23 × 10-6<br>23 in a million | 26 × 10-6<br>26 in a million      | 5 × 10-6<br>5 in a million      | 19 × 10-6<br>19 in a million | 6 × 10-6<br>6 in a million |                                 |
|                   | Residential -            | 36 × 10-6                    | 85 × 10-6                         | <0                              | 25 × 10-6                    | 11 × 10-6                  |                                 |
|                   | in Marina                | 36 in a million              | 85 in a million                   |                                 | 25 in a million              | 11 in a million            |                                 |
|                   |                          | $94 \times 10$ -6            | 75 	imes 10-6                     | 19 × 10-6                       | 63 × 10-6                    | 31 × 10-6                  | 10 10 6                         |
| Cancer            | Occupational             | 94 in a million              | 75 in a million                   | 19 in a million                 | 63 in a million              | 31 in a million            | 10 × 10-6<br>10 in a<br>million |
| Risk              |                          | 10 × 10-6                    | 23 × 10-6                         | <0                              | 8 × 10-6                     | 3 × 10-6                   |                                 |
|                   | Sensitive                | 10 in a million              | 23 in a million                   |                                 | 8 in a million               | 3 in a million             |                                 |
|                   |                          | 0.6 × 10-6                   | 0.7 × 10-6                        | 0.05 	imes 10-6                 | 0.7 × 10-6                   | $0.05 \times 10$ -6        |                                 |
|                   | Student                  | 0.6 in a million             | 0.7 in a million                  | 0.05 in a million               | 0.7 in a million             | 0.05 in a million          |                                 |
|                   |                          | 16 × 10-6                    | 39 × 10-6                         | 2×10-6                          | 12×10-6                      | 5 × 10-6                   |                                 |
|                   | Recreational             | 16 in a million              | 39 in a million                   | 2 in a million                  | 12 in a million              | 5 in a million             |                                 |
| Chronic<br>Hazard |                          | Proposed<br>Project          | NOP CEQA<br>Baseline <sup>3</sup> | NOP CEQA Increment <sup>3</sup> |                              |                            | 1                               |
| Index             | Residential -<br>on Land | 0.08                         | 0.1                               | <0                              |                              |                            |                                 |

Table 7-4. Maximum Incremental CEQA Health Impacts Associated with the Proposed Project with Mitigation

|                          |                            | Maximum Predicted Impact |                      |                       |                      |                          |                           |
|--------------------------|----------------------------|--------------------------|----------------------|-----------------------|----------------------|--------------------------|---------------------------|
| Health<br>Impact         | Receptor<br>Type           | Proposed<br>Project      | NOP CEQA<br>Baseline | NOP CEQA<br>Increment | Future CE<br>Baselin |                          | Significance<br>Threshold |
|                          | Residential -<br>in Marina | 0.1                      | 0.2                  |                       | <0                   |                          |                           |
|                          | Occupational               | 0.6                      | 0.4                  |                       | 0.2                  |                          |                           |
|                          | Sensitive                  | 0.07                     | 0.1                  |                       | <0                   |                          |                           |
|                          | Student                    | 0.07                     | 0.1                  |                       | <0                   |                          |                           |
|                          | Recreational               | 0.1                      | 0.2                  |                       |                      |                          |                           |
| Acute<br>Hazard<br>Index | Residential -<br>on Land   | 0.5                      | 0.4                  | 0.1                   |                      |                          |                           |
|                          | Residential -<br>in Marina | 0.6                      | 0.6                  | 0.2                   |                      |                          |                           |
|                          | Occupational               | 1.1                      | 0.9                  | 0.4                   |                      |                          | 1                         |
| muex                     | Sensitive                  | 0.4                      | 0.3                  | 0.1                   |                      |                          |                           |
|                          | Student                    | 0.3                      | 0.3                  | 0.1                   |                      |                          |                           |
|                          | Recreational               | 0.6                      | 0.6                  | 0.2                   |                      |                          |                           |
| Cancer                   |                            |                          |                      | NOP CEQA Inc          | rement               | Future CEQA<br>Increment | 0.5                       |
| Burden                   |                            |                          |                      | 0.002                 |                      | 0.13                     |                           |

#### Notes:

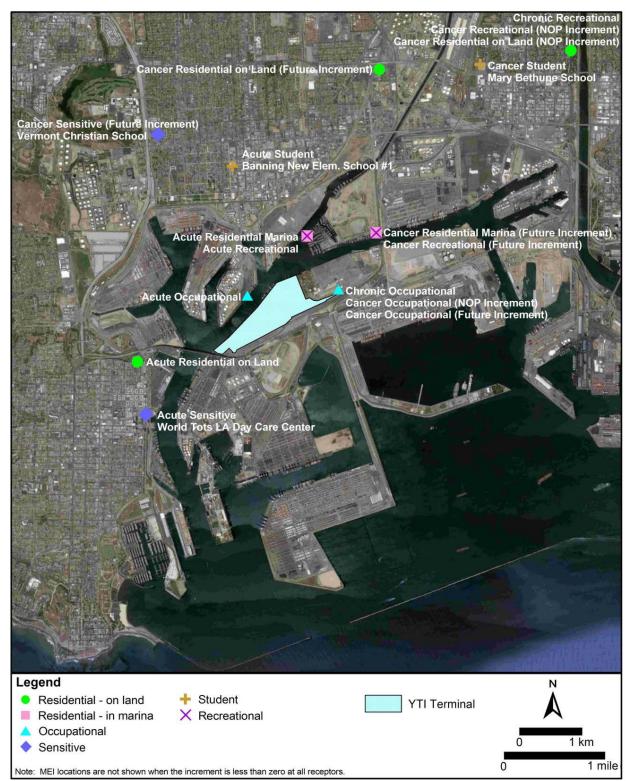
1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.

2. The NOP CEQA increment represents the Project minus NOP CEQA baseline. The Future CEQA increment represents the Project minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing project-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.

4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the Project and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.


6. Construction emissions were modeled with the operational emissions for the determination of health impacts.

7. An increment less than zero means the Project impact would be less than the baseline impact at all modeled receptors.

# Table 7-5. Source Contributions to Cancer Risk at the CEQA Increment MEIs – Proposed Project with Mitigation

|                             | Cancer Risk MEI Receptor             |                                         |                                       |                                          |  |  |
|-----------------------------|--------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|--|--|
| Source Category             | Residential NOP<br>CEQA<br>Increment | Residential<br>Future CEQA<br>Increment | Occupational<br>NOP CEQA<br>Increment | Occupational<br>Future CEQA<br>Increment |  |  |
| Container Ships - Anchorage | 0.2%                                 | 0.2%                                    | 0.0%                                  | 0.0%                                     |  |  |
| Container Ships - Hoteling  | 1.3%                                 | 2.8%                                    | 0.6%                                  | 0.6%                                     |  |  |
| Container Ships - Transit   | 3.1%                                 | 4.1%                                    | 0.6%                                  | 0.6%                                     |  |  |
| Container Ships - Total     | 4.6%                                 | 7.1%                                    | 1.2%                                  | 1.2%                                     |  |  |
| Assist Tugboats             | 0.2%                                 | 0.4%                                    | 0.1%                                  | 0.1%                                     |  |  |

|                                       | Cancer Risk MEI Receptor             |                                         |                                       |                                          |  |  |  |
|---------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|--|--|--|
| Source Category                       | Residential NOP<br>CEQA<br>Increment | Residential<br>Future CEQA<br>Increment | Occupational<br>NOP CEQA<br>Increment | Occupational<br>Future CEQA<br>Increment |  |  |  |
| Locomotives                           | 2.0%                                 | 65.7%                                   | 13.4%                                 | 13.4%                                    |  |  |  |
| Container Trucks - Off Site           | 92.0%                                | 22.0%                                   | 80.3%                                 | 80.3%                                    |  |  |  |
| Container Trucks - On Site            | 0.3%                                 | 1.6%                                    | 2.8%                                  | 2.8%                                     |  |  |  |
| Container Trucks - Total              | 92.3%                                | 23.6%                                   | 83.1%                                 | 83.1%                                    |  |  |  |
| Cargo Handling Equipment              | 0.8%                                 | 2.8%                                    | 1.2%                                  | 1.2%                                     |  |  |  |
| Construction Activity                 | 0.0%                                 | 0.0%                                    | 0.0%                                  | 0.0%                                     |  |  |  |
| Transport Refrigeration Units         | 0.0%                                 | 0.1%                                    | 0.1%                                  | 0.1%                                     |  |  |  |
| Worker Trips                          | 0.1%                                 | 0.3%                                    | 0.9%                                  | 0.9%                                     |  |  |  |
| Note: Contributions are from proposed | l Project sources prior to sub       | stracting baseline.                     |                                       |                                          |  |  |  |



