3.2

AIR QUALITY AND METEOROLOGY

3.2.1 Introduction

5

6

7

8

9

10

11

12

13

2 3.2.2 Environmental Setting

3 3.2.2.2 Air Pollutants and Air Monitoring

4 Local Air Monitoring Levels

USEPA designates all areas of the United States according to whether they meet the NAAQS. A nonattainment designation means that a primary NAAQS has been exceeded more than once per year in a given area. USEPA currently designates the SCAB as an "extreme" nonattainment area for 1-hour ozone, a "severe-17"¹ nonattainment area for 8-hour ozone, a "serious" nonattainment area for both CO² and PM₁₀, and a nonattainment area for PM_{2.5}. The SCAB is in attainment of the NAAQS for SO₂, NO₂, and lead (USEPA 2006). States with nonattainment areas must prepare a State Implementation Plan (SIP) that demonstrates how those areas will come into attainment.

14The CARB also designates areas of the state according to whether they meet the15CAAQS. A nonattainment designation means that a CAAQS has been exceeded16more than once in 3 years. The CARB currently designates the SCAB as an17"extreme" nonattainment area for ozone, and a nonattainment area for both PM10, and18PM2.5. The air basin is in attainment of the CAAQS for CO, SO2, NO2, sulfates, and19lead, and is unclassified for hydrogen sulfide and visibility reducing particles.

¹ Severe-17 = design value of 0.190 up to 0.280 ppm and has 17 years to reach attainment.

² The SCAB has been achieving the Federal 1-hour CO air quality standard since 1990, and the Federal 8-hour CO standard since 2002. The USEPA redesignated the SCAB as in attainment of the NAAQS for CO in June 2007. .-However, the SCAB is still considered a nonattainment area until a petition for redesignation is submitted by the State and is approved by USEPA. A redesignation to attainment has already been made for the State CO standards.

3.2.3 Applicable Regulations

3.2.3.1 Federal Regulations

2

3

4

5

6

7

8

9

General Conformity Rule

Section 176(c) of the CAA states that a federal agency cannot support an activity unless the agency determines it will conform to the most recent USEPA-approved SIP. This means that projects using federal funds or requiring federal approval must not (1) cause or contribute to any new violation of a NAAQS, (2) increase the frequency or severity of any existing violation, or (3) delay the timely attainment of any standard, interim emission reduction, or other milestone.

- On November 30, 1993, USEPA promulgated final general conformity regulations at 10 40 C.F.R. Part 93 Subpart B for all Federal activities except those covered under 11 transportation conformity. On September 14, 1994, SCAQMD adopted these 12 regulations by reference as part of Rule 1901. The general conformity regulations 13 apply to a Federal action in a nonattainment or maintenance area if the total of direct 14 and indirect emissions of the relevant criteria pollutants and precursor pollutants 15 caused by the Federal action equal or exceed certain de minimis rates, thus requiring 16 the Federal agency to make a determination of general conformity. Even if a Federal 17 action's emissions would be below de minimis rates, if this total represents ten 18 percent or more of the nonattainment or maintenance area's total emissions of that 19 pollutant, the Federal action is considered regionally significant and the Federal 20 agency must make a determination of general conformity. By requiring an analysis of 21 direct and indirect emissions, USEPA intended the regulating Federal agency to 22 make sure that only those emissions that are reasonably foreseeable and that the 23 Federal agency can practicably control subject to that agency's continuing program 24 responsibility will be addressed. 25
- The general conformity regulations incorporate a stepwise process, beginning with an 26 applicability analysis. According to USEPA guidance (USEPA 1994), before any 27 approval is given for a Federal action to go forward, the regulating Federal agency 28 must apply the applicability requirements found at 40 C.F.R. § 93.153(b) to the 29 Federal action and/or determine the regional significance of the Federal action to 30 evaluate whether, on a pollutant-by-pollutant basis, a determination of general 31 conformity is required. The guidance states that the applicability analysis can be (but 32 is not required to be) completed concurrently with any analysis required under the 33 National Environmental Policy Act (NEPA). If the regulating Federal agency 34 determines that the general conformity regulations do not apply to the Federal action, 35 no further analysis or documentation is required. If the general conformity 36 regulations do apply to the Federal action, the regulating Federal agency must next 37 conduct a conformity evaluation in accordance with the criteria and procedures in the 38 implementing regulations, publish a draft determination of general conformity for 39 public review, and then publish the final determination of general conformity. 40

1	The currently approved SIPs for the SCAB are summarized below.
2 3	• O ₃ : SIP approved by USEPA on April 10, 2000 (65 FR 18903), based on the 1997 AQMP and a 1999 amendment to the 1997 AQMP.
4 5 6 7	 CO: SIP approved by USEPA on May 11, 2007 (72 FR 26718), based on 2005 redesignation request and maintenance plan. In this SIP approval, USEPA also redesignated the SCAB from nonattainment to attainment/maintenance for CO.
8 9 10 11	 PM₁₀: SIP approved by USEPA on April 18, 2003 (68 FR 19315), based on the 1997 AQMP, amendments to the 1997 AQMP submitted in 1998 and 1999, and further modifications to the 1997 AQMP submitted in a status report to USEPA in 2002.
12	• PM _{2.5} : No USEPA-approved SIP.
13 14 15	 NO₂: SIP approved by USEPA on July 24, 1998 (63 FR 39747), based on the 1997 AQMP. In this SIP approval USEPA also redesignated the SCAB from nonattainment to attainment/maintenance for NO₂.
16 17 18 19 20 21	Based on the present attainment status of the SCAB, a federal action would conform to the SIP if its annual emissions remain below 100 tons of CO or $PM_{2.5}$, 70 tons of PM_{10} , or 25 tons of NO _x or VOCs. However, the United States Court of Appeals ruled in December 2006 that areas in nonattainment of the 1-hour O ₃ NAAQS that were superseded by the 8-hour nonattainment classifications must also consider the 1-hour requirements in conformity analyses (South Coast Air Quality Management Dist. v. EPA, 472 F 2d 882 (D C Cire 2006). Homes, 10 tons per year of NO, or VOCs also are
22 23	472 F.3d 882 [D.C.Cir. 2006]). Hence, 10 tons per year of NO_x or VOCs also are applicable conformity de minimis thresholds for the SCAB.
24 25 26 27 28 29	For purposes of the general conformity determination, the applicable SIP will be the most recent USEPA-approved SIP at the time of the release of the final general conformity determination. A conceptual plan for the proposed Project was included in the Port's 2020 Plan which was incorporated into the 1997 SIP. However, based on changes to the proposed Project since the 2020 Plan was approved, a general conformity determination may still be necessary for the proposed federal action. If
30 31	necessary, the Draft Conformity Determination will be prepared and circulated for public review prior to Federal action associated with the proposed Project, consistent
32	with Federal guidance.
33	Based on the present attainment status of the SCAB, a federal action would conform
34	to the SIP if its annual emissions remain below 100 tons of CO or PM _{2.5} , 70 tons of
35	PM ₁₀ , or 25 tons of NO _x or VOCs. However, the United States Court of Appeals ruled
36 37	in December 2006 that areas in nonattainment of the 1-hour Θ_3 NAAQS that were superseded by the 8-hour nonattainment classifications must also consider the 1-hour
38	requirements in conformity analyses (South Coast Air Quality Management Dist. v. EPA,
39	472 F.3d 882 [D.C.Cir. 2006]). Hence, 10 tons per year of NO _* or VOCs also are
40	applicable conformity de minimis thresholds for the SCAB. These de minimis
41	thresholds apply to both proposed construction and operational activities. (For
42	proposed Project operations, the thresholds are compared to the net change in
43	emissions relative to the NEPA Baseline.) If the proposed action exceeds one or
44	more of the de minimis thresholds, a more rigorous conformity determination is the

1 2

3

4

5

6

7

8

9

10

11

next step in the conformity evaluation process. SCAQMD Rule 1901 adopts the guidelines of the General Conformity Rule.

Conformity Statement

The Southern California Association of Governments (SCAG) serves the project area as the Metropolitan Planning Organization (MPO) for Los Angeles, Orange, San Bernardino, Riverside, Ventura and Imperial Counties. As the designated MPO, SCAG is mandated by the federal government to research and draw up plans for transportation and mobility portions of the SCAQMD air plan. SCAG performs the transportation conformity analysis as part of its approval of the Regional Transportation Plan (RTP). The last RTP was approved in 2004 and amended in 2006.

- The Port regularly provides SCAG with its Portwide cargo forecasts for development 12 of the AOMP. Cargo projections from Port activities have been included in the RTP 13 of the MPO and thus were included in the most recent USEPA-approved 1997/1999 14 SIP and the 2003 SIP, should USEPA approve it. These same projections have also 15 been included in the more recent 2007 RTP and SIP, which would also be submitted 16 for USEPA approval. This has been acknowledged by the SCAG, which is the 17 region's MPO. Additionally, an analysis has been done pursuant to 40 CFR 93 18 Section 153 which determined that the proposed project criteria emissions are de 19 minimis, as they are less than 10 percent of both the 1997 and 2007 RTP. As such, a 20 General Conformity Determination is not required for the proposed project. 21
- As part of the environmental review of the Federal action, the USACE will conduct a 22 general conformity evaluation pursuant to 40 C.F.R. Part 93 Subpart B to determine 23 whether a determination of general conformity is required. The Federal action, 24 which is only a portion of the overall proposed Project, includes approval of all in 25 water and over water work and structures; and temporary access, staging, and storage 26 activities within 100 feet of the water needed to complete the in and over water work 27 and structures (hereinafter the "Federal Action"). Consistent with the General 28 Conformity Rule and guidance, including USACE guidance dated April 20, 1994, the 29 USACE determined that other construction and operational activities and emissions 30 associated with the proposed Project are not within the USACE's continuing program 31 responsibility and control, and they were therefore, not included. The general 32 conformity regulations apply at this time to any actions at POLA requiring USACE 33 approval because the SCAB where POLA is situated is a nonattainment area for O_{3} , 34 PM_{10} , and PM_{25} ; and a maintenance area for NO₂ and CO. The USACE will conduct 35 the general conformity evaluation following all regulatory criteria and procedures 36 and in coordination with EPA and SCAG. 37

3.2.3.3 Local Regulations and Agreements

1

2

3

4

5

6

- Through the attainment planning process, the SCAQMD develops the *SCAQMD Rules and Regulations* to regulate sources of air pollution in the SCAB. The most pertinent SCAQMD rules to the proposed Project are listed below.
- **Rule 201 Permit to Construct.** This rule requires anyone that installs or modifies equipment that will emit air contaminants to first obtain a Permit to Construct (PTC). For example, tank modifications would require a PTC.
- Rule 203 Permit to Operate. This rule specifies that equipment which may cause
 the issuance of air contaminants, or which may reduce or control the issuance of air
 contaminants, may not operate without first obtaining a written Permit to Operate
 (PTO).
- 12Rule 402 Nuisance. This rule prohibits discharge of air contaminants or other13material that cause injury, detriment, nuisance, or annoyance to any considerable14number of persons or to the public; or that endanger the comfort, repose, health, or15safety of any such persons or the public; or that cause, or have a natural tendency to16cause, injury or damage to business or property.
- **Rule 403 Fugitive Dust.** This rule prohibits emissions of fugitive dust from any 17 active operation, open storage pile, or disturbed surface area, such that the dust 18 remains visible beyond the emission source property line. A person conducting 19 active operations shall utilize one or more of the applicable best available control 20 measures to minimize fugitive dust emissions from each fugitive dust source type. 21 Operators of large operations (in excess of 50 acres (20 hectares) of disturbed surface 22 area or any earth-moving operation that exceed a daily throughput of 5,000 cubic 23 yards (cy) (3,825 cubic meters [m³]) or more three times during the most recent 365-24 day period. shall either implement control measures identified in the rule or obtain an 25 approved fugitive dust emissions plan from the SCAQMD. Since the proposed 26 improvements would not qualify as a large operation, the Project construction 27 manager would only have to implement best available control measures identified in 28 the rule to minimize fugitive dust emissions from proposed earth-moving and grading 29 activities. 30
- 31Rule 431.1 Sulfur Content of Gaseous Fuels. The purpose of this rule is to32reduce sulfur oxides (SOx) emissions from the burning of gaseous fuels in stationary33equipment requiring a permit to operate by the SCAQMD.
- 34Rule 463 Organic Liquid Storage. This rule sets the requirements to control35VOC emissions from any aboveground stationary tank with capacity of 75,000 liters36(19,815 gallons) or greater used for storage of organic liquids, and any above-ground37tank with a capacity between 950 liters (251 gallons) and 75,000 liters (19,81538gallons) used for storage of gasoline.
- Rule 466 Pumps and Compressors. This rule sets the requirements for operation
 of any pump or compressor that would handle ROCs. The requirements include (1)
 use of seals to prevent leaking or visible liquid mist, (2) repair and testing
 procedures, (3) regular inspection schedules, and (4) recordkeeping.

Rule 466.1 – Valves and Flanges. This rule sets the operating requirements for valves and flanges that would handle ROCs. The requirements include (1) use of seals to prevent leaking or visible liquid mist, (2) repair and testing procedures, (3) regular inspection schedules, and (4) recordkeeping.

- **Rule 466.1 Pressure Relief Devices.** This rule specifies that the operator of a refinery shall not use any pressure relief device on any equipment handling VOC unless the pressure relief device is vented to a vapor recovery or disposal system or inspected and maintained in accordance with the inspection, maintenance, recordkeeping and testing requirements of the rule.
- 10**Regulation IX, Subparts K, Ka, and Kb.** Regulation IX, Subparts K, Ka, and Kb11adopts the federal Standards of Performance for Storage Vessels for Petroleum12Liquids (as contained in Part 60, Chapter I, Title 40, of the Code of Federal13Regulations) into the SCAQMD Rules and Regulations.
- 14Rule 1142 Marine Tank Vessel Operations. This rule limits the marine tank15vessel operation emissions of VOC during a loading, lightering, ballasting, or16housekeeping event to 5.7 grams per cubic meter (2 lbs per 1,000 barrels) of liquid17loaded into a marine tank vessel or requires reduction of at least 95 percent by weight18of uncontrolled VOC emissions.
- 19Rule 1149 Storage Tank and Pipeline Cleaning and Degassing. This rule20reduces VOCs and toxic emissions from roof landings, cleaning, maintenance,21testing, repair and removal of storage tanks and pipelines. This rule applies to the22cleaning and degassing of a pipeline opened to atmosphere outside the boundaries of23a facility, stationary tank, reservoir, or other container, storing or last used to store24VOCs.
- 25Rule 1173 Control of VOC Leaks and Releases from Components at26Petroleum Facilities and Chemical Plants. This rule establishes leak thresholds,27and sets requirements for identification, inspection, maintenance, recordkeeping, and28testing of facility components and pressure relief devices. The intent of the rule is to29control VOC leaks.
 - **Rule 1178 Further Reduction of VOC Emissions from Storage Tanks at Petroleum Facilities.** This rule requires installation of a dome roof for external floating roof tanks containing products with a true vapor pressure greater than 3 pounds per square inch at atmospheric pressure (psia). In addition, at least 95 percent emission control is required for fixed roof tanks containing products with a true vapor pressure greater than 0.1 psia.
- **Regulation XIII New Source Review.** This rule requires new sources of any nonattainment air contaminant, ozone depleting compound, or ammonia to employ Best Available Control Technology (BACT). This rule further requires that any new source of a nonattainment air contaminant (1) demonstrate with modeling that the new facility will not cause a violation of a state or national ambient air quality standard, or make substantially worse an existing violation and (2) offset its emissions of VOC, NO_x, SO_x, and PM₁₀ by a ratio of 1.2 to 1.0.

1

2

3

4

5

6

7

8

9

30

31

32

33

34

Subject to New Source Review, the Project would obtain a permit to construct and operate for some of its land based equipment, such as off-loading arms, tanks, and vapor destruction units (VDUs). Additionally, Rule 1306 (g) requires that Project (1) vessel emissions that occur at berth (during hoteling and unloading cargo) and (2) non-propulsion ship emissions that occur within SCAQMD Coastal Waters (transiting emissions – boiler warm-up) must be accumulated as part of the permitted source. As a result, these Project vessel emissions and stationary sources have to be "offset" in accordance with Rule 1303(b)(2).

In general, offset credits, also known as Emissions Reduction Credits (ERCs), must be obtained from other permitted sources in the SCAB that have decreased emissions or ceased operations. The SCAQMD certifies that proposed ERCs are real, quantifiable, permanent, enforceable and not greater than what the sources would emit if operated with current BACT (SCAQMD Rule 1309). When an ERC certificate is issued, it is identified as either "coastal" or "inland" depending on the location where the emissions reduction took place. As a coastal project, the Berth 408 project would be required to use coastal ERCs to offset the project's regulated emissions (SCAQMD Rule 1303 (b)(3)). PLAMT has obtained ERCs in the amount of 581 pounds per day of NO_x , 181 pounds per day of SO_x , and 352 pounds per day of VOC to fully offset proposed emissions.

- 20Rule 1401 New Source Review of Toxic Air Contaminants. This rule specifies21limits for maximum individual cancer risk (MICR), cancer burden, and non-cancer22acute and chronic hazard index (HI) from new permit units which emit TACs. The23rule establishes allowable risks for permit units requiring new permits pursuant to24Rules 201 and 203.
 - **Rule 1403** Asbestos Emissions from Demolition/Renovation Activities. The purpose of this rule is to limit emissions of asbestos, a TAC, from structural demolition/renovation activities. The rule requires people to notify the SCAQMD of proposed demolition/renovation activities and to survey these structures for the presence of asbestos-containing materials (ACMs). The rule also includes notification requirements for any intent to disturb ACM; emission control measures; and ACM removal, handling, and disposal techniques. All proposed structural demolition activities associated with proposed Project construction would need to comply with the requirements of Rule 1403.
- 34Regulation XVII Prevention of Significant Deterioration. This regulation sets35forth preconstruction review requirements for stationary sources to ensure that air36quality in clean air areas does not significantly deteriorate while maintaining a37margin for future industrial growth.
- Rule 1901 General Conformity Rule 1901 states that a federal agency cannot 38 support an activity unless the agency determines that the activity will conform to the 39 most recent USEPA-approved SIP within the region of the proposed project. This 40 means that federally supported or funded activities will not (1) cause or contribute to 41 any new air quality standard violation, (2) increase the frequency or severity of any 42 existing standard violation, or (3) delay the timely attainment of any standard, interim 43 emission reduction, or other milestone. Any project in-water construction 44 components would require approval from the USACE. Therefore, based on the 45 present attainment status of the SCAB, these project components would conform to 46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

25

26

27

28 29

30

31

32

1the SIP if its annual construction emissions remain below 100 tons of CO, 70 tons of2 PM_{10} , or 10 tons of NO_x or VOCs. If the proposed federal action exceeds one of these3*de minimis* thresholds, performance of a formal conformity analysis is the next step in4the conformity determination process.

Vessel Speed Reduction (VSR) Program. The Ports of Los Angeles and Long 5 Beach began this voluntary program in May 2001 for ships that call at the Ports to 6 reduce their speed to 12 knots (kts) or less within 20 nm of the Point Fermin 7 Lighthouse. A reduction in vessel speed in the offshore shipping lanes (up to 13 kts 8 for the largest container ships) can substantially reduce emissions from the main 9 propulsion engines of the ships. The CAAP adopted the VSR Program as control 10 measure OGV-1 and it expands the program out to 40 nm from the Point Fermin 11 Lighthouse. 12

3.2.4 Impacts and Mitigation Measures

3.2.4.3 Emissions for the Proposed Project

15 **3.2.4.3.2 Operations**

16

17

18

19

20

21

22

23

The PLAMT facility is designed to accommodate cargos of crude oil from around the world. The nature and extent of crude oil tanker traffic during facility operation would be highly variable based upon crude oil demand, availability, price, tanker availability, shipping costs and many other factors. The terminal operator would not own the crude oil nor participate in the chartering of vessels to deliver the cargo. To estimate air quality impacts for the proposed Project, a reasonable worst-case facility utilization scenario has been developed. Actual operation could vary from this scenario, but emissions are not expected to be greater than the chosen scenario.

- Table 3.2-10 includes a synopsis of the regulations that were assumed in the emission calculations for Project operations. Regulations are not treated as mitigation measures, but rather as part of the Project because they represent enforceable rules with or without Project approval. Only currently adopted regulations and agreements were assumed in the Project emission calculations.
- Vessel size, offloading speed, and the number of vessels offloading in a given period 29 all play a direct role in air emissions for a facility of this type. The proposed Project 30 is designed to accommodate Very Large Crude Carriers (VLCCs) with a total cargo 31 of up to 2.5 million barrels (bbl). However, it is expected that smaller types of crude 32 oil tanker vessels would also call at Berth 408, including Suezmax vessels (average 33 capacity of 1.0 million bbl), Aframax vessels (average capacity of 700,000 bbl), and 34 Panamax vessels (average capacity of 300,000 bbl). These vessel types normally 35 supply crude from Mexico, Canada, West Africa, Alaskan North Slope (ANS), and 36 South America. Based on the projected increase in demand for imported crude oil 37 from the Middle East (Baker & O'Brien 2007) and the inherent economy of scale in 38 large-scale crude oil transport over long distances, it is expected that the number of 39 VLCCs would increase during the life of the Project and the number of smaller 40 vessels coming into the berth would decrease. Emissions per barrel of oil delivered 41 are lower for VLCCs than from smaller tankers. 42

Ships	Tugboats	Tanks	Trucks	Valves, Flanges and Pumps
Vessel Speed	California Diesel	Marine Tank Vessel	Emission	Valves and Flanges – Operating
Reduction	Fuel Regulations	Operations – Emission	Standards for	requirements for valves and flanges
Program –	 – 15-ppm sulfur 	limits for the marine tank	Onroad	that would handle Reactive Organic
Ships coming	effective	vessel operation of VOC	Trucks –	Gases (ROGs). Requirements
into the Port	September 2006.	during a loading, lighting,	Gradual annual	include (1) use of seals to prevent
would reduce	Engine	ballasting, or	phase-in of	leaking or visible liquid mist, (2)
their speed to	Standards for	housekeeping event	tiered standards	repair and testing procedures, (3)
12 knots or less	Marine Diesel	Further Reduction of	due to normal	regular inspection schedules, and (4)
within 20 nm of	Engines –	VOC emissions from	truck fleet	recordkeeping.
Point Fermin.		Storage Tanks at	turnover.	Pumps and Compressors –
	phase-in of Tier 2	Petroleum Facilities –	California	Requirements for operation of any
	standards due to	Installation of a dome roof		pump or compressor that would
	normal tugboat	for external floating roof		handle ROGs. Requirements include
	fleet turnover.	tanks containing products	15-ppm sulfur	(1) use of seals to prevent leaking or
		with a true vapor pressure	effective	visible liquid mist, (2) repair and
		greater than 3 pounds per	September	testing procedures, (3) regular
		square inch at atmospheric	2006.	inspection schedules, and (4)
		pressure		recordkeeping.
		Vapor Destruction Unit-		
		Each tank would be		
		connected to a tank vapor		
		recovery and incineration		
		system used to destroy		
		<u>vapors.</u>		

 Table 3.2-10. Regulations and Agreements Assumed as Part of the Proposed Project

 Operational Emissions

The proposed Project's throughput is based on a forecast under which crude oil in southern California would increase over time. The Project's air quality impacts were estimated based on throughput at Berth 408 increasing from 350,000 barrels per day (bpd) in 2010 to 677,000 bpd in 2040. Table 2-9 presents the crude oil throughput and vessel mix projections for the proposed Project over time.

As part of the SCAQMD New Source Review process, Project emissions subject to 6 Regulation XIII (NO_x, SO_x, CO, ROG, and PM_{10}) would be regulated via a monthly 7 emissions cap, based on the planned operational scenarios. This cap would limit air 8 emissions at the same level regardless of the size and frequency of vessels that 9 offload at Berth 408. Therefore, the maximum amount of annual emissions that 10 could be generated from the proposed Project would be limited to the same quantity 11 regardless of the vessel mix. Operational impacts are based on the throughput and 12 vessel mix estimates contained in the Project Description. The SCAQMD has not yet 13 issued a permit for the Proposed Project. Limits which may contained on that permit, 14 including the referenced emissions cap, were not considered in this analysis. 15

1

2

3

4

13.2.4.6Proposed Project and Alternatives: Impacts and2Mitigation

3 3.2.4.6.1 Proposed Project

Proposed Project – Impact AQ-1: The proposed Project would result in construction-related emissions that exceed a SCAQMD threshold of significance in Table 3.2-5.

- Although there is no formal construction phasing for the proposed Project, for the emissions analysis it is useful to divide the construction activities into the following two phases:
 - **Construction Phase I** Construction of the Marine Terminal, Tank Farm Site 1, and pipelines, and beginning of construction of Tank Farm Site 2. Construction Phase I ends when the Marine Terminal, Tank Farm Site 1, pipelines, and eight tanks on Tank Farm Site 2 are complete (approximately 20 months after Project approval; see Section 2.4.3.1).
 - **Construction Phase II** Completion of the remaining tanks at Tank Farm Site 2. Construction Phase II would end approximately 30 months after Project approval. Construction Phase II will be concurrent with initial operations of the Berth 408 terminal.

The maximum daily emissions for Construction Phase I and Construction Phase II are shown below in Tables 3.2-11 and 3.2-12. The significance of Construction Phase I activities is considered under **Impact AQ-1**. Because Construction Phase II activities will be concurrent with the initial operation of the proposed Project, the significance of Construction Phase II is considered in the impact discussions for the Operations phase of the project (i.e., **Impact AQ-3**).

Construction Activity			Daily Em	issions (I	Pounds)	
	VOC	CO	NO _v	SO _v	PM ₁₀	PM _{2.5}
Pier 400 Marine Terminal and Wharf Construction			- (o A	~ ~ ^	10	
Mobilization of Landside and Marine Equipment	47	197	592	0.50	21	20
Demobilization of Landside and Marine Equipment	47	197	592	0.50	21	20
Unloading Platform	100	424	1,403	1.12	42	39
Breasting Dolphin Platforms	100	424	1,403	1.12	42	39
Mooring Dolphin Platforms	100	424	1,403	1.12	42	39
Trestle Abutments	8	29	70	0.08	4	4
Main Trestle	21	86	306	0.32	10	9
Single Lane Trestle to Breasting Dolphin	20	83	289	0.32	9	9
Emergency Spill Boom Platforms	17	72	244	0.29	8	7
Pipeline Construction	1 /	12	244	0.22	0	/
42" Pipeline	46	293	726	0.76	50	39
		454	1,027	1.04		57
36" Pipeline	66 35	223			68 34	29
24" Pipeline			566	0.59		
Tank Farm Site 1	69	433	1,149	1.25	102	62
Tank Farm Site 2	127	828	2,094	2.20	141	108
Stone Delivery	104	262	3,130	168	58	49
Worker Commuter Vehicles	45	622	401	l	21	17
Peak Daily Emissions	<u>592</u> <u>384</u>	$\frac{3,539}{2,195}$	<u>10,496</u> 7,110	176 172	516 291	400 224
CEQA Baseline Emissions	0	0	0	0	0	0
Net Change Versus CEQA Baseline	592 384	3,539 2,195	<u>10,496</u> 7,110	176 172	516 291	$\frac{400}{224}$
CEQA Significance Thresholds	75	550	100	150	150	55
Significance under CEQA?	Yes	Yes	Yes	Yes	Yes	Yes
NEPA Baseline Emissions	0	0	0	0	0	0
Net Change Versus NEPA Baseline	<u>592</u> <u>384</u>	<u>3,539</u> 2,195	<u>10,496</u> 7,110	176 172	516 291	400 224
NEPA Significance Thresholds	75	550	100	150	150	55
Significance under NEPA?	Yes	Yes	Yes	Yes	Yes	Yes
Notes:	105	105	105	105	105	105
Peak daily construction emissions would occur from Platform, (2) Breasting Dolphin Platforms, or (3) Mc (d) Tank Farm Site 2, (e) Stone Delivery, and (f) Wo 2. Fugitive construction emissions include PM ₁₀ emissions	oring Dolp rker Comm	hin Platforn uter Vehicle	ns, (b) Pipel es.	ine Constr	uction, (c)	Fank Farm Site 1,
 vehicle/equipment fugitive dust. Emission controls were implemented on construction 	equipment	to lower er	nissions. N	O _x emissio	on factors an	e higher in the
unmitigated case than in the mitigated case, as would implemented to decrease NO emissions, an unequal a emissions increase in the mitigated case, compared to	air-to-fuel r	atio results,				
 Peak daily construction emissions would occur from the (2) Breasting Dolphin Platforms, or (3) Mooring Dol Delivery, and (c) Worker Commuter Vehicles. 	-concurrent phin Platfo	activities: (rms, (b) Pip	eline Constr	uction, (c)	Tank Farm	Site 1, (d) Stone
 Fugitive construction emissions include PM₁₀ emissive dust. 3-4. The peak daily construction emissions are obtained for the second seco				0,0		
<u>H.1.PP.Un.Const-16 (Vessel Emissions from Stone I</u>						

Table 3.2-11. Peak Daily Emissions for Proposed Project Construction Phase I Activitieswithout Mitigation

 Table 3.2-12. Peak Daily Emissions for Proposed Project Construction Phase II Activities

 without Mitigation

Constant diam Activity	Daily Emissions (Pounds)							
Construction Activity	VOC	СО	NO _x	SOx	PM_{10}	PM _{2.5}		
Fank Farm Site 2	38	262	630	1	66	39		
Worker Commuter Vehicle	41	584	367	1	20	16		
Peak Daily Emissions	80	846	997	2	86	55		

vehicle/equipment fugitive dust.2. Peak daily construction emissions would occur from the concurrent activities: (a) Tank Farm Site 2, and (b) Worker Commuter Vehicles.

MM AQ-1: Ridesharing or Shuttle Service

- Ridesharing or shuttle service programs shall be provided for construction workers. Ridesharing or shuttle service programs would provide emissions benefit by reducing vehicle traffic related to the construction workforce. It is not known how much participation can be achieved for this measure. For this reason, the emissions benefit has not been quantified in this study.
- This measure incorporates the requirements of **MM 4G-4** from the 1992 Deep Draft FEIS/FEIR.

