STORMWATER POLLUTION PREVENTION PLAN

for

San Pedro Distribution Center
APN: 7440-016-001, 907, 911 & 7412-025-902

RISK LEVEL I

Legally Responsible Person (LRP) & Approved Signatory:
AIGGRE San Pedro Industrial Owner LLC
1944 N. Tustin Street, Suite 122
Orange, CA 98265
LRP: Tim Howard
P: (714) 602-7345

Prepared for:
Howard Industrial Partners
1944 N. Tustin Street, Suite 122
Orange, CA 98265

Project Address:
John S. Gibson Blvd.
San Pedro, CA 90731

SWPPP Prepared by:
Thienes Engineering, Inc.
14349 Firestone Blvd.
La Mirada, CA 90638
Julianne Frabizio, QSD
(714) 521-4811
JOB NO. 3416b

SWPPP Preparation Date
10/11/2018

Estimated Project Dates:
Start of Construction Completion of Construction
12/01/2018 12/01/2019

WDID # 4 19C385125
Table of Contents

Table of Contents .. 1
Qualified SWPPP Developer .. 1
Legally Responsible Person .. 1
Amendment Log .. 2

Section 1 SWPPP Requirements .. 3
 1.1 Introduction ... 3
 1.2 Permit Registration Documents .. 3
 1.3 SWPPP Availability and Implementation ... 4
 1.4 SWPPP Amendments .. 4
 1.5 Retention of Records ... 5
 1.6 Required Non-Compliance Reporting .. 6
 1.7 Annual Report ... 7
 1.8 Changes to Permit Coverage ... 7
 1.9 Notice of Termination ... 7

Section 2 Project Information .. 8
 2.1 Project and Site Description .. 8
 2.1.1 Site Description ... 8
 2.1.2 Existing Conditions ... 8
 2.1.3 Existing Drainage .. 8
 2.1.4 Geology and Groundwater .. 8
 2.1.5 Project Description .. 9
 2.1.6 Developed Condition .. 9
 2.2 Permits and Governing Documents .. 9
 2.3 Stormwater Run-On from Offsite Areas ... 10
 2.4 Findings of the Construction Site Sediment and Receiving Water Risk Determination ... 10
 2.5 Construction Schedule .. 11
 2.6 Potential Construction Activity and Pollutant Sources .. 11
 2.7 Identification of Non-Stormwater Discharges .. 12
 2.8 Required Site Map Information .. 13

Section 3 Best Management Practices ... 14
San Pedro Distribution Center SWPPP

3.1 Schedule for BMP Implementation ... 14
3.2 Erosion and Sediment Control .. 15
 3.2.1 Erosion Control ... 15
 3.2.2 Sediment Controls .. 19
3.3 Non-Stormwater Controls and Waste and Materials Management 23
 3.3.1 Non-Stormwater Controls ... 23
 3.3.2 Materials Management and Waste Management 28
3.4 Post construction Stormwater Management Measures 32

Section 4 BMP Inspection, Maintenance, and Rain Event Action Plans 33
 4.1 BMP Inspection and Maintenance ... 33
 4.2 Rain Event Action Plans ... 33

Section 5 Training .. 34

Section 6 Responsible Parties and Operators ... 35
 6.1 Responsible Parties ... 35
 6.2 Contractor List .. 36

Section 7 Construction Site Monitoring Program .. 37
 7.1 Purpose ... 37
 7.2 Applicability of Permit Requirements .. 37
 7.3 Weather and Rain Event Tracking ... 37
 7.3.1 Weather Tracking ... 38
 7.3.2 Rain Gauges .. 38
 7.4 Monitoring Locations .. 38
 7.5 Safety and Monitoring Exemptions ... 39
 7.6 Visual Monitoring .. 40
 7.6.1 Routine Observations and Inspections .. 40
 7.6.1.1 Routine BMP Inspections ... 40
 7.6.1.2 Non-Stormwater Discharge Observations 40
 7.6.2 Rain-Event Triggered Observations and Inspections 41
 7.6.2.1 Visual Observations Prior to a Forecasted Qualifying Rain Event 41
 7.6.2.2 BMP Inspections During an Extended Storm Event 41
 7.6.2.3 Visual Observations Following a Qualifying Rain Event 41
 7.6.3 Visual Monitoring Procedures ... 42
 7.6.4 Visual Monitoring Follow-Up and Reporting ... 42
7.6.5 Visual Monitoring Locations.. 42

7.7 Water Quality Sampling and Analysis.. 43

7.7.1 Sampling and Analysis Plan for Non-Visible Pollutants in Stormwater Runoff Discharges ... 43
 7.7.1.1 Sampling Schedule ... 45
 7.7.1.2 Sampling Locations ... 45
 7.7.1.3 Monitoring Preparation .. 48
 7.7.1.4 Analytical Constituents .. 49
 7.7.1.5 Sample Collection .. 50
 7.7.1.6 Sample Analysis .. 50
 7.7.1.7 Data Evaluation and Reporting ... 52

7.7.2 Sampling and Analysis Plan for pH and Turbidity in Stormwater Runoff Discharges ... 52

7.7.3 Sampling and Analysis Plan for pH, Turbidity, and SSC in Receiving Water... 52

7.7.4 Sampling and Analysis Plan for Non-Stormwater Discharges ... 52

7.7.5 Sampling and Analysis Plan for Other Pollutants Required by the Regional Water Board 52

7.7.6 Training of Sampling Personnel ... 52

7.7.7 Sample Collection and Handling ... 53
 7.7.7.1 Sample Collection ... 53
 7.7.7.2 Sample Handling ... 54
 7.7.7.3 Sample Documentation Procedures .. 55

7.8 Active Treatment System Monitoring ... 55

7.9 Bioassessment Monitoring.. 55

7.10 Watershed Monitoring Option .. 55

7.11 Quality Assurance and Quality Control ... 56

7.11.1 Field Logs ... 56

7.11.2 Clean Sampling Techniques ... 56

7.11.3 Chain of Custody ... 56

7.11.4 QA/QC Samples ... 57
 7.11.4.1 Field Duplicates ... 57
 7.11.4.2 Equipment Blanks ... 57
 7.11.4.3 Field Blanks ... 57
<table>
<thead>
<tr>
<th>Section/Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.11.4.4</td>
<td>Travel Blanks</td>
<td>57</td>
</tr>
<tr>
<td>7.11.5</td>
<td>Data Verification</td>
<td>58</td>
</tr>
<tr>
<td>7.12</td>
<td>Records Retention</td>
<td>59</td>
</tr>
<tr>
<td>CSMP Attachment 1:</td>
<td>Weather Reports</td>
<td>60</td>
</tr>
<tr>
<td>CSMP Attachment 2:</td>
<td>Monitoring Records</td>
<td>61</td>
</tr>
<tr>
<td>CSMP Attachment 3:</td>
<td>Example Forms</td>
<td>62</td>
</tr>
<tr>
<td>CSMP Attachment 4:</td>
<td>Field Meter Instructions</td>
<td>66</td>
</tr>
<tr>
<td>CSMP Attachment 5:</td>
<td>Supplemental Information</td>
<td>67</td>
</tr>
<tr>
<td>Section 8</td>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Calculations</td>
<td>69</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Site Maps</td>
<td>70</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Permit Registration Documents</td>
<td>71</td>
</tr>
<tr>
<td>Appendix D</td>
<td>SWPPP Amendment Certifications</td>
<td>73</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Submitted Changes to PRDs</td>
<td>75</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Construction Schedule</td>
<td>77</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Construction Activities, Materials Used, and Associated Pollutants</td>
<td>79</td>
</tr>
<tr>
<td>Appendix H</td>
<td>CASQA Stormwater BMP Handbook Portal: Construction Fact Sheets</td>
<td>83</td>
</tr>
<tr>
<td>Appendix I</td>
<td>BMP Inspection Form</td>
<td>84</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Project Specific Rain Event Action Plan Template</td>
<td>91</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Training Reporting Form</td>
<td>93</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Responsible Parties</td>
<td>95</td>
</tr>
<tr>
<td>Appendix M</td>
<td>Contractors and Subcontractors</td>
<td>99</td>
</tr>
<tr>
<td>Appendix N</td>
<td>Construction General Permit</td>
<td>100</td>
</tr>
</tbody>
</table>
Qualified SWPPP Developer

Approval and Certification of the Stormwater Pollution Prevention Plan

Project Name: San Pedro Distribution Center

Project Number/ID

"This Stormwater Pollution Prevention Plan and Attachments were prepared under my direction to meet the requirements of the California Construction General Permit (SWRCB Orders No. 2009-009-DWQ as amended by Order 2010-0014-DWQ and Order 2012-0006-DWQ). I certify that I am a Qualified SWPPP Developer in good standing as of the date signed below."

Julianne Frabrizio

Date 10/11/2018

QSD Name

#20447

QSD Certificate Number

Water Resource Engineer

(714) 521-4811

Title and Affiliation

Telephone Number

julianne@thieneseng.com

Email
Legally Responsible Person

Approval and Certification of the Stormwater Pollution Prevention Plan

Project Name: San Pedro Distribution Center

Project Number/ID TEI JN: 3416b

“I certify under penalty of law that this document and all Attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, to the best of my knowledge and belief, the information submitted is, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.”

AIGGRE San Pedro Industrial Owner LLC
Legally Responsible Person

Signature of Legally Responsible Person or Approved Signatory

Tim Howard

Name of Legally Responsible Person or Approved Signatory

(714) 602-7345
Telephone Number
Amendment Log

Project Name:

San Pedro Distribution Center

Project Number/ID

TEI JN: 3416b

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date</th>
<th>Brief Description of Amendment, include section and page number</th>
<th>Prepared and Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Name: QSD#</td>
</tr>
</tbody>
</table>
Section 1 SWPPP Requirements

1.1 INTRODUCTION

The San Pedro Distribution Center project comprises approximately 17.30 acres and is located at John S. Gibson Blvd., in the city of San Pedro, California. The property is owned being developed by Howard Industrial Partners. The project’s location is shown on the Site Map in Appendix B.

This Stormwater Pollution Prevention Plan (SWPPP) is designed to comply with California’s General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities (General Permit) Order No. 2009-0009-DWQ as amended in 2010 and 2012 (NPDES No. CAS000002) issued by the State Water Resources Control Board (State Water Board). This SWPPP has been prepared following the SWPPP Template provided on the California Stormwater Quality Association Stormwater Best Management Practice Handbook Portal: Construction (CASQA, 2012). In accordance with the General Permit, Section XIV, this SWPPP is designed to address the following:

• Pollutants and their sources, including sources of sediment associated with construction, construction site erosion and other activities associated with construction activity are controlled;

• Where not otherwise required to be under a Regional Water Quality Control Board (Regional Water Board) permit, all non-stormwater discharges are identified and either eliminated, controlled, or treated;

• Site BMPs are effective and result in the reduction or elimination of pollutants in stormwater discharges and authorized non-stormwater discharges from construction activity to the Best Available Technology/Best Control Technology (BAT/BCT) standard;

Calculations and design details as well as BMP controls for are complete and correct, Appendix A.

Identify and provide methods to implement Rain Event Action Plan (REAP).

1.2 PERMIT REGISTRATION DOCUMENTS

Required Permit Registration Documents (PRDs) shall be submitted to the State Water Board via the Stormwater Multi Application and Report Tracking System (SMARTS) by the Legally Responsible Person (LRP), or authorized personnel (i.e., Approved Signatory) under the direction of the LRP. The project-specific PRDs include:

1. Notice of Intent (NOI);

2. Risk Assessment (Construction Site Sediment and Receiving Water Risk Determination);

3. Site Map;

4. Annual Fee;

5. Signed Certification Statement (LRP Certification is provided electronically with SMARTS PRD submittal); and

6. SWPPP.
Site Maps can be found in Appendix B. A copy of the submitted PRDs shall also be kept in Appendix C along with the Waste Discharge Identification (WDID) confirmation.

1.3 **SWPPP AVAILABILITY AND IMPLEMENTATION**

The discharger shall make the SWPPP available at the construction site during working hours (see Section 7.5 of CSMP for working hours) while construction is occurring and shall be made available upon request by a State or Municipal inspector. When the original SWPPP is retained by a crewmember in a construction vehicle and is not currently at the construction site, current copies of the BMPs and map/drawing will be left with the field crew and the original SWPPP shall be made available via a request by radio/telephone. (CGP Section XIV.C)

The SWPPP shall be implemented concurrently with the start of ground disturbing activities.

1.4 **SWPPP AMENDMENTS**

The SWPPP should be revised when:

- If there is a General Permit violation.
- When there is a reduction or increase in total disturbed acreage (General Permit Section II Part C).
- BMPs do not meet the objectives of reducing or eliminating pollutants in stormwater discharges.

Additionally, the SWPPP shall be amended when:

- There is a change in construction or operations which may affect the discharge of pollutants to surface waters, groundwater(s), or a municipal separate storm sewer system (MS4);
- When there is a change in the project duration that changes the project’s risk level; or
- When deemed necessary by the QSD. The QSD has determined that the changes listed in Table 1.1 can be field determined by the QSP. All other changes shall be made by the QSD as formal amendments to the SWPPP.

The following items shall be included in each amendment:

- Who requested the amendment;
- The location of proposed change;
- The reason for change;
- The original BMP proposed, if any; and
- The new BMP proposed.

Amendment shall be logged at the front of the SWPPP and certification kept in Appendix D. The SWPPP text shall be revised replaced, and/or hand annotated as necessary to properly convey the amendment. SWPPP amendments must be made by a QSD. The following changes have been designated by the QSD as "to be field determined” and constitute minor changes that the QSP may implement based on field conditions.
<table>
<thead>
<tr>
<th>Candidate changes for field location or determination by QSP<sup>(1)</sup></th>
<th>Check changes that can be field located or field determined by QSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase quantity of an Erosion or Sediment Control Measure</td>
<td>X</td>
</tr>
<tr>
<td>Relocate/Add stockpiles or stored materials</td>
<td>X</td>
</tr>
<tr>
<td>Relocate or add toilets</td>
<td>X</td>
</tr>
<tr>
<td>Relocate vehicle storage and/or fueling locations</td>
<td>X</td>
</tr>
<tr>
<td>Relocate areas for waste storage</td>
<td>X</td>
</tr>
<tr>
<td>Relocate water storage and/or water transfer location</td>
<td>X</td>
</tr>
<tr>
<td>Changes to access points (entrance/exits)</td>
<td>X</td>
</tr>
<tr>
<td>Change type of Erosion or Sediment Control Measure</td>
<td></td>
</tr>
<tr>
<td>Changes to location of erosion or sediment control</td>
<td></td>
</tr>
<tr>
<td>Minor changes to schedule or phases</td>
<td>X</td>
</tr>
<tr>
<td>Changes in construction materials</td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ Any field changes not identified for field location or field determination by QSP must be approved by QSD

1.5 RETENTION OF RECORDS

Paper or electronic records of documents required by this SWPPP shall be retained for a minimum of three years from the date generated or date submitted, whichever is later, for the following items:

- SWPPP document
- SWPPP inspection reports

These records shall be available at the Site until construction is complete. Records assisting in the determination of compliance with the General Permit shall be made available within a reasonable time, to the Regional Water Board, State Water Board or U.S. Environmental Protection Agency (EPA) upon request. Requests by the Regional Water Board for retention of records for a period longer than three years shall be adhered to.
1.6 REQUIRED NON-COMPLIANCE REPORTING

If a General Permit discharge violation occurs the QSP shall immediately notify the LRP. The LRP shall include information on the violation with the Annual Report. Corrective measures will be implemented immediately following identification of the discharge or written notice of non-compliance from the Regional Water Board. Discharges and corrective actions must be documented and include the following items:

- The date, time, location, nature of operation and type of unauthorized discharge.
- The cause or nature of the notice or order.
- The control measures (BMPs) deployed before the discharge event, or prior to receiving notice or order.
- The date of deployment and type of control measures (BMPs) deployed after the discharge event, or after receiving the notice or order, including additional measures installed or planned to reduce or prevent re-occurrence.

Reporting requirements for Numeric Action Levels (NALs) exceedances are discussed in Section 7.7.2.7.
1.7 **ANNUAL REPORT**

The General Permit requires that permittees prepare, certify, and electronically submit an Annual Report no later than September 1st of each year. Reporting requirements are identified in Section XVI of the General Permit. Annual reports will be filed in SMARTS and in accordance with information required by the on-line forms.

1.8 **CHANGES TO PERMIT COVERAGE**

The General Permit allows for the reduction or increase of the total acreage covered under the General Permit when: a portion of the project is complete and/or conditions for termination of coverage have been met; when ownership of a portion of the project is purchased by a different entity; or when new acreage is added to the project.

Modified PRDs shall be filed electronically within 30 days of a reduction or increase in total disturbed area if a change in permit covered acreage is to be sought. The SWPPP shall be modified appropriately, shall be logged at the front of the SWPPP and certification of SWPPP amendments are to be kept in Appendix D. Updated PRDs submitted electronically via SMARTS can be found in Appendix E.

1.9 **NOTICE OF TERMINATION**

A Notice of Termination (NOT) must be submitted electronically by the LRP via SMARTS to terminate coverage under the General Permit. The NOT must include a final Site Map and representative photographs of the project site that demonstrate final stabilization has been achieved. The NOT shall be submitted within 90 days of completion of construction. The Regional Water Board will consider a construction site complete when the conditions of the General Permit, Section II.D have been met.
Section 2 Project Information

2.1 PROJECT AND SITE DESCRIPTION

2.1.1 Site Description

The San Pedro Distribution Center project comprises approximately 17.30 acres and is located at John S. Gibson Blvd., in the city of San Pedro, California. The project site is located approximately 10 feet east of 110 Freeway, and approximately 0.25 mile west of Los Angeles/Long Beach Inner Harbor. The project is located at 33°45’41.54”N and 118°17’06.78”W and is identified on the Site Map in Appendix B.

2.1.2 Existing Conditions

As of the initial date of this SWPPP, the project site is currently vacant except for two cell tower sand associated communication buildings located at the northeastern portion of the property. The site consists of a nearly level upper terrace or plateau area adjacent to the Harbor Freeway with an approximately 2:1 (H:V) slope down about 40 to 50 feet vertically to a lower level along John S. Gibson Blvd.

2.1.3 Existing Drainage

In the existing condition, the project site is an undeveloped hillside with scattered vegetation throughout. There is a 24” RCP located south of the site in John Gibson Blvd. per As Built plan P-27916. There is also a 27” RCP north of the site per the same plan. Flows from the site drain to both of these storm drain systems.

Runoff from the southerly portion of the site drain to the 24” RCP located south of the site. Runoff sheet flows southeasterly to the street and is intercepted by a curb opening catch basin located south of the project.

Runoff from the northerly portion of the site (Subarea 2B) drain to the 27” RCP located northeast of the site. Runoff sheet flows easterly to the street and is intercepted by a curb opening catch basin located north of the site.

The project discharges to the Los Angeles/Long Beach Inner Harbor, Los Angeles/Long Beach outer Harbor, San Pedro Bay Near/Off Shore Zones, and ultimately to the Pacific Ocean.

The following waterbodies are listed for water quality impairment on the most recent 303(d)-list for:

- Los Angeles/Long Beach Inner Harbor: Beach Closures, Benthic Community Effects, Benzo(a)pyrene (3,4-Benzopyrene-7-d), Chrysene (C1-C4), Copper, DDT (Dichlorodiphenyltrichloroethane), PCBs (Polychlorinated Biphenyls), and Sediment Toxicity and Zinc.
- Los Angeles/Long Beach Outer Harbor: DDT (Dichlorodiphenyltrichloroethane), PCBs (Polychlorinated Biphenyls) and Sediment Toxicity.
- San Pedro Bay Near/Off Shore Zones: Chlordane, DDT (tissue & sediment), PCBs (Polychlorinated Biphenyls) and Sediment Toxicity.
- Pacific Ocean: None
2.1.4 **Geology and Groundwater**

Sandy silt and silty sand underlies the property to at least 60 feet deep. It appears that these fine grained materials are consistent throughout the site. Throughout the site, relatively low to moderate permeable sands and silty sands were encountered. These soils ranged between 8.5 and 13 feet deep.

Groundwater was encountered at depths of 50 to 55 feet deep.

2.1.5 **Project Description**

The project site encompasses approximately 17.30 acres. Proposed improvements to the site consist paving a parking area and access roads. There will be landscaping adjacent to the streets.

2.1.6 ** Developed Condition**

In the proposed condition, runoff from the site continues to drain to both storm drain systems. Runoff from the western half of site drains to John Gibson Blvd. Flows are intercepted by the 24” RCP south of the site.

Runoff from the eastern half of site drains easterly to the public street and is intercepted by the 27” RCP northeast of the site.

<table>
<thead>
<tr>
<th>Table 2.1 Construction Site Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction site area</td>
</tr>
<tr>
<td>Percent impervious before construction</td>
</tr>
<tr>
<td>Runoff coefficient before construction</td>
</tr>
<tr>
<td>Percent impervious after construction</td>
</tr>
<tr>
<td>Runoff coefficient after construction</td>
</tr>
</tbody>
</table>

2.2 **PERMITS AND GOVERNING DOCUMENTS**

In addition to the General Permit, the following documents have been taken into account while preparing this SWPPP

- Regional Water Board requirements
- Basin Plan requirements
- Contract Documents
- Air Quality Regulations and Permits
- Federal Endangered Species Act
• National Historic Preservation Act/Requirements of the State Historic Preservation Office
• State of California Endangered Species Act
• Clean Water Act Section 401 Water Quality Certifications and 404 Permits
• CA Department of Fish and Game 1600 Streambed Alteration Agreement

2.3 STORMWATER RUN-ON FROM OFFSITE AREAS

There is no offsite run-on.

2.4 FINDINGS OF THE CONSTRUCTION SITE SEDIMENT AND RECEIVING WATER RISK DETERMINATION

A construction site risk assessment has been performed for the project and the resultant risk level is Risk Level 1.

The risk level was determined through the use of the SMARTS website (K and LS values are generated from the “Risk” tab). The risk level is based on project duration, location, proximity to impaired receiving waters and soil conditions. A copy of the Risk Level determination submitted on SMARTS with the PRDs is included in Appendix C.

Table 2.2 and Table 2.3 summarize the sediment and receiving water risk factors and document the sources of information used to derive the factors.

Table 2.2 Summary of Sediment Risk

<table>
<thead>
<tr>
<th>RUSLE Factor</th>
<th>Value</th>
<th>Method for establishing value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>21.16</td>
<td>Construction Rainfall Erosivity Waiver (See Appendix A)</td>
</tr>
<tr>
<td>K</td>
<td>0.20</td>
<td>SMARTS website (See Appendix A)</td>
</tr>
<tr>
<td>LS</td>
<td>1.41</td>
<td>SMARTS website (See Appendix A)</td>
</tr>
</tbody>
</table>

| Total Predicted Sediment Loss (tons/acre) | 8.53 |

Overall Sediment Risk

- Low Sediment Risk < 15 tons/acre
- Medium Sediment Risk >= 15 and < 75 tons/acre
- High Sediment Risk >= 75 tons/acre

Runoff from the project site discharges into Los Angeles/Long Beach Inner Harbor, Los Angeles/Long Beach Outer Harbor, San Pedro Bay Near/Off Shore Zones, and ultimately to the Pacific Ocean.
Table 2.3 Summary of Receiving Water Risk

<table>
<thead>
<tr>
<th>Receiving Water Name</th>
<th>303(d) Listed for Sediment Related Pollutant(1)</th>
<th>TMDL for Sediment Related Pollutant(1)</th>
<th>Beneficial Uses of COLD, SPAWN, and MIGRATORY(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles/Long Beach Inner Harbor</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
</tr>
<tr>
<td>Los Angeles/Long Beach Outer Harbor</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
</tr>
<tr>
<td>San Pedro Bay Near/Off Shore Zones</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
<td>Yes ☑ No ☐</td>
</tr>
<tr>
<td>Overall Receiving Water Risk</td>
<td>☑ Low ☐</td>
<td>☑ Low ☐</td>
<td>☑ Low ☐</td>
</tr>
</tbody>
</table>

(1) If yes is selected for any option the Receiving Water Risk is High

Risk Level 1 sites are subject to the narrative effluent limitations specified in the General Permit. The narrative effluent limitations require stormwater discharges associated with construction activity to minimize or prevent pollutants in stormwater and authorized non-stormwater through the use of controls, structures, and best management practices. This SWPPP has been prepared to address Risk Level 1 requirements (General Permit Attachment C).

2.5 CONSTRUCTION SCHEDULE

The site sediment risk was determined based on construction taking place between 12/01/2018 and 12/01/2019. Modification or extension of the schedule (start and end dates) may affect risk determination and permit requirements. The LRP shall contact the QSD if the schedule changes during construction to address potential impact to the SWPPP. The estimated schedule for planned work can be found in Appendix F.

2.6 POTENTIAL CONSTRUCTION ACTIVITY AND POLLUTANT SOURCES

Appendix G includes a list of construction activities and associated materials that are anticipated to be used onsite. These activities and associated materials will or could potentially contribute pollutants, other than sediment, to stormwater runoff.

The anticipated activities and associated pollutants were used in Section 3 to select the Best Management Practices for the project. Location of anticipated pollutants and associated BMPs are show on the Site Map in Appendix B.

For sampling requirements for non-visible pollutants associated with construction activity please refer to Section 7.7.1. For a full and complete list of onsite pollutants, refer to the Material Safety Data Sheets (MSDS), which are retained onsite at the construction trailer.
2.7 IDENTIFICATION OF NON-STORMWATER DISCHARGES

Non-stormwater discharges consist of discharges which do not originate from precipitation events. The General Permit provides allowances for specified non-stormwater discharges that do not cause erosion or carry other pollutants.

Non-stormwater discharges into storm drainage systems or waterways, which are not authorized under the General Permit and listed in the SWPPP, or authorized under a separate NPDES permit, are prohibited.

Non-stormwater discharges that are authorized from this project site include the following:

- Fire Hydrant Test
- Waterline Flushing

These authorized non-stormwater discharges will be managed with the stormwater and non-stormwater BMPs described in Section 3 of this SWPPP and will be minimized by the QSP.

Activities at this site that may result in unauthorized non-stormwater discharges include:

- Illicit Connection/Illegal Discharge
- Vehicle and Equipment Cleaning
- Vehicle and Equipment Fueling
- Vehicle and Equipment Maintenance
- Paving and Grinding Operations
- Potable Water/Irrigation
- Concrete Curing
- Concrete Finishing

Steps will be taken, including the implementation of appropriate BMPs, to ensure that unauthorized discharges are eliminated, controlled, disposed, or treated on-site.

Discharges of construction materials and wastes, such as fuel or paint, resulting from dumping, spills, or direct contact with rainwater or stormwater runoff, are also prohibited.
2.8 REQUIRED SITE MAP INFORMATION

The construction project’s Site Map(s) showing the project location, surface water boundaries, geographic features, construction site perimeter and general topography and other requirements identified in Attachment B of the General Permit is located in Appendix B. Table 2.5 identifies Map or Sheet Nos. where required elements are illustrated.

