Section 3.5
Geology

3.5.1 Introduction

This section presents the geologic conditions for the proposed Project area and analyzes:
(1) seismic hazards including surface rupture, ground shaking, liquefaction, subsidence, tsunamis, and seiches; (2) other geologic issues including potentially unstable soils and slopes; and (3) mineral resources. This evaluation is based on published reports and the general geologic setting as indicators of potential geologic hazards.

3.5.2 Environmental Setting

3.5.2.1 Regional Setting

The proposed Project is located near sea level on Holocene alluvial outwash materials, Pleistocene terrace deposits, and Pleistocene Palos Verdes Sand, in the southwestern structural block of the Los Angeles Basin Province (Bryant, 1987; Kennedy, 1975; Yerkes et al., 1965). The southwestern structural block, one of four such blocks underlying the Los Angeles Basin, is marked by a northwest-southeast trending fault system (Yerkes et al., 1965) (Figure 3.5-1).

3.5.2.1.1 Seismicity and Major Faults

An earthquake is classified by the magnitude of wave movement (related to the amount of energy released), which traditionally has been quantified using the Richter scale. This is a logarithmic scale, wherein each whole number increase in Richter magnitude (M) represents a tenfold increase in the wave magnitude generated by an earthquake. A Richter magnitude 8.0 earthquake is not twice as large as a M4.0 earthquake; it is 10,000 times larger (i.e., 10⁴, or 10 x 10 x 10 x 10). Damage typically begins at M5.0. Earthquakes of M6.0 to 6.9 are classified as moderate; those between 7.0 and 7.9 are classified as major; and those of 8.0 or greater are classified as great.

Southern California is recognized as one of the most seismically active areas in the United States. The region has been subjected to at least 52 major earthquakes, of magnitude 6 or greater, since 1796. Ground motion in the region is generally the result of sudden movements of large blocks of the earth’s crust along faults. Great earthquakes, like the 1857 San Andreas Fault earthquake (see Table 3.5-1), are quite rare in Southern California. Earthquakes of magnitude 7.8 or greater occur at the rate of about two or three per 1,000 years, corresponding to a 6 to 9 percent probability in 30 years. However,
the probability of a magnitude 7.0 or greater earthquake in Southern California before 2024 is 85 percent (Working Group on California Earthquake Probabilities, 1995).

Seismic analyses generally include discussions of maximum credible and maximum probable earthquakes. A maximum credible earthquake (MCE) is the largest event a fault is believed to be capable of generating. The probability of occurrence is not considered in this characterization. The maximum probable earthquake (MPE) is the largest earthquake to have occurred on a given fault within the last 200 years, or an earthquake that ruptures 10 percent of the total length of the fault. In addition, the Port uses a combination of probabilistic and deterministic seismic hazard assessment for seismic design. Probabilistic hazard assessments are required to define two-level design events, including the Operational Level Earthquake (OLE), which is the peak horizontal firm ground acceleration with a 50 percent probability of exceedance in 50 years, and the Contingency Level Earthquake (CLE), which is the peak ground acceleration with a 10 percent probability of exceedance in 50 years.

### 3.5.2.1.2 Faults

Segments of the active Palos Verdes Fault cross the Los Angeles Harbor in the vicinity of the West Basin portion of the Port (Figure 3.5-2). Although well constrained in the channel areas of the Harbor, such as at the intersection of the West Basin and the Southwest Slip, the onshore location of the fault zone in the West Basin area is not well defined. However, current data depicted in Figure 3.5-1 suggest the fault most likely crosses north-northwest across Berths 121-132 and immediately southwest of Berths 136-147. Recent studies indicate that the MCE for the Palos Verdes Fault is Richter magnitude 7.25, with a recurrence interval of 900 years and peak ground accelerations in the Port area of 0.28g and 0.52g, for the OLE and CLE, respectively (EMI, 2001; McNeilan et al., 1996).

Numerous other active faults and fault zones are located in the general region, such as the Newport-Inglewood, San Pedro, Whittier-Elsinore, Santa Monica, Hollywood, Raymond, San Fernando, Sierra Madre, Cucamonga, San Jacinto, and San Andreas faults. Table 3.5-2 presents potentially hazardous faults and anticipated earthquake magnitudes in the Los Angeles Basin area.

Active faults, such as those noted above, are typical of Southern California. Therefore, it is reasonable to expect a strong ground motion seismic event during the lifetime of any proposed Project in the region.

Numerous active faults located offsite are capable of generating earthquakes in the proposed Project area (Tables 3.5-1 and 3.5-2). Most noteworthy, due to its proximity to the site, is the Newport-Inglewood Fault, which has generated earthquakes of magnitudes ranging from 4.7 to 6.3 Richter scale (LAHD, 1991a). Large events could occur on more distant faults in the general area, but because of the greater distance from the site, earthquakes generated on these faults may be considered less significant with respect to ground accelerations.
Figure 3.5-1
Topographic Map of Southern California Showing the Los Angeles Region
Berth 97-109
Container Terminal Project EIS/EIR

Source: Komatitsch et al., 2004
Figure 3.5-2
Major Quaternary Faults (Active and Potentially Active) in the Los Angeles Harbor Vicinity
Berth 97-109
Container Terminal Project EIS/EIR

Source: Los Angeles Harbor Department, 1994

Source: POLA, 2003
### Table 3.5-1. Known Earthquakes with Richter Magnitude Greater than 5.5 in the Los Angeles Basin Area

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Date</th>
<th>Richter Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palos Verdes Fault</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>San Pedro Basin Fault</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Santa Monica-Raymond Fault</td>
<td>1855</td>
<td>6.0</td>
</tr>
<tr>
<td>San Andreas Fault</td>
<td>1857</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>1952</td>
<td>7.7</td>
</tr>
<tr>
<td>Newport-Inglewood Fault</td>
<td>1933</td>
<td>6.3</td>
</tr>
<tr>
<td>San Jacinto Fault</td>
<td>1968</td>
<td>6.4</td>
</tr>
<tr>
<td>San Fernando/Sierra Madre-Cucamonga Fault</td>
<td>1971, 1991</td>
<td>6.4, 6.0</td>
</tr>
<tr>
<td>Whittier-Elsinore Fault Zone</td>
<td>1987</td>
<td>5.9</td>
</tr>
<tr>
<td>Camp Rock/Emerson Fault</td>
<td>1992</td>
<td>7.4</td>
</tr>
<tr>
<td>Blind-thrust fault beneath Northridge</td>
<td>1994</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Notes:
* No known earthquakes within the last 200 years.


### Table 3.5-2. Hazardous Faults and Bedrock Accelerations — Los Angeles Basin Area

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Distance in Miles</th>
<th>Richter Magnitude (Ziony, 1985)</th>
<th>Maximum Credible Earthquake Magnitude (Greensfelder, 1974)</th>
<th>Duration in seconds (Bolt, 1973)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palos Verdes Fault</td>
<td>&lt;1</td>
<td>6.4-6.6</td>
<td>7.25*</td>
<td>26</td>
</tr>
<tr>
<td>Newport-Inglewood Structural Zone</td>
<td>5</td>
<td>6.5-6.7</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>San Pedro Basin Fault</td>
<td>15</td>
<td>6.3-6.6</td>
<td>no data</td>
<td>18</td>
</tr>
<tr>
<td>Whittier-Elsinore Fault Zone</td>
<td>22</td>
<td>6.4-6.7</td>
<td>7.5</td>
<td>16</td>
</tr>
<tr>
<td>Santa Monica-Raymond Fault</td>
<td>23</td>
<td>6.2-6.6</td>
<td>7.5</td>
<td>15</td>
</tr>
<tr>
<td>San Fernando-Cucamonga Fault</td>
<td>31</td>
<td>6.4-6.5</td>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>San Jacinto Fault</td>
<td>57</td>
<td>6.4-7.0</td>
<td>7.5</td>
<td>22</td>
</tr>
<tr>
<td>San Andreas Fault</td>
<td>53</td>
<td>7.2-8.1</td>
<td>8.25</td>
<td>28</td>
</tr>
</tbody>
</table>

Source: Ninyo & Moore, 1992; *EMI, 2001

In 1974, the California Division of Mines and Geology (CDMG) was designated by the Alquist-Priolo Act as the agency responsible for delineating those faults deemed active and likely to rupture the ground surface. No faults in the area of the Port are currently zoned under the Alquist-Priolo Act; however, there is evidence that the Palos Verdes Fault, which lies beneath the West Basin, may be active and ground rupture cannot be ruled out (Fischer et al., 1987; McNeilan et al., 1996).
3.5.2.1.3 Liquefaction

Liquefaction is defined as the transformation of a granular material from a solid state into a liquefied state as a consequence of increased pore pressure, which results in the loss of grain-to-grain contact. Seismic groundshaking is capable of providing the mechanism for liquefaction, usually in fine-grained, loose to medium dense, saturated sands and silts. The effects of liquefaction may be excessive if total and/or differential settlement of structures occurs on liquefiable soils.

Natural drainages at Port berths have been backfilled with undocumented fill materials. Dredged materials from the harbor area were spread across lower Wilmington from 1905 until 1910 or 1911 (Ludwig, 1927). In addition, the natural alluvial deposits below the site generally are unconsolidated, soft, and saturated. Groundwater is present at depths as shallow as 2 to 6 feet beneath the site. These conditions are conducive to liquefaction.

Some authors (Tinsley and Youd, 1985; Toppozada et al., 1988; Davis et al., 1982) have indicated that the liquefaction potential in the Harbor area during a major earthquake on either the San Andreas or Newport-Inglewood Fault is high. The proposed Project site is identified as an area susceptible to liquefaction in the City of Los Angeles General Plan, Safety Element because of the presence of recent alluvial deposits and groundwater less than 30 feet below ground surface (City of Los Angeles, 1996). Other authors indicate that the overall probability of widespread liquefaction of uncompacted hydraulic fills and major damage in the Port is judged to be relatively low; however, even minor damage resulting from liquefaction can be very significant in terms of loss of functionality and repair costs (Pyke, 1990).

3.5.2.1.4 Tsunamis

Tsunamis are gravity waves of long wavelength generated by a sudden disturbance in a body of water. Typically, oceanic tsunamis are the result of sudden vertical movement along a fault rupture in the ocean floor, submarine landslides or subsidence, or volcanic eruption, where the sudden displacement of water sets off transoceanic waves with wavelengths of up to 125 miles and with periods generally from 5 to 60 minutes. The trough of the tsunami wave arrives first leading to the classic retreat of water from the shore as the ocean level drops. This is followed by the arrival of the crest of the wave, which can run up on the shore in the form of bores or surges in shallow water or simple rising and lowering of the water level in relatively deeper water such as in harbor areas.

Tsunamis are a relatively common natural hazard, although most of the events are small in amplitude and not particularly damaging. However, in the event of a large submarine earthquake or landslide, coastal flooding may be caused by either run-up of broken tsunamis in the form of bores and surges or by relatively dynamic flood waves. In the process of bore/surge-type run-up, the onshore flow (up to tens of feet per second) can cause tremendous dynamic loads on the structures onshore in the form of impact forces and drag forces, in addition to hydrostatic loading. The subsequent drawdown of the water after run-up exerts the often crippling opposite drag on the structures and washes loose/broken properties and debris to sea; the floating debris brought back on the next onshore flow have been found to be a significant cause of extensive damage after successive run-up and drawdown. As has been shown historically, the potential loss of human life in the process can be great if such events occur in populated areas.

Abrupt sea level changes associated with tsunamis in the past have reportedly caused damage to moored vessels in the outer portions of the Los Angeles Harbor. The Chilean Earthquake of May 1960, for example, caused local damages of over $1 million and...
Harbor closure. One person drowned at Cabrillo Beach and one was injured. Small craft moorings in the Harbor area, especially in the Cerritos Channel, where a seiche occurred, were seriously damaged. Hundreds of small boats broke loose from their moorings, 40 sank, and about 200 were damaged. Gasoline from damaged boats caused a major spill in the Harbor waters and created a fire hazard. Currents of up to 8 knots and a 6-foot rise of water in a few minutes were observed in the West Basin. The maximum water level fluctuations recorded by gauges were 5.0 feet at Port Berth 60 (near Pilot Station) and 5.8 feet in Long Beach Harbor (National Geophysical Data Center, 1993).

Until recently, projected tsunami run-ups along the western U.S. were based on farfield events, such as submarine earthquakes or landslides occurring at great distances from the U.S., as described above for the Chilean Earthquake of May 1960. Based on such distant sources, tsunami-generated wave heights of between 6.5 feet and 8 feet above mean lower low water (MLLW), at 100-year intervals, and between 10 feet and 11 feet, at 500-year intervals, were projected, including the effects of astronomical tides (Houston 1980). MLLW is the benchmark from which infrastructure (e.g., wharf and berth heights) is measured in the Port. These runup estimates by Houston (1980) were used for the tsunami analysis contained in the Deep Draft Navigation Improvements EIR/EIS in September 1992 (USACE and LAHD, 1992).

However, more recent studies (e.g., Synolakis et al., 1997; Borrero et al., 2001 and 2005a) have projected larger tsunami run-ups based on near-field events, such as earthquakes or submarine landslides occurring in proximity to the California coastline. Offshore faults present a larger local tsunami hazard than previously thought, posing a direct threat to nearshore facilities. For example, one of the largest such features, the Catalina Fault, lies directly underneath Catalina Island, located only 22 miles from the Port. Simulations of tsunamis generated by uplift on this fault suggest waves in the Port in excess of 12 feet, with an arrival time within 20 minutes (Legg et al., 2003; Borrero et al., 2005b). These simulations were based on rare events, representing worst-case scenarios.

In addition, landslide derived tsunamis are now perceived as a viable local tsunami hazard. Such tsunamis potentially can be more dangerous, due to the lack of warning for such an event. This mechanism is illustrated by an earthquake in 1998, centered onshore Papua-New Guinea, which appears to have created an offshore landslide that caused tsunami inundation heights in excess of 33 feet, claiming more than 2,500 lives. In a study modeling potential tsunami generation by local offshore earthquakes, Legg et al. (2004), consider the relative risk of tsunamis from a large catastrophic submarine landslide (likely generated by a seismic event) in offshore Southern California versus fault-generated tsunamis. The occurrence of a large submarine landslide appears quite rare by comparison with the tectonic faulting events. Although many submarine landslides have been mapped off the Southern California shore, few appear to be of the scale necessary to generate a catastrophic tsunami. Of two large landslides that appear to be of this magnitude, Legg et al. (2004) indicated that one landslide is over 100,000 years old and the other landslide approximately 7,500 year old. In contrast, the recurrence of 3- to 20-foot fault movements on offshore faults would be several hundred to several thousand years. Consequently, the study concludes that the most likely direct cause of most of the local tsunamis in Southern California is tectonic movement during large offshore earthquakes.

Based on these recent studies (e.g., Synolakis et al., 1997; Borrero et al., 2001), the California State Lands Commission (CSLC) has developed tsunami run-up projections for the Ports of Los Angeles and Long Beach of 8.0 feet and 15.0 feet above mean sea level (msl), at 100- and 500-year intervals, respectively, as a part of their Marine Oil
Terminal Engineering and Maintenance Standards (MOTEMS) (CSLC, 2004). However, these projections do not incorporate consideration of the localized landfill configurations, bathymetric features, and the interaction of the diffraction, reflection, and refraction of the tsunami wave propagation within the Los Angeles/Long Beach Port Complex in its predictions of tsunami wave heights.

Most recently, a model has been developed specifically for the Los Angeles/Long Beach Port Complex that incorporates consideration of the localized landfill configurations, bathymetric features, and the interaction of the diffraction, reflection, and refraction of tsunami wave propagation, in the predictions of tsunami wave heights (Moffatt and Nichol, 2007) (see tsunami discussion in Appendix J). The Port Complex model uses a methodology similar to the above studies to generate a tsunami wave from several different potential sources, including local earthquakes, remote earthquakes, and local submarine landslides. This model indicates that a reasonable maximum source for future tsunami events at the proposed Project site would either be a magnitude 7 earthquake on the Santa Catalina Fault or a submarine landslide along the nearby Palos Verdes Peninsula.

The Port Complex model predicts tsunami wave heights of 1.3 to 5.3 feet above msl at the proposed Project site. The areas of highest anticipated water levels are the northwest section of West Basin (Berths 134 and 135), where maximum water levels of 4.6 to 5.3 feet above msl could occur. The area of lowest anticipated tsunami-induced water levels, under this scenario, is the southeast portion of West Basin (Berths 145 to 147), where water levels of 1.3 to 2.0 feet above msl are possible.

### 3.5.2.1.5 Seiches

Seiches are seismically induced water waves that surge back and forth in an enclosed basin and may be expected in the harbor as a result of earthquakes. Any significant wave front could cause damage to seawalls and docks, and could breach seawalls at the proposed Project sites. Modern shoreline protection techniques are designed to resist seiche damage. The Los Angeles/Long Beach Port Complex model referred to above considered impacts from tsunamis and seiches. In each case, impacts from a tsunami were equal to or more severe than those from a seiche. As a result, the impact discussion below refers primarily to tsunamis as this will be considered the worst case of potential impacts.

### 3.5.2.1.6 Subsidence

Subsidence is the phenomenon where the soils and other earth materials underlying the site settle or compress, resulting in a lower ground surface elevation. Fill and native materials onsite can be water saturated, and a net decrease in the pore pressure and contained water will allow the soil grains to pack closer together. This closer grain packing results in less volume and the lowering of the ground surface.

Subsidence in the Los Angeles-Long Beach Harbor area was first observed in 1928. It has affected the majority of the harbor area. Based on extensive studies by the City of Long Beach and the California Division of Oil and Gas and Geothermal Resources, it has been determined that most of the subsidence was the result of oil and gas production from the Wilmington Oil Field following its discovery in 1936.

The proposed Project area experienced maximum cumulative subsidence of approximately 1.6 feet, from 1928 to 1970 (Allen, 1973). Today, water injection continues to be maintained at rates greater than the total volume of produced substances,
including oil, gas, and water, to prevent further reservoir compaction and subsidence (City of Long Beach, 2006).