#### Figure 7-17. MEI Locations for CEQA Health Increments – Proposed Project with Mitigation

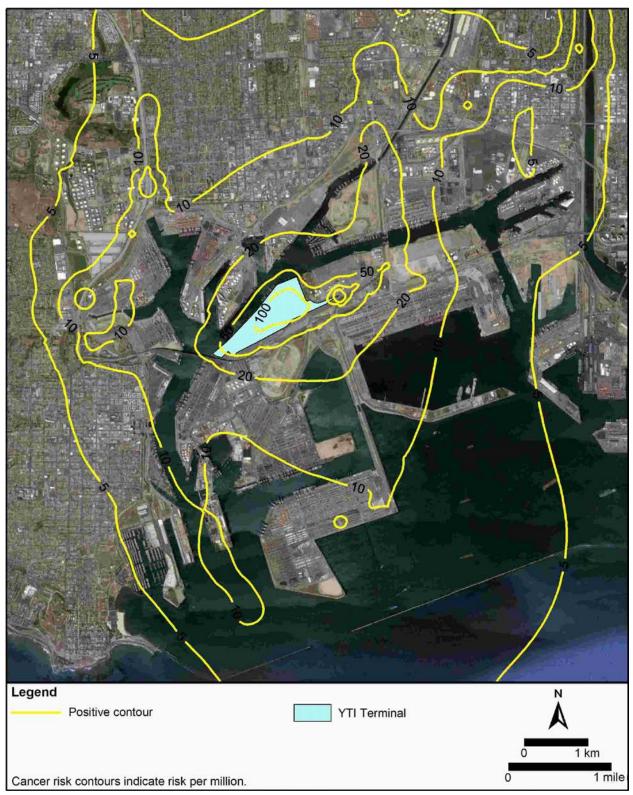



Figure 7-18. Isopleths of Residential Lifetime Cancer Risk: Absolute Proposed Project with Mitigation

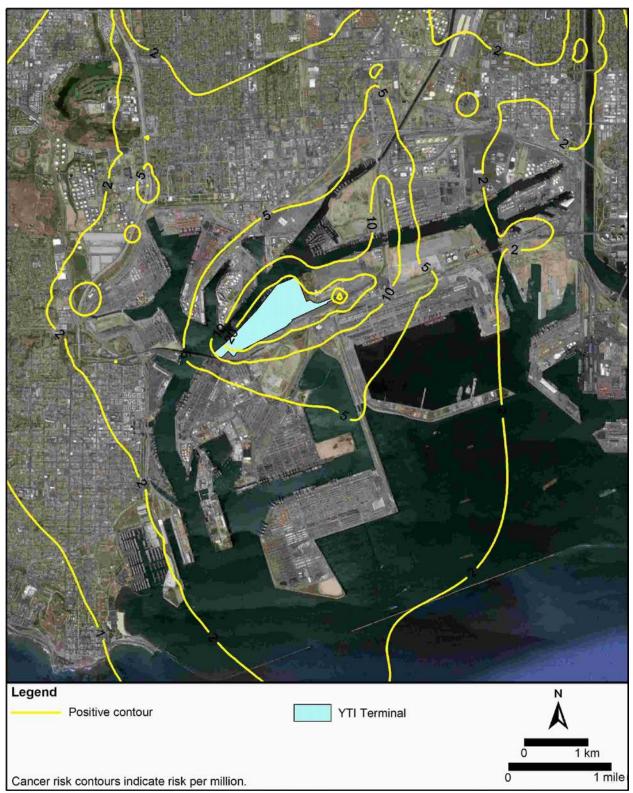



Figure 7-19. Isopleths of Occupational Lifetime Cancer Risk: Absolute Proposed Project with Mitigation

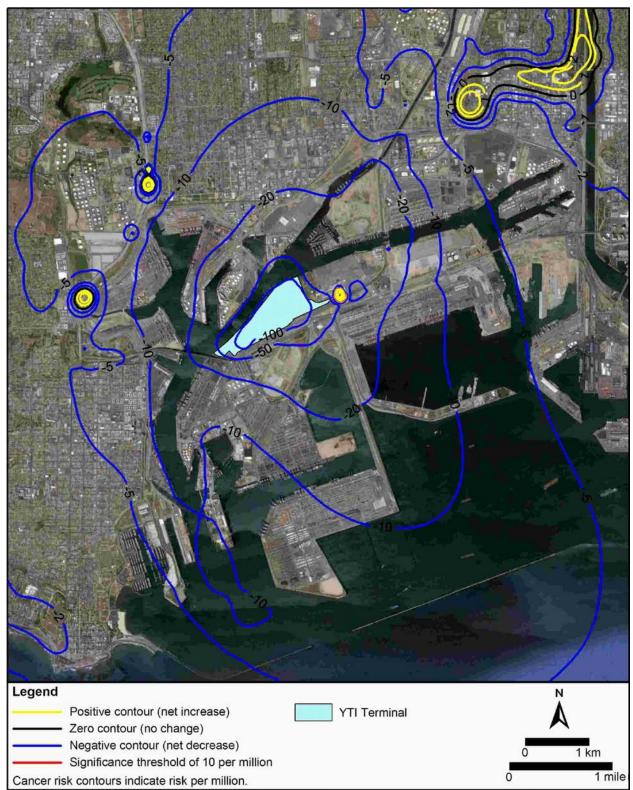



Figure 7-20. Isopleths of Residential Lifetime Cancer Risk: Proposed Project with Mitigation Minus NOP CEQA Baseline

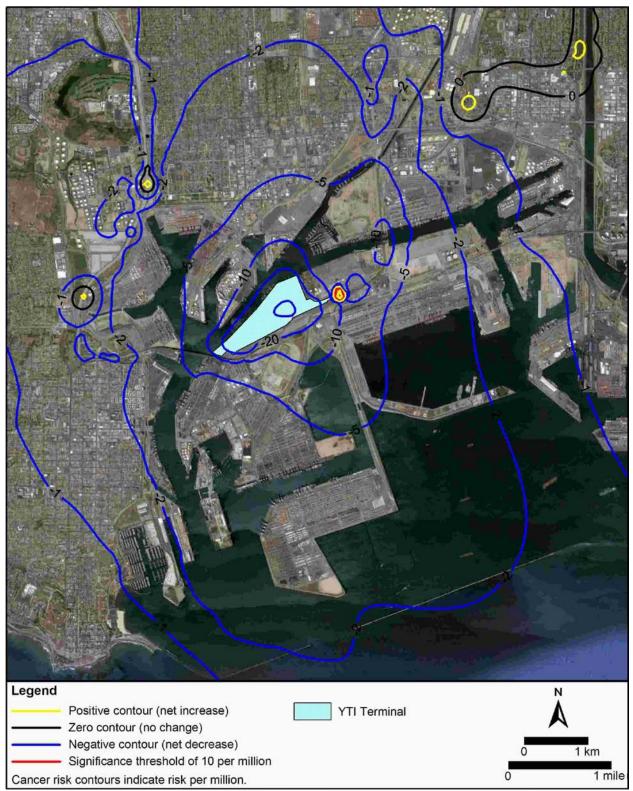



Figure 7-21. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project with Mitigation Minus NOP CEQA Baseline

10 Legend Ν Positive contour (net increase) YTI Terminal Significance threshold of 10 per million 1 km 0 1 mile 0 Cancer risk contours indicate risk per million.

Figure 7-22. Isopleths of Residential Lifetime Cancer Risk: Proposed Project with Mitigation Minus Future CEQA Baseline

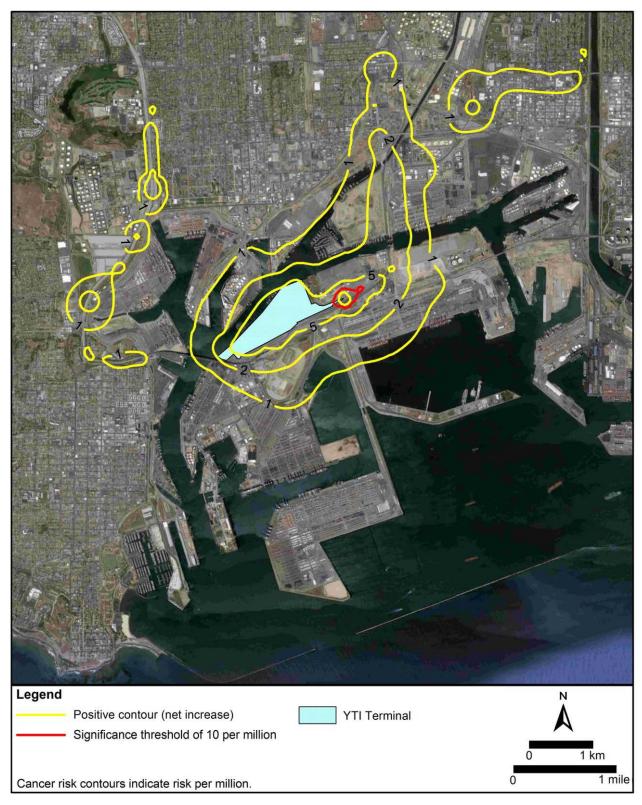



Figure 7-23. Isopleths of Occupational Lifetime Cancer Risk: Proposed Project with Mitigation Minus Future CEQA Baseline

## 7.1.2.2 NEPA Incremental Impacts

Tables showing NEPA impacts following mitigation are not presented; mitigation is not required since unmitigated impacts would be less than significance thresholds.