9 MM AQ-2: Staging Areas and Parking Lots

- 10On-site construction equipment staging areas and construction worker parking lots11shall be located on either paved surfaces, or unpaved surfaces covered by gravel or12subjected to soil stabilization treatments. The staging areas and worker parking lots13shall be located as close as possible to public access routes. Access to public14roadways from the staging areas and parking lots shall be controlled in order to15minimize idling of Project construction equipment.
- 16 It is not known how much effectiveness can be achieved for this measure. For this 17 reason, the emissions benefit has not been quantified in this study.
- 18This measure incorporates the requirements of MM 4G-11, 4G-13 and 4G-14 from19the 1992 Deep Draft FEIS/FEIR.

20 MM AQ-3: Construction Equipment Standards

- 21Prior to and including December 31, 2011:
construction equipment greater than 50 hp, except derrick barges and marine vessels23shall meet the Tier 2 emission standards as defined in the USEPA Non-Road Diesel24Engine Rule (USEPA 1998). In addition, all construction equipment greater than 50
hp shall be retrofitted with a CARB-certified Level 3 diesel emissions control device.
- 26From January 1, 2012 through December 31, 2014: All off-road diesel-powered27construction equipment greater than 50 hp shall meet Tier-3 emission off-road28emission standards, at a minimum and shall be retrofitted with a CARB certified29Level 3 diesel emissions control device.
- 30From January 1, 2015 on: All off-road diesel-powered construction equipment31greater than 50 hp shall meet Tier-4 emission off-road emission standards, at a32minimum and shall be retrofitted with a CARB certified Level 3 diesel emissions33control device.
- This mitigation measure shall be met, unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:

1

2

3

4

5

6

7

• A piece of specialized equipment is unavailable in a controlled form, or within the required Tier level, within the state of California, including through a leasing agreement.

- A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
- A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.

While construction is anticipated to finish prior to 2011, the mitigation measure includes further requirements if construction is delayed beyond 2011. These measures are consistent with the Port's Sustainable Construction Guidelines. However, because construction is anticipated to be complete by 2011, and to provide a conservative analysis of construction emissions impacts, the quantitative analysis included in this Section only includes emission reductions from the use of Tier 2 emission standards.

22 MM AQ-4: Electricity Use

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

Electricity supplied by a public utility shall be used where available on the tank farm and pier construction sites in lieu of temporary diesel or gasoline-powered generators. The use of utility power would have a beneficial impact on local air quality as compared to temporary diesel or gasoline-powered generators. However, the level of feasibility for this measure cannot be predicted at this time. For this reason, the potential emission benefits of this measure have not been quantified in this study.

30 MM AQ-5: Best Management Practices (BMPs)

- The following types of measures are required on construction equipment (including on-road trucks):
 - 1. Use of diesel oxidation catalysts and catalyzed diesel particulate traps
 - 2. Maintain equipment according to manufacturers' specifications
 - 3. Restrict idling of construction equipment <u>and on-road heavy-duty trucks</u> to a maximum of 5 minutes when not in use
 - 4. Install high-pressure fuel injectors on construction equipment vehicles
- 5. Maintain a minimum buffer zone of 300 meters between truck traffic and sensitive receptors
 - 6. Improve traffic flow by signal synchronization

1	7. Enforce truck parking restrictions
2	8. Provide on-site services to minimize truck traffic in or near residential areas,
3	including, but not limited to, the following services: meal or cafeteria
4	services, automated teller machines, etc.
5	9. Re-route construction trucks away from congested streets or sensitive
6	receptor areas
7	10. Provide dedicated turn lanes for movement of construction trucks and
8	equipment on- and off-site.
0	LAHD shall implement a process by which to select additional PMPs to further
9	LAHD shall implement a process by which to select additional BMPs to further
10	reduce air emissions during construction. The LAHD shall determine the BMPs once
11	the contractor identifies and secures a final equipment list.
12	This measure incorporates the requirements of MM 4G-3 from the 1992 Deep Draft
13	FEIS/FEIR.
14	MM AQ-6: Additional Fugitive Dust Controls
14	MM Ag-0. Additional i dyntve Dast Controls
15	The construction contractor shall reduce fugitive dust emissions by 90 percent from
16	uncontrolled levels. ³ The Project construction contractor shall specify dust-control
17	methods that will achieve this control level in a SCAQMD Rule 403 dust control
18	plan. Their duties shall include holiday and weekend periods when work may not be
19	in progress.
20	Measures to reduce fugitive dust include, but are not limited to, the following:
21	• Active grading sites shall be watered one additional time per day beyond that
22	required by Rule 403.
22	
23	• Contractors shall apply approved non-toxic chemical soil stabilizers
24	according to manufacturer's specifications to all inactive construction areas
25	or replace groundcover in disturbed areas (previously graded areas) inactive
26	for ten days or more.
27	• Construction contractors shall provide temporary wind fencing around sites
28	being graded or cleared.
29	• Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least
30	$\frac{2}{2}$ feet of freeboard in accordance with Section 23114 of the California
31	Vehicle Code.
32	• Construction contractors shall install wheel washers where vehicles enter and
33	exit unpaved roads onto paved roads, or wash off tires of vehicles and any
34	equipment leaving the construction site.
35	Pave road and road shoulders.

³ The unmitigated emissions calculations assume that fugitive dust emissions would be reduced 75 percent from uncontrolled levels as required by applicable rules and regulations. The above mitigation measures are expected to further control fugitive dust emissions an additional 60 percent, resulting in a total of 90% control from uncontrolled levels.

1 2 3 4	• Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186.1 certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions.
5 6 7	• Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM ₁₀ generation.
8	Traffic speeds on all unpaved roads shall be reduced to 15 mph or less.
9 10	 Provide temporary traffic controls such as a flag person, during all phases of construction to maintain smooth traffic flow.
11 12	• Schedule construction activities that affect traffic flow on the arterial system to off-peak hours to the extent practicable.
13 14 15	• Require the use of electrified truck spaces for all truck parking or queuing areas if feasible. Alternatively, trucks could be required to turn off if parked or stopped in idle for more than 15 minutes.
16 17 18	The grading contractor shall suspend all soil disturbance activities when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction is delayed.
19	MM AQ-7: Expanded VSR Program
20 21 22 23	All ships and barges used primarily to deliver construction-related materials to a LAHD-contractor construction site shall comply with the expanded Vessel Speed Reduction (VSR) program of 12 knots from 40 nautical miles (nm) from Point Fermin to the Precautionary Area.
24	MM AQ-8: Low-Sulfur Fuel for Construction Delivery Vessels
25 26 27 28	All ships and barges used primarily to deliver construction-related materials to a LAHD-contractor construction site shall use low-sulfur fuel (maximum sulfur content of 0.2 percent) in main engines, auxiliary engines, and boilers within 40 nm of Point Fermin.
29	MM AQ-9: Engine Standards for Harbor Craft Used in Construction
30 31 32 33 34	Prior to December 31, 2010, all harbor craft with C1 or C2 marine engines must achieve a minimum emission reduction equivalent to a U.S. Environmental Protection Agency (USEPA) Tier-2 2004 level off-road marine engine. From January 1, 2011 on, all harbor craft with C1 or C2 marine engines must utilize a U.S. USEPA Tier-3 engine, or cleaner.
35 36 37	This mitigation measure shall be met unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:

A piece of specialized equipment is unavailable in a controlled form, or • 1 within the required Tier level, within the state of California, including 2 through a leasing agreement. 3 A contractor has applied for necessary incentive funds to put controls on a 4 piece of uncontrolled equipment planned for use on the project, but the 5 application process is not yet approved, or the application has been approved, 6 but funds are not yet available. 7 A contractor has ordered a control device for a piece of equipment planned 8 for use on the project, or the contractor has ordered a new piece of controlled 9 equipment to replace the uncontrolled equipment, but that order has not been 10 completed by the manufacturer or dealer. In addition, for this exemption to 11 apply, the contractor must attempt to lease controlled equipment to avoid 12 using uncontrolled equipment, but no dealer within 200 miles of the project 13 has the controlled equipment available for lease. 14 MM AQ-10: Fleet Modernization for On-Road Trucks 15 Prior to and including December 31, 2011: All on-road heavy-duty diesel trucks 16 with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on-site 17 or to transport materials to and from the site shall comply with USEPA 2004 on road 18 emission standards for PM₁₀ and NO_x (0.10 g/bhp-hr PM₁₀ and 2.0 g/bhp-hr NO_x). 19 From January 1, 2012 on: All on-road heavy-duty diesel trucks with a gross vehicle 20 weight rating (GVWR) of 19,500 pounds or greater used at the Port of Los Angeles 21 shall comply with EPA 2007 on-road emission standards for PM_{10} and NO_x (0.01 22 g/bhp-hr and 0.20 g/bhp-hr). 23 All years: 24 Trucks hauling materials such as debris or fill shall be fully covered while in 25 operation off Port property. 26 In addition, all on-road heavy heavy-duty trucks with a GVWR of 19,500 pounds or 27 greater used at the Port of Los Angeles shall be equipped with a CARB verified 28 Level 3 device. 29 This mitigation measure shall be met unless one of the following circumstances exists 30 and the contractor is able to provide proof that any of these circumstances exists: 31 A piece of specialized equipment is unavailable in a controlled form, or 32 within the required Tier level, within the state of California, including 33 through a leasing agreement. 34 A contractor has applied for necessary incentive funds to put controls on a 35 piece of uncontrolled equipment planned for use on the project, but the 36 application process is not yet approved, or the application has been approved, 37 but funds are not yet available. 38 A contractor has ordered a control device for a piece of equipment planned 39 for use on the project, or the contractor has ordered a new piece of controlled 40

equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.

- 6 The effectiveness of this measure was determined by assuming that the mitigated 7 construction truck fleet was 50 percent 2007 SCAB average fleet and 50 percent 8 compliant with the year 2007 standards. Use of the EMFAC2007 emission factor 9 model determined that the emission reductions associated with this mitigation 10 measure would range from 9 to 15 percent, depending upon the pollutant.
- 11While construction is anticipated to finish prior to 2011, the mitigation measure12includes further requirements if construction is delayed beyond 2011. These13measures are consistent with the Port's Sustainable Construction Guidelines.14However, because construction is anticipated to be complete by 2011, and to provide15a conservative analysis of construction emissions impacts, the quantitative analysis16included in this Section only includes emission reductions from the use of USEPA172004 on-road emission standards.

MM AQ-11: Special Precautions near Sensitive Sites

For construction activities that occur within 1,000 feet of sensitive receptors (defined as schools, playgrounds, daycares, and hospitals), the Port shall notify each of these sites in writing at least 30 days before construction activities begin.

22 MM AQ-12: General Mitigation Measure

- For any of the above mitigation measures (MM AQ-1 through AQ-11), if a CARBcertified technology becomes available and is shown to be as good as or better in terms of emissions performance than the existing measure, the technology could replace the existing measure pending approval by the Port.
- It is not known how much participation can be achieved for this measure. For this reason, the emissions benefit has not been quantified in this study.
- In addition, the following mitigation measure from the Deep Draft FEIS/FEIR would also apply:

MM 4G-5: Discontinue construction activities during a Stage II Smog Alert.

33 Residual Impacts

18

31

32

Tables 3.2-13 and 3.2-14 presents the maximum daily criteria pollutant emissions associated with construction of the proposed Project, after the application of the proposed Mitigation Measures. The emission reductions that would be realized from the application of several measures are uncertain and would vary due to the transient nature of the construction activities. The emissions reductions from these measures would not be sufficient to reduce the total construction emissions to below the significance criteria thresholds. Emissions of VOC, CO, NO_x , PM_{10} , and $PM_{2.5}$ during Phase I construction would remain significant under CEQA. As noted above, the impact for Construction Phase II is addressed under **Impact AQ-3**.

4 Uncalculated Revisions to Construction Mitigation Measures

The revisions to mitigation measures include further implementation of construction 5 equipment and truck requirements. While construction is anticipated to finish prior to 6 2011, the mitigation measure includes further requirements if construction is delayed 7 beyond 2011. These measures are consistent with the Port's Sustainable Construction 8 Guidelines. However, because construction is anticipated to be complete by 2011, 9 and to provide a conservative analysis of construction emissions impacts, the 10 quantitative analysis included in this Section only includes emission reductions from 11 measures required prior to 2011, consistent with the Draft SEIS/SEIR. Therefore, 12 there are no changes to the daily construction emissions. The proposed Project would 13 exceed the daily construction emission thresholds for VOC, CO, NO_x, SO_x, PM₁₀ and 14 PM_{25} 15

1

2

Construction Activity		Daily	y Emissio	ns ^{1,2} (Po	unds)					
Construction Activity	VOC	CO	NO _x	SO _x	PM ₁₀	PM _{2.5}				
Pier 400 Marine Termina	ıl and Wh	arf Const	ruction							
Mobilization of Landside and Marine Equipment	26	273	443	0.50	17	15				
Demobilization of Landside and Marine Equipment	26	273	443	0.50	17	15				
Unloading Platform	56	605	1,006	1.12	35	32				
Breasting Dolphin Platforms	56	605	1,006	1.12	35	32				
Mooring Dolphin Platforms	56	605	1,006	1.12	35	32				
Trestle Abutments	17	33	47	0.08	2	2				
Main Trestle	15	117	176	0.32	6	6				
Single Lane Trestle to Breasting Dolphin	14	113	173	0.29	6	6				
Emergency Spill Boom Platforms	11	103	166	0.22	6	5				
Pipeline C	Pipeline Construction									
42" Pipeline	46	372	558	0.76	28	23				
36" Pipeline	66	564	781	1.04	39	33				
24" Pipeline	35	290	436	0.59	20	17				
Tank Farm Site 1	69	574	932	1	100	48				
Tank Farm Site 2	127	1,095	1,645	2	112	72				
Stone Delivery	71	176	2,056	106	38	32				
Worker Commuter Vehicles	45	622	401	1	21	17				
Dool Doily Emissions	<u>515</u>	4,298	<u>7,815</u>	<u>114</u>	<u>393</u>	<u>274</u>				
Peak Daily Emissions	307	2,541	5,176	110	233	162				
CEQA Baseline Emissions	0	0	0	0	0	0				
Not Change Vergue CEOA Baseline	<u>515</u>	4,298	7,815	<u>114</u>	<u>393</u>	<u>274</u>				
Net Change Versus CEQA Baseline	307	2,541	5,176	110	233	162				
CEQA Significance Thresholds	75	550	100	150	150	55				
Significance under CEQA?	Yes	Yes	Yes	No	Yes	Yes				
NEPA Baseline Emissions	0	0	0	0	0	0				
Net Change Versus NEPA Baseline	<u>515</u>	<u>4,298</u>	<u>7,815</u>	<u>114</u>	<u>393</u>	<u>274</u>				
	307	2,541	5,176	110	233	162				
NEPA Significance Thresholds	75	550	100	150	150	55				
Significance under NEPA?	Yes	Yes	Yes	No	Yes	Yes				
 Notes: Implementation of MM AQ-1 through MM AQ-2 and MM AQ-4 through MM AQ-6 would result in a reduction in combustion emissions and fugitive dust emissions. However, the amounts of emission reductions are quantifiable only for fugitive dust emissions. Peak daily construction emissions would occur from the concurrent activities: (a) any one of the following: (1) Unloading Platform, (2) Breasting Dolphin Platforms, or (3) Mooring Dolphin Platforms, (b) Pipeline Construction, (c) Tank Farm Site 1, (d) Tank Farm Site 2, (e) Stone Delivery, and (f) Worker Commuter Vehicles. Emission controls were implemented on construction equipment to lower emissions. NO_x emission factors are higher in the unnitigated case than in the mitigated case, as would intuitively be expected. However, when mitiging equipment to a degree PO of the following results which is the provided on the provided o										
 Inglier in the uninfigated case than in the infigated case, as would infutrively be expected. Thowever, when emission controls are implemented to decrease NO emissions, an unequal air-to-fuel ratio results, which in turn means that CO emission factors, and emissions increase in the mitigated case, compared to the unmitigated case. I.Implementation of MM AQ-1 through MM AQ-2 and MM AQ-4 through MM AQ-6 would result in a reduction in combustion emissions and fugitive dust emissions. However, the amounts of emission reductions are quantifiable only for fugitive dust emissions. Peak daily construction emissions would occur from the concurrent activities: (a) any one of the following: (1) Unloading Platform, (2) Breasting Dolphin Platforms, or (3) Mooring Dolphin Platforms, (b) Pipeline Construction, (c) Tank Farm Site 1, (d) Stone Delivery, (e) Worker Commuter Vehicles. The peak daily construction emissions are obtained from H.1.PP.Mit.Const-1 (Construction Activities Summary Phase I), H.1.PP.Mit.Const-16 (Vessel Emissions from Stone Delivery) and H.1.PP.Mit.Const-17 (Truck Emissions from Stone Delivery). 										

Table 3.2-13. Peak Daily Emissions for Proposed Project Construction Phase IActivities with Mitigation 1,2

Pacific L.A. Marine Terminal LLC Crude Oil Terminal Final SEIS/SEIR November 2008

Table 3.2-14.	Peak Daily Emissions for Proposed Project Construction Phase II
	Activities with Mitigation

	Construction Activity			ly Emissi	ons (Pou	1	
		VOC	CO	NO _x	SOx	PM ₁₀	PM _{2.5}
Tank Farm Site			36 346	494	1	64	28
Worker Comm		28 64	387	244	1	13	11
Peak Daily Emi Notes:	issions	733	739	2	77	39	
activities, a 2. Peak daily of	nstruction emissions include PM ₁₀ emission and vehicle/equipment fugitive dust. construction emissions would occur from mmuter Vehicles.						
	NEPA Impact Determination	<u>n</u>					
	The proposed Project would ex VOC, CO, NO _x , SO _x , PM_{10} , a significant impacts would occur emissions are considered under	und PM _{2.}	5 during EPA. As	Constru	iction P	hase I.	There
	Mitigation Measures						
	MM AQ-1 through AQ-12 and	MM 4G	-5 would	be appl	ied to th	e propose	ed Proje
	Residual Impacts						
	Tables 3.2-13 and 3.2-14 (ab emissions associated with const						
	of the proposed mitigation mea	-					"PP"
							mitiga
	measures would not be sufficient	nt to redu	uce the c	construct	ion emis	sions to	e mitiga a less
	measures would not be sufficien significant level. Emissions of	nt to redu VOC, CO	uce the c D, NO _x , I	construct PM_{10} , and	ion emis d PM _{2.5}	sions to during C	e mitiga a less onstruc
	measures would not be sufficient	nt to redu VOC, CO nt under]	uce the c D, NO _x , I NEPA.	construct PM_{10} , and	ion emis d PM _{2.5}	sions to during C	e mitiga a less onstruc
	measures would not be sufficien significant level. Emissions of ^v Phase I would remain significan II emissions are considered under Impact AQ-3: The property	nt to redu VOC, CC nt under I er Impac osed P	uce the c D, NO _x , D NEPA. t AQ-3. roject	construct PM ₁₀ , and As noted would	ion emis d PM _{2.5} l above, result	isions to during Construct Construct in op	e mitiga a less onstruc etion Pl
	measures would not be sufficien significant level. Emissions of V Phase I would remain significan II emissions are considered under Impact AQ-3: The propo emissions that exceed 1	nt to redu VOC, CC nt under I er Impac osed P 0 tons	ice the c D, NO _x , D NEPA t AQ-3 . roject per ye	construct PM ₁₀ , and As noted would	ion emis d PM _{2.5} l above, result	isions to during Construct Construct in op	e mitiga a less onstruc etion Pl
	measures would not be sufficien significant level. Emissions of ^v Phase I would remain significan II emissions are considered under Impact AQ-3: The property	nt to redu VOC, CC nt under I er Impac osed P 0 tons	ice the c D, NO _x , D NEPA t AQ-3 . roject per ye	construct PM ₁₀ , and As noted would	ion emis d PM _{2.5} l above, result	isions to during Construct Construct in op	e mitiga a less onstruc etion Pl
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proper emissions that exceed 1 threshold of significance into The average daily emissions	nt to redu VOC, CO nt under I er Impac osed P 0 tons n Table : associate	ace the c), NO _x , I NEPA. t AQ-3. roject per ye 3.2-7. rod with	would ear of the ope	ion emis d PM _{2.5} l above, result VOCs ration c	in op or a	e mitiga a less onstruc- ction Pl peratic SCAQ t emis
	measures would not be sufficien significant level. Emissions of Y Phase I would remain significan II emissions are considered under Impact AQ-3: The propo- emissions that exceed 1 threshold of significance in The average daily emissions sources are shown in Table 3.2-	nt to redu VOC, CC nt under I er Impac osed P 0 tons n Table : associate -17. Ave	 ace the control of the cont	would ear of the ope ly emiss	ion emis d PM _{2.5} d l above, result VOCs ration c ions are	in op or a or or or or or o	e mitiga a less onstruc- ction P oeratic SCAQ t emis ndicato
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proper emissions that exceed 1 threshold of significance into The average daily emissions sources are shown in Table 3.2- terminal operations over the	nt to redu VOC, CO nt under 1 er Impac osed P 0 tons n Table : associate -17. Ave long t	ice the c D, NO _x , I NEPA. t AQ-3 . roject per yo 3.2-7 . ed with erage dai erm sin	would ear of the ope ly emiss ce term	ion emis d PM _{2.5} d above, result VOCs ration c ions are uinal op	in op or a or a or a or a	e mitiga a less onstruc- ction P beratic SCAQ t emis ndicato can
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proport emissions that exceed 1 threshold of significance int The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day de	nt to redu VOC, CO nt under 1 er Impac osed P 0 tons n Table : associate long t epending	ace the c D, NO _x , I NEPA. t AQ-3. roject per ye 3.2-7. ed with erage dai erm sin on ship	would ear of the ope ly emiss ce term arrivals.	ion emis d PM _{2.5} l above, result VOCs ration c ions are iinal op . Emiss	in or or a of Project a good i operations ions were	e mitiga a less onstruc- ction P beratic SCAQ t emis ndicato can e estim
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proper emissions that exceed 1 threshold of significance int The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day day for four Project study years:	nt to redu VOC, CC nt under I er Impac osed P 0 tons n Table : associate -17. Ave long t epending 2010, 20	uce the c D , NO_x , D NEPA. t AQ-3. roject per ye 3.2-7. rod with erage dai erm sin c on ship D15, 202	construct. PM_{10} , and As notection would ear of the ope ly emiss ce term arrivals. 5, and 2	ion emis d PM _{2.5} l above, result VOCs ration c ions are iinal op . Emiss 2040.	in op or a or a or a or a or a or a or a or a	e mitiga a less onstruc- ction P beratic SCAQ t emis ndicato can e estim sons to
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proport emissions that exceed 1 threshold of significance int The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day de	nt to redu VOC, CC nt under I er Impac osed P 0 tons n Table : associate -17. Ave long t epending 2010, 20 issions au	the definition of the definit	would ear of the ope ly emiss ce term arrivals 5, and 2 tted to d	ion emis d PM _{2.5} d l above, result VOCs ration c ions are iinal op 2040. 0 etermine	in op or a of Projec a good i berations ions were Comparis e CEQA	t emisions to an less onstruc- ction P beratic SCAC t emision can e estim cons to and NI
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proport emissions that exceed 1 threshold of significance in The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day de for four Project study years: CEQA and NEPA Baseline emissions for all operations for all operati	nt to redu VOC, CO nt under 1 er Impac Dsed P 0 tons 1 Table : associate -17. Ave long t epending 2010, 20 issions an osumption perationa	ace the c D, NO _x , I NEPA. t AQ-3 . roject per y 3.2-7 . ed with errage dai errm sin on ship D15, 202 re preser ns and c I source	would ear of the ope ly emiss ce term arrivals 5, and 2 ted to d details o es are p	ion emis d PM _{2.5} d l above, result VOCs ration c ions are iinal op . Emiss 2040. C etermine of the c presented	in op or a of Projec a good i perations ions were comparis e CEQA alculation d in Ap	e mitiga a less onstruc- ction P beratic SCAQ t emis ndicate can e estim cons to and NI ns use pendix
	measures would not be sufficient significant level. Emissions of Y Phase I would remain significant II emissions are considered under Impact AQ-3: The proper emissions that exceed 1 threshold of significance in The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day de for four Project study years: CEQA and NEPA Baseline em significance, respectively. As	nt to redu VOC, CC nt under 1 er Impac Dsed P 0 tons Table 3 associate -17. Ave long t epending 2010, 20 issions an sumption perationa inputs ar	ace the c D , NO_x , D NEPA. t AQ-3. roject per ye 3.2-7. rod with rage dai $rom shipD15, 202re presertions and c1 sourcere consist$	would ear of the ope ly emiss ce term arrivals 5, and 2 ted to d details o es are p tent with	ion emis d PM _{2.5} l above, result VOCs ration c ions are iinal op . Emiss 2040. (etermine of the c presented recent	in op or a of Projec a good i oerations ions were Comparis e CEQA alculation d in Ap emission	e mitiga a less onstruc- ction P beratic SCAQ t emis ndicate can e estim sons to and NI ns usee pendix estima
	measures would not be sufficient significant level. Emissions of V Phase I would remain significant II emissions are considered under Impact AQ-3: The proper emissions that exceed 1 threshold of significance int The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day da for four Project study years: CEQA and NEPA Baseline emissions for all op Calculation methodologies and	nt to redu VOC, CC nt under 1 er Impac osed P 0 tons n Table : associate -17. Ave long t epending 2010, 20 issions an sumption perationa inputs ar tarcrest 2	t AQ-3. roject per ye 3.2-7. ro ship 3.2-7. ro ship 3.2-7. ro ship 3.2-7. re preser 3.2-7. re preser 3.2-7.	would ear of the ope ly emiss ce term arrivals. 5, and 2 ted to d details o s are p tent with d the CA	ion emis d PM _{2.5} d l above, result VOCs ration c ions are inal op Emiss 2040. (etermine of the c presented recent RB (CA	in op or a of Projec a good i berations ions were Comparise e CEQA alculation d in Ap emission RB 2005	e mitiga a less onstruc- ction P beratic SCAQ t emis ndicato can e estim sons to and NI ns used pendix estima b).
	measures would not be sufficient significant level. Emissions of Y Phase I would remain significant II emissions are considered under Impact AQ-3: The proper- emissions that exceed 1 threshold of significance in The average daily emissions sources are shown in Table 3.2- terminal operations over the substantially from day-to-day de for four Project study years: CEQA and NEPA Baseline em- significance, respectively. As estimate emissions for all op Calculation methodologies and efforts performed by the Port (S	nt to redu VOC, CC nt under 1 er Impac Desed P 0 tons n Table : associate -17. Ave long t epending 2010, 20 issions an osumption perationa inputs ar tarcrest 2 neoretical to average	uce the c D , NO_x , D NEPA. t AQ-3 . roject per ye 3.2-7 . ed with erage dai erm sin on ship D15, 202 re preser ns and c 1 source e consist 2007) and upper-bc e daily en	would ear of the ope ly emiss ce term arrivals 5, and 2 ted to d details o es are p tent with d the CA	ion emis d PM _{2.5} d l above, result VOCs ration c ions are iinal op Emiss 2040. (etermine of the c presented recent RB (CA mates of peak da	in or or a of Projec a good i or a of Projec a good i or a of Projec a good i or a or a of Projec a good i or a or a or a or a or a or a or a or a	e mitiga a less onstruc- ction P Deratic SCAQ t emis ndicate can e estim sons to and NI ns use pendix estima b). evels a sions w

- of conservative assumptions. Comparisons to the CEQA and NEPA Baseline emissions are presented to determine CEQA and NEPA significance, respectively.
- For determining CEQA significance, these AQ-3 significance thresholds are compared to the net change in peak daily project emissions relative to the CEQA Baseline. For determining NEPA significance, these thresholds are compared to the net change in project emissions relative to NEPA Baseline emissions.
- Since VLCC vessels require more fuel in the main engines and auxiliary generators
 for cruising and maneuvering than smaller vessels (e.g., Suezmax, Panamax,
 Aframax), VLCC vessels calling on the Port will have higher daily emissions than
 other types of vessels calling at Berth 408. VLCC deliveries will reduce the
 terminal's annual emissions as compared to smaller tankers because emissions from
 VLCCs are lower on a per barrel of oil delivered basis.
 - The proposed Project would have four distinct modes of operation:

1

2

13

14

15

16

17

18

19

20

- Vessel Arrival Emissions from tanker cruising and maneuvering, transiting operations, tanks, VDUs, valves, flanges and pumps
 - Vessel at Berth and Offloading Emissions from tanker hoteling, offloading, tanks, VDUs, valves, flanges and pumps
 - Vessel Departure Emissions from tanker cruising and maneuvering, transiting operations, tanks, VDUs, valves, flanges and pumps
- No Vessel/Empty Berth Emissions from tanks, VDUs, valves, flanges and pumps.