### 3.5.2.1.7 Landslides

Generally, a landslide is defined as the downward and outward movement of loosened rock or earth down a hillside or slope. Landslides can occur either very suddenly or slowly, and frequently accompany other natural hazards such as earthquakes, floods, or wildfires. Most landslides are single events, but more than a third are associated with heavy rains or the melting of winter snows. Landslides can also be triggered by ocean wave action or induced by the undercutting of slopes during construction, improper artificial compaction, or saturation from sprinkler systems or broken water pipes. In areas on hillsides where the ground cover has been destroyed, landslides are probable because there is nothing to hold the soil. Immediate dangers from landslides include destruction of property and possible fatalities from rocks, mud, and water sliding downhill or downstream. Other dangers include broken electrical, water, gas, and sewage lines. The proposed Project site is relatively flat, and no known or probable bedrock landslide areas have been identified (City of Los Angeles, 1996).

### 3.5.2.1.8 Expansive Soils

Expansive soils generally result from specific clay minerals that expand when saturated and shrink in volume when dry. These expansive clay minerals are common in the geologic units in the adjacent Palos Verdes Peninsula. Clay minerals in geologic units at the proposed Project area could be expansive, and previously imported fill soils could be expansive as well.

### 3.5.2.1.9 Mineral Resources

The Project site is located adjacent to the Wilmington Oil Field, which is a broad, asymmetric anticline broken by a series of transverse normal faults that have created seven major oil-producing zones (Mayuga, 1970). The field is approximately 11 miles long and 3 miles wide, covering approximately 13,500 acres. This field produced 84.4 million barrels of oil from January 1998 through October 2002, making the Wilmington Oil Field the sixth largest producing oil field in the state (California Department of Conservation, 2003).

The Project site is located in the West Basin adjacent to the Southwest Slip. The Project site would be located at the ground surface and is composed largely of fill material or surficial alluvial deposits. According to the CDMG, the proposed Project site is located in a Mineral Resource Zone (MRZ) area classified as “MRZ-1,” which is defined as an area where adequate information indicates that no significant mineral deposits (i.e., aggregate deposits) are present or where it is judged that little likelihood exists for their presence (CDMG, 1987).

### 3.5.3 Applicable Regulations

#### 3.5.3.1 Geologic Hazards

Geologic resources and geotechnical hazards in the proposed Project vicinity are governed primarily by the City of Los Angeles. The conservation and safety elements of
the City of Los Angeles General Plan contain policies for the protection of geologic features and avoidance of geologic hazards (City of Los Angeles, 1996 and 2001b). Local grading ordinances establish detailed procedures for excavation and earthwork required during construction in backland areas. In addition, City of Los Angeles building codes and building design standards for the Port establish requirements for construction of aboveground structures (City of Los Angeles, 2002b). Most local jurisdictions rely on the 1997 California Uniform Building Code (UBC) as a basis of seismic design. However, with respect to wharf construction, LAHD standards and specifications would be applied to the design of the proposed Project. The LAHD must comply with regulations of the Alquist-Priolo Act, which regulates development near active faults to mitigate the hazard of a surface fault rupture.

The MOTEMS were approved by the California Building Standards Commission on January 19, 2005 and are codified as part of California Code of Regulations, Title 24, Part 2, Marine Oil Terminals, Chapter 31F. These standards apply to all existing marine oil terminals in California and include criterion for inspection, structural analysis and design, mooring and berthing, geotechnical considerations, fire, piping, and mechanical and electrical systems. MOTEMS became effective on January 6, 2006 (CSLC, 2005). The process of developing the MOTEMS has produced parallel guidelines and recommended provisions. The Seismic Design Guidelines for Port Structures, published in 2001 by the Port International Navigation Association uses text virtually identical to that found in the MOTEMS. The language for the Port International Navigation Association and the MOTEMS is derived from the Naval Facilities Engineering Service Center Technical Report (TR-2103-SHR), Seismic Criteria for California Marine Oil Terminals (CSLC, 2004).

### 3.5.3.2 Mineral Resources

Excavations and construction in the immediate vicinity of abandoned oil wells is regulated in accordance with standards and procedures as set forth by the California Department of Conservation Division of Oil, Gas, and Geothermal Resources (DOGGR). If any structure is to be located over or in proximity to a previously abandoned well, the well may require re-abandonment. Public Resources Code, Section 3208.1, authorizes the State Oil and Gas Supervisor to order re-abandonment of any previously abandoned well when construction of any structure over or in proximity to the well could result in a hazard.

The Surface Mining and Reclamation Act of 1975 was enacted to promote conservation of the mineral resources of the state and to ensure adequate reclamation of lands once they have been mined. Among other provisions, the Act requires the State Geologist to classify land in California for mineral resource potential. The four categories include: Mineral Resource Zone (MRZ)-1, areas of no mineral resource significance; MRZ-2, areas of identified mineral resource significance; MRZ-3, areas of undetermined mineral resource significance; and MRZ-4, areas of unknown mineral resource significance.

The distinction between these categories is important for land use considerations. The presence of known mineral resources, which are of regional significance and possibly unique to that particular area, could potentially result in nonapproval or changes to a given project if it were determined that those mineral resources would no longer be available for extraction and consumptive use. To be considered significant for the purpose of mineral land classification, a mineral deposit, or a group of mineral deposits that can be mined as a unit, must meet marketability and threshold value criteria adopted
by the California State Mining and Geology Board. The criteria vary for different
minerals depending on the following: (1) whether the minerals are strategic or
nonstrategic, (2) the uniqueness or rarity of the minerals, and (3) the commodity-type
category (metallic minerals, industrial minerals, or construction materials) of the minerals.
The State Geologist submits the mineral land classification report to the State Mining and
Geology Board, which transmits the information to appropriate local governments that
maintain jurisdictional authority in mining, reclamation, and related land use activities.
Local governments are required to incorporate the report and maps into their general
plans and consider the information when making land use decisions.

3.5.4 Impacts and Mitigation Measures

3.5.4.1 Methodology

Geological impacts have been evaluated in two ways: (1) impacts of the proposed
Project on the local geologic environment; and (2) impacts of geohazards on components
of the proposed Project, that may result in substantial damage to structures or
infrastructure or expose people to substantial risk of injury. Impacts would be considered
significant if the proposed Project meets any of the significance criteria listed in
Section 3.5.4.2.

3.5.4.1.1 CEQA Baseline

Section 15125 of the CEQA Guidelines requires EIRs to include a description of the
physical environmental conditions in the vicinity of a project that exist at the time of the
NOP. These environmental conditions would normally constitute the baseline physical
conditions by which the CEQA lead agency determines whether an impact is significant.
For purposes of this Recirculated Draft EIS/EIR, the CEQA baseline for determining the
significance of potential Project impacts is the environmental setting prior to March 2001,
pursuant to the ASJ described in Chapter 1, Section 1.4.3. The CEQA baseline for this
proposed Project includes 45,135 TEUs/year that occurred on the Project site in the year
prior to March 2001.

The CEQA baseline represents the setting at a fixed point in time and differs from the No
Project Alternative (discussed in Section 2.5) in that the No Project Alternative addresses
what is likely to happen at the site over time, starting from the existing conditions. The
No Project Alternative allows for growth at the Project site that could be expected to
occur without additional approvals.

3.5.4.1.2 NEPA Baseline

For purposes of this Recirculated Draft EIS/EIR, the evaluation of significance under
NEPA is defined by comparing the proposed Project or other alternative to the NEPA
baseline. To ensure a full analysis of the impacts associated with Phases I through III, the
NEPA baseline does not include the dredging required for the Berth 100 wharf, the
existing bridge across the Southwest Slip, or the 1.3 acres of fill constructed as part of
Phase I (i.e., the Project site conditions are considered without the in-water Phase I
activities and structures). The NEPA baseline condition for determining significance of
impacts includes the full range of construction and operational activities the applicant
could implement and is likely to implement absent a permit from the USACE. The
NEPA baseline for this project is not fixed. The NEPA baseline includes construction
and operation of backlands container operations on as much as 117 acres but does not include wharves, dredging, and improvements that would require federal permits. The NEPA baseline assumes upland development of 117 acres, which is greater than the 2001 baseline conditions. In addition, the NEPA baseline would store or manage up to 632,500 TEUs onsite, but no annual ships calls are included in the NEPA baseline (see Section 2.6.2 for further information).

Unlike the CEQA baseline, which is defined by conditions at a point in time, the NEPA baseline is not bound by statute to a “flat” or “no-growth” scenario. Therefore, the USACE could project increases in operations over the life of a project to properly describe the NEPA baseline condition. Normally, any ultimate permit decision would focus on direct impacts of the proposed Project to the aquatic environment, as well as indirect and cumulative impacts in the uplands determined to be within the scope of federal control and responsibility. Significance of the proposed Project or alternative is defined by comparing the proposed Project or alternative to the NEPA baseline (i.e., the increment). The NEPA baseline conditions are described in Section 2.1.

The NEPA baseline also differs from the No Project Alternative, under which the Port would take no further action to construct and develop additional backlands (other than the 72 acres that currently are developed). Under the No Project Alternative, no construction would occur other than the Phase I construction. However, the abandonment of the existing bridge and 1.3 acres of fill, as well as removal of the four A-frame cranes built as part of Phase I, would occur. Forecasted increases in cargo throughput would still occur as greater operational efficiencies are realized.

### 3.5.4.2 Thresholds of Significance

The following significance criteria are based on the Los Angeles CEQA Thresholds (City of Los Angeles, 2006) and are the basis for determining the significance of impacts associated with geology resulting from development of the proposed Project.

Geologic hazard impacts are considered significant if the proposed Project causes or accelerates hazards that would result in substantial damage to structures or infrastructure, or exposes people to substantial risk of injury. Because the region is considered to be geologically active, most projects are exposed to some risk from geologic hazards, such as earthquakes. Geologic impacts are therefore considered significant only if the proposed Project would result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from:

- **GEO-1** Fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure;
- **GEO-2** Tsunamis or seiches;
- **GEO-3** Land subsidence/soil settlement;
- **GEO-4** Expansive soils;
- **GEO-5** Landslides, mudflows; or
- **GEO-6** Unstable soil conditions from excavation, grading, or fill.
In addition, a project would normally have a significant impact on landform alteration or mineral resources if:

GEO-7 One or more distinct and prominent geologic or topographic features would be destroyed, permanently covered, or materially and adversely modified. Such features may include, but not be limited to, hilltops, ridges, hillslopes, canyons, ravines, rock outcrops, water bodies, streambeds, and wetlands.

GEO-8 It resulted in the permanent loss of availability of a known mineral resource of regional, state, or local significance that would be of future value to the region and the residents of the state.

See Section 3.14 (Water Quality) for significance criteria related to erosion.

3.5.4.3 Impacts and Mitigation Measures

The assessment of impacts is based on regulatory controls and on the assumptions that the proposed Project and all alternatives would include the following:

+ The Port will design and construct backland improvements in accordance with Los Angeles Building Code, Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, to minimize impacts associated with seismically induced geohazards. Sections 91.000 through 91.7016 of the Los Angeles Municipal Code regulate construction in backland areas of the Port. These building codes and criteria provide requirements for construction, grading, excavations, use of fill, and foundation work, including type of materials, design, procedures, etc. These codes are intended to limit the probability of occurrence and the severity of consequences from geological hazards. Necessary permits, plan checks, and inspections are also specified. The Los Angeles Municipal Code also incorporates structural seismic requirements of the California Uniform Building Code, which classifies almost all of coastal California (including the Project site) in Seismic Zone 4, on a scale of 1 to 4, with 4 being most severe. The Project engineers shall review the Project plans for compliance with the appropriate standards in the building codes.

+ The Port will design and construct wharf improvements in accordance with MOTEMS and LAHD seismic design and engineering criteria (including recommendations in geotechnical reports that are prepared as part of the design process), to minimize impacts associated with seismically induced geohazards. Such construction shall include, but not be limited to, completion of site-specific geotechnical investigations regarding construction and foundation engineering. Measures pertaining to temporary construction conditions, such as maximum temporary slope gradient, will be incorporated into the design. A licensed geologist or engineer will monitor construction to verify that construction occurs in concurrence with proposed Project design.
3.5.4.3.1 Proposed Project

3.5.4.3.1.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).

There would be a minor increase in the exposure of people and property to seismic hazards relating to current and future baseline conditions. The Berth 97-109 Container Terminal lies in the vicinity of the Palos Verdes Fault zone, and traces of the fault pass beneath the Project area (Figure 3.5-3). Strong-to-intense ground shaking, surface rupture, and liquefaction could occur in these areas, due to the location of the fault beneath the proposed Project area and the presence of water-saturated hydraulic fill. With the exception of ground rupture, similar seismic impacts could occur due to earthquakes on other regional faults. Earthquake-related hazards, such as liquefaction, ground rupture, ground acceleration, and ground shaking cannot be avoided in the Los Angeles region and in particular in the harbor area where the Palos Verdes Fault is present and hydraulic and alluvial fill is pervasive.

The Los Angeles Building Code, Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, regulates construction in backland areas of the Port. These building codes and criteria provide requirements for construction, grading, excavations, use of fill, and foundation work, including type of materials, design, procedures, etc. These codes are intended to limit the probability of occurrence and the severity of consequences from geological hazards, such as earthquakes. Necessary permits, plan checks, and inspections are also specified. The Los Angeles Municipal Code also incorporates structural seismic requirements of the California Uniform Building Code, which classifies almost all of coastal California (including the proposed Project site) in Seismic Zone 4, on a scale of 1 to 4, with 4 being most severe. The proposed Project engineers would review the proposed Project plans for compliance with the appropriate standards in the building codes.

New terminal construction would be designed per the MOTEMS to protect against seismic hazards that could occur. These regulations have recently been drafted by the CSLC and adopted as state law. LAHD standards and specifications would be applied to the seismic design of the proposed Project.

Design objectives for all components of the proposed Project: wharf and backland areas; the two bridges spanning the Southwest Slip; and the relocated Catalina Express Terminal are for them to maintain operation following an OLE and to survive without collapse and provide public safety following a CLE. At the lower-level OLE, structures are expected to suffer minor, nonstructural damage and resume operations immediately after an earthquake. At the higher-level CLE, structural damage is permissible as long as public safety is not jeopardized.
Figure 3.5-3
Palos Verdes Fault Zone - Port of Los Angeles
Berth 97-109
Container Terminal Project EIS/EIR

Approximate Fault Locations:
- 1896 Topography
- Greene & Kennedy (1986)
- Greene & Others (1975)
- Junger & Wagner (1977)
- Randell & Others (1983)
- Woodward-Clyde (1985)
- Zielbauer & Others (1962)
- Earth Mechanics (2001) (approximate)
- Ziony & Others (1974)

Af - Artificial Fill
--- Approximate Geologic Contact
Qal - Recent alluvium
Qpu - Pleistocene terrace deposits and Palos Verdes sand
Qpl - San Pedro sand, Timms Point silt, Lomita marl
Tm - Miocene Monterey shale

Project Boundary

Basemap: Jahns, 1954 (ed.), Geology of Southern California, CDMG Bull. 170
However, as discovered during the 1971 San Fernando earthquake and the 1994 Northridge earthquake, existing building codes are often inadequate to completely protect engineered structures from hazards associated with liquefaction, ground rupture, and large ground accelerations. Consequently, designing new facilities based on existing building codes may not prevent significant damage to structures from a major or great earthquake on the underlying Palos Verdes Fault or any other regional fault. In addition, projects in construction phases are especially susceptible to earthquake damage due to temporary conditions, such as temporary slopes and unfinished structures, which are typically not in a condition to withstand intense ground shaking.

**CEQA Impact Determination**

As discussed above, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by the proposed Project. However, because the proposed Project area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Future construction of new wharves, buildings, bridges, and related infrastructure would occur over multiple years, thus, increasing exposure of people and property during construction to seismic hazards from a major or great earthquake. Such exposure cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

**Mitigation Measures**

There are no mitigation measures available that would reduce impacts below significance associated with seismically induced ground failure.

**Residual Impacts**

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with the incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

**NEPA Impact Determination**

The proposed Project would include the construction of new wharves and backlands that would be susceptible to seismically induced ground shaking, fault rupture, and liquefaction.

Seismic hazards are common to the Los Angeles region and are not increased by the proposed Project. However, because the proposed Project area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Future construction of new wharves, buildings, bridges, and related infrastructure would occur over multiple years, thus, increasing exposure of people and property during construction to seismic hazards from a major or great earthquake. Such exposure cannot be precluded, even with incorporation of modern construction engineering and safety standards.
Mitigation Measures

There are no mitigation measures available that would reduce impacts below significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with the incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

Tsunami Runup

Impact GEO-2a: Construction on the proposed Project in the Port area would expose people and structures to substantial risk involving tsunamis or seiches.

Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the proposed Project area and vicinity. Due to the historic occurrence of earthquakes and tsunamis along the Pacific Rim, placement of any development on or near the shore in Southern California, including the proposed Project site, would always involve some measure of risk of impacts from a tsunami or seiche. Although relatively rare, should a large tsunami or seiche occur, it would be expected to cause some amount of property damage and possibly personal injuries to most on or near-shore locations. As a result, this is considered by LAHD as the average, or normal condition for most on- and near-shore locations in Southern California. Therefore, a proposed Project tsunami- or seiche-related impact would be one that would exceed this normal condition and cause substantial damage and/or substantial injuries. For reasons explained below, under a theoretical maximum worst-case scenario, the proposed Project would likely expose people or property to substantial damage or substantial injuries in the event of a tsunami or seiche.

Since tsunamis and seiches are derived from wave action, the risk of damage or injuries from these events at any particular location is lessened if the location is high enough above sea level, far enough inland, or protected by manmade structures such as dikes or concrete walls. The height of a given site above sea level is either the result of an artificial structure (e.g., a dock or wall), topography (e.g., a hill or slope), or both, and a key variable related to the height of a site location relative to sea level is the behavior of tides. During high tide, for instance, the distance between the site and sea level is less. During low tide, the distance is greater. How high a site must be located above sea level to avoid substantial wave action during a tsunami or seiche depends upon the height of the tide at the time of the event and the height of the potential tsunami or seiche wave. These factors are considered for the proposed Project site, as described below.