Table 2.5 Required Map Information

<table>
<thead>
<tr>
<th>Included on Map/Plan Sheet No.</th>
<th>Required Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicinity Map</td>
<td>The project’s surrounding area (vicinity)</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Site layout</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Construction site boundaries</td>
</tr>
<tr>
<td>Hydrology Map</td>
<td>Drainage areas</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Discharge locations</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Sampling locations</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Areas of soil disturbance (temporary or permanent)</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Active areas of soil disturbance (cut or fill)</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Locations of runoff BMPs</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Locations of erosion control BMPs</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Locations of sediment control BMPs</td>
</tr>
<tr>
<td>N/A</td>
<td>ATS location (if applicable)</td>
</tr>
<tr>
<td>N/A</td>
<td>Locations of sensitive habitats, watercourses, or other features which are not to be disturbed</td>
</tr>
<tr>
<td>BMP Site Map</td>
<td>Locations of all post construction BMPs</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Waste storage areas</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Vehicle storage areas</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Material storage areas</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Entrance and Exits</td>
</tr>
<tr>
<td>Erosion Plan</td>
<td>Fueling Locations</td>
</tr>
</tbody>
</table>

Notes: (1) Indicate maps or drawings that information is included on (e.g., Vicinity Map, Site Map, Drainage Plans, Grading Plans, Progress Maps, etc.)
Section 3 Best Management Practices

3.1 SCHEDULE FOR BMP IMPLEMENTATION

<table>
<thead>
<tr>
<th>BMP Implementation Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion Control</td>
</tr>
<tr>
<td>EC-1, Scheduling</td>
</tr>
<tr>
<td>EC-3, Hydraulic Mulch</td>
</tr>
<tr>
<td>EC-5, Soil Binders</td>
</tr>
<tr>
<td>Sediment Control</td>
</tr>
<tr>
<td>SE-4, Check Dam</td>
</tr>
<tr>
<td>SE-5, Fiber Rolls</td>
</tr>
<tr>
<td>SE-6, Gravel Bag Berm</td>
</tr>
<tr>
<td>SE-7, Street Sweeping and Vacuuming</td>
</tr>
<tr>
<td>SE-10, Storm Drain Inlet Protection</td>
</tr>
<tr>
<td>Tracking Control</td>
</tr>
<tr>
<td>TC-1, Stablized Construction Entrance/Exit</td>
</tr>
<tr>
<td>Wind Erosion</td>
</tr>
<tr>
<td>WE-1, Wind Erosion Control</td>
</tr>
</tbody>
</table>
3.2 EROSION AND SEDIMENT CONTROL

Erosion and sediment controls are required by the General Permit to provide effective reduction or elimination of sediment related pollutants in stormwater discharges and authorized non-stormwater discharges from the Site. Applicable BMPs are identified in this section for erosion control, sediment control, tracking control, and wind erosion control.

3.2.1 Erosion Control

Erosion control, also referred to as soil stabilization, consists of source control measures that are designed to prevent soil particles from detaching and becoming transported in stormwater runoff. Erosion control BMPs protect the soil surface by covering and/or binding soil particles.

This construction project will implement the following practices to provide effective temporary and final erosion control during construction:

1. Preserve existing vegetation where required and when feasible.
2. The area of soil disturbing operations shall be controlled such that the Contractor is able to implement erosion control BMPs quickly and effectively.
3. Stabilize non-active areas within 14 days of cessation of construction activities or sooner if stipulated by local requirements.
4. Control erosion in concentrated flow paths by applying erosion control blankets, check dams, erosion control seeding or alternate methods.
5. Prior to the completion of construction, apply permanent erosion control to remaining disturbed soil areas.

Sufficient erosion control materials shall be maintained onsite to allow implementation in conformance with this SWPPP.

The following temporary erosion control BMP selection table indicates the BMPs that shall be implemented to control erosion on the construction site. Fact Sheets for temporary erosion control BMPs are provided in Appendix H.
<table>
<thead>
<tr>
<th>CASQA Fact Sheet</th>
<th>BMP Name</th>
<th>Meets a Minimum Requirement<sup>(1)</sup></th>
<th>BMP Used</th>
<th>If not used, state reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC-1</td>
<td>Scheduling</td>
<td>yes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EC-2</td>
<td>Preservation of Existing Vegetation</td>
<td>yes</td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>EC-3</td>
<td>Hydraulic Mulch</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EC-4</td>
<td>Hydroseed</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td>Use EC-3 or EC-5 instead.</td>
</tr>
<tr>
<td>EC-5</td>
<td>Soil Binders</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EC-6</td>
<td>Straw Mulch</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td>Use EC-3 or EC-5 instead.</td>
</tr>
<tr>
<td>EC-7</td>
<td>Geotextiles and Mats</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td>Use EC-3 or EC-5 instead.</td>
</tr>
<tr>
<td>EC-8</td>
<td>Wood Mulching</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td>Use EC-3 or EC-5 instead.</td>
</tr>
<tr>
<td>EC-9</td>
<td>Earth Dike and Drainage Swales</td>
<td>yes<sup>(3)</sup></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>EC-10</td>
<td>Velocity Dissipation Devices</td>
<td></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>EC-11</td>
<td>Slope Drains</td>
<td></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>EC-12</td>
<td>Stream Bank Stabilization</td>
<td></td>
<td>X</td>
<td>No streams on site</td>
</tr>
<tr>
<td>EC-14</td>
<td>Compost Blankets</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>EC-15</td>
<td>Soil Preparation-Roughening</td>
<td></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>EC-16</td>
<td>Non-Vegetated Stabilization</td>
<td>yes<sup>(2)</sup></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>WE-1</td>
<td>Wind Erosion Control</td>
<td>yes</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ Applicability to a specific project shall be determined by the QSD.

⁽²⁾ The QSD shall ensure implementation of one of the minimum measures listed or a combination thereof to achieve and maintain the Risk Level requirements.

⁽³⁾ Run-on from offsite shall be directed away from all disturbed areas, diversion of offsite flows may require design/analysis by a licensed civil engineer and/or additional environmental permitting.
These temporary erosion control BMPs shall be implemented in conformance with the following guidelines and as outlined in the BMP Factsheets provided in Appendix H. If there is a conflict between documents, the Site Map will prevail over narrative in the body of the SWPPP or guidance in the BMP Fact Sheets. Site specific details in the Site Map prevail over standard details included in the Site Map. The narrative in the body of the SWPPP prevails over guidance in the BMP Fact Sheets.

EC-1, Scheduling

During the non-rainy season:

The project schedule will sequence construction activities with the installation of both erosion control and sediment control measures. The construction schedule will be arranged as much as practicable to leave existing vegetation undisturbed until immediately prior to grading.

EC-3, Hydraulic Mulch

Hydraulic Mulch consist of various types of fibrous materials mixed with water and sprayed onto the soil surface in slurry form to provide a layer of temporary protection from wind and water erosion.

Hydraulic Mulch as a temporary, stand alone, erosion control BMP is suitable for disturbed areas that require temporary protection from wind and water erosion until permanent soil stabilization activities commence. Examples include:

- Rough-graded areas that will remain inactive for longer than permit-required threshold (e.g., 14 days) or otherwise require stabilization to minimize erosion or prevent sediment discharges.
- Soil stockpiles
- Slopes with exposed soil between existing vegetation such as trees or shrubs.

EC-5, Soil Binders

To be used as necessary during grading phase of construction:

Apply soil binders to disturbed areas of the site that have become inactive after 14 days. Choose soil binders appropriate to soil type. Refrain from disturbing applied soil binder for 24 hours after application, or as suggested by retailer.

WE-1, Wind Erosion Control

Dust Control

During grading, soils will be disturbed and exposed. Materials may be applied to the soil surface to prevent the movement of dust from exposed soil due to wind and traffic. Particular attention should be paid to stock piled materials. The most commonly used method of soil stabilization is watering to prevent dust from polluting the air.

BMP WE-1, Wind Erosion Control, and BMP NS-1, water Conservation Practices, will be implemented to provide dust control and prevent discharges from dust control activities and water supply equipment. Water application rates will be minimized as necessary to prevent runoff and ponding and water equipment leaks will be repaired immediately.
During windy conditions (forecast or actual wind conditions of approximately 25 mph or greater), dust control will be applied to disturbed areas, including haul roads, to adequately control wind erosion.
3.2.2 Sediment Controls

Sediment controls are temporary or permanent structural measures that are intended to complement the selected erosion control measures and reduce sediment discharges from active construction areas. Sediment controls are designed to intercept and settle out soil particles that have been detached and transported by the force of water.

The following sediment control BMP selection table indicates the BMPs that shall be implemented to control sediment on the construction site. Fact Sheets for temporary sediment control BMPs are provided in Appendix H.
Table 3.3 Temporary Sediment Control BMPs

<table>
<thead>
<tr>
<th>CASQA Fact Sheet</th>
<th>BMP Name</th>
<th>Meets a Minimum Requirement<sup>(1)</sup></th>
<th>BMP used</th>
<th>If not used, state reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-1</td>
<td>Silt Fence</td>
<td>✔<sup>(2)(3)</sup></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-2</td>
<td>Sediment Basin</td>
<td></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-3</td>
<td>Sediment Trap</td>
<td></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-4</td>
<td>Check Dam</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SE-5</td>
<td>Fiber Rolls</td>
<td>✔<sup>(2)(3)</sup></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SE-6</td>
<td>Gravel Bag Berm</td>
<td>✔<sup>(3)</sup></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SE-7</td>
<td>Street Sweeping</td>
<td>✔</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SE-8</td>
<td>Sandbag Barrier</td>
<td></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-9</td>
<td>Straw Bale Barrier</td>
<td></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-10</td>
<td>Storm Drain Inlet Protection</td>
<td>✔ RL2&3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SE-11</td>
<td>ATS</td>
<td></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>SE-12</td>
<td>Manufactured Linear Sediment Controls</td>
<td></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-13</td>
<td>Compost Sock and Berm</td>
<td>✔<sup>(3)</sup></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>SE-14</td>
<td>Biofilter Bags</td>
<td>✔<sup>(3)</sup></td>
<td>X</td>
<td>Use SE-5 or SE-6</td>
</tr>
<tr>
<td>TC-1</td>
<td>Stabilized Construction Entrance and Exit</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TC-2</td>
<td>Stabilized Construction Roadway</td>
<td></td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>TC-3</td>
<td>Entrance Outlet Tire Wash</td>
<td></td>
<td>X</td>
<td>N/A</td>
</tr>
</tbody>
</table>

⁽¹⁾ Applicability to a specific project shall be determined by the QSD

⁽²⁾ The QSD shall ensure implementation of one of the minimum measures listed or a combination thereof to achieve and maintain the Risk Level requirements

⁽³⁾ Risk Level 2 &3 shall provide linear sediment control along toe of slope, face of slope, and at the grade breaks of exposed slope.
These temporary sediment control BMPs shall be implemented in conformance with the following guidelines and in accordance with the BMP Fact Sheets provided in Appendix H. If there is a conflict between documents, the Site Map will prevail over narrative in the body of the SWPPP or guidance in the BMP Fact Sheets. Site specific details in the Site Map prevail over standard details included in the Site Map. The narrative in the body of the SWPPP prevails over guidance in the BMP Fact Sheets.

SE-4, Check Dams

Gravel bags (check dams) will be placed in the flow-lines on site to prevent erosion and reduce sediments at storm drain inlets.

SE-5, Fiber Roll

Fiber rolls may be suitable:

- Along the toe, top, face and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.
- Down-slope of exposed soil areas.
- Around temporary stockpiles.

Locate fiber rolls on level contours spaced as follows:

- Slope inclination of 4:1 (H:V) or flatter: Fiber rolls should be placed at a maximum interval of 20 ft.
- Slope inclination between 4:1 and 2:1 (H:V): Fiber rolls should be placed at a maximum interval of 10 ft. (a closer spacing is more effective).

It is critical that rolls are installed perpendicular to water movement, and parallel to the slope contour.

SE-6, Gravel Bag Berm

Temporary sediment controls will be implemented at the draining perimeter of disturbed soil areas, at the toe of slopes, at storm drain inlets and at outfall areas at all times. During the non-rainy season, temporary sediment controls will be implemented at the draining perimeter of disturbed soil areas and at storm drain downstream from disturbed areas before rain events.

The perimeter of the site will have gravel bag barriers where necessary to keep sediments from entering public and private areas. Gravel bags will also be placed in the flow-lines on site to prevent erosion and reduce sediments at storm drain inlets.

SE-7, Street Sweeping

Road Cleaning BMPs – Street Sweeping and Vacuuming

Road sweeping and vacuuming will occur during soil hauling and as necessary to keep street surfaces clear of soil and debris. Washing of sediment tracked onto streets into storm drains will not occur.
SE-10, Storm Drain Inlet Protection

Gravel bags will be placed around all catch basins (once constructed) to prevent sediment and materials from entering the storm drain system. Please see erosion control plan in this report for location of sediment treatment controls.

TC-1, Stabilized Construction Entrance and Exit

Stabilized Construction Entrance/Exit

A stabilized construction entrance/exit will be constructed and maintained at construction site entrances and exits, as shown on the site map.

The site entrance/exit will be stabilized to reduce tracking of sediment as a result of construction traffic. The entrance will be designated and graded to prevent runoff from leaving the site. Stabilization material will be 3 to 6-inch aggregate. The entrance will be flared where it meets the existing road to provide an adequate turning radius. During dirt-hauling activities that extend over a one-week time period, a site entrance/exit will be installed to reduce tracking of sediment.
3.3 NON-STORMWATER CONTROLS AND WASTE AND MATERIALS MANAGEMENT

3.3.1 Non-Stormwater Controls

Non-stormwater discharges into storm drainage systems or waterways, which are not authorized under the General Permit, are prohibited. Non-stormwater discharges for which a separate NPDES permit is required by the local Regional Water Board are prohibited unless coverage under the separate NPDES permit has been obtained for the discharge. The selection of non-stormwater BMPs is based on the list of construction activities with a potential for non-stormwater discharges identified in Section 2.7 of this SWPPP.

The following non-stormwater control BMP selection table indicates the BMPs that shall be implemented to control sediment on the construction site. Fact Sheets for temporary non-stormwater control BMPs are provided in Appendix H.
Table 3.4 Temporary Non-Stormwater BMPs

<table>
<thead>
<tr>
<th>CASQA Fact Sheet</th>
<th>BMP Name</th>
<th>Meets a Minimum Requirement(1)</th>
<th>BMP used</th>
<th>If not used, state reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-1</td>
<td>Water Conservation Practices</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-2</td>
<td>Dewatering Operation</td>
<td></td>
<td>X</td>
<td>Grading operations do not reach groundwater level</td>
</tr>
<tr>
<td>NS-3</td>
<td>Paving and Grinding Operation</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-4</td>
<td>Temporary Stream Crossing</td>
<td>X</td>
<td></td>
<td>No streams on site</td>
</tr>
<tr>
<td>NS-5</td>
<td>Clear Water Diversion</td>
<td>X</td>
<td></td>
<td>Not needed on site</td>
</tr>
<tr>
<td>NS-6</td>
<td>Illicit Connection/Discharge</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-7</td>
<td>Potable Water/Irrigation</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-8</td>
<td>Vehicle and Equipment Cleaning</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-9</td>
<td>Vehicle and Equipment Fueling</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-10</td>
<td>Vehicle and Equipment Maintenance</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-11</td>
<td>Pile Driving Operation</td>
<td></td>
<td>X</td>
<td>No pile driving operations on site</td>
</tr>
<tr>
<td>NS-12</td>
<td>Concrete Curing</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-13</td>
<td>Concrete Finishing</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NS-14</td>
<td>Material and Equipment Use Over Water</td>
<td></td>
<td>X</td>
<td>No water on site</td>
</tr>
<tr>
<td>NS-15</td>
<td>Demolition Removal Adjacent to Water</td>
<td></td>
<td>X</td>
<td>No water adjacent to site</td>
</tr>
<tr>
<td>NS-16</td>
<td>Temporary Batch Plants</td>
<td></td>
<td>X</td>
<td>No batch plants</td>
</tr>
</tbody>
</table>

Alternate BMPs Used: If used, state reason:

(1) Applicability to a specific project shall be determined by the QSD
Non-stormwater BMPs shall be implemented in conformance with the following guidelines and in accordance with the BMP Fact Sheets provided in Appendix H. If there is a conflict between documents, the Site Map will prevail over narrative in the body of the SWPPP or guidance in the BMP Fact Sheets. Site specific details in the Site Map prevail over standard details included in the Site Map. The narrative in the body of the SWPPP prevails over guidance in the BMP Fact Sheets.

Water Conservation Practices (NS-1)

Water/Irrigation

All efforts and means will be used to conserve water during the entire duration of the project. Water trucks will be inspected on a daily basis for any leaks.

Paving and Grinding Operation (NS-3)

Paving Operations

Paving and Grinding Operations, will be implemented to prevent paving materials from being discharged off-site. If applicable, covers will be placed over each parkway culvert adjacent to paving operations. Following paving operations, the area will be swept, Parkway culverts covers will be removed, and the parkway culverts will be inspected for paving materials.

Illicit Connection- Illegal Discharge Connection (NS-6)

Illicit Connection/Illegal Discharge Detection and Reporting

The Contractor will implement Illicit Connection/Illegal Discharge Detection and Reporting throughout the duration of the project. The most efficient means of implementing NS-6 is by restricting access to the site.

Potable Water Irrigation Discharge Detection (NS-7)

Manage the discharge of potential pollutants generated during discharges from irrigation water lines, landscape irrigation, lawn or garden watering, planned and unplanned discharges from potable water sources, water line flushing, and hydrant flushing.

Direct water from offsite sources around or through a construction site, where feasible, in a way that minimizes contact with the construction site. Protect downstream stormwater drainage systems and watercourses from water pumped or bailed from trenches excavated to repair water lines.

Vehicle and Equipment Cleaning (NS-8)

Eliminate or reduce the discharge of pollutants to stormwater from vehicle and equipment cleaning operations, such as using offsite facilities, washing in designated, contained areas only, or by eliminating discharges to the storm drain by infiltrating the wash water.

Cleaning of vehicles and equipment with soap, solvents or steam should not occur on the project site unless resulting wastes are fully contained and properly disposed of. Resulting wastes should not be discharged or buried, and must be captured and recycled or disposed of properly.

Facility wash racks, if any, should discharge to a sanitary sewer, recycle system or other approved discharge system and must not discharge to the storm drainage system, watercourses, or to groundwater.
Vehicle and Equipment Fueling (NS-9)
Drip pans or absorbent pads will be used for all vehicle and equipment maintenance or fueling activities that involve grease, oil, solvents, or other vehicle fluids. All vehicle maintenance and mobile fueling operations will be conducted at least 50 feet away from operational inlets and drainage facilities and on a level graded area.

Vehicle and Equipment Maintenance (NS-10)
Vehicle and Equipment Operations
Several types of vehicles and equipment will be used on-site throughout the project. Activities including Vehicle Maintenance should not be performed on-site, except for concrete washout.
Drip pans or absorbent pads will be used for all vehicle and equipment maintenance activities that involve grease, oil, solvents, or other vehicle fluids.
All vehicle maintenance and mobile fueling operations will be conducted at least 50 feet away from operational inlets and drainage facilities and on a level graded area.

Concrete Curing (NS-12)
Proper procedures and care should be taken when managing concrete curing materials to prevent them from coming into contact with stormwater flows, which could result in a high pH discharge.

Chemical Curing
Avoid over spray of curing compounds. Minimize the drift by applying the curing compound close to the concrete surface. Apply an amount of compound that covers the surface, but does not allow any runoff of the compound. Use proper storage and handling techniques for concrete curing compounds. Refer to WM-1, Material Delivery and Storage. Protect drain inlets prior to the application of curing compounds. Refer to WM-4, Spill Prevention and Control.

Water Curing
Direct cure water away from inlets and watercourses to collection areas for evaporation or other means of removal in accordance with all applicable permits. See WM-8 Concrete Waste Management. Collect cure water at the top of slopes and transport to a concrete waste management area in a non-erosive manner. See EC-9 Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains. Utilize wet blankets or a similar method that maintains moisture while minimizing the use and possible discharge of water.
Concrete Finishing (NS-13)

Concrete Residuals and Washout Wastes

This project includes placement of concrete. Discharges from cement washout will consist of rinse water and residual concrete (Portland cement, aggregates, admixture, and water). Concrete pours will not be conducted during or immediately prior to rainfall events.

BMP WM-8, Concrete Waste Management, will be implemented and a below grade concrete washout facility will be constructed and maintained on the project site as shown on the WPCD. All excess concrete and concrete washout slurries will be discharged to the washout facility for drying. The recommended minimum length and width for a washout area is 10 ft x 10 ft, and must provide sufficient volume to contain concrete washout wastes and waste collected from concrete saw-cutting operations. BMP maintenance, waste disposal, and BMP removal will be conducted as described in WM-8.

Concrete waste solids/liquids will be removed and disposed of as required by WM-8.
3.3.2 Materials Management and Waste Management

Materials management control practices consist of implementing procedural and structural BMPs for handling, storing and using construction materials to prevent the release of those materials into stormwater discharges. The amount and type of construction materials to be utilized at the Site will depend upon the type of construction and the length of the construction period. The materials may be used continuously, such as fuel for vehicles and equipment, or the materials may be used for a discrete period, such as soil binders for temporary stabilization.

Waste management consist of implementing procedural and structural BMPs for handling, storing and ensuring proper disposal of wastes to prevent the release of those wastes into stormwater discharges. [If applicable to the project site, waste management should be conducted in accordance with the Project’s Construction Waste Management Plan.]

Materials and waste management pollution control BMPs shall be implemented to minimize stormwater contact with construction materials, wastes and service areas; and to prevent materials and wastes from being discharged off-site. The primary mechanisms for stormwater contact that shall be addressed include:

- Direct contact with precipitation
- Contact with stormwater run-on and runoff
- Wind dispersion of loose materials
- Direct discharge to the storm drain system through spills or dumping
- Extended contact with some materials and wastes, such as asphalt cold mix and treated wood products, which can leach pollutants into stormwater.

A list of construction activities is provided in Section 2.6. The following Materials and Waste Management BMP selection table indicates the BMPs that shall be implemented to handle materials and control construction site wastes associated with these construction activities. Fact Sheets for Materials and Waste Management BMPs are provided in Appendix H.
Table 3.5 Temporary Materials Management BMPs

<table>
<thead>
<tr>
<th>CASQA Fact Sheet</th>
<th>BMP Name</th>
<th>Meets a Minimum Requirement(1)</th>
<th>BMP used</th>
<th>If not used, state reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM-01</td>
<td>Material Delivery and Storage</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-02</td>
<td>Material Use</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-03</td>
<td>Stockpile Management</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-04</td>
<td>Spill Prevention and Control</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-05</td>
<td>Solid Waste Management</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-06</td>
<td>Hazardous Waste Management</td>
<td>✓</td>
<td>X</td>
<td>No hazardous materials onsite</td>
</tr>
<tr>
<td>WM-07</td>
<td>Contaminated Soil Management</td>
<td></td>
<td>X</td>
<td>No contaminated soil onsite</td>
</tr>
<tr>
<td>WM-08</td>
<td>Concrete Waste Management</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-09</td>
<td>Sanitary-Septic Waste Management</td>
<td>✓</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WM-10</td>
<td>Liquid Waste Management</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Alternate BMPs Used:

If used, state reason:

(1) Applicability to a specific project shall be determined by the QSD.
Material management BMPs shall be implemented in conformance with the following guidelines and in accordance with the BMP Fact Sheets provided in Appendix H. If there is a conflict between documents, the Site Map will prevail over narrative in the body of the SWPPP or guidance in the BMP Fact Sheets. Site specific details in the Site Map prevail over standard details included in the Site Map. The narrative in the body of the SWPPP prevails over guidance in the BMP Fact Sheets.

Material Delivery, Storage, and Use (WM-1 and WM-2)

In general, BMPs WM-1 and WM-2 will be implemented to help prevent discharges of construction materials during delivery, storage, and use. A sandbag barrier (BMP SE-8) will be provided around the storage area to prevent run-on from adjacent areas. Storage/containment facilities will be provided within the storage area to minimize storm water contact with construction materials.

A covered storage/containment facility will be constructed to provide protection from the sun and rain for items such as drums and items shipped or stored on pallets.

A covered storage/containment facility will be constructed to provide storage for larger hand tools, small parts, and most construction materials that can be carried by hand, such as paint cans, solvents, and grease. Very large items, such as light standards, framing materials, and stockpiled lumber, will be stored in the open in the general storage area. Such materials will be elevated with wood blocks to minimize contact with run-on.

Spill clean-up materials, material safety data sheets, a material inventory, and emergency contact numbers will be maintained and stored in the general storage area.

Stockpile Management (WM-3)

Protection of stockpiles is a year-round requirement to reduce or eliminate air and stormwater pollution from temporary stockpiles of soil and paving materials such as Portland cement concrete (PCC) rubble, asphalt concrete (AC), asphalt concrete rubble, aggregate base, aggregate sub base, pre-mixed aggregate. Stockpiles will be surrounded with sediment controls and covered when inactive for 14 days and prior to forecasted rain events.

A minimum of 50 ft separation from concentrated flows of stormwater, drainage courses, and inlets is required.

Spill Preservation and Control (WM-4)

BMP WM-4, Spill Prevention and Control, will be implemented to contain and clean-up spills and prevent material discharges to the storm drain system. Spill prevention is also discussed above in Material Delivery, Storage, and below in the following waste management and equipment maintenance sections.

Solid Waste Management (WM-5)

BMP WM-5, Solid Waste Management will be implemented to minimize storm water contact with waste materials and prevent waste discharges. Solid wastes will be loaded directly into trucks for off-site disposal. When on-site storage is necessary, solid wastes will be stored in watertight dumpsters in the general storage area. AC and PCC rubble will be stockpiled in the general storage area and will be surrounded with sediment controls (SE-6, Gravel Bag Barrier) and covered when necessary. Solid waste, including rubble stockpiles, will be removed and
disposed off-site at least weekly. Hazardous wastes (if any, not anticipated) will be stored in covered containment areas. Hazardous wastes will be appropriate and clearly marked containers and segregated from other non-waste materials.

Concrete Waste Management (WM-8)

Concrete Residuals and Washout Wastes

This project includes placement of concrete. Discharges from cement washout will consist of rinse water and residual concrete (Portland cement, aggregates, admixture, and water). Concrete pours will not be conducted during or immediately prior to rainfall events.

BMP WM-8, Concrete Waste Management, will be implemented and a below grade concrete washout facility will be constructed and maintained on the project site as shown on the WPCD. All excess concrete and concrete washout slurries will be discharged to the washout facility for drying. The recommended minimum length and width for a washout area is 10 ft x 10 ft, and must provide sufficient volume to contain concrete washout wastes and waste collected from concrete saw-cutting operations. BMP maintenance, waste disposal, and BMP removal will be conducted as described in WM-8.

Concrete waste solids/liquids will be removed and disposed of as required by WM-8.

Sanitary-Septic Waste Management (WM-9)

Sanitary and Septic Wastes

The Contractor will implement BMP WM-9, Sanitary and Septic Waste Management, and portable toilets will be located and maintained on the project site for the duration of the project. The toilets will be located away from concentrated flow paths and traffic flow. A properly licensed contractor will conduct weekly maintenance.

Liquid Waste Management (WM-10)

Keep all liquids in water tight containers in a containment area.
3.4 POST CONSTRUCTION STORMWATER MANAGEMENT MEASURES

Post construction BMPs are permanent measures installed during construction, designed to reduce or eliminate pollutant discharges from the site after construction is completed.

This site is located in an area subject to a Phase I or Phase II Municipal Separate Storm Sewer System (MS4) permit approved Stormwater Management Plan. Yes ☒ No ☐

Post construction runoff reduction requirements have been satisfied through the MS4 program, this project is exempt from provision XIII A of the General Permit.

The following source control post construction BMPs to comply with General Permit Section XIII.B and local requirements have been identified for the site:

- Undergournd Infiltration Gallery
- Drain Inserts

A plan for the post construction funding and maintenance of these BMPs has been developed to address at minimum five years following construction. The post construction BMPs that are described above shall be funded and maintained by the LRP. If required, post construction funding and maintenance will be submitted with the NOT.
Section 4 BMP Inspection, Maintenance, and Rain Event Action Plans

4.1 BMP INSPECTION AND MAINTENANCE

The General Permit requires routine weekly inspections of BMPs, along with inspections before, during, and after qualifying rain events. A BMP inspection checklist must be filled out for inspections and maintained on-site with the SWPPP. The inspection checklist includes the necessary information covered in Section 7.6. A blank inspection checklist can be found in Appendix I. Completed checklists shall be kept in CSMP Attachment 2 “Monitoring Records.

BMPs shall be maintained regularly to ensure proper and effective functionality. If necessary, corrective actions shall be implemented within 72 hours of identified deficiencies and associated amendments to the SWPPP shall be prepared by the QSD.

Specific details for maintenance, inspection, and repair of Construction Site BMPs can be found in the BMP Factsheets in Appendix H.