# 7.2 Alternatives

# 7.2.1 Unmitigated Impacts

## 7.2.1.1 Alternative 1

Table 7-6 presents the maximum CEQA health impacts associated with Alternative 1. The table shows the following:

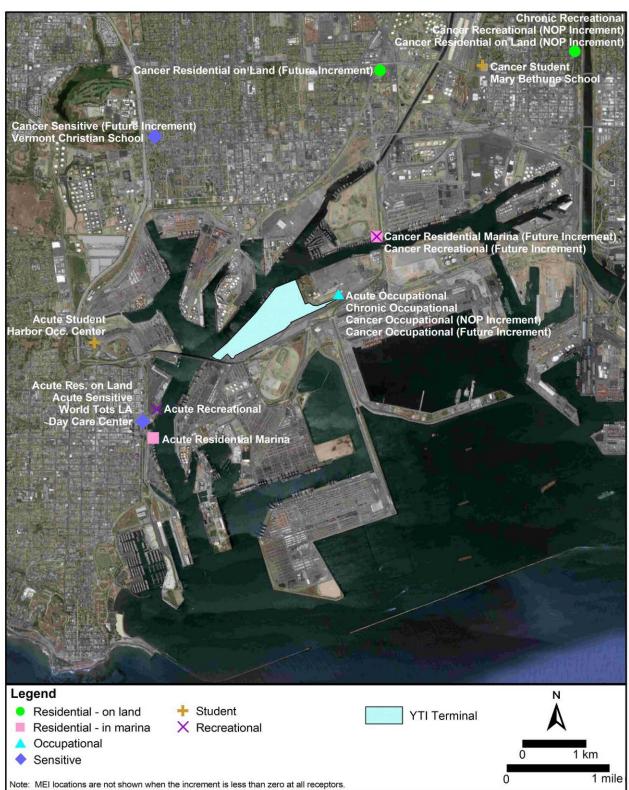
- Cancer Risk
  - In relation to the NOP CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the occupational receptor. Cancer risk at the occupational receptor would equal the significance threshold.
  - In relation to the Future CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the occupational receptor. Cancer risk at the occupational receptor would exceed the significance threshold.
- Cancer burden and non-cancer chronic and acute impacts would be below significance thresholds.
- Particulates: Morbidity and Mortality: Operation of Alternative 1 would result in a maximum off-site 24-hour  $PM_{2.5}$  concentration increment that would not exceed the SCAQMD significance threshold of 2.5 µg/m3 (see EIR/EIS Section 3.2.4). Because the operational  $PM_{2.5}$  concentrations would be less than significant and would not exceed the Port's criterion for calculating morbidity and mortality attributable to PM, potential mortality and morbidity effects were not quantified for this Alternative.
- NEPA does not require analysis of Alternative 1, the No Project Alternative.

Figure 7-24 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer incremental impacts for Alternative 1.

|        |               |                   | Maximum Predicted Impact                  |                 |                   |                  |                   |  |  |
|--------|---------------|-------------------|-------------------------------------------|-----------------|-------------------|------------------|-------------------|--|--|
| Health | Receptor      |                   | NOP CEQA NOP CEQA Future CEQA Future CEQA |                 |                   |                  |                   |  |  |
| Impact | Туре          | No Project        | Baseline                                  | Increment       | Baseline          | Increment        | Threshold         |  |  |
| Cancer | Residential - | $21 \times 10$ -6 | $26 \times 10$ -6                         | $2 \times 10-6$ | $19 \times 10$ -6 | $5 \times 10$ -6 | $10 \times 10$ -6 |  |  |
| Risk   | on Land       | 21 in a million   | 26 in a million                           | 2 in a million  | 19 in a million   | 5 in a million   | 10 in a           |  |  |

|                            |                            |                  | Max                   | imum Predicted I  | mpact            |                          |              |
|----------------------------|----------------------------|------------------|-----------------------|-------------------|------------------|--------------------------|--------------|
| Health                     | Receptor                   |                  | NOP CEQA              | NOP CEQA          | Future CEQA      | Future CEQA              | Significance |
| Impact                     | Туре                       | No Project       | Baseline              | Increment         | Baseline         | Increment                | Threshold    |
|                            | Residential -              | 33 × 10-6        | 85 × 10-6             | <0                | 25 × 10-6        | 7 × 10-6                 | million      |
|                            | in Marina                  | 33 in a million  | 85 in a million       |                   | 25 in a million  | 7 in a million           |              |
|                            |                            | 85 	imes 10-6    | $75 \times 10-6$      | 10 × 10-6         | 63 × 10-6        | $22 \times 10-6$         |              |
|                            | Occupational               | 85 in a million  | 75 in a million       | 10 in a million   | 63 in a million  | 22 in a million          |              |
|                            |                            | $9 \times 10$ -6 | $23 \times 10$ -6     | <0                | $8 \times 10$ -6 | $2 \times 10$ -6         |              |
|                            | Sensitive                  | 9 in a million   | 23 in a million       |                   | 8 in a million   | 2 in a million           |              |
|                            |                            | 0.5 	imes 10-6   | 0.7 	imes 10-6        | 0.03 	imes 10-6   | 0.7 	imes 10-6   | 0.03 	imes 10-6          |              |
|                            | Student                    | 0.5 in a million | 0.7 in a million      | 0.03 in a million | 0.7 in a million | 0.03 in a million        |              |
|                            |                            | 15 	imes 10-6    | $39 \times 10-6$      | $1 \times 10-6$   | $12 \times 10-6$ | 3 × 10-6                 |              |
|                            | Recreational               | 15 in a million  | 39 in a million       | 1 in a million    | 12 in a million  | 3 in a million           |              |
|                            |                            |                  | NOP CEQA              |                   |                  |                          |              |
|                            |                            | No Project       | Baseline <sup>3</sup> | NO                |                  |                          |              |
|                            | Residential -<br>on Land   | 0.08             | 0.1                   |                   |                  |                          |              |
| Chronic<br>Hazard<br>Index | Residential -<br>in Marina | 0.1              | 0.2                   |                   | 1                |                          |              |
| muex                       | Occupational               | 0.5              | 0.4                   |                   | 0.1              |                          |              |
|                            | Sensitive                  | 0.07             | 0.1                   |                   | <0               |                          |              |
|                            | Student                    | 0.07             | 0.1                   |                   | <0               |                          |              |
|                            | Recreational               | 0.1              | 0.2                   |                   | 0.00008          |                          |              |
|                            | Residential -<br>on Land   | 0.4              | 0.4                   |                   | 0.05             |                          |              |
| Acute                      | Residential -<br>in Marina | 0.6              | 0.6                   |                   | 0.06             |                          |              |
| Hazard<br>Index            | Occupational               | 0.9              | 0.9                   |                   | 0.08             |                          | 1            |
| Index                      | Sensitive                  | 0.4              | 0.3                   |                   | 0.05             |                          |              |
|                            | Student                    | 0.3              | 0.3                   | 0.03              |                  |                          | ]            |
|                            | Recreational               | 0.6              | 0.6                   | 0.06              |                  |                          | ]            |
| Cancer<br>Burden           |                            |                  |                       | NOP CEQA Inc      | rement           | Future CEQA<br>Increment | 0.5          |
| Durueil                    |                            |                  |                       | 0.0005            |                  | 0.07                     |              |

1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.


2. The NOP CEQA increment represents the Project minus NOP CEQA baseline. The Future CEQA increment represents the Project minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing project-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.

4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the No Project and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.

6. An increment less than zero means the No Project impact would be less than the baseline impact at all modeled receptors.