The Port is subject to diurnal tides, meaning two high tides and two low tides during a 24-hour day. The average of the lowest water level during low tide periods each day is typically set as a benchmark of 0 feet and is defined as Mean Lower-Low Water level...
(MLLW). For purposes of this discussion, all proposed Project structures and land surfaces are expressed as height above (or below) MLLW. The mean sea level (msl) in the Port is +2.8 feet above MLLW (NOAA, 2005). This height reflects the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch (19 years) and therefore reflects the mean of both high and low tides in the Port. The recently developed Port Complex model described in Section 3.5.2 predicts tsunami wave heights with respect to msl, rather than MLLW, and therefore can be considered a reasonable average condition under which a tsunami might occur. The Port msl of +2.8 feet must be considered in comparing projected tsunami run-up (i.e., amount of wharf overtopping and flooding) to proposed wharf height and topographic elevations, which are measured with respect to MLLW.

Generalized modeling completed by Borrero et al., (2005a) indicates that a large submarine landslide off the southern tip of the Palos Verdes Peninsula could result in 13 feet of runup in the Port of Los Angeles and Port of Long Beach. Such runup may inundate the proposed Project site and potentially cause up to $36 billion direct, indirect, and induced losses in the Port areas.

Most recently and more definitively, a model has been developed specifically for the Los Angeles/Long Beach Port Complex that incorporates consideration of the localized landfill configurations, bathymetric features, and the interaction of the diffraction, reflection, and refraction of tsunami wave propagation, in the predictions of tsunami wave heights (Moffatt and Nichol, 2007) (see tsunami discussion in Appendix J). Based on this study, a reasonable worst-case scenario for generation of a tsunami or seiche in the San Pedro Bay Ports predicts tsunami wave heights of 1.3 to 5.3 feet above msl at the proposed Project site, under both earthquake and landslide scenarios. Incorporating the Port msl of +2.8 feet, the model predicts tsunami wave heights of 4.1 to 8.1 feet above MLLW at the proposed Project site. Because Berths 97-109 are approximately 12 feet above msl and would be built to have a 15-foot finished grade and wharf, localized tsunami-induced flooding would not occur.

While the analysis above considers a reasonable worst-case seismic scenario based on a maximum seismic event, with respect to msl, a theoretical maximum worst-case wave action from a tsunami would result if the single highest tide predicted over the next 40 years at the San Pedro Bay Ports was present at the time of the seismic event. The single highest tide predicted over the next 40 years is 7.3 feet above MLLW. This condition is expected to occur less than 1 percent of the time over this 40-year period. If that very rare condition were to coincide with a maximum tsunami event, the model predicts tsunami wave heights of 8.6 to 12.6 feet above MLLW at the proposed Project site. Because the proposed Project site elevation is approximately 12 feet above msl, localized tsunami-induced flooding up to 0.6 foot (about 7 inches) is possible. To determine the extent of potential impacts due to tsunami-induced flooding, Port structural engineers have determined that Port reinforced concrete or steel structures designed to meet California earthquake protocols incorporated into MOTEMS would be expected to survive complete inundation in the event of a tsunami (Los Angeles Harbor Department, 2006). It is possible that infrastructure damage and/or injury to personnel could occur as a result of complete site inundation.

**Tsunami Probability**

As previously discussed, there is a potential for tsunami-induced flooding under the theoretical maximum worst-case scenario. However, the likelihood of a large tsunami is
very low, given the relatively short duration of construction activity at the proposed Project site.

The most likely worst-case tsunami scenario was based partially on a magnitude 7.6 earthquake on the offshore Santa Catalina Fault. The recurrence interval for a magnitude 7.5 earthquake along an offshore fault in the Southern California Continental Borderland is about 10,000 years. Similarly, the recurrence interval of a magnitude 7.0 earthquake is about 5,000 years and the recurrence interval of a magnitude 6.0 earthquake is about 500 years. However, there is no certainty that any of these earthquake events would result in a tsunami, since only about 10 percent of earthquakes worldwide result in a tsunami. In addition, available evidence indicates that tsunamigenic landslides would be extremely infrequent and occur less often than large earthquakes. This suggests recurrence intervals for such landslide events would be longer than the 10,000-year recurrence interval estimated for a magnitude 7.5 earthquake (Moffatt & Nichol, 2007).

**CEQA Impact Determination**

Designing new facilities based on existing building codes may not prevent substantial damage to structures from coastal flooding. In addition, projects in construction phases are especially susceptible to damage due to temporary conditions, such as unfinished structures, which are typically not in a condition to withstand coastal flooding. Impacts due to tsunamis and seiches are typical for the entire California coastline and would not be increased by construction of the proposed Project. Under the highly unlikely event of the single highest tide predicted over the next 40 years at the San Pedro Bay Ports coinciding with the theoretical maximum worst-case tsunami scenario, there would be a risk of coastal flooding due to tsunamis and seiches. As a result, impacts during the construction phase would be significant under CEQA.

**Mitigation Measures**

**GEO-1: Emergency Response Planning.** The terminal operator shall work with Port engineers and Port police to develop tsunami response training and procedures to assure that construction and operations personnel will be prepared to act in the event of a large seismic event. Such procedures shall include immediate evacuation requirements in the event that a large seismic event is felt at the proposed Project site, as part of overall emergency response planning for the proposed Project.

Such procedures shall be included in any bid specifications for construction or operations personnel, with a copy of such bid specifications to be provided to LAHD, including a completed copy of its operations emergency response plan prior to commencement of construction activities and/or operations.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and LAHD, as outlined in **MM GEO-1**, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations,
substantial damage and/or injury would occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

The proposed Project would include the creation of 2.5 acres of fill at Berth 100, as well as the construction of new wharves, dikes, and backlands, which would be susceptible to tsunamis and seiches. There is a substantial risk of coastal flooding of wharves and associated backland areas due to tsunamis and seiches. Because construction would occur over multiple years, increased exposure of people and property during construction to seismically induced tsunamis or seiches from a major or great earthquake cannot be precluded. Impacts due to tsunamis and seiches are significant under NEPA.

Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury would occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

Subsidence/Soil Settlement

Impact GEO-3a: Construction of the proposed Project would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

Subsidence in the vicinity of the proposed Project, due to previous oil extraction in the Port area, has been mitigated and is not anticipated to adversely affect the proposed Project. However, in the absence of proper engineering, proposed structures could be cracked and warped as a result of saturated, unconsolidated/compressible sediments. However, during Project design, the Project engineer would evaluate the settlement potential in all areas where structures are proposed.

The settlement potential of existing onshore soils would be evaluated through a site-specific geotechnical investigation, which includes subsurface soil sampling, laboratory analysis of samples collected to determine soil compressibility, and an evaluation of the laboratory testing results by a geotechnical engineer. Recommendations of the engineer would be incorporated into the design specifications for the proposed Project, consistent with City design guidelines, including Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and Caltrans. Recommendations for soils subject to settlement typically include overexcavation and recompaction of compressible soils, which would allow for construction of a conventional slab-on-grade; or alternatively, installation of concrete or steel foundation piles through the settlement prone soils, to a depth of competent soils. Such geotechnical engineering would substantially reduce the potential for soil settlement.
and would ensure that construction of the proposed Project would not result in substantial
damage to structures or infrastructure, or expose people to substantial risk of injury.

The settlement potential associated with creation of 2.5 acres of fill at Berth 100 would
similarly be evaluated through a site-specific geotechnical investigation, which includes
sampling of sediments to be placed as fill, as well as sampling of the substrate (harbor
bottom sediments) on which the fill would be placed. Laboratory analysis of samples
would be conducted, under the supervision of a geotechnical engineer, to determine soil
compressibility. Recommendations of the engineer would be incorporated into the design
specifications for the proposed Project, consistent with City design guidelines, including
Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction
with criteria established by LAHD and Caltrans. Recommendations for sediments
subject to settlement typically include placement of excess sediments above final
anticipated grade in order to surcharge (or compress) the underlying, newly placed
sediments. When geotechnical instrumentation indicates that sufficient compaction has
been achieved in the area of newly placed fill, the overburden soil would then be
removed and construction would commence. Such geotechnical engineering would
substantially reduce the potential for soil settlement and would ensure that construction of
2.5 acres of fill would not result in substantial damage to structures or infrastructure, or
expose people to substantial risk of injury.

**CEQA Impact Determination**

Subsidence/soil settlement impacts in backland areas would be less than significant
under CEQA because the Project would be designed and constructed in compliance
with recommendations of a geotechnical engineer, consistent with Sections 91.000
through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria
established by LAHD and Caltrans. Construction of the proposed Project would not
result in substantial damage to structures or infrastructure, or expose people to
substantial risk of injury. Impacts would be less than significant.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no
mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles
Municipal Code, no mitigation would be required and the residual impacts would be
less than significant under CEQA.

**NEPA Impact Determination**

The federal portions of the proposed Project would be limited to wharf, in-water
construction activities (including the creation of 2.5 acres of fill, new wharf
construction, and channel deepening), and limited backland areas (see Section 2.4.3,
Federal Project). Subsidence/soil settlement impacts associated with creation of
2.5 acres of fill would be less than significant under NEPA, with implementation
standard geotechnical engineering, including incorporation of Sections 91.000
through 91.7016 of the Los Angeles Municipal Code and criteria established by
LAHD and Caltrans. Construction of the proposed Project would not result in
substantial damage to structures or infrastructure, or expose people to substantial risk
of injury. Impacts would be less than significant.
**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of standard geotechnical engineering, no mitigation would be required and the residual impacts would be less than significant under NEPA.

**Expansive Soils**

**Impact GEO-4a: Construction of the proposed Project would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.**

Expansive soil may be present in the vicinity of the Berths 97-109 area, the site of the relocated Catalina Express Terminal, and in dredged or imported soils used for proposed Project grading. Expansive soils beneath building foundations could result in cracking and distress of foundations. Existing structures built on these sediments could be cracked and warped by such settlement. However, during the proposed Project design phase, the proposed Project engineer would evaluate the expansion potential associated with onsite soils. The soil expansion potential would be evaluated through a site-specific geotechnical investigation, which includes subsurface soil sampling, laboratory analysis of samples collected to determine soil expansion potential, and an evaluation of the laboratory testing results by a geotechnical engineer. Recommendations of the engineer would be incorporated into the design specifications for the proposed Project, consistent with City design guidelines, including Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD. Recommendations for soils subject to expansion typically include overexcavation and replacement of expansive soils with sandy, nonexpansive soils, which would allow for construction of a conventional slab-on-grade; construction of post-tensioning concrete slabs that can accommodate movement of underlying expansive soils; or alternatively, installation of concrete or steel foundation piles through the expansion prone soils, to a depth of nonexpansive soils. Such geotechnical engineering would substantially reduce the potential for soil expansion and accompanying damage to overlying structures.

**CEQA Impact Determination**

Expansive soil impacts in backland areas would be less than significant under CEQA because the Project would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in compliance with criteria established by LAHD. Construction of the proposed Project would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury. Impacts would be less than significant.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.
Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, no mitigation would be required, and residual impacts would be less than significant under CEQA.

NEPA Impact Determination

The federal portions of the proposed Project would be limited to wharf, in-water construction activities (including the creation of 2.5 acres of fill, new wharf construction, and channel deepening), and limited backland areas (see Section 2.4.3, Federal Project). Expansive soil may be present in dredged or imported soils used for filling the 2.5 acres. Use of expansive soils beneath the foundations of the proposed Project could result in cracking and distress of foundations. However, expansive soil impacts in backland areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD. Construction of the proposed Project would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.

Landslides and Mudslides

Impact GEO-5a: Construction of the proposed Project would not result in or expose people or property to a substantial risk of landslides or mudslides.

The topography in the vicinity of the proposed Project site is flat and not subject to landslides or mudflows.

CEQA Impact Determination

Because the topography in the vicinity of the proposed Project site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.
**NEPA Impact Determination**

Because the topography in the vicinity of the proposed Project site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, no residual impacts would occur under NEPA.

**Unstable Soil Conditions**

**Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavation, but would not expose people or structures to substantial risk.**

Natural alluvial and estuarine deposits, as well as artificial fill consisting of dredged deposits or imported soils, might be encountered during excavations for utility pipeline relocation or for construction of retaining walls, manholes, and other structures. Groundwater is present locally at depths as shallow as 12 feet, and underground utility construction could require excavations to this depth. Materials near and below the shallow groundwater table would be relatively fluid, requiring implementation of standard engineering practices regarding saturated, collapsible soils, such as dredging, dewatering wells, and other special handling procedures to facilitate excavation. For example, dewatering wells would locally increase the depth to groundwater, thus reducing the potential for collapsible soils. Various types of temporary shoring would also be used to stabilize excavations with saturated, collapsible soils. Such engineering practices would be implemented where necessary.

See Section 3.7 (Groundwater and Soils) regarding potential soil and/or groundwater contamination in construction excavations.

**CEQA Impact Determination**

With the implementation of standard engineering practices regarding saturated, collapsible soils, people and structures would not be exposed to substantial adverse effects from the proposed Project, and impacts associated with shallow groundwater would be less than significant under CEQA.

**Mitigation Measures**

Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

**Residual Impacts**

Due to implementation of standard engineering practices regarding saturated, collapsible soils, no mitigation is required, and residual impacts would be less than significant under CEQA.
NEPA Impact Determination

The federal portion of the proposed Project would be limited to wharf, in-water construction activities (including the creation of 2.5 acres of fill, new wharf construction, and channel deepening), and limited backland areas (see Section 2.4.3, Federal Project). Due to implementation of standard engineering practices regarding saturated, collapsible soils, people and structures would not be exposed to substantial adverse effects from the proposed Project and impacts associated with shallow groundwater would be less than significant under NEPA.

Mitigation Measures

Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

Residual Impacts

With implementation of standard engineering practices regarding saturated, collapsible soils, there would be less than significant residual impacts under NEPA.

Prominent Geologic and Topographic Features

Impact GEO-7a: Construction of the proposed Project would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

Since the proposed Project area is relatively flat, with no prominent geologic or topographic features, proposed Project construction would not result in any distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination

Because the topography in the vicinity of the proposed Project site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures

Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

Because the topography in the vicinity of the proposed Project site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures

Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

Mineral Resources

Impact GEO-8a: Construction of the proposed Project would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

With respect to aggregate potential, the proposed Project site is located in MRZ-1, which is defined as an area where adequate information indicates that no significant mineral deposits are present or where it is judged that little likelihood exists for their presence.

CEQA Impact Determination

The Project site does not contain mineral resources. Therefore, the proposed Project would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Project site does not contain mineral resources. Therefore, the proposed Project would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.
3.5.4.3.1.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

There would be a minor increase in the exposure of people and property to seismic hazards relative to current and future baseline conditions. The Berth 97-109 Container Terminal lies in the vicinity of the Palos Verdes Fault zone, and traces of the fault pass beneath the Project area (Figure 3.5-1). Strong-to-intense ground shaking, surface rupture, and liquefaction could occur in these areas, due to the location of the fault beneath the proposed Project area and the presence of water-saturated hydraulic fill. With the exception of ground rupture, similar seismic impacts could occur due to earthquakes on other regional faults. Earthquake-related hazards, such as liquefaction, ground rupture, ground acceleration, and ground shaking cannot be avoided in the Los Angeles region and in particular in the harbor area where the Palos Verdes Fault is present and hydraulic and alluvial fill is pervasive.

The Los Angeles Building Code, Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, regulates construction in backland areas of the Port. These building codes and criteria provide requirements for construction, grading, excavations, use of fill, and foundation work, including type of materials, design, procedures, etc. These codes are intended to limit the probability of occurrence and the severity of consequences from geological hazards, such as earthquakes. Necessary permits, plan checks, and inspections are also specified. The Los Angeles Municipal Code also incorporates structural seismic requirements of the California Uniform Building Code, which classifies almost all of coastal California (including the proposed Project site) within Seismic Zone 4, on a scale of 1 to 4, with 4 being most severe. The proposed Project engineers would review the proposed Project plans for compliance with the appropriate standards in the building codes.

Design objectives for wharf and backland areas and the two bridges are for the proposed Project to remain operational following an OLE and to survive without collapse and provide public safety following a CLE. At the lower-level OLE, structures are expected to suffer minor, nonstructural damage and resume operations immediately after an earthquake. At the higher-level CLE, structural damage is permissible as long as public safety is not jeopardized.

However, as discovered during the 1971 San Fernando earthquake and the 1994 Northridge earthquake, existing building codes are often inadequate to completely protect engineered structures from hazards associated with liquefaction, ground rupture, and large ground accelerations. Consequently, designing new facilities based on existing building codes may not prevent significant damage to structures from a major or great earthquake on the underlying Palos Verdes Fault or any other regional fault.

CEQA Impact Determination

As discussed above, seismic activity along the Palos Verdes fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or
other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by the proposed Project. However, because the proposed Project area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

Mitigation Measures

There are no mitigation measures associated with seismically induced ground failure available that would reduce impacts below significance.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination

The federal portion of the proposed Project would include the construction of new wharves and limited backland areas (see Section 2.4.3, Federal Project) that would be susceptible to seismically induced ground shaking, fault rupture, and liquefaction. Seismic hazards are common to the Los Angeles region and are not increased by the proposed Project. However, because the proposed Project area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under NEPA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.
Tsunamis and Seiches

Impact GEO-2b: Proposed Project operations within the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches within the proposed Project area and vicinity.

The discussion of Impact GEO-2a, above, sets forth the probability and anticipated magnitude of a tsunami at the proposed Project site. As discussed for Impact GEO-2a, designing new facilities based on existing building codes may not prevent substantial damage to structures from coastal flooding. Impacts due to seismically induced tsunamis and seiches are typical for the entire California coastline and would not be increased by operation of the proposed Project. However, because the proposed Project elevation is located approximately 12 feet above msl and would be built to have a 15-foot finished grade and wharf, there is a substantial risk of coastal flooding in the event of a tsunami and seiche.