Emission Source				nissions		r -	
Emission Source	VOC	CO	NO_x	SO_x	РМ	PM_{10}	PM_2
Project Ye	ar 2010						
Tanker Cruising and Maneuvering ¹	46	93	1,160	697	104	103	93
Tanker Hoteling ²	14	38	482	116	14	14	11
Offloading Emissions ³	28	18	87	351	15	11	7
Transiting Operations ⁴	0	1	15	117	5	4	2
Tug Assistance	5	23	144	0		6	6
Tanks	14						
Vapor Destruction Units	2	9	32	6		2	
Valves, Flanges, and Pumps	3						
Barge Fuel Deliveries for OGVs	0.3	0.7	8	0.5	0.4	0.4	0.4
Average Daily Operational Emissions without Mitigation	112	183	1,928	1,288	138	140	119
Project Ye	ar 2015						
Tanker Cruising and Maneuvering ¹	62	122	1,505	896	135	134	121
Tanker Hoteling ²	17	47	602	141	18	17	13
Offloading Emissions ³	4	26	123	482	22	16	11
Transiting Operations ⁴	0	2	18	152	7	6	2
Tug Assistance	5	28	151	0		7	6
Tanks	20						
Vapor Destruction Units	2	10	38	7		2	
Valves, Flanges, and Pumps	3						
Barge Fuel Deliveries for OGVs	0.4	0.9	11	0.7	0.6	0.6	0.6
Average Daily Operational Emissions without Mitigation	113	236	2,448	1,679	183	183	154
Project Ye	ar 2025						
Tanker Cruising and Maneuvering ¹	85	166	2,044	1,217	183	182	165
Tanker Hoteling ²	23	65	820	192	24	23	18
Offloading Emissions ³	5	35	166	653	30	22	15
Transiting Operations ⁴	1	2	25	206	9	8	3
Tug Assistance	7	38	171	0		7	7
Tanks	27						
Vapor Destruction Units	2	11	41	7		2	
Valves, Flanges, and Pumps	3						
Barge Fuel Deliveries for OGVs	0.6	1.4	16	1	0.9	0.9	0.9
Average Daily Operational Emissions without Mitigation	154	318	3,283	2,276	247	245	209
Project Ye	ar 2040						
Tanker Cruising and Maneuvering ¹	85	166	2,044	1,217	183	182	165
Tanker Hoteling ²	23	65	820	192	24	23	18
Offloading Emissions ³	5	35	166	653	30	22	15
Transiting Operations ⁴	1	2	25	206	9	8	3
Tug Assistance	7	38	154	0		7	6
Tanks	27						
Vapor Destruction Units	2	11	41	7		2	
Valves, Flanges, and Pumps	3						
	0.6	1.4	16	1	0.9	0.9	0.8
Barge Fuel Deliveries for OGVs	0.0	1.7	10	1	0.7		

Table 3.2-17. Average Daily Emissions for Proposed Project Operations without Mitigation

1. Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are included in the Transiting Operations category.

2. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-offloading (departure).

3. Offloading emissions include emissions from the boiler during offloading.

4. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations.

1 2	Five 24-hour scenarios involving the above modes were considered to identify peak daily emissions:
3	1. A vessel could arrive at an empty berth (5 hrs) and offload (19 hrs).
4	2. A vessel could offload (19 hrs) and then depart (5 hrs).
5 6	3. A vessel could depart (5 hrs), a second vessel could arrive (5 hrs) and offload for as much as 14 hrs.
7	4. A vessel could offload for a full 24-hour period.
8	5. The berth could be empty for a full 24-hour period.
9 10 11	The emissions associated with scenario one and two above would definitely be less than scenario three. The emissions associated with scenario three, four, and five are presented in Tables 3.2-18, 3.2-19, and 3.2-20.

Table 3.2-18. Daily Emissions Scenario for Proposed Project Operations Without Mitigation (Scenario 3)

Emission Source			Daily I	Emissions	(Pounds)		
Emission Source	VOC	CO	NO_x	SO_x	РМ	PM_{10}	<i>PM</i> _{2.5}
Ve	ssel Dep	arture		-			
Tanker Cruising and Maneuvering ¹	124	218	2,594	1,499	234	233	212
Transiting Operations ⁴	1	5	51	463	32	28	18
Tug Assistance	16	82	514	0		21	20
	/essel Art	rival					
Tanker Cruising and Maneuvering ¹	124	218	2,594	1,499	234	233	212
Transiting Operations ⁴	1	5	51	463	32	28	18
Tug Assistance	16	82	514	0		21	20
	ssel Offlo	oading					
Tanker Hoteling ^{2, 5}	32	88	1,113	245	31	30	24
Offloading Emissions ^{3, 5}	12	56	282	1,011	51	38	26
Tanks	86						
Vapor Destruction Units	3	17	63	19		4	
Valves, Flanges, and Pumps	3						
Daily Emissions for Scenario 3	418	771	7,776	5,199	614	636	550

Notes:

1. Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are included in the Transiting Operations category.

2. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-offloading (departure).

3. Offloading emissions include emissions from the boiler during offloading.

4. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations.

5. Tanker Hoteling and Offloading Emissions were based on 14 hours of Vessel Offloading. The calculations were based off of a 24 hour day. As such, the emissions were based on a 14:24 hour ratio.

Table 3.2-19. Daily Emissions Scenario for Proposed Project Operations Without
Mitigation (Scenario 4)

Emission Source		Daily Emissions (Pounds)						
Emission Source	VOC	CO	NO_x	SO_x	PM	PM_{10}	<i>PM</i> _{2.5}	
Vessel Offloading								
Tanker Hoteling ^{1,3}	32	88	1,113	245	31	30	24	
Offloading Emissions ^{2,3}	12	56	282	1,011	51	38	26	
Tanks	86							
Vapor Destruction Units	3	17	63	19		4		
Valves, Flanges, and Pumps	3							
Daily Emissions for Scenario 4	136	161	1,458	1,275	82	72	50	
Notes								

Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), 1. offloading, and post-offloading (departure).

Offloading emissions include emissions from the boiler during offloading. 2.

3. Tanker Hoteling and Offloading Emissions were based on 14 hours of Vessel Offloading. The calculations were based off of a 24 hour day. As such, the emissions were based on a 14:24 hour ratio.

Table 3.2-20. Daily Emissions Scenario for Proposed Project Operations Without Mitigation (Scenario 5)

Daily Emissions (Pounds)						
VOC	CO	NO_x	SO_x	PM	PM_{10}	<i>PM</i> _{2.5}
No Vessel/empty berth						
86						
3	17	63	19		4	
3		-				
92	17	63	19	0	4	0
	essel/emp 86 3 3	essel/empty bert 86 3 17 3	VOCCO NO_x essel/empty berth 86 3 17 63 3 $$	VOC CO NO_x SO_x essel/empty berth 86 3 17 63 19 3	VOC CO NO_x SO_x PM essel/empty berth 86 3 17 63 19 3	VOC CO NO_x SO_x PM PM_{10} essel/empty berth

Scenario 3 has the highest daily emissions. Thus, the peak daily emissions will occur during this scenario when a vessel departs, another vessel arrives, and would offload for the remainder of the day. Since Phase II Construction emissions will coincide with the first 10 months of operations, they are included in the peak daily emissions.

1

2

3

4

Peak daily emissions are presented in Table 3.2-21.

Table 3.2-21. Peak Daily Emissions for Proposed Project Operations Without Mitigation

Emission Source	Daily Emissions (Pounds)								
Emission Source	VOC	СО	NO_x	SO_x	РМ	PM_{10}	<i>PM</i> _{2.5}		
Peak Daily Emissions (from Table 3.2-18)	418	771	7,776	5,199	614	636	550		
Construction Phase II Totals (from Table 3.2-12)		846	997	2	86	86	55		
Sum of Peak Daily Emissions including Construction Phase II	498	1,617	8,773	5,201	700	722	605		
CEQA Baseline Emissions	0	0	0	0	0	0	0		
Net Change Versus CEQA Baseline	498	1,617	8,773	5,201	700	722	605		
CEQA Significance Thresholds	55	550	55	150	150	150	55		
Significance under CEQA?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
NEPA Baseline Emissions	923	853	8,744	4,980	533	549	427		
Net Change Versus NEPA Baseline	-425	764	29	221	167	173	178		
NEPA Significance Thresholds	55	550	55	150	150	150	55		
Significance under NEPA?	No	Yes	No	Yes	Yes	Yes	Yes		

⁵

1 CEQA Impact Determination

- Proposed Project emissions would exceed the CEQA significance thresholds for daily
 emissions of all criteria pollutants. Therefore, the unmitigated air quality impacts
 associated with proposed Project operations would be significant for NO_x, SO_x, PM,
 PM₁₀, PM_{2.5}, VOC, and CO under CEQA.
- 6 Mitigation Measures

15

7Mitigation measures for project operations were developed based on review of a
variety of measures, including: (1) measures contained in the proposed San Pedro9Bay Ports CAAP (LAHD and Port of Long Beach 2006), which includes measures10that were proposed under the Port No Net Increase Plan Report (LAHD 2005), (2)11measures practiced and recognized by the petroleum and tankering industries, and (3)12measures contained in PLAMT environmental policies.

13The following mitigation measures would reduce criteria pollutant emissions14associated with proposed Project operations.

MM AQ-13: Expanded Vessel Speed Reduction (VSR) Program

16All ships calling (100%) at Berth 408 shall comply with the expanded VSR Program17of 12 knots between 40 nm from Point Fermin and the Precautionary Area from Year181 of operation.

19MM AQ-14: Low Sulfur Fuel Use in Main Engines, Auxiliary Engines and20Boilers

- All ships (100%) calling at Berth 408 shall use 0.2% low sulfur fuel within 40 nm of 21 Point Fermin on their outbound leg and while hotelling at the Project, beginning on day 22 one of operation. Vessels calling at Berth 408 shall also use 0.2% low sulfur fuel within 23 40 nm of Point Fermin on their inbound leg, except where circumstances (such as ships 24 with a mono-tank system or ships originating from a Port where low sulfur fuel is not 25 available) make such use infeasible on the inbound leg. Regardless, the applicant shall 26 adhere to the following annual phase-in schedule which identifies the minimum 27 allowable annual percentage of vessels in the fleet calling at Berth 408 which shall use 28 0.2% low sulfur fuel within 40 nm of Point Fermin on their inbound leg. 29
- 30Ships calling at Berth 408 shall use low-sulfur fuel in main engines, auxiliary31engines, and boilers within 40 nm of Point Fermin (including hoteling for non-AMP32ships) in the annual percentages in fuel requirements as specified below:

Inbound

			Inbound		Hoteling	and Outbo	und	
	Year	HFO	0.50%	0.20%	HFO	0.50%	0.20%	
	1	0	100	0	0	0	100	
	2	0	100	0	0	0	100	
	3	0	100	0	0	0	100	
	4	0	80	20	0	0	100	
	5	0	50	50	0	0	100	
	6	0	50	50	0	0	100	
	7-30	0	10	90	0	0	100	
1	In addi	tion all	callers car	ving 0.2%	low sulfur sh	all use 0.2	% low si	ilfur fuel within 40
2					and and outbo		, , , , , , , , , , , , , , , , , , , ,	
3	Six mo	onths pri	or to oper	ation of E	Berth 408 the	applicant	shall lea	ad the effort, with
4								low sulfur fuel
5								tion of a notice in
6								by notification to
7			ustomers.	Sillina iu	i supply liud	e publicat	ion) und	by notification to
0	This m	angura (offectively	incornor	tes the object	tives of N	AM AC	7 and MM 4G-8
8 9				t FEIS/FE			-0+ IIVI	
5	nomu	U 1 <i>772</i> 1		t I LIG/I L				
10	MM-A	Q 15:	Alterna	tive Mar	itime Powe	er (AMP)		
11	By the	end of y	vear 2 of o	peration, a	all ships capal	ble of utili	zing AM	P and all frequent
12								minimum, Sships
13							-	rt in the following
14	-		rcentages:	•				
		I	C					
15	٠	By end	of year 2	of operation	on – 6 (4%) v	essel calls		
16	•	By end	of year 3	of operation	on – 10% of a	innual ves	sel calls	
17	•	By end	of year 5	of operation	on – 15% of a	innual ves	sel calls	
18	•	By end	of year 10	0 of operat	ion – 40% <u>50</u>9	<mark>∕‰</mark> of annu	al vessel	calls
19	•	By end	of year 10	6 of operat	ion – 70%<u>80</u>	<mark>∕‰</mark> of annu	al vessel	calls.
20	Use of	AMP w	vould enab	ole shins to	o turn off the	ir auxiliar	v engine	s during hoteling,
21								crease in regional
22		·		2				n is also assumed.
23	.	▲						AMP reduces its
								e pollutant, when
24 25								in the boilers.
	•			•		C		
26					*		•	missions from the
27								ters have smaller
28								y producing steam
29	power.	The ste	eam produ	ction capa	bility cannot	be replace	ed withou	ut complete vessel

PLAMT Fuel Switch for Main Engines, Auxiliary Engines, and Boilers

Main Engines/Auxiliary Engines/Boilers

Hoteling and Outbound

1 2	reconstruction. However, as mentioned earlier, the Project design includes a feature to minimize steam generation requirements via the use of shore-side electric pumps.
3 4	The Port will design and incorporate into Berth 408 all the necessary components to make full AMP available for those vessels capable of utilizing such facilities.
5 6 7 8 9 10	In the alternative, the Port may, upon application by the tenant, and subject to all applicable laws and regulations, permit the tenant to install and employ an Alternative Maritime Emission Control System (AMECS) system, either in combination with or in place of AMP as designated in the Port's permit, to satisfy the requirements of this mitigation measure; provided that the Port first finds, based on environmental review prepared pursuant to CEQA, all of the following:
11	(1) that AMECS is a feasible mitigation measure;
12 13 14 15	(2) that the Port and CARB have verified that use of AMECS, as permitted by the Port, would achieve emissions reductions equivalent to or better than those identified in this SEIS/SEIR as occurring under this mitigation measure through the use of AMP alone; and
16	(3) that either
17 18 19	a. the use of AMECS, as permitted by the Port to achieve the purposes of this mitigation measure, would result in no new or substantially more severe significant adverse impact to the environment, or
20 21 22 23	b. any new or substantially more severe adverse impact to the environment resulting from the use of AMECS as permitted by the Port to achieve the purposes of this mitigation measure would be mitigated to a less than significant level, or
24 25 26	c. overriding considerations, as defined under CEQA, make appropriate the use of AMECS as permitted by the Port to achieve the purposes of this mitigation measure.
27 28	This measure incorporates the requirements of MM 4G-7 and MM 4G-8 from the 1992 Deep Draft FEIS/FEIR.
29	MM AQ-16: Slide Valves
30 31 32	Ships calling at Berth 408 shall be equipped with slide valves or a slide valve equivalent (an engine retrofit device designed to reduce the sac volume in fuel valves of main engines in Category 3 marine engines) to the maximum extent possible.
33	MM AQ-17: Parking Configuration
34 35 36 37	Configure parking during operation to minimize traffic interference. Because the effectiveness of this measure cannot be predicted, it is not quantified in this study. This measure incorporates the requirements of MM 4G-14 from the 1992 Deep Draft FEIS/FEIR.

MM AQ-18: New Vessel Builds

The purchaser shall confer with the ship designer and engine manufacture to 2 determine the feasibility of incorporating all emission reduction technology and/or 3 design options and when ordering new ships bound for the Port of Los Angeles. 4 Such technology shall be designed to reduce criteria pollutant emissions (NO_x , SO_x , 5 and PM) and GHG emission (CO, CH₄, O₃, and CFCs). Design considerations and 6 technology shall include, but is not limited to: 7 1. Selective Catalytic Reduction Technology 8 2. **Exhaust Gas Recirculation** 9 3. In-line fuel emulsification technology 10 4. Diesel Particulate Filters (DPFs) or exhaust scrubbers 11 5. Common Rail 12 6. Low NO_x Burners for Boilers 13 7. Implement fuel economy standards by vessel class and engine 14 8. Diesel-electric pod propulsion systems 15 **New/Alternative Technology** 16 The following measures are lease measures that will be included in the lease for 17 Berth 400 due to projected future emissions levels. The measures do not meet all of 18 the criteria for CEQA or NEPA mitigation measures but are considered important 19 lease measures to reduce future emissions. This lease obligation is distinct from the 20 requirement of further CEQA or NEPA mitigation measures to address impacts of 21 potential subsequent discretionary Project approvals. 22 **MM AQ-19: Equivalent Measures** 23 General Mitigation Measure. For any of the above mitigation measures (MM AQ-13 24 through AO-18), if any kind of technology becomes available and is shown to be as 25 good or better in terms of emissions reduction performance than the existing 26 measure, the technology could replace the existing measure pending approval by the 27 Port of Los Angeles. The technology's emissions reductions must be verifiable 28 through USEPA, CARB, or other reputable certification and/or demonstration studies 29 to the Port's satisfaction. 30 This measure is intended to provide PLAMT the flexibility to achieve required 31 emissions mitigation using alternative methods that may not be apparent at present. 32 The applicant may use an AMP alternative emission reduction technology so long as 33 the alternative technology will achieve emission reductions equivalent to the 34 emission reductions that would have been achieved through the use of AMP. 35

MM AQ-20: Periodic Review of New Technology and Regulations

- The Port shall require the tenant to review, in terms of feasibility, any Portidentified or other new emissions-reduction technology, and report to the Port. Such technology feasibility reviews shall take place at the time of the Port's consideration of any lease amendment or facility modification. If the technology is determined by the Port to be feasible in terms of cost, technical and operational feasibility, the tenant shall work with the Port to implement such technology at sole cost to the tenant.
- Potential technologies that may further reduce emission and/or result in cost-savings 9 benefits for the tenant may be identified through future work on the CAAP. Over the 10 course of the lease, the tenant and the Port shall work together to identify potential 11 new technology. Such technology shall be studied for feasibility, in terms of cost, 12 technical and operational feasibility. The effectiveness of this measure depends on 13 the advancement of new technologies and the outcome of future feasibility or pilot 14 If the tenant requests future Project changes that would require studies 15 environmental clearance and a lease amendment, future CAAP mitigation measures 16 would be incorporated into the new lease at that time. 17
- As partial consideration for the Port's agreement to issue the permit to the tenant, tenant shall implement not less frequently than once every 7 years following the effective date of the permit, new air quality technological advancements, subject to the parties' mutual agreement on operational feasibility and cost sharing which shall not be unreasonably withheld.

23 MM AQ-21: Throughput Tracking

1

2

3

4

5

6

7

8

31

- If the project exceeds project throughput assumptions/projections anticipated through the years 2015, 2025, or 2040, staff shall evaluate the effects of this on the emission sources (ship calls, crude oil throughput) relative to the SEIS/SEIR. If it is determined that these emission sources exceed SEIS/SEIR assumptions, staff would evaluate actual air emissions for comparison with the SEIS/SEIR and if the criteria pollutant emissions exceed those in the SEIS/SEIR, then new or additional mitigations would be applied through MM AQ-20.
 - Emission Control Measures for Permitted Stationary Source Operations
- 33 The proposed Project would incorporate BACT for stationary sources, an overall facility emissions cap, and customer incentives to reduce vessel emissions. In 34 addition, all emissions increases from permitted stationary equipment, as well as the 35 emissions from vessels while at berth and during non-propulsion operations, would 36 be fully offset at a ratio of 1.2 to 1.0 to satisfy SCAQMD permitting requirements. 37 Since BACT is defined as the most stringent level of emission limitation or control 38 technique that has been achieved in practice without consideration of cost, the 39 analysis did not consider any mitigation measures for stationary sources. 40

Use of All Applicable CAAP Measures

Table 3.2-22 details how the proposed Project mitigation measures compare to the Control Measures identified in the San Pedro Bay Ports CAAP.

4 Residual Impacts under CEQA

1

2

3

5

25

26

28

29

- Table 3.2-23 presents the average daily emissions for the Project with mitigation.
- As discussed above, unmitigated peak daily emissions were determined by 6 considering five 24-hour scenarios. After analysis, Scenario 3 had the highest daily 7 emissions. The mitigated peak daily emissions will be analyzed in the same manner. 8 Thus, the peak daily emissions will occur when a vessel departs, another vessel 9 arrives, and would offload for the remainder of the day. Table 3.2-24 presents the 10 peak daily emissions for the proposed Project with mitigation. Table 3.2-24 has 11 emissions broken out by Project Year as a result of phase-in of MM AQ-13 through 12 MM AQ-21. 13
- Table 3.2-25 compares the mitigated peak daily emissions to CEQA and NEPA significance thresholds.
- The maximum mitigated Project operations would exceed the significant thresholds for all pollutants. No other feasible mitigation measures are known that could achieve further reductions in these pollutants. Significant impacts would occur despite the application of all reasonably applicable mitigation measures.

20 NEPA Impact Determination

- Proposed Project emissions would exceed the NEPA significance thresholds for CO, SO_x, PM, PM₁₀, and PM_{2.5}. Therefore, the unmitigated air quality impacts associated with proposed Project operations would be significant for these pollutants under NEPA.
- 24 Mitigation Measures
 - Specific mitigation measures identified above under MM AQ-13 through MM AQ-21 would be incorporated into the proposed Project.
- 27 Residual Impacts
 - As shown in Table 3.2-25, significant impacts would occur for CO despite the application of all reasonably applicable mitigation measures.
- 30 Uncalculated Revisions to Operational Assumptions/Mitigation Measures
- The revisions to mitigation measures include revisions to MM AQ-14 and MM AQ-15. In regards to AMP, the new requirements call for all frequent callers to use AMP at the facility by the end of year two of operations thereby increasing AMP participation for frequent callers beyond the Draft SEIS/SEIR requirements. In regards to low sulfur fuel, the new requirement calls for low sulfur fuel use in 100% of all ships from day one unless there are either technical or operational feasibility

1	issues, thereby increasing low sulfur fuel use for a portion of the ships beyond the
2	Draft SEIS/SEIR requirements. The net effect of the revised assumptions/mitigation
3	measures would reduce mitigated operational emissions compared to the uncorrected
4	values presented in Tables 3.2-23, and 3.2-24. However, because the new
5	requirements capture a yet to be determined number of ships, and to provide a
6	conservative analysis of operational emissions impacts, the revised mitigated
7	operational emissions are assumed to still exceed the CEQA and NEPA emissions
8	thresholds identified in Table 3.2-25. Therefore, the revisions to operational
9	assumptions/mitigation measures used in the Draft SEIS/SEIR that are included in
10	the Final SEIS/SEIR were not evaluated for precise quantification of their potential to
11	reduce emissions form proposed operational activities.

Table 3.2-22. Comparison between San Pedro Bay Ports CAAP Control Me	asures
and PLAMT Crude Oil Terminal SEIS/SEIR Proposed Mitigation Measur	es

SPBP Measure #	SPBP Measure Name	SPBP CAAP Measure Description	SEIS/SEIR Mitigation Measure	Discussion
HDV-1	Performance Standards for On-Road Heavy-Duty Vehicles (HDVs)	All frequent caller trucks and semi-frequent caller container trucks model year (MY) 1992 and older will meet or be cleaner than the USEPA 2007 on-road emissions standard (0.015 g/bhp-hr for PM) and the cleanest available NO _x at time of replacement. Semi- frequent caller container trucks MY1993- 2003 will be equipped with the maximum CARB verified emissions reduction technologies currently available.	No mitigation assumed.	The proposed Project operations do not involve the use of any on-road heavy- duty vehicles. Therefore, this mitigation measure is not applicable to the Project.
HDV-2	Alternative Fuel Infrastructure for Heavy- Duty Natural Gas Vehicles	Construct LNG or compressed natural gas (CNG) refueling stations.	No applicable measure.	This measure will be implemented directly by the Ports. The Port of Long Beach, in conjunction with the Port, recently released a RFP seeking proposals to design, construct and operate a public LNG fueling and maintenance facility on Port property.
OGV-1	OGV Vessel Speed Reduction (VSR)	OGVs that call at the SPB Ports shall not exceed 12 knots (kts) within 20 nautical miles (nm) of Point Fermin (extending to 40 nm in future).	MM AQ-13: Expanded Vessel Speed Reduction Program. From the beginning of operation, all inbound and outbound vessels calling at Berth 408 shall travel at a maximum speed of 12 knots within 40 nautical miles of Point Fermin.	MM AQ-13 fully complies with OGV-1 . The CAAP targets a 95% compliance rate through lease provisions.

Table 3.2-22. Comparison between San Pedro Bay Ports CAAP Control Measures and PLAMT Crude Oil Terminal SEIS/SEIR Proposed Mitigation Measures (continued)

SPBP Measure #	SPBP Measure Name	SPBP CAAP Measure Description	SEIS/SEIR Mitigation Measure	Discussion
OGV-2	Reduction of At-Berth OGV Emissions	Each Port will develop the infrastructure required to provide shore- power capabilities to all container and cruise ship berths. On a case-by-case basis, other vessel types, like specially outfitted tankers or reefer terminals, will be evaluated for the application of shore-power.	MM AQ-15: Alternative Maritime Power (AMP). By the end of year 2 of operation, all ships capable of utilizing AMP and all frequent callers (2 or more a year), shall use AMP at the facility. At a minimum, Vessels ships calling at Berth 408 shall utilize emissions reduction methods to reduce auxiliary engine emissions by 90% during hoteling in the following numbers and percentages: By end of year 2 – 6 vessel calls, by end of year 3 – 10% of annual vessel calls vessels, by end of year 5 – 15% of annual vessel calls vessels, by end of year 10 – 40% 50% of annual vessel calls vessels, by end of year 16 – 70% 80% of annual vessel calls vessels.	MM AQ-15 fully complies with OGV-2 .
OGV-3	OGV Auxiliary Engine Fuel Standards	Require ship's auxiliary engines to operate using MGO fuels with sulfur content ≤0.2% S in their auxiliary engines, while inside the VSR zone (described in SPBP-OGV1). The program would start out at 20 nm from Point Fermin and would be expanded to 40 nm from Point Fermin.	MM AQ-14: <u>All ships (100%) calling at Berth 408 shall</u> use 0.2% low sulfur fuel within 40 nm of Point Fermin on their outbound leg and while hotelling at the Project, beginning on day one of operation. Vessels calling at Berth 408 shall also use 0.2% low sulfur fuel within 40 nm of Point Fermin on their inbound leg, except where circumstances (such as ships with a mono-tank system or ships originating from a Port where low sulfur fuel is	MM AQ-14 fully complies with OGV-3 and OGV-4. The CAAP assumes full compliance of OGV-3 and OGV-4 pending technical feasibility and fuel availability. The phase-in
OGV-4	OGV Main Engine Fuel Standards	Require ship's main engines to operate using MGO fuels with sulfur content ≤0.2% S in their main engines, while inside the VSR zone (described in SPBP-OGV1). The program would start out at 20 nm from Point Fermin and would be expanded to 40 nm from Point Fermin	not available) make such use infeasible on the inbound leg. Regardless, the applicant shall adhere to the following annual phase-in schedule which identifies the minimum allowable annual percentage of vessels in the fleet calling at Berth 408 which shall use 0.2% low sulfur fuel within 40 nm of Point Fermin on their inbound leg: Vessels calling at Berth 408 shall use low sulfur fuel in main engines, auxiliary engines, and boilers within 40nm of Point Fermin in percentages determined on an annual basis (see the text under MM AQ-14). From the beginning of operation, all inbound vessels shall utilize MDO or MGO with an average sulfur content equal to or less than 0.2% determined on an annual basis in auxiliary engines and boilers when within 40 nm of Point Fermin.	schedule for MM AQ-14 allows time for technical equipment upgrades, including installing new tanks and piping on ships. These measures go beyond the pending CARB regulation by requiring $\leq 0.2\%$ S MGO (prior to 2010) in both auxiliary and main engines, instead of requiring $\leq 0.5\%$ S MDO or MGO for only OGV auxiliary engines.

Table 3.2-22. Comparison between San Pedro Bay Ports CAAP Control Measures and PLAMT Crude Oil Terminal SEIS/SEIR Proposed Mitigation Measures (continued)

SPBP	SPBP Measure	SPBP CAAP Measure Description	SEIS/SEIR Mitigation Measure	Discussion
Measure #	Name	SI DI CAAI Meusure Description	SEIS/SEIK Miliguiton Medsure	
OGV-5	OGV Main & Auxiliary Engine Emissions Improvements	Focus on reducing DPM, NO_x , and SO_x emissions from OGV main engines and auxiliary engines. The goal of this measure is to reduce main and auxiliary engine DPM, NO_x , and SO_x emissions by 90%. The first engine emissions reduction technology for this measure will be the use of MAN B&W slide valves for main engines.	MM AQ-18: New Vessel Builds. All new vessels ordered by applicant shall incorporate NO_x and PM control devices on auxiliary and main engines. NO_x and SO_x control devices include the following technology where appropriate: Slide Valves, Selective Catalytic Reduction (SCR) technology, exhaust gas recirculation, in line fuel emulsification technology, Diesel Particulate Filters (DPFs), and common rail.	MM AQ-18 fully compl <u>iesy</u> with OGV-5 .
CHE-1	Performance Standards for CHE	Sets fuel neutral purchase requirements for CHE, starting in 2007. Requires by 2010, all yard tractors operating at the ports will have the cleanest engines meeting USEPA on-road 2007 or Tier IV engine standards for PM and NO _x . All remaining CHE less than 750 hp will meet at a minimum the 2007 or Tier IV standards for PM and NO _x by 2012. Requires that all remaining CHE greater than 750 hp to meet Tier IV standards for PM and NO _x by 2014 and prior to that, be equipped with the cleanest available VDEC.	No mitigation assumed.	The proposed Project operations do not involve the use of any CHE. Therefore, this mitigation measure is not applicable to the Project.

Table 3.2-22. Comparison between San Pedro Bay Ports CAAP Control Measures
and PLAMT Crude Oil Terminal SEIS/SEIR Proposed Mitigation Measures (continued)

SPBP Measure #	SPBP Measure Name	SPBP CAAP Measure Description	SEIS/SEIR Mitigation Measure	Discussion
HC-1	Performance Standards for Harbor Craft	This measure will focus on harbor craft that have not already been repowered/retrofitted (including construction related harbor craft like dredges and support vessels). When candidate vessels are identified, the Ports will assist/require the owner/operator to repower or retrofit propulsion and auxiliary engines. For non-construction related candidates, Ports staff will assist the owners in applying for Carl Moyer Program incentive funding for the cleanest available engine that meets the emissions and cost effectiveness requirements. It should be noted, that several tugs operating at the Port of Long Beach are home-ported on private property (not Port property) and therefore will not be affected by this measure.	No mitigation assumed.	This measure is a Portwide measure. Terminal operators and shipping lines do not have a direct contractual relationship with tugboat operators and may be limited in providing the infrastructure necessary to implement HC-1 . The Ports of Los Angeles and Long Beach shall implement HC-1 through a Port-wide Program as described in the CAAP. The Project air quality analysis assumes that a portion of the Port tugboat fleet will be re-powered through the CARB Carl Moyer Program.
RL-1	PHL Rail Switch Engine Modernization	A voluntary program initiated by the Ports in conjunction with PHL to modernize switcher locomotives used in Port service to meet Tier 2 locomotive engine standards and initiate the use of fuel emulsion in those engines. Also includes evaluation of alternative- powered switch engines including LNG and hybrid locomotives. In addition, a locomotive DOC and DPF will be evaluated and based on a successful demonstration, will be applied to all Tier 2 switcher locomotives. Also restricts future purchases to the cleanest locomotives available.	No mitigation assumed.	The proposed Project operations do not involve the use of any locomotives. Therefore, this mitigation measure is not applicable to the Project.