4.2 RAIN EVENT ACTION PLANS

Rain Event Action Plans (REAPs) are not required for Risk Level 1 projects.
Section 5 Training

Appendix L identifies the QSPs for the project. To promote stormwater management awareness specific for this project, periodic training of job-site personnel shall be included as part of routine project meetings (e.g. daily/weekly tailgate safety meetings), or task specific trainings as needed.

The QSP shall be responsible for providing this information at the meetings, and subsequently completing the training logs shown in Appendix K, which identifies the site-specific stormwater topics covered as well as the names of site personnel who attended the meeting. Tasks may be delegated to trained employees by the QSP provided adequate supervision and oversight is provided. Training shall correspond to the specific task delegated including: SWPPP implementation; BMP inspection and maintenance; and record keeping.

Documentation of training activities (formal and informal) is retained in SWPPP Appendix K.
Section 6 Responsible Parties and Operators

6.1 RESPONSIBLE PARTIES

Approved Signatory who are responsible for SWPPP implementation and have authority to sign permit-related documents is listed below. Written authorizations from the LRP for these individuals are provided in Appendix L. The Approved Signatory assigned to this project is:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Howard</td>
<td>LRP</td>
<td>(714) 620-7345</td>
</tr>
</tbody>
</table>

QSPs identified for the project are identified in Appendix L. The QSP shall have primary responsibility and significant authority for the implementation, maintenance and inspection/monitoring of SWPPP requirements. The QSP will be available at all times throughout the duration of the project. Duties of the QSP include but are not limited to:

- Implementing all elements of the General Permit and SWPPP, including but not limited to:
 - Ensuring all BMPs are implemented, inspected, and properly maintained;
 - Performing non-stormwater and stormwater visual observations and inspections;
 - Performing non-stormwater and storm sampling and analysis, as required;
 - Performing routine inspections and observations;
 - Implementing non-stormwater management, and materials and waste management activities such as: monitoring discharges; general Site clean-up; vehicle and equipment cleaning, fueling and maintenance; spill control; ensuring that no materials other than stormwater are discharged in quantities which will have an adverse effect on receiving waters or storm drain systems; etc.;

- The QSP may delegate these inspections and activities to an appropriately trained employee, but shall ensure adequacy and adequate deployment.

- Ensuring elimination of unauthorized discharges.

- The QSPs shall be assigned authority by the LRP to mobilize crews in order to make immediate repairs to the control measures.

- Coordinate with the Contractor(s) to assure all of the necessary corrections/repairs are made immediately and that the project complies with the SWPPP, the General Permit and approved plans at all times.

- Notifying the LRP or Authorized Signatory immediately of off-site discharges or other non-compliance events.
6.2 CONTRACTOR LIST

Contractor

Name:
Title:
Company:
Address:
Phone Number:
Number (24/7):
Section 7 Construction Site Monitoring Program

7.1 Purpose

This Construction Site Monitoring Program was developed to address the following objectives:

1. To demonstrate that the site is in compliance with the Discharge Prohibitions the Construction General Permit;
2. To determine whether non-visible pollutants are present at the construction site and are causing or contributing to exceedances of water quality objectives;
3. To determine whether immediate corrective actions, additional Best Management Practices (BMP) implementation, or SWPPP revisions are necessary to reduce pollutants in stormwater discharges and authorized non-stormwater discharges;
4. To determine whether BMPs included in the SWPPP are effective in preventing or reducing pollutants in stormwater discharges and authorized non-stormwater discharges.

7.2 Applicability of Permit Requirements

This project has been determined to be a Risk Level 1 project. The General Permit identifies the following types of monitoring as being applicable for a Risk Level 1 project.

Risk Level 1

- Visual inspections of Best Management Practices (BMPs);
- Visual monitoring of the site related to qualifying storm events;
- Visual monitoring of the site for non-stormwater discharges;
- Sampling and analysis of construction site runoff for non-visible pollutants when applicable; and
- Sampling and analysis of construction site runoff as required by the Regional Water Board when applicable.

7.3 Weather and Rain Event Tracking

Visual monitoring and inspections requirements of the General Permit are triggered by a qualifying rain event. The General Permit defines a qualifying rain event as any event that produces ½ inch of precipitation. A minimum of 48 hours of dry weather will be used to distinguish between separate qualifying storm events.

Visual monitoring, inspections, and sampling requirements of the General Permit are triggered by a qualifying rain event. The General Permit defines a qualifying rain event as any event that produces ½ inch of precipitation. A minimum of 48 hours of dry weather will be used to distinguish between separate qualifying storm events.

For the purposes of assessing exceptions to the Receiving Water Monitoring Triggers the General Permit establishes the compliance storm event at the 5-year, 24-hour event. Based on the Western Regional Climate Center, the 5-year, 24-hour event for this project is 3.20”
7.3.1 Weather Tracking

The QSP should daily consult the National Oceanographic and Atmospheric Administration (NOAA) for the weather forecasts. These forecasts can be obtained at http://www.srh.noaa.gov/. Weather reports should be printed and maintained with the SWPPP in CSMP Attachment 1 “Weather Reports”.

7.3.2 Rain Gauges

The QSP shall install at least two (2) rain gauge(s) on the project site. Locate the gauge in an open area away from obstructions such as trees or overhangs. Mount the gauge on a post at a height of 3 to 5 feet with the gauge extending several inches beyond the post. Make sure that the top of the gauge is level. Make sure the post is not in an area where rainwater can indirectly splash from sheds, equipment, trailers, etc.

The rain gauge(s) shall be read daily during normal site scheduled hours. The rain gauge should be read at approximately the same time every day and the date and time of each reading recorded. Log rain gauge readings in CSMP Attachment 1 “Weather Records”. Follow the rain gauge instructions to obtain accurate measurements.

Once the rain gauge reading has been recorded, accumulated rain shall be emptied and the gauge reset.

For comparison with the site rain gauge, the nearest appropriate governmental rain gauge(s) is located at: **Long Beach, Long Beach Airport (KLGB)**

- **Latitude**: 33.81167°
- **Latitude**: -118.14639°
- **Elevation**: 56 ft

7.4 Monitoring Locations

Monitoring locations are shown on the Site Maps in Appendix B. Monitoring locations are described in the Sections 7.6 and 7.7.

Whenever changes in the construction site might affect the appropriateness of sampling locations, the sampling locations shall be revised accordingly. All such revisions shall be implemented as soon as feasible and the SWPPP amended. Temporary changes that result in a one-time additional sampling location do not require a SWPPP amendment.
7.5 **Safety and Monitoring Exemptions**

Safety practices for sample collection will be in accordance with the Contractor’s Health and Safety Plan for the project. A summary of the safety requirements that apply to sampling personnel is provided below.

- Personal Protective Equipment (PPE)
- Hazardous conditions
- Handling pollutants

This project is not required to collect samples or conduct visual observations (inspections) under the following conditions:

- During dangerous weather conditions such as flooding and electrical storms.
- Outside of scheduled site business hours.

Scheduled site business hours are: Monday thru Friday 7:00am to 3:00pm

If monitoring (visual monitoring or sample collection) of the site is unsafe because of the dangerous conditions noted above then the QSP shall document the conditions for why an exception to performing the monitoring was necessary. The exemption documentation shall be filed in CSMP Attachment 2 “Monitoring Records”.
7.6 Visual Monitoring

Visual monitoring includes observations and inspections. Inspections of BMPs are required to identify and record BMPs that need maintenance to operate effectively, that have failed, or that could fail to operate as intended. Visual observations of the site are required to observe storm water drainage areas to identify any spills, leaks, or uncontrolled pollutant sources.

Table 7.1 identifies the required frequency of visual observations and inspections. Inspections and observations will be conducted at the locations identified in Section 7.6.3.

<table>
<thead>
<tr>
<th>Type of Inspection</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine Inspections</td>
<td></td>
</tr>
<tr>
<td>BMP Inspections</td>
<td>Weekly[1]</td>
</tr>
<tr>
<td>BMP Inspections – Tracking Control</td>
<td>Daily</td>
</tr>
<tr>
<td>All BMPs must be inspected at least once a week</td>
<td>Weekly</td>
</tr>
<tr>
<td>Non-Stormwater Discharge Observations</td>
<td>Quarterly during daylight hours</td>
</tr>
<tr>
<td>Rain Event Triggered Inspections</td>
<td></td>
</tr>
<tr>
<td>Site Inspections Prior to a Qualifying Event</td>
<td>Within 48 hours of a qualifying event[2]</td>
</tr>
<tr>
<td>BMP Inspections During an Extended Storm Event</td>
<td>Every 24-hour period of a rain event[3]</td>
</tr>
<tr>
<td>Site Inspections Following a Qualifying Event</td>
<td>Within 48 hours of a qualifying event[2]</td>
</tr>
</tbody>
</table>

[1] Most BMPs must be inspected weekly; those identified below must be inspected more frequently.
[2] Inspections are required during scheduled site operating hours.
[3] Inspections are required during scheduled site operating hours regardless of the amount of precipitation on any given day.

7.6.1 Routine Observations and Inspections

Routine site inspections and visual monitoring are necessary to ensure that the project is in compliance with the requirements of the Construction General Permit.

7.6.1.1 Routine BMP Inspections

Inspections of BMPs are conducted to identify and record:

- BMPs that are properly installed;
- BMPs that need maintenance to operate effectively;
- BMPs that have failed; or
- BMPs that could fail to operate as intended.

7.6.1.2 Non-Stormwater Discharge Observations

Each drainage area will be inspected for the presence of or indications of prior unauthorized and authorized non-stormwater discharges. Inspections will record:
• Presence or evidence of any non-stormwater discharge (authorized or unauthorized);
• Pollutant characteristics (floating and suspended material, sheen, discoloration, turbidity, odor, etc.); and
• Source of discharge.

7.6.2 Rain-Event Triggered Observations and Inspections

Visual observations of the site and inspections of BMPs are required prior to a qualifying rain event; following a qualifying rain event, and every 24-hour period during a qualifying rain event. Pre-rain inspections will be conducted after consulting NOAA and determining that a precipitation event with a 50% or greater probability of precipitation has been predicted.

7.6.2.1 Visual Observations Prior to a Forecasted Qualifying Rain Event

Within 48-hours prior to a qualifying event a stormwater visual monitoring site inspection will include observations of the following locations:

• Stormwater drainage areas to identify any spills, leaks, or uncontrolled pollutant sources;
• BMPs to identify if they have been properly implemented;
• Any stormwater storage and containment areas to detect leaks and ensure maintenance of adequate freeboard.

Consistent with guidance from the State Water Resources Control Board, pre-rain BMP inspections and visual monitoring will be triggered by a NOAA forecast that indicates a probability of precipitation of 50% or more in the project area.

7.6.2.2 BMP Inspections During an Extended Storm Event

During an extended rain event BMP inspections will be conducted to identify and record:

• BMPs that are properly installed;
• BMPs that need maintenance to operate effectively;
• BMPs that have failed; or
• BMPs that could fail to operate as intended.

If the construction site is not accessible during the rain event, the visual inspections shall be performed at all relevant outfalls, discharge points, downstream locations. The inspections should record any projected maintenance activities.

7.6.2.3 Visual Observations Following a Qualifying Rain Event

Within 48 hours following a qualifying rain event (0.5 inches of rain) a stormwater visual monitoring site inspection is required to observe:

• Stormwater drainage areas to identify any spills, leaks, or uncontrolled pollutant sources;
• BMPs to identify if they have been properly designed, implemented, and effective;
• Need for additional BMPs;
• Any stormwater storage and containment areas to detect leaks and ensure maintenance of adequate freeboard; and
• Discharge of stored or contained rain water.
7.6.3 Visual Monitoring Procedures

Visual monitoring shall be conducted by the QSP or staff trained by and under the supervision of the QSP.

The name(s) and contact number(s) of the site visual monitoring personnel are listed below and their training qualifications are provided in Appendix K.

Assigned inspector: ___________________________ Contact phone: _______________________
Alternate inspector: ___________________________ Contact phone: _______________________

Stormwater observations shall be documented on the Visual Inspection Field Log Sheet (see CSMP Attachment 3 “Example Forms”). BMP inspections shall be documented on the site specific BMP inspection checklist. Any photographs used to document observations will be referenced on stormwater site inspection report and maintained with the Monitoring Records in Attachment 2.

The QSP shall within 10 days of the inspection submit copies of the completed inspection report to contractor and/or LRP.

The completed reports will be kept in CSMP Attachment 2 “Monitoring Records”.

7.6.4 Visual Monitoring Follow-Up and Reporting

Correction of deficiencies identified by the observations or inspections, including required repairs or maintenance of BMPs, shall be initiated and completed as soon as possible.

If identified deficiencies require design changes, including additional BMPs, the implementation of changes will be initiated within 72 hours of identification and be completed as soon as possible. When design changes to BMPs are required, the SWPPP shall be amended to reflect the changes.

Deficiencies identified in site inspection reports and correction of deficiencies will be tracked on the Inspection Field Log Sheet or BMP Inspection Report and shall be submitted to the QSP and shall be kept in CSMP Attachment 2 “Monitoring Records”.

The QSP shall within 10 days of the inspection submit copies of the completed Inspection Field Log Sheet or BMP Inspection Report with the corrective actions to contractor and/or LRP.

Results of visual monitoring must be summarized and reported in the Annual Report.

7.6.5 Visual Monitoring Locations

The inspections and observations identified in Sections 7.6.1 and 7.6.2 will be conducted at the locations identified in this section.

BMP locations are shown on the Site Maps in SWPPP Appendix A.

There are two (2) drainage area(s) on the project site and the contractor’s yard, staging areas, and storage areas. Drainage area(s) are shown on the Site Maps in Appendix B and Table 7.2 identifies each drainage area by location.
Table 7.2 Site Drainage Areas

<table>
<thead>
<tr>
<th>Location No.</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eastern half of site</td>
</tr>
<tr>
<td>2</td>
<td>Western half of site</td>
</tr>
</tbody>
</table>

There are three (3) stormwater storage or containment area(s) are on the project site. Stormwater storage or containment area(s) are shown on the Site Maps in Appendix B and Table 7.3 identifies each stormwater storage or containment area by location.

Table 7.3 Stormwater Storage and Containment Areas

<table>
<thead>
<tr>
<th>Location No.</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Underground Infiltration Gallery; near northwest corner of site</td>
</tr>
<tr>
<td>2</td>
<td>Underground Infiltration Gallery; near southwest corner of site</td>
</tr>
<tr>
<td>3</td>
<td>Underground Infiltration Gallery; near northeast corner of site</td>
</tr>
</tbody>
</table>

There is one (1) discharge location(s) on the project site. Site stormwater discharge location(s) are shown on the Site Maps in Appendix B and Table 7.4 identifies each stormwater discharge location.

Table 7.4 Site Stormwater Discharge Locations

<table>
<thead>
<tr>
<th>Location No.</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entire site discharges to the S.D. system in John S. Gibson Blvd.</td>
</tr>
</tbody>
</table>

7.7 Water Quality Sampling and Analysis

7.7.1 Sampling and Analysis Plan for Non-Visible Pollutants in Stormwater Runoff Discharges

This Sampling and Analysis Plan for Non-Visible Pollutants describes the sampling and analysis strategy and schedule for monitoring non-visible pollutants in stormwater runoff discharges from the project site.

Sampling for non-visible pollutants will be conducted when (1) a breach, leakage, malfunction, or spill is observed; and (2) the leak or spill has not been cleaned up prior to the rain event; and
(3) there is the potential for discharge of non-visible pollutants to surface waters or drainage system.

The following construction materials, wastes, or activities, as identified in Section 2.6, are potential sources of non-visible pollutants to stormwater discharges from the project. Storage, use, and operational locations are shown on the Site Maps in Appendix B.

- Vehicle and Equipment Cleaning
- Vehicle and Equipment Fueling
- Vehicle and Equipment Maintenance
- Paving and Grinding Operations
- Concrete Curing
- Concrete Finishing

The following existing site features, as identified in Section 2.6, are potential sources of non-visible pollutants to stormwater discharges from the project. Locations of existing site features contaminated with non-visible pollutants are shown on the Site Maps in Appendix B.

- None

The following soil amendments have the potential to change the chemical properties, engineering properties, or erosion resistance of the soil and will be used on the project site. Locations of soil amendment application are shown on the Site Maps in Appendix B.

- None

The project has the potential to receive stormwater run-on from the following locations with the potential to contribute non-visible pollutants to stormwater discharges from the project. Locations of such run-on to the project site are shown on the Site Maps in Appendix B.

- None
7.7.1.1 Sampling Schedule

Samples for the potential non-visible pollutant(s) and a sufficiently large unaffected background sample shall be collected during the first two hours of discharge from rain events that result in a sufficient discharge for sample collection. Samples shall be collected during the site’s scheduled hours and shall be collected regardless of the time of year and phase of the construction.

Collection of discharge samples for non-visible pollutant monitoring will be triggered when any of the following conditions are observed during site inspections conducted prior to or during a rain event.

- Materials or wastes containing potential non-visible pollutants are not stored under watertight conditions. Watertight conditions are defined as (1) storage in a watertight container, (2) storage under a watertight roof or within a building, or (3) protected by temporary cover and containment that prevents stormwater contact and runoff from the storage area.
- Materials or wastes containing potential non-visible pollutants are stored under watertight conditions, but (1) a breach, malfunction, leakage, or spill is observed, (2) the leak or spill is not cleaned up prior to the rain event, and (3) there is the potential for discharge of non-visible pollutants to surface waters or a storm drain system.
- A construction activity, including but not limited to those in Section 2.6, with the potential to contribute non-visible pollutants (1) was occurring during or within 24 hours prior to the rain event, (2) BMPs were observed to be breached, malfunctioning, or improperly implemented, and (3) there is the potential for discharge of non-visible pollutants to surface waters or a storm drain system.
- Soil amendments that have the potential to change the chemical properties, engineering properties, or erosion resistance of the soil have been applied, and there is the potential for discharge of non-visible pollutants to surface waters or a storm drain system.
- Stormwater runoff from an area contaminated by historical usage of the site has been observed to combine with stormwater runoff from the site, and there is the potential for discharge of non-visible pollutants to surface waters or a storm drain system.

7.7.1.2 Sampling Locations

Sampling locations are based on proximity to planned non-visible pollutant storage, occurrence or use; accessibility for sampling, and personnel safety. Planned non-visible pollutant sampling locations are shown on the Site Maps in Appendix B and include the locations identified in Tables 7.5 through 7.9.
Five (5) sampling locations on the project site and the contractor’s yard have been identified for the collection of samples of runoff from planned material and waste storage areas and areas where non-visible pollutant producing construction activities are planned.

Table 7.5 Non-Visible Pollutant Sample Locations – Contractors’ Yard

<table>
<thead>
<tr>
<th>Sample Location Number</th>
<th>Sample Location Description</th>
<th>Sample Location Latitude and Longitude (Decimal Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVP-1</td>
<td>Near northwest corner of site</td>
<td>See Erosion Control Plan for location</td>
</tr>
<tr>
<td>NVP-2</td>
<td>See Erosion Control Plan</td>
<td>See Erosion Control Plan for location</td>
</tr>
<tr>
<td>NVP-3</td>
<td>Near C.B. near the proposed driveway</td>
<td>See Erosion Control Plan for location</td>
</tr>
<tr>
<td>NVP-4</td>
<td>Inlet connecting to an ex. 18” RCP</td>
<td>See Erosion Control Plan for location</td>
</tr>
<tr>
<td>NVP-5</td>
<td>Near southeast corner of site</td>
<td>See Erosion Control Plan for location</td>
</tr>
</tbody>
</table>

Zero (0) sampling locations have been identified for the collection of samples of runoff from drainage areas where soil amendments will be applied that have the potential to affect water quality.

Table 7.6 Non-Visible Pollutant Sample Locations – Soil Amendment Areas

<table>
<thead>
<tr>
<th>Sample Location Number</th>
<th>Sample Location</th>
<th>Sample Location Latitude and Longitude (Decimal Degrees)</th>
</tr>
</thead>
</table>

Zero (0) sampling locations have been identified for the collection of samples of runoff from drainage areas contaminated by historical usage of the site.

Table 7.7 Non-Visible Pollutant Sample Locations – Areas of Historical Contamination

<table>
<thead>
<tr>
<th>Sample Location Number</th>
<th>Sample Location</th>
<th>Sample Location Latitude and Longitude (Decimal Degrees)</th>
</tr>
</thead>
</table>
One (1) sampling location(s) has been identified for the collection of an uncontaminated sample of runoff as a background sample for comparison with the samples being analyzed for non-visible pollutants. This location(s) was selected such that the sample will not have come in contact with the operations, activities, or areas identified in Section 7.7.1 or with disturbed soils areas.

Zero (0) sampling locations have been identified for the collection of samples of run-on to the project site. Run-on from these locations has the potential to combine with discharges from the site being sampled for non-visible pollutants. These samples are intended to identify potential sources of non-visible pollutants that originate off the project site.

If a stormwater visual monitoring site inspection conducted prior to or during a storm event identifies the presence of a material storage, waste storage, or operations area with spills or the potential for the discharge of non-visible pollutants to surface waters or a storm drain system that is at a location not listed above and has not been identified on the Site Maps, sampling locations will be selected by the QSP using the same rationale as that used to identify planned locations. Non-visible pollutant sampling locations shall be identified by the QSP on the pre-rain event inspection form and/or Rain Event Action Plan prior to a forecasted qualifying rain event.
7.7.1.3 Monitoring Preparation

Non-visible pollutant samples will be collected by:

Contractor ☑ Yes ☐ No
Consultant ☑ Yes ☐ No
Laboratory ☐ Yes ☐ No

Samples on the project site will be collected by the following contractor sampling personnel:

Name/Telephone Number:
Alternate(s)/Telephone Number:

An adequate stock of monitoring supplies and equipment for monitoring non-visible pollutants will be available on the project site prior to a sampling event. Monitoring supplies and equipment will be stored in a cool temperature environment that will not come into contact with rain or direct sunlight. Sampling personnel will be available to collect samples in accordance with the sampling schedule. Supplies maintained at the project site will include, but are not limited to, clean powder-free nitrile gloves, sample collection equipment, coolers, appropriate number and volume of sample bottles, identification labels, re-sealable storage bags, paper towels, personal rain gear, ice, and Effluent Sampling Field Log Sheets and Chain of Custody (CoC) forms, which are provided in CSMP Attachment 3 “Example Forms”.

Samples on the project site will be collected by the following laboratory or environmental consultant:

Company Name: CROSBY & OVERTON ANALYTICAL LABORATORY
Street Address: 1655 CANAL STREET
City, State Zip: LONG BEACH, CA 90813
Telephone Number: (562) 432-5445
Point of Contact:
Name of Sampler(s):
Name of Alternate(s):

The QSP or his/her designee will contact 24 hours prior to a predicted rain event or for an unpredicted event, as soon as a rain event begins if one of the triggering conditions is identified during an inspection to ensure that adequate sample collection personnel and supplies for monitoring non-visible pollutants are available and will be mobilized to collect samples on the project site in accordance with the sampling schedule.
7.7.1.4 Analytical Constituents

Table 7.10 lists the specific sources and types of potential non-visible pollutants on the project site and the water quality indicator constituent(s) for that pollutant.

Table 7.10 Potential Non-Visible Pollutants and Water Quality Indicator Constituents

<table>
<thead>
<tr>
<th>Pollutant Source</th>
<th>Pollutant</th>
<th>Water Quality Indicator Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Work</td>
<td>VOCs</td>
<td>VOCs</td>
</tr>
<tr>
<td>Adhesives</td>
<td>COD, Phenols, SVOCs</td>
<td></td>
</tr>
<tr>
<td>Acids</td>
<td>pH, Acid, Anion</td>
<td>pH, Acid, Anion</td>
</tr>
<tr>
<td>Vehicles – heavy metals, oil, grease</td>
<td>Pb, pH</td>
<td>Pb, pH</td>
</tr>
<tr>
<td>Solvents</td>
<td>VOCs, SVOCs</td>
<td>VOCs, SVOCs</td>
</tr>
<tr>
<td>Sealant (Methyl methacrylate)</td>
<td>SVOC</td>
<td>SVOC</td>
</tr>
<tr>
<td>Curing compounds</td>
<td>VOCs, SVOCs, pH</td>
<td>VOCs, SVOCs, pH</td>
</tr>
<tr>
<td>Ash, slag, sand</td>
<td>pH, Al, Ca, Va, Zn</td>
<td>pH, Al, Ca, Va, Zn</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Dependant on product used</td>
<td>Dependant on product used</td>
</tr>
<tr>
<td>Paving</td>
<td>VOCs</td>
<td>VOCs</td>
</tr>
<tr>
<td>Resins</td>
<td>COD, SVOCs</td>
<td>COD, SVOCs</td>
</tr>
<tr>
<td>Thinners</td>
<td>COD, VOCs</td>
<td>COD, VOCs</td>
</tr>
<tr>
<td>Paint strippers</td>
<td>VOCs, SVOCs, metals</td>
<td>VOCs, SVOCs, metals</td>
</tr>
<tr>
<td>Sanitary Waste</td>
<td>BOD, Total/Fecal coliform</td>
<td>BOD, Total/Fecal coliform</td>
</tr>
<tr>
<td>Sewer line breaks and Portable Toilets (using clear fluid – blue fluid is visible if discharged)</td>
<td>BOD</td>
<td>BOD</td>
</tr>
<tr>
<td>Solid Waste (leakage)</td>
<td>BOD</td>
<td>BOD</td>
</tr>
<tr>
<td>Batteries</td>
<td>Sulfuric acid; Pb, pH</td>
<td>Sulfuric acid; Pb, pH</td>
</tr>
</tbody>
</table>
7.7.1.5 Sample Collection

Samples of discharge shall be collected at the designated non-visible pollutant sampling locations shown on the Site Maps in Appendix B or in the locations determined by observed breaches, malfunctions, leakages, spills, operational areas, soil amendment application areas, and historical site usage areas that triggered the sampling event.

Grab samples shall be collected and preserved in accordance with the methods identified in the Table, “Sample Collection, Preservation and Analysis for Monitoring Non-Visible Pollutants” provided in Section 7.7.1.6. Only the QSP, or personnel trained in water quality sampling under the direction of the QSP shall collect samples.

Sample collection and handling requirements are described in Section 7.7.7.

7.7.1.6 Sample Analysis

Samples shall be analyzed using the analytical methods identified in the Table 7.11.

Samples will be analyzed by:

- **Laboratory Name:** CROSBY & OVERTON ANALYTICAL LABORATORY
- **Street Address:** 1655 CANAL STREET
- **City, State Zip:** LONG BEACH, CA 90813
- **Telephone Number:** (562) 432-5445
- **Point of Contact:**
 - **ELAP Certification Number:** 1568

Samples will be delivered to the laboratory by:

- **Driven by Contractor** ☑ Yes ☐ No
- **Picked up by Laboratory Courier** ☑ Yes ☐ No
- **Shipped** ☐ Yes ☑ No
Table 7.11 Sample Collection, Preservation and Analysis for Monitoring Non-Visible Pollutants

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Analytical Method</th>
<th>Minimum Sample Volume</th>
<th>Sample Containers</th>
<th>Sample Preservation</th>
<th>Reporting Limit</th>
<th>Maximum Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Sulfate, Battery Acid</td>
<td>EPA 150.1 pH/ EPA 300Sulfate</td>
<td>500 ml</td>
<td>500ml + Plastic Container</td>
<td>Ice/Refrigeration</td>
<td>10 pH/10 Sulfate</td>
<td>12 hrs/14 days</td>
</tr>
<tr>
<td>Lead from Vehicle Batteries</td>
<td>EPA 6010b Lead</td>
<td>500 ml</td>
<td>500ml + Plastic Container</td>
<td>Nitric Acid</td>
<td>5 ppb</td>
<td>14 days</td>
</tr>
<tr>
<td>Solvents, VOC/SVOC</td>
<td>EPA 601/602 or EPA 624 or EPA 625</td>
<td>40 ml</td>
<td>3 VOA</td>
<td>HCL</td>
<td>Several</td>
<td>14 days</td>
</tr>
<tr>
<td>Curing Compounds, non-pigmented</td>
<td>SM 2310B/2320, EPA150.1, 601, 602, 624, and 625</td>
<td>1000 ml</td>
<td>500 ml Plastic</td>
<td>Ice/HCL</td>
<td>Several</td>
<td>pH 24 hrs/14 days</td>
</tr>
<tr>
<td>Sealants, COD</td>
<td>EPA 410.4</td>
<td>500 ml</td>
<td>500 ml Poly</td>
<td>Sulfuric Acid (H₂SO₄)</td>
<td>10 mg/l</td>
<td>8 days</td>
</tr>
<tr>
<td>Fertilizer, Nitrates</td>
<td>EPA 300.0</td>
<td>100 ml</td>
<td>500 ml Poly</td>
<td>Non-Req.</td>
<td>0, 10</td>
<td>48 hrs</td>
</tr>
</tbody>
</table>

Notes:
7.7.1.7 Data Evaluation and Reporting

The QSP shall complete an evaluation of the water quality sample analytical results.