#### Figure 7-24. MEI Locations for CEQA Health Increments – Alternative 1, No Project Alternative

### 7.2.1.2 Alternative 2

Table 7-7 presents the maximum CEQA health impacts associated with Alternative 2 without mitigation. The table shows the following:

- Cancer Risk
  - In relation to the NOP CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the occupational receptor. Cancer risk at the occupational receptor would equal the significance threshold.
  - In relation to the Future CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the occupational receptor. Cancer risk at the occupational receptor would exceed the significance threshold.
- Cancer burden and non-cancer chronic and acute impacts would be below significance thresholds.
- Particulates: Morbidity and Mortality: Operation of Alternative 2 would result in a maximum off-site 24-hour  $PM_{2.5}$  concentration increment that would not exceed the SCAQMD significance threshold of 2.5 µg/m3 (see EIR/EIS Section 3.2.4). Because the operational  $PM_{2.5}$  concentrations would be less than significant and would not exceed the Port's criterion for calculating morbidity and mortality attributable to PM, potential mortality and morbidity effects were not quantified for this Alternative.
- The No Federal Action Alternative would have the same conditions as the NEPA baseline. Therefore, there would be no incremental difference between Alternative 2 and the NEPA baseline and Alternative 2 would result in no impacts under NEPA.

Figure 7-25 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer incremental impacts for Alternative 2.

|        |               |                  | Maximum Predicted Impact |                   |                  |                   |                      |  |
|--------|---------------|------------------|--------------------------|-------------------|------------------|-------------------|----------------------|--|
| Health | Receptor      |                  | NOP CEQA                 | NOP CEQA          | Future CEQA      | Future CEQA       | Significance         |  |
| Impact | Туре          | Alternative 2    | Baseline                 | Increment         | Baseline         | Increment         | Threshold            |  |
|        | Residential - | 21 × 10-6        | $26 \times 10-6$         | 2 × 10-6          | 19 × 10-6        | 5 × 10-6          |                      |  |
|        | on Land       | 21 in a million  | 26 in a million          | 2 in a million    | 19 in a million  | 5 in a million    |                      |  |
|        | Residential - | 33 × 10-6        | 85 	imes 10-6            | <0                | $25 \times 10-6$ | $7 \times 10-6$   |                      |  |
|        | in Marina     | 33 in a million  | 85 in a million          |                   | 25 in a million  | 7 in a million    | 10 10 6              |  |
| Cancer |               | 85 	imes 10-6    | $75 \times 10-6$         | 10 × 10-6         | 63 × 10-6        | $22 \times 10-6$  | 10 × 10-6<br>10 in a |  |
| Risk   | Occupational  | 85 in a million  | 75 in a million          | 10 in a million   | 63 in a million  | 22 in a million   | million              |  |
|        |               | 9 × 10-6         | 23 × 10-6                | <0                | 8 × 10-6         | 2 × 10-6          |                      |  |
|        | Sensitive     | 9 in a million   | 23 in a million          |                   | 8 in a million   | 2 in a million    |                      |  |
|        |               | 0.5 	imes 10-6   | 0.7 	imes 10-6           | 0.03 × 10-6       | 0.7 × 10-6       | 0.03 × 10-6       |                      |  |
|        | Student       | 0.5 in a million | 0.7 in a million         | 0.03 in a million | 0.7 in a million | 0.03 in a million |                      |  |

# Table 7-7. Maximum Incremental CEQA Health Impacts Associated with Alternative 2, No Federal Action Alternative without Mitigation

|                  |                            |                  | Max                               | imum Predicted I | mpact            |                         |              |
|------------------|----------------------------|------------------|-----------------------------------|------------------|------------------|-------------------------|--------------|
| Health           | Receptor                   |                  | NOP CEQA                          | NOP CEQA         | Future CEQA      | Future CEQA             | Significance |
| Impact           | Туре                       | Alternative 2    | Baseline                          | Increment        | Baseline         | Increment               | Threshold    |
|                  |                            | $15 \times 10-6$ | $39 \times 10-6$                  | $1 \times 10-6$  | $12 \times 10-6$ | 3 × 10-6                |              |
|                  | Recreational               | 15 in a million  | 39 in a million                   | 1 in a million   | 12 in a million  | 3 in a million          |              |
|                  |                            | Alternative 2    | NOP CEQA<br>Baseline <sup>3</sup> | NO               | P CEQA Increm    | ent <sup>3</sup>        |              |
| Chronic          | Residential -<br>on Land   | 0.08             | 0.1                               |                  | <0               |                         | -            |
| Hazard<br>Index  | Residential -<br>in Marina | 0.1              | 0.2                               | <0               |                  |                         | 1            |
|                  | Occupational               | 0.5              | 0.4                               |                  | 0.1              |                         |              |
|                  | Sensitive                  | 0.07             | 0.1                               |                  | <0               |                         |              |
|                  | Student                    | 0.07             | 0.1                               | <0               |                  |                         |              |
|                  | Recreational               | 0.1              | 0.2                               | 0.00009          |                  |                         |              |
|                  | Residential -<br>on Land   | 0.4              | 0.4                               |                  | 0.06             |                         |              |
| Acute            | Residential -<br>in Marina | 0.6              | 0.6                               |                  | 0.07             |                         |              |
| Hazard<br>Index  | Occupational               | 1.0              | 0.9                               |                  | 0.1              |                         | 1            |
| Index            | Sensitive                  | 0.4              | 0.3                               |                  | 0.06             |                         |              |
|                  | Student                    | 0.3              | 0.3                               | 0.04             |                  |                         | 1            |
|                  | Recreational               | 0.6              | 0.6                               | 0.08             |                  |                         |              |
| Cancer<br>Burden |                            |                  |                                   | NOP CEQA Inc     |                  | uture CEQA<br>Increment | 0.5          |
| Duruell          |                            |                  |                                   | 0.0005           |                  | 0.07                    |              |

1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.

2. The NOP CEQA increment represents the Alternative minus NOP CEQA baseline. The Future CEQA increment represents the Alternative minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing project-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.

4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the Alternative and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.

6. Construction emissions were modeled with the operational emissions for the determination of health impacts.

7. An increment less than zero means the Alternative impact would be less than the baseline impact at all modeled receptors.

Figure 7-25. MEI Locations for CEQA Health Increments – Alternative 2, No Federal Action Alternative without Mitigation



### 7.2.1.3 Alternative 3

Table 7-8 presents the maximum CEQA health impacts associated with Alternative 3 without mitigation. The table shows the following:

- Cancer Risk
  - In relation to the NOP CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the occupational receptor. Cancer risk at the occupational receptor would exceed the significance threshold.
  - In relation to the Future CEQA baseline, the maximum incremental cancer risk is predicted to be less than the significance threshold at all receptor types except the marina-based residential and the occupational receptors. The cancer risk increment at the marina-based residential and occupational receptors would exceed the significance threshold.
- Cancer burden and non-cancer chronic and acute impacts would be below significance thresholds.
- Particulates: Morbidity and Mortality: Operation of Alternative 3 would result in a maximum off-site 24-hour  $PM_{2.5}$  concentration increment that would not exceed the SCAQMD significance threshold of 2.5 µg/m3 (see EIR/EIS Section 3.2.4). Because the operational  $PM_{2.5}$  concentrations would be less than significant and would not exceed the Port's criterion for calculating morbidity and mortality attributable to PM, potential mortality and morbidity effects were not quantified for this Alternative.

Table 7-9 presents the presents the maximum NEPA health impacts associated with Alternative 3 without mitigation. The table shows that the cancer risk, cancer burden, and non-cancer chronic and acute impacts would be less than significance thresholds at all receptor types.

Figure 7-26 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer CEQA incremental impacts for Alternative 3. Figure 7-27 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer NEPA incremental impacts for Alternative 3.