Table 3.2-22. Comparison between San Pedro Bay Ports CAAP Control Measures	
and PLAMT Crude Oil Terminal SEIS/SEIR Proposed Mitigation Measures (continued)	

SPBP Measure #	SPBP Measure Name	SPBP CAAP Measure Description	SEIS/SEIR Mitigation Measure	Discussion
Measure #	Existing Class 1 Railroad Operations	Effects only existing Class 1 railroad operations on Port property. Lays out stringent goals for switcher, helper, and long haul locomotives operating on Port properties. By 2011, all diesel-powered Class 1 switcher and helper locomotives entering Port facilities will be 90% controlled for PM and NO _x , will use 15- minute idle restrictors, and after January 1, 2007, the use of ULSD fuels. Starting in 2012 and fully implemented by 2014, the fleet average for Class 1 long haul locomotives calling at Port properties will be Tier III equivalent (Tier 2 equipped with DPF and SCR or new locomotives meeting Tier 3) PM and NO _x and will use 15-minute idle restrictors. Class 1 long haul locomotives will operate on USLD while on Port properties by the end of 2007. Technologies to get to these levels of reductions will be validated through the Technology Advancement Program.	No mitigation assumed.	The proposed Project operations do not involve the use of any railroad operations. Therefore, this mitigation measure is not applicable to the Project.
RL-3	New and Redeveloped Rail Yards	New rail facilities, or modifications to existing rail facilities located on Port property, will incorporate the cleanest locomotive technologies, meet the requirements specified in SPBP-RL2, utilize "clean" CHE and HDV, and utilize available "green-container" transport systems.	No mitigation assumed.	The proposed Project operations do not involve the use of any rail facilities. Therefore, this mitigation measure is not applicable to the Project.

U U	•		<i>·</i> ·			0	
Emission Source			Daily Er	nissions (Pounds)		
Emission Source	VOC	CO	$NO_{\rm r}$	$SO_{\rm r}$	PM	PM_{10}	$PM_{2.5}$
Proje	ct Year 20		A			10	2.5
Tanker Cruising and Maneuvering ¹	47	81	896	75	19	19	17
Tanker Hoteling ²	14	38	479	35	10	10	8
Offloading Emissions ³	2	19	80	115	12	9	6
Transiting Operations ⁴		1	6	21	1	1	1
Tug Assistance	0 5	23	144	0		6	6
Tanks	14						
Vapor Destruction Units	32	9	2	6		2	
Valves, Flanges, and Pumps	3						
Barge Fuel Deliveries for OGVs	0.3	0.7	8	0.5	0.4	0.4	0.4
Emissions from AMPed off-site electricity generation	0.5	0.7	0	0.5	0.4	0.4	0.4
Average Daily Operational Emissions with Mitigation	117	172	1,615	253	42	47	38
Average Daily Operational Emissions with Mitigation	ct Year 20		1,015	233	42	4/	30
	52		1,127	75	22	22	20
Tanker Cruising and Maneuvering ¹ Tanker Hoteling ²	15	98 40	508	75 35	11	11	8
Coffloading Emissions ³		26		<u> </u>	11	11	
Offloading Emissions ³	4		114		1/	12	8
Transiting Operations ⁴	0	2	8	18	I	1	l
Tug Assistance	5	28	151	0		7	6
Tanks	20						
Vapor Destruction Units	2	10	38	7		2	
Valves, Flanges, and Pumps	3						
Barge Fuel Deliveries for OGVs	0.4	0.9	11	0.7	0.6	0.6	0.6
Emissions from AMPed off-site electricity generation	0	3	20	2	1	1	1
Average Daily Operational Emissions with Mitigation	101	208	1,977	291	53	57	45
	ct Year 20						
Tanker Cruising and Maneuvering ¹	71	133	1,531	78	28	28	25
Tanker Hoteling ²	14	39	489	32	11	10	8
Offloading Emissions 3	5	35	155	199	23	16	11
Transiting Operations ⁴	0	2	10	16	2	1	1
Tug Assistance	7	38	171	0		7	7
Tanks	27						
Vapor Destruction Units	2	11	41	7		2	
Valves, Flanges, and Pumps	3						
Barge Fuel Deliveries for OGVs	0.6	1.4	16	1	0.9	0.9	0.9
Emissions from AMPed off-site electricity generation	0	3	19	2	1	1	1
Average Daily Operational Emissions with Mitigation	130	261	2,432	335	66	66	54
	ct Year 20		, -				
Tanker Cruising and Maneuvering ¹	71	133	1,531	78	28	28	25
Tanker Hoteling ²	7	19	245	16	5	5	4
Offloading Emissions ³	5	35	155	199	23	16	11
Transiting Operations ⁴	0	2	10	16	23	10	1
Tug Assistance	7	38	154	0		7	6
Tanks	27						
Vapor Destruction Units	27	11	41	7		2	
Valves, Flanges, and Pumps							
	3	 1 /		1			0.8
Barge Fuel Deliveries for OGVs	0.6	1.4	16	<u>1</u>	0.9	0.9	0.8
Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation	0.6	1.4 2	16 9	1	0.9	0.9	0
Barge Fuel Deliveries for OGVs	0.6	1.4	16	1 1 318	0.9	0.9	

Table 3.2-23. Average Daily Emissions for Proposed Project Operation with Mitigation

Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are included in the Transiting Operations category. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-offloading 1.

2.

3.

4.

Tanker hoteling includes emissions from the auxiliary generators during pre-officiating (arrivar), officiating, and post-officiating (departure). Offloading emissions include emissions from the boiler during offloading. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations. Tanker Hoteling and Offloading Emissions were based on 14 hours of Vessel Offloading. The calculations were based off of a 24 hour day. As such, the emissions were based on a 14:24 hour ratio. 5.

	Daily Emissions (Pounds)						
Emission Source	VOC	CO	NO_x	SO_x	PM	PM_{10}	<i>PM</i> _{2.5}
Project Year 20				SO_X	1 1/1	1 101 10	1 1/1 2.5
Tanker Cruising and Maneuvering ¹	10 106	175	1,925	159	41	41	37
Transiting Operations ⁴	1	6	28	84	4	3	2
Tug Assistance	16	82	514	0		21	20
Project Year 2				0		21	20
Tanker Cruising and Maneuvering ¹	106	175	1,925	159	41	41	37
Transiting Operations ⁴	100	6	28	84	41	3	2
	16	82	514	0		21	20
Tug Assistance				0		21	20
Project Year 20				70	24	22	19
Tanker Hoteling ²	32	88	1,108	78	24	23	
Offloading Emissions ³	12	56	271	343	38	26	17
Tanks	86						
Vapor Destruction Units	3	17	63	19		4	
Valves, Flanges, and Pumps	3						
Emissions from AMPed off-site electricity generation	0	0	0	0	0	0	0
Maximum Daily Emissions, Year 2010	382	687	6,376	926	152	183	154
Project Year 20			1			1	1
Tanker Cruising and Maneuvering ¹	106	175	1,925	123	38	38	34
Transiting Operations ⁴	1	6	28	58	4	3	2
Tug Assistance	16	82	442	0		19	18
Project Year 2	2015 - Ves	sel Arrivo	al			-	-
Tanker Cruising and Maneuvering ¹	106	175	1,925	123	38	38	34
Transiting Operations ⁴	1	6	28	58	4	3	2
Tug Assistance	16	82	442	0		19	18
Project Year 20	15 - Vesse	el Offload	ing				
Tanker Hoteling ²	27	75	943	64	20	20	16
Offloading Emissions ³	12	56	269	327	37	26	17
Tanks	86						
Vapor Destruction Units	4	18	67	20		4	
Valves, Flanges, and Pumps	3						
Emissions from AMPed off-site electricity generation	0.53	11	61	6	2	2	2
Maximum Daily Emissions, Year 2015	379	686	6,130	779	143	172	143
Project Year 20			/		-		
Tanker Cruising and Maneuvering ¹	106	175	1,925	95	36	36	32
Transiting Operations ⁴	1	6	28	38	4	3	2
Tug Assistance	15	82	367	0		16	15
Project Year 2				~	I	10	10
Tanker Cruising and Maneuvering ¹	106	175	1,925	95	36	36	32
Transiting Operations ⁴	1	6	28	38	4	3	2
Tug Assistance	15	82	367	0		16	15
Project Year 20				0		10	15
Tanker Hoteling ²	19	53	665	44	15	14	11
Offloading Emissions ³	19	56	271	321	38	26	17
Tanks	86	50	2/1	521		20	
Vapor Destruction Units	4	18	66	20		4	
	3		00				
Valves, Flanges, and Pumps		7					
Emissions from AMPed off-site electricity generation	0.37		43	4	2	2	2
Maximum Daily Emissions, Year 2025	368	660	5,685	655	135	156	128

Table 3.2-24. Peak Daily Emissions for Proposed Project Operation with Mitigation

Emission Source			Daily Er	nissions (Pounds)		
Emission Source	VOC	CO	NO_x	SO_x	PM	PM_{10}	<i>PM</i> _{2.5}
Project Year 2	040 - Vess	el Depart	ure				
Tanker Cruising and Maneuvering ¹	106	175	1,925	95	36	36	32
Transiting Operations ⁴	1	6	28	38	4	3	2
Tug Assistance	15	82	330	0		14	13
Project Year	2040 - Ves	sel Arriva	al				
Tanker Cruising and Maneuvering ¹	106	175	1,925	95	36	36	32
Transiting Operations ⁴	1	6	28	38	4	3	2
Tug Assistance	15	82	330	0		14	13
Project Year 2	040 - Vesse	el Offload	ling				
Tanker Hoteling ²	9	26	332	22	7	7	6
Offloading Emissions ³	12	56	271	321	38	26	17
Tanks	86						
Vapor Destruction Units	4	18	66	20		4	
Valves, Flanges, and Pumps	3						
Emissions from AMPed off-site electricity generation	0.19	4	22	2	0.75	0.75	0.75
Maximum Daily Emissions, Year 2040	358	630	5,257	631	126	144	118
Maximum Daily Emissions	382	687	6,376	926	152	183	154
Notes:							

Table 3.2-24. Peak Daily Emissions for Proposed Project Operation with Mitigation (continued)

1. Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are included in the Transiting Operations category.

2. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-offloading (departure).

3. Offloading emissions include emissions from the boiler during offloading.

4. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations.

5. Tanker Hoteling and Offloading Emissions were based on 14 hours of Vessel Offloading. The calculations were based off of a 24 hour day. As such, the emissions were based on a 14:24 hour ratio.

Table 3.2-25. Peak Daily Emissions for Proposed Project Operation With Mitigation

Emission Source		Daily Emissions (Pounds)							
Emission Source	VOC	CO	NO_x	SO_x	РМ	PM_{10}	<i>PM</i> _{2.5}		
Peak Daily Operation Emissions (From Table 3.2-24)	382	687	6,376	926	152	183	154		
Construction Phase II Emissions (From Table 3.2-14)	64	733	739	1	77	77	39		
Sum of Peak Daily Emissions including Construction Phase II	446	1,420	7,115	927	229	260	193		
CEQA Baseline Emissions	0	0	0	0	0	0	0		
Net Change Versus CEQA Baseline	446	1,420	7,115	927	229	260	193		
CEQA Significance Thresholds	55	550	55	150	150	150	55		
Significance under CEQA?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
NEPA Baseline Emissions	923	853	8,744	4,980	533	549	427		
Net Change Versus NEPA Baseline	-477	567	-1,629	-4,053	-304	-289	-234		
NEPA Significance Thresholds	55	550	55	150	150	150	55		
Significance under NEPA?	No	Yes	No	No	No	No	No		

1 2

3

Impact AQ-4: Proposed Project operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-8.

4 A dispersion modeling analysis of project operational emissions was performed to assess 5 the impact of the proposed Project on local ambient air concentrations. The analysis

1	focused on Project Year 1 as Project sources would produce the highest amount of daily
2	and annual emissions during this year. A summary of the dispersion analysis is presented
3	here and the dispersion modeling report is included in Appendix H.
4	Table 3.2-26 presents the maximum project-related impacts of NO ₂ , CO, PM ₁₀ and
5	$PM_{2.5}$ from operational activities without mitigation.

Table 3.2-26. Offsite Ambient Air Pollutant Concentrations Associated withOperation of the Proposed Project without Mitigation ^{1,2}

Averaging	Maximum	Background	Total	SCAQMD	Exceeds
	Impact		Impact	<i>.</i>	Threshold?
Тепои	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	Significance	(Y/N)
1-hour	83.25	263.2	346.45	338	Y
Annual	3.38	54.5	57.88	56	Y
1-hour	7.76	6,670	6,677.76	23,000	Ν
8-hour	2.66	5,405	5,407.66	10,000	Ν
24-hour	0.52	51.0		2.5	Ν
Annual	0.18	30.6		20	Ν
24-hour	0.42	58.5		2.5	Ν
	Annual 1-hour 8-hour 24-hour Annual	Averaging PeriodImpact $(\mu g/m^3)$ 1-hour83.25Annual3.381-hour7.768-hour2.6624-hour0.52Annual0.18	Averaging PeriodImpact $(\mu g/m^3)$ Concentration $(\mu g/m^3)$ 1-hour83.25263.2Annual3.3854.51-hour7.766,6708-hour2.665,40524-hour0.5251.0Annual0.1830.6	Averaging PeriodImpact $(\mu g/m^3)$ Concentration $(\mu g/m^3)$ Impact $(\mu g/m^3)$ 1-hour83.25263.2346.45Annual3.3854.557.881-hour7.766,6706,677.768-hour2.665,4055,407.6624-hour0.5251.0Annual0.1830.6	Averaging PeriodImpact $(\mu g/m^3)$ Concentration $(\mu g/m^3)$ Impact $(\mu g/m^3)$ Thresholds of Significance1-hour83.25263.2346.45338Annual3.3854.557.88561-hour7.766,6706,677.7623,0008-hour2.665,4055,407.6610,00024-hour0.5251.02.5Annual0.1830.620

Notes:

1. The NO₂ and CO thresholds are absolute thresholds; the maximum predicted impact from operation activities is added to the background concentration for the Project vicinity and compared to the threshold.

2. The PM_{10} and $PM_{2.5}$ threshold is an incremental threshold; the maximum predicted impact from operation activities (without adding the background concentration) is compared to the threshold.

6	CEQA Impact Determination
7	The maximum 1-hour NO ₂ and annual NO ₂ concentrations would exceed the
8	SCAQMD thresholds of 338 μ g/m ³ and 56 μ g/m ³ , respectively. Therefore, these
9	impacts would be significant under CEQA.
10	Mitigation Measures
11	Specific mitigation measures identified above under Impact AQ-3 (MM AQ-13
12	through MM AQ-21) would be incorporated into the proposed Project.
13	Residual Impacts
14	Table 3.2-27 presents the maximum mitigated project-related impacts of NO ₂ , CO,
15	PM ₁₀ and PM _{2.5} from operational activities. The maximum annual NO ₂ concentration
16	would exceed the SCAQMD thresholds.
17	Maximum offsite ambient pollutant concentrations associated with the proposed
18	Project are expected to result in air pollutant concentration in excess of the applicable
19	significance thresholds for NO ₂ . This would occur despite the application of all
20	reasonably applicable mitigation measures. Therefore, significant impacts would
21	occur under CEQA.

Pollutant	Averaging	Maximum Impact	Background Concentration	Total Impact	SCAQMD Thresholds of	Exceeds Threshold?
1 Onum	Period	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	Significance	(Y/N)
NO	1-hour	20.37	263.2	283.57	338	Ν
NO_2	Annual	3.44	54.5	57.94	56	Y
<u> </u>	1-hour	3.32	6,670	6,673.32	23,000	Ν
CO	8-hour	2.32	5,405	5407.32	10,000	Ν
DM	24-hour	0.35	51.0		2.5	Ν
PM_{10}	Annual	0.17	30.6		20	Ν
PM _{2.5}	24-hour	0.20	58.5		2.5	Ν
lotes:						

Table 3.2-27. Offsite Ambient Air Pollutant Concentrations Associated with Operation of the Proposed Project with Mitigation ^{1,2}

is added to the background concentration for the Project vicinity and compared to the threshold.

2. The PM₁₀ and PM₂₅ threshold is an incremental threshold; the maximum predicted impact from operation activities (without adding the background concentration) is compared to the threshold.

1 2

3

4

5

6

NEPA Impact Determination

Maximum offsite ambient pollutant concentrations associated with the proposed Project are expected to result air pollutant concentration in excess of the applicable significance thresholds for 1-hour and annual NO₂. Therefore, significant impacts under NEPA would occur.

- Mitigation Measures
- To reduce the level of impact during proposed Project operation, the MMs described 7 above for Impact AQ-3 would be applied to the proposed Project. 8
- Residual Impacts 9

Maximum offsite ambient pollutant concentrations associated with the proposed 10 Project are expected to result in air pollutant concentration in excess of the applicable 11 significance thresholds for annual NO₂. This would occur despite the application of 12 all reasonably applicable mitigation measures. Therefore, significant impacts would 13 occur under NEPA. 14

As mentioned in the discussion of Impact AQ-3, the revisions to the operational 15 assumptions/mitigation measures used in the Draft SEIS/SEIR that are included in 16 the Final SEIS/SEIR were not evaluated for their potential to change emissions from 17 proposed operational activities. The combined effect of these revised 18 assumptions/mitigation measures would reduce the ambient impact of mitigated 19 Project operational emissions compared to the uncorrected values presented in Tables 20 3.2-27. However, the revised mitigated impacts still would result in exceedances of 21 the SCAQMD thresholds, as identified in Table 3.2-27. 22

Impact AQ-6: The proposed Project would expose receptors to 23 significant levels of toxic air contaminants. 24

Project construction and operations would emit TACs that could impact public 25 health. An HRA was conducted for the proposed Project pursuant to a Protocol 26

- reviewed and approved by both CARB and SCAQMD (LAHD 2006b). The HRA
 evaluated potential public health impacts based on the estimated TAC emissions from
 the construction and operation of the proposed Project. Appendix H contains
 documentation of the Project HRA.
- The primary constituent of concern from the proposed Project would be particulate matter emissions from the combustion of diesel fuel and other distillates in internal combustion engines. DPM would primarily be emitted from the ocean-going vessels which employ large horsepower internal combustion engines for propulsion and auxiliary internal combustion engines for various on-board power needs.
- While diesel engine exhaust includes many compounds considered to be TACs, the 10 State of California (i.e., CARB OEHHA) generally uses DPM as the surrogate for the 11 aggregate health risk associated with the combustion of diesel fuel. As such, DPM 12 was treated as a surrogate for the cancer and chronic non-cancer risk analysis. Since 13 the State of California has not adopted an acute non-cancer Reference Exposure 14 Level (REL) for DPM, the acute non-cancer analysis was performed using a multi-15 pollutant speciation of the TACs known to be in diesel internal combustion engine 16 exhaust 17
- In addition to DPM, the HRA also considered other TAC emissions which would result from the construction and operation of the proposed Project. These would include diesel and distillate fuel combustion from external combustion sources such as boilers, fugitive organic compound emissions from the handling of crude oil, emissions for TACs from the thermal destruction of crude oil vapors in the VDUs, as well as natural gas combustion in the VDUs.

24 CEQA Impact Determination

- As explained in Section 3.2.4.2, the applicable significance threshold for maximum incremental cancer risk is 10 in a million (10.0×10^6) . The significance impact for non-cancer health effects (acute or chronic) would occur when the non-cancer Hazard Index (HI) exceeds a threshold of 1.0. Since both of these are incremental thresholds, the predicted cancer and non-cancer impacts were compared to the predicted impacts under the CEQA Baseline on a location-specific basis.
- Figure 3.2-1 presents the maximum incremental cancer risk results for the proposed 31 Project without mitigation under CEOA. The maximum impacted residential 32 receptor location for cancer risk was predicted to be located at the Cabrillo Marina. 33 While not zoned for residential use, the Cabrillo Marina does have some long-term 34 residents living aboard small boats. Although it is not clear whether these residents 35 could permanently reside in this area (i.e., 70 years), this was assumed to be the case 36 for the HRA. This is a conservative assumption. All other residential receptors in 37 the local communities and vicinity would experience lower impacts than what is 38 identified for the maximum impact location. DPM is the primary driver for cancer 39 health risks predicted by the HRA. 40
- Table 3.2-28 presents the maximum predicted cancer and non-cancer health risk impacts for the proposed Project without Mitigation. As shown therein, the cancer impacts from the proposed Project without mitigation would be significant when compared to the SCAQMD's significance threshold. The maximum chronic and

25

26

27

28

29

- acute non-cancer Hazard Indices would be below the applicable significance 1 threshold for all receptor types. 2
- Mitigation Measures 3
- The mitigation measures described above for Impact AO-1 and Impact AO-3 (MM 4 AO-1 through MM AO-21 and MM 4G-5) would also serve the benefit of reducing 5 TAC emissions from the proposed Project. 6
- **Residual Impacts** 7

Figure 3.2-2 and Table 3.2-29 present the maximum incremental cancer risk results 8 for the proposed Project with mitigation under CEQA. As shown therein, the cancer 9 impacts from the proposed Project after mitigation would be less than significant 10 when compared to the SCAQMD's significance threshold. The maximum chronic 11 and acute non-cancer Hazard Indices would also be below the applicable significance 12 thresholds for all receptor types. 13

Table 3.2-28. Maximum Cancer and Non-Cancer Health Risk Impacts from Operation of the Proposed Project without Mitigation under CEQA

Health Impact	Receptor Type	Maximum Impact ^{1,2}	Significance Thresholds	Significant Impact
	Residential	12×10^{-6} (12 in a million)		Yes
Cancer Risk	Occupational Area	9.7 x 10 ⁻⁶ (9.7 in a million)	10.0 x 10 ⁻⁶	No
	Sensitive Receptor	12 x 10 ⁻⁶ (12 in a million)	(10 in a million)	Yes
	Student	6.9 x 10 ⁻⁶ (6.9 in a million)		No
	Residential	0.017		No
Non-Cancer Chronic	Occupational Area	0.073	1.0	No
Hazard Index	Sensitive Receptor	0.017	1.0	No
	Student	0.012		No
	Residential	0.040		No
Non-Cancer Acute Hazard	Occupational Area	0.043	1.0	No
Index	Sensitive Receptor	0.040	1.0	No
	Student	0.028		No

Notes:

Maximum impacts for cancer risk values are presented in terms of a probability of contracting cancer. For example a 1. cancer risk of 10.0 x 10⁻⁶ would equate to 10 chances in a million of contracting cancer. Maximum impacts for acute or chronic health risk are presented as a Hazard Index that is calculated as the maximum Project exposure concentration divided by the acceptable concentration.

Location of the maximum cancer impacts were predicted as follows: residential receptor, Reservation Point; 2. occupational receptor, Pier 400 container terminal (APM/Maersk); sensitive receptor, Reservation Point; student receptor, Point Fermin Elementary School

14 15

NEPA Impact Determination

The applicable significance threshold for maximum incremental cancer risk is 10 in a million (10.0 x 10^{-6}). The significance impact for non-cancer health effects (acute or 16 chronic) would occur when the non-cancer Hazard Index (HI) exceeds a threshold of 17 1.0. Since both of these are incremental thresholds, the predicted cancer and non-18

cancer impacts were compared to the predicted impacts under the NEPA Baseline on
 a location-specific basis. The NEPA Baseline is equivalent to the No Federal
 Action/No Project Alternative.

Figure 3.2-3 presents the maximum incremental cancer risk results for the proposed Project without mitigation as compared to the NEPA Baseline. Table 3.2-30 shows that the maximum residential NEPA cancer risk increment associated with the unmitigated proposed Project is predicted to be less than significant. Both the maximum chronic hazard index increment and the maximum acute hazard index increment associated with the unmitigated Project are predicted to be less than significant for all receptors.

11 Mitigation Measures

While not required for this impact, the mitigation measures described above for Impact AQ-1 and Impact AQ-3 (MM AQ-1 through MM AQ-21 and MM 4G-5) would also serve the benefit of reducing TAC emissions from the proposed Project.

Table 3.2-29. Maximum Cancer and Non-Cancer Health Risk Impacts from Operation of the Proposed Project with Mitigation under CEQA

Health Impact	Receptor Type	Maximum Impact ^{1,2}	Significance Thresholds	Significant Impact
	Residential	5.3 x 10 ⁻⁶ (5.3 in a million)		No
Cancer Risk	Occupational Area	4.8×10^{-6} (4.8 in a million)	10.0 x 10 ⁻⁶	No
	Sensitive Receptor	5.3×10^{-6} (10 in a million)		No
	Student	2.4×10^{-6} (2.4 in a million)		No
	Residential	0.0095		No
Non-Cancer Chronic	Occupational Area	0.044	1.0	No
Hazard Index	Sensitive Receptor	0.0095	1.0	No
	Student	0.0064		No
	Residential	0.019		No
Non-Cancer Acute Hazard	Occupational Area	0.026	1.0	No
Index	Sensitive Receptor	0.019	1.0	No
	Student	0.013		No

1. Maximum impacts for cancer risk values are presented in terms of a probability of contracting cancer. For example a cancer risk of 10.0 x 10⁻⁶ would equate to 10 chances in a million of contracting cancer. Maximum impacts for acute or chronic health risk are presented as a Hazard Index that is calculated as the maximum Project exposure concentration divided by the acceptable concentration.

2. Location of the maximum cancer impacts were predicted as follows: residential receptor, Reservation Point; occupational receptor, Pier 400 container terminal (APM/Maersk); sensitive receptor, Reservation Point; student receptor, Point Fermin Elementary School.

Health Impact	Receptor Type	Maximum Impact ^{1,2}	Significance Thresholds	Significant Impact
Cancer Risk	Residential	5.5 x 10 ⁻⁶ (5.5 in a million)		No
	Occupational Area	5.1 x 10 ⁻⁶ (5.1 in a million)	10.0 x 10 ⁻⁶	No
	Sensitive Receptor	5.5 x 10 ⁻⁶ (5.5 in a million)	(10 in a million)	No
	Student	2.8×10^{-6} (2.8 in a million)		No
	Residential	0.0047		No
Non-Cancer Chronic	Occupational Area	0.043	1.0	No
Hazard Index	Sensitive Receptor	0.0047	1.0	No
	Student	0.0047		No
	Residential	-0.095		No
Non-Cancer Acute Hazard	Occupational Area	-0.10	1.0	No
Index	Sensitive Receptor	-0.052	1.0	No
	Student	-0.052		No

Table 3.2-30. Maximum Cancer and Non-Cancer Health Risk Impacts from Operation of the Proposed Project without Mitigation under NEPA

Notes:

Maximum impacts for cancer risk values are presented in terms of a probability of contracting cancer. For example a
cancer risk of 10.0 x 10⁻⁶ would equate to 10 chances in a million of contracting cancer. Maximum impacts for acute or
chronic health risk are presented as a Hazard Index that is calculated as the maximum Project exposure concentration
divided by the acceptable concentration.

 Location of the maximum cancer impacts were predicted as follows: residential receptor, Reservation Point; occupational receptor, Pier 400 container terminal (APM/Maersk); sensitive receptor, Reservation Point; student receptor, Point Fermin Elementary School.

1

2

3

4

5

6 7

Residual Impacts

Figure 3.2-4 presents the maximum incremental cancer risk results for the proposed Project with mitigation as compared to the NEPA Baseline. Table 3.2-31 presents the maximum predicted cancer and non-cancer health risk impacts for the proposed Project with mitigation. As shown therein, the potential health risk impacts from the proposed Project with mitigation would be less than significant. Thus, the proposed Project is considered less than significant under NEPA.

Health Impact	Receptor Type	Maximum Impact ^{1,2}	Significance Thresholds	Significant Impact
	Residential	-2.1 x 10 ⁻⁶ (-2.1 in a million)		No
	Occupational Area	$0.24 \ge 10^{-6}$ (0.24 in a million)	10.0 x 10 ⁻⁶	No
Cancer Risk	Sensitive Receptor	-0.83 x 10 ⁻⁶ (-0.83 in a million)	(10 in a million)	No
	Student	-0.83 x 10 ⁻⁶ (-0.83 in a million)		No
	Residential	-0.0068		No
Non-Cancer Chronic	Occupational Area	0.014	1.0	No
Hazard Index	Sensitive Receptor	0.00051	1.0	No
	Student	0.00051		No
	Residential	-0.11		No
Non-Cancer Acute Hazard	Occupational Area	-0.13	1.0	No
Index	Sensitive Receptor	-0.057	1.0	No
	Student	-0.057		No
receptor, Pier 400 cor Hill Head Start. <u>As m</u>	num cancer impacts were protect and the protect of	edicted as follows: residentia sk); sensitive receptor, Signal ssion of Impact AQ-3 igation measures used	Hill Head Start; studen and AQ-4, the rev	t receptor, Signa
	ded in the Final SEIS/	SEIR were not evalua		
emiss assun	nptions/mitigation mea	erational activities. The asures would reduce l emissions compared to	combined effect of the ambient health	these revised in impacts o

Table 3.2-31. Maximum Cancer and Non-Cancer Health Risk Impacts from Operation of
the Proposed Project with Mitigation under NEPA

Of great concern to public health are the particles small enough to be inhaled into the deepest parts of the lung. Respirable particles (particulate matter less than about 10 micrometers in diameter $[PM_{10}]$) can accumulate in the respiratory system and aggravate health problems such as asthma, bronchitis and other lung diseases. Children, the elderly, exercising adults, and those suffering from asthma are especially vulnerable to adverse health effects of PM_{10} and $PM_{2.5}$.

17The proposed Project would emit DPM during project construction and operation.18This discussion addresses potential health effects caused by DPM emissions and19discusses existing standards and thresholds developed by regulatory agencies to20address health impacts.