Runoff/downgradient results shall be compared with the associated upgradient/unaffected results and any associated run-on results. Should the runoff/downgradient sample show an increased level of the tested analyte relative to the unaffected background sample, which cannot be explained by run-on results, the BMPs, site conditions, and surrounding influences shall be assessed to determine the probable cause for the increase.

As determined by the site and data evaluation, appropriate BMPs shall be repaired or modified to mitigate discharges of non-visible pollutant concentrations. Any revisions to the BMPs shall be recorded as an amendment to the SWPPP.

The General Permit prohibits the storm water discharges that contain hazardous substances equal to or in excess of reportable quantities established in 40 C.F.R. §§ 117.3 and 302.4. The results of any non-stormwater discharge results that indicate the presence of a hazardous substance in excess of established reportable quantities shall be immediately reported to the Regional Water Board and other agencies as required by 40 C.F.R. §§ 117.3 and 302.4.

Results of non-visible pollutant monitoring shall be reported in the Annual Report.

7.7.2 Sampling and Analysis Plan for pH and Turbidity in Stormwater Runoff Discharges

Sampling and analysis of runoff for pH and turbidity is not required for Risk Level 1 projects.

7.7.3 Sampling and Analysis Plan for pH, Turbidity, and SSC in Receiving Water

This project is not subject to Receiving Water Monitoring.

7.7.4 Sampling and Analysis Plan for Non-Stormwater Discharges

This project is not subject to the non-stormwater sampling and analysis requirements of the General Permit because it is a Risk Level 1 project.

7.7.5 Sampling and Analysis Plan for Other Pollutants Required by the Regional Water Board

The Regional Water Board has not specified monitoring for additional pollutants.

7.7.6 Training of Sampling Personnel

Sampling personnel shall be trained to collect, maintain, and ship samples in accordance with the Surface Water Ambient Monitoring program (SWAMP) 2008 Quality Assurance Program Plan (QAPrP). Training records of designated contractor sampling personnel are provided in Appendix K.
The stormwater sampler(s) and alternate(s) have received the following stormwater sampling training:

<table>
<thead>
<tr>
<th>Name</th>
<th>Training</th>
</tr>
</thead>
</table>

The stormwater sampler(s) and alternates have the following stormwater sampling experience:

<table>
<thead>
<tr>
<th>Name</th>
<th>Experience</th>
</tr>
</thead>
</table>

7.7.7 **Sample Collection and Handling**

7.7.7.1 **Sample Collection**

Samples shall be collected at the designated sampling locations shown on the Site Maps and listed in the preceding sections. Samples shall be collected, maintained and shipped in accordance with the SWAMP 2008 Quality Assurance Program Plan (QAPrP).

Grab samples shall be collected and preserved in accordance with the methods identified in preceding sections.

To maintain sample integrity and prevent cross-contamination, sample collection personnel shall follow the protocols below.

- Collect samples (for laboratory analysis) only in analytical laboratory-provided sample containers;
- Wear clean, powder-free nitrile gloves when collecting samples;
- Change gloves whenever something not known to be clean has been touched;
- Change gloves between sites;
- Decontaminate all equipment (e.g. bucket, tubing) prior to sample collection using a trisodium phosphate water wash, distilled water rinse, and final rinse with distilled water. (Dispose of wash and rinse water appropriately, i.e., do not discharge to storm drain or receiving water). Do not decontaminate laboratory provided sample containers;
- Do not smoke during sampling events;
- Never sample near a running vehicle;
- Do not park vehicles in the immediate sample collection area (even non-running vehicles);
- Do not eat or drink during sample collection; and
- Do not breathe, sneeze, or cough in the direction of an open sample container.
The most important aspect of grab sampling is to collect a sample that represents the entire runoff stream. Typically, samples are collected by dipping the collection container in the runoff flow paths and streams as noted below.

i. For small streams and flow paths, simply dip the bottle facing upstream until full.

ii. For larger stream that can be safely accessed, collect a sample in the middle of the flow stream by directly dipping the mouth of the bottle. Once again making sure that the opening of the bottle is facing upstream as to avoid any contamination by the sampler.

iii. For larger streams that cannot be safely waded, pole-samplers may be needed to safely access the representative flow.

iv. Avoid collecting samples from ponded, sluggish or stagnant water.

v. Avoid collecting samples directly downstream from a bridge as the samples can be affected by the bridge structure or runoff from the road surface.

Note, that depending upon the specific analytical test, some containers may contain preservatives. These containers should never be dipped into the stream, but filled indirectly from the collection container.

SSC samples should be taken as a normal grab sample, where the bottle is submerged facing upstream and filled. SSC samples need to be collected in a separate bottle because the analysis requires the entire volume of the bottle. Do not collect in a larger container and partition into the laboratory sample container.

7.7.7.2 Sample Handling

Turbidity and pH measurements must be conducted immediately. Do not store turbidity or pH samples for later measurement.

Samples for laboratory analysis must be handled as follows. Immediately following sample collection:

- Cap sample containers;
- Complete sample container labels;
- Sealed containers in a re-sealable storage bag;
- Place sample containers into an ice-chilled cooler;
- Document sample information on the Effluent Sampling Field Log Sheet; and
- Complete the CoC.

All samples for laboratory analysis must be maintained between 0-6 degrees Celsius during delivery to the laboratory. Samples must be kept on ice, or refrigerated, from sample collection through delivery to the laboratory. Place samples to be shipped inside coolers with ice. Make sure the sample bottles are well packaged to prevent breakage and secure cooler lids with packaging tape.
Ship samples that will be laboratory analyzed to the analytical laboratory right away. Hold times are measured from the time the sample is collected to the time the sample is analyzed. The General Permit requires that samples be received by the analytical laboratory within 48 hours of the physical sampling (unless required sooner by the analytical laboratory).

Laboratory Name: CROSBY & OVERTON ANALYTICAL LABORATORY
Address: 1655 CANAL STREET
City, State Zip: LONG BEACH, CA 90813
Telephone Number: (562) 432-5445
Point of Contact:

7.7.7.3 Sample Documentation Procedures

All original data documented on sample bottle identification labels, Effluent Sampling Field Log Sheet, and CoCs shall be recorded using waterproof ink. These shall be considered accountable documents. If an error is made on an accountable document, the individual shall make corrections by lining through the error and entering the correct information. The erroneous information shall not be obliterated. All corrections shall be initialed and dated.

Duplicate samples shall be identified consistent with the numbering system for other samples to prevent the laboratory from identifying duplicate samples. Duplicate samples shall be identified in the Effluent Sampling Field Log Sheet.

Sample documentation procedures include the following:

Sample Bottle Identification Labels: Sampling personnel shall attach an identification label to each sample bottle. Sample identification shall uniquely identify each sample location.

Field Log Sheets: Sampling personnel shall complete the Effluent Sampling Field Log Sheet and Receiving Water Sampling Field Log Sheet for each sampling event, as appropriate.

Chain of Custody: Sampling personnel shall complete the CoC for each sampling event for which samples are collected for laboratory analysis. The sampler will sign the CoC when the sample(s) is turned over to the testing laboratory or courier.

7.8 Active Treatment System Monitoring

An Active Treatment System (ATS) will be deployed on the site?

☐ Yes ☒ No

This project does not require a project specific Sampling and Analysis Plan for an ATS because deployment of an ATS is not planned.

7.9 Bioassessment Monitoring

This project is not subject to bioassessment monitoring because it is not a Risk Level 3 project.

7.10 Watershed Monitoring Option

This project is not participating in a watershed monitoring option.
7.11 Quality Assurance and Quality Control

An effective Quality Assurance and Quality Control (QA/QC) plan shall be implemented as part of the CSMP to ensure that analytical data can be used with confidence. QA/QC procedures to be initiated include the following:

- Field logs;
- Clean sampling techniques;
- CoCs;
- QA/QC Samples; and
- Data verification.

Each of these procedures is discussed in more detail in the following sections.

7.11.1 Field Logs

The purpose of field logs is to record sampling information and field observations during monitoring that may explain any uncharacteristic analytical results. Sampling information to be included in the field log include the date and time of water quality sample collection, sampling personnel, sample container identification numbers, and types of samples that were collected. Field observations should be noted in the field log for any abnormalities at the sampling location (color, odor, BMPs, etc.). Field measurements for pH and turbidity should also be recorded in the field log. A Visual Inspection Field Log, an Effluent Sampling Field Log Sheet are included in CSMP Attachment 3 “Example Forms”.

7.11.2 Clean Sampling Techniques

Clean sampling techniques involve the use of certified clean containers for sample collection and clean powder-free nitrile gloves during sample collection and handling. As discussed in Section 7.7.7, adoption of a clean sampling approach will minimize the chance of field contamination and questionable data results.

7.11.3 Chain of Custody

The sample CoC is an important documentation step that tracks samples from collection through analysis to ensure the validity of the sample. Sample CoC procedures include the following:

- Proper labeling of samples;
- Use of CoC forms for all samples; and
- Prompt sample delivery to the analytical laboratory.

Analytical laboratories usually provide CoC forms to be filled out for sample containers. An example CoC is included in CSMP Attachment 3 “Example Forms”.

7.11.4 QA/QC Samples

QA/QC samples provide an indication of the accuracy and precision of the sample collection; sample handling; field measurements; and analytical laboratory methods. The following types of QA/QC will be conducted for this project:

☑ Field Duplicates at a frequency of 1 duplicate minimum per sampling event (Required for all sampling plans with field measurements or laboratory analysis)

☐ Equipment Blanks at a frequency of [Insert frequency required by method] (Only needed if equipment used to collect samples could add the pollutants to sample)

☐ Field Blanks at a frequency of [Insert frequency required by method] (Only required if sampling method calls for field blanks)

☐ Travel Blanks at a frequency of [Insert frequency required by method] (Required for sampling plans that include VOC laboratory analysis)

7.11.4.1 Field Duplicates

Field duplicates provide verification of laboratory or field analysis and sample collection. Duplicate samples shall be collected, handled, and analyzed using the same protocols as primary samples. The sample location where field duplicates are collected shall be randomly selected from the discharge locations. Duplicate samples shall be collected immediately after the primary sample has been collected. Duplicate samples must be collected in the same manner and as close in time as possible to the original sample. Duplicate samples shall not influence any evaluations or conclusion.

7.11.4.2 Equipment Blanks

Equipment blanks provide verification that equipment has not introduced a pollutant into the sample. Equipment blanks are typically collected when:

- New equipment is used;
- Equipment that has been cleaned after use at a contaminated site;
- Equipment that is not dedicated for surface water sampling is used; or
- Whenever a new lot of filters is used when sampling metals.

7.11.4.3 Field Blanks

Field blanks assess potential sample contamination levels that occur during field sampling activities. De-ionized water field blanks are taken to the field, transferred to the appropriate container, and treated the same as the corresponding sample type during the course of a sampling event.

7.11.4.4 Travel Blanks

Travel blanks assess the potential for cross-contamination of volatile constituents between sample containers during shipment from the field to the laboratory. De-ionized water blanks are taken along for the trip and held unopened in the same cooler with the VOC samples.
7.11.5 Data Verification

After results are received from the analytical laboratory, the QSP shall verify the data to ensure that it is complete, accurate, and the appropriate QA/QC requirements were met. Data must be verified as soon as the data reports are received. Data verification shall include:

- Check the CoC and laboratory reports.
 Make sure all requested analyses were performed and all samples are accounted for in the reports.
- Check laboratory reports to make sure hold times were met and that the reporting levels meet or are lower than the reporting levels agreed to in the contract.
- Check data for outlier values and follow up with the laboratory.
 Occasionally typographical errors, unit reporting errors, or incomplete results are reported and should be easily detected. These errors need to be identified, clarified, and corrected quickly by the laboratory. The QSP should especially note data that is an order of magnitude or more different than similar locations, or is inconsistent with previous data from the same location.
- Check laboratory QA/QC results.
 EPA establishes QA/QC checks and acceptable criteria for laboratory analyses. These data are typically reported along with the sample results. The QSP shall evaluate the reported QA/QC data to check for contamination (method, field, and equipment blanks), precision (laboratory matrix spike duplicates), and accuracy (matrix spikes and laboratory control samples). When QA/QC checks are outside acceptable ranges, the laboratory must flag the data, and usually provides an explanation of the potential impact to the sample results.
- Check the data set for outlier values and, accordingly, confirm results and re-analyze samples where appropriate.
 Sample re-analysis should only be undertaken when it appears that some part of the QA/QC resulted in a value out of the accepted range. Sample results may not be discounted unless the analytical laboratory identifies the required QA/QC criteria were not met and confirms this in writing.

Field data including inspections and observations must be verified as soon as the field logs are received, typically at the end of the sampling event. Field data verification shall include:

- Check field logs to make sure all required measurements were completed and appropriately documented;
- Check reported values that appear out of the typical range or inconsistent; Follow-up immediately to identify potential reporting or equipment problems, if appropriate, recalibrate equipment after sampling;
- Verify equipment calibrations;
- Review observations noted on the field logs; and
- Review notations of any errors and actions taken to correct the equipment or recording errors.
7.12 **Records Retention**

All records of stormwater monitoring information and copies of reports (including Annual Reports) must be retained for a period of at least three years from date of submittal or longer if required by the Regional Water Board.

Results of visual monitoring, field measurements, and laboratory analyses must be kept in the SWPPP along with CoCs, and other documentation related to the monitoring.

Records are to be kept onsite while construction is ongoing. Records to be retained include:

- The date, place, and time of inspections, sampling, visual observations, and/or measurements, including precipitation;
- The individual(s) who performed the inspections, sampling, visual observation, and/or field measurements;
- The date and approximate time of field measurements and laboratory analyses;
- The individual(s) who performed the laboratory analyses;
- A summary of all analytical results, the method detection limits and reporting limits, and the analytical techniques or methods used;
- Rain gauge readings from site inspections;
- QA/QC records and results;
- Calibration records;
- Visual observation and sample collection exemption records;

The records of any corrective actions and follow-up activities that resulted from analytical results, visual observations, or inspections; and NAL Exceedance Reports.
CSMP Attachment 3: Example Forms
<table>
<thead>
<tr>
<th>Date (mm/dd/yy)</th>
<th>Time (24-hr)</th>
<th>Initials</th>
<th>Rainfall Depth (Inches)</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk Level 1, 2, 3
Visual Inspection Field Log Sheet

<table>
<thead>
<tr>
<th>Date and Time of Inspection:</th>
<th>Report Date:</th>
</tr>
</thead>
</table>

Inspection Type:
- □ Weekly
- □ Before predicted rain
- □ During rain event
- □ Following qualifying rain event
- □ Contained stormwater release
- □ Quarterly non-stormwater

Site Information

<table>
<thead>
<tr>
<th>Construction Site Name:</th>
<th>Approximate area of exposed site:</th>
</tr>
</thead>
</table>

Construction stage and completed activities:

Weather and Observations

<table>
<thead>
<tr>
<th>Date Rain Predicted to Occur:</th>
<th>Predicted % chance of rain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimate storm beginning:</th>
<th>Estimate storm duration:</th>
<th>Estimate time since last storm:</th>
<th>Rain gauge reading:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(date and time)</td>
<td>(hours)</td>
<td>(days or hours)</td>
<td>(inches)</td>
</tr>
</tbody>
</table>

Observations: If yes identify location
- Odors: Yes □ No □
- Floating material: Yes □ No □
- Suspended Material: Yes □ No □
- Sheen: Yes □ No □
- Discolorations: Yes □ No □
- Turbidity: Yes □ No □

Site Inspections

<table>
<thead>
<tr>
<th>Outfalls or BMPs Evaluated</th>
<th>Deficiencies Noted</th>
</tr>
</thead>
</table>

(Add additional sheets or attached detailed BMP Inspection Checklists)

Photos Taken: Yes □ No □
Photo Reference IDs:

Corrective Actions Identified (note if SWPPP/REAP change is needed)

Inspector Information

<table>
<thead>
<tr>
<th>Inspector Name:</th>
<th>Inspector Title:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Sample ID</td>
<td>Sample Date</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELINQUISHED BY

Signature:
Print:
Company:
Date:
TIME:

LABORATORY COMMENTS:

RECEIVED BY

Signature:
Print:
Company:
Date:
TIME:
CSMP Attachment 4: Field Meter Instructions
Section 8 References

Project Plans and Specifications No. 3416b dated October, 2018 prepared by Thienes Engineering Inc.

Appendix A: Calculations
Facility Information

- Start Date: 12/01/2018
- End Date: 12/01/2019
- Latitude: 34.7617
- Longitude: -118.2853

Erosivity Index Calculator Results

An erosivity index value of **21.16** has been determined for the construction period of **12/01/2018 - 12/01/2019**.

A rainfall erosivity factor of 5.0 or greater has been calculated for your site and period of construction. **You do NOT qualify for a waiver from NPDES permitting requirements.**

Start Over
Risk

The application is organized into different tabs. Please complete all applicable tabs before submitting the form. If you want to complete the application at a later time, please click on "Save & Exit".

WDID/App ID: - 494885
Owner: AIGGRE Cedar Avenue Investor LLC
Certified Date: 02/06/2018

Status: Retumed
Processed Date:

Order No: 2009-0009-DWQ
Site: San Pedro Distribution Center
NOT Effective Date:

Permit Type: Construction - NOI
Previous ID: -

SEDIMENT RISK FACTOR WORKSHEET

Instructions: Enter R,K and LS factor values. System will calculate watershed erosion estimates and site sediment risk factor.

A. Sediment Risk

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Factor</td>
<td>21.16</td>
</tr>
<tr>
<td>K Factor</td>
<td>0.32</td>
</tr>
<tr>
<td>LS Factor</td>
<td>1.2621083</td>
</tr>
</tbody>
</table>

Watershed Erosion Estimate (R*K*LS) in tons/acre

<table>
<thead>
<tr>
<th>Site Sediment Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

RECEIVING WATER (RW) RISK FACTOR WORKSHEET

A. Watershed Characteristics

OR

<table>
<thead>
<tr>
<th>A1(a)</th>
<th>Does the disturbed area discharge directly or indirectly to a 303(d) listed waterbody impaired by sediment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A1(b)</th>
<th>Is the disturbed area located within a sub-watershed draining to a 303(d) listed waterbody impaired by sediment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A2.</th>
<th>Is the disturbed area located within a planning watershed draining to a waterbody with designated beneficial uses of COLD, SPAWN AND MIGRATORY?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td></td>
</tr>
</tbody>
</table>

C. Combined Risk Level Matrix

<table>
<thead>
<tr>
<th>Receiving Water Risk</th>
<th>Sediment Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low Level1</td>
</tr>
<tr>
<td></td>
<td>Medium Level2</td>
</tr>
<tr>
<td></td>
<td>High Level3</td>
</tr>
</tbody>
</table>

Project Sediment Risk: LOW

Project Receiving Water Risk: LOW

Project Combined Risk: Level1

Fields marked with * are mandatory fields.
Permit Registration Documents included in this Appendix

<table>
<thead>
<tr>
<th>Y/N</th>
<th>Permit Registration Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>Y</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>Y</td>
<td>Certification</td>
</tr>
<tr>
<td>Y</td>
<td>Copy of Annual Fee Receipt</td>
</tr>
<tr>
<td>Y</td>
<td>Site Map, see Appendix B</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Sediment Risk Factor Worksheet</td>
</tr>
<tr>
<td>2</td>
<td>A) R Factor</td>
</tr>
<tr>
<td>3</td>
<td>Analyses of data indicated that when factors other than rainfall are held constant, soil loss is directly proportional to a rainfall factor composed of total storm kinetic energy (E) times the maximum 30-min intensity (I30) (Wischmeier and Smith, 1958). The numerical value of R is the average annual sum of EI30 for storm events during a rainfall record of at least 22 years. "Isoerodent" maps were developed based on R values calculated for more than 1000 locations in the Western U.S. Refer to the link below to determine the R factor for the project site.</td>
</tr>
<tr>
<td>5</td>
<td>R Factor Value</td>
</tr>
<tr>
<td>6</td>
<td>B) K Factor (weighted average, by area, for all site soils)</td>
</tr>
<tr>
<td>7</td>
<td>The soil-erodibility factor K represents: (1) susceptibility of soil or surface material to erosion, (2) transportability of the sediment, and (3) the amount and rate of runoff given a particular rainfall input, as measured under a standard condition. Fine-textured soils that are high in clay have low K values (about 0.05 to 0.15) because the particles are resistant to detachment. Coarse-textured soils, such as sandy soils, also have low K values (about 0.05 to 0.2) because of high infiltration resulting in low runoff even though these particles are easily detached. Medium-textured soils, such as a silt loam, have moderate K values (about 0.25 to 0.45) because they are moderately susceptible to particle detachment and they produce runoff at moderate rates. Soils having a high silt content are especially susceptible to erosion and have high K values, which can exceed 0.45 and can be as large as 0.65. Silt-size particles are easily detached and tend to crust, producing high rates and large volumes of runoff. Use Site-specific data must be submitted.</td>
</tr>
<tr>
<td>8</td>
<td>Site-specific K factor guidance</td>
</tr>
<tr>
<td>9</td>
<td>K Factor Value</td>
</tr>
<tr>
<td>10</td>
<td>The effect of topography on erosion is accounted for by the LS factor, which combines the effects of a hillslope-length factor, L, and a hillslope-gradient factor, S. Generally speaking, as hillslope length and/or hillslope gradient increase, soil loss increases. As hillslope length increases, total soil loss and soil loss per unit area increase due to the progressive accumulation of runoff in the downslope direction. As the hillslope gradient increases, the velocity and erosivity of runoff increases. Use the LS table located in separate tab of this spreadsheet to determine LS factors. Estimate the weighted LS for the site prior to construction.</td>
</tr>
<tr>
<td>11</td>
<td>LS Table</td>
</tr>
<tr>
<td>12</td>
<td>LS Factor Value</td>
</tr>
<tr>
<td>13</td>
<td>Watershed Erosion Estimate (=RxKxLS) in tons/acre</td>
</tr>
<tr>
<td>14</td>
<td>Site Sediment Risk Factor</td>
</tr>
<tr>
<td>15</td>
<td>Low Sediment Risk: < 15 tons/acre</td>
</tr>
<tr>
<td>16</td>
<td>Medium Sediment Risk: >=15 and <75 tons/acre</td>
</tr>
<tr>
<td>17</td>
<td>High Sediment Risk: >= 75 tons/acre</td>
</tr>
</tbody>
</table>
Receiving Water (RW) Risk Factor Worksheet

<table>
<thead>
<tr>
<th>Entry</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Watershed Characteristics</td>
<td>yes/no</td>
</tr>
<tr>
<td>A.1. Does the disturbed area discharge (either directly or indirectly) to a 303(d)-listed waterbody impaired by sediment (For help with impaired waterbodies please check the attached worksheet or visit the link below) or has a USEPA approved TMDL implementation plan for sediment?:</td>
<td>no</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>A.2. Does the disturbed area discharge to a waterbody with designated beneficial uses of SPAWN & COLD & MIGRATORY?</td>
<td></td>
</tr>
</tbody>
</table>
Combined Risk Level Matrix

<table>
<thead>
<tr>
<th>Receiving Water Risk</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Level 1</td>
<td>Level 2</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Level 2</td>
<td>Level 3</td>
<td></td>
</tr>
</tbody>
</table>

Sediment Risk

Project Sediment Risk: Low
Project RW Risk: Low
Project Combined Risk: Level 1
Appendix D: SWPPP Amendment Certifications
SWPPP Amendment No.

Project Name:

Project Number:

Qualified SWPPP Developer’s Certification of the
Stormwater Pollution Prevention Plan Amendment

“This Stormwater Pollution Prevention Plan and attachments were prepared under my direction to meet the requirements of the California Construction General Permit (SWRCB Order No. 2009-009-DWQ as amended by 2010-0014-DWQ and 2012-0006-DWQ). I certify that I am a Qualified SWPPP Developer in good standing as of the date signed below.”

Julianne Frabizio
QSD Name

Water Resource Engineer & Thienes Engineering Inc.
Title and Affiliation

14349 Firestone Blvd. La Mirada, CA 90638
Address

Date
#20447

QSD Certificate Number
(714) 521-4811

Telephone
julianne@thieneseng.com
Email
Appendix E: Submitted Changes to PRDs
Log of Updated PRDs

The General Permit allows for the reduction or increase of the total acreage covered under the General Permit when a portion of the project is complete and/or conditions for termination of coverage have been met; when ownership of a portion of the project is purchased by a different entity; or when new acreage is added to the project.

Modified PRDs shall be filed electronically within 30 days of a reduction or increase in total disturbed area if a change in permit covered acreage is to be sought. The SWPPP shall be modified appropriately, with revisions and amendments recorded in Appendix C. Updated PRDs submitted electronically via SMARTS can be found in this Appendix.

This appendix includes all of the following updated PRDs (check all that apply):

☐ Revised Notice of Intent (NOI);

☐ Revised Site Map;

☐ Revised Risk Assessment;

☐ New landowner’s information (name, address, phone number, email address); and

☐ New signed certification statement.