 Table 7-8. Maximum Incremental CEQA Health Impacts Associated with Alternative 3, Reduced Project

 Alternative without Mitigation

|                  |                  |                   | Maximum Predicted Impact |                       |                         |                          |                           |  |
|------------------|------------------|-------------------|--------------------------|-----------------------|-------------------------|--------------------------|---------------------------|--|
| Health<br>Impact | Receptor<br>Type | Alternative 3     | NOP CEQA<br>Baseline     | NOP CEQA<br>Increment | Future CEQA<br>Baseline | Future CEQA<br>Increment | Significance<br>Threshold |  |
|                  | Residential -    | $23 \times 10$ -6 | $26 \times 10$ -6        | $5 \times 10-6$       | 19 × 10-6               | $6 \times 10$ -6         |                           |  |
|                  | on Land          | 23 in a million   | 26 in a million          | 5 in a million        | 19 in a million         | 6 in a million           | 10 10 6                   |  |
| Cancer           | Residential -    | $37 \times 10-6$  | 85 	imes 10-6            | <0                    | 25 × 10-6               | $11 \times 10-6$         | 10 × 10-6<br>10 in a      |  |
| Risk             | in Marina        | 37 in a million   | 85 in a million          |                       | 25 in a million         | 11 in a million          | million                   |  |
|                  |                  | 94 × 10-6         | 75 × 10-6                | 19 × 10-6             | 63 × 10-6               | 31 × 10-6                |                           |  |
|                  | Occupational     | 94 in a million   | 75 in a million          | 19 in a million       | 63 in a million         | 31 in a million          |                           |  |

|                  |                            |                  | Max                               | timum Predicted In    | mpact                   |                          |                           |
|------------------|----------------------------|------------------|-----------------------------------|-----------------------|-------------------------|--------------------------|---------------------------|
| Health<br>Impact | Receptor<br>Type           | Alternative 3    | NOP CEQA<br>Baseline              | NOP CEQA<br>Increment | Future CEQA<br>Baseline | Future CEQA<br>Increment | Significance<br>Threshold |
|                  |                            | $11 \times 10-6$ | 23 × 10-6                         | <0                    | 8 × 10-6                | 3 × 10-6                 |                           |
|                  | Sensitive                  | 11 in a million  | 23 in a million                   |                       | 8 in a million          | 3 in a million           |                           |
|                  |                            | 0.7 	imes 10-6   | 0.7 	imes 10-6                    | 0.07 	imes 10-6       | 0.7 	imes 10-6          | $0.07 \times 10$ -6      |                           |
|                  | Student                    | 0.7 in a million | 0.7 in a million                  | 0.07 in a million     | 0.7 in a million        | 0.07 in a million        |                           |
|                  |                            | $17 \times 10-6$ | 39 × 10-6                         | 2 × 10-6              | 12 × 10-6               | 5 × 10-6                 |                           |
|                  | Recreational               | 17 in a million  | 39 in a million                   | 2 in a million        | 12 in a million         | 5 in a million           |                           |
|                  |                            | Alternative 3    | NOP CEQA<br>Baseline <sup>3</sup> | NO                    | P CEQA Increm           | ent <sup>3</sup>         |                           |
| Chronic          | Residential -<br>on Land   | 0.09             | 0.1                               |                       | 1                       |                          |                           |
| Hazard<br>Index  | Residential -<br>in Marina | 0.1              | 0.2                               |                       |                         |                          |                           |
| maen             | Occupational               | 0.6              | 0.4                               |                       |                         |                          |                           |
|                  | Sensitive                  | 0.08             | 0.1                               |                       |                         |                          |                           |
|                  | Student                    | 0.08             | 0.1                               |                       | <0                      |                          |                           |
|                  | Recreational               | 0.1              | 0.2                               |                       | 0.005                   |                          |                           |
|                  | Residential -<br>on Land   | 0.6              | 0.4                               |                       | 0.2                     |                          |                           |
| Acute            | Residential -<br>in Marina | 0.6              | 0.6                               |                       | 0.2                     |                          |                           |
| Hazard<br>Index  | Occupational               | 1.1              | 0.9                               |                       | 0.6                     |                          | 1                         |
| muex             | Sensitive                  | 0.5              | 0.3                               |                       | 0.2                     |                          |                           |
|                  | Student                    | 0.4              | 0.3                               | 0.2                   |                         |                          |                           |
|                  | Recreational               | 0.6              | 0.6                               | 0.3                   |                         |                          |                           |
| Cancer<br>Burden |                            |                  |                                   | NOP CEQA Inc          |                         | uture CEQA<br>Increment  | 0.5                       |
| Buluell          |                            |                  |                                   | 0.002                 |                         | 0.23                     |                           |

1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.

2. The NOP CEQA increment represents the Alternative minus NOP CEQA baseline. The Future CEQA increment represents the Alternative minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing Alternative-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.

4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the Alternative and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.

6. Construction emissions were modeled with the operational emissions for the determination of health impacts.

7. An increment less than zero means the Alternative impact would be less than the baseline impact at all modeled receptors.

|                |                            | Ma                | ximum Predicted In | pact             |                           |
|----------------|----------------------------|-------------------|--------------------|------------------|---------------------------|
| Health Impact  | Receptor Type              | Alternative 3     | NEPA Baseline      | NEPA Increment   | Significance<br>Threshold |
|                | Residential -              | $23 \times 10$ -6 | 21 × 10-6          | 3 × 10-6         |                           |
|                | on Land                    | 23 in a million   | 21 in a million    | 3 in a million   |                           |
|                | Residential -              | $37 \times 10-6$  | 33 × 10-6          | $4 \times 10$ -6 |                           |
|                | in Marina                  | 37 in a million   | 33 in a million    | 4 in a million   |                           |
|                |                            | $94 \times 10$ -6 | 85 × 10-6          | 9 × 10-6         |                           |
| Cancer Risk    | Occupational               | 94 in a million   | 85 in a million    | 9 in a million   | $10 \times 10$ -6         |
| Cancer Kisk    |                            | $11 \times 10$ -6 | 9 × 10-6           | 1 × 10-6         | 10 in a million           |
|                | Sensitive                  | 11 in a million   | 9 in a million     | 1 in a million   |                           |
|                |                            | 0.7 	imes 10-6    | 0.5 × 10-6         | 0.1 × 10-6       |                           |
|                | Student                    | 0.7 in a million  | 0.5 in a million   | 0.1 in a million |                           |
|                |                            | $17 \times 10-6$  | 15 × 10-6          | $2 \times 10-6$  |                           |
|                | Recreational               | 17 in a million   | 15 in a million    | 2 in a million   |                           |
|                | Residential -<br>on Land   | 0.09              | 0.08               | 0.01             |                           |
| ~              | Residential -              | 0.1               | 0.1                | 0.008            |                           |
| Chronic Hazard | in Marina                  | 0.1               | 0.1                | 0.008            | 1                         |
| Index          | Occupational<br>Sensitive  |                   |                    | 0.2              |                           |
|                |                            | 0.08              | 0.07               |                  |                           |
|                | Student                    |                   |                    | 0.01             |                           |
|                | Recreational               | 0.1               | 0.1                | 0.02             |                           |
|                | Residential -<br>on Land   | 0.6               | 0.4                | 0.2              |                           |
| Acute Hazard   | Residential -<br>in Marina | 0.6               | 0.6                | 0.2              |                           |
| Index          | Occupational               | 1.1               | 1.0                | 0.5              | 1                         |
|                | Sensitive                  | 0.5               | 0.4                | 0.1              |                           |
|                | Student                    | 0.4               | 0.3                | 0.1              |                           |
|                | Recreational               | 0.6               | 0.6                | 0.2              |                           |
|                |                            |                   |                    |                  | 0.5                       |
| Cancer Burden  |                            |                   |                    | NEPA Increment   | 0.5                       |
|                |                            |                   |                    | 0.06             |                           |

 Table 7-9. Maximum Incremental NEPA Health Impacts Associated with Alternative 3, Reduced Project

 Alternative without Mitigation

1. The NEPA increment represents the Alternative minus NEPA baseline.

2. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

3. The displayed values for the Alternative and baseline impacts do not necessarily subtract to equal the displayed NEPA increment because they may occur at different receptor locations.

4. Construction emissions were modeled with the operational emissions for the determination of health impacts.

5. An increment less than zero means the Alternative impact would be less than the baseline impact at all modeled receptors.