Health Effects of DPM Emissions

1

2

3

4

5

6

7

8

9

10

11

12

13

Epidemiological studies substantiate the correlation between the inhalation of ambient PM and increased mortality and morbidity (CARB 2002a and CARB 2007). Recently, CARB conducted a study to assess the potential health effects associated with exposure to air pollutants arising from ports and goods movement in the State (CARB 2006da and CARB 2006b). CARB's assessment evaluated numerous studies and research efforts, and focused on PM and ozone as they represent a large portion of known risk associated with exposure to outdoor air pollution. CARB's analysis of various studies allowed large-scale quantification of the health effects associated with emission sources. CARB's assessment quantified premature deaths and increased cases of disease linked to exposure to PM and ozone from ports and goods movement. Table 3.2-32 presents the statewide PM and ozone health effects identified by CARB (CARB 2006b).

Table 3.2-32: Annual 2005 Statewide PM and Ozone Health Effects Associated with Ports and Goods Movement in California¹

Health Outcome	Cases Per Year	Uncertainty Range (Cases per Year) ²
Premature Death	2,400	720 to 4,100
Hospital Admissions (respiratory causes) 2,000 1,200 to 2,800		
Hospital Admissions (cardiovascular causes)	830	530 to 1,300
Asthma and Other Lower Respiratory Symptoms	62,000	24,000 to 99,000
Acute Bronchitis	5,100	1,200 to 11,000
Work Loss Days	360,000	310,000 to 420,000
Minor Restricted Activity Days	3,900,000	2,200,000 to 5,800,000
School Absence Days	1,100,000	460,000 to 1,800,000
range estimates. In addition, although epidemiole have investigated the responses of the available epidemiologic stu- outdoor pollution mix. CARB h impacts of DPM based on the ass PM mixture (CARB 2006c).	of human subjects spe dies have not measu has made quantitative	cifically exposed to DPM, and ared the DPM content of t estimates of the public heal
CARB's study concluded that quantitatively estimating the he Uncertain elements include concentration-response functions entered into concentration respo quantified adverse health effects factor-of-two uncertainty. Nume	alth effects of expose emission and pop baseline rates of monse functions, and	sure to outdoor air pollution pulation exposure estimate ortality and morbidity that a occurrence of additional no

It should be noted that PM in ambient air is a complex mixture that varies in size and chemical composition, as well as varying spatially and temporally. Different types of particles may cause different effects with different time courses, and perhaps only in susceptible individuals. The interaction between PM and gaseous co-pollutants adds additional complexity because in ambient air pollution, a number of pollutants tend to co-occur and have strong inter-relationships with each other (e.g., PM, SO₂, NO₂, CO, and O₃) (<u>SCAQMD 2006b7</u>, CARB 2006<u>da</u>, and CARB 2006b).

Nevertheless, various studies have been published over the past ten years that
substantiate the correlation between the inhalation of ambient PM and increased
cases of premature death from heart and/or lung diseases (Pope et al. 1995, 2002;
Jerrett et al. 2005; Krewski et al. 2001). Studies such as these and studies that have
followed since serve as the fundamental basis for PM air quality standards
promulgated by AQMD, CARB, USEPA, and the World Health Organization.

14 Existing CEQA Thresholds

15 Concentration Thresholds

- Regulatory agencies set protective health-based short and long-term ambient concentration standards designed "in consideration of public health, safety, and welfare, including, but not limited to, health, illness, irritation to the senses, aesthetic value, interference with visibility, and effects on the economy" (Health and Safety Code Section 39606(a)(2)). Ambient Air Quality Standards (AAQS) specify concentrations and durations of exposure to air pollutants that reflect the relationships between the intensity and composition of air pollution and undesirable effects. The fundamental objective of an AAQS is to provide a basis for preventing or abating adverse health or welfare effects of air pollution.
- In developing the AAQS, federal, state, and local air quality regulatory agencies consider existing health science literature and recommendations from OEHHA. Standards are set to ensure that sensitive population sub-groups are protected from exposure to levels of pollutants that may cause adverse health effects. In the case of PM, CAAQS are peer reviewed by the Air Quality Advisory Committee (AQAC), an external scientific peer review committee, comprised of world-class scientists in the PM field.
- Within the SCAB, the SCAQMD furthermore identifies localized ambient 32 significance thresholds. These ambient concentration thresholds target those 33 pollutants the SCAQMD has determined are most likely to cause or contribute to an 34 exceedence of the NAAQS or CAAQS. SCAQMD's localized significance threshold 35 for PM₁₀ and PM_{2.5} is 10.4 μ g/m³ and 2.5 μ g/m³ for construction and operation, 36 respectively. These values were developed based on CARB guidance and 37 epidemiological studies showing significant toxicity (resulting in mortality and 38 morbidity) related to exposure to fine particles. The proposed Project conducted 39 dispersion analysis to determine ambient air concentrations and determined localized 40 significance. 41

1

2

3

4

5

6

7

16

17

18

19

20

21

22

23

1 Emission Thresholds

2

3

4

5

6

- PM emissions also affect air quality on a regional basis. When fugitive dust enters the atmosphere, the larger particles of dust typically fall quickly to the ground, but smaller particles less than 10 microns in diameter may remain suspended for longer periods, giving the particles time to travel across a regional area affecting receptors at some distance from the original emissions source.
- For this reason, the SCAQMD established mass daily thresholds for construction and operational activities for PM. The mass daily thresholds are emissions-based thresholds used to assess the potential significance of criteria air pollutants on the regional level. Emissions that exceed the regional significance thresholds are mass daily emissions that may have significant adverse regional effects. The proposed Project quantified mass daily emissions and determined significance.

13 Health Risk Assessment Thresholds

- SCAQMD specifies thresholds for cancer risk and noncancer chronic and acute 14 hazard impacts. The cancer risk calculation methodology accounts for the cancer 15 potency of a pollutant and the expected dose for exposure pathways. For chronic 16 non-cancer and acute exposures, maximum annual concentrations and peak daily 17 concentrations, respectively are compared with the OEHHA Reference Exposure 18 Levels (REL), which are used as indicators of potential adverse non-cancer health 19 effects. The RELs are concentrations, at or below which no adverse health effects 20 are anticipated in the general human population and are based on the most sensitive 21 relevant adverse health effect reported in the medical and toxicological literature. 22 RELs are designed to protect the most sensitive individuals in the population by the 23 inclusion of margins of safety. 24
- Risk assessment and health impact determination methodologies rely on risk assessment health values published by OEHHA, which in turn are based on results of numerous toxicology and epidemiology studies. For DPM, OEHHA has established health values for cancer and non-cancer chronic effects to be used in quantification of health impacts. The proposed Project quantified both cancer risk and non-cancer chronic impacts from DPM exposure, per OEHHA risk assessment methodology.
- In addition, the Port has adopted SCAQMD's CEQA threshold of 10 in a million excess cancer risk and a 1.0 Hazard Index in evaluating new projects. The thresholds set by USEPA, CARB, and SCAQMD for localized, regional and toxic impacts are designed to account for health impacts, such as premature deaths, cardiac and respiratory hospitalizations, asthma, lost work/school days. The proposed Project has quantified localized, regional and toxic impacts of DPM.

37 Quantifying Morbidity and Mortality

CARB's recent study (CARB 2006<u>d</u>a and CARB 2006b) used a health effects model, based on multiple epidemiological studies, which quantified expected non-cancer impacts of mortality and morbidity from ambient PM exposure (for example premature deaths, cardiac and respiratory hospitalizations, asthma and other lower

- respiratory symptoms, and lost work/school days). The study focused on large-scale applications such as the benefits of attaining the State air quality standard for $PM_{2.5}$, the impacts of goods movement emissions on a statewide and broad regional level, and the impacts from combined operations at the Ports of Los Angeles and Long Beach (CARB 2006<u>de</u> and CARB 2006b).
- CARB staff have stated that it would be neither appropriate nor meaningful to apply 6 the health effects model used in the CARB study to quantify the mortality and 7 morbidity impacts of PM on a project of the proposed Project's size because values 8 quantified for a specific location would fall within the margin of error for their 9 methodology (CARB 2007). Because CARB's methodology was designed for 10 larger-scaled projects affecting a much larger population, the methodology may not 11 be sensitive enough to provide accurate results for projects affecting much smaller 12 The proposed Project is located adjacent to the San Pedro and populations. 13 Wilmington communities and, based on the HRA completed for this Project, the 14 potential health impacts of PM emissions will largely be restricted to an area 4 miles 15 east-west by 6 miles north-south around the terminal area (about 20,000 people). In 16 contrast, CARB's study looked at a 40 mile by 50 mile area with a population of over 17 400,000 people. 18
- Due to potential scale issues, Port staff also contacted OEHHA to discuss an 19 appropriate methodology to assess the potential morbidity and mortality impacts 20 from the Project. OEHHA is in the process of developing further guidance on health 21 impacts from PM exposure. This guidance will be released later this summer for 22 public comment and peer review. In the absence of further guidance, staff was 23 directed to the "Public Hearing to Consider Amendments to Ambient Air Quality 24 Standards for Particulate Matter and Sulfates" (CARB 2002b). This document pools 25 together different research papers and epidemiological studies and describes how 26 different impacts of morbidity and mortality (for example, long-term mortality, 27 chronic bronchitis, and hospital admissions for asthma) were quantified in 28 considering AAOS revisions for PM. The document used concentration-response 29 (C-R) functions to determine morbidity and mortality impacts. C-R functions are 30 equations that relate the change in the number of adverse health effect incidences in a 31 population to a change in pollutant concentration experienced by that population. 32 Normally, epidemiological studies are used to estimate the relationship between a 33 pollutant and a particular health endpoint at different locations. Most common C-R 34 functions are represented in log-linear form. 35
- 36 This is the basic form of a C-R function:

$$\Delta y = y_0 (e^{\beta \Delta PM} - 1) * population$$

38 where:

Δy = changes in the incidence of a health endpoint corresponding to a particular change in PM

 y_0 = baseline incidence rate per person

37

39

40

41

1

2

3

4

1	β = coefficient (PM ₁₀ : 0.00231285); this coefficient is based on the relative risk
2	that is associated with a particular concentration and varies from one study to
3	another.
Ŭ	
4	ΔPM = change in PM concentration
5	Using the guidance presented in the document, and using a coefficient based on a
6	1.12 relative risk that is associated with a mean change of 24.5 μ g/m ³ (CARB 2002b
7	and OEHHA 2002), the following represents the result of a sample calculation for
8	long-term mortality due to PM_{10} for the proposed Project (without mitigation). The
9	calculation is dependent on the following:
	1 0
10	Location: Lat 33.755368, Long -118.277490
11	Population (>25 years of age): 3,347 within a 1-mile radius
12	Change in annual PM ₁₀ concentration: $0.1813.7 \mu g/m^3$ (unmitigated peak Project
13	minus CEQA Baseline $\frac{15.0}{\mu g/m^3}$, excluding background).
14	The increase in incidence of long-term mortality corresponding to this change in
15	PM_{10} concentration was calculated to be: $\frac{0.00730.0010}{0.0010}$ cases per year.
40	However as shown in Section 2.2.4.2 proposed MMs AO 13 through AO 21 are
16	However, as shown in Section 3.2.4.3, proposed MMs AQ-13 through AQ-21 are expected to reduce DPM emissions relative to baseline DPM emissions thereby
17	expected to reduce DPM emissions relative to baseline DPM emissions, thereby reducing potential impacts on morbidity and mortality.
18	reducing potential impacts on morolarty and mortanty.
19	According to CARB (2002b), the standard error of the ß coefficient is 0.0006023 for
20	PM ₁₀ .
21	It is important to note that the parameters in the C-R functions can vary widely
22	depending on the study. For example, some studies exclude accidental deaths from
23	their mortality counts while others include all deaths. Furthermore, some studies
24	consider only members of a particular subgroup of the population, e.g., individuals
25	30 and older, while other studies consider the entire population in the study location.
26	When applying a C-R function from an epidemiological study to estimate changes in
27	the incidence of a health endpoint corresponding to a particular change in PM in a
28	location, it is important to use the appropriate value of parameters for the C-R
29	function. That is, the measure of PM, the type of population, and the characterization
30	of the health endpoint should be the same as or as close as possible to those used in
31	the study that estimated the C-R function. The sample analysis presented here
32	attempted to use parameters as closely related to the chosen C-R function as possible.
33	Among the uncertainties in the risk estimates is the degree of transferability of the
34	concentration-response functions to California. Many of the epidemiologic studies
35	used by CARB/OEHHA do include several California cities, but not all. For
36	example, the C-R function for long-term mortality (Krewski et al. 20010) included
37	eight California cities out of a total of 63 cities. Another uncertainty stems from the
38	issue of co-pollutants. Specifically, it is possible that some of the estimated health
39	effects include the effects of both PM and other correlated pollutants. Finally, the
40	studies used in developing the C-R functions do not usually take into consideration
41	estimates of averting behaviors. Examples of averting behaviors include measures

that prevent symptoms from occurring in the first place, such as avoiding strenuous exertion on days with high PM, staying indoors, the use of filters, etc.

However, perhaps the most compelling use limitation of C-R functions for site-3 specific projects is the consideration of whether it is valid to apply the C-R functions 4 to changes in PM concentrations that are far below the ambient concentration. For 5 example, the CARB/OEHHA analysis applied a threshold of 18 μ g/m³ for the long-6 term mortality C-R function because this was the lowest concentration level observed 7 in the long-term mortality studies evaluated. In other words, CARB/OEHHA 8 assumed that the C-R functions were continuous and differentiable down to threshold 9 levels. In the case of trying to quantify project-specific impacts, it may not be 10 appropriate to use C-R functions that were developed with a threshold significantly 11 higher than the change in PM due to the project. 12

- 13Following public release of the Draft SEIS/SEIR, CARB developed a long-term14mortality methodology for particulate matter of less than 2.5 micrometers in15aerodynamic diameter (PM2.5) that would be appropriate for individual projects16(CARB 2008). The methodology is similar to that used in the Draft SEIS/SEIR, but17it is based on a more conservative estimate of the relative risk of premature death.
- 18Based on the new CARB methodology, the long-term impacts associated with the19proposed Project after mitigation would be an increase in the mortality incidence rate20from the CEQA baseline. The incremental increase would be 0.0062 premature21deaths (per year) based on the ambient concentration in the peak year, including22construction and operation.
- Ambient PM_{2.5} concentrations were not modeled on an annual basis for this project. 23 Instead, predicted increases in ambient PM₁₀ concentrations were used as a 24 conservative, worst-case measure of the project's impact on particulate 25 concentrations. The maximum predicted increase in annual PM_{10} concentration for 26 the proposed Project with mitigation was 0.17 μ g/m³ during the maximum impact 27 year, as predicted by the AERMOD dispersion model. This means that the increase 28 in annual PM_{2.5} concentrations associated with the mitigated Project would be less 29 than that value during all project analysis years. The impact to the neighboring 30 community would not see a measurable increase in annual PM25 concentrations 31 associated with the mitigated Project relative to baseline conditions. 32

33Impact AQ-8: The proposed Project would produce GHG emissions that34would exceed CEQA and NEPA Baseline levels.

Climate change, as it relates to man-made GHG emissions, is by nature a global impact. An individual project does not generate enough GHG emissions to significantly influence global climate change by itself (AEP 2007). The issue of global climate change is, therefore, a cumulative impact. Nevertheless, for the purposes of this Draft-SEIS/SEIR, the LAHD has opted to address GHG emissions as a project-level impact and a cumulative impact. In actuality, an appreciable impact on global climate change would only occur when the project's GHG emissions combine with GHG emissions from other man-made activities on a global scale.

43 GHG emissions associated with the proposed Project and alternatives were calculated 44 based on methodologies provided in the California Climate Action Registry's

35

36

37

38

39

40

41

42

1

General Reporting Protocol, version 2.2 (CCAR 2007). The General Reporting 1 Protocol is the guidance document that the Port and other CCAR members use to 2 prepare annual port-wide GHG inventories for the Registry. Therefore, for 3 consistency, the General Reporting Protocol was also used in this study. However, to 4 adapt the Protocol for NEPA/CEQA purposes, a modification to the Protocol's 5 operational and geographical boundaries was made, as discussed later in this section. 6 The Project-related emission sources for which GHG emissions were calculated 7 include. 8 Ships q Tugboats 10 Tanks 11 Vapor Destruction Units 12 13 Valves, Flanges, and Pumps AMP electricity consumption (for the mitigated project) 14 On-terminal electricity consumption 15 The adaptation of the General Reporting Protocol methodologies to these project-16 specific emission sources is described in Appendix H. 17 Under CCAR's General Reporting Protocol, emissions associated with the Port and 18 LAHD would be divided into 3 categories: 19 Scope 1: Direct emissions from sources owned or operated by the Port and 20 LAHD 21 Scope 2: Indirect emissions from purchased and consumed electricity 22 Scope 3: Indirect emissions from sources not owned or operated by the Port 23 and LAHD 24 Examples of Scope 1 sources would be ships, tugboats, tanks, VDUs, valves, flanges 25 and pumps. Scope 2 emissions would be indirect GHG emissions from electricity 26 consumption on the terminal. CCAR has not yet developed a protocol for 27 determining the operational or geographical boundaries for some Scope 3 emissions 28 sources. 29 CCAR does not require Scope 3 emissions to be reported because they are considered 30 to belong to another reporting entity (i.e., whomever owns, leases, or operates the 31 sources). For the purposes of this NEPA/CEQA document, however, GHG 32 emissions were calculated for all project-related sources (Scope 1, 2, and 3). For 33 those sources that travel out of California, the GHG emissions were based on that 34 portion of their travel that is within California borders. In the case of electricity 35 consumption, all GHG emissions were included regardless of whether they are 36 generated by in-state or out-of-state power plants. 37

1 2	This approach is consistent with CCAR's goal of reporting all GHG emissions within the State of California.
3 4 5	Table 3.2-33 presents the annual GHG emissions associated with the construction of the proposed Project without mitigation. At this time, there are no established significance criteria for GHG emissions.

Table 3.2-33. Average Annual GHG Emissions for Proposed Project Construction without Mitigation

Construction Activity	Annual Emissions (Tons)			
Construction Activity	N_2O	CO_2	CH_4	CO_2e
Phase	Ι			
Pier 400 Marine Terminal and Wharf Construction	0.1	7,658	1	7,710
Pipeline Construction	0.2	14,700	2	14,804
Tank Farm Site 1	0.1	10,170	1	10,222
Tank Farm Site 2	0.2	18,751	3	18,876
Phase I	<u>II</u>			
Tank Farm Site 2	0.04	3,368	1	3,401

6	Table 3.2-34 presents the annual GHG emissions associated with the construction of
7	the proposed Project with mitigation. At this time, there are no established
8	significance criteria for GHG emissions. As seen in reviewing Table 3.2-33 and
9	3.2-34, the average annual CO_2 equivalent emissions associated with the proposed
10	Project are expected to be the same without and with mitigation.

Table 3.2-34. Average Annual GHG Emissions for Proposed Project Construction with Mitigation

Construction Activity		Annual Emi	ssions (Tons)	
	N_2O	CO_2	CH_4	CO_2e
Phase	I			
Pier 400 Marine Terminal and Wharf Construction	0.1	7,658	1	7,710
Pipeline Construction	0.2	14,700	2	14,804
Tank Farm Site 1	0.1	10,170	1	10,222
Tank Farm Site 2	0.2	18,751	3	18,876
Phase I	Ι			
Tank Farm Site 2	0.04	3,368	1	3,401

11

12 13 Table 3.2-35 presents the annual GHG emissions associated with the operation of the proposed Project without mitigation. At this time, there are no established significance criteria for GHG emissions.

Emission Source		Annual Emis	sions (Tons)	
Emission Source	N_2O	CO_2	CH_4	CO_2e
	Project Year 201	10		
Tanker Cruising and Maneuvering ¹	0.060.05	<u>6,683</u> 5,347	0.880.71	<u>6,7205,376</u>
Tanker Hoteling ²	0.040.06	4,1406,523	0.550.86	4,1636,559
Offloading Emissions 3	0.11 0.16	12,868 16,093	1.64 2.22	<u>12,936</u> 16,188
Transiting Operations ⁴	0.010.03	1,0082592	0.130.36	1,0142,608
Tug Assistance	0.0060.0045	566 <mark>453</mark>	0.080.0625	5694 56
Tanks				
Vapor Destruction Units	0.02 0.02	10,564	1.18	10,595
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.0007	71.39	0.01	72
Average Annual Operational Emissions	0.25 0.3134	35,900 41,572	4.47 5.39	36,069 41,782
	Project Year 201	15		
Tanker Cruising and Maneuvering ¹	0.080.06	8,609 7,622	<u>1.141.01</u>	<u>8,657</u> 7,662
Tanker Hoteling ²	0.05 0.08	<u>5,164</u> 9,302	0.68 1,23	<u>5,193</u> 9,353
Offloading Emissions 3	0.15 0.23	17,869 22,947	2.27 3.16	17,963 23,084
Transiting Operations ⁴	0.010.04	1,307 3,697	0.17 0.51	1,3143,719
Tug Assistance	0.01	<u>645</u> 516	0.090.07	649 <u>519</u>
Tanks				
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.0009	95	0.01	96
Average Annual Operational Emissions	0.320.43	45,185 55,580	5.657.26	45,40255,867
	Project Year 202	25		
Tanker Cruising and Maneuvering ¹	0.100.08	11,690 9,352	1.54 1.23	11,7559,404
Tanker Hoteling ²	0.060.10	7,03611,009	0.931.45	7,07511,070
Offloading Emissions 3	0.210.30	24,23030,289	3.084.18	24,35930,469
Transiting Operations ⁴	0.020.04	1,7734,559	0.230.63	1,7834,586
Tug Assistance	0.01	<u>882</u> 706	0.120.10	887 710
Tanks				
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	143	0.02	144
Average Annual Operational Emissions	0.42 0.55	57,250 67,411	7.21 8.87	57,533 67,769
	Project Year 204			
Tanker Cruising and Maneuvering ¹	0.100.08	11,690 9,352	1.54 1.23	11,755 9,404
Tanker Hoteling ²	0.060.10	7,03611,009	0.931.45	7,07511,070
Offloading Emissions ³	0.210.30	24,23030,289	3.084.18	24,35930,469
Transiting Operations ⁴	0.020.04	1,7734,559	0.230.63	1,7834,586
Tug Assistance	0.01	882 706	0.120.10	<u>887</u> 710
Tanks				
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	143	0.02	144
Average Annual Operational Emissions	0.42 0.55	57,250 67,411	7.21 8.87	57,533 67,769
Notes: 1. Tanker cruising and maneuvering includes en boilers are included in the Transiting Operation	nissions from the mai	in engines and auxili	ary generators. E	missions from the

Table 3.2-35. Average Annual GHG Emissions for Proposed Project Operation without Mitigation

boilers are included in the Transiting Operations category.2. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-

Offloading (departure). Offloading emissions include emissions from the boiler during offloading. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the

3.

4.

berth prior to commencement of offloading operations. The additional row "Barge Fuel Deliveries for OGVs" was added to this table for the Final SEIS/SEIR because these emissions were inadvertently omitted from the Draft SEIS/SEIR. These additional emissions, however, do not change any of the significance determinations. 5

1	CEQA Impact Determination
2	The proposed Project would result in a significant CEQA impact if CO ₂ e emissions
3	exceed the CEQA Baseline, which is equivalent to zero. As the data in Tables 3.2-34
4	and 3.2-35 show, annual CO_2e emissions would increase from the CEQA Baseline
5	levels for both construction and operation. As such, the proposed Project would
6	result in a significant impact under CEQA.
0	Teoure in a significant impact ander english.
7	Mitigation Measures
8	Measures that reduce electricity consumption or fossil fuel usage from the proposed
9	Project emission sources would reduce proposed GHG emissions. The following
10	operational mitigation measures already developed for criteria pollutant emissions
11	(Impact AQ-3) would also reduce GHG emissions:
12	MM AQ-13: Expanded Vessel Speed Reduction (VSR) Program
13	All ships calling (100%) at Berth 408 shall comply with the expanded VSR Program
14	of 12 knots between 40 nm from Point Fermin and the Precautionary Area from Year
15	1 of operation.
	I.
16	MM AQ-15: AMP
17	By the end of year 2 of operation, all ships capable of utilizing AMP and all frequent
18	callers (2 or more a year), shall use AMP at the facility. At a minimum, ships calling
19	at Berth 408 facility shall use AMP while hoteling at the Port in the following
20	minimum percentages:
21	• By end of year 2 of operation – 6 (4%) vessel calls
22	• By end of year 3 of operation – 10% of annual vessel calls
23	• By end of year 5 of operation – 15% of annual vessel calls
24	• By end of year 10 of operation – 50% of annual vessel calls
25	• By end of year 16 of operation – 80% of annual vessel calls.
26	Use of AMP would enable ships to turn off their auxiliary engines during hoteling,
27	leaving the boiler as the only source of direct emissions. An increase in regional
28	power plant emissions associated with AMP electricity generation is also assumed.
29	Including the emission from ship boilers, a ship hoteling with AMP reduces its
30	criteria pollutant emissions 88 to 98 percent, depending on the pollutant, when
31	compared to a ship hoteling without AMP and burning residual fuel in the boilers.
00	AMD on containon regards and aming thing is directed at a desired aming the interview of the
32	AMP on container vessels and cruise ships is directed at reducing emissions from the
33	relatively large hoteling loads present on these vessels. Tankers have smaller
34	hoteling loads but also must support cargo offloading operations by producing steam
35	power. The steam production capability cannot be replaced without complete vessel
36 37	reconstruction. However, as mentioned earlier, the Project design includes a feature to minimize steam generation requirements via the use of shore-side electric pumps.
37	to minimize steam generation requirements via the use of shore-side electric pullips.

1 2	The Port will design and incorporate into Berth 408 all the necessary components to make full AMP available for those vessels capable of utilizing such facilities.
3	In the alternative, the Port may, upon application by the tenant, and subject to all
4	applicable laws and regulations, permit the tenant to install and employ an
5	Alternative Maritime Emission Control System (AMECS) system, either in
6	combination with or in place of AMP as designated in the Port's permit, to satisfy the
7	requirements of this mitigation measure; provided that the Port first finds, based on
8	environmental review prepared pursuant to CEQA, all of the following:
9	(1) that AMECS is a feasible mitigation measure;
10	(2) that the Port and CARB have verified that use of AMECS, as permitted by
11	the Port, would achieve emissions reductions equivalent to or better than
12	those identified in this SEIS/SEIR as occurring under this mitigation measure
13	through the use of AMP alone; and
14	(3) that either
15	a. the use of AMECS, as permitted by the Port to achieve the purposes of
16	this mitigation measure, would result in no new or substantially more
17	severe significant adverse impact to the environment, or
18	b. any new or substantially more severe adverse impact to the environment
19	resulting from the use of AMECS as permitted by the Port to achieve the
20	purposes of this mitigation measure would be mitigated to a less than
21	significant level, or
22	c. overriding considerations, as defined under CEQA, make appropriate the
23	use of AMECS as permitted by the Port to achieve the purposes of this
24	mitigation measure.
25	Ships calling at the Berth 408 facility shall use AMP while hoteling at the Port in the
26	following at minimum percentages:
27	 By end of year 2 of operation – 6 (4%) vessel calls
28	 By end of year 3 of operation 10% of annual vessel calls
29	 By end of year 5 of operation 15% of annual vessel calls
30	By end of year 10 of operation 40% of annual vessel calls
31	By end of year 16 of operation 70% of annual vessel calls
32	Use of AMP would enable ships to turn off their auxiliary engines during hoteling,
33	leaving the boiler as the only source of direct emissions. An increase in regional
34	power plant emissions associated with AMP electricity generation is also assumed for
35	Greenhouse Gas emissions. Including the emission from ship boilers and power plant
36	emissions, a ship hoteling with AMP reduces its greenhouse gas emissions by 88 to
37	98 percent, depending on the GHG, when compared to a ship hoteling without AMP
38	and burning residual fuel in the boilers.
39	AMP on container vessels and cruise ships is directed at reducing emissions from the
40	relatively large hoteling loads present on these vessels. Tankers have smaller
41	hoteling loads but also must support cargo offloading operations by producing steam

1 2 3	power. The steam production capability cannot be replaced without complete vessel reconstruction. However, as mentioned earlier, the Project design includes a feature to minimize steam generation requirements via the use of shore-side electric pumps.
	to minimize orden Beneranon requirements the use of shore order erective paintys.
4	The Port will design and incorporate into Berth 408 all the necessary components to
5	make full AMP available for those vessels capable of utilizing such facilities.
6	This measure incorporates the requirements of MM 4G-7 and MM 4G-8 from the
7	1992 Deep Draft FEIS/FEIR.
8	The following additional mitigation measures specifically target the Project's GHG
9	emissions. They were developed through an applicability and feasibility review of
10	possible measures identified in the Climate Action Team Report to Governor
11	Schwarzenegger and the California Legislature (CalEPA 2006) and CARB's
12	Proposed Early Actions to Mitigate Climate Change in California (CARB 2007).
13	The strategies proposed in these two reports for the commercial/industrial sector are
14	listed in Table 3.2-36, along with an applicability determination for the proposed
15	Project.

Table 3.2-36. Project Applicability Review of Potential GHG Emission Reduction Strategies

Operational Strategy	Applicability to Proposed Project
Commercial and Indi	istrial Design Features
Vehicle Climate Change Standards	Regulatory measure implemented by CARB
Other Light duty Vehicle Technology	Regulatory measure implemented by CARB (standards will phase in starting 2009)
HFCs Reduction	Future regulatory measure planned by CARB
Transportation Refrigeration Units, Off Road Electrification, Port Electrification	MM AQ-15 (AMP for ships); vessels are electrified as part of the Project; also a future regulatory measure is planned by CARB
Alternative Fuels: Biodiesel blends	Future regulatory measure planned by CARB
Alternative Fuel: Ethanol vehicles or enhanced ethanol/gasoline blends	Future regulatory measure planned by CARB
Heavy Duty Vehicle Emissions Reduction Measures	MM AQ-13 (VSR Program for ships); Portwide CAAP measure HDV2 (trucks); also a regulatory measure implemented by CARB
Reduced Venting in Gas Systems	Not applicable to Project
Building Oper	rations Strategy
Recycling	MM AQ-26; also a regulatory measure implemented by the Integrated Waste Management Board
Building Energy Efficiency	MM AQ-22 through MM AQ-26; also a regulatory measure implemented by the California Energy Commission
Green Buildings Initiative	Future regulatory measure planned by the State and Consumer Services and Cal/EPA
California Solar Initiative	MM AQ-25 ; also a future regulatory measure is planned by the California Public Utilities Commission
Note:	

These strategies are found in the *California Climate Action Team's report to the Governor* (CalEPA 2006) and CARB's *Proposed Early Actions to Mitigate Climate Change in California* (CARB 2007).