AIGGRE San Pedro Industrial Owner LLC

Legally Responsible Person

Signature of Legally Responsible Person or Approved Signatory

Tim Howard

(714) 602-7345

Name of Legally Responsible Person or Approved Signatory

Telephone Number

October 2018
The construction schedule will be provided prior to start of the construction.
Appendix G: Construction Activities, Materials Used, and Associated Pollutants
<table>
<thead>
<tr>
<th>Phase</th>
<th>Activity</th>
<th>Associated Materials or Pollutants</th>
<th>Pollutant Category(^{(i)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading and Land Development</td>
<td>REMOVAL OF EXISTING STRUCTURES</td>
<td>• DEMOLITION OF ASPHALT, CONCRETE, MASONRY, FRAMING, ROOFING, METAL STRUCTURES.</td>
<td>METALS, OIL AND GREASE, SYNTHETIC ORGANICS</td>
</tr>
<tr>
<td></td>
<td>SANITARY WASTE</td>
<td>• PORTABLE TOILETS • DISTURBANCE OF EXISTING SEWER LINES.</td>
<td>NUTRIENTS</td>
</tr>
<tr>
<td></td>
<td>SOIL PREPARATION/AMENDMENTS</td>
<td>• USE OF SOIL ADDITIVES/AMENDMENTS</td>
<td>NUTRIENTS</td>
</tr>
<tr>
<td></td>
<td>SOLID WASTE</td>
<td>• LITTER, TRASH AND DEBRIS • VEGETATION</td>
<td>GROSS POLLUTANTS</td>
</tr>
<tr>
<td></td>
<td>VEHICLE AND EQUIPMENT USE</td>
<td>• EQUIPMENT OPERATION • EQUIPMENT MAINTENANCE • EQUIPMENT WASHING • EQUIPMENT FUELING</td>
<td>OIL AND GREASE</td>
</tr>
<tr>
<td>Streets and Utilities Phase</td>
<td>ADHESIVES</td>
<td>• ADHESIVES, GLUES, RESINS, EPOXY SYNTHETICS, PVC CEMENT • CAULKS, SEALERS, PUTTY, SEALING AGENTS AND • COAL TARS (NAPHTHA, PITCH)</td>
<td>OIL AND GREASE, SYNTHETIC ORGANICS(^{1})</td>
</tr>
<tr>
<td></td>
<td>ASPHALT PAVING/CURBS</td>
<td>• HOT AND COLD MIX ASPHALT</td>
<td>OIL AND GREASE</td>
</tr>
<tr>
<td></td>
<td>SANITARY WASTE</td>
<td>• PORTABLE TOILETS • DISTURBANCE OF EXISTING SEWER LINES.</td>
<td>NUTRIENTS</td>
</tr>
<tr>
<td></td>
<td>UTILITY LINE TESTING AND FLUSHING</td>
<td>• HYDROSTATIC TEST WATER • PIPE FLUSHING</td>
<td>SYNTHETIC ORGANICS</td>
</tr>
<tr>
<td></td>
<td>VEHICLE AND EQUIPMENT USE</td>
<td>• EQUIPMENT OPERATION • EQUIPMENT MAINTENANCE • EQUIPMENT WASHING • EQUIPMENT FUELING</td>
<td>OIL AND GREASE</td>
</tr>
<tr>
<td>Vertical Construction Phase</td>
<td>ADHESIVES</td>
<td>• ADHESIVES, GLUES, RESINS, EPOXY SYNTHETICS, PVC CEMENT • CAULKS, SEALERS, PUTTY, SEALING</td>
<td>OIL AND GREASE, SYNTHETIC ORGANICS(^{1})</td>
</tr>
<tr>
<td>Phase</td>
<td>Activity</td>
<td>Associated Materials or Pollutants</td>
<td>Pollutant Category</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>AGENTS AND</td>
<td></td>
<td>AGENTS AND</td>
<td></td>
</tr>
<tr>
<td>COAL TARS (NAPHTHA, PITCH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEANERS</td>
<td>• POLISHES (METAL, CERAMIC, TILE)</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>• ETCHING AGENTS</td>
<td>• CLEANERS, AMMONIA, LYE, CAUSTIC SODAS, BLEACHING AGENTS AND CHROMATE SALTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCRETE / MASONRY</td>
<td>• CEMENT AND BRICK DUST</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>• COLORED CHALKS</td>
<td>• CONCRETE CURING COMPOUNDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GLAZING COMPOUNDS</td>
<td>• SURFACES CLEANERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SAW CUT SLURRIES</td>
<td>• TILE CUTTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRYWALL</td>
<td>• SAW-CUTTING DRYWALL</td>
<td>METALS</td>
<td></td>
</tr>
<tr>
<td>FRAMING/CARPENTRY</td>
<td>• SAWDUST, PARTICLE BOARD DUST, AND TREATED WOODS</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>• SAW CUT SLURRIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING, VENTILATION, AIR</td>
<td>• DEMOLITION OR CONSTRUCTION OF AIR CONDITION</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>CONDITIONING</td>
<td>AND HEATING SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSULATION</td>
<td>• DEMOLITION OR CONSTRUCTION INVOLVING</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>INSULATION</td>
<td>INSULATION, VENTING, AIR CONDITIONING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• INSULATION, VENTING, AIR</td>
<td>• WASH WATERS</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>● CONDITIONING AND HEATING SYSTEMS</td>
<td>• IRRIGATION LINE TESTING/FLUSHING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID WASTE</td>
<td>• PAINT THINNERS, ACETONE, METHYL ETHYL KETONE,</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>PAINTING</td>
<td>STRIPPER PAINTS, LACQUERS, VARNISH, ENAMELS,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TURPENTINE, GUM SPIRIT, SOLVENTS,</td>
<td>DYSES, STRIPPING PIGMENTS AND SANDING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUMBING</td>
<td>• SOLDER (LEAD, TIN), FLUX (ZINC CHLORIDE)</td>
<td>METALS, SYNTHETIC ORGANICS</td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>Activity</td>
<td>Associated Materials or Pollutants</td>
<td>Pollutant Category(1)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>PIPE FITTING</td>
<td>GALVANIZED METAL IN NAILS, FENCES, AND ELECTRIC WIRING</td>
<td>Metals, Oil and Grease, Synthetic Organics</td>
<td></td>
</tr>
<tr>
<td>ROOFING</td>
<td>FLASHING</td>
<td>Metals, Oil and Grease, Synthetic Organics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAW CUT SLURRIES (TILE CUTTING)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHINGLE SCRAP AND DEBRIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANITARY WASTE</td>
<td>PORTABLE TOILETS</td>
<td>Nutrients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISTURBANCE OF EXISTING SEWER LINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLID WASTE</td>
<td>LITTER, TRASH AND DEBRIS</td>
<td>Gross Pollutants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGETATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEHICLE AND EQUIPMENT USE</td>
<td>EQUIPMENT OPERATION</td>
<td>Oil and Grease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT MAINTENANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT WASHING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT FUELING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID WASTE</td>
<td>WASH WATERS</td>
<td>Metals, Synthetic Organics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRRIGATION LINE TESTING/FLUSHING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANTING / VEGETATION MANAGEMENT</td>
<td>VEGETATION CONTROL (PESTICIDES/HERBICIDES)</td>
<td>Nutrients, Metals, Synthetic Organics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLANTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLANT MAINTENANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGETATION REMOVAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANITARY WASTE</td>
<td>PORTABLE TOILETS</td>
<td>Nutrients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISTURBANCE OF EXISTING SEWER LINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLID WASTE</td>
<td>LITTER, TRASH AND DEBRIS</td>
<td>Gross Pollutants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEGETATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEHICLE AND EQUIPMENT USE</td>
<td>EQUIPMENT OPERATION</td>
<td>Oil and Grease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT MAINTENANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT WASHING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQUIPMENT FUELING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Categories per CASQA BMP Handbook (i.e., Sediment, Nutrients, Bacteria and Viruses, Oil and Grease, Metals, Synthetic Organics, Pesticides, Gross Pollutants, and Vector Production)
Appendix H: CASQA Stormwater BMP Handbook

Portal: Construction Fact Sheets
Description and Purpose
Scheduling is the development of a written plan that includes sequencing of construction activities and the implementation of BMPs such as erosion control and sediment control while taking local climate (rainfall, wind, etc.) into consideration. The purpose is to reduce the amount and duration of soil exposed to erosion by wind, rain, runoff, and vehicle tracking, and to perform the construction activities and control practices in accordance with the planned schedule.

Suitable Applications
Proper sequencing of construction activities to reduce erosion potential should be incorporated into the schedule of every construction project especially during rainy season. Use of other, more costly yet less effective, erosion and sediment control BMPs may often be reduced through proper construction sequencing.

Limitations
- Environmental constraints such as nesting season prohibitions reduce the full capabilities of this BMP.

Implementation
- Avoid rainy periods. Schedule major grading operations during dry months when practical. Allow enough time before rainfall begins to stabilize the soil with vegetation or physical means or to install sediment trapping devices.
- Plan the project and develop a schedule showing each phase of construction. Clearly show how the rainy season relates
to soil disturbing and re-stabilization activities. Incorporate the construction schedule into the SWPPP.

- Include on the schedule, details on the rainy season implementation and deployment of:
 - Erosion control BMPs
 - Sediment control BMPs
 - Tracking control BMPs
 - Wind erosion control BMPs
 - Non-stormwater BMPs
 - Waste management and materials pollution control BMPs

- Include dates for activities that may require non-stormwater discharges such as dewatering, sawcutting, grinding, drilling, boring, crushing, blasting, painting, hydro-demolition, mortar mixing, pavement cleaning, etc.

- Work out the sequencing and timetable for the start and completion of each item such as site clearing and grubbing, grading, excavation, paving, foundation pouring utilities installation, etc., to minimize the active construction area during the rainy season.
 - Sequence trenching activities so that most open portions are closed before new trenching begins.
 - Incorporate staged seeding and re-vegetation of graded slopes as work progresses.
 - Schedule establishment of permanent vegetation during appropriate planting time for specified vegetation.

- Non-active areas should be stabilized as soon as practical after the cessation of soil disturbing activities or one day prior to the onset of precipitation.

- Monitor the weather forecast for rainfall.

- When rainfall is predicted, adjust the construction schedule to allow the implementation of soil stabilization and sediment treatment controls on all disturbed areas prior to the onset of rain.

- Be prepared year round to deploy erosion control and sediment control BMPs. Erosion may be caused during dry seasons by un-seasonal rainfall, wind, and vehicle tracking. Keep the site stabilized year round, and retain and maintain rainy season sediment trapping devices in operational condition.

- Apply permanent erosion control to areas deemed substantially complete during the project’s defined seeding window.

Costs

Construction scheduling to reduce erosion may increase other construction costs due to reduced economies of scale in performing site grading. The cost effectiveness of scheduling techniques should be compared with the other less effective erosion and sedimentation controls to achieve a cost effective balance.
Inspection and Maintenance

- Verify that work is progressing in accordance with the schedule. If progress deviates, take corrective actions.

- Amend the schedule when changes are warranted.

- Amend the schedule prior to the rainy season to show updated information on the deployment and implementation of construction site BMPs.

References

Description and Purpose
Hydraulic Mulch consists of various types of fibrous materials mixed with water and sprayed onto the soil surface in slurry form to provide a layer of temporary protection from wind and water erosion.

Suitable Applications
Hydraulic mulch as a temporary, stand alone, erosion control BMP is suitable for disturbed areas that require temporary protection from wind and water erosion until permanent soil stabilization activities commence. Examples include:

- Rough-graded areas that will remain inactive for longer than permit-required thresholds (e.g., 14 days) or otherwise require stabilization to minimize erosion or prevent sediment discharges.
- Soil stockpiles.
- Slopes with exposed soil between existing vegetation such as trees or shrubs.
- Slopes planted with live, container-grown vegetation or plugs.
- Slopes burned by wildfire.
Hydraulic mulch can also be applied to augment other erosion control BMPs such as:

- In conjunction with straw mulch (see EC-6 Straw Mulch) where the rate of hydraulic mulch is reduced to 100-500 lbs per acre and the slurry is applied over the straw as a tackifying agent to hold the straw in place.

- Supplemental application of soil amendments, such as fertilizer, lime, gypsum, soil bio-stimulants or compost.

Limitations

In general, hydraulic mulch is not limited by slope length, gradient or soil type. However, the following limitations typically apply:

- Most hydraulic mulch applications, particularly bonded fiber matrices (BFMs), require at least 24 hours to dry before rainfall occurs.

- Temporary applications (i.e., without a vegetative component) may require a second application in order to remain effective for an entire rainy season.

- Treatment areas must be accessible to hydraulic mulching equipment.

- Availability of water sources in remote areas for mixing and application.

- As a stand-alone temporary BMP, hydraulic mulches may need to be re-applied to maintain their erosion control effectiveness, typically after 6-12 months depending on the type of mulch used.

- Availability of hydraulic mulching equipment may be limited just prior to the rainy season and prior to storms due to high demand.

- Cellulose fiber mulches alone may not perform well on steep slopes or in coarse soils.

- This BMP consists of a mixture of several constituents (e.g., fibers/mulches, tackifiers, and other chemical constituents), some of which may be proprietary and may come pre-mixed by the manufacturer. The water quality impacts of these constituents are relatively unknown and some may have water quality impacts due to their chemical makeup. Refer to specific chemical properties identified in the product Material Safety Data Sheet; products should be evaluated for project-specific implementation by the SWPPP Preparer. Refer to factsheet EC-05 for further guidance on selecting soil binders.

Implementation

- Where feasible, it is preferable to prepare soil surfaces prior to application by roughening embankments and fill areas with a crimping or punching type roller or by track walking.

- The majority of hydraulic mulch applications do not necessarily require surface/soil preparation (See EC-15 Soil Preparation) although in almost every case where re-vegetation is included as part of the practice, soil preparation can be beneficial. One of the advantages of hydraulic mulch over other erosion control methods is that it can be applied in areas where soil preparation is precluded by site conditions, such as steep slopes, rocky soils, or inaccessibility.
Hydraulic Mulch

- Avoid mulch over spray onto roads, sidewalks, drainage channels, existing vegetation, etc.

- Hydraulic mulching is generally performed utilizing specialized machines that have a large water-holding/mixing tank and some form of mechanical agitation or other recirculation method to keep water, mulch and soil amendments in suspension. The mixed hydraulic slurry can be applied from a tower sprayer on top of the machine or by extending a hose to areas remote from the machine.

- Where possible apply hydraulic mulch from multiple directions to adequately cover the soil. Application from a single direction can result in shadowing, uneven coverage and failure of the BMP.

- Hydraulic mulch can also include a vegetative component, such as seed, rhizomes, or stolons (see EC-4 Hydraulic Seed).

- Typical hydraulic mulch application rates range from 2,000 pounds per acre for standard mulches (SMs) to 3,500 pounds per acre for BFM. However, the required amount of hydraulic mulch to provide adequate coverage of exposed topsoil may appear to exceed the standard rates when the roughness of the soil surface is changed due to soil preparation methods (see EC-15 Soil Preparation) or by slope gradient.

- Other factors such as existing soil moisture and soil texture can have a profound effect on the amount of hydraulic mulch required (i.e. application rate) applied to achieve an erosion-resistant covering.

- Avoid use of mulch without a tackifier component, especially on slopes.

- Mulches used in the hydraulic mulch slurry can include:
 - Cellulose fiber
 - Thermally-processed wood fibers
 - Cotton
 - Synthetics
 - Compost (see EC-14, Compost Blanket)

- Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.

Categories of Hydraulic Mulches

Standard Hydraulic Mulch (SM)

Standard hydraulic mulches are generally applied at a rate of 2,000 pounds per acre and are manufactured containing around 5% tackifier (i.e. soil binder), usually a plant-derived guar or psyllium type. Most standard mulches are green in color derived from food-color based dyes.
Hydraulic Matrices (HM) and Stabilized Fiber Matrices (SFM)
Hydraulic matrices and stabilized fiber matrices are slurries which contain increased levels of tackifiers/soil binders; usually 10% or more by weight. HMs and SFMs have improved performance compared to a standard hydraulic mulch (SM) because of the additional percentage of tackifier and because of their higher application rates, typically 2,500 – 4,000 pounds per acre. Hydraulic matrices can include a mixture of fibers, for example, a 50/50 blend of paper and wood fiber. In the case of an SFM, the tackifier/soil binder is specified as a polyacrylamide (PAM).

Bonded Fiber Matrix (BFM)
Bonded fiber matrices (BFMs) are hydraulically-applied systems of fibers, adhesives (typically guar based) and chemical cross-links. Upon drying, the slurry forms an erosion-resistant blanket that prevents soil erosion and promotes vegetation establishment. The cross-linked adhesive in the BFM should be biodegradable and should not dissolve or disperse upon re-wetting. BFMs are typically applied at rates from 3,000 to 4,000 lbs/acre based on the manufacturer’s recommendation. BFMs should not be applied immediately before, during or immediately after rainfall or if the soil is saturated. Depending on the product, BFMs typically require 12 to 24 hours to dry and become effective.

Mechanically-Bonded Fiber Matrices (MBFM)
Mechanically-bonded fiber matrices (MBFMs) are hydraulically applied systems similar to BFM that use crimped synthetic fibers and PAM and are typically applied to a slope at a higher application rate than a standard BFM.

Hydraulic Compost Matrix (HCM)
Hydraulic compost matrix (HCM) is a field-derived practice whereby finely graded or sifted compost is introduced into the hydraulic mulch slurry. A guar-type tackifier can be added for steeper slope applications as well as any specified seed mixtures. A HCM can help to accelerate seed germination and growth. HCMs are particularly useful as an in-fill for three-dimensional re-vegetation geocomposites, such as turf reinforcement mats (TRM) (see EC-7 Geotextiles and Mats).

Costs
Average installed costs for hydraulic mulch categories are is provided in Table 1, below.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Installed Cost/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Hydraulic Mulching (SM)</td>
<td>$1,700 - $3,600 per acre</td>
</tr>
<tr>
<td>Hydraulic Matrices (HM) and Stabilized Fiber Matrices</td>
<td>$2,000 - $4,000 per acre</td>
</tr>
<tr>
<td>PAM-based</td>
<td>$2,500 - $5,610 per acre</td>
</tr>
<tr>
<td>Bonded Fiber Matrix (BFM)</td>
<td>$3,900 - $6,900 per acre</td>
</tr>
<tr>
<td>Mechanically Bonded Fiber Matrix (MBFM)</td>
<td>$4,500 - $6,000 per acre</td>
</tr>
<tr>
<td>Hydraulic Compost Matrix (HCM)</td>
<td>$3,000 - $3,500 per acre</td>
</tr>
</tbody>
</table>
Hydraulic Mulch

Source: Cost information received from individual product manufacturers solicited by Geosyntec Consultants (2004)

Inspection and Maintenance

- Maintain an unbroken, temporary mulched ground cover throughout the period of construction when the soils are not being reworked.

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.

- Compare the number of bags or weight of applied mulch to the area treated to determine actual application rates and compliance with specifications.

References

Soil Binders

Description and Purpose
Soil binding consists of application and maintenance of a soil stabilizer to exposed soil surfaces. Soil binders are materials applied to the soil surface to temporarily prevent water and wind induced erosion of exposed soils on construction sites.

Suitable Applications
Soil binders are typically applied to disturbed areas requiring temporary protection. Because soil binders, when used as a stand-alone practice, can often be incorporated into the soil, they are a good alternative to mulches in areas where grading activities will soon resume. Soil binders are commonly used in the following areas:

- Rough graded soils that will be inactive for a short period of time
- Soil stockpiles
- Temporary haul roads prior to placement of crushed rock
- Compacted soil road base
- Construction staging, materials storage, and layout areas

Limitations
- Soil binders are temporary in nature and may need reapplication.
- Soil binders require a minimum curing time until fully effective, as prescribed by the manufacturer. Curing time

Categories

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Erosion Control</td>
</tr>
<tr>
<td>SE</td>
<td>Sediment Control</td>
</tr>
<tr>
<td>TC</td>
<td>Tracking Control</td>
</tr>
<tr>
<td>WE</td>
<td>Wind Erosion Control</td>
</tr>
<tr>
<td>NS</td>
<td>Non-Stormwater Management Control</td>
</tr>
<tr>
<td>WM</td>
<td>Waste Management and Materials Pollution Control</td>
</tr>
</tbody>
</table>

Legend:

- ✔ Primary Category
- ✹ Secondary Category

Targeted Constituents

- Sediment ✔
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Potential Alternatives

- EC-3 Hydraulic Mulch
- EC-4 Hydroseeding
- EC-6 Straw Mulch
- EC-7 Geotextiles and Mats
- EC-8 Wood Mulching

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
may be 24 hours or longer. Soil binders may need reapplication after a storm event.

- Soil binders will generally experience spot failures during heavy rainfall events. If runoff penetrates the soil at the top of a slope treated with a soil binder, it is likely that the runoff will undercut the stabilized soil layer and discharge at a point further down slope.

- Plant-material-based soil binders do not generally hold up to pedestrian or vehicular traffic across treated areas as well as polymeric emulsion blends or cementitious-based binders.

- Soil binders may not sufficiently penetrate compacted soils.

- Some soil binders are soil texture specific in terms of their effectiveness. For example, polyacrylamides (PAMs) work very well on silt and clayey soils but their performance decreases dramatically in sandy soils.

- Some soil binders may not perform well with low relative humidity. Under rainy conditions, some agents may become slippery or leach out of the soil.

- Soil binders may not cure if low temperatures occur within 24 hours of application.

- The water quality impacts of some chemical soil binders are relatively unknown and some may have water quality impacts due to their chemical makeup. Additionally, these chemical may require non-visible pollutant monitoring. Products should be evaluated for project-specific implementation by the SWPPP Preparer. Refer to the product Material Safety Data Sheet for chemical properties.

Implementation

General Considerations

- Soil binders should conform to local municipality specifications and requirements.

- Site soil types will dictate appropriate soil binders to be used.

- A soil binder must be environmentally benign (non-toxic to plant and animal life), easy to apply, easy to maintain, economical, and should not stain paved or painted surfaces. Soil binders should not pollute stormwater when cured. Obtain a Material Safety Data Sheet (MSDS) from the manufacturer to ensure non-toxicity.

- Stormwater runoff from PAM treated soils should pass through one of the following sediment control BMP prior to discharging to surface waters.

 - When the total drainage area is greater than or equal to 5 acres, PAM treated areas should drain to a sediment basin.

 - Areas less than 5 acres should drain to sediment control BMPs, such as a sediment trap, or a series of check dams. The total number of check dams used should be maximized to achieve the greatest amount of settlement of sediment prior to discharging from the site. Each check dam should be spaced evenly in the drainage channel through which stormwater flows are discharged off site.
Performance of soil binders depends on temperature, humidity, and traffic across treated areas.

Avoid over spray onto roads, sidewalks, drainage channels, existing vegetation, etc.

Additional guidance on the comparison and selection of temporary slope stabilization methods is provided in Appendix F of the Handbook.

Selecting a Soil Binder

Properties of common soil binders used for erosion control are provided on Table 1 at the end of this Fact Sheet. Use Table 1 to select an appropriate soil binder. Refer to WE-1, Wind Erosion Control, for dust control soil binders.

Factors to consider when selecting a soil binder include the following:

- Suitability to situation - Consider where the soil binder will be applied, if it needs a high resistance to leaching or abrasion, and whether it needs to be compatible with any existing vegetation. Determine the length of time soil stabilization will be needed, and if the soil binder will be placed in an area where it will degrade rapidly. In general, slope steepness is not a discriminating factor for the listed soil binders.

- Soil types and surface materials - Fines and moisture content are key properties of surface materials. Consider a soil binder's ability to penetrate, likelihood of leaching, and ability to form a surface crust on the surface materials.

- Frequency of application - The frequency of application is related to the functional longevity of the binder, which can be affected by subgrade conditions, surface type, climate, and maintenance schedule.

- Frequent applications could lead to high costs. Application frequency may be minimized if the soil binder has good penetration, low evaporation, and good longevity. Consider also that frequent application will require frequent equipment clean up.

Plant-Material-Based (Short Lived, <6 months) Binders

Guar: Guar is a non-toxic, biodegradable, natural galactomannan-based hydrocolloid treated with dispersant agents for easy field mixing. It should be mixed with water at the rate of 11 to 15 lb per 1,000 gallons. Recommended minimum application rates are as follows:

<table>
<thead>
<tr>
<th>Slope (H:V)</th>
<th>Flat</th>
<th>4:1</th>
<th>3:1</th>
<th>2:1</th>
<th>1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/acre</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

Psyllium: Psyllium is composed of the finely ground muciloid coating of plantago seeds that is applied as a dry powder or in a wet slurry to the surface of the soil. It dries to form a firm but rewettable membrane that binds soil particles together, but permits germination and growth of seed. Psyllium requires 12 to 18 hours drying time. Application rates should be from 80 to 200 lb/acre, with enough water in solution to allow for a uniform slurry flow.
Soil Binders

Starch: Starch is non-ionic, cold water soluble (pre-gelatinized) granular cornstarch. The material is mixed with water and applied at the rate of 150 lb/acre. Approximate drying time is 9 to 12 hours.

Plant-Material-Based (Long Lived, 6-12 months) Binders

Pitch and Rosin Emulsion: Generally, a non-ionic pitch and rosin emulsion has a minimum solids content of 48%. The rosin should be a minimum of 26% of the total solids content. The soil stabilizer should be non-corrosive, water dilutable emulsion that upon application cures to a water insoluble binding and cementing agent. For soil erosion control applications, the emulsion is diluted and should be applied as follows:

- For clayey soil: 5 parts water to 1 part emulsion
- For sandy soil: 10 parts water to 1 part emulsion

Application can be by water truck or hydraulic seeder with the emulsion and product mixture applied at the rate specified by the manufacturer.

Polymeric Emulsion Blend Binders

Acrylic Copolymers and Polymers: Polymeric soil stabilizers should consist of a liquid or solid polymer or copolymer with an acrylic base that contains a minimum of 55% solids. The polymeric compound should be handled and mixed in a manner that will not cause foaming or should contain an anti-foaming agent. The polymeric emulsion should not exceed its shelf life or expiration date; manufacturers should provide the expiration date. Polymeric soil stabilizer should be readily miscible in water, non-injurious to seed or animal life, non-flammable, should provide surface soil stabilization for various soil types without totally inhibiting water infiltration, and should not re-emulsify when cured. The applied compound typically requires 12 to 24 hours drying time. Liquid copolymer should be diluted at a rate of 10 parts water to 1 part polymer and the mixture applied to soil at a rate of 1,175 gallons/acre.

Liquid Polymers of Methacrylates and Acrylates: This material consists of a tackifier/sealer that is a liquid polymer of methacrylates and acrylates. It is an aqueous 100% acrylic emulsion blend of 40% solids by volume that is free from styrene, acetate, vinyl, ethoxylated surfactants or silicates. For soil stabilization applications, it is diluted with water in accordance with the manufacturer’s recommendations, and applied with a hydraulic seeder at the rate of 20 gallons/acre. Drying time is 12 to 18 hours after application.

Copolymers of Sodium Acrylates and Acrylamides: These materials are non-toxic, dry powders that are copolymers of sodium acrylate and acrylamide. They are mixed with water and applied to the soil surface for erosion control at rates that are determined by slope gradient:

<table>
<thead>
<tr>
<th>Slope Gradient (H:V)</th>
<th>lb/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat to 5:1</td>
<td>3.0 – 5.0</td>
</tr>
<tr>
<td>5:1 to 3:1</td>
<td>5.0 – 10.0</td>
</tr>
<tr>
<td>2:1 to 1:1</td>
<td>10.0 – 20.0</td>
</tr>
</tbody>
</table>
Poly-Acrylamide (PAM) and Copolymer of Acrylamide: Linear copolymer polyacrylamide for use as a soil binder is packaged as a dry flowable solid, as a liquid. Refer to the manufacturer’s recommendation for dilution and application rates as they vary based on liquid or dry form, site conditions and climate.

- Limitations specific to PAM are as follows:
 - Do not use PAM on a slope that flows into a water body without passing through a sediment trap or sediment basin.
 - The specific PAM copolymer formulation must be anionic. Cationic PAM should not be used in any application because of known aquatic toxicity problems. Only the highest drinking water grade PAM, certified for compliance with ANSI/NSF Standard 60 for drinking water treatment, should be used for soil applications.
 - PAM designated for erosion and sediment control should be “water soluble” or “linear” or “non-cross linked”.
 - PAM should not be used as a stand-alone BMP to protect against water-based erosion. When combined with mulch, its effectiveness increases dramatically.

Hydro-Colloid Polymers: Hydro-Colloid Polymers are various combinations of dry flowable poly-acrylamides, copolymers and hydro-colloid polymers that are mixed with water and applied to the soil surface at rates of 55 to 60 lb/acre. Drying times are 0 to 4 hours.

Cementitious-Based Binders
Gypsum: This is a formulated gypsum based product that readily mixes with water and mulch to form a thin protective crust on the soil surface. It is composed of high purity gypsum that is ground, calcined and processed into calcium sulfate hemihydrate with a minimum purity of 86%. It is mixed in a hydraulic seeder and applied at rates 4,000 to 12,000 lb/acre. Drying time is 4 to 8 hours.

Applying Soil Binders
After selecting an appropriate soil binder, the untreated soil surface must be prepared before applying the soil binder. The untreated soil surface must contain sufficient moisture to assist the agent in achieving uniform distribution. In general, the following steps should be followed:

- Follow manufacturer’s written recommendations for application rates, pre-wetting of application area, and cleaning of equipment after use.
- Prior to application, roughen embankment and fill areas.
- Consider the drying time for the selected soil binder and apply with sufficient time before anticipated rainfall. Soil binders should not be applied during or immediately before rainfall.
- Avoid over spray onto roads, sidewalks, drainage channels, sound walls, existing vegetation, etc.
Soil Binders

- Soil binders should not be applied to frozen soil, areas with standing water, under freezing or rainy conditions, or when the temperature is below 40°F during the curing period.