For onsite personnel, the risk of tsunami or seiches is a part of any ocean-shore interface and hence personnel working at the proposed Project berths cannot avoid some risk of exposure. Similarly, berth infrastructure and cargo/containers would be subject to some risk of exposure. Although initial tsunami induced run-up would potentially cause substantial injury and damage to infrastructure and cargo, the drawdown of the water after run-up exerts the often crippling opposite drags on the persons and structures and washes loose/broken properties and debris to sea. The floating debris brought back on the next onshore flow has been found to be a significant cause of extensive damage after successive run-up and drawdown. Similarly, for vessels, the risk of tsunami or seiches is a part of any ocean-shore interface and hence vessels in transit or at berth cannot avoid some risk of exposure. A vessel destined for the proposed Project berths (or any berth in the Port) would be under its own power and have one or more tugs in attendance. Under this circumstance, the vessel would likely be able to maneuver to avoid damage as it would with any ocean wave. The exposure of a tsunami or seiche to a vessel in transit to or from the proposed Project berth, and the associated risk, is no different than for any other vessel entering the Port complex.

Port engineers have indicated that currents moving over 5 meters per second (m/s) could potentially render a ship out of control (Morgan, 2006). Modeling indicates that tsunami-related currents created as a result of a large earthquake on the Santa Catalina Fault or submarine landslide off the coast of the nearby Palos Verdes Peninsula would not create currents in the Port in excess of 5 m/s. Highest anticipated current speeds of 2 m/s would occur in the vicinity of Pier 400 and the entrance to the main channel. Currents in the vicinity of the Vincent Thomas Bridge (less than 500 feet south of the proposed Project area) would be approximately 0.9 m/s (Moffatt and Nichol, 2007).

A vessel docked at one of the proposed Project berths would be subject to the rising and falling of the water levels and the accompanying currents during a tsunami or seiche. Two scenarios could arise. Either the vessel would stay secured to the berth and ride out the tsunami, or the motion during a tsunami would cause the mooring lines of the vessel to break free and the vessel would be set adrift. In the first scenario, the energy of the tsunami wave would be transmitted through the vessel that is moored at berth and into the wharf. Forces transmitted through the vessel would be transferred to the fendering system of the wharf and then to the wharf structure.
The existing wharf fendering systems are designed with the assumption that, under a normal docking scenario, a berthing vessel will contact only one fender. For such scenarios, each fender is designed to absorb the berthing energy of the entire vessel. During a tsunami occurrence, the wave is assumed to move the vessel against more than one of the existing fenders, so that the vessel would be contacting a minimum of four to five fenders, often simultaneously. In such cases, the forces experienced by each fender during a tsunami are often less than the standard docking forces that the fendering system is designed because more than one fender would absorb these forces at the same time. Therefore, substantial damage is not expected to the vessel or the wharf in the event that a tsunami was to strike while a vessel was secured at a berth.

Under the second scenario, a vessel set adrift in the Port area could have more serious consequences from the potential of collision, including a potential hull breach and possible fuel spill. This scenario is examined in Section 3.8, Hazards and Hazardous Materials.

**CEQA Impact Determination**

Designing new facilities based on existing building codes may not prevent substantial damage to structures from coastal flooding. Impacts due to seismically induced tsunamis and seiches are typical for the entire California coastline and would not be increased by construction and operation of the proposed Project. However, because the proposed Project elevation is located 12 feet above msl, there is a substantial risk of coastal flooding due to tsunamis and seiches. As described above, impacts from the theoretical maximum worst-case wave action would be significant for the site under CEQA.

**Mitigation Measures**

**MM GEO-1** shall be applied to the CEQA project impact determination to reduce tsunami and seiche-related impacts.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and LAHD, as outlined in **MM GEO-1**, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

**NEPA Impact Determination**

There is a substantial risk of coastal flooding of wharves and associated backland areas due to tsunamis and seiches. The federal portions of the proposed Project would result in new wharf construction and a 2.5-acre increase in fill at Berth 100, as well as limited backland areas (see Section 2.4.3, Federal Project). Because operations would occur over an extended period (through at least 2045), increased exposure of people and property during operations to seismically induced tsunamis or seiches from a major or great earthquake cannot be precluded. As described above, impacts from the theoretical maximum worst-case wave action would be significant for the site under NEPA.
Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

Subsidence/Soil Settlement

Impact GEO-3b: Operation of the proposed Project would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

As discussed for Impact GEO-3a, subsidence in the proposed Project vicinity, due to previous oil extraction in the Port area, has been mitigated and is not anticipated to adversely affect the proposed Project. However, in the absence of proper engineering, proposed structures could be cracked and warped during proposed Project operations as a result of saturated, unconsolidated/compressible sediments. However, during the proposed Project design phase, the proposed Project engineer would evaluate the settlement potential in all areas where structures are proposed. The soil settlement potential would be evaluated during the construction phase, as discussed for Impact GEO-3a, to reduce the potential for soil settlement.

CEQA Impact Determination

The Project would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Thus, subsidence/soil settlement in backland areas would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury. Impacts would be less than significant under CEQA.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, resulting in no required mitigation, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

New wharf construction, the proposed 2.5-acre fill at Berth 100, and limited backland areas (see Section 2.4.3, Federal Project) would take place under the proposed Project.
With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and Caltrans, these activities would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury. Subsidence/soil settlement impacts would be less than significant under NEPA.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of standard geotechnical engineering, these activities would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury. Subsidence/soil settlement impacts would be less than significant under NEPA.

**Expansive Soils**

**Impact GEO-4b: Operation of the proposed Project would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.**

As described in Impact GEO-4a, expansive soil may be present in the vicinity of the Berth 97-109 area and may be present in dredged or imported soils used for proposed Project grading. Use of expansive soils beneath proposed Project foundations could result in cracking and distress of foundations during proposed Project operations. However, during the design phase, the proposed Project engineer would evaluate the expansion potential associated with onsite soils, as described in Impact GEO-4a, to reduce the potential for soil expansion and damage to overlying structures.

**CEQA Impact Determination**

The Project would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code and in conjunction with criteria established by LAHD. Thus, expansive soil would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury and impacts in backland areas would be less than significant under CEQA.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, the residual impacts would be less than significant under CEQA.

**NEPA Impact Determination**

The federal portions of the proposed Project would be limited to wharf and in-water construction activities, as well as limited backland areas (see Section 2.4.3, Federal Project). Expansive soil may be present in dredged or imported soils used for filling 2.5 acres at Berth 100. Use of expansive soils beneath the proposed Project’s foundations could result in cracking and distress of foundations. However, with
implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD, expansive soils would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury. Expansive soil impacts in backland areas would be less than significant under NEPA.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, the residual impacts would be less than significant under NEPA.

**Landslides and Mudslides**

**Impact GEO-5b:** Operation of the proposed Project would not result in or expose people or property to a substantial risk of landslides or mudslides.

The topography in the vicinity of the proposed Project site is flat and not subject to landslides or mudflows.

**CEQA Impact Determination**

Because the topography in the vicinity of the proposed Project site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary under CEQA.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under CEQA.

**NEPA Impact Determination**

Because the topography in the vicinity of the proposed Project site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under NEPA.
Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on proposed Project operations and would not expose people or structures to substantial risk.

No excavations would be completed as a part of proposed Project operations; therefore, onsite soils would not be subject to collapse or caving.

CEQA Impact Determination

Excavations would not take place as a part of proposed Project operations; therefore, impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts

With no mitigation required, there would be no residual impacts associated with collapsible soils under CEQA.

NEPA Impact Determination

Excavations would not take place as a part of proposed Project operations; therefore, impacts associated with collapsible soils would not occur under NEPA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required under NEPA.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Prominent Geologic and Topographic Features

Impact GEO-7b: Operation of the proposed Project would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

Since the proposed Project area is relatively flat, with no prominent geologic or topographic features, proposed Project operations would not result in any distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination

Because the topography in the vicinity of the proposed Project site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.
Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because the topography in the vicinity of the proposed Project site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures
Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8b: Operation of the proposed Project would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

The proposed Project site is located in MRZ-1, which is defined as an area where adequate information indicates that no significant mineral deposits are present or where it is judged that little likelihood exists for their presence. With respect to petroleum resources, the proposed Project site is located adjacent to, but outside, the Wilmington Oil Field.

CEQA Impact Determination
The Project site does not contain mineral resources. Therefore, operation of the proposed Project would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination
The Project site does not contain mineral resources. Therefore, the proposed Project would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.
Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under NEPA.

Residual Impacts
With no mitigation required, the residual impacts would be less than significant under NEPA.

3.5.4.3.2 Alternatives

3.5.4.3.2.1 Alternative 1 – No Project Alternative
Alternative 1 would utilize the terminal site, as constructed under Phase I of the proposed Project, for container storage. Thus, impacts associated with construction of the 72 acres of backlands and in-water elements would be assessed under Alternative 1 although the in-water elements would be abandoned in place. No additional Port action or federal action would occur, and the Port would not take further actions to construct or develop additional backlands. Furthermore, the four existing A-frame cranes would be removed, and the existing wharf at Berth 100 would cease to be used for ship berthing or container loading and unloading operations. The 1.3 acres of fill added to waters of the U.S. during Phase I, as allowed under the ASJ and under USACE permit, would be abandoned in place under Alternative 1. The 72 acres of backland area would be used for storage of containers by Berths 121-131. The Catalina Express Terminal would not be relocated under Alternative 1.

3.5.4.3.2.1.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, would not expose people and structures to substantial risk.

CEQA Impact Determination
As discussed with respect to the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, has the potential to produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure at the terminal site. Phase I activities included construction of Berth 100, the placement of 1.3 acres of fill, installation of dockside cranes, placement of a bridge over the Southwest Slip, and development of 72-acres of backlands. These improvements were completed in 2003. No seismic event occurred during the construction period; therefore, seismic-related impacts under CEQA due to seismically induced ground failure did not occur.

Mitigation Measures
No impacts due to seismically induced ground failure would occur under CEQA; thus, mitigation measures are not required.
Residual Impacts
Residual impacts would not occur.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.

Residual Impacts
No residual impacts would occur.

Tsunamis and Seiches

Impact GEO-2a: Tsunamis and seiches would not expose people and structures to substantial risk.

CEQA Impact Determination
As discussed with respect to the proposed Project, the Port would potentially be subject to inundation by a large tsunami as a result of an offshore earthquake or landslide. The improvements made under this alternative were completed in 2003; however, no tsunami occurred during the construction period. Therefore, Alternative 1 would not result in tsunami-related impacts to construction.

Mitigation Measures
No mitigation is required.

Residual Impacts
No residual impacts would occur.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.

Residual Impacts
No residual impacts would occur.
Subsidence/Soil Settlement

Impact GEO-3a: Subsidence/soil settlement would not expose people and structures to substantial risk.

CEQA Impact Determination

Development of the backlands and other infrastructure during Phase I under this alternative was completed in 2003. All facilities were designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. During construction activities, subsidence or soil settlement that could have exposed people and structures to risk did not occur. Therefore, Alternative 1 would not result in impacts related to subsidence and soil settlement.

Mitigation Measures
No mitigation measures are required.

Residual Impacts
Residual impacts would not occur.

Expansive Soils

Impact GEO-4a: Expansive soil would not expose people and structures to substantial risk.

CEQA Impact Determination

Development of the backlands and other infrastructure during Phase I under this alternative was completed in 2003. All facilities were designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. During construction activities, expansive soil conditions that could have exposed people and structures to risk did not occur. Therefore, Alternative 1 would not result in impacts related to expansive soils.
Mitigation Measures
No mitigation measures are required.

Residual Impacts
Residual impacts would not occur.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.

Residual Impacts
There would be no residual impacts.

Landslides and Mudslides

Impact GEO-5a: Landslides and mudslides would not expose people and structures to substantial risk.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 1 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures
No mitigation measures are required.

Residual Impacts
Residual impacts would not occur.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.

Residual Impacts
No residual impacts would occur.
Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavation, but would not expose people or structures to substantial risk.

CEQA Impact Determination
There are no known unstable soil conditions on the Project site, and backlands were designed in accordance with all applicable geotechnical studies and pertinent design standards and specifications for the site. Thus, no impacts due to unstable soil conditions would occur under CEQA.

Mitigation Measures
No mitigation measures are required.

Residual Impacts
Residual impacts would not occur.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.

Residual Impacts
There would be no residual impacts.

Prominent Geologic and Topographic Features

Impact GEO-7a: The No Project Alternative would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 1 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
In the absence of impacts to prominent geologic or topographic features, mitigation measures are not required.

Residual Impacts
Residual impacts would not occur.
NEPA Impact Determination

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures

Because there would be no federal action, no mitigation measures would be required.

Residual Impacts

There would be no residual impacts.

Mineral Resources

Impact GEO-8a: The No Project Alternative would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The terminal site does not contain significant mineral resources. Therefore, Alternative 1 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state, and no impacts would occur under CEQA.

Mitigation Measures

In the absence of impacts to the availability of any mineral resource of regional, statewide, or local significance, mitigation measures are not required.

Residual Impacts

Residual impacts would not occur.

NEPA Impact Determination

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures

Because there would be no federal action, no mitigation measures would be required.

Residual Impacts

There would be no residual impacts.
### 3.5.4.3.2.1.2 Operation Impacts

#### Seismicity

**Impact GEO-1b:** Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk.

Earthquake-related hazards at the Project site under the No Project Alternative would be similar to those described above for the proposed Project. Under Alternative 1, no further development of backlands would occur in the Project area, the four existing A-frame cranes would be removed, and the existing wharves at Berth 100 would cease to be used for ship berthing and container loading/unloading operations. The bridge spanning the Southwest Slip, also constructed during Phase I, would be abandoned in place. This alternative would continue to expose people to substantial risks associated with the geologic environment. These impacts would be less than those described for the proposed Project because the level of development and amount of infrastructure susceptible to seismically induced ground failure would be reduced.

**CEQA Impact Determination**

As discussed with respect to the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by the No Project Alternative. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Continued exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

**Mitigation Measures**

No mitigation measures associated with seismically induced ground failure are available that would reduce impacts below a level of significance.

**Residual Impacts**

Impacts due to seismically induced ground failure under Alternative 1 would be significant and unavoidable, which is the same as for the proposed Project.

**NEPA Impact Determination**

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

**Mitigation Measures**

Because there would be no federal action, no mitigation measures would be required.
Residual Impacts
There would be no residual impacts.

Tsunamis and Seiches

Impact GEO-2b: Operations under the No Project Alternative in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the West Basin area.

Risks of seismically induced tsunamis and seiches are typical for the entire California coastline and would not be increased by the No Project Alternative. Because this alternative would result in the storage of containers from the Yang Ming Terminal on 72 acres of backlands, this alternative would continue to expose people to substantial risks associated with tsunamis and seiches. However, impacts would be less than those described for the proposed Project because less development and infrastructure would be susceptible to seismically induced ground failure.

As discussed for Impact GEO-2a for the proposed Project, existing infrastructure may be subject to substantial damage from coastal flooding as a result of a large tsunami or seiche. Because Berths 97-109 are approximately 12 feet above msl, there is a substantial risk of coastal flooding due to tsunamis and seiches.

CEQA Impact Determination
The No Project alternative would continue to expose people and property to flooding from tsunamis and seiches. Therefore, impacts due to tsunamis and seiches are significant under CEQA.

Mitigation Measures
GEO-1: Emergency Response Planning. The terminal operator shall work with Port engineers and Port police to develop tsunami response training and procedures to assure that construction and operations personnel will be prepared to act in the event of a large seismic event. Such procedures shall include immediate evacuation requirements in the event that a large seismic event is felt at the Project site, as part of overall emergency response planning for Alternative 1.

Such procedures shall be included in any bid specifications for construction or operations personnel, with a copy of such bid specifications to be provided to LAHD, including a completed copy of its operations emergency response plan prior to commencement of construction activities and/or operations.

Residual Impacts
Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations,
substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

**NEPA Impact Determination**

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

**Mitigation Measures**

Because there would be no federal action, no mitigation measures would be required.

**Residual Impacts**

There would be no residual impacts.

**Subsidence/Soil Settlement**

**Impact GEO-3b:** Operations under the No Project Alternative would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

As discussed for Impact GEO-3a, subsidence in the vicinity of West Basin, due to previous oil extraction in the Port area, has been mitigated and is not anticipated to adversely affect the site. Because construction would not occur in association with the No Project Alternative, impacts related to cracking and warping of structures during operations as a result of saturated, unconsolidated/compressible sediments would not occur.

**CEQA Impact Determination**

Because subsidence in the vicinity of West Basin, due to previous oil extraction in the Port area, has been mitigated and is not anticipated to adversely affect the site, impacts would be less than significant from past actions.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts.

**NEPA Impact Determination**

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

**Mitigation Measures**

Because there would be no federal action, no mitigation measures would be required.
Residual Impacts

There would be no residual impacts.

Expansive Soils

Impact GEO-4b: Operations under the No Project Alternative would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

All facilities were designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans.

CEQA Impact Determination

All facilities were designed and constructed according to appropriate standards and specifications. During the operation phase of the No Project Alternative, impacts related to cracking and warping of structures as a result of expansive soils would not occur.

Mitigation Measures

Because no expansive soil impacts would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures

Because there would be no federal action, no mitigation measures would be required.

Residual Impacts

There would be no residual impacts.

Landslides and Mudslides

Impact GEO-5b: Operations under the No Project Alternative would not result in or expose people or property to a substantial risk of landslides or mudslides.

The topography in the vicinity of the site is flat and not subject to landslides or mudflows.

CEQA Impact Determination

Because the topography in the vicinity of the site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.
Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.

Residual Impacts
There would be no residual impacts.

Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on operations under the No Project Alternative and would not expose people or structures to substantial risk.