MM AQ-22: Leadership in Energy and Environmental Design (LEED)

- The administration building shall obtain the Leadership in Energy and Environmental Design (LEED) gold certification level.
- LEED certification is made at one of the following four levels, in ascending order of environmental sustainability: certified, silver, gold, and platinum. The certification level is determined on a point-scoring basis, where various points are given for design features that address the following areas (U.S. Green Building Council 2005):
 - Sustainable Sites

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

20

28

29

30

31

32

- Water Efficiency
- Energy and Atmosphere
- Materials and Resources
 - Indoor Environmental Quality
 - Innovation and Design Process

As a result, a LEED-certified building will be more energy efficient, thereby reducing GHG emissions compared to a conventional building design. Electricity consumption at the on-terminal buildings represents about 7 percent of on terminal electrical consumption and about 0.1 percent of overall Project GHG emissions.

Although not quantified in this analysis, implementation of this measure is expected to reduce the Project's GHG emissions by less than 0.1 percent.

MM AQ-23: Compact Fluorescent Light Bulbs

- All interior terminal building lighting shall use compact fluorescent light bulbs and the tenant shall maintain and replace all compact fluorescent bulbs.
- Fluorescent light bulbs produce less waste heat and use substantially less electricity than incandescent light bulbs. Although not quantified in this analysis, implementation of this measure is expected to reduce the Project's GHG emissions by less than 0.1 percent.
- 27 MM AQ-24: Energy Audit
 - The tenant shall conduct a third party energy audit every 5 years and install innovative power saving technology where feasible, such as power factor correction systems and lighting power regulators. Such systems help to maximize usable electric current and eliminate wasted electricity, thereby lowering overall electricity use.
- This mitigation measure primarily targets large on-terminal electricity consumers such as on-terminal lighting and shoreside electric gantry cranes. These sources consume the majority of on-terminal electricity, and account for about 1 percent of overall Project GHG emissions. Therefore, implementation of power saving

technology at the terminal could reduce overall Project GHG emissions by a fraction of 1 percent.

3

1

2

4

MM AQ-25: Solar Panels

- The applicant shall install solar panels on the administration building.
- 5 Solar panels would provide the terminal building with a clean source of electricity to 6 replace some of its fossil fuel-generated electricity use. Although not quantified in 7 this analysis, implementation of this measure is expected to reduce the Project's 8 GHG emissions by less than 0.1 percent.

9 MM AQ-26: Recycling

- The tenant shall ensure a minimum of 40 percent of all waste generated in all terminal buildings is recycled by 2012 and 60 percent of all waste generated in all terminal buildings is recycled by 2015. Recycled materials shall include: (a) white and colored paper; (b) post-it notes; (c) magazines; (d) newspaper; (e) file folders; (f) all envelopes including those with plastic windows; (g) all cardboard boxes and cartons; (h) all metal and aluminum cans; (i) glass bottles and jars; and (j) all plastic bottles.
- In general, products made with recycled materials require less energy and raw materials to produce than products made with unrecycled materials. This savings in energy and raw material use translates into GHG emission reductions. The effectiveness of this mitigation measure was not quantified due to the lack of a standard emission estimation approach.

22 MM AQ-27: Tree Planting

- The applicant shall plant shade trees around the administration building. All shade trees shall be maintained over the life of the project.
- Trees act as insulators from weather thereby decreasing energy requirements. Onsite trees also provide carbon storage (AEP 2007). Although not quantified, implementation of this measure is expected to reduce the Project's GHG emissions by less than 0.1 percent.
- Future Portwide greenhouse gas emission reductions are also anticipated through AB 30 32 rule promulgation. However, such reductions have not yet been quantified, as AB 31 32 implementation is still under development by the CARB.
- 32 Residual Impacts
- Table 3.2-37 presents the annual mitigated GHG emissions associated with operation of the proposed Project. Table 3.2-34 presents the annual mitigated GHG emissions associated with construction of the proposed Project. As shown therein, the impacts for the proposed Project would remain significant under CEQA.

1 NEPA Impact Determination

2	The <u>construction and operational CO₂e emissions summarized in Table<u>Tables 3.2-34</u></u>
3	and 3.2-37, which are with mitigation, would increase relative to the NEPA Baseline
4	for each project year (the combined mitigated construction and operational CO2e
5	emissions would be lower than the total unmitigated construction and operational
6	<u>CO₂e emissions shown in Tables 3.2-33 and 3.2-35</u>). However, because no NEPA
7	significance threshold has been established, no determination has been made of the
8	significance of this impact.

-		4 15 :	· (T)	
Emission Source	NO	Annual Emissi		60
	N ₂ O	CO_2	CH4	CO2e
Project	t Year 2010			
Tanker Cruising and Maneuvering ¹	<u>0.05</u> 0.04	<u>5,265</u> 4,411	<u>0.73</u> 0.58	<u>5,296</u> 4,435
Tanker Hoteling ²	<u>0.04</u> 0.06	<u>3,957</u> 6,233	<u>0.55</u>	<u>3,980</u> 6,270
Offloading Emissions	<u>0.12</u> 0.16	<u>12,381</u> 16,032	<u>1.71</u> 2.21	<u>12,454</u> 16,127
Transiting Operations ⁴	<u>0.01</u> 0.02	<u>920</u> 2,454	<u>0.13</u> 0.34	<u>926</u>
Tug Assistance	<u>0.006</u> 0.004	<u>566</u> 453	<u>0.08</u> 0.06	<u>569</u> 4 56
Tanks				
Vapor Destruction Units	0.02	10,564	1.18	10,595
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	71	0.01	72
Emissions from AMPed off-site electricity generation	0	0	0	0
Average Annual Operational Emissions	0.25 0.31	33,723 40,145	4.38 5.2 4	33,892 4 0,350
Projec	t Year 2015	<u></u> ,		
Tanker Cruising and Maneuvering ¹	0.07 0.05	6,715 5,372	<u>0.93</u> 0.74	6,755 5,404
Tanker Hoteling ²	0.04 0.06	4,195 6,866	0.58 0.91	4,220 6,904
Offloading Emissions ³	0.17 0.22	$17,197 \frac{22,266}{22,266}$	2.37 3.07	17,300 22,398
Transiting Operations ⁴	0.01 0.003	1,107 320	0.15 0.04	1,113 322
Tug Assistance	0.01	516	0.07	519
Tanks			0.07	
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps	0.02		1.29	
Barge Fuel Deliveries for OGVs	0.001	95	0.01	96
			0.01	
Emissions from AMPed off-site electricity generation	0.03 0.35 0.40	3,825	5.41 6.13	3,836 45,369 50,913
Average Annual Operational Emissions		<u>45,147</u> 50,661	<u>5.41</u> 0.13	<u>45,309</u> 30,913
	t Year 2025	0 1 2 2 7 209	1 26 1 01	0 177 7 242
Tanker Cruising and Maneuvering ¹	<u>0.09</u> 0.07	<u>9,123</u> 7,298	<u>1.26</u> 1.01	<u>9,177</u> 7,342
Tanker Cruising and Maneuvering ¹ Tanker Hoteling ²	0.09 0.07 0.04 0.06	4,035 6,606	0.56 0.87	4,059 6,642
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3	0.09 0.07 0.04 0.06 0.23 0.30	<u>4,035</u> 6,606 23,319 30,170	<u>0.56</u> 0.87 <u>3.22</u> 4.16	4,059 6,642 23,458 30,350
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004	<u>4,035</u> <u>6,606</u> <u>23,319</u> <u>30,170</u> 1,561 4 36	0.56 0.87 3.22 4.16 0.20 0.06	<u>4,059</u> <u>6,642</u> <u>23,458</u> <u>30,350</u> 1,570 <u>438</u>
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01	4,035 6,606 23,319 30,170 1,561 436 882 706	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10	4,059 6,642 23,458 30,350 1,570 438 887 710
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01	4,035 6,606 23,319 30,170 1,561 436 882 706	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10	4,059 6,642 23,458 30,350 1,570 438 887 710
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02	4,035 6,606 23,319 30,170 1,561 436 882 706	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29	4,059 6,642 23,458 30,350 1,570 438 887 710
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 	<u>4,035</u> 6,606 23,319 30,170 1,561 436 <u>882</u> 706 11,496	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29	4,059 6,642 23,458 30,350 1,570 438 887 710 11,530
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001	<u>4,035</u> 6,606 23,319 30,170 <u>1,561</u> 436 <u>882</u> 706 <u>-</u> 11,496 <u>-</u> <u>143</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02	4,059 6,642 23,458 30,350 1,570 438 887 710 11,530 144
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03	<u>4,035</u> 6,606 23,319 30,170 1,561 436 <u>882</u> 706 11,496 <u>143</u> 3,680	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02	4,059 6,642 23,458 30,350 1,570 438 887 710 11,530 144 3,690
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49	<u>4,035</u> 6,606 23,319 30,170 <u>1,561</u> 436 <u>882</u> 706 <u>-</u> 11,496 <u>-</u> <u>143</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02	<u>4,059</u> <u>6,642</u> <u>23,458</u> 30,350 <u>1,570</u> 438 <u>887</u> 710 11,530 <u>144</u>
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49 t Year 2040	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> <u>11,496</u> <u>11,496</u> <u>143</u> <u>3,680</u> 54,239 60,392	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50	<u>4,059</u> <u>6,642</u> <u>23,458</u> 30,350 <u>1,570</u> <u>438</u> <u>887</u> 710
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49 t Year 2040 0.09 0.07	<u>4,035</u> 6,606 23,319 30,170 1,561 436 <u>882</u> 706 11,496 <u>143</u> 3,680	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50	4,059 6,642 23,458 30,350 1,570 438 887 710 11,530 144 3,690 54,515 60,702 9,177 7,342
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1 Tanker Hoteling 2	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49 t Year 2040	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> <u>11,496</u> <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u> <u>2,026 3,303</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44	<u>4,059</u> 6,642 <u>23,458</u> 30,350 <u>1,570</u> 4 38 <u>887</u> 710 - 11,530 - <u>144</u> <u>3,690</u> <u>54,515</u> 60,702 <u>9,177</u> 7,342 <u>2,038</u> <u>3,321</u>
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49 t Year 2040 0.09 0.07	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> - <u>11,496</u> <u>-</u> <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50	4,059 6,642 23,458 30,350 1,570 438 887 710 11,530 144 3,690 54,515 60,702 9,177 7,342
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> - <u>11,496</u> <u>-</u> <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u> <u>2,026 3,303</u> <u>23,319 30,170</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44	<u>4,059</u> 6,642 <u>23,458</u> 30,350 <u>1,570</u> 4 38 <u>887</u> 710 - 11,530 - <u>144</u> <u>3,690</u> <u>54,515</u> 60,702 <u>9,177</u> 7,342 <u>2,038</u> <u>3,321</u>
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49 t Year 2040 0.09 0.07 0.02 0.03 0.23 0.30	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> <u>11,496</u> <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u> <u>2,026 3,303</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44 3.22 4.16	<u>4,059</u> 6,642 <u>23,458</u> 30,350 <u>1,570</u> 4 38 <u>887</u> 710 - 11,530 - <u>144</u> <u>3,690</u> <u>54,515</u> 60,702 <u>9,177</u> 7,342 <u>2,038</u> <u>3,321</u> <u>23,458</u> <u>30,350</u>
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 0.02 0.001 0.03 0.43 0.49 t Year 2040 0.09 0.07 0.02 0.03 0.23 0.30 0.002 0.004	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> - <u>11,496</u> - <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u> <u>2,026 3,303</u> <u>23,319 30,170</u> <u>163 436</u>	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44 3.22 4.16 0.02 0.06	$\begin{array}{r} \underline{4,059} & \underline{6,642} \\ \underline{23,458} & \underline{30,350} \\ \underline{1,570} & \underline{438} \\ \underline{887} & \underline{710} \\ \hline & - \\ 11,530 \\ \hline & - \\ 11,530 \\ \hline & - \\ \underline{144} \\ 3,690 \\ \underline{54,515} & \underline{60,702} \\ \hline \\ \underline{9,177} & \underline{7,342} \\ \underline{2,038} & \underline{3,321} \\ \underline{23,458} & \underline{30,350} \\ \underline{164} & \underline{438} \\ \end{array}$
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks	0.09 0.07 0.04 0.06 0.23 0.30 0.01 0.004 0.01 	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> <u>11,496</u> <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u> <u>2,026 3,303</u> <u>23,319 30,170</u> <u>163 436</u> 706	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44 3.22 4.16 0.02 0.06 0.10	4,059 6,642 23,458 30,350 1,570 438 887 710 11,530 144 3,690 54,515 60,702 9,177 7,342 2,038 3,321 23,458 30,350 164 438 710
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Project Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units	$\begin{array}{r} 0.09 \ 0.07 \\ \hline 0.04 \ 0.06 \\ \hline 0.23 \ 0.30 \\ \hline 0.01 \ 0.004 \\ \hline 0.01 \\ \hline - \\ 0.02 \\ \hline - \\ 0.02 \\ \hline - \\ 0.02 \\ \hline 0.03 \\ \hline 0.43 \ 0.49 \\ \hline 1 \ Year \ 2040 \\ \hline 0.09 \ 0.07 \\ \hline 0.02 \ 0.03 \\ \hline 0.23 \ 0.30 \\ \hline 0.002 \ 0.004 \\ \hline 0.01 \\ \hline \end{array}$	<u>4,035 6,606</u> <u>23,319 30,170</u> <u>1,561 436</u> <u>882 706</u> <u>11,496</u> <u>143</u> <u>3,680</u> <u>54,239 60,392</u> <u>9,123 7,298</u> <u>2,026 3,303</u> <u>23,319 30,170</u> <u>163 436</u> 706	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44 3.22 4.16 0.02 0.06 0.10	$\begin{array}{r} \underline{4,059} & \underline{6,642} \\ \underline{23,458} & \underline{30,350} \\ \underline{1,570} & \underline{438} \\ \underline{887} & \overline{710} \\ \hline & - \\ 11,530 \\ \hline & - \\ 11,530 \\ \hline & - \\ 144 \\ 3,690 \\ \hline \underline{54,515} & \underline{60,702} \\ \underline{9,177} & \underline{7,342} \\ \underline{2,038} & \underline{3,321} \\ \underline{23,458} & \underline{30,350} \\ \underline{164} & \underline{438} \\ \hline & 710 \\ \hline \end{array}$
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Projecc Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps	$\begin{array}{c} 0.09 \ 0.07 \\ \hline 0.04 \ 0.06 \\ \hline 0.23 \ 0.30 \\ \hline 0.01 \ 0.004 \\ \hline 0.01 \\ \hline - \\ 0.02 \\ \hline - \\ 0.02 \\ \hline - \\ 0.03 \\ \hline 0.43 \ 0.49 \\ t \ Year \ 2040 \\ \hline 0.09 \ 0.07 \\ \hline 0.02 \ 0.03 \\ \hline 0.23 \ 0.30 \\ \hline 0.002 \ 0.004 \\ \hline 0.01 \\ \hline - \\ 0.02 \\ \hline - \\ \hline 0.02 \\ \hline - \\ \hline - \\ 0.02 \\ \hline - \\ - \\$	4,035 6,606 23,319 30,170 1,561 436 882 706 - - 11,496 - - - 143 3,680 54,239 60,392 9,123 7,298 2,026 3,303 23,319 30,170 163 436 706 - 11,496	0.56 0.87 3.22 4.16 0.20 0.06 0.12 0.10 1.29 0.02 0.02 0.02 6.67 7.50 1.26 1.01 0.28 0.44 3.22 4.16 0.02 0.06 0.10 1.29 1.29 -	$\begin{array}{r} 4,059 & 6,642 \\ \hline 23,458 & 30,350 \\ \hline 1,570 & 438 \\ \hline 887 & 710 \\ \hline - & - \\ 11,530 \\ \hline - & - \\ 11,530 \\ \hline - & - \\ 144 \\ \hline 3,690 \\ \hline 54,515 & 60,702 \\ \hline 9,177 & 7,342 \\ \hline 2,038 & 3,321 \\ \hline 23,458 & 30,350 \\ \hline 164 & 438 \\ \hline 710 \\ \hline - & - \\ 11,530 \\ \hline - & - \\ 11,530 \\ \hline - & - \\ \end{array}$
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Projecc Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Vapor Destruction Units Vapor Destruction Units Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs	$\begin{array}{c} 0.09 & 0.07 \\ \hline 0.04 & 0.06 \\ \hline 0.23 & 0.30 \\ \hline 0.01 & 0.004 \\ \hline 0.01 & - \\ \hline 0.02 & - \\ \hline 0.02 & - \\ \hline 0.03 & 0.43 & 0.49 \\ \hline 0.03 & 0.43 & 0.49 \\ \hline 1 & Year 2040 \\ \hline 0.09 & 0.07 \\ \hline 0.02 & 0.03 \\ \hline 0.02 & 0.03 \\ \hline 0.02 & 0.03 \\ \hline 0.002 & 0.004 \\ \hline 0.01 & - \\ \hline 0.02 \\ \hline - & 0.001 \\ \hline \end{array}$	$\begin{array}{r} 4,035 & 6,606 \\ \hline 23,319 & 30,170 \\ \hline 1,561 & 436 \\ \hline 882 & 706 \\ \hline - & \\ - & \\ 11,496 \\ \hline - & \\ 143 \\ \hline 3,680 \\ \hline 54,239 & 60,392 \\ \hline 9,123 & 7,298 \\ \hline 2,026 & 3,303 \\ \hline 23,319 & 30,170 \\ \hline 163 & 436 \\ \hline 706 \\ \hline - & \\ 11,496 \\ \hline - & \\ 143 \\ \hline \end{array}$	$\begin{array}{r} 0.56 \ 0.87 \\ \hline 3.22 \ 4.16 \\ \hline 0.20 \ 0.06 \\ \hline 0.12 \ 0.10 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 0.02 \\ \hline 0.02 \\ \hline 0.02 \\ \hline 6.67 \ 7.50 \\ \hline 1.26 \ 1.01 \\ \hline 0.28 \ 0.44 \\ \hline 3.22 \ 4.16 \\ \hline 0.02 \ 0.06 \\ \hline 0.10 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 0.02 \\ \hline 0.02 \\ \hline \end{array}$	$\begin{array}{r} \underline{4,059} \underbrace{6,642}{23,458} \underbrace{30,350}{1,570} \underbrace{1,570}_{438} \\ \underline{887} \underbrace{710}_{-1} \\ -1 \\ 11,530 \\ -1 \\ 11,530 \\ \underline{-1} \\ 144 \\ 3,690 \\ \underline{54,515} \underbrace{60,702}_{9,177} \underbrace{7,342}_{2,038} \\ \underline{2,038} \underbrace{3,321}_{3,321} \\ \underline{23,458} \underbrace{30,350}_{164} \\ \underline{164} \underbrace{438}_{710} \\ -1 \\ 11,530 \\ \underline{-1} \\ 144 \\ \end{array}$
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Projecc Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation	$\begin{array}{c} 0.09 & 0.07 \\ \hline 0.04 & 0.06 \\ \hline 0.23 & 0.30 \\ \hline 0.01 & 0.004 \\ \hline 0.01 & - \\ \hline 0.02 & - \\ \hline 0.02 & - \\ \hline 0.001 & 0.03 \\ \hline 0.43 & 0.49 \\ \hline 0.09 & 0.07 \\ \hline 0.02 & 0.03 \\ \hline 0.23 & 0.30 \\ \hline 0.002 & 0.004 \\ \hline 0.01 & - \\ \hline 0.02 & - \\ \hline 0.02 & - \\ \hline 0.001 & - \\ \hline 0.02 & - \\ \hline 0.001 & 0.02 \\ \hline 0.02 & 0.01 \\ \hline 0.02 & 0.02 \\ \hline 0.001 & 0.02 \\ \hline 0.001 & 0.02 \\ \hline 0.002 & 0.001 \\ \hline 0.002 & 0.001$	$\begin{array}{r} 4,035 & 6,606 \\ \hline 23,319 & 30,170 \\ \hline 1,561 & 436 \\ \hline 882 & 706 \\ \hline - & \\ - & \\ 11,496 \\ \hline - & \\ 11,496 \\ \hline - & \\ 3,680 \\ \hline 54,239 & 60,392 \\ \hline 9,123 & 7,298 \\ \hline 2,026 & 3,303 \\ \hline 23,319 & 30,170 \\ \hline 163 & 436 \\ \hline 706 \\ \hline - & \\ 11,496 \\ \hline - & \\ 11,496 \\ \hline - & \\ 11,840 \\ \hline \end{array}$	$\begin{array}{r} 0.56 \ 0.87 \\ \hline 3.22 \ 4.16 \\ \hline 0.20 \ 0.06 \\ \hline 0.12 \ 0.10 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 0.02 \\ \hline 0.02 \\ \hline 0.02 \\ \hline 6.67 \ 7.50 \\ \hline 1.26 \ 1.01 \\ \hline 0.28 \ 0.44 \\ \hline 3.22 \ 4.16 \\ \hline 0.02 \ 0.06 \\ \hline 0.10 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 0.02 \\ \hline 0.01 \\ \hline \end{array}$	$\begin{array}{r} \underline{4,059} \underline{6,642} \\ \underline{23,458} \underline{30,350} \\ \underline{1,570} \underline{438} \\ \underline{887} \overline{740} \\ - \\ - \\ 11,530 \\ - \\ - \\ 11,530 \\ \hline \\ - \\ 11,530 \\ \hline \\ \underline{54,515} \underline{60,702} \\ \underline{9,177} \underline{7,342} \\ \underline{2,038} \underline{3,321} \\ \underline{23,458} \underline{30,350} \\ \underline{164} \underline{438} \\ \overline{710} \\ - \\ - \\ 11,530 \\ \hline \\ - \\ - \\ 11,530 \\ \hline \\ - \\ - \\ \underline{144} \\ 1,845 \\ \end{array}$
Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs Emissions from AMPed off-site electricity generation Average Annual Operational Emissions Projecc Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Vapor Destruction Units Vapor Destruction Units Vapor Destruction Units Valves, Flanges, and Pumps Barge Fuel Deliveries for OGVs	$\begin{array}{c} 0.09 & 0.07 \\ \hline 0.04 & 0.06 \\ \hline 0.23 & 0.30 \\ \hline 0.01 & 0.004 \\ \hline 0.01 & - \\ \hline 0.02 & - \\ \hline 0.02 & - \\ \hline 0.03 & 0.43 & 0.49 \\ \hline 0.03 & 0.43 & 0.49 \\ \hline 1 & Year 2040 \\ \hline 0.09 & 0.07 \\ \hline 0.02 & 0.03 \\ \hline 0.02 & 0.03 \\ \hline 0.02 & 0.03 \\ \hline 0.002 & 0.004 \\ \hline 0.01 & - \\ \hline 0.02 & - \\ \hline 0.001 \\ \hline \end{array}$	$\begin{array}{r} 4,035 & 6,606 \\ \hline 23,319 & 30,170 \\ \hline 1,561 & 436 \\ \hline 882 & 706 \\ \hline - & \\ - & \\ 11,496 \\ \hline - & \\ 143 \\ \hline 3,680 \\ \hline 54,239 & 60,392 \\ \hline 9,123 & 7,298 \\ \hline 2,026 & 3,303 \\ \hline 23,319 & 30,170 \\ \hline 163 & 436 \\ \hline 706 \\ \hline - & \\ 11,496 \\ \hline - & \\ 143 \\ \hline \end{array}$	$\begin{array}{r} 0.56 \ 0.87 \\ \hline 3.22 \ 4.16 \\ \hline 0.20 \ 0.06 \\ \hline 0.12 \ 0.10 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 0.02 \\ \hline 0.02 \\ \hline 0.02 \\ \hline 6.67 \ 7.50 \\ \hline 1.26 \ 1.01 \\ \hline 0.28 \ 0.44 \\ \hline 3.22 \ 4.16 \\ \hline 0.02 \ 0.06 \\ \hline 0.10 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 1.29 \\ \hline - \\ \hline 0.02 \\ \hline 0.02 \\ \hline \end{array}$	$\begin{array}{r} \underline{4,059} \underline{6,642} \\ \underline{23,458} \underline{30,350} \\ \underline{1,570} \underline{438} \\ \underline{887} \overline{740} \\ - \\ - \\ 11,530 \\ - \\ - \\ 11,530 \\ \hline \\ \underline{9,177} \underline{7,342} \\ \underline{2,038} \underline{3,321} \\ \underline{23,458} \underline{30,350} \\ \underline{164} \underline{438} \\ \overline{710} \\ - \\ - \\ 11,530 \\ \hline \\ - \\ - \\ 144 \\ \end{array}$

Table 3.2-37. Average Annual GHG Emissions for Proposed Project Operation with Mitigation

Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are included in the Transiting Operations category.

2. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and postoffloading (departure). Offloading emissions include emissions from the boiler during offloading.

3.

Transiting emissions include emissions from the boiler during ornotading. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations. 4.

The additional row "Barge Fuel Deliveries for OGVs" was added to this table for the Final SEIS/SEIR because these emissions were inadvertently omitted from the Draft SEIS/SEIR. These additional emissions, however, do not change any 5. of the significance determinations

3.2.4.6.2 No Federal Action/No Project Alternative

1

2

3

Impact AQ-8: The No Federal Action/No Project Alternative would produce GHG emissions that would exceed CEQA Baseline levels.

4Table 3.2-43 shows the annual GHG emissions that would occur within California5from the operation of the No Federal Action/No Project Alternative. The No Federal6Action/No Project Alternative would result in GHG emissions that would exceed7CEQA Baseline levels. Therefore, the No Federal Action/No Project Alternative8would produce significant GHG emissions under CEQA.