- More than one treatment is often necessary, although the second treatment may be diluted or have a lower application rate.

- Generally, soil binders require a minimum curing time of 24 hours before they are fully effective. Refer to manufacturer’s instructions for specific cure time.

- For liquid agents:
 - Crown or slope ground to avoid ponding.
 - Uniformly pre-wet ground at 0.03 to 0.3 gal/yd² or according to manufacturer’s recommendations.
 - Apply solution under pressure. Overlap solution 6 to 12 in.
 - Allow treated area to cure for the time recommended by the manufacturer; typically at least 24 hours.
 - Apply second treatment before first treatment becomes ineffective, using 50% application rate.
 - In low humidities, reactivate chemicals by re-wetting with water at 0.1 to 0.2 gal/yd².

Costs

Costs vary according to the soil stabilizer selected for implementation. The following are approximate installed costs:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant-Material-Based (Short Lived) Binders</td>
<td>$700-$900</td>
<td>$770-$990</td>
</tr>
<tr>
<td>Plant-Material-Based (Long Lived) Binders</td>
<td>$1,200-$1,500</td>
<td>$1,320-$1,650</td>
</tr>
<tr>
<td>Polymeric Emulsion Blend Binders</td>
<td>$700-$1,500</td>
<td>$770-$1,650</td>
</tr>
<tr>
<td>Cementitious-Based Binders</td>
<td>$800-$1,200</td>
<td>$880-$1,350</td>
</tr>
</tbody>
</table>

1. Source: Cost information received from individual product manufacturers solicited by Geosyntec Consultants (2004).
2. 2009 costs reflect a 10% escalation over year 2004 costs. Escalation based on informal survey of industry trends. Note: Expected cost increase is offset by competitive economic conditions.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
 Areas where erosion is evident should be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs.

Reapply the selected soil binder as needed to maintain effectiveness.

Table 1 Properties of Soil Binders for Erosion Control

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Binder Type</th>
<th>Plant Material Based (Short Lived)</th>
<th>Plant Material Based (Long Lived)</th>
<th>Polymeric Emulsion Blends</th>
<th>Cementitious-Based Binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Cost</td>
<td></td>
<td>Low</td>
<td>Moderate to High</td>
<td>Low to High</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Resistance to Leaching</td>
<td></td>
<td>High</td>
<td>High</td>
<td>Low to Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Resistance to Abrasion</td>
<td></td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate to High</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Longevity</td>
<td></td>
<td>Short to Medium</td>
<td>Medium</td>
<td>Medium to Long</td>
<td>Medium</td>
</tr>
<tr>
<td>Minimum Curing Time before Rain</td>
<td></td>
<td>9 to 18 hours</td>
<td>19 to 24 hours</td>
<td>0 to 24 hours</td>
<td>4 to 8 hours</td>
</tr>
<tr>
<td>Compatibility with Existing Vegetation</td>
<td></td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Mode of Degradation</td>
<td></td>
<td>Biodegradable</td>
<td>Biodegradable</td>
<td>Photodegradable/Chemically Degradable</td>
<td>Photodegradable/Chemically Degradable</td>
</tr>
<tr>
<td>Labor Intensive</td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Specialized Application Equipment</td>
<td></td>
<td>Water Truck or Hydraulic Mulcher</td>
</tr>
<tr>
<td>Liquid/Powder</td>
<td></td>
<td>Powder</td>
<td>Liquid</td>
<td>Liquid/Powder</td>
<td>Powder</td>
</tr>
<tr>
<td>Surface Crusting</td>
<td></td>
<td>Yes, but dissolves on rewetting</td>
<td>Yes</td>
<td>Yes, but dissolves on rewetting</td>
<td>Yes</td>
</tr>
<tr>
<td>Clean Up</td>
<td></td>
<td>Water</td>
<td>Water</td>
<td>Water</td>
<td>Water</td>
</tr>
<tr>
<td>Erosion Control Application Rate</td>
<td></td>
<td>Varies (1)</td>
<td>Varies (1)</td>
<td>Varies (1)</td>
<td>4,000 to 12,000 lbs/acre</td>
</tr>
</tbody>
</table>

(1) See Implementation for specific rates.
References

Description and Purpose
A check dam is a small barrier constructed of rock, gravel bags, sandbags, fiber rolls, or other proprietary products, placed across a constructed swale or drainage ditch. Check dams reduce the effective slope of the channel, thereby reducing scour and channel erosion by reducing flow velocity and increasing residence time within the channel, allowing sediment to settle.

Suitable Applications
Check dams may be appropriate in the following situations:

- To promote sedimentation behind the dam.
- To prevent erosion by reducing the velocity of channel flow in small intermittent channels and temporary swales.
- In small open channels that drain 10 acres or less.
- In steep channels where stormwater runoff velocities exceed 5 ft/s.
- During the establishment of grass linings in drainage ditches or channels.
- In temporary ditches where the short length of service does not warrant establishment of erosion-resistant linings.
- To act as a grade control structure.

Potential Alternatives
- SE-5 Fiber Rolls
- SE-6 Gravel Bag Berm
- SE-8 Sandbag Barrier
- SE-12 Manufactured Linear Sediment Controls
- SE-14 Biofilter Bags
Check Dams

Limitations

- Not to be used in live streams or in channels with extended base flows.
- Not appropriate in channels that drain areas greater than 10 acres.
- Not appropriate in channels that are already grass-lined unless erosion potential or sediment-laden flow is expected, as installation may damage vegetation.
- Require extensive maintenance following high velocity flows.
- Promotes sediment trapping which can be re-suspended during subsequent storms or removal of the check dam.
- Do not construct check dams with straw bales or silt fence.
- Water suitable for mosquito production may stand behind check dams, particularly if subjected to daily non-stormwater discharges.

Implementation

General

Check dams reduce the effective slope and create small pools in swales and ditches that drain 10 acres or less. Using check dams to reduce channel slope reduces the velocity of stormwater flows, thus reducing erosion of the swale or ditch and promoting sedimentation. Thus, check dams are dual-purpose and serve an important role as erosion controls as well as sediment controls. Note that use of 1-2 isolated check dams for sedimentation will likely result in little net removal of sediment because of the small detention time and probable scour during longer storms. Using a series of check dams will generally increase their effectiveness. A sediment trap (SE-3) may be placed immediately upstream of the check dam to increase sediment removal efficiency.

Design and Layout

Check dams work by decreasing the effective slope in ditches and swales. An important consequence of the reduced slope is a reduction in capacity of the ditch or swale. This reduction in capacity should be considered when using this BMP, as reduced capacity can result in overtopping of the ditch or swale and resultant consequences. In some cases, such as a “permanent” ditch or swale being constructed early and used as a “temporary” conveyance for construction flows, the ditch or swale may have sufficient capacity such that the temporary reduction in capacity due to check dams is acceptable. When check dams reduce capacities beyond acceptable limits, either:

- Don’t use check dams. Consider alternative BMPs, or.
- Increase the size of the ditch or swale to restore capacity.

Maximum slope and velocity reduction is achieved when the toe of the upstream dam is at the same elevation as the top of the downstream dam (see “Spacing Between Check Dams” detail at the end of this fact sheet). The center section of the dam should be lower than the edge sections (at least 6 inches), acting as a spillway, so that the check dam will direct flows to the center of
Check Dams

the ditch or swale (see “Typical Rock Check Dam” detail at the end of this fact sheet). Bypass or side-cutting can occur if a sufficient spillway is not provided in the center of the dam.

Check dams are usually constructed of rock, gravel bags, sandbags, and fiber rolls. A number of products can also be used as check dams (e.g. HDPE check dams, temporary silt dikes (SE-12)), and some of these products can be removed and reused. Check dams can also be constructed of logs or lumber, and have the advantage of a longer lifespan when compared to gravel bags, sandbags, and fiber rolls. Check dams should not be constructed from straw bales or silt fences, since concentrated flows quickly wash out these materials.

Rock check dams are usually constructed of 8 to 12 in. rock. The rock is placed either by hand or mechanically, but never just dumped into the channel. The dam should completely span the ditch or swale to prevent washout. The rock used should be large enough to stay in place given the expected design flow through the channel. It is recommended that abutments be extended 18 in. into the channel bank. Rock can be graded such that smaller diameter rock (e.g. 2-4 in) is located on the upstream side of larger rock (holding the smaller rock in place); increasing residence time.

Log check dams are usually constructed of 4 to 6 in. diameter logs, installed vertically. The logs should be embedded into the soil at least 18 in. Logs can be bolted or wired to vertical support logs that have been driven or buried into the soil.

See fiber rolls, SE-5, for installation of fiber roll check dams.

Gravel bag and sand bag check dams are constructed by stacking bags across the ditch or swale, shaped as shown in the drawings at the end of this fact sheet (see “Gravel Bag Check Dam” detail at the end of this fact sheet).

Manufactured products, such as temporary silt dikes (SE-12), should be installed in accordance with the manufacturer’s instructions. Installation typically requires anchoring or trenching of products, as well as regular maintenance to remove accumulated sediment and debris.

If grass is planted to stabilize the ditch or swale, the check dam should be removed when the grass has matured (unless the slope of the swales is greater than 4%).

The following guidance should be followed for the design and layout of check dams:

- Install the first check dam approximately 16 ft from the outfall device and at regular intervals based on slope gradient and soil type.

- Check dams should be placed at a distance and height to allow small pools to form between each check dam.

- For multiple check dam installation, backwater from a downstream check dam should reach the toes of the upstream check dam.

- A sediment trap provided immediately upstream of the check dam will help capture sediment. Due to the potential for this sediment to be resuspended in subsequent storms, the sediment trap should be cleaned following each storm event.
Check Dams

- High flows (typically a 2-year storm or larger) should safely flow over the check dam without an increase in upstream flooding or damage to the check dam.

- Where grass is used to line ditches, check dams should be removed when grass has matured sufficiently to protect the ditch or swale.

Materials

- Rock used for check dams should typically be 8-12 in rock and be sufficiently sized to stay in place given expected design flows in the channel. Smaller diameter rock (e.g. 2 to 4 in) can be placed on the upstream side of larger rock to increase residence time.

- Gravel bags used for check dams should conform to the requirements of SE-6, Gravel Bag Berms.

- Sandbags used for check dams should conform to SE-8, Sandbag Barrier.

- Fiber rolls used for check dams should conform to SE-5, Fiber Rolls.

- Temporary silt dikes used for check dams should conform to SE-12, Temporary Silt Dikes.

Installation

- Rock should be placed individually by hand or by mechanical methods (no dumping of rock) to achieve complete ditch or swale coverage.

- Tightly abut bags and stack according to detail shown in the figure at the end of this section (pyramid approach). Gravel bags and sandbags should not be stacked any higher than 3 ft.

- Upper rows or gravel and sand bags shall overlap joints in lower rows.

- Fiber rolls should be trenched in, backfilled, and firmly staked in place.

- Install along a level contour.

- HDPE check dams, temporary silt dikes, and other manufactured products should be used and installed per manufacturer specifications.

Costs

Cost consists of labor costs if materials are readily available (such as gravel on-site). If material must be imported, costs will increase. For other material and installation costs, see SE-5, SE-6, SE-8, SE-12, and SE-14.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Replace missing rock, bags, rolls, etc. Replace bags or rolls that have degraded or have become damaged.
Check Dams

- If the check dam is used as a sediment capture device, sediment that accumulates behind the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height.

- If the check dam is used as a grade control structure, sediment removal is not required as long as the system continues to control the grade.

- Inspect areas behind check dams for pools of standing water, especially if subjected to daily non-stormwater discharges.

- Remove accumulated sediment prior to permanent seeding or soil stabilization.

- Remove check dam and accumulated sediment when check dams are no longer needed.

References

Check Dams

ELEVATION

TYPICAL ROCK CHECK DAM SECTION

ROCK CHECK DAM
NOT TO SCALE

GRAVEL BAG CHECK DAM ELEVATION
NOT TO SCALE
'L' – THE DISTANCE SUCH THAT POINTS 'A' AND 'B' ARE OF EQUAL ELEVATION.

SPACING BETWEEN CHECK DAMS
Description and Purpose

A fiber roll consists of straw, coir, or other biodegradable materials bound into a tight tubular roll wrapped by netting, which can be photodegradable or natural. Additionally, gravel core fiber rolls are available, which contain an imbedded ballast material such as gravel or sand for additional weight when staking the rolls are not feasible (such as use as inlet protection). When fiber rolls are placed at the toe and on the face of slopes along the contours, they intercept runoff, reduce its flow velocity, release the runoff as sheet flow, and provide removal of sediment from the runoff (through sedimentation). By interrupting the length of a slope, fiber rolls can also reduce sheet and rill erosion until vegetation is established.

Suitable Applications

Fiber rolls may be suitable:

- Along the toe, top, face, and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.

- At the end of a downward slope where it transitions to a steeper slope.

- Along the perimeter of a project.

- As check dams in unlined ditches with minimal grade.

- Down-slope of exposed soil areas.

- At operational storm drains as a form of inlet protection.
Fiber Rolls

- Around temporary stockpiles.

Limitations
- Fiber rolls are not effective unless trenched in and staked.
- Not intended for use in high flow situations.
- Difficult to move once saturated.
- If not properly staked and trenched in, fiber rolls could be transported by high flows.
- Fiber rolls have a very limited sediment capture zone.
- Fiber rolls should not be used on slopes subject to creep, slumping, or landslide.
- Rolls typically function for 12-24 months depending upon local conditions.

Implementation

Fiber Roll Materials
- Fiber rolls should be prefabricated.
- Fiber rolls may come manufactured containing polyacrylamide (PAM), a flocculating agent within the roll. Fiber rolls impregnated with PAM provide additional sediment removal capabilities and should be used in areas with fine, clayey or silty soils to provide additional sediment removal capabilities. Monitoring may be required for these installations.
- Fiber rolls are made from weed free rice straw, flax, or a similar agricultural material bound into a tight tubular roll by netting.
- Typical fiber rolls vary in diameter from 9 in. to 20 in. Larger diameter rolls are available as well.

Installation
- Locate fiber rolls on level contours spaced as follows:
 - Slope inclination of 4:1 (H:V) or flatter: Fiber rolls should be placed at a maximum interval of 20 ft.
 - Slope inclination between 4:1 and 2:1 (H:V): Fiber Rolls should be placed at a maximum interval of 15 ft. (a closer spacing is more effective).
 - Slope inclination 2:1 (H:V) or greater: Fiber Rolls should be placed at a maximum interval of 10 ft. (a closer spacing is more effective).
- Prepare the slope before beginning installation.
- Dig small trenches across the slope on the contour. The trench depth should be ⅛ to ⅓ of the thickness of the roll, and the width should equal the roll diameter, in order to provide area to backfill the trench.
Fiber Rolls

- It is critical that rolls are installed perpendicular to water movement, and parallel to the slope contour.
- Start building trenches and installing rolls from the bottom of the slope and work up.
- It is recommended that pilot holes be driven through the fiber roll. Use a straight bar to drive holes through the roll and into the soil for the wooden stakes.
- Turn the ends of the fiber roll up slope to prevent runoff from going around the roll.
- Stake fiber rolls into the trench.
 - Drive stakes at the end of each fiber roll and spaced 4 ft maximum on center.
 - Use wood stakes with a nominal classification of 0.75 by 0.75 in. and minimum length of 24 in.
- If more than one fiber roll is placed in a row, the rolls should be overlapped, not abutted.
- See typical fiber roll installation details at the end of this fact sheet.

Removal

- Fiber rolls can be left in place or removed depending on the type of fiber roll and application (temporary vs. permanent installation). Typically, fiber rolls encased with plastic netting are used for a temporary application because the netting does not biodegrade. Fiber rolls used in a permanent application are typically encased with a biodegradeable material and are left in place. Removal of a fiber roll used in a permanent application can result in greater disturbance.
- Temporary installations should only be removed when up gradient areas are stabilized per General Permit requirements, and/or pollutant sources no longer present a hazard. But, they should also be removed before vegetation becomes too mature so that the removal process does not disturb more soil and vegetation than is necessary.

Costs

Material costs for regular fiber rolls range from $20 - $30 per 25 ft roll.

Material costs for PAM impregnated fiber rolls range between 7.00-$9.00 per linear foot, based upon vendor research.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Repair or replace split, torn, unraveling, or slumping fiber rolls.
- If the fiber roll is used as a sediment capture device, or as an erosion control device to maintain sheet flows, sediment that accumulates in the BMP should be periodically removed.
in order to maintain BMP effectiveness. Sediment should be removed when sediment accumulation reaches one-third the designated sediment storage depth.

- If fiber rolls are used for erosion control, such as in a check dam, sediment removal should not be required as long as the system continues to control the grade. Sediment control BMPs will likely be required in conjunction with this type of application.

- Repair any rills or gullies promptly.

References

Fiber Rolls

Typical Fiber Roll Installation

N.T.S.

Entrenchment Detail

N.T.S.
Description and Purpose
A gravel bag berm is a series of gravel-filled bags placed on a level contour to intercept sheet flows. Gravel bags pond sheet flow runoff, allowing sediment to settle out, and release runoff slowly as sheet flow, preventing erosion.

Suitable Applications
Gravel bag berms may be suitable:

- As a linear sediment control measure:
 - Below the toe of slopes and erodible slopes
 - As sediment traps at culvert/pipe outlets
 - Below other small cleared areas
 - Along the perimeter of a site
 - Down slope of exposed soil areas
 - Around temporary stockpiles and spoil areas
 - Parallel to a roadway to keep sediment off paved areas
 - Along streams and channels

- As a linear erosion control measure:
 - Along the face and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow.

Potential Alternatives
SE-1 Silt Fence
SE-5 Fiber Roll
SE-8 Sandbag Barrier
SE-12 Temporary Silt Dike
SE-14 Biofilter Bags

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Gravel Bag Berm

- At the top of slopes to divert runoff away from disturbed slopes.
- As chevrons (small check dams) across mildly sloped construction roads. For use check dam use in channels, see SE-4, Check Dams.

Limitations
- Gravel berms may be difficult to remove.
- Removal problems limit their usefulness in landscaped areas.
- Gravel bag berm may not be appropriate for drainage areas greater than 5 acres.
- Runoff will pond upstream of the berm, possibly causing flooding if sufficient space does not exist.
- Degraded gravel bags may rupture when removed, spilling contents.
- Installation can be labor intensive.
- Durability of gravel bags is somewhat limited and bags may need to be replaced when installation is required for longer than 6 months.
- Easily damaged by construction equipment.
- When used to detain concentrated flows, maintenance requirements increase.

Implementation

General
A gravel bag berm consists of a row of open graded gravel-filled bags placed on a level contour. When appropriately placed, a gravel bag berm intercepts and slows sheet flow runoff, causing temporary ponding. The temporary ponding allows sediment to settle. The open graded gravel in the bags is porous, which allows the ponded runoff to flow slowly through the bags, releasing the runoff as sheet flows. Gravel bag berms also interrupt the slope length and thereby reduce erosion by reducing the tendency of sheet flows to concentrate into rivulets, which erode rills, and ultimately gullies, into disturbed, sloped soils. Gravel bag berms are similar to sand bag barriers, but are more porous. Generally, gravel bag berms should be used in conjunction with temporary soil stabilization controls up slope to provide effective erosion and sediment control.

Design and Layout
- Locate gravel bag berms on level contours.
- When used for slope interruption, the following slope/sheet flow length combinations apply:
 - Slope inclination of 4:1 (H:V) or flatter: Gravel bags should be placed at a maximum interval of 20 ft, with the first row near the slope toe.
 - Slope inclination between 4:1 and 2:1 (H:V): Gravel bags should be placed at a maximum interval of 15 ft. (a closer spacing is more effective), with the first row near the slope toe.
Gravel Bag Berm

Slope inclination 2:1 (H:V) or greater: Gravel bags should be placed at a maximum interval of 10 ft. (a closer spacing is more effective), with the first row near the slope toe.

- Turn the ends of the gravel bag barriers up slope to prevent runoff from going around the berm.
- Allow sufficient space up slope from the gravel bag berm to allow ponding, and to provide room for sediment storage.
- For installation near the toe of the slope, gravel bag barriers should be set back from the slope toe to facilitate cleaning. Where specific site conditions do not allow for a set-back, the gravel bag barrier may be constructed on the toe of the slope. To prevent flows behind the barrier, bags can be placed perpendicular to a berm to serve as cross barriers.
- Drainage area should not exceed 5 acres.
- In Non-Traffic Areas:
 - Height = 18 in. maximum
 - Top width = 24 in. minimum for three or more layer construction
 - Top width = 12 in. minimum for one or two layer construction
 - Side slopes = 2:1 (H:V) or flatter
- In Construction Traffic Areas:
 - Height = 12 in. maximum
 - Top width = 24 in. minimum for three or more layer construction.
 - Top width = 12 in. minimum for one or two layer construction.
 - Side slopes = 2:1 (H:V) or flatter.
- Butt ends of bags tightly.
- On multiple row, or multiple layer construction, overlap butt joints of adjacent row and row beneath.
- Use a pyramid approach when stacking bags.

Materials

- **Bag Material:** Bags should be woven polypropylene, polyethylene or polyamide fabric or burlap, minimum unit weight of 4 ounces/yd², Mullen burst strength exceeding 300 lb/in² in conformance with the requirements in ASTM designation D3786, and ultraviolet stability exceeding 70% in conformance with the requirements in ASTM designation D4355.
Gravel Bag Berm

- **Bag Size:** Each gravel-filled bag should have a length of 18 in., width of 12 in., thickness of 3 in., and mass of approximately 33 lbs. Bag dimensions are nominal, and may vary based on locally available materials.

- **Fill Material:** Fill material should be 0.5 to 1 in. crushed rock, clean and free from clay, organic matter, and other deleterious material, or other suitable open graded, non-cohesive, porous gravel.

Costs

Material costs for gravel bags are average and are dependent upon material availability. $2.50-3.00 per filled gravel bag is standard based upon vendor research.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Gravel bags exposed to sunlight will need to be replaced every two to three months due to degrading of the bags.

- Reshape or replace gravel bags as needed.

- Repair washouts or other damage as needed.

- Sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height.

- Remove gravel bag berms when no longer needed and recycle gravel fill whenever possible and properly dispose of bag material. Remove sediment accumulation and clean, re-grade, and stabilize the area.

References

Handbook of Steel Drainage and Highway Construction, American Iron and Steel Institute, 1983.

Description and Purpose
Street sweeping and vacuuming includes use of self-propelled and walk-behind equipment to remove sediment from streets and roadways, and to clean paved surfaces in preparation for final paving. Sweeping and vacuuming prevents sediment from the project site from entering storm drains or receiving waters.

Suitable Applications
Sweeping and vacuuming are suitable anywhere sediment is tracked from the project site onto public or private paved streets and roads, typically at points of egress. Sweeping and vacuuming are also applicable during preparation of paved surfaces for final paving.

Limitations
Sweeping and vacuuming may not be effective when sediment is wet or when tracked soil is caked (caked soil may need to be scraped loose).

Implementation
- Controlling the number of points where vehicles can leave the site will allow sweeping and vacuuming efforts to be focused, and perhaps save money.

- Inspect potential sediment tracking locations daily.

- Visible sediment tracking should be swept or vacuumed on a daily basis.

Categories

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Erosion Control</td>
</tr>
<tr>
<td>SE</td>
<td>Sediment Control</td>
</tr>
<tr>
<td>TC</td>
<td>Tracking Control</td>
</tr>
<tr>
<td>WE</td>
<td>Wind Erosion Control</td>
</tr>
<tr>
<td>NS</td>
<td>Non-Stormwater Management Control</td>
</tr>
<tr>
<td>WM</td>
<td>Waste Management and Materials Pollution Control</td>
</tr>
</tbody>
</table>

Legend:
- Primary Objective
- Secondary Objective

Targeted Constituents

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td>✓</td>
</tr>
<tr>
<td>Nutrients</td>
<td></td>
</tr>
<tr>
<td>Trash</td>
<td>✓</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>✓</td>
</tr>
<tr>
<td>Organics</td>
<td></td>
</tr>
</tbody>
</table>

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Street Sweeping and Vacuuming

- Do not use kick brooms or sweeper attachments. These tend to spread the dirt rather than remove it.

- If not mixed with debris or trash, consider incorporating the removed sediment back into the project.

Costs
Rental rates for self-propelled sweepers vary depending on hopper size and duration of rental. Expect rental rates from $58/hour (3 yd³ hopper) to $88/hour (9 yd³ hopper), plus operator costs. Hourly production rates vary with the amount of area to be swept and amount of sediment. Match the hopper size to the area and expect sediment load to minimize time spent dumping.

Inspection and Maintenance
- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- When actively in use, points of ingress and egress must be inspected daily.

- When tracked or spilled sediment is observed outside the construction limits, it must be removed at least daily. More frequent removal, even continuous removal, may be required in some jurisdictions.

- Be careful not to sweep up any unknown substance or any object that may be potentially hazardous.

- Adjust brooms frequently; maximize efficiency of sweeping operations.

- After sweeping is finished, properly dispose of sweeper wastes at an approved dumpsite.

References

Storm Drain Inlet Protection

Description and Purpose
Storm drain inlet protection consists of a sediment filter or an impounding area in, around or upstream of a storm drain, drop inlet, or curb inlet. Storm drain inlet protection measures temporarily pond runoff before it enters the storm drain, allowing sediment to settle. Some filter configurations also remove sediment by filtering, but usually the ponding action results in the greatest sediment reduction. Temporary geotextile storm drain inserts attach underneath storm drain grates to capture and filter storm water.

Suitable Applications
- Every storm drain inlet receiving runoff from unstabilized or otherwise active work areas should be protected. Inlet protection should be used in conjunction with other erosion and sediment controls to prevent sediment-laden stormwater and non-stormwater discharges from entering the storm drain system.

Limitations
- Drainage area should not exceed 1 acre.
- In general straw bales should not be used as inlet protection.
- Requires an adequate area for water to pond without encroaching into portions of the roadway subject to traffic.
- Sediment removal may be inadequate to prevent sediment discharges in high flow conditions or if runoff is heavily sediment laden. If high flow conditions are expected, use
other onsite sediment trapping techniques in conjunction with inlet protection.

- Frequent maintenance is required.

- Limit drainage area to 1 acre maximum. For drainage areas larger than 1 acre, runoff should be routed to a sediment-trapping device designed for larger flows. See BMPs SE-2, Sediment Basin, and SE-3, Sediment Traps.

- Excavated drop inlet sediment traps are appropriate where relatively heavy flows are expected, and overflow capability is needed.

Implementation

General

Inlet control measures presented in this handbook should not be used for inlets draining more than one acre. Runoff from larger disturbed areas should be first routed through SE-2, Sediment Basin or SE-3, Sediment Trap and/or used in conjunction with other drainage control, erosion control, and sediment control BMPs to protect the site. Different types of inlet protection are appropriate for different applications depending on site conditions and the type of inlet. Alternative methods are available in addition to the methods described/shown herein such as prefabricated inlet insert devices, or gutter protection devices.

Design and Layout

Identify existing and planned storm drain inlets that have the potential to receive sediment-laden surface runoff. Determine if storm drain inlet protection is needed and which method to use.

- The key to successful and safe use of storm drain inlet protection devices is to know where runoff that is directed toward the inlet to be protected will pond or be diverted as a result of installing the protection device.

 - Determine the acceptable location and extent of ponding in the vicinity of the drain inlet. The acceptable location and extent of ponding will influence the type and design of the storm drain inlet protection device.

 - Determine the extent of potential runoff diversion caused by the storm drain inlet protection device. Runoff ponded by inlet protection devices may flow around the device and towards the next downstream inlet. In some cases, this is acceptable; in other cases, serious erosion or downstream property damage can be caused by these diversions. The possibility of runoff diversions will influence whether or not storm drain inlet protection is suitable; and, if suitable, the type and design of the device.

- The location and extent of ponding, and the extent of diversion, can usually be controlled through appropriate placement of the inlet protection device. In some cases, moving the inlet protection device a short distance upstream of the actual inlet can provide more efficient sediment control, limit ponding to desired areas, and prevent or control diversions.