Figure 7-26. MEI Locations for CEQA Health Increments – Alternative 3, Reduced Project Alternative without Mitigation

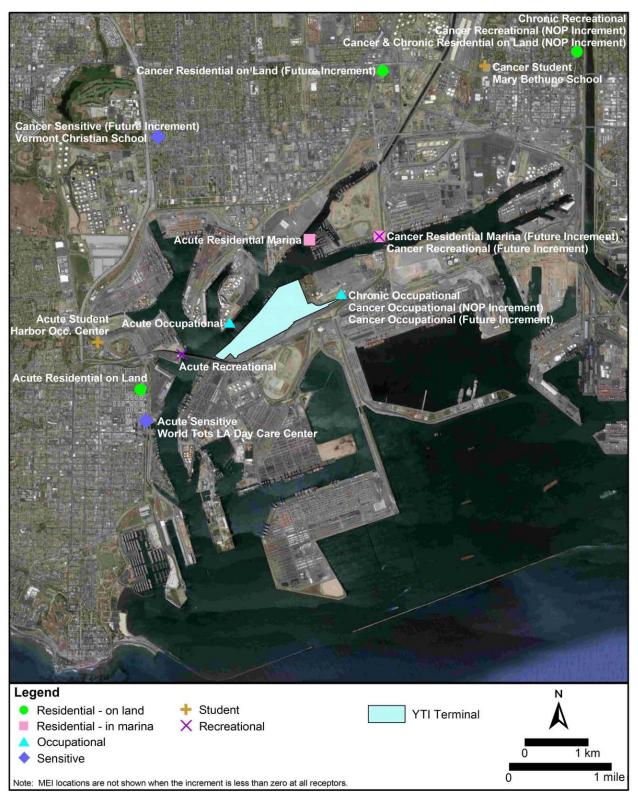
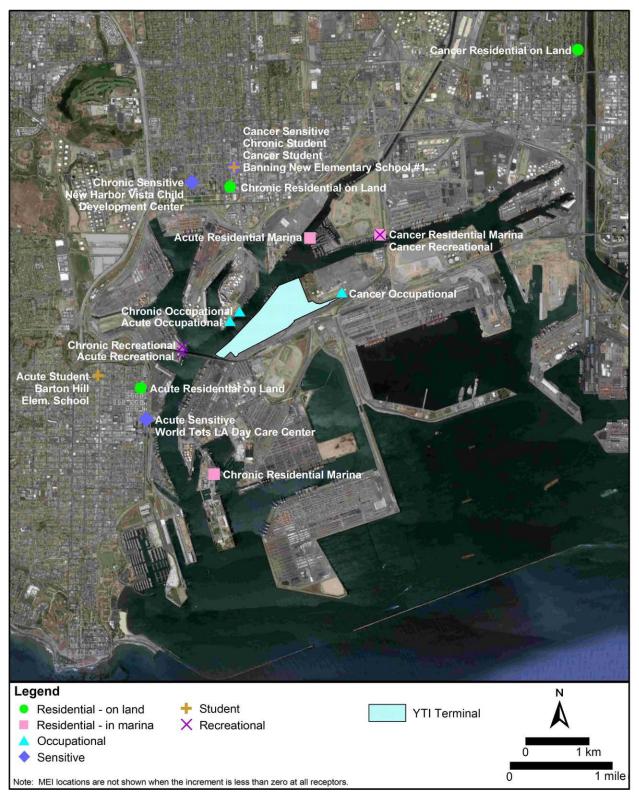




Figure 7-27. MEI Locations for NEPA Health Increments – Alternative 3, Reduced Project Alternative without Mitigation



# 7.2.2 Mitigated Impacts

# 7.2.2.1 Alternative 1

Mitigation is not required under CEQA for Alternative 1 because there would be no discretionary action subject to CEQA.

# 7.2.2.2 Alternative 2

Table 7-10 presents the maximum CEQA health impacts associated with Alternative 2, following mitigation. The table shows that in relation to the NOP CEQA baseline, cancer risk would not change appreciably from the unmitigated scenario because cancer risk would be driven by truck exhaust, for which mitigation beyond the Clean Truck Program is not feasible. The table also shows that in relation to the Future CEQA baseline, cancer risk would not change appreciably from the unmitigated scenario because cancer risk would not change appreciably from the unmitigated scenario because cancer risk would not change appreciably from the unmitigated scenario because cancer risk would be driven by truck exhaust, for which project-level mitigation not feasible.

Figure 7-28 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer incremental impacts for Alternative 2 with mitigation.

| Table 7-10. Maximum Incremental CEQA Health Impacts Associated with Alternative 2, No Federal Action |
|------------------------------------------------------------------------------------------------------|
| Alternative with Mitigation                                                                          |

|                  |                            |                              | Max                               | timum Predicted In                | mpact                        |                             |                           |
|------------------|----------------------------|------------------------------|-----------------------------------|-----------------------------------|------------------------------|-----------------------------|---------------------------|
| Health<br>Impact | Receptor<br>Type           | Alternative 2                | NOP CEQA<br>Baseline              | NOP CEQA<br>Increment             | Future CEQA<br>Baseline      | Future CEQA<br>Increment    | Significance<br>Threshold |
|                  | Residential -<br>on Land   | 21 × 10-6<br>21 in a million | 26 × 10-6<br>26 in a million      | $2 \times 10-6$<br>2 in a million | 19 × 10-6<br>19 in a million | 4 × 10-6<br>4 in a million  |                           |
|                  | Residential -              | 32 × 10-6                    | 85 × 10-6                         | <0                                | 25 × 10-6                    | 7 × 10-6                    |                           |
|                  | in Marina                  | 32 in a million<br>85 × 10-6 | 85 in a million<br>75 × 10-6      | 10 × 10-6                         | 25 in a million<br>63 × 10-6 | 7 in a million<br>22 × 10-6 | 10 - 10 6                 |
| Cancer           | Occupational               | 85 in a million              | 75 in a million                   | 10 in a million                   | 63 in a million              | 22 in a million             | 10 × 10-6<br>10 in a      |
| Risk             |                            | 9 × 10-6                     | 23 × 10-6                         | <0                                | 8 × 10-6                     | 2 × 10-6                    | million                   |
|                  | Sensitive                  | 9 in a million               | 23 in a million                   |                                   | 8 in a million               | 2 in a million              |                           |
|                  |                            | 0.5 	imes 10-6               | 0.7 	imes 10-6                    | $0.03 \times 10-6$                | $0.7 \times 10$ -6           | $0.03 \times 10$ -6         |                           |
|                  | Student                    | 0.5 in a million             | 0.7 in a million                  | 0.03 in a million                 | 0.7 in a million             | 0.03 in a million           |                           |
|                  |                            | 15 	imes 10-6                | $39 \times 10-6$                  | $1 \times 10-6$                   | $12 \times 10-6$             | 3 × 10-6                    |                           |
|                  | Recreational               | 15 in a million              | 39 in a million                   | 1 in a million                    | 12 in a million              | 3 in a million              |                           |
|                  |                            | Alternative 2                | NOP CEQA<br>Baseline <sup>3</sup> | NO                                | P CEQA Increm                | ent <sup>3</sup>            |                           |
| Chronic          | Residential -<br>on Land   | 0.08                         | 0.1                               |                                   | <0                           |                             |                           |
| Hazard<br>Index  | Residential -<br>in Marina | 0.1                          | 0.2                               |                                   | <0                           |                             |                           |
|                  | Occupational               | 0.5                          | 0.4                               | 0.1                               |                              |                             | ]                         |
|                  | Sensitive                  | 0.07                         | 0.1                               |                                   | <0                           |                             |                           |
|                  | Student                    | 0.07                         | 0.1                               |                                   | <0                           |                             |                           |

|                  |                            |               | Max                  | imum Predicted I      | mpact                   |                          |                           |
|------------------|----------------------------|---------------|----------------------|-----------------------|-------------------------|--------------------------|---------------------------|
| Health<br>Impact | Receptor<br>Type           | Alternative 2 | NOP CEQA<br>Baseline | NOP CEQA<br>Increment | Future CEQA<br>Baseline | Future CEQA<br>Increment | Significance<br>Threshold |
|                  | Recreational               | 0.1           | 0.2                  |                       | 0.00007                 |                          |                           |
| Acute            | Residential -<br>on Land   | 0.4           | 0.4                  |                       | 0.06                    |                          |                           |
|                  | Residential -<br>in Marina | 0.6           | 0.6                  | 0.07                  |                         |                          | 1                         |
| Hazard<br>Index  | Occupational               | 1.0           | 0.9                  | 0.9 0.1               |                         |                          | 1                         |
| muex             | Sensitive                  | 0.4           | 0.3                  |                       | 0.06                    |                          |                           |
|                  | Student                    | 0.3           | 0.3                  |                       | 0.04                    |                          |                           |
|                  | Recreational               | 0.6           | 0.6                  | 0.08                  |                         |                          |                           |
| Cancer<br>Burden |                            |               |                      | NOP CEQA Inc          | rement                  | Future CEQA<br>Increment | 0.5                       |
| Barden           |                            |               |                      | 0.0004                |                         | 0.03                     |                           |

1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.

2. The NOP CEQA increment represents the Alternative minus NOP CEQA baseline. The Future CEQA increment represents the Alternative minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing project-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.

4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the Alternative and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.

6. Construction emissions were modeled with the operational emissions for the determination of health impacts.

7. An increment less than zero means the Alternative impact would be less than the baseline impact at all modeled receptors.