Table 3.2-43. Average Annual GHG Emissions Associated with the No Federal Action/No
Project Alternative

,	1			
Emission Source		Annual Emis		
	N_2O	CO_2	CH ₄	CO2e
Project Yea				
Tanker Cruising and Maneuvering ¹	<u>0.07</u> 0.06	<u>7,400</u> 5,725	<u>0.99</u> 0.79	<u>7,441</u> 5,759
Tanker Hoteling ²	<u>0.06</u> 0.09	<u>5,968</u> 9,712	0.80 1.28	<u>6,002</u> 9,765
Offloading Emissions	<u>0.11</u> 0.16	12,316 15,737	<u>1.64</u> 2.17	12,386 15,831
Transiting Operations ⁴	0.01 0	<u>1,115</u> 317	<u>0.15</u> 0.04	1,122 318
Tug Assistance	0.01	1,005 804	0.14 0.11	1,011 809
Tanks				
Vapor Destruction Units	0.05	27,879	3.12	27,961
Valves, Flanges, and Pumps				
Emissions from AMPed off-site electricity generation	0	0	0	0
Average Annual Operational Emissions	0.31 0.37	55,683 60,174	6.84 7.51	55,923 60,443
CEQA Baseline	0	0	0	0
Project minus CEQA Baseline	0.31 0.37	55,683 60,174	6.84 7.51	55,923 60,443
Project Yea		55,005 00,174	0.04 7.51	33,723 00,743
Topker Cruising and Maneuvering ¹	$0.08 \frac{0.07}{0.07}$	<u>8,401</u> 6,674	<u>1.15</u> 0.92	<u>8,450</u> 6,714
Tanker Cruising and Maneuvering ¹ Tanker Hoteling ²	0.08 0.07 0.06 0.09	6,321 10,495	$\frac{1.13}{0.92}$	6,359 10,553
Offloading Emissions		<u>6,321</u> 10,493 6,817 10,156	<u>0.87</u> 1.38 0.91 1.4	<u>6,339</u> 10,333 6,856 10,216
Transiting Operations ⁴	0.06 0.10	<u>0,817</u> 10,130 <u>1,284</u> 369		<u>0,830</u> 10,210 <u>1,291</u> 371
	<u>0.01</u> 0	<u>1,284</u> 309	0.17 0.05	$\frac{1,291}{3/1}$
Tug Assistance	0.01	<u>1,172</u> 937	<u>0.16</u> 0.13	<u>1,178</u> 943
Tanks				
Vapor Destruction Units	0.05	28,337	3.17	28,421
Valves, Flanges, and Pumps				
Emissions from AMPed off-site electricity generation	0.03	2,606	0.012	2,616
Average Annual Operational Emissions	<u>0.3</u> 0.35	<u>54,938</u> 59,574	<u>6.44</u> 7.06	
CEQA Baseline	0	0	0	0
Project minus CEOA Baseline	0 2 0 25	54 030 50 574		55 171 50 024
Project minus CEQA Baseline	<u>0.3</u> 0.35	<u>54,938</u> 59,574	<u>6.44</u> 7.06	<u>55,171</u> 59,834
Project Yea	r 2025			
Tanker Cruising and Maneuvering	r 2025 0.08 0.07	8,342 6,67 4	<u>1.15 0.92</u>	8,392 6,714
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ²	r 2025 0.08 0.07 0.04 0.07	<u>8,342</u> 6,674 4,495 7,469	<u>1.15 0.92</u> 0.62 0.98	8,392 6,714 4,522 7,510
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³	r 2025 0.08 0.07	8,342 6,674 4,495 7,469 14,113 18,329	<u>1.15 0.92</u> <u>0.62 0.98</u> 1.95 <u>2.53</u>	8,392 6,714 4,522 7,510 14,197 18,438
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³ Transiting Operations ⁴	r 2025 0.08 0.07 0.04 0.07	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369	<u>1.15 0.92</u> 0.62 0.98 <u>1.95 2.53</u> 0.18 0.05	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³ Transiting Operations ⁴	r 2025 0.08 0.07 0.04 0.07 0.14 0.18	8,342 6,674 4,495 7,469 14,113 18,329	<u>1.15 0.92</u> <u>0.62 0.98</u> 1.95 <u>2.53</u>	8,392 6,714 4,522 7,510 14,197 18,438
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³	r 2025 0.08 0.07 0.04 0.07 0.14 0.18 0.01 0 0	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369	<u>1.15 0.92</u> 0.62 0.98 <u>1.95 2.53</u> 0.18 0.05	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³ Transiting Operations ⁴ Tug Assistance Tanks	r 2025 0.08 0.07 0.04 0.07 0.14 0.18 0.01 0 0.01 0.01) 0.01) 0.01	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937	<u>1.15</u> 0.92 0.62 0.98 <u>1.95</u> 2.53 0.18 0.05 0.16 0.13	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³ Transiting Operations ⁴ Tug Assistance Tanks Vapor Destruction Units	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.14 \ 0.18 \\ \hline 0.01 \ 0 \\ \hline 0.01 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937	<u>1.15 0.92</u> 0.62 0.98 <u>1.95 2.53</u> 0.18 0.05 0.16 0.13	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³ Transiting Operations ⁴ Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.14 \ 0.18 \\ \hline 0.01 \ 0 \\ \hline 0.01 \\ \hline \hline 0.05 \\ \hline \hline 0.05 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421
Project Yea Tanker Cruising and Maneuvering ¹ Tanker Hoteling ² Offloading Emissions ³ Transiting Operations ⁴ Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.14 \ 0.18 \\ \hline 0.01 \ 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 0.004	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.14 \ 0.18 \\ \hline 0.01 \ 0 \\ \hline 0.01 \\ \hline \hline 0.05 \\ \hline \hline 0.05 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.14 \ 0.18 \\ \hline 0.01 \ 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0 \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 0.004 7.23 7.78 0 0	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project minus CEQA Baseline	<i>r</i> 2025 0.08 0.07 0.04 0.07 0.14 0.18 0.01 0 0.01 0.05 0.01 0.34 0.39 0 0.34 0.39	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 0.004 7.23 7.78	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Yea	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ r \ 2040 \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Tanker Cruising and Maneuvering 1	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.04 \\ \hline 0.01 \\ \hline 0.05 \\ \hline 0.01 \\ \hline$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 8,342 6,674	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 0.004 7.23 7.78 0 7.23 1.15 0.92	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 8,392 6,714
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Manual Coperational Emissions CEQA Baseline Project Minus CEQA Baseline Tanker Cruising and Maneuvering 1 Tanker Hoteling 2	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 0 \\ \hline 0 \\ 0 \\ \hline 0 \\ 0 \\$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 0.004 7.23 7.78 0 7.23 1.15 0.92 0.62 0.98	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Maneuvering 1 Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline r \ 2040 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.14 \ 0.18 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 1.15 0.92 0.62 0.98 1.95 2.53	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline r \ 2040 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0 \\ \hline 0.01 \ 0 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 0.004 7.23 7.78 0 7.23 1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Minus CEQA Baseline Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline r \ 2040 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0 \\ \hline 0.01 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 28,337 920 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 5 Transiting Operations 4 Tug Assistance Tanks	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline 0 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline r \ 2040 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0 \\ \hline 0.01 \\ \hline \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.18 0.05 0.18 0.05 0.16 0.13	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0 \\ \hline 0 \\ 0.34 \ 0.39 \\ \hline r \ 2040 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \\ \hline \\ \hline 0.01 \\ \hline 0.01 \\ \hline \\ \hline 0.05 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Vapor Destruction Units Vapor Destruction Units Valves, Flanges, and Pumps	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.001 \\ \hline 0.04 \ 0.03 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline \\ \hline 0.05 \\ $	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 28,421
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.034 \ 0.39 \\ \hline 0 \\ \hline 0.34 \ 0.39 \\ \hline r \ 2040 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline \hline 0.01 \\ \hline \hline 0.05 \\ \hline \\ \hline 0.005 \\ \hline \\ \hline 0.01 \\ \hline \end{array}$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 28,337 920	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.16 0.13 3.17 3.17 3.17 0.004	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 28,421 923
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Minus CEQA Baseline Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.001 \\ \hline 0.04 \ 0.03 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0.34 \ 0.39 \\ \hline 0.39 \\ \hline 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0.39 \\ \hline 0.34 \ 0.39 \\ \hline 0.39 \\ \hline 0.34 \ 0.34 \\ \hline 0.34 \ 0.$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 28,337 28,337 920 58,654 63,035	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.16 0.13 3.17 3.17 3.17 3.17	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 28,421 923 58,915 63,320
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.05 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0 \\ \hline 0 \ 0 \\ \hline 0 \ 0 \\ \hline 0 \ 0 \ 0 \ 0 \\ \hline 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 28,54 28,54 28,555 28,555 28,555 28,555 28,555 28,555 28,555 	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 3.17 3.17 0.004 7.23 7.78 0	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 28,421 923 58,915 63,320
Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions CEQA Baseline Project Minus CEQA Baseline Project Minus CEQA Baseline Project Yea Tanker Cruising and Maneuvering 1 Tanker Hoteling 2 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanker Hoteling 4 Offloading Emissions 3 Transiting Operations 4 Tug Assistance Tanks Vapor Destruction Units Valves, Flanges, and Pumps Emissions from AMPed off-site electricity generation Average Annual Operational Emissions	$\begin{array}{r} r \ 2025 \\ \hline 0.08 \ 0.07 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.05 \\ \hline \\ \hline 0.001 \\ \hline 0.04 \ 0.03 \\ \hline 0.01 \\ \hline 0.04 \ 0.03 \\ \hline 0 \\ \hline 0.04 \ 0.07 \\ \hline 0.01 \ 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.01 \\ \hline 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0.34 \ 0.39 \\ \hline 0.39 \\ \hline 0.01 \\ \hline \\ \hline 0.05 \\ \hline \\ \hline 0.01 \\ \hline 0.34 \ 0.39 \\ \hline 0.39 \\ \hline 0.34 \ 0.39 \\ \hline 0.39 \\ \hline 0.34 \ 0.34 \\ \hline 0.34 \ 0.$	8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 920 58,654 63,035 0 58,654 63,035 8,342 6,674 4,495 7,469 14,113 18,329 1,275 369 1,172 937 28,337 28,337 28,337 920 58,654 63,035	1.15 0.92 0.62 0.98 1.95 2.53 0.18 0.05 0.16 0.13 3.17 3.17 0.004 7.23 7.78 0 7.23 0.62 0.98 1.95 2.53 0.16 0.13 3.17 3.17 3.17 3.17	8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 923 58,915 63,320 0 58,915 63,320 8,392 6,714 4,522 7,510 14,197 18,438 1,282 371 1,178 943 28,421 28,421 923 58,915 63,320

Votes: 1.

Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are included in the Transiting Operations category. Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-

2.

offloading (departure). Offloading emissions include emissions from the boiler during offloading. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations. 3. 4.

1 CEQA Impact Determination

The data in Table 3.2-43 show that in each project year, annual CO₂e emissions would increase from CEQA Baseline levels. Therefore, the No Federal Action/No Project Alternative would produce significant levels of GHG emissions under CEQA.

5 *Mitigation Measures*

- 6 The No Federal Action/No Project Alternative assumes no action by the Port. 7 However, it has been assumed for purposes of this analysis that CAAP Control 8 Measures would be implemented at the crude oil terminals in the course of the 9 applicable leases renewals. In essence, the CAAP Control Measures are types of 10 mitigation measures which would reduce air quality impacts from those terminals 11 over time including, to a certain extent, GHGs. Any benefits from those measures 12 are included in the emissions data in Table 3.2-43.
- 13 Residual Impacts
- 14 Impacts would remain significant under CEQA.

15 NEPA Impact Determination

- Because the No Federal Action/No Project Alternative is identical to the NEPA
 Baseline in this project, under NEPA the No Federal Action/No Project Alternative
 would have no impact.
- 19 *Mitigation Measures*
- 20 No mitigation is required.
- 21 Residual Impacts
- 22 No impact.

23 **3.2.4.6.3 Reduced Project Alternative**

24Impact AQ-2: The Reduced Project Alternative construction would25result in offsite ambient air pollutant concentrations that exceed a26SCAQMD threshold of significance in Table 3.2-6.

- Dispersion modeling of the Reduced Project construction emissions was performed to assess the impacts of the Reduced Project on local ambient concentrations. A summary of the dispersion analysis is presented here and the dispersion modeling report is included in Appendix H.
- Table 3.2-48 presents the maximum unmitigated project-related impacts from Phase I construction activities under the Reduced Project Alternative. The significance of Construction Phase I activities is considered under **Impact AQ-2**. Because Construction Phase II activities will be coincident with the initial operation of the

1 2 3 Reduced Project Alternative, significance determinations for Construction Phase II are addressed in the impact discussion for the Operations phase of the Reduced Project Alternative (i.e., **Impact AQ-4**.)

Table 3.2-48. Maximum Offsite Ambient Concentrations – Reduced Project Alternative Construction without Mitigation ^{1,2}

		Background	Total	SCAQMD	Exceeds		
Averaging Deviad	Impact	Concentration	Impact	Thresholds of	Threshold?		
геноа	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	Significance	(Y/N)		
Phase I							
1-hour	20,064.8	263.2	20,328.0	338	Y		
Annual	212.1	54.5	266.6	56	Y		
1-hour	8,891.5	6,670	15,561.5	23,000	Ν		
8-hour	1,711.6	5,405	7,116.6	10,000	Ν		
24-hour	118.4	74		10.4	Y		
Annual	13.7	35.9		20	Ν		
24-hour	103.4	115.2		10.4	Y		
	Annual 1-hour 8-hour 24-hour Annual	Period (μg/m³) 1-hour 20,064.8 Annual 212.1 1-hour 8,891.5 8-hour 1,711.6 24-hour 118.4 Annual 13.7	Period $(\mu g/m^3)$ $(\mu g/m^3)$ Phase I1-hour20,064.8263.2Annual212.154.51-hour8,891.56,6708-hour1,711.65,40524-hour118.474Annual13.735.9	Period $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ Phase I1-hour20,064.8263.220,328.0Annual212.154.5266.61-hour8,891.56,67015,561.58-hour1,711.65,4057,116.624-hour118.474Annual13.735.9	Period (μg/m³) (μg/m³) (μg/m³) Significance Phase I 1-hour 20,064.8 263.2 20,328.0 338 Annual 212.1 54.5 266.6 56 1-hour 8,891.5 6,670 15,561.5 23,000 8-hour 1,711.6 5,405 7,116.6 10,000 24-hour 118.4 74 10.4 Annual 13.7 35.9 20		

1. The NO₂ and CO thresholds are absolute thresholds; the maximum predicted impact from construction activities is added to the background concentration for the Project vicinity and compared to the threshold.

2. The PM_{10} and $PM_{2.5}$ threshold is an incremental threshold; the maximum predicted impact from construction

activities (without adding the background concentration) is compared to the threshold.

4	CEQA Impact Determination
5	The Phase I maximum offsite 1-hour and annual NO ₂ concentrations, the 24-hour
6	PM ₁₀ concentrations and the 24-hour PM _{2.5} concentrations would exceed the
7	applicable SCAQMD significance thresholds. Therefore, significant impacts under
8	CEQA would occur. As noted above, the impact determination for Construction
9	Phase II is addressed under Impact AQ-4 .
10	Mitigation Measures
11	To reduce the level of impact, the proposed Project MM AQ-1 through AQ-12 and
12	MM 4G-5 would apply to the Reduced Project Alternative.
13	Residual Impacts
14	Table 3.2-49 presents the maximum mitigated project-related impacts from Phase I
15	construction activities. The Phase I maximum offsite 1-hour and annual NO ₂
16	concentrations, the 24-hour PM_{10} concentrations, and the 24-hour $PM_{2.5}$
17	concentrations would exceed the applicable SCAQMD significance thresholds.
18	Significant impacts would occur despite the application of all reasonably applicable

mitigation measure under CEQA.

	Anonacina	Maximum	Background	Total	SCAQMD	Exceeds	
	Averaging Period	Impact	Concentration	Impact	Thresholds of	Threshold?	
	Perioa	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	Significance	(Y/N)	
Phase I							
NO	1-hour	14,735.0	263.2	14,998.2	338	Y	
NO ₂	Annual	156.2	54.5	210.7	56	Y	
CO	1-hour	11,021.4	6,670	17,691.4	23,000	Ν	
CO	8-hour	2,121.2	5,405	7,526.2	10,000	Ν	
DM	24-hour	64.5	74		10.4	Y	
PM_{10}	Annual	7.6	35.9		20	Ν	
PM _{2.5}	24-hour	57	115.2		10.4	Y	

Table 3.2-49. Maximum Offsite Ambient Concentrations – Reduced ProjectConstruction with Mitigation 1,2

Notes:

1. The NO_2 and CO thresholds are absolute thresholds; the maximum predicted impact from construction

activities is added to the background concentration for the Project vicinity and compared to the threshold. 2. The PM_{10} and $PM_{2.5}$ threshold is an incremental threshold; the maximum predicted impact from construction

activities (without adding the background concentration) is compared to the threshold.

1	NEPA Impact Determination
2	The maximum offsite ambient pollutant concentrations associated with the Reduced
3	Project Alternative Phase I construction would be significant for 1-hour and annual
4	NO_x , 24-hour PM_{10} and 24-hour $PM_{2.5}$. Therefore, significant impacts under NEPA
5	would occur. As noted above, the impact determination for Construction Phase II is
6	addressed under Impact AQ-4.
7	Mitigation Measures
8	To reduce the level of impact, the proposed Project MM AQ-1 through AQ-12 and
9	MM 4G-5 would apply to the Reduced Project Alternative.
10	Residual Impacts
11	Significant impacts would occur despite the application of all reasonably applicable
12	mitigation measures under NEPA.
13	The revisions to the operational assumptions/mitigation measures proposed in the
14	Draft SEIS/SEIR that are included in the Final SEIS/SEIR were not evaluated for
15	their potential to change emissions from the Reduced Project Alternative. As
16	mentioned in the discussion of Impacts AQ-3, AQ-4, and AQ-6 for the proposed
17	Project, these revised assumptions/mitigation measures for the Reduced Project
18	Alternative would slightly reduce (1) operational mitigated emissions, and (2)
19	ambient pollutant and health impacts from these activities compared to the analyses
20	presented in the following section. However, the revised mitigated impacts for the
21	Reduced Project Alternative still would result in exceedances of significance
22	threshold, as identified below.

5

6

7

8

9

10

Impact AQ-8: The Reduced Project Alternative would produce GHG emissions that would exceed CEQA and NEPA Baseline levels.

Table 3.2-62 presents the annual GHG emissions associated with the construction of the Reduced Project Alternative without mitigation. At this time, there are no established significance criteria for GHG emissions.

Table 3.2-62. Average Annual GHG Emissions for Reduced Project Alternative Construction without Mitigation

Construction Activity	Annual Emissions (Tons)						
Construction Activity	N_2O	CO_2	CH_4	CO_2e			
Phase I							
Pier 400 Marine Terminal and Wharf Construction	0.1	7,658	1	7,710			
Pipeline Construction	0.2	14,700	2	14,804			
Tank Farm Site 1	0.1	10,170	1	10,222			
Tank Farm Site 2	0.2	18,751	3	18,876			
Phase II							
Tank Farm Site 2	0.04	3,368	1	3,401			

Table 3.2-63 presents the annual GHG emissions associated with the construction of the Reduced Project Alternative with mitigation. At this time, there are no established significance criteria for GHG emissions. As seen in reviewing Table 3.2-62 and 3.2-63, the average annual CO_2 equivalent emissions associated with the proposed Project are expected to be the same without and with mitigation.

Table 3.2-63. Average Annual GHG Emissions for Reduced Project Alternative Construction with Mitigation

Construction Activity	Annual Emissions (Tons)						
Construction Activity	N_2O	CO_2	CH_4	CO_2e			
Phase I							
Pier 400 Marine Terminal and Wharf Construction	0.1	7,658	1	7,710			
Pipeline Construction	0.2	14,700	2	14,804			
Tank Farm Site 1	0.1	10,170	1	10,222			
Tank Farm Site 2	0.2	18,751	3	18,876			
Phase II							
Tank Farm Site 2	0.04	3,368	1	3,401			

11 12 13 Table 3.2-64 presents the annual GHG emissions associated with the operation of the Reduced Project Alternative without mitigation. At this time, there are no established significance criteria for GHG emissions.

$\begin{array}{r} N_2O \\ \hline Project Year 2 \\ 0.06 & 0.05 \\ 0.04 & 0.06 \\ \hline 0.11 & 0.16 \\ 0.01 & 0.03 \\ \hline 0.006 & 0.004 \\ \hline - \\ \hline 0.02 \\ \hline - \\ 0.02 \\ \hline - \\ 0.02 \\ \hline 0.01 \\ 0.25 & 0.31 \\ \hline Project Year 2 \\ 0.07 \\ 0.05 \\ 0.04 \\ 0.06 \\ \hline 0.14 \\ 0.20 \\ \hline 0.01 \\ 0.03 \\ \hline 0.01 \\ 0.00 \\ \hline - \\ \hline 0 \\ 0.2 \\ \hline 0 \\ 0.02 \\ \hline \end{array}$	<u>6,683</u> 5,347 <u>4,140</u> 6,523 <u>12,889</u> 16,093 <u>1,008</u> 2,592 <u>566</u> 453 <u>-</u> <u>10,564</u> <u>-</u> <u>71</u> 35,921 41,572	$\begin{array}{r} CH_4 \\ \hline 0.88 \ 0.71 \\ \hline 0.55 \ 0.86 \\ \hline 1.64 \ 2.22 \\ \hline 0.13 \ 0.36 \\ \hline 0.08 \ 0.06 \\ \hline \hline \\ \hline \\ 1.18 \\ \hline \\ \hline \\ 0.01 \\ \hline \\ \hline \\ 4.47 \ 5.39 \\ \hline \\ \hline \\ 1.020.81 \\ \hline \\ 0.61 \\ \hline \\ 0.96 \\ \hline \\ 2.052.77 \end{array}$	CO2e 6,720 5,376 4,163 6,559 12,958 16,188 1,014 2,608 569 456 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
Project Year 2 0.06 0.05 0.04 0.06 0.11 0.16 0.01 0.03 0.006 0.004 0.02 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	$\begin{array}{r} CO_2 \\ \hline CO_2 \\ \hline CO_2 \\ \hline CO10 $	$\begin{array}{r} CH_4 \\ \hline 0.88 \ 0.71 \\ \hline 0.55 \ 0.86 \\ \hline 1.64 \ 2.22 \\ \hline 0.13 \ 0.36 \\ \hline 0.08 \ 0.06 \\ \hline \hline \\ \hline \\ 1.18 \\ \hline \\ \hline \\ 0.01 \\ \hline \\ \hline \\ 4.47 \ 5.39 \\ \hline \\ \hline \\ 1.020.81 \\ \hline \\ 0.61 \\ \hline \\ 0.96 \\ \hline \\ 2.052.77 \end{array}$	6,720 5,376 4,163 6,559 12,958 16,188 1,014 2,608 569 456 10,595 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
0.06 0.05 0.04 0.06 0.11 0.16 0.01 0.03 0.006 0.004 0.02 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	$\begin{array}{r} 6,683 \\ \overline{5,347} \\ 4,140 \\ \overline{6,523} \\ 12,889 \\ \overline{16,093} \\ 1,008 \\ 2,592 \\ 566 \\ 453 \\ \hline \\ 10,564 \\ \hline \\ 71 \\ 35,921 \\ 41,572 \\ 7.720 \\ 6,176 \\ 4,645 \\ 7,264 \\ 16,110 \\ 20,123 \\ 1,176 \\ 3,023 \\ \end{array}$	0.55 0.86 1.64 2.22 0.13 0.36 0.08 0.06 1.18 0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	4,163 6,559 12,958 16,188 1,014 2,608 569 456 10,595 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
0.04 0.06 0.11 0.16 0.01 0.03 0.006 0.004 0.02 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	$\begin{array}{r} \underline{12,889} \ \underline{16,093} \\ \underline{1,008} \ \underline{2,592} \\ \underline{566} \ \underline{453} \\ \underline{-} \\ 10,564 \\ \underline{-} \\ 10,554 \\ \underline{-} \\ 71 \\ 35,921 \ \underline{41,572} \\ 7.7206, \underline{176} \\ \underline{4,6457,264} \\ \underline{16,11020,123} \\ 1,1763,023 \\ \end{array}$	0.55 0.86 1.64 2.22 0.13 0.36 0.08 0.06 1.18 0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	4,163 6,559 12,958 16,188 1,014 2,608 569 456 10,595 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
0.11 0.16 0.00 0.004 0.006 0.004 0.002 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	$\begin{array}{r} \underline{12,889} \ \underline{16,093} \\ \underline{1,008} \ \underline{2,592} \\ \underline{566} \ \underline{453} \\ \underline{-} \\ 10,564 \\ \underline{-} \\ 10,554 \\ \underline{-} \\ 71 \\ 35,921 \ \underline{41,572} \\ 7.7206, \underline{176} \\ \underline{4,6457,264} \\ \underline{16,11020,123} \\ 1,1763,023 \\ \end{array}$	1.64 2.22 0.13 0.36 0.08 0.06 1.18 0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	4,163 6,559 12,958 16,188 1,014 2,608 569 456 10,595 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
0.11 0.16 0.00 0.004 0.006 0.004 0.002 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	$\begin{array}{r} \underline{12,889} \ \underline{16,093} \\ \underline{1,008} \ \underline{2,592} \\ \underline{566} \ \underline{453} \\ \underline{-} \\ 10,564 \\ \underline{-} \\ 10,554 \\ \underline{-} \\ 71 \\ 35,921 \ \underline{41,572} \\ 7.7206, \underline{176} \\ \underline{4,6457,264} \\ \underline{16,11020,123} \\ 1,1763,023 \\ \end{array}$	1.64 2.22 0.13 0.36 0.08 0.06 1.18 0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	12,958 16,188 1,014 2,608 569 456 10,595 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
0.01 0.03 0.006 0.004 0.02 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	<u>1,008 2,592</u> <u>566 453</u> <u>-</u> <u>10,564</u> <u>-</u> <u>71</u> 35,921 41,572 <i>7,7206,176</i> <u>4,6457,264</u> <u>16,11020,123</u> <u>1,1763,023</u>	0.13 0.36 0.08 0.06 1.18 0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	1,014 2,608 569 456 10,595 72 36,019 41,782 7,7636,210 4,6707,304 16,19520,243
0.006 0.004 0.02 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	<u>566</u> 453 <u>-</u> 10,564 <u>-</u> 71 35,921 41,572 2015 <u>7,7206,176</u> <u>4,6457,264</u> <u>16,11020,123</u> 1,176 3,023	0.08 0.06 1.18 0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	<u>569 456</u> 10,595 72 36,019 41,782 7,763 <u>6,210</u> 4,670 7,304 16,195 20,243
0.02 0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	10,564 	<u> </u>	 10,595 72 36,019 41,782 7,763 <u>6,210</u> 4,670 7,304 16,195 20,243
0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	71 35,921 41,572 2015 7,7206,176 4,6457,264 16,11020,123 1,1763,023	0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	
0.001 0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	71 35,921 41,572 2015 7,7206,176 4,6457,264 16,11020,123 1,1763,023	0.01 4.47 5.39 1.020.81 0.610.96 2.052.77	
0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	<u>35,921</u> 41,572 2015 <u>7,7206,176</u> 4,6457,264 <u>16,11020,123</u> 1,176 3,023	4.47 5.39 <u>1.020.81</u> 0.610.96 2.052.77	36,019 41,782 7,763 <u>6,210</u> 4,670 7,30 4 16,19520,243
0.25 0.31 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	<u>35,921</u> 41,572 2015 <u>7,7206,176</u> 4,6457,264 <u>16,11020,123</u> 1,176 3,023	4.47 5.39 <u>1.020.81</u> 0.610.96 2.052.77	36,019 41,782 7,763 <u>6,210</u> 4,670 7,30 4 16,19520,243
Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00	015 7,720 <u>6,176</u> 4,6457,264 <u>16,11020,123</u> 1,176 3,023	<u>1.02</u> 0.81 0.610.96 2.052.77	7,7636,210 4,6707,304 16,195 <mark>20,243</mark>
0.07 0.05 0.04 0.06 0.14 0.20 0.01 0.03 0.01 0.00	7,720 6,176 4,645 7,264 16,110 20,123 1,176 3,023	0.61 <u>0.96</u> 2.05 <u>2.77</u>	<u>4,670</u> 7,304 16,19520,243
0.040.06 0.140.20 0.010.03 0.010.00	<u>4,6457,264</u> <u>16,11020,123</u> 1,176 <u>3,023</u>	0.61 <u>0.96</u> 2.05 <u>2.77</u>	<u>4,670</u> 7,304 16,195 <u>20,243</u>
0.140.20 0.010.03 0.010.00	<u>16,11020,123</u> 1,176 3,023	$\frac{2.05}{2.77}$	<u>16,195</u> 20,243
<u>0.01</u> 0.03 0.010.00	1,176 3,023	015042	10,17520,245
<u>0.01</u> 0.00	5794 63		<u>1,182</u> 3,041
	5/9405	0.080.06	<u>583</u> 466
0.02			<u> </u>
0.02			11,530
			96
	<u>95</u>	$\frac{0.01}{1.01}$	42,019 48,794
	<u>41,821</u> 4 8,340	<u>3.21</u> 0.31	42,019 48,794
Project Year 2	7 7006 176	1 0 2 0 9 1	77(2(210
			<u>7,763</u> 6,210
0.040.06	4,6457,264	0.610.96	4,6707,304
	<u>16,110</u> 20,123	$\frac{2.05}{2.77}$	16,19520,243
0.03	<u>3,919</u> 3,023	<u>0.50</u> 0.42	3,9403,041
			<u>583</u> 466
			11,530
			<u>96</u>
	13,815	1.67	13,871
0.07	22,080	2.79	22,159
0.10	17,558	2.18	17,634
<u>0.55</u> 0.61		<u>12.20</u> 12.9 4	<u>98,441</u> 102,45
Project Year 2	2040		
0.07 0.05	7,720 6,176	1.02 0.81	<u>7,763</u> 6,210
0.040.06	4,6457,264		4,6707,304
	16.110 20.123	2.052.77	<u>16,195</u> 20,243
0.010.03	1,1763,023	0.150.42	1,1823,041
0.010.00	579463	0.080.06	583466
	11 496		11,530
			96
			14,681
			24,209
			19,012
<u>0.03</u> 0.14	<u>77,405</u> 100,170	<u>14.41</u> 13.31	<u>99,921</u> 106,69
perations categor	у.		
	0.001 0.29 0.37 Project Year 2 0.070.05 0.040.06 0.140.20 0.03 0.010 0.001 0.07 0.07 0.07 0.07 0.10 0.55 0.61 Project Year 2 0.070.05 0.040.06 0.140.20 0.010 0.7 0.10 0.55 0.61 Project Year 2 0.070.05 0.040.06 0.140.20 0.010.03 0.010.00 0.002 0.002 0.001 0.07 0.16 0.11 0.63 0.72 emissions from t perations categor	0.010.00 579463 0.02 $11,496$ 0.001 95 0.29 0.37 $41,821$ $Project$ $Year$ 2025 $0.070.05$ $7,7206,176$ $0.040.06$ $4,6457,264$ $0.140.20$ $16,11020,123$ 0.03 $3,9193,023$ $0.010.00$ 579463 0.02 $11,496$ 0.02 $11,496$ 0.001 95 0.07 $13,815$ 0.07 $22,080$ 0.10 $17,558$ 0.55 0.61 $98,017$ $101,998$ Project Year 2040 $0.010,03$ $0.070.05$ $7,7206,176$ $0.040.06$ $4,6457,264$ $0.140.20$ $16,11020,123$ $0.010.03$ $1,1763,023$ $0.010.03$ <	0.010.03 $1,1763.023$ $0.150.42$ $0.010.00$ 579463 $0.080.06$ $$ $$ $$ 0.02 $11,496$ 1.29 $$ $$ $$ 0.001 95 0.01 0.29 0.37 $41,821$ $45,546$ 5.21 $0.070.05$ $7,7206,176$ $1.020,81$ $0.010,966$ $0.070.05$ $7,7206,176$ $1.020,81$ $0.010,966$ $0.140.20$ $16,11020,123$ $2.052,77$ 0.03 $3,9193,023$ $0.500.42$ $0.010.00$ 579463 $0.080.06$ $$ $$ $$ 0.02 $11,496$ 1.29 $$ $$ $$ 0.001 95 0.01 0.758 2.18 0.55 0.07 $22,080$ 2.79 $0.16,11020,123$ $2.052,77$ 0.001 0.7558 2.18 0.55 0.61 $98,017$ $10,998$ 12.20 12.94 </td

Table 3.2-64. Average Annual GHG Emissions for Reduced Project Alternative without Mitigation

Offloading emissions include emissions from the boiler during offloading. 3.

4.

Transiting emissions include emissions from the boiler during ornoading. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations. The additional row "Barge Fuel Deliveries for OGVs" was added to this table for the Final SEIS/SEIR because these emissions were inadvertently omitted from the Draft SEIS/SEIR. These additional emissions, however, do not change <u>5</u>. any of the significance determinations

1	CEQA Impact Determination
2	The Reduced Project Alternative would result in a significant CEQA impact if CO ₂ e
3	emissions exceed the CEQA Baseline, which is equivalent to zero. As the data in
4	Table 3.2-62 and Table 3.2-64 show, annual CO ₂ e emissions would increase from the
5	CEQA Baseline levels for both construction and operation. As such, the Reduced
6	Project Alternative would result in a significant impact under CEQA.
7	Mitigation Measures
8	To reduce the level of impact, MM AQ-13, AQ-15, and AQ-22 through AQ-27
9	would apply to the Reduced Project Alternative.
10	Residual Impacts
11	Table 3.2-65 presents the annual mitigated GHG emissions associated with the
12	Reduced Project Alternative operations. Table 3.2-63 presents the annual mitigated
13	GHG emissions associated with construction of the Reduced Project Alternative. As
14	shown therein, the impacts would remain significant under CEQA.
15	NEPA Impact Determination
16	The <u>construction and operational CO₂e emissions summarized in Table Tables <u>3.2-</u></u>
17	6463 and 3.2-654, which are with mitigation, would increase relative to the NEPA
18	Baseline for each project year (the combined mitigated construction and operational
19	CO ₂ e emissions would be lower than the total unmitigated construction and
20	operational CO ₂ e emissions shown in Tables 3.2-62 and 3.2-64). However, because
21	no NEPA significance threshold has been established, no determination has been
22	made of the significance of this impact.