- Seven types of inlet protection are presented below. However, it is recognized that other effective methods and proprietary devices exist and may be selected.
Storm Drain Inlet Protection

- Silt Fence: Appropriate for drainage basins with less than a 5% slope, sheet flows, and flows under 0.5 cfs.

- Excavated Drop Inlet Sediment Trap: An excavated area around the inlet to trap sediment (SE-3).

- Gravel bag barrier: Used to create a small sediment trap upstream of inlets on sloped, paved streets. Appropriate for sheet flow or when concentrated flow may exceed 0.5 cfs, and where overtopping is required to prevent flooding.

- Block and Gravel Filter: Appropriate for flows greater than 0.5 cfs.

- Temporary Geotextile Storm drain Inserts: Different products provide different features. Refer to manufacturer details for targeted pollutants and additional features.

- Biofilter Bag Barrier: Used to create a small retention area upstream of inlets and can be located on pavement or soil. Biofilter bags slowly filter runoff allowing sediment to settle out. Appropriate for flows under 0.5 cfs.

- Compost Socks: Allow filtered run-off to pass through the compost while retaining sediment and potentially other pollutants (SE-13). Appropriate for flows under 1.0 cfs.

Select the appropriate type of inlet protection and design as referred to or as described in this fact sheet.

Provide area around the inlet for water to pond without flooding structures and property.

Grates and spaces around all inlets should be sealed to prevent seepage of sediment-laden water.

Excavate sediment sumps (where needed) 1 to 2 ft with 2:1 side slopes around the inlet.

Installation

DI Protection Type 1 - Silt Fence - Similar to constructing a silt fence; see BMP SE-1, Silt Fence. Do not place fabric underneath the inlet grate since the collected sediment may fall into the drain inlet when the fabric is removed or replaced and water flow through the grate will be blocked resulting in flooding. See typical Type 1 installation details at the end of this fact sheet.

1. Excavate a trench approximately 6 in. wide and 6 in. deep along the line of the silt fence inlet protection device.

2. Place 2 in. by 2 in. wooden stakes around the perimeter of the inlet a maximum of 3 ft apart and drive them at least 18 in. into the ground or 12 in. below the bottom of the trench. The stakes should be at least 48 in.

3. Lay fabric along bottom of trench, up side of trench, and then up stakes. See SE-1, Silt Fence, for details. The maximum silt fence height around the inlet is 24 in.

4. Staple the filter fabric (for materials and specifications, see SE-1, Silt Fence) to wooden stakes. Use heavy-duty wire staples at least 1 in. in length.
5. Backfill the trench with gravel or compacted earth all the way around.

- **DI Protection Type 2 - Excavated Drop Inlet Sediment Trap** - Install filter fabric fence in accordance with DI Protection Type 1. Size excavated trap to provide a minimum storage capacity calculated at the rate 67 yd³/acre of drainage area. See typical Type 2 installation details at the end of this fact sheet.

- **DI Protection Type 3 - Gravel bag** - Flow from a severe storm should not overtop the curb. In areas of high clay and silts, use filter fabric and gravel as additional filter media. Construct gravel bags in accordance with SE-6, Gravel Bag Berm. Gravel bags should be used due to their high permeability. See typical Type 3 installation details at the end of this fact sheet.

 1. Construct on gently sloping street.
 2. Leave room upstream of barrier for water to pond and sediment to settle.
 3. Place several layers of gravel bags – overlapping the bags and packing them tightly together.
 4. Leave gap of one bag on the top row to serve as a spillway. Flow from a severe storm (e.g., 10 year storm) should not overtop the curb.

- **DI Protection Type 4 – Block and Gravel Filter** - Block and gravel filters are suitable for curb inlets commonly used in residential, commercial, and industrial construction. See typical Type 4 installation details at the end of this fact sheet.

 1. Place hardware cloth or comparable wire mesh with 0.5 in. openings over the drop inlet so that the wire extends a minimum of 1 ft beyond each side of the inlet structure. If more than one strip is necessary, overlap the strips. Place woven geotextile over the wire mesh.
 2. Place concrete blocks lengthwise on their sides in a single row around the perimeter of the inlet, so that the open ends face outward, not upward. The ends of adjacent blocks should abut. The height of the barrier can be varied, depending on design needs, by stacking combinations of blocks that are 4 in., 8 in., and 12 in. wide. The row of blocks should be at least 12 in. but no greater than 24 in. high.
 3. Place wire mesh over the outside vertical face (open end) of the concrete blocks to prevent stone from being washed through the blocks. Use hardware cloth or comparable wire mesh with 0.5 in. opening.
 4. Pile washed stone against the wire mesh to the top of the blocks. Use 0.75 to 3 in.

- **DI Protection Type 5 – Temporary Geotextile Insert (proprietary)** – Many types of temporary inserts are available. Most inserts fit underneath the grate of a drop inlet or inside of a curb inlet and are fastened to the outside of the grate or curb. These inserts are removable and many can be cleaned and reused. Installation of these inserts differs between manufacturers. Please refer to manufacturer instruction for installation of proprietary devices.
DI Protection Type 6 - Biofilter bags – Biofilter bags may be used as a substitute for gravel bags in low-flow situations. Biofilter bags should conform to specifications detailed in SE-14, Biofilter bags.

1. Construct in a gently sloping area.
2. Biofilter bags should be placed around inlets to intercept runoff flows.
3. All bag joints should overlap by 6 in.
4. Leave room upstream for water to pond and for sediment to settle out.
5. Stake bags to the ground as described in the following detail. Stakes may be omitted if bags are placed on a paved surface.

DI Protection Type 7 – Compost Socks – A compost sock can be assembled on site by filling a mesh sock (e.g., with a pneumatic blower). Compost socks do not require special trenching compared to other sediment control methods (e.g., silt fence). Compost socks should conform to specification detailed in SE-13, Compost Socks and Berms.

Costs

- Average annual cost for installation and maintenance of DI Type 1-4 and 6 (one year useful life) is $200 per inlet.
- Temporary geotextile inserts are proprietary and cost varies by region. These inserts can often be reused and may have greater than 1 year of use if maintained and kept undamaged. Average cost per insert ranges from $50-75 plus installation, but costs can exceed $100. This cost does not include maintenance.

- See SE-13 for Compost Sock cost information.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Silt Fences. If the fabric becomes clogged, torn, or degrades, it should be replaced. Make sure the stakes are securely driven in the ground and are in good shape (i.e., not bent, cracked, or splintered, and are reasonably perpendicular to the ground). Replace damaged stakes. At a minimum, remove the sediment behind the fabric fence when accumulation reaches one-third the height of the fence or barrier height.

- Gravel Filters. If the gravel becomes clogged with sediment, it should be carefully removed from the inlet and either cleaned or replaced. Since cleaning gravel at a construction site may be difficult, consider using the sediment-laden stone as fill material and put fresh stone around the inlet. Inspect bags for holes, gashes, and snags, and replace bags as needed. Check gravel bags for proper arrangement and displacement.
Sediment that accumulates in the BMP should be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height.

Inspect and maintain temporary geotextile insert devices according to manufacturer’s specifications.

Remove storm drain inlet protection once the drainage area is stabilized.

- Clean and regrade area around the inlet and clean the inside of the storm drain inlet, as it should be free of sediment and debris at the time of final inspection.

References

NOTES:

1. For use in areas where grading has been completed and final soil stabilization and seeding are pending.
2. Not applicable in paved areas.
3. Not applicable with concentrated flows.
Storm Drain Inlet Protection

Section A-A

Plan

DI PROTECTION TYPE 2
NOT TO SCALE

Notes
1. For use in cleared and grubbed and in graded areas.
2. Shape basin so that longest inflow area faces longest length of trap.
3. For concentrated flows, shape basin in 2:1 ratio with length oriented towards direction of flow.
Gravel bags can be effective even if they are not immediately adjacent to the inlet provided that the inlet is protected from potential sources of pollution.

NOTES:
1. Intended for short-term use.
2. Use to inhibit non-storm water flow.
3. Allow for proper maintenance and cleanup.
4. Bags must be removed after adjacent operation is completed.
5. Not applicable in areas with high silts and clays without filter fabric.
6. Protection can be effective even if it is not immediately adjacent to the inlet provided that the inlet is protected from potential sources of pollution.
Storm Drain Inlet Protection

Concrete block laid lengthwise on sides @ perimeter of opening

Hardware cloth or wire mesh

Runoff with sediment

Filtered water

Sediment

Hardware cloth wire mesh

Curb inlet

DI PROTECTION — TYPE 4
NOT TO SCALE
Description and Purpose

Wind erosion or dust control consists of applying water or other chemical dust suppressants as necessary to prevent or alleviate dust nuisance generated by construction activities. Covering small stockpiles or areas is an alternative to applying water or other dust palliatives.

California’s Mediterranean climate, with a short “wet” season and a typically long, hot “dry” season, allows the soils to thoroughly dry out. During the dry season, construction activities are at their peak, and disturbed and exposed areas are increasingly subject to wind erosion, sediment tracking and dust generated by construction equipment. Site conditions and climate can make dust control more of an erosion problem than water based erosion. Additionally, many local agencies, including Air Quality Management Districts, require dust control and/or dust control permits in order to comply with local nuisance laws, opacity laws (visibility impairment) and the requirements of the Clean Air Act. Wind erosion control is required to be implemented at all construction sites greater than 1 acre by the General Permit.

Suitable Applications

Most BMPs that provide protection against water-based erosion will also protect against wind-based erosion and dust control requirements required by other agencies will generally meet wind erosion control requirements for water quality protection. Wind erosion control BMPs are suitable during the following construction activities:

<table>
<thead>
<tr>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Erosion Control</td>
</tr>
<tr>
<td>SE Sediment Control</td>
</tr>
<tr>
<td>TC Tracking Control</td>
</tr>
<tr>
<td>WE Wind Erosion Control</td>
</tr>
<tr>
<td>NS Non-Stormwater Management Control</td>
</tr>
<tr>
<td>WM Waste Management and Materials Pollution Control</td>
</tr>
</tbody>
</table>

Legend:
- Primary Category
- Secondary Category

Targeted Constituents

- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Potential Alternatives

- EC-5 Soil Binders

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Wind Erosion Control

- Construction vehicle traffic on unpaved roads
- Drilling and blasting activities
- Soils and debris storage piles
- Batch drop from front-end loaders
- Areas with unstabilized soil
- Final grading/site stabilization

Limitations
- Watering prevents dust only for a short period (generally less than a few hours) and should be applied daily (or more often) to be effective.
- Over watering may cause erosion and track-out.
- Oil or oil-treated subgrade should not be used for dust control because the oil may migrate into drainageways and/or seep into the soil.
- Chemical dust suppression agents may have potential environmental impacts. Selected chemical dust control agents should be environmentally benign.
- Effectiveness of controls depends on soil, temperature, humidity, wind velocity and traffic.
- Chemical dust suppression agents should not be used within 100 feet of wetlands or water bodies.
- Chemically treated subgrades may make the soil water repellant, interfering with long-term infiltration and the vegetation/re-vegetation of the site. Some chemical dust suppressants may be subject to freezing and may contain solvents and should be handled properly.
- In compacted areas, watering and other liquid dust control measures may wash sediment or other constituents into the drainage system.
- If the soil surface has minimal natural moisture, the affected area may need to be pre-wetted so that chemical dust control agents can uniformly penetrate the soil surface.

Implementation

Dust Control Practices
Dust control BMPs generally stabilize exposed surfaces and minimize activities that suspend or track dust particles. The following table presents dust control practices that can be applied to varying site conditions that could potentially cause dust. For heavily traveled and disturbed areas, wet suppression (watering), chemical dust suppression, gravel asphalt surfacing, temporary gravel construction entrances, equipment wash-out areas, and haul truck covers can be employed as dust control applications. Permanent or temporary vegetation and mulching can be employed for areas of occasional or no construction traffic. Preventive measures include minimizing surface areas to be disturbed, limiting onsite vehicle traffic to 15 mph or less, and controlling the number and activity of vehicles on a site at any given time.
Chemical dust suppressants include: mulch and fiber based dust palliatives (e.g. paper mulch with gypsum binder), salts and brines (e.g. calcium chloride, magnesium chloride), non-petroleum based organics (e.g. vegetable oil, lignosulfonate), petroleum based organics (e.g. asphalt emulsion, dust oils, petroleum resins), synthetic polymers (e.g. polyvinyl acetate, vinyls, acrylic), clay additives (e.g. bentonite, montmorillonite) and electrochemical products (e.g. enzymes, ionic products).

<table>
<thead>
<tr>
<th>Site Condition</th>
<th>Permanent Vegetation</th>
<th>Mulching</th>
<th>Wet Suppression (Watering)</th>
<th>Chemical Dust Suppression</th>
<th>Gravel or Asphalt</th>
<th>Temporary Gravel Construction/Equipment Wash Down</th>
<th>Synthetic Covers</th>
<th>Minimize Extent of Disturbed Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbed Areas not Subject to Traffic</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Disturbed Areas Subject to Traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Stockpiles</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Demolition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearing/Excavation</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Truck Traffic on Unpaved Roads</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Additional preventive measures include:

- Schedule construction activities to minimize exposed area (see EC-1, Scheduling).
- Quickly treat exposed soils using water, mulching, chemical dust suppressants, or stone/gravel layering.
- Identify and stabilize key access points prior to commencement of construction.
- Minimize the impact of dust by anticipating the direction of prevailing winds.
- Restrict construction traffic to stabilized roadways within the project site, as practicable.
- Water should be applied by means of pressure-type distributors or pipelines equipped with a spray system or hoses and nozzles that will ensure even distribution.
- All distribution equipment should be equipped with a positive means of shutoff.
- Unless water is applied by means of pipelines, at least one mobile unit should be available at all times to apply water or dust palliative to the project.
- If reclaimed waste water is used, the sources and discharge must meet California Department of Health Services water reclamation criteria and the Regional Water Quality...
Control Board (RWQCB) requirements. Non-potable water should not be conveyed in tanks or drain pipes that will be used to convey potable water and there should be no connection between potable and non-potable supplies. Non-potable tanks, pipes, and other conveyances should be marked, “NON-POTABLE WATER - DO NOT DRINK.”

- Pave or chemically stabilize access points where unpaved traffic surfaces adjoin paved roads.
- Provide covers for haul trucks transporting materials that contribute to dust.
- Provide for rapid clean up of sediments deposited on paved roads. Furnish stabilized construction road entrances and wheel wash areas.
- Stabilize inactive areas of construction sites using temporary vegetation or chemical stabilization methods.

For chemical stabilization, there are many products available for chemically stabilizing gravel roadways and stockpiles. If chemical stabilization is used, the chemicals should not create any adverse effects on stormwater, plant life, or groundwater and should meet all applicable regulatory requirements.

Costs
Installation costs for water and chemical dust suppression vary based on the method used and the length of effectiveness. Annual costs may be high since some of these measures are effective for only a few hours to a few days.

Inspection and Maintenance
- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Check areas protected to ensure coverage.
- Most water-based dust control measures require frequent application, often daily or even multiple times per day. Obtain vendor or independent information on longevity of chemical dust suppressants.

References

California Air Pollution Control Laws, California Air Resources Board, updated annually.

Description and Purpose
A stabilized construction access is defined by a point of entrance/exit to a construction site that is stabilized to reduce the tracking of mud and dirt onto public roads by construction vehicles.

Suitable Applications
Use at construction sites:

- Where dirt or mud can be tracked onto public roads.
- Adjacent to water bodies.
- Where poor soils are encountered.
- Where dust is a problem during dry weather conditions.

Limitations
- Entrances and exits require periodic top dressing with additional stones.
- This BMP should be used in conjunction with street sweeping on adjacent public right of way.
- Entrances and exits should be constructed on level ground only.
- Stabilized construction entrances are rather expensive to construct and when a wash rack is included, a sediment trap of some kind must also be provided to collect wash water runoff.
Implementation

General
A stabilized construction entrance is a pad of aggregate underlain with filter cloth located at any point where traffic will be entering or leaving a construction site to or from a public right of way, street, alley, sidewalk, or parking area. The purpose of a stabilized construction entrance is to reduce or eliminate the tracking of sediment onto public rights of way or streets. Reducing tracking of sediments and other pollutants onto paved roads helps prevent deposition of sediments into local storm drains and production of airborne dust.

Where traffic will be entering or leaving the construction site, a stabilized construction entrance should be used. NPDES permits require that appropriate measures be implemented to prevent tracking of sediments onto paved roadways, where a significant source of sediments is derived from mud and dirt carried out from unpaved roads and construction sites.

Stabilized construction entrances are moderately effective in removing sediment from equipment leaving a construction site. The entrance should be built on level ground. Advantages of the Stabilized Construction Entrance/Exit is that it does remove some sediment from equipment and serves to channel construction traffic in and out of the site at specified locations. Efficiency is greatly increased when a washing rack is included as part of a stabilized construction entrance/exit.

Design and Layout
- Construct on level ground where possible.
- Select 3 to 6 in. diameter stones.
- Use minimum depth of stones of 12 in. or as recommended by soils engineer.
- Construct length of 50 ft or maximum site will allow, and 10 ft minimum width or to accommodate traffic.
- Rumble racks constructed of steel panels with ridges and installed in the stabilized entrance/exit will help remove additional sediment and to keep adjacent streets clean.
- Provide ample turning radii as part of the entrance.
- Limit the points of entrance/exit to the construction site.
- Limit speed of vehicles to control dust.
- Properly grade each construction entrance/exit to prevent runoff from leaving the construction site.
- Route runoff from stabilized entrances/exits through a sediment trapping device before discharge.
- Design stabilized entrance/exit to support heaviest vehicles and equipment that will use it.
Stabilized Construction Entrance/Exit TC-1

- Select construction access stabilization (aggregate, asphalactic concrete, concrete) based on longevity, required performance, and site conditions. Do not use asphalt concrete (AC) grindings for stabilized construction access/roadway.

- If aggregate is selected, place crushed aggregate over geotextile fabric to at least 12 in. depth, or place aggregate to a depth recommended by a geotechnical engineer. A crushed aggregate greater than 3 in. but smaller than 6 in. should be used.

- Designate combination or single purpose entrances and exits to the construction site.

- Require that all employees, subcontractors, and suppliers utilize the stabilized construction access.

- Implement SE-7, Street Sweeping and Vacuuming, as needed.

- All exit locations intended to be used for more than a two-week period should have stabilized construction entrance/exit BMPs.

Inspection and Maintenance

- Inspect and verify that activity–based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMPs are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect local roads adjacent to the site daily. Sweep or vacuum to remove visible accumulated sediment.

- Remove aggregate, separate and dispose of sediment if construction entrance/exit is clogged with sediment.

- Keep all temporary roadway ditches clear.

- Check for damage and repair as needed.

- Replace gravel material when surface voids are visible.

- Remove all sediment deposited on paved roadways within 24 hours.

- Remove gravel and filter fabric at completion of construction

Costs

Average annual cost for installation and maintenance may vary from $1,200 to $4,800 each, averaging $2,400 per entrance. Costs will increase with addition of washing rack, and sediment trap. With wash rack, costs range from $1,200 - $6,000 each, averaging $3,600 per entrance.

References

Crushed aggregate greater than 3” but smaller than 6”

Filter fabric

Original grade

12” Min, unless otherwise specified by a soils engineer

SECTION B-B

NOTE:
Construct sediment barrier and channelize runoff to sediment trapping device

10’ min or as required to accommodate anticipated traffic, whichever is greater

Temporary pipe culvert as needed

50’ Typical

(1) Length should be extended to 12 times the diameter of the largest construction vehicle tire.
(2) On small sites length should be the maximum allowed by site.
Crushed aggregate greater than 3" but smaller than 6".

SECTION B-B

Crushed aggregate greater than 3" but smaller than 6".

SECTION A-A

NOTE: Construct sediment barrier and channelize runoff to sediment trapping device

Sediment trapping device

10' min or as required to accommodate anticipated traffic, whichever is greater.

24'

50' Typical

Match Existing Grade

Plan NTS

(1) Length should be extended to 12 times the diameter of the largest construction vehicle tire.

(2) On small sites length should be the maximum allowed by site.
Water Conservation Practices

Description and Purpose
Water conservation practices are activities that use water during the construction of a project in a manner that avoids causing erosion and the transport of pollutants offsite. These practices can reduce or eliminate non-stormwater discharges.

Suitable Applications
Water conservation practices are suitable for all construction sites where water is used, including piped water, metered water, trucked water, and water from a reservoir.

Limitations
- None identified.

Implementation
- Keep water equipment in good working condition.
- Stabilize water truck filling area.
- Repair water leaks promptly.
- Washing of vehicles and equipment on the construction site is discouraged.
- Avoid using water to clean construction areas. If water must be used for cleaning or surface preparation, surface should be swept and vacuumed first to remove dirt. This will minimize amount of water required.

Categories

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Erosion Control</td>
</tr>
<tr>
<td>SE</td>
<td>Sediment Control</td>
</tr>
<tr>
<td>TC</td>
<td>Tracking Control</td>
</tr>
<tr>
<td>WE</td>
<td>Wind Erosion Control</td>
</tr>
<tr>
<td>NS</td>
<td>Non-Stormwater Management Control</td>
</tr>
<tr>
<td>WM</td>
<td>Waste Management and Materials Pollution Control</td>
</tr>
</tbody>
</table>

Legend:
- Primary Objective
- Secondary Objective

Targeted Constituents

<table>
<thead>
<tr>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
</tr>
<tr>
<td>Nutrients</td>
</tr>
<tr>
<td>Trash</td>
</tr>
<tr>
<td>Metals</td>
</tr>
<tr>
<td>Bacteria</td>
</tr>
<tr>
<td>Oil and Grease</td>
</tr>
<tr>
<td>Organics</td>
</tr>
</tbody>
</table>

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Water Conservation Practices

- Direct construction water runoff to areas where it can soak into the ground or be collected and reused.
- Authorized non-stormwater discharges to the storm drain system, channels, or receiving waters are acceptable with the implementation of appropriate BMPs.
- Lock water tank valves to prevent unauthorized use.

Costs
The cost is small to none compared to the benefits of conserving water.

Inspection and Maintenance
- Inspect and verify that activity based BMPs are in place prior to the commencement of authorized non-stormwater discharges.
- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges are occurring.
- Repair water equipment as needed to prevent unintended discharges.
 - Water trucks
 - Water reservoirs (water buffalos)
 - Irrigation systems
 - Hydrant connections

References
Description and Purpose
Prevent or reduce the discharge of pollutants from paving operations, using measures to prevent runon and runoff pollution, properly disposing of wastes, and training employees and subcontractors.

The General Permit incorporates Numeric Action Levels (NAL) for pH and turbidity (see Section 2 of this handbook to determine your project’s risk level and if you are subject to these requirements).

Many types of construction materials associated with paving and grinding operations, including mortar, concrete, and cement and their associated wastes have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows, which could lead to exceedances of the General Permit requirements.

Suitable Applications
These procedures are implemented where paving, surfacing, resurfacing, or sawcutting, may pollute stormwater runoff or discharge to the storm drain system or watercourses.

Limitations
- Paving opportunities may be limited during wet weather.

Discharges of freshly paved surfaces may raise pH to environmentally harmful levels and trigger permit violations.
Implementation

General
- Avoid paving during the wet season when feasible.
- Reschedule paving and grinding activities if rain is forecasted.
- Train employees and sub-contractors in pollution prevention and reduction.
- Store materials away from drainage courses to prevent stormwater runoff (see WM-1, Material Delivery and Storage).
- Protect drainage courses, particularly in areas with a grade, by employing BMPs to divert runoff or to trap and filter sediment.
- Stockpile material removed from roadways away from drain inlets, drainage ditches, and watercourses. These materials should be stored consistent with WM-3, Stockpile Management.
- Disposal of PCC (Portland cement concrete) and AC (asphalt concrete) waste should be in conformance with WM-8, Concrete Waste Management.

Saw Cutting, Grinding, and Pavement Removal
- Shovel or vacuum saw-cut slurry and remove from site. Cover or barricade storm drains during saw cutting to contain slurry.
- When paving involves AC, the following steps should be implemented to prevent the discharge of grinding residue, uncompacted or loose AC, tack coats, equipment cleaners, or unrelated paving materials:
 - AC grindings, pieces, or chunks used in embankments or shoulder backing should not be allowed to enter any storm drains or watercourses. Install inlet protection and perimeter controls until area is stabilized (i.e. cutting, grinding or other removal activities are complete and loose material has been properly removed and disposed of) or permanent controls are in place. Examples of temporary perimeter controls can be found in EC-9, Earth Dikes and Drainage Swales; SE-1, Silt Fence; SE-5, Fiber Rolls, or SE-13 Compost Socks and Berms
 - Collect and remove all broken asphalt and recycle when practical. Old or spilled asphalt should be recycled or disposed of properly.
- Do not allow saw-cut slurry to enter storm drains or watercourses. Residue from grinding operations should be picked up by a vacuum attachment to the grinding machine, or by sweeping, should not be allowed to flow across the pavement, and should not be left on the surface of the pavement. See also WM-8, Concrete Waste Management, and WM-10, Liquid Waste Management.
- Pavement removal activities should not be conducted in the rain.
- Collect removed pavement material by mechanical or manual methods. This material may be recycled for use as shoulder backing or base material.
If removed pavement material cannot be recycled, transport the material back to an approved storage site.

Asphaltic Concrete Paving
- If paving involves asphaltic cement concrete, follow these steps:
 - Do not allow sand or gravel placed over new asphalt to wash into storm drains, streets, or creeks. Vacuum or sweep loose sand and gravel and properly dispose of this waste by referring to WM-5, Solid Waste Management.
 - Old asphalt should be disposed of properly. Collect and remove all broken asphalt from the site and recycle whenever possible.

Portland Cement Concrete Paving
- Do not wash sweepings from exposed aggregate concrete into a storm drain system. Collect waste materials by dry methods, such as sweeping or shoveling, and return to aggregate base stockpile or dispose of properly. Allow aggregate rinse to settle. Then, either allow rinse water to dry in a temporary pit as described in WM-8, Concrete Waste Management, or pump the water to the sanitary sewer if authorized by the local wastewater authority.

Sealing Operations
- During chip seal application and sweeping operations, petroleum or petroleum covered aggregate should not be allowed to enter any storm drain or water courses. Apply temporary perimeter controls until structure is stabilized (i.e. all sealing operations are complete and cured and loose materials have been properly removed and disposed).
- Inlet protection (SE-10, Storm Drain Inlet Protection) should be used during application of seal coat, tack coat, slurry seal, and fog seal.
- Seal coat, tack coat, slurry seal, or fog seal should not be applied if rainfall is predicted to occur during the application or curing period.

Paving Equipment
-Leaks and spills from paving equipment can contain toxic levels of heavy metals and oil and grease. Place drip pans or absorbent materials under paving equipment when not in use. Clean up spills with absorbent materials and dispose of in accordance with the applicable regulations. See NS-10, Vehicle and Equipment Maintenance, WM-4, Spill Prevention and Control, and WM-10, Liquid Waste Management.
- Substances used to coat asphalt transport trucks and asphalt spreading equipment should not contain soap and should be non-foaming and non-toxic.
- Paving equipment parked onsite should be parked over plastic to prevent soil contamination.
- Clean asphalt coated equipment offsite whenever possible. When cleaning dry, hardened asphalt from equipment, manage hardened asphalt debris as described in WM-5, Solid Waste Management. Any cleaning onsite should follow NS-8, Vehicle and Equipment Cleaning.
Thermoplastic Striping
- Thermoplastic striper and pre-heater equipment shutoff valves should be inspected to ensure that they are working properly to prevent leaking thermoplastic from entering drain inlets, the stormwater drainage system, or watercourses.
- Pre-heaters should be filled carefully to prevent splashing or spilling of hot thermoplastic. Leave six inches of space at the top of the pre-heater container when filling thermoplastic to allow room for material to move.
- Do not pre-heat, transfer, or load thermoplastic near drain inlets or watercourses.
- Clean truck beds daily of loose debris and melted thermoplastic. When possible, recycle thermoplastic material.