Figure 7-28. MEI Locations for CEQA Health Increments – Alternative 2, No Federal Action Alternative with Mitigation



### 7.2.2.3 Alternative 3

Table 7-11 presents the maximum CEQA health impacts associated with Alternative 3, following mitigation. The table shows that in relation to the NOP CEQA baseline, cancer risk would not change appreciably from the unmitigated scenario because cancer risk would be driven by truck exhaust, for which mitigation beyond the Clean Truck Program is not feasible. The table also shows that in relation to the Future CEQA baseline, cancer risk would not change appreciably from the unmitigated scenario because cancer risk would be driven by truck and locomotive exhaust, for which project-level mitigation not feasible. Tables showing NEPA impacts following mitigation are not presented; mitigation is not required under NEPA since unmitigated impacts would be less than significance thresholds.

Figure 7-29 shows the MEI locations for cancer, chronic non-cancer, and acute non-cancer incremental impacts for Alternative 3 with mitigation.

|                  |                            |                   | Max                               | imum Predicted I      | mpact                   |                          |                           |
|------------------|----------------------------|-------------------|-----------------------------------|-----------------------|-------------------------|--------------------------|---------------------------|
| Health<br>Impact | Receptor<br>Type           | Alternative 3     | NOP CEQA<br>Baseline              | NOP CEQA<br>Increment | Future CEQA<br>Baseline | Future CEQA<br>Increment | Significance<br>Threshold |
|                  | Residential -              | $23 \times 10-6$  | $26 \times 10-6$                  | 5 × 10-6              | 19 × 10-6               | 6 × 10-6                 |                           |
|                  | on Land                    | 23 in a million   | 26 in a million                   | 5 in a million        | 19 in a million         | 6 in a million           |                           |
|                  | Residential -              | $36 \times 10-6$  | 85 	imes 10-6                     | <0                    | $25 \times 10-6$        | $11 \times 10-6$         |                           |
|                  | in Marina                  | 36 in a million   | 85 in a million                   |                       | 25 in a million         | 11 in a million          |                           |
|                  |                            | 94 	imes 10-6     | 75 	imes 10-6                     | 19 × 10-6             | $63 \times 10$ -6       | 31 × 10-6                | 10 10 6                   |
| Cancer           | Occupational               | 94 in a million   | 75 in a million                   | 19 in a million       | 63 in a million         | 31 in a million          | 10 × 10-6<br>10 in a      |
| Risk             |                            | 10 	imes 10-6     | $23 \times 10-6$                  | <0                    | $8 \times 10$ -6        | $3 \times 10-6$          | million                   |
|                  | Sensitive                  | 10 in a million   | 23 in a million                   |                       | 8 in a million          | 3 in a million           |                           |
|                  |                            | 0.6 	imes 10-6    | 0.7 	imes 10-6                    | 0.05 	imes 10-6       | 0.7 	imes 10-6          | 0.05 	imes 10-6          | -                         |
|                  | Student                    | 0.6 in a million  | 0.7 in a million                  | 0.05 in a million     | 0.7 in a million        | 0.05 in a million        |                           |
|                  |                            | $17 \times 10$ -6 | $39 \times 10-6$                  | $2 \times 10$ -6      | $12 \times 10-6$        | $5 \times 10-6$          |                           |
|                  | Recreational               | 17 in a million   | 39 in a million                   | 2 in a million        | 12 in a million         | 5 in a million           |                           |
|                  |                            | Alternative 3     | NOP CEQA<br>Baseline <sup>3</sup> | NO                    | P CEQA Increm           | ent <sup>3</sup>         |                           |
| Chronic          | Residential -<br>on Land   | 0.09              | 0.1                               |                       | 0.001                   |                          |                           |
| Hazard<br>Index  | Residential -<br>in Marina | 0.1               | 0.2                               |                       | <0                      |                          | 1                         |
| maex             | Occupational               | 0.6               | 0.4                               |                       | 0.2                     |                          |                           |
|                  | Sensitive                  | 0.08              | 0.1                               |                       | <0                      |                          |                           |
|                  | Student                    | 0.08              | 0.1                               |                       | <0                      |                          |                           |
|                  | Recreational               | 0.1               | 0.2                               |                       | 0.005                   |                          |                           |
| Acute<br>Hazard  | Residential -<br>on Land   | 0.5               | 0.4                               |                       | 0.2                     |                          | 1                         |
| Index            | Residential -<br>in Marina | 0.6               | 0.6                               |                       | 0.2                     |                          |                           |

 Table 7-11. Maximum Incremental CEQA Health Impacts Associated with Alternative 3, Reduced Project

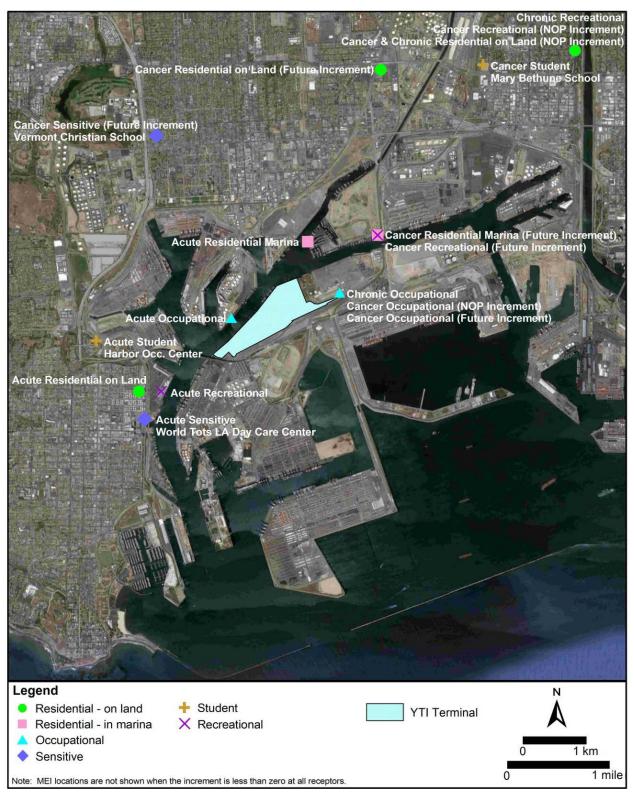
 Alternative with Mitigation

|                  |                  | Maximum Predicted Impact |                      |                       |                          |                          |                           |
|------------------|------------------|--------------------------|----------------------|-----------------------|--------------------------|--------------------------|---------------------------|
| Health<br>Impact | Receptor<br>Type | Alternative 3            | NOP CEQA<br>Baseline | NOP CEQA<br>Increment | Future CEQA<br>Baseline  | Future CEQA<br>Increment | Significance<br>Threshold |
|                  | Occupational     | 1.1                      | 0.9                  | 0.3                   |                          |                          |                           |
|                  | Sensitive        | 0.5                      | 0.3                  | 0.2                   |                          |                          |                           |
|                  | Student          | 0.4                      | 0.3                  | 0.1                   |                          |                          |                           |
|                  | Recreational     | 0.6                      | 0.6                  | 0.2                   |                          |                          |                           |
| Cancer<br>Burden |                  |                          | NOP CEQA             | Increment             | Future CEQA<br>Increment | - 0.5                    |                           |
|                  |                  |                          |                      | 0.002                 |                          | 0.18                     |                           |

1. Exceedances of the significance thresholds are in bold. The significance thresholds apply only to the increments.

2. The NOP CEQA increment represents the Alternative minus NOP CEQA baseline. The Future CEQA increment represents the Alternative minus Future CEQA baseline. The Future CEQA baseline and Future CEQA increments are only applicable to cancer risk because cancer risk is based on long-term (multiple-year) exposure periods.

3. Chronic and acute impacts are considered short-term impacts and are determined by comparing project-related impacts to the NOP CEQA baseline, the baseline at the time of the NOP in 2012.


4. Each result shown in the table represents the modeled receptor location with the maximum impact or increment. The impacts or increments at all other receptors would be less than the values in the table.

5. The displayed values for the Alternative and baseline impacts do not necessarily subtract to equal the displayed CEQA increments because they may occur at different receptor locations.

6. Construction emissions were modeled with the operational emissions for the determination of health impacts.

7. An increment less than zero means the Alternative impact would be less than the baseline impact at all modeled receptors.

Figure 7-29. MEI Locations for CEQA Health Increments – Alternative 3, Reduced Project Alternative with Mitigation



# 8.0 Risk Uncertainty

Health risk assessments such as the one presented in this Appendix are not intended to provide estimates of the absolute health risk or expected incidence of disease in a population, but instead, are conducted to allow comparisons of the potential health impacts of different alternatives. Consistent with agency guidelines and standard approaches to regulatory risk assessment, this risk assessment used health-protective (conservative) assumptions selected by regulatory agencies to "err on the side of health protection in order to avoid underestimation of risk to the public" (OEHHA 2003). As an example of the conservative assumptions used in this risk assessment, residential receptors are considered to be exposed to TACs while individuals are present at the same outdoor location for 365 days per year for 70 years, breathing continuously at a rate that is at the 80th percentile of breathing rates for the population.