There are no known unstable soil conditions on the project site, and all backlands were designed and developed in accordance with the applicable geotechnical studies for the site.

CEQA Impact Determination
Unstable soil conditions do not exist at the project site, and no impacts associated with collapsible soils would occur under CEQA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts associated with collapsible soils under CEQA.

NEPA Impact Determination
The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures
Because there would be no federal action, no mitigation measures would be required.
Residual Impacts

There would be no residual impacts.

Prominent Geologic and Topographic Features

Impact GEO-7b: Operations under the No Project Alternative would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

Because the Project area is relatively flat with no prominent geologic or topographic features, operations under the No Project Alternative would not result in any distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination

Because the topography in the vicinity of the site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures

Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures

Because there would be no federal action, no mitigation measures would be required.

Residual Impacts

There would be no residual impacts.

Mineral Resources

Impact GEO-8b: Operations of the No Project Alternative would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

With respect to aggregate potential, the Alternative 1 site is located in MRZ-1, which is defined as an area where adequate information indicates that no significant mineral deposits are present or where it is judged that little likelihood exists for their presence. With respect to petroleum resources, the Alternative 1 site is located adjacent to, but outside of, the Wilmington Oil Field.
CEQA Impact Determination

The Project site does not contain mineral resources. Therefore, operations under the No Project Alternative would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action alternative (see Alternative 2 in this document).

Mitigation Measures

Because there would be no federal action, no mitigation measures would be required.

Residual Impacts

There would be no residual impacts.

3.5.4.3.2.2 Alternative 2 – No Federal Action Alternative

Alternative 2 would utilize the terminal site constructed as part of Phase I for container storage and would increase the backland area (during Phase II) to 117 acres. Because of this, Phase I construction activities are included under Alternative 2 although the in-water elements would not be used. The Phase I dike, fill, and wharf would be abandoned in place. Under Alternative 2, the Port would further develop the area of backlands to 117 acres. This action by the Port would not be a federal action or require federal approval. The four existing A-frame cranes would be removed, and the existing wharf at Berth 100 would cease to berth ships or accommodate container loading/unloading operations. The bridge constructed during Phase I would be abandoned and the 1.3 acres of fill added to waters of the U.S. during construction of Phase I of the proposed Project, as allowed under the ASJ and under USACE permit, would be abandoned in place.

Alternative 2 would not require relocation of the Catalina Express Terminal.
3.5.4.3.2.2.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).

As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure under Alternative 2. Seismic hazards are common to the Los Angeles region and are not increased by this alternative. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts.

CEQA Impact Determination

With the exception of 45 acres of backlands that would be developed in Phase II of construction, all facilities were constructed during Phase I. Those facilities involving in-water construction (wharves of Berth 100, fill, and the bridge over the Southwest Slip) would be abandoned in place under Alternative 2. The A-frame cranes installed under Phase I would be removed. Seismic impacts associated with Phase I activities of the No Federal Action alternative (Alternative 2) did not occur. However, because development of new backlands would occur, increased exposure of people and property to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

Mitigation Measures

No mitigation measures are available that would reduce impacts associated with seismically induced ground failure below a level of significance.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with the incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.
Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.

Tsunami Runup

Impact GEO-2a: Alternative 2 construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in West Basin and vicinity.

CEQA Impact Determination

As discussed with respect to the proposed Project, the Port would potentially be subject to inundation by a large tsunami as a result of an offshore earthquake or landslide. Most of the improvements made under Alternative 2 were completed in 2003. During this construction period no tsunami or related seismic activity occurred that exposed people or structures to risk. However, an additional 45 acres of backlands would be developed during Phase II, and people and structures could be exposed to risk from tsunamis and related seismic activity. Therefore, impacts during the construction phase of Alternative 2 would be significant under CEQA.

Mitigation Measures

MM GEO-1 shall be applied to the CEQA components of the project to reduce tsunami- and seiche-related effects.

Residual Affects

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.
Residual Impacts

No residual impacts would occur under NEPA.

Subsidence/Soil Settlement

Impact GEO-3a: Alternative 2 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Development of the backlands and other infrastructure during Phase I under Alternative 2 was completed in 2003. All facilities were designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. During construction activities, subsidence or soil settlement that could have exposed people and structures to risk did not occur. It is not likely that such impacts would occur during backlands development during Phase II construction. Alternative 2 would not result in substantial damage to structures or infrastructure or expose people to substantial risk of injury as a result of subsidence or soil settlement. Impacts would be less than significant.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code resulting in no required mitigation, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.
Expansive Soils

Impact GEO-4a: Alternative 2 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination
Development of the backlands and other infrastructure during Phase I under Alternative 2 was completed in 2003. All facilities were designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code and in conjunction with criteria established by LAHD and Caltrans. During construction activities, expansive soil conditions that could have exposed people and structures to risk did not occur. Future backlands development would be conducted according to all pertinent standards and specifications; therefore, Alternative 2 would not result in substantial damage to structures or infrastructure or expose people to substantial risk of injury from expansive soils. Impacts would be less than significant.

Mitigation Measures
Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts
With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, resulting in no required mitigation, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination
Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures
No mitigation measures are necessary under NEPA.

Residual Impacts
No residual impacts would occur under NEPA.
Landslides and Mudslides

Impact GEO-5a: Alternative 2 construction would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination

Because the topography in the vicinity of the Alternative 2 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.

Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavations, but would not expose people or structures to substantial risk.

CEQA Impact Determination

No known unstable soil conditions are on the Project site, and backlands constructed in Phase I were designed in accordance with all applicable geotechnical studies and pertinent design standards and specifications for the site. Future backlands will be developed according to the same requirements; thus, impacts due to unstable collapsible soils would not occur under CEQA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required.
Residual Impacts
No residual impacts would occur under CEQA.

NEPA Impact Determination
Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures
No mitigation measures are necessary under NEPA.

Residual Impacts
No residual impacts would occur under NEPA.

Prominent Geologic and Topographic Features
Impact GEO-7a: Alternative 2 construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because the topography in the vicinity of the Alternative 2 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Under this alternative, no development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures
No mitigation measures are necessary under NEPA.
Residual Impacts

No residual impacts would occur under NEPA.

Mineral Resources

Impact GEO-8a: Alternative 2 site construction would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The Alternative 2 site does not contain significant mineral resources. Therefore, Alternative 2 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

No residual impacts would occur under CEQA.

NEPA Impact Determination

Under this alternative, no development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.

3.5.4.3.2.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

Earthquake-related hazards at the Project site under the No Federal Action alternative (Alternative 2) would be similar to those described above for the proposed Project. Under Alternative 2, further development of backlands would occur in the Project area.
during Phase 2. However, the four existing A-frame cranes would be removed, and the
existing wharves at Berth 100 would cease to be used for ship berthing and container
loading/unloading operations. The bridge spanning the Southwest Slip, also constructed
during Phase I, would be abandoned in place. Alternative 2 would continue to expose
people to substantial risks associated with the geologic environment. These impacts
would be less than those described for the proposed Project because the level of
development and amount of infrastructure susceptible to seismically induced ground
failure would be reduced.

**CEQA Impact Determination**

As discussed with respect to the proposed Project, seismic activity along the
Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic
ground shaking, liquefaction, or other seismically induced ground failure. Seismic
hazards are common to the Los Angeles region and are not increased by the No
Project Alternative. However, because the site is potentially underlain by strands of
the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a
substantial risk of seismic impacts. Continued exposure of people and property
during operations to seismic hazards from a major or great earthquake cannot be
precluded, even with incorporation of modern construction engineering and safety
standards. Therefore, impacts due to seismically induced ground failure are
significant under CEQA.

**Mitigation Measures**

No mitigation measures associated with seismically induced ground failure are
available that would reduce impacts below a level of significance.

**Residual Impacts**

Design and construction in accordance with applicable laws and regulations
pertaining to seismically induced ground movement would minimize structural
damage in the event of an earthquake. However, increased exposure of people and
property during operations to seismic hazards from a major or great earthquake
cannot be precluded even with incorporation of modern construction engineering and
safety standards. Therefore, impacts due to seismically induced ground failure would
remain significant and unavoidable.

**NEPA Impact Determination**

Under this alternative, no further development would occur in the in-water terminal
area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction).
In addition, backland development under Alternative 2 would be the same as under
the NEPA baseline. Therefore, potential impacts under NEPA would not occur
because there would be no net change in environmental conditions between
Alternative 2 and the NEPA baseline.

**Mitigation Measures**

No mitigation measures are necessary under NEPA.

**Residual Impacts**

No residual impacts would occur under NEPA.
Tsunamis and Seiches

Impact GEO-2b: Alternative 2 operations in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the Alternative 2 area and vicinity.

Risks of seismically induced tsunamis and seiches are typical for the entire California coastline and would not be increased by the No Federal Action alternative. Because this alternative would result in the storage of containers from the Yang Ming Terminal on 117 acres of backlands, this alternative would continue to expose people to substantial risks associated with tsunamis and seiches. However, impacts would be less than those described for the proposed Project because less development and infrastructure would be susceptible to seismically induced ground failure.

CEQA Impact Determination

The No Project alternative would continue to expose people and property to flooding from tsunamis and seiches. Therefore, impacts during the operations phase of Alternative 2 would be significant under CEQA.

Mitigation Measures

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.
Subsidence/Soil Settlement

Impact GEO-3b: Alternative 2 operation would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

As discussed for Impact GEO-3a, subsidence in the vicinity of West Basin, due to previous oil extraction in the Port area, has been mitigated and is not anticipated to adversely affect the site. Because construction would not occur in association with Alternative 2, impacts related to cracking and warping of structures during operations as a result of saturated, unconsolidated/compressible sediments would not occur.

CEQA Impact Determination

Because subsidence in the vicinity of West Basin, due to previous oil extraction in the Port area, has been mitigated and is not anticipated to adversely affect the site, impacts would be less than significant from past actions.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.

Expansive Soils

Impact GEO-4b: Alternative 2 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

All facilities were designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. During the operation phase of the No Federal Action alternative, impacts...
related to cracking and warping of structures as a result of expansive soils would not occur.

**CEQA Impact Determination**

Soil expansion impacts would not occur during operations under this alternative because all facilities were designed and constructed according to appropriate standards and specifications. No impacts would occur under CEQA.

**Mitigation Measures**

Because expansive soil impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, residual impacts would not occur under CEQA.

**NEPA Impact Determination**

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

**Mitigation Measures**

No mitigation measures are necessary under NEPA.

**Residual Impacts**

No residual impacts would occur under NEPA.

**Landslides and Mudslides**

**Impact GEO-5b: Alternative 2 operations would not result in or expose people or property to a substantial risk of landslides or mudslides.**

**CEQA Impact Determination**

Because the topography in the vicinity of the Alternative 2 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under CEQA.
NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures
No mitigation measures are necessary under NEPA.

Residual Impacts
No residual impacts would occur under NEPA.

Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on Alternative 2 operations and would not expose people or structures to substantial risk.

No known unstable soil conditions are on the Project site, and all backlands were designed and developed in accordance with the applicable geotechnical studies for the site. Thus, impacts due to unstable soil conditions would not occur under the No Federal Action alternative.

CEQA Impact Determination

Unstable soil conditions do not exist at the project site and impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures
No mitigation measures are necessary under NEPA.

Residual Impacts
No residual impacts would occur under NEPA.
Prominent Geologic and Topographic Features

Impact GEO-7b: Alternative 2 operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because the topography in the vicinity of the Alternative 2 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures
No mitigation measures are necessary under NEPA.

Residual Impacts
No residual impacts would occur under NEPA.

Mineral Resources

Impact GEO-8b: Alternative 2 operations would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination
The Alternative 2 site does not contain significant mineral resources. Therefore, Alternative 2 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

Under this alternative, no further development would occur in the in-water terminal area (i.e., no dredging, dike or fill placement, pile installation, or wharf construction). In addition, backland development under Alternative 2 would be the same as under the NEPA baseline. Therefore, potential impacts under NEPA would not occur because there would be no net change in environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

No residual impacts would occur under NEPA.

3.5.4.3.2.3 Alternative 3 – Reduced Fill: No New Wharf Construction at Berth 102

3.5.4.3.2.3.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).

CEQA Impact Determination

Construction impacts of the Reduced Fill: No New Wharf Construction at Berth 102 Alternative (Alternative 3) would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure susceptible to seismically induced ground failure. In all other respects, Impact GEO-1a would be the same as under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by this alternative. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Existing wharves were constructed to comply with all appropriate and relevant seismic specifications. Future construction of buildings and related infrastructure would occur over multiple years, thus, increasing exposure of people and property during construction to seismic hazards from a major or great earthquake. Such exposure cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.
Mitigation Measures

No mitigation measures are available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 3. Because the West Basin area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because construction would occur over multiple years, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under NEPA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.
Tsunami Runup

Impact GEO-2a: Alternative 3 construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in West Basin and vicinity.

CEQA Impact Determination
Construction impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure being susceptible to inundation. In all other respects, Impact GEO-2a would be the same as under the proposed Project. Therefore, impacts during the construction phase would be significant under CEQA.

Mitigation Measures
MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts
Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination
Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-2a would be the same as under the proposed Project. Therefore, impacts due to tsunamis and seiches during the construction phase would be significant under NEPA.

Mitigation Measures
MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts
Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.
Subsidence/Soil Settlement

Impact GEO-3a: Alternative 3 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Construction impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less area susceptible to subsidence/soil settlement. In all other respects, Impact GEO-3a would be the same as under the proposed Project. Impacts in backland areas would be less than significant under CEQA because Alternative 3 would be designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Construction of Alternative 3 would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. Impacts in backland areas would be less than significant under NEPA because Alternative 3 would be designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Construction of Alternative 3 would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because no subsidence/soil settlement impacts would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.
Expansive Soils

Impact GEO-4a: Alternative 3 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination

Construction impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less area susceptible to expansive soils. In all other respects, Impact GEO-4a would be the same as under the proposed Project. Expansive soil impacts in backland areas would be less than significant under CEQA because Alternative 3 would be designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD. Construction of Alternative 3 would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. Expansive soil may be present in dredged or imported soils used for filling the 2.5 acres. Use of expansive soils beneath the foundations of the proposed Project could result in cracking and distress of foundations. However, expansive soil impacts in backland areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD. Construction of Alternative 3 would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.
Landslides and Mudslides

Impact GEO-5a: Alternative 3 construction would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 3 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 3 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavations, but would not expose people or structures to substantial risk.

CEQA Impact Determination
Construction impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure susceptible to unstable soil conditions. In all other respects, Impact GEO-6a would be the same as under the proposed Project. Therefore, impacts associated with shallow groundwater would be less than significant under CEQA due to implementation of standard engineering practices regarding saturated, collapsible soils.

Mitigation Measures
Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.
**Residual Impacts**

With no mitigation required, the residual impacts would be less than significant under CEQA.

**NEPA Impact Determination**

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. Due to implementation of standard engineering practices regarding saturated, collapsible soils, people and structures would not be exposed to substantial adverse effects from the proposed Project and impacts associated with shallow groundwater would be less than significant under NEPA.

**Mitigation Measures**

Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

**Residual Impacts**

With implementation of standard engineering practices regarding saturated, collapsible soils, there would be less than significant residual impacts under NEPA.

**Prominent Geologic and Topographic Features**

**Impact GEO-7a:** Alternative 3 construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

**CEQA Impact Determination**

Because topography in the vicinity of the Alternative 3 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

**Mitigation Measures**

Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under CEQA.

**NEPA Impact Determination**

Because topography in the vicinity of the Alternative 3 Project site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

**Mitigation Measures**

Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8a: Alternative 3 site construction would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The Alternative 3 site does not contain significant mineral resources. Therefore, Alternative 3 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Alternative 3 site does not contain significant mineral resources. Therefore, Alternative 3 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant impacts to mineral resources would occur under NEPA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.3.2.3.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

CEQA Impact Determination

Operations impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102
would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure susceptible to seismically induced ground failure. In all other respects, \textbf{Impact GEO-1b} would be the same as under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 3. However, because the Alternative 3 site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

\textbf{Mitigation Measures}

There are no mitigation measures associated with seismically induced ground failure available that would reduce impacts below a level of significance.

\textbf{Residual Impacts}

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property to seismic hazards from a major or great earthquake during operations cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

\textbf{NEPA Impact Determination}

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, \textbf{Impact GEO-1b} would be the same as under the proposed Project. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 3. However, because the Alternative 3 area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under NEPA.

\textbf{Mitigation Measures}

There are no mitigation measures available associated with seismically induced ground failure that would reduce impacts below a level of significance.

\textbf{Residual Impacts}

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and
safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

**Tsunamis and Seiches**

**Impact GEO-2b:** Alternative 3 operations in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the Alternative 3 area and vicinity.

**CEQA Impact Determination**

Operations impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure susceptible to inundation. In all other respects, **Impact GEO-2b** would be the same as the proposed Project. Therefore, impacts during the operations phase of Alternative 3 would be significant under CEQA.

**Mitigation Measures**

**MM GEO-1** shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and LAHD, as outlined in **MM GEO-1**, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

**NEPA Impact Determination**

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, **Impact GEO-2b** would be the same as under the proposed Project. Because operations would occur over an extended period (through at least 2045), increased exposure of people and property during operations to seismically induced tsunamis or seiches from a major or great earthquake cannot be precluded. Impacts from the theoretical maximum worst-case tide and wave action would be significant for the site under NEPA.

**Mitigation Measures**

**MM GEO-1** shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in **MM GEO-1**, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and
construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable. Therefore, impacts during the operations phase due to tsunamis and seiches would be significant and unavoidable under NEPA.