— • • • •		Annual Emis	ssions (Tons)]
Emission Source	N_2O	CO_2	CH_4	CO2e
Project Y	ear 2010			2-
Tanker Cruising and Maneuvering	<u>0.05</u> 0.04	<u>5,265</u> 4,411	<u>0.73</u> 0.58	<u>5,2964,435</u>
Tanker Hoteling ²	0.040.06	<u>3,9576,233</u>	0.550.86	<u>3,980</u> 6,270
Offloading Emissions '	0.12 0.16	12,381 16,032	<u>1.71</u> 2.21	12,45416,127
Transiting Operations ⁴	<u>0.01</u> 0.02	<u>920</u> 2,454	<u>0.13</u> 0.34	<u>926</u> 2,468
Tug Assistance	0.004	<u>566</u> 453	0.06	<u>569</u> 456
Tanks				
Vapor Destruction Units	0.02	10,564	1.18	10,595
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	<u>71</u>	0.01	<u>72</u>
Emissions from AMPed off-site electricity generation	0	0	0	0
Average Annual Operational Emissions	<u>0.25</u> 0.31	<u>33,723</u> 40,145	<u>4.36</u>	<u>33,892</u> 40,350
	ear 2015 /			
Tanker Cruising and Maneuvering	<u>0.06</u> 0.05	<u>6,022</u> 4,818	<u>0.83</u> 0.66	<u>6,058</u> 4,846
Tanker Hoteling ²	<u>0.04</u> 0.05	<u>3,773</u> 6,175	0.520.81	<u>3,795</u> 6,209
Offloading Emissions ²	<u>0.15</u> 0.20	<u>15,504</u> 20,044	2.142.76	<u>15,596</u> 20,163
Transiting Operations ⁴	<u>0.01</u> 0.003	<u>999</u> 289	<u>0.14</u> 0.04	<u>1,005</u> 291
Tug Assistance	0.00	463	0.06	466
Tanks				
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	<u>95</u>	0.01	<u>96</u>
Emissions from AMPed off-site electricity generation	0.03	3,440	0.02	3,450
Average Annual Operational Emissions	<u>0.31</u> 0.36	41,79246,725	<u>5.00</u> 5.65	41,99546,954
Project I	ear 2025 /			
Tanker Cruising and Maneuvering	<u>0.06</u> 0.05	<u>6,022</u> 4,818	<u>0.83</u> 0.66	<u>6,058</u> 4,846
Tanker Hoteling ²	<u>0.03</u> 0.04	<u>2,663</u> 4,359	<u>0.37</u> 0.57	<u>2,679</u> 4,383
Offloading Emissions '	<u>0.15</u> 0.20	<u>15,504</u> 20,044	2.142.76	<u>15,596</u> 20,163
Transiting Operations ⁴	<u>0.001</u> 0.003	<u>108</u> 289	<u>0.01</u> 0.04	<u>109</u> 291
Tug Assistance	0.00	463	0.06	466
Tanks				
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	<u>95</u>	0.01	<u>96</u>
BP (Existing Terminal)	0.07	13,815	1.67	13,871
Tesoro (Existing Terminal)	0.07	22,080	2.79	22,159
ExxonMobil (Existing Terminal)	0.10	17,558	2.18	17,634
Emissions from AMPed off-site electricity generation	0.05	5,692	0.03	5,707
Average Annual Operational Emissions	<u>0.55</u> 0.59	<u>95,496</u> 100,612	<u>11.37</u> 12.05	<u>95,905</u> 101,050
Project I	ear 2040 /			
Tanker Cruising and Maneuvering ¹ Tanker Hoteling ²	<u>0.06</u> 0.05	<u>6,022</u> 4,818	<u>0.83</u> 0.66	<u>6,058</u> 4,846
Tanker Hoteling ²	<u>0.01</u> 0.02	<u>1,332</u> 2,179	<u>0.18</u> 0.29	<u>1,340</u> 2,191
Offloading Emissions	<u>0.15</u> 0.20	<u>15,504</u> 20,044	<u>2.14</u> 2.76	<u>15,596</u> 20,163
Transiting Operations ⁴	0.001 0.003	<u>108</u> 289	<u>0.01</u> 0.04	<u>109</u> 291
Tug Assistance	0.00	463	0.06	466
Tanks				
Vapor Destruction Units	0.02	11,496	1.29	11,530
Valves, Flanges, and Pumps				
Barge Fuel Deliveries for OGVs	0.001	<u>95</u>	<u>0.01</u>	<u>96</u>
BP (Existing Terminal)	0.07	14,621	1.78	14,681
Tesoro (Existing Terminal)	0.16	24,096	3.06	24,209
ExxonMobil (Existing Terminal)	0.11	18,927	2.36	19,012
Emissions from AMPed off-site electricity generation	0.03	4,156	0.02	4,167
Average Annual Operational Emissions	<u>0.63</u> 0.67	<u>96,820</u> 101,089	<u>11.74</u> 12.32	<u>97,263</u> 101,557
Notes:				

Table 3.2-65. Average Annual GHG Emissions for Reduced Project Alternative with Mitigation

1

1. Tanker cruising and maneuvering includes emissions from the main engines and auxiliary generators. Emissions from the boilers are

Tanker hoteling includes emissions from the auxiliary generators during pre-offloading (arrival), offloading, and post-offloading (departure).
 Offloading emissions include emissions from the boiler during offloading.

4. Transiting emissions include emissions from the boiler during warm up which occurs during the last part of transit to the berth prior to commencement of offloading operations.

5. The additional row "Barge Fuel Deliveries for OGVs" was added to this table for the Final SEIS/SEIR because these emissions were inadvertently omitted from the Draft SEIS/SEIR. These additional emissions, however, do not change any of the significance determinations

3.2.4.7 Mitigation Monitoring

significance.	he Project would result in construction-related emissions that exceed a SCAQMD threshold of						
Mitigation Measure	MM AQ-1: Ridesharing or Shuttle Service - Ridesharing or shuttle service programs shall be provided for construction workers.						
	MM-AQ-2: Staging Areas and Parking Lots - On-site construction equipment staging areas and construction worker parking lots shall be located on either paved surfaces, or unpaved surfaces covered by gravel or subjected to soil stabilization treatments. The staging areas and worker parking lots shall be located as close as possible to public access routes. Access to public roadways from the staging areas and parking lots shall be controlled in order to minimize idling of Project construction equipment.						
	MM-AQ-3: Construction Equipment Standards –						
	Prior to and including December 31, 2011: All on-site mobile diesel-powered construction equipment greater than 50 hp, except derrick barges and marine vessels shall meet the Tier 2 emission standards as defined in the USEPA Non-Road Diesel Engine Rule (USEPA 1998). In addition, all construction equipment greater than 50 hp shall be retrofitted with a CARB-certified Level 3 diesel emissions control device.						
	From January 1, 2012 through December 31, 2014: All off-road diesel-powered construction equipment greater than 50 hp shall meet Tier-3 emission off-road emission standards, at a minimum and shall be retrofitted with a CARB certified Level 3 diesel emissions control device.						
	From January 1, 2015 on: All off-road diesel-powered construction equipment greater than 50 hp shall meet Tier-4 emission off-road emission standards, at a minimum and shall be retrofitted with a CARB certified Level 3 diesel emissions control device.						
	All on-site mobile diesel-powered construction equipment greater than 50 hp, except derrick barges, marine vessels shall meet the Tier 2 emission standards as defined in the USEPA Non road Diesel Engine Rule (USEPA 1998). In addition, all construction equipment greater than 50 hp shall be retrofitted with a CARB-certified Level 3 diesel emissions control device.						
	MM AQ-4: Electricity Use - Electricity supplied by a public utility shall be used where available on the tank farm and pier construction sites in lieu of temporary diesel or gasoline-powered generators.						
	MM AQ-5: Best Management Practices - <u>The following types of measures are required on</u> <u>construction equipment (including on-road trucks):</u>						
	 Use of diesel oxidation catalysts and catalyzed diesel particulate traps Maintain equipment according to manufacturers' specifications 						
	3. Restrict idling of construction equipment and on-road heavy-duty trucks to a maximum of 5 minutes when not in use						
	 <u>4. Install high-pressure fuel injectors on construction equipment vehicles</u> <u>5. Maintain a minimum buffer zone of 300 meters between truck traffic and sensitive</u> 						
	<u>receptors</u>6. Improve traffic flow by signal synchronization						
	7. Enforce truck parking restrictions						
	8. Provide on-site services to minimize truck traffic in or near residential areas, including, but not limited to, the following services: meal or cafeteria services, automated teller machines, etc.						
	 <u>9. Re-route construction trucks away from congested streets or sensitive receptor areas</u> <u>10. Provide dedicated turn lanes for movement of construction trucks and equipment on- and off-site.</u> 						
	LAHD shall implement a process by which to select additional BMPs to further reduce air emissions during construction. The LAHD shall determine the BMPs once the contractor identifies and secures a final equipment list. The LAHD shall implement a process to add BMPs to reduce air emissions from all LAHD-sponsored construction projects. The LAHD shall determine the BMPs once the contractor identifies and secures a final equipment list and project						
	scope. The LAHD shall then meet with the contractor to identify potential BMPs and work with						

 the contractor to include such measures in the contract. BMPs shall be based on Best Available Control Technology (BACT) guidelines and may also include changes to construction practices and design to reduce or eliminate environmental impacts. MM AQ-6: Additional Fugitive Dust Controls - The construction contractor shall reduce fugitive dust emissions by 90 percent from uncontrolled levels⁴. The Project construction contractor shall specify dust-control methods that will achieve this control level in a SCAQMD Rule 403 dust control plan. Their duties shall include holiday and weekend periods when work may not be in progress. Measures to reduce fugitive dust include, but are not limited to, the following: Active grading sites shall be watered one additional time per day beyond that required by Rule 403. Contractors shall apply approved non-toxic chemical soil stabilizers according to manufacturer's specifications to all inactive for ten days or more. Construction contractors shall provide temporary wind fencing around sites being graded or cleared. Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard-in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186, certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. <th></th>	
 contractor shall specify dust-control methods that will achieve this control level in a SCAQMD Rule 403 dust control plan. Their duties shall include holiday and weekend periods when work may not be in progress. Measures to reduce fugitive dust include, but are not limited to, the following: Active grading sites shall be watered one additional time per day beyond that required by Rule 403. Contractors shall apply approved non-toxic chemical soil stabilizers according to manufacturer's specifications to all inactive construction areas or replace groundcover in disturbed areas (previously graded areas) inactive for ten days or more. Construction contractors shall provide temporary wind fencing around sites being graded or cleared. Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186, certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions, Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	+ -
 Active grading sites shall be watered one additional time per day beyond that required by Rule 403. Contractors shall apply approved non-toxic chemical soil stabilizers according to manufacturer's specifications to all inactive construction areas or replace groundcover in disturbed areas (previously graded areas) inactive for ten days or more. Construction contractors shall provide temporary wind fencing around sites being graded or cleared. Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard-in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186. certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	
 Active grading sites shall be watered one additional time per day beyond that required by Rule 403. Contractors shall apply approved non-toxic chemical soil stabilizers according to manufacturer's specifications to all inactive construction areas or replace groundcover in disturbed areas (previously graded areas) inactive for ten days or more. Construction contractors shall provide temporary wind fencing around sites being graded or cleared. Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard-in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186. certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	
 manufacturer's specifications to all inactive construction areas or replace groundcover in disturbed areas (previously graded areas) inactive for ten days or more. Construction contractors shall provide temporary wind fencing around sites being graded or cleared. Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186. certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	
 Construction contractors shall provide temporary wind fencing around sites being graded or cleared. Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard-in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186. certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	
 freeboard-in accordance with Section 23114 of the California Vehicle Code. Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. Pave road and road shoulders. Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186. certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	r
 roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site. <u>Pave road and road shoulders.</u> <u>Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186.</u> certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. <u>Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation.</u> 	
 Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186. certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	
 certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions. Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	
 Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation. 	<u>1</u>
construction activity including resolution of issues related to PM ₁₀ generation.	
• Trathe speeds on all undayed to als shall be reduced to ± 5 mon ot less	
	_
 Provide temporary traffic controls such as a flag person, during all phases of construction t maintain smooth traffic flow. Sub-ad-base persons the control of the flow of the sector of t	<u>)</u>
 Schedule construction activities that affect traffic flow on the arterial system to off-peak hours to the extent practicable. Description of the use of electrified track process for all track parking on guarding areas if forsible. 	
Require the use of electrified truck spaces for all truck parking or queuing areas if feasible. <u>Alternatively, trucks could be required to turn off if parked or stopped in idle for more than 15 minutes. </u>	
The grading contractor shall suspend all soil disturbance activity when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction delayed.	
MM AQ-7: Expanded VSR Program - All ships and barges used primarily to deliver construction-related materials to a LAHD-contractor construction site shall comply with the expanded Vessel Speed Reduction (VSR) Program of 12 knots from 40 nautical miles (nm) fro Point Fermin to the Precautionary Area.	n
MM AQ-8: Low Sulfur Fuel for Construction Delivery Vessels - All ships and barges used primarily to deliver construction-related materials to a LAHD-contractor construction site shall use low-sulfur fuel (maximum sulfur content of 0.2 percent) in main engines, auxiliary engines and boilers within 40 nm of Point Fermin.	1
MM AQ-9: Engine Standards for Harbor Craft Used in Construction – Prior to December 31, 2010, all harbor craft with C1 or C2 marine engines must achieve a minimum emission reduction equivalent to a U.S. Environmental Protection Agency (USEPA) Tier-2 2004 level or road marine engine. From January 1, 2011 on, all harbor craft with C1 or C2 marine engines must utilize a USEPA Tier-3 engine, or cleaner.	

 $^{^4}$ Fugitive dust emissions will be reduced 75 percent from uncontrolled emissions and then an additional 60 percent from unmitigated emissions.

	MM AQ-10: Fleet Modernization for On-Road Trucks
	Prior to and including December 31, 2011: All on-road heavy-duty diesel trucks with a gross
	vehicle weight rating (GVWR) of 19,500 pounds or greater used on-site or to transport materials
	to and from the site shall comply with USEPA 2004 on road emission standards for PM ₁₀ and
	$NO_x(0.10 \text{ g/bhp-hr PM}_{10} \text{ and } 2.0 \text{ g/bhp-hr NO}_x)$
	From January 1, 2012 on: All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used at the Port of Los Angeles shall comply with
	<u>EPA 2007 on-road emission standards for PM_{10} and NO_x (0.01 g/bhp-hr and 0.20 g/bhp-hr).</u>
	<u>All years:</u> All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on-site or to transport materials to and from the site shall comply with USEPA 2004 on road emission standards for PM_{10} and NO_x (0.10 g/bhp-hr PM_{10} and 2.0 g/bhp-hr NO_x).
	Trucks hauling materials such as debris or fill shall be fully covered while in operation off Port property. The construction contractor shall be exempt from the above harbor craft requirements and on road truck requirements if he provides proof that any of following circumstances exist:
	 A piece of specialized equipment is unavailable in a controlled form within the state of California, including through a leasing agreement.
	 A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
	 A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.
	The effectiveness of this measure was determined by assuming that the mitigated construction truck fleet was 50 percent 2007 SCAB average fleet and 50 percent compliant with the year 2007 standards. Use of the EMFAC2007 emission factor model determined that the emission reductions associated with this mitigation measure would range from 9 to 15 percent, depending upon the pollutant. Because SO _x emissions are proportional to the fuel sulfur content, no appreciable change would occur in SO _x emissions.
	MM AQ-11: Special Precautions near Sensitive Sites - For construction activities that occur within 1,000 feet of sensitive receptors (defined as schools, playgrounds, daycares, and hospitals), the Port shall notify each of these sites in writing at least 30 days before construction activities begin.
	MM AQ-12 General Mitigation Measure - For any of the above mitigation measures (MM AQ-1 through AQ-11), if a CARB-certified technology becomes available and is shown to be as good as or better in terms of emissions performance than the existing measure, the technology could replace the existing measure pending approval by the Port.
7879 0	Deep Draft FEIS/FEIR MM 4G-5: Discontinue construction activities during a Stage II Smog Alert.
Timing Methodology	During entire construction phase. The LAHD shall include MM AQ-1 through MM AQ-12 and MM 4G-5 in the contract
	specifications for construction. LAHD shall monitor implementation of mitigation measures during construction.
Responsible Parties	LAHD.
Residual Impacts	Significant after mitigation for VOC, NO _x , SO _x , PM ₁₀ and PM _{2.5} .
Impact AQ-2. Proj	ect construction would result in offsite ambient air pollutant concentrations that exceed any resholds of significance in Table 3.2-8.
Mitigation	Specific mitigation measures identified under Impact AQ-1 (MM AQ-1 through MM AQ-12
Measure	and MM 4G-5) would be incorporated into the Project.
Timing	During entire construction phase.

Methodology	The LAH	D shall inc	lude MM	AQ-1 thro	ugh MM A	Q-12 and MN	4G-5 in t	he contrac	et		
	specificati during cor		nstruction	n. LAHD s	hall monito	r implementat	ion of mitig	ation mea	isures		
Responsible	LAHD.										
Parties Desidual Imposta		t ofter miti	action fo	* VOC NC	SO DM	and DM					
Residual Impacts Impact AQ-3. The	Project wo	ald result	igation to in onera	tional emis	$\frac{D_x, SO_x, PM}{sions that}$	$_{10}$ and PM _{2.5} .	s ner vear	of VOCs	ora		
SCAQMD threshol	d of signific	ance.	m opera	uonai cims	Sions that		s per yeur		01 u		
Mitigation	MM AQ-13: Expanded Vessel Speed Reduction (VSR) Program - All ships calling (100%) at										
Measure	Berth 408 shall comply with the expanded VSR Program of 12 knots between 40 nm from Point Fermin and the Precautionary Area from Year 1 of operation.										
	MM AQ-14: Low Sulfur Fuel Use in Main Engines, Auxiliary Engines, and Boilers –							s –			
	All ships (100%) calling at Berth 408 shall use 0.2% low sulfur fuel within 40 nm of Point Fermin on										
	their outbound leg and while hotelling at the Project, beginning on day one of operation. Vessels										
	calling at Berth 408 shall also use 0.2% low sulfur fuel within 40 nm of Point Fermin on their inbound leg, except where circumstances (such as ships with a mono-tank system or ships originating from a										
	leg, except where circumstances (such as ships with a mono-tank system or ships originating from a Port where low sulfur fuel is not available) make such use infeasible on the inbound leg. Regardless,										
	the applicant shall adhere to the following annual phase-in schedule which identifies the minimum										
	allowable	annual perc	centage of	vessels in t	he fleet calli	ng at Berth 408	8 which shal	1 use 0.2 %	blow sulfur		
					inbound leg	_					
	Ships calli	ing at Bert	h 408 sha	ll use low s	sulfur fuel i	n main engine	s, auxiliary	engines, a	and boilers		
					hoteling fo	r non AMP sh	ips) in the a	annual per	centages		
	in fuel req	urrements	as specifi						_		
					Engines/Aux	<u>iliary Engines</u>					
				<u>Inbound</u>			g and Outbo				
		Year	<u>HFO</u>	<u>0.50%</u>	<u>0.20%</u>	HFO	<u>0.50%</u>	<u>0.20%</u>			
		1	<u>0</u>	<u>100</u>	<u>0</u>	0	<u>0</u>	<u>100</u>			
		2	<u>0</u>	<u>100</u>	<u>0</u>	0	<u>0</u>	<u>100</u>			
		3	<u>0</u>	<u>100</u>	<u>0</u>	0	<u>0</u>	<u>100</u>			
		<u>4</u> 5	<u>0</u> 0	<u>80</u> 50	<u>20</u> 50	<u>0</u> 0	<u>0</u> 0	<u>100</u> 100			
		<u> </u>	0	<u>50</u>	<u>50</u>	<u>0</u>	0	100			
		7-30	0	<u>10</u>	<u>90</u>	0	$\frac{\underline{0}}{0}$	100	ł		
	. D		. —				<u> </u>	100	1		
	 By end of year 1 - 50 percent of total ship calls By end of year 3 - 50 percent of total ship calls By end of year 5 - 75 percent of total ship calls Years 7-30 - 90 percent of total ship calls Years 7-30 - 90 percent of total ship calls In addition, all callers carrying 0.2% low sulfur shall use 0.2% low sulfur within 40 nm of Point Fermin both on the inbound and outbound leg. MM AQ-15: AMP - By the end of year 2 of operation, all ships capable of utilizing AMP and all fractioner callers (2 or more a year) shall use AMP at the facility. At a minimum Schips calling 										
								of Point			
	<u>all frequent callers (2 or more a year) shall use AMP at the facility. At a minimum, Sships calling</u> at the Berth 408 facility shall use AMP while hoteling at the Port in the following at minimum										
	 By end of year 2 of operation - 6 (4%) vessel calls By end of year 3 of operation - 10% of annual vessel calls 										
	• By en	d of year 5	of opera	tion – 15%	of annual v	vessel calls					
	-	•	-			nnual vessel ca	alls				
	-	•	-			nual vessel call					
	-	-	-					ling las-	ing the		
	Use of AN	se of AMP would enable ships to turn off their auxiliary engines during hoteling, leaving the oiler as the only source of direct emissions. An increase in regional power plant emissions									
	associated	with AM	Pelectric	ity generati	on is also a	ssumed. Inclu	ding the en	hission fre	m ship		
	boilers, a s	ship hotelii	ng with A	MP reduce	s its criteria	i pollutant em i	i ssions 88 t	o 98 perce	nt.		
			llutant, w	hen compa	red to a shij	p hoteling with	out AMP a	nd burnin	g residual		
	fuel in the	-boilers.									
	<u> </u>										

AMP on container vessels and cruise ships is directed at reducing emissions from the relatively large hoteling loads present on these vessels. Tankers have smaller hoteling loads but also n support cargo offloading operations by producing steam power. The steam production capability cannot be replaced without complete vessel reconstruction. However, as mentioned earlier, the Project design includes a feature to minimize steam generation requirements via the use of sh side electric pumps. The Port will design and incorporate into Berth 408 all the necessary components to make full AMP available for those vessels capable of utilizing such facilities. This measure incorporates the requirements of **MM 4G-7** and **MM 4G-8** from the 1992 Deep Draft FEIS/FEIR. **MM AQ-16:** Slide Valves - Ships calling at Berth 408 shall be equipped with slide valves or a slide valve equivalent (an engine retrofit device designed to reduce the sac volume in fuel valves of main engines in Category 3 marine engines) on main engines to the maximum extent possible: **MM AQ-17: Parking Configuration** - Configure parking during operation to minimize traffic interference. Because the effectiveness of this measure cannot be predicted, it is not quantified in this study. This measure incorporates the requirements of MM 4G-14 from the 1992 Deep Draft FEIS/FEIR **MM AO-18:** New Vessel Builds - The purchaser shall confer with the ship designer and engine manufacture to determine the feasibility of incorporating all emission reduction technology and/or design options and when ordering new ships bound for the Port of Los Angeles. Such technology shall be designed to reduce criteria pollutant emissions (NOx, SOx, and PM) and GHG emission (CO, CH₄, O₃, and CFCs). Design considerations and technology shall include, but is not limited to: Selective Catalytic Reduction Technology 1. 2. Exhaust Gas Recirculation 3. In-line fuel emulsification technology 4. Diesel Particulate Filters (DPFs) or exhaust scrubbers 5. Common Rail 6. Low NO_x Burners for Boilers Implement fuel economy standards by vessel class and engine 7. 8. Diesel-electric pod propulsion systems New/Alternative Technology The following measures are lease measures that will be included in the lease for Berth 400 due to projected future emissions levels. The measures do not meet all of the criteria for CEQA and NEPA mitigation measures, but are considered important lease measures to reduce future emissions. This lease obligation is distinct from the requirement of further CEQA or NEPA mitigation measures to address impacts of potential subsequent discretionary Project approvals. MM AQ-19: Equivalent Measures – General Mitigation Measure. For any of the above mitigation measures (MM AQ-13 through AQ-18), if any kind of technology becomes available and is shown to be as good or as better in terms of emissions reduction performance than the existing measure, the technology could replace the existing measure pending approval by the Port of Los Angeles. The technology's emissions reductions must be verifiable through USEPA. CARB, or other reputable certification and/or demonstration studies to the Port's satisfaction. This measure is intended to provide PLAMT the flexibility to achieve required emissions mitigation using alternative methods that may not be apparent at present. The applicant may use an AMP alternative emission reduction technology so long as the alternative technology will achieve emission reductions equivalent to the emission reductions that would have been achieved through the use of AMP. MM AQ-20: Periodic Review of New Technology and Regulations - The Port shall require the tenant to review, in terms of feasibility, any Port-identified or other new emissions-reduction technology, and report to the Port. Such technology feasibility reviews shall take place at the time of the Port's consideration of any lease amendment or facility modification. If the technology is determined by the Port to be feasible in terms of cost, technical and operational feasibility, the

Potential technologies that may further reduce emission and/or result in cost-savings benefits for the tenant may be identified through future work on the CAAP. Over the course of the lease, the tenant and the Port shall work together to identify potential new technology. Such technology

tenant shall work with the Port to implement such technology at sole cost to the tenant.

	 shall be studied for feasibility, in terms of cost, technical and operational feasibility. The effectiveness of this measure depends on the advancement of new technologies and the outcome of future feasibility or pilot studies. If the tenant requests future Project changes that would require environmental clearance and a lease amendment, future CAAP mitigation measures would be incorporated into the new lease at that time. As partial consideration for the Port's agreement to issue the permit to the tenant, tenant shall implement not less frequently than once every 7 years following the effective date of the permit, new air quality technological advancements, subject to the parties mutual agreement on operational feasibility and cost sharing which shall not be unreasonably withheld. MM AQ-21: Throughput Tracking - If the project exceeds project throughput assumptions / projections anticipated through the years 2010, 2015, 2025, or 2040, staff shall evaluate the effects of this on the emission sources (ship calls and crude oil throughput) relative to the SEIS/SEIR. If it is determined that these emission sources exceed SEIS/SEIR and if the criteria pollutant emissions exceed those in the SEIS/SEIR, then new or additional mitigations would be applied through MM AQ-20.
Responsible	LAHD and PLAMT
Parties	
Residual Impacts	Mitigated Project emissions would still result in significant unavoidable impacts. osed Project operations would result in offsite ambient air pollutant concentrations that
	threshold of significance in Table 3.2-10.
Mitigation	
Measure	The mitigation measures described for Impact AQ-3 would be applied to the proposed Project.
Timing	During operation.
Methodology	The LAHD shall include the mitigation measures in the lease agreements with the tenant.
Responsible Parties	LAHD and PLAMT
Residual Impacts	Mitigated Project emissions would still result in significant unavoidable impacts for these criteria pollutants.
Impact AQ-5. The	proposed Project would not create an objectionable odor at the nearest sensitive receptor.
Mitigation Measure	Impacts would be less than significant; therefore, mitigation is not required.
Timing	Not applicable.
Methodology	Not applicable.
Responsible Parties	Not applicable.
Residual Impacts	Not applicable.
Impact AQ-6. The	proposed Project would expose receptors to significant levels of toxic air contaminants.
Mitigation	The mitigation measures described for Impact AQ-1 and Impact AQ-3 would also serve the
Measure	benefit of reducing TAC emissions from the proposed Project.
Timing Mothodology	During operation
Methodology Responsible	The LAHD shall include the mitigation measures in the lease agreements with the tenant.
Responsible Parties	LAHD and PLAMT
Residual Impacts	Mitigated Project TAC emissions would remain significant. proposed Project would not conflict with or obstruct implementation of an applicable AQMP.
Mitigation Measure	Impacts would be less than significant; therefore, mitigation is not required.
Timing	Not applicable.
Methodology	Not applicable.
Responsible	
Parties	Not applicable.
Residual Impacts	Not applicable.
Impact AQ-8. The	proposed Project would produce GHG emissions that would exceed CEQA Baseline levels.
Mitigation	The mitigation measures described for Impact AQ-1 and Impact AQ-3 would also serve the
Measure	benefit of reducing GHG emissions from the proposed Project.
Timing	During operation
Methodology	The LAHD shall include the mitigation measures in the lease agreements with the tenant.
Responsible Parties Residual Impacts	LAHD and PLAMT
	Mitigated Project impacts would remain significant.

Mitigation	MM AQ-22: Leadership in Energy and Environmental Design (LEED)
	The administration building shall obtain the Leadership in Energy and Environmental Design (LEED) gold certification level.
	MM AQ-23: Compact Fluorescent Light Bulbs
	All interior terminal building lighting shall use compact fluorescent light bulbs and the tenant shall maintain and replace all compact fluorescent bulbs.
	MM AQ-24: Energy Audits
	The tenant shall conduct a third party energy audit every 5 years and install innovative power saving technology where feasible, such as power factor correction systems and lighting power regulators. Such systems help to maximize usable electric current and eliminate wasted electricity, thereby lowering overall electricity use.
	MM AQ-25: Solar Panels
	The applicant shall install solar panels on the administration building.
	MM AQ-26: Recycling
	The tenant shall ensure a minimum of 40 percent of all waste generated in all terminal buildings is recycled by 2012 and 60 percent of all waste generated in all terminal buildings is recycled by 2015. Recycled materials shall include: (a) white and colored paper; (b) post-it notes; (c) magazines; (d) newspaper; (e) file folders; (f) all envelopes including those with plastic windows; (g) all cardboard boxes and cartons; (h) all metal and aluminum cans; (i) glass bottles and jars; and (j) all plastic bottles.
	MM AQ-27: Tree Planting
	The applicant shall plant shade trees around the administration building. All shade trees shall be maintained over the life of the project.
Timing	During operation
Methodology	The LAHD shall include the mitigation measures in the lease agreements with the tenant.
Responsible Parties	LAHD and PLAMT
Residual Impacts	Mitigated Project impacts would remain significant.