OEHHA has provided a discussion of risk uncertainty, which is reiterated here (OEHHA 2003).

There is a great deal of uncertainty associated with the process of risk assessment. The uncertainty arises from lack of data in many areas necessitating the use of assumptions. The assumptions used in these guidelines are designed to err on the side of health protection in order to avoid underestimation of risk to the public. Sources of uncertainty, which may either overestimate or underestimate risk, include: 1) extrapolation of toxicity data in animals to humans, 2) uncertainty in the estimation of emissions, 3) uncertainty in the air dispersion models, and 4) uncertainty in the exposure estimates. Uncertainty may be defined as what is not known and may be reduced with further scientific studies. In addition to uncertainty, there is a natural range or variability in the human population in such properties as height, weight, and susceptibility to chemical toxicants. Scientific studies with representative individuals and large enough sample size can characterize this variability.

Interactive effects of exposure to more than one carcinogen or toxicant are also not necessarily quantified in the HRA. Cancer risks from all emitted carcinogens are typically added, and hazard quotients for substances impacting the same target organ system are added to determine the hazard index (HI). Many examples of additivity and synergism (interactive effects greater than additive) are known. For substances that act synergistically, the HRA could underestimate the risks. Some substances may have antagonistic effects (lessen the toxic effects produced by another substance). For substances that act antagonistically, the HRA could overestimate the risks.

Other sources of uncertainty, which may underestimate or overestimate risk, can be found in exposure estimates where little or no data are available (e.g., soil half-life and dermal penetration of some substances from a soil matrix).

The differences among species and within human populations usually cannot be easily quantified and incorporated into risk assessments. Factors including metabolism, target site sensitivity, diet, immunological responses, and genetics may influence the response to toxicants. The human population is much more diverse both genetically and culturally (e.g., lifestyle, diet) than inbred experimental animals. The intraspecies variability among humans is expected to be much greater than in laboratory animals. Adjustment for tumors at multiple sites induced by some carcinogens could result in a higher potency. Other uncertainties arise 1) in the assumptions underlying the

dose-response model used, and 2) in extrapolating from large experimental doses, where, for example, other toxic effects may compromise the assessment of carcinogenic potential, to usually much smaller environmental doses. Also, only single tumor sites induced by a substance are usually considered. When epidemiological data are used to generate a carcinogenic potency, less uncertainty is involved in the extrapolation from workplace exposures to environmental exposures. However, children, a subpopulation whose hematological, nervous, endocrine, and immune systems, for example, are still developing and who may be more sensitive to the effects of carcinogens on their developing systems, are not included in the worker population and risk estimates based on occupational epidemiological data are more uncertain for children than adults. Finally, the quantification of each uncertainty applied in the estimate of cancer potency is itself uncertain.

Thus, risk estimates generated by an HRA should not be interpreted as the expected rates of disease in the exposed population but rather as estimates of potential risk, based on current knowledge and a number of assumptions. Additionally, the uncertainty factors integrated within the estimates of non-cancer RELs are meant to err on the side of public health protection in order to avoid underestimation of risk. Risk assessment is best used as a ruler to compare one source with another and to prioritize concerns. Consistent approaches to risk assessment are necessary to fulfill this function.

# 9.0 References

CAPCOA 2013. California Air Pollution Control Officers Association. California Emissions Estimator Model (CalEEMod), User's Guide Appendix A. Available online at: <u>http://www.caleemod.com</u>. Last accessed October 2013.

CARB 1989. California Air Resources Board. Technical Guidance Document for the Emission Inventory Criteria and Guidelines Regulation for AB 2588. Technical Support Division. August.

CARB 2004. California Air Resources Board. Recommended Interim Risk Management Policy. Available online at: <u>http://www.arb.ca.gov/toxics/harp/rmpolicyfaq.htm</u>.

CARB 2006a. California Air Resources Board. Diesel Particulate Matter Exposure Assessment Study for the Ports of Los Angeles and Long Beach – Final Report. April 2006.

CARB 2006b. California Air Resources Board. Emission Reduction Plan for Ports and International Goods Movement. April. Available online at: <u>http://www.arb.ca.gov/planning/gmerp/gmerp.htm. Last accessed October 2013</u>.

CARB 2007. California Air Resources Board. Airborne Toxic Control Measure for Auxiliary Diesel Engines Operated on Ocean-Going Vessels At-Berth in a California Port. December. Available online at: <u>http://www.arb.ca.gov/regact/2007/shorepwr07/shorepwr07.htm</u>. Last accessed October 2013.

CARB 2008. California Air Resources Board. Methodology for Estimating Premature Deaths Associated with Long-term Exposure to Fine Airborne Particulate Matter in California. October 24, 2008. CARB 2009. HARP On-Ramp Version 1. <u>http://www.arb.ca.gov/toxics/harp/downloads.htm</u>. February 3.

CARB 2010. California Air Resources Board. Estimate of Premature Deaths Associated with Fine Particle Pollution ( $PM_{2.5}$ ) in California Using a U.S. Environmental Protection Agency Methodology. August 31.

CARB 2011a. California Air Resources Board. Mobile Source Emission Inventory. Available online at: <u>http://www.arb.ca.gov/msei/modeling.htm</u>. Last accessed October 2013.

CARB 2011b. California Air Resources Board. Fuel Sulfur and Other Operational Requirements for Ocean-Going Vessels within California Waters and 24 nautical miles of the California Baseline. Available online at: <u>http://www.arb.ca.gov/ports/marinevess/ogv/ogvrules.htm</u>. Last accessed January 2014.

CARB 2012. California Air Resources Board. Hotspots Analysis and Reporting Program (HARP), Version 1.4f. November. Available online at: http://www.arb.ca.gov/toxics/harp/downloads.htm. Last accessed February 2014.

CARB 2013. Consolidated Table of OEHHA/ARB Approved Risk Assessment Health Values. Web site: <u>http://www.arb.ca.gov/toxics/healthval/healthval.htm</u>. Last accessed December 21.

CARB 2014. California Air Resources Board . PM and Organic Gas Speciation Profiles. Available online at: <u>http://www.arb.ca.gov/ei/speciate/dnldopt.htm</u>. Last accessed January 2014.

Environ 2013. Personal communication from Min Hou. May 28.

LAHD 2005. Los Angeles Harbor District. 2005. Health Risk Assessment Protocol for Port of Los Angeles Terminal Improvement Projects. June.

LAHD 2008. Los Angeles Harbor District. Berths 97-109 [China Shipping] Container Terminal Project EIS/EIR. April.

LAHD 2010. Los Angeles Harbor District. 2010 CAAP Update. Attachment I to Appendix B, Sphere of Influence Bay-Wide Sphere of Influence Analysis for Surface Meteorological Stations Near the Ports. November 2010. Available online at:

http://www.portoflosangeles.org/environment/caap.asp. Last accessed October 2013.

LAHD 2011a. Los Angeles Harbor District. *Berths 302-306 [APL] Container Terminal Project EIS/EIR*. December.

LAHD 2011b. Methodology for Addressing Mortality and Morbidity in Port of Los Angeles CEQA Documents. Draft Protocol. July 22.

LAHD 2012a. Los Angeles Harbor District. 2012 Port of Los Angeles Inventory of Air Emissions. Available online at: <u>http://www.portoflosangeles.org/environment/studies\_reports.asp</u>. Last accessed October 2013.

LAHD 2012b. Los Angeles Harbor District. Draft Criteria Pollutant Dispersion Modeling Protocol. 2012.

OEHHA 2003. Office of Environmental Health Hazard Assessment. Air Toxics Hot Spots Program Risk Assessment Guidelines.

SCAQMD 2003. South Coast Air Quality Management District. Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis. August.

SCAQMD 2005. Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and Assessment Act (AB2588). July.

SCAQMD 2011a. South Coast Air Quality Management District. Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and Assessment Act (AB2588). June.

SCAQMD 2011b. South Coast Air Quality Management District. SCAQMD Air Quality Significance Thresholds. March. Available online at: http://www.aqmd.gov/ceqa/handbook/signthres.pdf. Last accessed October 2013.

USEPA 1997. Exposure Factors Handbook. August.

USEPA 2009. United States Environmental Protection Agency (USEPA). EPA Technical Highlights: Emission Factors for Locomotives, EPA-420-F-09-025, April 2009.

USEPA 2010. United States Environmental Protection Agency Quantitative Health Risk Assessment for Particulate Matter – Final Report. Available online at: www.epa.gov/ttnnaaqs/standards/pm/data/PM\_RA\_FINAL\_June\_2010.pdf