Subsidence/Soil Settlement

Impact GEO-3b: Alternative 3 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Operations impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure susceptible to settlement. In all other respects, Impact GEO-3b would be the same as under the proposed Project. Subsidence/soil settlement impacts in backland areas would be less than significant under CEQA because Alternative 3 would be designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Thus, subsidence/soil settlement impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Because Alternative 3 would include less wharf construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-3b would be the same as under the proposed Project.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under NEPA.
Expansive Soils

Impact GEO-4b: Alternative 3 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination

Operations impacts of this alternative would be similar to but less than those identified for the proposed Project because 925 linear feet of wharf at Berth 102 would not be constructed and only five A-frame cranes would be installed, thus resulting in less infrastructure susceptible to soil expansion. In all other respects, Impact GEO-4b would be the same as under the proposed Project. Expansive soil impacts in backland areas would be less than significant under CEQA because Alternative 3 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD. Thus, expansive soil impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

The federal actions of Alternative 3 would be limited to wharf, in-water construction activities (including the creation of 2.5 acres fill, new wharf construction, and channel deepening, and limited backland areas (see Section 2.4.3, Federal Project). Expansive soil may be present in dredged or imported soils used for filling the 2.5 acres. Use of expansive soils beneath the Alternative 3 Project foundations could result in cracking and distress of foundations. However, expansive soil impacts in backland areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.
Landslides and Mudslides

Impact GEO-5b: Alternative 3 operations would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 3 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 3 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on Alternative 3 operations and would not expose people or structures to substantial risk.

CEQA Impact Determination
Because excavations would not be completed as a part of Alternative 3 operations, impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.
NEPA Impact Determination
Because excavations would not be completed as a part of Alternative 3 operations, impacts associated with collapsible soils would not occur under NEPA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Prominent Geologic and Topographic Features
Impact GEO-7b: Alternative 3 operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 3 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 3 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures
Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.
Mineral Resources

Impact GEO-8b: Alternative 3 operations would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The Alternative 3 site does not contain significant mineral resources. Therefore, Alternative 3 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Alternative 3 site does not contain significant mineral resources. Therefore, Alternative 3 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.3.2.4 Alternative 4: Reduced Fill: No South Wharf Extension at Berth 100

3.5.4.3.2.4.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).

CEQA Impact Determination

Seismic impacts of the Reduced Fill: No South Wharf Extension at Berth 100 Alternative (Alternative 4) would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of
Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to seismically induced ground failure. In all other respects, Impact GEO-1a would be the same as under the proposed Project. Impacts due to seismically induced ground failure are significant under CEQA.

Mitigation Measures
There are no mitigation measures associated with seismically induced ground failure available that would reduce impacts below a level of significance.

Residual Impacts
Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination
Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-1a would be the same as under the proposed Project. Impacts due to seismically induced ground failure are significant under NEPA.

Mitigation Measures
There are no mitigation measures associated with seismically induced ground failure available that would reduce impacts below a level of significance.

Residual Impacts
Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.
Tsunamis and Seiches

Impact GEO-2a: Alternative 4 construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in West Basin and vicinity.

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to inundation from tsunamis/seiches. In all other respects, Impact GEO-2a would be the same as under the proposed Project. Therefore, impacts during the construction phase would be significant under CEQA.

Mitigation Measures

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, the proposed 375 linear of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-2a would be the same as under the proposed Project. Impacts due to seismically induced ground failure are significant under NEPA.

Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations,
substantial damage and injury would occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

Subsidence/Soil Settlement

Impact GEO-3a: Alternative 4 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to subsidence/soil settlement. In all other respects, Impact GEO-3a would be the same as under the proposed Project. Impacts would be less than significant under CEQA because Alternative 4 would be designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent, with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-3a would be the same as under the proposed Project. Impacts would be less than significant under NEPA because Alternative 4 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Expansive Soils

Impact GEO-4a: Alternative 4 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to expansive soils. In all other respects, Impact GEO-4a would be the same as under the proposed Project. Expansive soil impacts would be less than significant under CEQA because Alternative 4 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-4a would be the same as under the proposed Project. Expansive soil impacts would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.
Residual Impacts

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.

Landslides and Mudslides

Impact GEO-5a: Alternative 4 construction would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination

Because topography in the vicinity of the Alternative 4 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because topography in the vicinity of the Alternative 4 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavations, but would not expose people or structures to substantial risk.

See Section 3.7 (Groundwater and Soils) regarding potential soil and/or groundwater contamination in construction excavations.

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to unstable soil conditions.
In all other respects, Impact GEO-6a would be the same as under the proposed Project. Therefore, impacts associated with shallow groundwater would be less than significant under CEQA due to implementation of standard engineering practices regarding saturated, collapsible soils.

Mitigation Measures
Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

Residual Impacts
With no mitigation required, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination
Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-6a would be the same as under the proposed Project. Due to implementation of standard engineering practices regarding saturated, collapsible soils, people and structures would not be exposed to substantial adverse effects from the proposed Project and impacts associated with shallow groundwater would be less than significant under NEPA.

Mitigation Measures
Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

Residual Impacts
With implementation of standard engineering practices regarding saturated, collapsible soils, there would be less than significant residual impacts under NEPA.

Prominent Geologic and Topographic Features
Impact GEO-7a: Alternative 4 construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 4 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.
Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 4 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources
Impact GEO-8a: Alternative 4 site construction would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination
The Alternative 4 site does not contain significant mineral resources. Therefore, Alternative 4 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination
The Alternative 4 site does not contain significant mineral resources. Therefore, Alternative 4 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant impacts to mineral resources would occur under NEPA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under NEPA.
Residual Impacts

With no mitigation required, the residual impacts would be less than significant under NEPA.

3.5.4.3.2.4.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to seismically induced ground failure during operations. In all other respects, Impact GEO-1b would be the same as under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 4. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required.
Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-1b would be the same as under the proposed Project. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 4. However, because the Alternative 4 area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because operations would occur over an extended period (through 2045), increased exposure of people and property to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under NEPA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

Tsunamis and Seiches

Impact GEO-2b: Alternative 4 operations in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the Project area and vicinity.

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to tsunamis or seiches. In all other respects, Impact GEO-2b would be the same as under the proposed Project. Therefore, impacts during the operations phase would be significant under CEQA.

Mitigation Measures

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.
Residual Impacts

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less infrastructure, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-2b would be the same as under the proposed Project. Impacts from the theoretical maximum worst-case wave action would be significant for the site under NEPA.

Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

Subsidence/Soil Settlement

Impact GEO-3b: Alternative 4 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to subsidence/soil settlement during operations. In all other respects, Impact GEO-3b would be the same as under the proposed Project. Subsidence/soil settlement impacts would be less than significant under CEQA because Alternative 4 would be designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code and in conjunction with criteria established by LAHD and Caltrans. Thus, subsidence/soil settlement impacts would be less than significant under CEQA and would not result
in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

**NEPA Impact Determination**

Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less infrastructure, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-3b would be the same as under the proposed Project. Subsidence/soil settlement impacts associated with these actions would be less than significant under NEPA because these activities would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and Caltrans.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of standard geotechnical engineering, resulting in no required mitigation, the residual impacts would be less than significant under NEPA.

**Expansive Soils**

Impact GEO-4b: Alternative 4 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

**CEQA Impact Determination**

Impacts of Alternative 4 would be similar to but less than those identified for the proposed Project because the proposed 375 linear feet of wharf proposed south of Berth 100 and 12 of the 25 acres of backland behind Berth 100 would not be constructed/developed, and a total of nine A-frame cranes would be installed, thus resulting in less infrastructure that would be susceptible to soil expansion during operations. In all other respects, Impact GEO-4b would be the same as under the proposed Project. Expansive soil impacts would be less than significant under CEQA because Alternative 4 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria.
established by LAHD. Thus, expansive soil impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures
Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts
With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination
Under this alternative, the proposed 375 linear feet of wharf proposed south of Berth 100 would not be constructed, and only 1.3 acres of fill would be required. Because Alternative 4 would include less construction, potential impacts would be similar to, but less severe than those described for the proposed Project under the NEPA analysis. In all other respects, Impact GEO-4b would be the same as under the proposed Project. Use of expansive soils beneath Alternative 4 Project foundations could result in cracking and distress of foundations. However, expansive soil impacts would be less than significant under NEPA because these activities would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD.

Mitigation Measures
Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts
With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, there would be less than significant residual impacts under NEPA.

Landslides and Mudslides

Impact GEO-5b: Alternative 4 operations would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 4 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because topography in the vicinity of the Alternative 4 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on Alternative 4 operations and would not expose people or structures to substantial risk.

CEQA Impact Determination

Because excavations would not be completed as a part of Alternative 4 operations, impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because excavations would not be completed as a part of Alternative 4 operations, impacts associated with collapsible soils would not occur under NEPA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.
Prominent Geologic and Topographic Features

Impact GEO-7b: Alternative 4 operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 4 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 4 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8b: Alternative 4 operations would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination
The Alternative 4 site does not contain significant mineral resources. Therefore, Alternative 4 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Alternative 4 site does not contain significant mineral resources. Therefore, Alternative 4 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.3.2.5 Alternative 5 – Reduced Construction and Operation: Phase I

Construction Only

3.5.4.3.2.5.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2003).

CEQA Impact Determination

Under the Reduced Construction and Operation: Phase I Construction Only Alternative (Alternative 5), backlands would be limited to 72 acres, existing equipment and facilities would remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Phase I construction was completed over a 2-year period from 2002 to 2003. Phase II and III elements would not be implemented, thus resulting in no future construction susceptibility to seismically induced ground failure. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by this alternative. Although the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, construction was completed in 2003, and no seismic event occurred during the construction period. Because of this, there is no risk of seismic impacts during construction. Therefore, because Phase I construction was completed without a significant seismic event, impacts under CEQA due to seismically induced ground failure did not occur.
Mitigation Measures

No mitigation is required.

Residual Impacts

Since Phase I construction has been completed, no impacts during construction from seismically induced ground failure remain.

NEPA Impact Determination

Although the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, construction was completed in 2003, and no seismic event occurred during the construction period. Because of this, there is no risk of seismic impacts during construction. Therefore, because Phase I construction was completed without a significant seismic event, impacts under NEPA due to seismically induced ground failure did not occur.

Mitigation Measures

No mitigation required.

Residual Impacts

Since Phase I construction has been completed, no impacts during construction from seismically induced ground failure remain.

Tsunamis and Seiches

Impact GEO-2a: Alternative 5 construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in West Basin and vicinity.

CEQA Impact Determination

Under Alternative 5, backlands would be limited to 72 acres, existing equipment and facilities would remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. As described above, Phase I construction was completed during a 2-year period from 2002 to 2003. Phase II and III elements would not be implemented, thus resulting in no future construction susceptibility to inundation from tsunamis/seiches. Because no tsunami occurred during construction of phase I, no impact occurred under CEQA.

Mitigation Measures

No mitigation required.

Residual Impacts

Since Phase I construction has been completed, no impacts during construction from tsunamis remain.
NEPA Impact Determination

Phase I construction was completed during a 2-year period during 2002 and 2003. Phase II and III elements would not be implemented, thus resulting in no future construction susceptibility to inundation from tsunamis/seiches. Because no tsunami occurred during construction of Phase I, no impact occurred under NEPA.

Mitigation Measures
No mitigation required.

Residual Impacts
Since Phase I construction has been completed, no impacts during construction from tsunamis remain.

Subsidence/Soil Settlement

Impact GEO-3a: Alternative 5 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Under Alternative 5, backlands were limited to 72 acres, existing equipment and facilities would remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Phase I construction was completed over a 2-year period during 2002 and 2003. Phase II and III elements would not be implemented, thus resulting in no future construction susceptibility to subsidence/soil settlement. Impacts in backland areas would be less than significant under CEQA because Alternative 5 (Phase I) was designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Construction of Alternative 5 did not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury. No impacts occurred during construction.

Mitigation Measures
Because no subsidence/soil settlement impacts occurred, no mitigation measures are necessary.

Residual Impacts
With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts were less than significant under CEQA.

NEPA Impact Determination

Under this alternative, only 1.3 acres of fill would be required, and only 1,200 linear feet of new wharves were constructed, thus resulting in less infrastructure susceptible to seismically induced ground failure than under the proposed Project. Subsidence/soil settlement impacts associated with creation of 1.3 acres of fill would be less than significant under NEPA, with implementation of standard geotechnical engineering,
including incorporation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code and criteria established by LAHD and Caltrans. Construction of Alternative 5 did not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

**Mitigation Measures**

Because no subsidence/soil settlement impacts occurred, no mitigation measures were necessary.

**Residual Impacts**

With implementation of standard geotechnical engineering, resulting in no required mitigation, no residual impacts occurred under NEPA.

**Expansive Soils**

**Impact GEO-4a:** Alternative 5 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

**CEQA Impact Determination**

Under Alternative 5, backlands were limited to 72 acres, existing equipment and facilities remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Phase II and III elements would not be implemented, thus resulting in no future construction susceptibility to expansive soils. Expansive soil impacts in backland areas were less than significant under CEQA because Alternative 5 was designed and constructed in compliance with the recommendations of a geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD. Construction of Alternative 5 did not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

**Mitigation Measures**

Because no expansive soil impacts occurred, no mitigation measures were necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, no residual impacts occurred.

**NEPA Impact Determination**

Under this alternative, only 1.3 acres of fill were required, and only 1,200 linear feet of new wharves were constructed, thus resulting in less infrastructure susceptible to expansive soils. Expansive soil impacts in backland areas were less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD. Construction of Alternative 5 did not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.
Mitigation Measures
Because no expansive soil impacts occurred, no mitigation measures were necessary.

Residual Impacts
With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, no residual impacts occurred under NEPA.

Landslides and Mudslides

Impact GEO-5a: Alternative 5 construction would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 5 site is flat and not subject to landslides or mudflows, no impacts occurred under CEQA.

Mitigation Measures
Because landslide and mudslide impacts did not occur, no mitigation measures were necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 5 site is flat and not subject to landslides or mudflows, no impacts occurred under NEPA.

Mitigation Measures
Because landslide and mudslide impacts did not occur, no mitigation measures were necessary.

Residual Impacts
With no mitigation required, there were no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavations, but would not expose people or structures to substantial risk.

CEQA Impact Determination
Under Alternative 5, backlands were limited to 72 acres, existing equipment and facilities remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Elements of Phases II and III would not be implemented, thus resulting in no future construction
susceptibility to unstable soil conditions. Due to implementation of standard engineering practices regarding saturated and collapsible soils, no impacts occurred.

**Mitigation Measures**

Because no impacts associated with collapsible soils occurred, no mitigation measures were required under CEQA.

**Residual Impacts**

With no mitigation required, no residual impacts occurred under CEQA.

**NEPA Impact Determination**

Under this alternative, only 1.3 acres of fill were required, and only 1,200 linear feet of new wharves were constructed, thus resulting in less infrastructure susceptible to expansive soils. Due to implementation of standard engineering practices regarding saturated, collapsible soils, people and structures were not exposed to substantial adverse effects from Alternative 5 and impacts associated with shallow groundwater did not occur.

**Mitigation Measures**

As no impacts associated with collapsible soils occurred, no mitigation measures were required under NEPA.

**Residual Impacts**

With implementation of standard engineering practices regarding saturated, collapsible soils, no residual impacts occurred under NEPA.

**Prominent Geologic and Topographic Features**

**Impact GEO-7a:** Alternative 5 construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

**CEQA Impact Determination**

Because topography in the vicinity of the Alternative 5 site is flat and does not contain prominent geologic or topographic features, no impacts occurred under CEQA.

**Mitigation Measures**

Because impacts due to removal of prominent geologic or topographic features did not occur, no mitigation measures were necessary under CEQA.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under CEQA.
NEPA Impact Determination

Because topography in the vicinity of the Alternative 5 site is flat and does not contain prominent geologic or topographic features, no impacts occurred under NEPA.

Mitigation Measures

Because impacts due to removal of prominent geologic or topographic features did not occur, no mitigation measures were necessary under NEPA.

Residual Impacts

With no mitigation required, there were no residual impacts under NEPA.

Mineral Resources

Impact GEO-8a: Alternative 5 site construction would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The Alternative 5 site does not contain significant mineral resources. Therefore, Alternative 5 did not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts occurred under CEQA.

Mitigation Measures

Because no impacts to mineral resources occurred, no mitigation measures were necessary under CEQA.

Residual Impacts

With no mitigation required, no residual impacts occurred under CEQA.

NEPA Impact Determination

The Alternative 5 site does not contain significant mineral resources. Therefore, Alternative 5 did not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts occurred under NEPA.

Mitigation Measures

Because no impacts to mineral resources occurred, no mitigation measures were necessary under NEPA.

Residual Impacts

With no mitigation required, no residual impacts occurred under NEPA.
3.5.4.3.2.5.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

CEQA Impact Determination

Under Alternative 5, backlands are limited to 72 acres, existing equipment and facilities would remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Phase I improvements noted above were completed in 2003 and have been operational since 2004. Phase II and III elements would not be implemented, thus resulting in less infrastructure that is susceptible to seismically induced ground failure during operations than under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 5. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, only 1.3 acres of fill was placed, and only 1,200 linear feet of new wharves were constructed, thus resulting in less infrastructure susceptible to seismically induced ground failure during operations than under the proposed Project. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 5. However, because the Alternative 5 area is potentially underlain by
strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is
a substantial risk of seismic impacts. Increased exposure of people and property
during construction to seismic hazards from a major or great earthquake cannot be
precluded, even with incorporation of modern construction engineering and safety
standards. Therefore, impacts due to seismically induced ground failure are
significant under NEPA.

Mitigation Measures
There are no mitigation measures available that would reduce impacts below a level
of significance associated with seismically induced ground failure.

Residual Impacts
Design and construction in accordance with applicable laws and regulations
pertaining to seismically induced ground movement would minimize structural
damage in the event of an earthquake. However, increased exposure of people and
property during construction to seismic hazards from a major or great earthquake
cannot be precluded even with incorporation of modern construction engineering and
safety standards. Therefore, impacts due to seismically induced ground failure would
remain significant and unavoidable.

Tsunamis and Seiches
Impact GEO-2b: Alternative 5 operations in the Port area would
expose people and structures to substantial risk involving tsunamis
or seiches. Local or distant seismic activity and/or offshore
landslides could result in the occurrence of tsunamis or seiches in
the Project area and vicinity.

CEQA Impact Determination
Under Alternative 5, backlands are limited to 72 acres, since Phase I construction was
complete in 2003 and has been operational since 2004. Existing equipment and
facilities would remain, including four A-frame cranes, the bridge connecting
Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of
wharves and the 1.3 acres of fill associated with wharf construction. Phase II and III
elements would not be implemented, thus resulting in less infrastructure that is
susceptible to inundation than under the proposed Project. In all other respects,
Impact GEO-2b would be the same as under the proposed Project. Therefore,
impacts during the operations phase would be significant under CEQA.

Mitigation Measures
MM GEO-1 shall be applied to the CEQA project impact determination to reduce
tsunami- and seiche-related impacts.

Residual Impacts
Emergency planning and coordination between the terminal operator and LAHD, as
outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel
during a tsunami. However, even with incorporation of emergency planning and
construction in accordance with current City and state regulations, substantial
damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

**NEPA Impact Determination**

Under this alternative, 1.3 acres of fill were placed, and 1,200 linear feet of new wharves were constructed. Because operations would occur over an extended period (through at least 2045), increased exposure of people and property during operations to seismically induced tsunamis or seiches from a major or great earthquake cannot be precluded. As described above, impacts from the theoretical maximum worst-case tide and wave action would be significant for the site under NEPA.

**Mitigation Measures**

Mitigation Measure GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

**Subsidence/Soil Settlement**

**Impact GEO-3b:** Alternative 5 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

**CEQA Impact Determination**

Under Alternative 5, backlands are limited to 72 acres, existing equipment and facilities would remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Phase II and III elements would not be implemented, thus resulting in less infrastructure that is susceptible to subsidence/soil settlement during operations than under the proposed Project. In all other respects, Impact GEO-3b would be the same as under the proposed Project. Subsidence/soil settlement impacts would be less than significant under CEQA because Alternative 5 would be designed and constructed in compliance with the recommendations of the geotechnical engineers, consistent with implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Thus, subsidence/soil settlement impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.
Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, 1.3 acres of fill were placed, and 1,200 linear feet of new wharves were constructed. Subsidence/soil settlement impacts associated with terminal operations would be less than significant under NEPA because these activities would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and Caltrans.

Mitigation Measures

Because settlement/soil subsidence impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of standard geotechnical engineering, resulting in no required mitigation, the residual impacts would be less than significant under NEPA.

Expansive Soils

Impact GEO-4b: Alternative 5 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination

Under Alternative 5, backlands are limited to 72 acres, existing equipment and facilities would remain, including four A-frame cranes, the bridge connecting Berths 121-131 to Berths 97-109, the paved backlands, and 1,200 linear feet of wharves and the 1.3 acres of fill associated with wharf construction. Phase II and III elements would not be implemented, thus resulting in less infrastructure that is susceptible to soil expansion during operations than under the proposed Project. In all other respects, Impact GEO-4b would be the same as under the proposed Project. Expansive soil impacts in backland areas would be less than significant under CEQA because Alternative 5 would be designed and constructed in compliance with the recommendations of the geotechnical engineers, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD. Thus, expansive soil impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.
Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, only 1.3 acres of fill were placed, and only 1,200 linear feet of new wharves were constructed, which is not part of the NEPA baseline. Expansive soil impacts would be less than significant under NEPA because these activities would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD.

Mitigation Measures

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, there would be less than significant residual impacts under NEPA.

Landslides and Mudslides

Impact GEO-5b: Alternative 5 operations would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination

Because topography in the vicinity of the Alternative 5 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because topography in the vicinity of the Alternative 5 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.
Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on Alternative 5 operations and would not expose people or structures to substantial risk.

CEQA Impact Determination
Because excavations would not be completed as a part of Alternative 5 operations, impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because excavations would not be completed as a part of Alternative 5 operations, impacts associated with collapsible soils would not occur under NEPA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Prominent Geologic and Topographic Features

Impact GEO-7b: Alternative 5 operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 5 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.
Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 5 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

Mineral Resources
Impact GEO-8b: Alternative 5 operations would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination
The Alternative 5 site does not contain significant mineral resources. Therefore, Alternative 5 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination
The Alternative 5 site does not contain significant mineral resources. Therefore, Alternative 5 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under NEPA.
3.5.4.3.2.6 Alternative 6 – Omni Cargo Terminal

3.5.4.3.2.6.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).

CEQA Impact Determination

Construction impacts of the Omni Cargo Terminal Alternative (Alternative 6) would be similar to those identified for the proposed Project because the amount of wharves and backlands would be the same. Five fewer cranes would be installed that for the proposed Project, but transit storage sheds would be constructed. In all other respects, Impact GEO-1a would be the same as under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by this alternative. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Seismic upgrades would be completed on existing wharves, resulting in beneficial impacts. However, because construction of buildings and related infrastructure would occur over multiple years, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant and unavoidable under CEQA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-2a would be the same as under the proposed Project under the NEPA analysis. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 6. Because the terminal site
is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because construction would occur over multiple years, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant and unavoidable under NEPA.

**Mitigation Measures**

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

**Residual Impacts**

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

**Tsunami Runup**

Impact GEO-2a: Alternative 6 construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in West Basin and vicinity.

**CEQA Impact Determination**

Construction impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-2a would be the same as under the proposed Project. Therefore, impacts during the construction phase would be significant and unavoidable under CEQA.

**Mitigation Measures**

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.
NEPA Impact Determination

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-2a would be the same as under the proposed Project under the NEPA analysis. Therefore, impacts due to tsunamis and seiches during the construction phase would be significant and unavoidable under NEPA.

Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

Subsidence/Soil Settlement

Impact GEO-3a: Alternative 6 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Construction impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-3a would be the same as under the proposed Project. Impacts would be less than significant under CEQA because Alternative 6 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-3a would be as described for the proposed Project under the NEPA analysis. Impacts would be less than...
significant under NEPA because Alternative 6 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because no subsidence/soil settlement impacts would occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under NEPA.

**Expansive Soils**

**Impact GEO-4a:** Alternative 6 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

**CEQA Impact Determination**

Construction impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, **Impact GEO-4a** would be the same as under the proposed Project. Expansive soil impacts would be less than significant under CEQA because Alternative 6 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

**NEPA Impact Determination**

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and **Impact GEO-4a** would be as described for the proposed Project under the NEPA analysis. Expansive soil may be present in dredged or imported soils used for filling the 2.5 acres. Use of expansive soils beneath Alternative 6 foundations could result in cracking and distress of foundations. However, expansive soil impacts in backland areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction
with criteria established by LAHD and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.

**Landslides and Mudslides**

**Impact GEO-5a: Alternative 6 construction would not result in or expose people or property to a substantial risk of landslides or mudslides.**

**CEQA Impact Determination**

Because topography in the vicinity of the Alternative 6 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under CEQA.

**NEPA Impact Determination**

Because topography in the vicinity of the Alternative 6 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under NEPA.
Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavations, but would not expose people or structures to substantial risk.

CEQA Impact Determination

Construction impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-6a would be the same as under the proposed Project. Therefore, impacts associated with shallow groundwater would be less than significant under CEQA due to implementation of standard engineering practices regarding saturated, collapsible soils.

Mitigation Measures

Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

Residual Impacts

With no mitigation required, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-6a would be as described for the proposed Project under the NEPA analysis. Due to implementation of standard engineering practices regarding saturated, collapsible soils, people and structures would not be exposed to substantial adverse effects from Alternative 6, and impacts associated with shallow groundwater would be less than significant under NEPA.

Mitigation Measures

Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

Residual Impacts

With implementation of standard engineering practices regarding saturated, collapsible soils, there would be less than significant residual impacts under NEPA.
Prominent Geologic and Topographic Features

Impact GEO-7a: Alternative 6 construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 6 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 6 Project site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures
Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8a: Alternative 6 site construction would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination
The Alternative 6 site does not contain significant mineral resources. Therefore, Alternative 6 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Alternative 6 site does not contain significant mineral resources. Therefore, Alternative 6 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.3.2.6.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

CEQA Impact Determination

Operations impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-1b would be the same as under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 6. However, because the Alternative 6 site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant and unavoidable under CEQA.

Mitigation Measures

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.
Residual Impacts
Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

NEPA Impact Determination
Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-1b would be as described for the proposed Project under the NEPA analysis. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 6. However, because the Alternative 6 area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant and unavoidable under NEPA.

Mitigation Measures
There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

Residual Impacts
Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

Tsunamis and Seiches
Impact GEO-2b: Alternative 6 operations in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the Alternative 6 area and vicinity.

CEQA Impact Determination
Operations impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-2b would be the same as under the proposed Project. Therefore, impacts during the operations phase of Alternative 6 would be significant and unavoidable under CEQA.
Mitigation Measures

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-4a would be as described for the proposed Project under the NEPA analysis. Because operations would occur over an extended period (through at least 2045), increased exposure of people and property during operations to seismically induced tsunamis or seiches from a major or great earthquake cannot be precluded. Impacts from the theoretical maximum worst-case wave action would be significant and unavoidable for the site under NEPA.

Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable. Therefore, impacts during the operations phase due to tsunamis and seiches would be significant and unavoidable under NEPA.

Subsidence/Soil Settlement

Impact GEO-3b: Alternative 6 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Operations impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-3b would be the same as under the proposed Project. Subsidence/soil settlement impacts would be less than significant under CEQA because Alternative 6 would be designed and
constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans. Thus, subsidence/soil settlement impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

### NEPA Impact Determination

Alternative 6 would include the same amount of wharf construction, fill, and backlands as the proposed Project, and Impact GEO-4a would be as described for the proposed Project under the NEPA analysis. Subsidence/soil settlement impacts associated with these actions would be less than significant under NEPA because these activities would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and Caltrans.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under NEPA.

### Expansive Soils

**Impact GEO-4b:** Alternative 6 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

### CEQA Impact Determination

Operations impacts of Alternative 6 would be similar to those identified for the proposed Project because the level of development of the terminal site would be approximately the same under each scenario. Thus, Impact GEO-4b would be the same as under the proposed Project. Expansive soil impacts would be less than significant under CEQA because Alternative 6 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD. Thus, expansive soil impacts would
be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

---

**NEPA Impact Determination**

The federal portions of Alternative 6 would be limited to wharf and in-water construction activities, including the creation of 2.5 acres fill, new wharf construction, and channel deepening, as well as limited backland areas (same as the proposed Project described in Section 2.4.3, Federal Project). Expansive soil may be present in dredged or imported soils used for filling the 2.5 acres. Use of expansive soils beneath Alternative 6 foundations could result in cracking and distress of foundations. However, expansive soil impacts in backland areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

**Mitigation Measures**

Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.

---

**Landslides and Mudslides**

**Impact GEO-5b:** Alternative 6 operations would not result in or expose people or property to a substantial risk of landslides or mudslides.

**CEQA Impact Determination**

Because topography in the vicinity of the Alternative 6 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

**Mitigation Measures**

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

**Residual Impacts**

With no mitigation required, there would be no residual impacts under CEQA.
NEPA Impact Determination

Because topography in the vicinity of the Alternative 6 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.

Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6b: Collapsible soils would have no impact on Alternative 6 operations and would not expose people or structures to substantial risk.

CEQA Impact Determination

Because excavations would not occur as a part of Alternative 6 operations, impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because excavations would not occur as a part of Alternative 6 operations, impacts associated with collapsible soils would not occur under NEPA.

Mitigation Measures

Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.
Prominent Geologic and Topographic Features

Impact GEO-7b: Alternative 6 operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination

Because topography in the vicinity of the Alternative 6 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures

Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because topography in the vicinity of the Alternative 6 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures

Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8b: Alternative 6 operations would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The Alternative 6 site does not contain significant mineral resources. Therefore, Alternative 6 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures

Because no impacts to mineral resources would occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Alternative 6 site does not contain significant mineral resources. Therefore, Alternative 6 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures

Because no impacts to significant mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.3.2.7 Alternative 7 – Nonshipping Use

Alternative 7 would utilize the terminal site constructed as part of Phase I for a Regional Center of retail, office park, and light industrial uses. Because of this, the Phase I construction activities are included under Alternative 7 even though the in-water elements would not be used, i.e., the dike, fill, and the wharf would be abandoned in place.

Alternative 7 would convert the 72 acres of backlands from shipping and containerized storage to retail, office park, and light industrial uses on a site totaling 117 acres. A public dock would be constructed but would be developed only to support small watercraft. Additional wharves would not be constructed and the Catalina Express Terminal would not be relocated under this alternative.

3.5.4.3.2.7.1 Construction Impacts

Seismicity

Impact GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).

CEQA Impact Determination

Seismic impacts for the Nonshipping Use Alternative (Alternative 7) would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock
would likely be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. All facilities and infrastructure included in this alternative would be susceptible to seismically induced ground failure, and **Impact GEO-1a** would be the same as under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by this alternative. However, because the site is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because construction would occur over an extended period (through 2012), increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

**Mitigation Measures**

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

**Residual Impacts**

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

**NEPA Impact Determination**

Under this alternative, a public dock would be constructed to support the onsite retail and restaurant uses that were not included in the NEPA baseline conditions. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock would likely be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. Potential impacts associated with Alternative 7 would be similar to those described for the proposed Project under the NEPA analysis, and **Impact GEO-1a** would be the same as under the proposed Project. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 7. Because the West Basin area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because construction would occur over multiple years, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under NEPA.

**Mitigation Measures**

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.
Residual Impacts

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

Tsunami Runup

Impact GEO-2a: Alternative 7 construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in West Basin and vicinity.

CEQA Impact Determination

Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. Although the existing development would be demolished, the mixed use commercial/retail buildings and infrastructure included in this alternative would be susceptible to inundation. Impact GEO-2a would be the same as under the proposed Project. Therefore, impacts during the construction phase of Alternative 7 would be significant under CEQA.

Mitigation Measures

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, construction that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that were not part of the NEPA baseline. Potential impacts
associated with Alternative 6 would be similar to those described for the proposed Project under the NEPA analysis, and **Impact GEO-2a** would be the same as under the proposed Project. Therefore, impacts due to tsunamis and seiches during the construction phase would be significant under NEPA.

**Mitigation Measures**

**MM GEO-1** shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

**Residual Impacts**

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in **MM GEO-1**, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

**Subsidence/Soil Settlement**

**Impact GEO-3a**: Alternative 7 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

**CEQA Impact Determination**

Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed, and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. **Impact GEO-3a** would be the same as under the proposed Project. Impacts in would be less than significant under CEQA because Alternative 7 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD and Caltrans and would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury.

**Mitigation Measures**

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

**Residual Impacts**

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code resulting in no required mitigation, the residual impacts would be less than significant under CEQA.
NEPA Impact Determination

Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that were not part of the NEPA baseline. Potential impacts associated with Alternative 7 would be similar to those described for the proposed Project under the NEPA analysis, and Impact GEO-3a would be the same as under the proposed Project. Impacts would be less than significant under NEPA because Alternative 7 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code and in conjunction with criteria established by LAHD and Caltrans and would not result in substantial damage to structures or infrastructure nor expose people to substantial risk of injury.

Mitigation Measures
Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Expansive Soils

Impact GEO-4a: Alternative 7 construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination
Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed, and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. Impact GEO-4a would be the same as under the proposed Project. Expansive soil impacts would be less than significant under CEQA because Alternative 7 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD, and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures
Because expansive soil impacts would be less than significant, no mitigation measures are necessary.


Residual Impacts
With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, resulting in no required mitigation, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination
Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that are not a part of the NEPA baseline. Potential impacts associated with Alternative 7 would be similar to those described for the proposed Project under the NEPA analysis, and Impact GEO-4a would be the same as under the proposed Project. Expansive soil impacts in Alternative 7 areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code in conjunction with criteria established by LAHD and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures
Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts
With implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, less than significant residual impacts would occur under NEPA.

Landslides and Mudslides
Impact GEO-5a: Alternative 7 construction would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 7 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 7 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.
Mitigation Measures

Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions

Impact GEO-6a: Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavations, but would not expose people or structures to substantial risk.

CEQA Impact Determination

Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed, and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. Impact GEO-6a would be the same as under the proposed Project. Impacts associated with shallow groundwater would be less than significant under CEQA due to implementation of standard engineering practices regarding saturated, collapsible soils.

Mitigation Measures

Because impacts associated with collapsible soils would be less than significant, no mitigation measures are required.

Residual Impacts

The residual impacts would be less than significant under CEQA.

NEPA Impact Determination

Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that are not a part of the NEPA baseline. Potential impacts associated with Alternative 7 would be similar to those described for the proposed Project under the NEPA analysis, and Impact GEO-4a would be the same as under the proposed Project. Due to implementation of standard engineering practices regarding saturated, collapsible soils, people and structures would not be exposed to substantial adverse effects from the proposed Project, and impacts associated with shallow groundwater would be less than significant under NEPA.

Mitigation Measures

Because shallow groundwater and collapsible soils impacts would be less than significant, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Prominent Geologic and Topographic Features

Impact GEO-7a: Alternative 7 construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination

Because topography in the vicinity of the Alternative 7 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.

Mitigation Measures

Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination

Because topography in the vicinity of the Alternative 7 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures

Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8a: Alternative 7 site construction would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination

The Alternative 7 site does not contain significant mineral resources. Therefore, Alternative 7 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.
Mitigation Measures

Because no impacts to significant mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination

The Alternative 7 site does not contain significant mineral resources. Therefore, Alternative 7 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures

Because no impacts to significant mineral resources would occur, no mitigation measures are necessary.

Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.3.2.7.2 Operations Impacts

Seismicity

Impact GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).

CEQA Impact Determination

Seismic impacts for the Nonshipping Use Alternative (Alternative 7) would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. The number of persons present at the Regional Center during the day would exceed those associated with the proposed Project. Impact GEO-1b would be the same as, or greater than, under the proposed Project. As with the proposed Project, seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 7. However, because the Alternative 7 site is potentially
underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because Alternative 7 includes uses that would involve a higher level of public use and more people onsite occur over an extended period, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under CEQA.

**Mitigation Measures**

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

**Residual Impacts**

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

**NEPA Impact Determination**

Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that were not part of the NEPA baseline. Potential impacts associated with Alternative 7 would be similar to those described for the proposed Project under the NEPA analysis, and Impact GEO-1b would be the same as, or greater than, under the proposed Project. Seismic hazards are common to the Los Angeles region and are not increased by Alternative 7. Because the West Basin area is potentially underlain by strands of the active Palos Verdes Fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Because Alternative 7 includes uses that will involve a higher level of public use and more people onsite occur over an extended period (through 2045), increased exposure of people and property during operations to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards. Therefore, impacts due to seismically induced ground failure are significant under NEPA.

**Mitigation Measures**

There are no mitigation measures available that would reduce impacts below a level of significance associated with seismically induced ground failure.

**Residual Impacts**

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction to seismic hazards from a major or great earthquake cannot be precluded even with incorporation of modern construction engineering and
safety standards. Therefore, impacts due to seismically induced ground failure would remain significant and unavoidable.

Tsunamis and Seiches

Impact GEO-2b: Alternative 7 operations in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the Alternative 7 area and vicinity.

CEQA Impact Determination

Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed, and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock would likely be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. The number of persons present at the Regional Center during the day would exceed those associated with the proposed Project. Impact GEO-2b would be the same as, or greater than, under the proposed Project. Therefore, impacts during the operations phase of Alternative 7 would be significant under CEQA.

Mitigation Measures

MM GEO-1 shall be applied to the CEQA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and/or injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

NEPA Impact Determination

Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that were not part of the NEPA baseline. Potential impacts associated with Alternative 7 would be similar to those described for the proposed Project under the NEPA analysis. Because Alternative 7 would involve more people (employees and customers) in operation of a mixed use commercial/retail development, potential impacts would be similar to, or more severe than, those described for the proposed Project under the NEPA analysis. Impact GEO-2b would be the same as, or greater than, under the proposed Project. Therefore,
impacts due to tsunamis and seiches during the construction phase would be significant under NEPA.

Mitigation Measures

MM GEO-1 shall be applied to the NEPA project impact determination to reduce tsunami- and seiche-related impacts.

Residual Impacts

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, residual impacts would remain significant and unavoidable.

Subsidence/Soil Settlement

Impact GEO-3b: Alternative 7 operation would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.

CEQA Impact Determination

Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed, and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed, and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. The number of persons present at the Regional Center during the day would exceed those associated with the proposed Project. Impact GEO-3b would be the same as under the proposed Project. Subsidence/soil settlement impacts would be less than significant under CEQA because Alternative 7 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code and in conjunction with criteria established by LAHD and Caltrans. Thus, subsidence/soil settlement impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.
NEPA Impact Determination

Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that were not part of the NEPA baseline. Impact GEO-3b would be the same as, or greater than, under the proposed Project. Subsidence/soil settlement impacts associated with these actions would be less than significant under NEPA because these activities would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and Caltrans.

Mitigation Measures

Because subsidence/soil settlement impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts

With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under NEPA.

Expansive Soils

Impact GEO-4b: Alternative 7 operations would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.

CEQA Impact Determination

Impacts for Alternative 7 would be similar to those described for the proposed Project. Less acreage would be developed (117 acres), less fill would be placed, and new bridge construction would not occur. Existing developments, however, would be abandoned in place or removed, and mixed use retail/commercial buildings and related infrastructure would be constructed. A public dock would be constructed to support the onsite retail and restaurant uses. This dock would be constructed to provide service and access to smaller watercraft (such as small boats, wave runners, and kayaks). The public dock likely would be a floating dock with access ramps connected to the existing wharf or adjacent area to allow recreational users access to the Regional Center. The number of persons present at the Regional Center during the day would exceed those associated with the proposed Project. Impact GEO-4b would be the same as, or greater than, under the proposed Project. Expansive soil impacts would be less than significant under CEQA because Alternative 7 would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, and in conjunction with criteria established by LAHD. Thus, expansive soil impacts would be less than significant under CEQA and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.
Mitigation Measures
Because expansive soil impacts would be less than significant, no mitigation measures are necessary.

Residual Impacts
With implementation of Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, the residual impacts would be less than significant under CEQA.

NEPA Impact Determination
Under this alternative, development that would occur in the in-water area would include improvements at Berth 102 to install floating dock(s) and ramps for public recreational uses that were not part of the NEPA baseline. Impact GEO-4b would be the same, or greater, than under the proposed Project. Expansive soil impacts in Alternative 7 areas would be less than significant under NEPA with implementation of standard geotechnical engineering and Sections 91.000 through 91.7016 of the Los Angeles Municipal Code, in conjunction with criteria established by LAHD and would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Mitigation Measures
Because impacts associated with expansive soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Landslides and Mudslides
Impact GEO-5b: Alternative 7 operations would not result in or expose people or property to a substantial risk of landslides or mudslides.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 7 site is flat and not subject to landslides or mudflows, no impacts would occur under CEQA.

Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 7 site is flat and not subject to landslides or mudflows, no impacts would occur under NEPA.
Mitigation Measures
Because landslide and mudslide impacts would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Unstable Soil Conditions
Impact GEO-6b: Collapsible soils would have no impact on Alternative 7 operations and would not expose people or structures to substantial risk.

CEQA Impact Determination
Because excavations would not be completed as a part of Alternative 7 operations, impacts associated with collapsible soils would not occur under CEQA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because excavations would not be completed as a part of Alternative 7 operations, impacts associated with collapsible soils would not occur under NEPA.

Mitigation Measures
Because impacts associated with collapsible soils would not occur, no mitigation measures are required.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Prominent Geologic and Topographic Features
Impact GEO-7b: Alternative 7 operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.

CEQA Impact Determination
Because topography in the vicinity of the Alternative 7 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under CEQA.
Mitigation Measures
Because impacts due to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under CEQA.

NEPA Impact Determination
Because topography in the vicinity of the Alternative 7 site is flat and does not contain prominent geologic or topographic features, no impacts would occur under NEPA.

Mitigation Measures
Because impacts related to removal of prominent geologic or topographic features would not occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, there would be no residual impacts under NEPA.

Mineral Resources

Impact GEO-8b: Alternative 7 operations would not result in the permanent loss of availability of any mineral resource of regional, statewide, or local significance.

CEQA Impact Determination
The Alternative 7 site does not contain significant mineral resources. Therefore, Alternative 7 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state. No impacts would occur under CEQA.

Mitigation Measures
Because no impacts to significant mineral resources would occur, no mitigation measures are necessary.

Residual Impacts
With no mitigation required, no residual impacts would occur under CEQA.

NEPA Impact Determination
The Alternative 7 site does not contain significant mineral resources. Therefore, Alternative 7 would not result in the permanent loss of availability of a known mineral resource that would be of future value to the region and the residents of the state and less than significant no impacts to mineral resource impacts would occur under NEPA.

Mitigation Measures
Because no impacts to mineral resources would occur, no mitigation measures are necessary.
Residual Impacts

With no mitigation required, no residual impacts would occur under NEPA.

3.5.4.4 Summary of Impact Determinations

The following Table 3.5-3 summarizes the CEQA and NEPA impact determinations of the proposed Project and its alternatives related to Geology, as described in the detailed discussion in Sections 3.5.4.3.1 and 3.5.4.3.2. This table is meant to allow easy comparison between the potential impacts of the proposed Project and its alternatives with respect to this resource. Identified potential impacts may be based on federal, state, or City of Los Angeles significance criteria, Port criteria, and the scientific judgment of the report preparers.

For each type of potential impact, the table describes the impact, notes the CEQA and NEPA impact determinations, describes any applicable mitigation measures, and notes the residual impacts (i.e., the impact remaining after mitigation). All impacts, whether significant or not, are included in this table. Note that impact descriptions for each of the Alternatives are the same as for the proposed Project, unless otherwise noted.
### Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.5 Geology</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Project</td>
<td>GEO-1a: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the construction period (through 2012).</td>
<td>CEQA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>GEO-2a:</td>
<td>Project construction in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the proposed Project area and vicinity.</td>
<td>CEQA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Significant impact</td>
<td>MM GEO-1</td>
<td>NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>GEO-3a:</td>
<td>Project construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td>GEO-4a:</td>
<td>Project construction would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td>GEO-5a:</td>
<td>Project construction would not result in or expose people or property to a substantial risk of landslides or mudflows.</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-6a:</td>
<td>Shallow groundwater, which would cause unstable collapsible soils, may be encountered during excavation, but would not expose people or structures to substantial risk.</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
</tbody>
</table>
Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project (continued)</td>
<td>GEO-7a: Project construction would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td>GEO-8a: Project construction would not result in the permanent loss of availability of a known mineral resource of regional, statewide, or local significance.</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-1b: Seismic activity along the Palos Verdes Fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure that would expose people and structures to substantial risk during the operations period (through 2045).</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-2b: Project operations in the Port area would expose people and structures to substantial risk involving tsunamis or seiches. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches in the proposed Project area and vicinity.</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1 MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-3b: Project operation would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from subsidence/soil settlement.</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-4b: Project operation would not result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury from soil expansion.</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Proposed Project (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-5b: Project operation would not result in or expose people or property to a substantial risk of landslides or mudflows.</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-6b: Collapsible soils would have less than significant impact on proposed Project operations and would not expose people or structures to substantial risk.</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-7b: Project operations would not result in one or more distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified.</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8b: Project operations would not result in the permanent loss of availability of a known mineral resource of regional, statewide, or local significance.</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td><strong>Alternative 1 (No Project)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-1a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-2a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-3a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-4a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-5a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-6a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: Not applicable</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO-8a</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-1b</td>
<td>CEQA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td><strong>CEQA: Significant and unavoidable impact</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-2b</td>
<td>CEQA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td><strong>CEQA: Significant and unavoidable impact</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-3b</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-4b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-5b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-6b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-7b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: Not applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not applicable</td>
<td></td>
</tr>
<tr>
<td>GEO-8b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>Alternative</td>
<td>Environmental Impacts*</td>
<td>Impact Determination</td>
<td>Mitigation Measures</td>
<td>Residual Impacts after Mitigation</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>GEO-1a</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>No mitigation measures are available to reduce below significance Mitigation not required</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>GEO-2a</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>MM GEO-1</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-3a</td>
<td>CEQA: Less than significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-4a</td>
<td>CEQA: Less than significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-5a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-6a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-8a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td>GEO-1b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>No mitigation measures are available to reduce below significance Mitigation not required</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>Alternative</td>
<td>Environmental Impacts*</td>
<td>Impact Determination</td>
<td>Mitigation Measures</td>
<td>Residual Impacts after Mitigation</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Alternative 2 (continued)</td>
<td>GEO-2b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: More than significant impact NEPA: No impact</td>
</tr>
<tr>
<td>GEO-3b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-4b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-5b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-6b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-7b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8b</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Significant impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>Alternative 3</td>
<td>GEO-1a</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>GEO-2a</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 Geology (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 3 (continued)</td>
<td>GEO-3a</td>
<td>CEQA: Less than significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: No impact</td>
</tr>
<tr>
<td>GEO-4a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-5a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-6a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-1b</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-2b</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 3 (continued)</td>
<td>GEO-3b</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td>GEO-4b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-5b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-6b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-7b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
<td></td>
</tr>
<tr>
<td>Alternative 4</td>
<td>GEO-1a</td>
<td>CEQA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>GEO-2a</td>
<td>CEQA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MM GEO-1</td>
<td>NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 4 (continued)</td>
<td>GEO-3a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-4a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-5a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-6a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-8a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-1b</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td>GEO-2b</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td>Alternative</td>
<td>Environmental Impacts*</td>
<td>Impact Determination</td>
<td>Mitigation Measures</td>
<td>Residual Impacts after Mitigation</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 4 (continued)</td>
<td>GEO-3b</td>
<td>CEQA: Less than significant impact, NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact, NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-4b</td>
<td>CEQA: Less than significant impact, NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact, NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-5b</td>
<td>CEQA: No impact, NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact, NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-6b</td>
<td>CEQA: No impact, NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact, NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-7b</td>
<td>CEQA: No impact, NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact, NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-8b</td>
<td>CEQA: No impact, NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact, NEPA: No impact</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>GEO-1a</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
<td>No mitigation required</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
</tr>
<tr>
<td></td>
<td>GEO-2a</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
<td>No mitigation required</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
</tr>
<tr>
<td></td>
<td>GEO-3a</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
<td>Mitigation not required</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
</tr>
<tr>
<td></td>
<td>GEO-4a</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
<td>Mitigation not required</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
</tr>
<tr>
<td></td>
<td>GEO-5a</td>
<td>CEQA: No impact, NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact, NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-6a</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
<td>Mitigation not required</td>
<td>CEQA: No Impact, NEPA: No Impact</td>
</tr>
</tbody>
</table>
Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 Geology (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 5 (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-1b</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-2b</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1 MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-3b</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-4b</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-5b</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-6b</td>
<td>CEQA No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-7b</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8b</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>Alternative</td>
<td>Environmental Impacts*</td>
<td>Impact Determination</td>
<td>Mitigation Measures</td>
<td>Residual Impacts after Mitigation</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 6</td>
<td>GEO-1a</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td>GEO-2a</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1 MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td>GEO-3a</td>
<td>CEQA: Less than significant impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-4a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-5a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-6a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-8a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
</tr>
</tbody>
</table>
Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 6 (continued)</td>
<td><strong>GEO-1b</strong></td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-2b</strong></td>
<td>CEQA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Significant impact</td>
<td>MM GEO-1</td>
<td>NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-3b</strong></td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-4b</strong></td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-5b</strong></td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-6b</strong></td>
<td>CEQA No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-7b</strong></td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td><strong>GEO-8b</strong></td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
</tbody>
</table>

*Environmental Impacts: CEQA = California Environmental Quality Act, NEPA = National Environmental Policy Act
Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Alternative 7</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-1a</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-2a</td>
<td>CEQA: Significant impact NEPA: Significant impact</td>
<td>MM GEO-1 MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact NEPA: Significant and unavoidable impact</td>
<td></td>
</tr>
<tr>
<td>GEO-3a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-4a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-5a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-6a</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact NEPA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>GEO-7a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
<tr>
<td>GEO-8a</td>
<td>CEQA: No impact NEPA: No impact</td>
<td>Mitigation not required Mitigation not required</td>
<td>CEQA: No impact NEPA: No impact</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3.5-3. Summary Matrix of Potential Impacts and Mitigation Measures for Geology Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.5 Geology (continued)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 7 (continued)</td>
<td>GEO-1b</td>
<td>CEQA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Significant impact</td>
<td>No mitigation measures are available to reduce below significance</td>
<td>NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td>GEO-2b</td>
<td>CEQA: Significant impact</td>
<td>MM GEO-1</td>
<td>CEQA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Significant impact</td>
<td>MM GEO-1</td>
<td>NEPA: Significant and unavoidable impact</td>
</tr>
<tr>
<td></td>
<td>GEO-3b</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-4b</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>GEO-5b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-6b</td>
<td>CEQA No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-7b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
<tr>
<td></td>
<td>GEO-8b</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEPA: No impact</td>
<td>Mitigation not required</td>
<td>NEPA: No impact</td>
</tr>
</tbody>
</table>

Note:

*Unless otherwise noted, all impact descriptions for each of the Alternatives are the same as those described for the Proposed Project.*
3.5.4.5 Mitigation Monitoring

In instances where the MM GEO-1 Emergency Response Planning Mitigation Measure is necessary, the terminal operator shall work with Port engineers and Port police to develop tsunami response training and procedures to assure that construction and operations personnel will be prepared to act in the event of a large seismic event.

The below mitigation monitoring program is applicable to the proposed Project, Alternatives 2, 3, 4, 6, and 7.

| GEO-2: Construction on the proposed Project in the Port area would expose people and structures to substantial risk involving tsunamis or seiches |
| Mitigation Measure | GEO-1: Emergency Response Planning. The terminal operator shall work with Port engineers and Port police to develop tsunami response training and procedures to assure that construction and operations personnel will be prepared to act in the event of a large seismic event. Such procedures shall include immediate evacuation requirements in the event that a large seismic event is felt at the proposed Project site, as part of overall emergency response planning for this proposed Project. |
| Timing | Prior to Construction and/or operation |
| Methodology | Such procedures shall be included in any bid specifications for construction or operations personnel, with a copy of such bid specifications to be provided to LAHD, including a completed copy of its operations emergency response plan prior to commencement of construction activities and/or operations. Such procedures shall include immediate evacuation requirements in the event that a large seismic event is felt at the proposed Project site, as part of overall emergency response planning for this proposed Project. |
| Responsible Parties | LAHD |
| Residual Impacts | Significant after mitigation. |

3.5.5 Significant Unavoidable Adverse Impacts

Impacts 1a, 1b, 2a, and 2b would remain significant and unavoidable for the proposed Project, and Alternatives 3, 4, 6, and 7. Impacts 1b and 2b would remain significant and unavoidable under Alternative 5. Impacts 1a, 1b, 2a, and 2b would remain significant and unavoidable under Alternative 2 (CEQA only) and impacts 1b and 2b would remain significant and unavoidable under Alternative 1 (CEQA only).

Design and construction in accordance with applicable laws and regulations pertaining to seismically induced ground movement would minimize structural damage in the event of an earthquake. However, increased exposure of people and property during construction and operation to seismic hazards from a major or great earthquake cannot be precluded, even with incorporation of modern construction engineering and safety standards.

Emergency planning and coordination between the terminal operator and the LAHD, as outlined in MM GEO-1, would contribute in reducing injuries to onsite personnel during a tsunami. However, even with incorporation of emergency planning and construction procedures in accordance with current City and state regulations, substantial damage and injury could occur in the event of a tsunami or seiche. Therefore, potential impacts due to seismically induced ground failure or in the event of a tsunami or seiche would remain significant for the proposed Project and its alternatives.