Raised/Recessed Pavement Marker Application and Removal
- Do not transfer or load bituminous material near drain inlets, the stormwater drainage system, or watercourses.
- Melting tanks should be loaded with care and not filled to beyond six inches from the top to leave room for splashing.
- When servicing or filling melting tanks, ensure all pressure is released before removing lids to avoid spills.
- On large-scale projects, use mechanical or manual methods to collect excess bituminous material from the roadway after removal of markers.

Costs
- All of the above are low cost measures.

Inspection and Maintenance
- Inspect and verify that activity-based BMPs are in place prior to the commencement of paving and grinding operations.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Sample stormwater runoff required by the General Permit.
- Keep ample supplies of drip pans or absorbent materials onsite.
- Inspect and maintain machinery regularly to minimize leaks and drips.

References
Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Illicit Connection/Discharge

Description and Purpose
Procedures and practices designed for construction contractors to recognize illicit connections or illegally dumped or discharged materials on a construction site and report incidents.

Suitable Applications
This best management practice (BMP) applies to all construction projects. Illicit connection/discharge and reporting is applicable anytime an illicit connection or discharge is discovered or illegally dumped material is found on the construction site.

Limitations
Illicit connections and illegal discharges or dumping, for the purposes of this BMP, refer to discharges and dumping caused by parties other than the contractor. If pre-existing hazardous materials or wastes are known to exist onsite, they should be identified in the SWPPP and handled as set forth in the SWPPP.

Implementation
Planning
- Review the SWPPP. Pre-existing areas of contamination should be identified and documented in the SWPPP.
- Inspect site before beginning the job for evidence of illicit connections, illegal dumping or discharges. Document any pre-existing conditions and notify the owner.

Legend:
- Primary Objective
- Secondary Objective

Categories
EC	Erosion Control
SE	Sediment Control
TC	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater Management Control
WM	Waste Management and Materials Pollution Control

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Inspect site regularly during project execution for evidence of illicit connections, illegal dumping or discharges.

- Observe site perimeter for evidence for potential of illicitly discharged or illegally dumped material, which may enter the job site.

Identification of Illicit Connections and Illegal Dumping or Discharges

- **General** – unlabeled and unidentifiable material should be treated as hazardous.

- **Solids** - Look for debris, or rubbish piles. Solid waste dumping often occurs on roadways with light traffic loads or in areas not easily visible from the traveled way.

- **Liquids** - signs of illegal liquid dumping or discharge can include:
 - Visible signs of staining or unusual colors to the pavement or surrounding adjacent soils
 - Pungent odors coming from the drainage systems
 - Discoloration or oily substances in the water or stains and residues detained within ditches, channels or drain boxes
 - Abnormal water flow during the dry weather season

- **Urban Areas** - Evidence of illicit connections or illegal discharges is typically detected at storm drain outfall locations or at manholes. Signs of an illicit connection or illegal discharge can include:
 - Abnormal water flow during the dry weather season
 - Unusual flows in sub drain systems used for dewatering
 - Pungent odors coming from the drainage systems
 - Discoloration or oily substances in the water or stains and residues detained within ditches, channels or drain boxes
 - Excessive sediment deposits, particularly adjacent to or near active offsite construction projects

- **Rural Areas** - Illicit connections or illegal discharges involving irrigation drainage ditches are detected by visual inspections. Signs of an illicit discharge can include:
 - Abnormal water flow during the non-irrigation season
 - Non-standard junction structures
 - Broken concrete or other disturbances at or near junction structures

Reporting

Notify the owner of any illicit connections and illegal dumping or discharge incidents at the time of discovery. For illicit connections or discharges to the storm drain system, notify the local stormwater management agency. For illegal dumping, notify the local law enforcement agency.

Cleanup and Removal

The responsibility for cleanup and removal of illicit or illegal dumping or discharges will vary by location. Contact the local stormwater management agency for further information.
Illicit Connection/Discharge

Costs
Costs to look for and report illicit connections and illegal discharges and dumping are low. The best way to avoid costs associated with illicit connections and illegal discharges and dumping is to keep the project perimeters secure to prevent access to the site, to observe the site for vehicles that should not be there, and to document any waste or hazardous materials that exist onsite before taking possession of the site.

Inspection and Maintenance
- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Inspect the site regularly to check for any illegal dumping or discharge.
- Prohibit employees and subcontractors from disposing of non-job related debris or materials at the construction site.
- Notify the owner of any illicit connections and illegal dumping or discharge incidents at the time of discovery.

References
Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Description and Purpose
Potable Water/Irrigation consists of practices and procedures to manage the discharge of potential pollutants generated during discharges from irrigation water lines, landscape irrigation, lawn or garden watering, planned and unplanned discharges from potable water sources, water line flushing, and hydrant flushing.

Suitable Applications
Implement this BMP whenever potable water or irrigation water discharges occur at or enter a construction site.

Limitations
None identified.

Implementation
- Direct water from offsite sources around or through a construction site, where feasible, in a way that minimizes contact with the construction site.
- Discharges from water line flushing should be reused for landscaping purposes where feasible.
- Shut off the water source to broken lines, sprinklers, or valves as soon as possible to prevent excess water flow.
- Protect downstream stormwater drainage systems and watercourses from water pumped or bailed from trenches excavated to repair water lines.
Potable Water/Irrigation

- Inspect irrigated areas within the construction limits for excess watering. Adjust watering times and schedules to ensure that the appropriate amount of water is being used and to minimize runoff. Consider factors such as soil structure, grade, time of year, and type of plant material in determining the proper amounts of water for a specific area.

Costs

Cost to manage potable water and irrigation are low and generally considered to be a normal part of related activities.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.

- Repair broken water lines as soon as possible.

- Inspect irrigated areas regularly for signs of erosion and/or discharge.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Description and Purpose

Vehicle and equipment cleaning procedures and practices eliminate or reduce the discharge of pollutants to stormwater from vehicle and equipment cleaning operations. Procedures and practices include but are not limited to: using offsite facilities; washing in designated, contained areas only; eliminating discharges to the storm drain by infiltrating the wash water; and training employees and subcontractors in proper cleaning procedures.

Suitable Applications

These procedures are suitable on all construction sites where vehicle and equipment cleaning is performed.

Limitations

Even phosphate-free, biodegradable soaps have been shown to be toxic to fish before the soap degrades. Sending vehicles/equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/Exit.

Implementation

Other options to washing equipment onsite include contracting with either an offsite or mobile commercial washing business. These businesses may be better equipped to handle and dispose of the wash waters properly. Performing this work offsite can also be economical by eliminating the need for a separate washing operation onsite.

If washing operations are to take place onsite, then:
Use phosphate-free, biodegradable soaps.

Educate employees and subcontractors on pollution prevention measures.

Do not permit steam cleaning onsite. Steam cleaning can generate significant pollutant concentrates.

Cleaning of vehicles and equipment with soap, solvents or steam should not occur on the project site unless resulting wastes are fully contained and disposed of. Resulting wastes should not be discharged or buried, and must be captured and recycled or disposed according to the requirements of WM-10, Liquid Waste Management or WM-6, Hazardous Waste Management, depending on the waste characteristics. Minimize use of solvents. Use of diesel for vehicle and equipment cleaning is prohibited.

All vehicles and equipment that regularly enter and leave the construction site must be cleaned offsite.

When vehicle and equipment washing and cleaning must occur onsite, and the operation cannot be located within a structure or building equipped with appropriate disposal facilities, the outside cleaning area should have the following characteristics:

- Located away from storm drain inlets, drainage facilities, or watercourses
- Paved with concrete or asphalt and bermed to contain wash waters and to prevent runon and runoff
- Configured with a sump to allow collection and disposal of wash water
- No discharge of wash waters to storm drains or watercourses
- Used only when necessary

When cleaning vehicles and equipment with water:

- Use as little water as possible. High-pressure sprayers may use less water than a hose and should be considered
- Use positive shutoff valve to minimize water usage
- Facility wash racks should discharge to a sanitary sewer, recycle system or other approved discharge system and must not discharge to the storm drainage system, watercourses, or to groundwater

Costs

Cleaning vehicles and equipment at an offsite facility may reduce overall costs for vehicle and equipment cleaning by eliminating the need to provide similar services onsite. When onsite cleaning is needed, the cost to establish appropriate facilities is relatively low on larger, long-duration projects, and moderate to high on small, short-duration projects.
Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.

- Inspection and maintenance is minimal, although some berm repair may be necessary.

- Monitor employees and subcontractors throughout the duration of the construction project to ensure appropriate practices are being implemented.

- Inspect sump regularly and remove liquids and sediment as needed.

- Prohibit employees and subcontractors from washing personal vehicles and equipment on the construction site.

References

Description and Purpose
Vehicle equipment fueling procedures and practices are designed to prevent fuel spills and leaks, and reduce or eliminate contamination of stormwater. This can be accomplished by using offsite facilities, fueling in designated areas only, enclosing or covering stored fuel, implementing spill controls, and training employees and subcontractors in proper fueling procedures.

Suitable Applications
These procedures are suitable on all construction sites where vehicle and equipment fueling takes place.

Limitations
Onsite vehicle and equipment fueling should only be used where it is impractical to send vehicles and equipment offsite for fueling. Sending vehicles and equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/Exit.

Implementation
- Use offsite fueling stations as much as possible. These businesses are better equipped to handle fuel and spills properly. Performing this work offsite can also be economical by eliminating the need for a separate fueling area at a site.
- Discourage “topping-off” of fuel tanks.

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Vehicle and Equipment Fueling

- Absorbent spill cleanup materials and spill kits should be available in fueling areas and on fueling trucks, and should be disposed of properly after use.

- Drip pans or absorbent pads should be used during vehicle and equipment fueling, unless the fueling is performed over an impermeable surface in a dedicated fueling area.

- Use absorbent materials on small spills. Do not hose down or bury the spill. Remove the adsorbent materials promptly and dispose of properly.

- Avoid mobile fueling of mobile construction equipment around the site; rather, transport the equipment to designated fueling areas. With the exception of tracked equipment such as bulldozers and large excavators, most vehicles should be able to travel to a designated area with little lost time.

- Train employees and subcontractors in proper fueling and cleanup procedures.

- When fueling must take place onsite, designate an area away from drainage courses to be used. Fueling areas should be identified in the SWPPP.

- Dedicated fueling areas should be protected from stormwater runon and runoff, and should be located at least 50 ft away from downstream drainage facilities and watercourses. Fueling must be performed on level-grade areas.

- Protect fueling areas with berms and dikes to prevent runon, runoff, and to contain spills.

- Nozzles used in vehicle and equipment fueling should be equipped with an automatic shutoff to control drips. Fueling operations should not be left unattended.

- Use vapor recovery nozzles to help control drips as well as air pollution where required by Air Quality Management Districts (AQMD).

- Federal, state, and local requirements should be observed for any stationary above ground storage tanks.

Costs

- All of the above measures are low cost except for the capital costs of above ground tanks that meet all local environmental, zoning, and fire codes.

Inspection and Maintenance

- Inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Vehicles and equipment should be inspected each day of use for leaks. Leaks should be repaired immediately or problem vehicles or equipment should be removed from the project site.

- Keep ample supplies of spill cleanup materials onsite.
Immediately clean up spills and properly dispose of contaminated soil and cleanup materials.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Description and Purpose
Prevent or reduce the contamination of stormwater resulting from vehicle and equipment maintenance by running a “dry and clean site”. The best option would be to perform maintenance activities at an offsite facility. If this option is not available then work should be performed in designated areas only, while providing cover for materials stored outside, checking for leaks and spills, and containing and cleaning up spills immediately. Employees and subcontractors must be trained in proper procedures.

Suitable Applications
These procedures are suitable on all construction projects where an onsite yard area is necessary for storage and maintenance of heavy equipment and vehicles.

Limitations
Onsite vehicle and equipment maintenance should only be used where it is impractical to send vehicles and equipment offsite for maintenance and repair. Sending vehicles/equipment offsite should be done in conjunction with TC-1, Stabilized Construction Entrance/Exit.

Outdoor vehicle or equipment maintenance is a potentially significant source of stormwater pollution. Activities that can contaminate stormwater include engine repair and service, changing or replacement of fluids, and outdoor equipment storage and parking (engine fluid leaks). For further information on vehicle or equipment servicing, see NS-8,
Vehicle & Equipment Maintenance NS-10

Vehicle and Equipment Cleaning, and NS-9, Vehicle and Equipment Fueling.

Implementation

- Use offsite repair shops as much as possible. These businesses are better equipped to handle vehicle fluids and spills properly. Performing this work offsite can also be economical by eliminating the need for a separate maintenance area.

- If maintenance must occur onsite, use designated areas, located away from drainage courses. Dedicated maintenance areas should be protected from stormwater runon and runoff, and should be located at least 50 ft from downstream drainage facilities and watercourses.

- Drip pans or absorbent pads should be used during vehicle and equipment maintenance work that involves fluids, unless the maintenance work is performed over an impermeable surface in a dedicated maintenance area.

- Place a stockpile of spill cleanup materials where it will be readily accessible.

- All fueling trucks and fueling areas are required to have spill kits and/or use other spill protection devices.

- Use adsorbent materials on small spills. Remove the absorbent materials promptly and dispose of properly.

- Inspect onsite vehicles and equipment daily at startup for leaks, and repair immediately.

- Keep vehicles and equipment clean; do not allow excessive build-up of oil and grease.

- Segregate and recycle wastes, such as greases, used oil or oil filters, antifreeze, cleaning solutions, automotive batteries, hydraulic and transmission fluids. Provide secondary containment and covers for these materials if stored onsite.

- Train employees and subcontractors in proper maintenance and spill cleanup procedures.

- Drip pans or plastic sheeting should be placed under all vehicles and equipment placed on docks, barges, or other structures over water bodies when the vehicle or equipment is planned to be idle for more than 1 hour.

- For long-term projects, consider using portable tents or covers over maintenance areas if maintenance cannot be performed offsite.

- Consider use of new, alternative greases and lubricants, such as adhesive greases, for chassis lubrication and fifth-wheel lubrication.

- Properly dispose of used oils, fluids, lubricants, and spill cleanup materials.

- Do not place used oil in a dumpster or pour into a storm drain or watercourse.

- Properly dispose of or recycle used batteries.

- Do not bury used tires.
Repair leaks of fluids and oil immediately.

Listed below is further information if you must perform vehicle or equipment maintenance onsite.

Safer Alternative Products
- Consider products that are less toxic or hazardous than regular products. These products are often sold under an “environmentally friendly” label.
- Consider use of grease substitutes for lubrication of truck fifth-wheels. Follow manufacturers label for details on specific uses.
- Consider use of plastic friction plates on truck fifth-wheels in lieu of grease. Follow manufacturers label for details on specific uses.

Waste Reduction
Parts are often cleaned using solvents such as trichloroethylene, trichloroethane, or methylene chloride. Many of these cleaners are listed in California Toxic Rule as priority pollutants. These materials are harmful and must not contaminate stormwater. They must be disposed of as a hazardous waste. Reducing the number of solvents makes recycling easier and reduces hazardous waste management costs. Often, one solvent can perform a job as well as two different solvents. Also, if possible, eliminate or reduce the amount of hazardous materials and waste by substituting non-hazardous or less hazardous materials. For example, replace chlorinated organic solvents with non-chlorinated solvents. Non-chlorinated solvents like kerosene or mineral spirits are less toxic and less expensive to dispose of properly. Check the list of active ingredients to see whether it contains chlorinated solvents. The “chlor” term indicates that the solvent is chlorinated. Also, try substituting a wire brush for solvents to clean parts.

Recycling and Disposal
Separating wastes allows for easier recycling and may reduce disposal costs. Keep hazardous wastes separate, do not mix used oil solvents, and keep chlorinated solvents (like trichloroethane) separate from non-chlorinated solvents (like kerosene and mineral spirits). Promptly transfer used fluids to the proper waste or recycling drums. Don’t leave full drip pans or other open containers lying around. Provide cover and secondary containment until these materials can be removed from the site.

Oil filters can be recycled. Ask your oil supplier or recycler about recycling oil filters.

Do not dispose of extra paints and coatings by dumping liquid onto the ground or throwing it into dumpsters. Allow coatings to dry or harden before disposal into covered dumpsters.

Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries, even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Costs
All of the above are low cost measures. Higher costs are incurred to setup and maintain onsite maintenance areas.
Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.

- Keep ample supplies of spill cleanup materials onsite.

- Maintain waste fluid containers in leak proof condition.

- Vehicles and equipment should be inspected on each day of use. Leaks should be repaired immediately or the problem vehicle(s) or equipment should be removed from the project site.

- Inspect equipment for damaged hoses and leaky gaskets routinely. Repair or replace as needed.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Concrete Curing

Description and Purpose
Concrete curing is used in the construction of structures such as bridges, retaining walls, pump houses, large slabs, and structured foundations. Concrete curing includes the use of both chemical and water methods.

Concrete and its associated curing materials have basic chemical properties that can raise the pH of water to levels outside of the permitted range. Discharges of stormwater and non-stormwater exposed to concrete during curing may have a high pH and may contain chemicals, metals, and fines. The General Permit incorporates Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project’s risk level and if you are subject to these requirements).

Proper procedures and care should be taken when managing concrete curing materials to prevent them from coming into contact with stormwater flows, which could result in a high pH discharge.

Suitable Applications
Suitable applications include all projects where Portland Cement Concrete (PCC) and concrete curing chemicals are placed where they can be exposed to rainfall, runoff from other areas, or where runoff from the PCC will leave the site.

Limitations
- Runoff contact with concrete waste can raise pH levels in the water to environmentally harmful levels and trigger permit violations.
Concrete Curing

Implementation

Chemical Curing

- Avoid over spray of curing compounds.

- Minimize the drift by applying the curing compound close to the concrete surface. Apply an amount of compound that covers the surface, but does not allow any runoff of the compound.

- Use proper storage and handling techniques for concrete curing compounds. Refer to WM-1, Material Delivery and Storage.

- Protect drain inlets prior to the application of curing compounds.

- Refer to WM-4, Spill Prevention and Control.

Water Curing for Bridge Decks, Retaining Walls, and other Structures

- Direct cure water away from inlets and watercourses to collection areas for evaporation or other means of removal in accordance with all applicable permits. See WM-8 Concrete Waste Management.

- Collect cure water at the top of slopes and transport to a concrete waste management area in a non-erosive manner. See EC-9 Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains.

- Utilize wet blankets or a similar method that maintains moisture while minimizing the use and possible discharge of water.

Education

- Educate employees, subcontractors, and suppliers on proper concrete curing techniques to prevent contact with discharge as described herein.

- Arrange for the QSP or the appropriately trained contractor’s superintendent or representative to oversee and enforce concrete curing procedures.

Costs

All of the above measures are generally low cost.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
Concrete Curing

- Sample non-stormwater discharges and stormwater runoff that contacts uncured and partially cured concrete as required by the General Permit.

- Ensure that employees and subcontractors implement appropriate measures for storage, handling, and use of curing compounds.

- Inspect cure containers and spraying equipment for leaks.

References

Description and Purpose
Concrete finishing methods are used for bridge deck rehabilitation, paint removal, curing compound removal, and final surface finish appearances. Methods include sand blasting, shot blasting, grinding, or high pressure water blasting. Stormwater and non-stormwater exposed to concrete finishing by-products may have a high pH and may contain chemicals, metals, and fines. Proper procedures and implementation of appropriate BMPs can minimize the impact that concrete-finishing methods may have on stormwater and non-stormwater discharges.

The General Permit incorporates Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project’s risk level and if you are subject to these requirements).

Concrete and its associated curing materials have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows, which could lead to exceedances of the General Permit requirements.

Suitable Applications
These procedures apply to all construction locations where concrete finishing operations are performed.

Categories
- EC Erosion Control
- SE Sediment Control
- TC Tracking Control
- WE Wind Erosion Control
- NS Non-Stormwater Management Control
- WM Waste Management and Materials Pollution Control

Legend:
- Primary Category
- Secondary Category

Targeted Constituents
- Sediment ✔
- Nutrients
- Trash
- Metals ✔
- Bacteria
- Oil and Grease
- Organics ✔

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Limitations

- Runoff contact with concrete waste can raise pH levels in the water to environmentally harmful levels and trigger permit violations.

Implementation

- Collect and properly dispose of water from high-pressure water blasting operations.

- Collect contaminated water from blasting operations at the top of slopes. Transport or dispose of contaminated water while using BMPs such as those for erosion control. Refer to EC-9, Earth Dikes and Drainage Swales, EC-10, Velocity Dissipation Devices, and EC-11, Slope Drains.

- Direct water from blasting operations away from inlets and watercourses to collection areas for infiltration or other means of removal (dewatering). Refer to NS-2 Dewatering Operations.

- Protect inlets during sandblasting operations. Refer to SE-10, Storm Drain Inlet Protection.

- Refer to WM-8, Concrete Waste Management for disposal of concrete debris.

- Minimize the drift of dust and blast material as much as possible by keeping the blasting nozzle close to the surface.

- When blast residue contains a potentially hazardous waste, refer to WM-6, Hazardous Waste Management.

Education

- Educate employees, subcontractors, and suppliers on proper concrete finishing techniques to prevent contact with discharge as described herein.

- Arrange for the QSP or the appropriately trained contractor’s superintendent or representative to oversee and enforce concrete finishing procedures.

Costs

These measures are generally of low cost.

Inspection and Maintenance

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.

- Sample non-stormwater discharges and stormwater runoff that contacts concrete dust and debris as required by the General Permit.
Sweep or vacuum up debris from sandblasting at the end of each shift.

At the end of each work shift, remove and contain liquid and solid waste from containment structures, if any, and from the general work area.

Inspect containment structures for damage prior to use and prior to onset of forecasted rain.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Description and Purpose

Prevent, reduce, or eliminate the discharge of pollutants from material delivery and storage to the stormwater system or watercourses by minimizing the storage of hazardous materials onsite, storing materials in watertight containers and/or a completely enclosed designated area, installing secondary containment, conducting regular inspections, and training employees and subcontractors.

This best management practice covers only material delivery and storage. For other information on materials, see WM-2, Material Use, or WM-4, Spill Prevention and Control. For information on wastes, see the waste management BMPs in this section.

Suitable Applications

These procedures are suitable for use at all construction sites with delivery and storage of the following materials:

- Soil stabilizers and binders
- Pesticides and herbicides
- Fertilizers
- Detergents
- Plaster
- Petroleum products such as fuel, oil, and grease
Material Delivery and Storage

- Asphalt and concrete components
- Hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds
- Concrete compounds
- Other materials that may be detrimental if released to the environment

Limitations
- Space limitation may preclude indoor storage.
- Storage sheds often must meet building and fire code requirements.

Implementation
The following steps should be taken to minimize risk:

- Chemicals must be stored in water tight containers with appropriate secondary containment or in a storage shed.
- When a material storage area is located on bare soil, the area should be lined and bermed.
- Use containment pallets or other practical and available solutions, such as storing materials within newly constructed buildings or garages, to meet material storage requirements.
- Stack erodible landscape material on pallets and cover when not in use.
- Contain all fertilizers and other landscape materials when not in use.
- Temporary storage areas should be located away from vehicular traffic.
- Material Safety Data Sheets (MSDS) should be available on-site for all materials stored that have the potential to effect water quality.
- Construction site areas should be designated for material delivery and storage.
- Material delivery and storage areas should be located away from waterways, if possible.
 - Avoid transport near drainage paths or waterways.
 - Surround with earth berms or other appropriate containment BMP. See EC-9, Earth Dikes and Drainage Swales.
 - Place in an area that will be paved.
- Storage of reactive, ignitable, or flammable liquids must comply with the fire codes of your area. Contact the local Fire Marshal to review site materials, quantities, and proposed storage area to determine specific requirements. See the Flammable and Combustible Liquid Code, NFPA30.
- An up to date inventory of materials delivered and stored onsite should be kept.
Material Delivery and Storage

- Hazardous materials storage onsite should be minimized.
- Hazardous materials should be handled as infrequently as possible.
- Keep ample spill cleanup supplies appropriate for the materials being stored. Ensure that cleanup supplies are in a conspicuous, labeled area.
- Employees and subcontractors should be trained on the proper material delivery and storage practices.
- Employees trained in emergency spill cleanup procedures must be present when dangerous materials or liquid chemicals are unloaded.
- If significant residual materials remain on the ground after construction is complete, properly remove and dispose of materials and any contaminated soil. See WM-7, Contaminated Soil Management. If the area is to be paved, pave as soon as materials are removed to stabilize the soil.

Material Storage Areas and Practices

- Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 should be stored in approved containers and drums and should not be overfilled. Containers and drums should be placed in temporary containment facilities for storage.

- A temporary containment facility should provide for a spill containment volume able to contain precipitation from a 25 year storm event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest container within its boundary, whichever is greater.

- A temporary containment facility should be impervious to the materials stored therein for a minimum contact time of 72 hours.

- A temporary containment facility should be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills should be collected and placed into drums. These liquids should be handled as a hazardous waste unless testing determines them to be non-hazardous. All collected liquids or non-hazardous liquids should be sent to an approved disposal site.

- Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access.

- Incompatible materials, such as chlorine and ammonia, should not be stored in the same temporary containment facility.

- Materials should be covered prior to, and during rain events.

- Materials should be stored in their original containers and the original product labels should be maintained in place in a legible condition. Damaged or otherwise illegible labels should be replaced immediately.
Material Delivery and Storage

- Bagged and boxed materials should be stored on pallets and should not be allowed to accumulate on the ground. To provide protection from wind and rain throughout the rainy season, bagged and boxed materials should be covered during non-working days and prior to and during rain events.

- Stockpiles should be protected in accordance with WM-3, Stockpile Management.

- Materials should be stored indoors within existing structures or completely enclosed storage sheds when available.

- Proper storage instructions should be posted at all times in an open and conspicuous location.

- An ample supply of appropriate spill clean up material should be kept near storage areas.

- Also see WM-6, Hazardous Waste Management, for storing of hazardous wastes.

Material Delivery Practices

- Keep an accurate, up-to-date inventory of material delivered and stored onsite.

- Arrange for employees trained in emergency spill cleanup procedures to be present when dangerous materials or liquid chemicals are unloaded.

Spill Cleanup

- Contain and clean up any spill immediately.

- Properly remove and dispose of any hazardous materials or contaminated soil if significant residual materials remain on the ground after construction is complete. See WM-7, Contaminated Soil Management.

- See WM-4, Spill Prevention and Control, for spills of chemicals and/or hazardous materials.

- If spills or leaks of materials occur that are not contained and could discharge to surface waters, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required.

Cost

- The largest cost of implementation may be in the construction of a materials storage area that is covered and provides secondary containment.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Keep storage areas clean and well organized, including a current list of all materials onsite.

- Inspect labels on containers for legibility and accuracy.
Repair or replace perimeter controls, containment structures, covers, and liners as needed to maintain proper function.

References
Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Material Use

Description and Purpose
Prevent or reduce the discharge of pollutants to the storm drain system or watercourses from material use by using alternative products, minimizing hazardous material use onsite, and training employees and subcontractors.

Suitable Applications
This BMP is suitable for use at all construction projects. These procedures apply when the following materials are used or prepared onsite:

- Pesticides and herbicides
- Fertilizers
- Detergents
- Petroleum products such as fuel, oil, and grease
- Asphalt and other concrete components
- Other hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds
- Other materials that may be detrimental if released to the environment

Categories

<table>
<thead>
<tr>
<th>Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Erosion Control</td>
</tr>
<tr>
<td>SE</td>
<td>Sediment Control</td>
</tr>
<tr>
<td>TC</td>
<td>Tracking Control</td>
</tr>
<tr>
<td>WE</td>
<td>Wind Erosion Control</td>
</tr>
<tr>
<td>NS</td>
<td>Non-Stormwater Management Control</td>
</tr>
<tr>
<td>WM</td>
<td>Waste Management and Materials Pollution Control</td>
</tr>
</tbody>
</table>

Legend:
- Primary Category
- Secondary Category

Targeted Constituents

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td>✔</td>
</tr>
<tr>
<td>Nutrients</td>
<td>✔</td>
</tr>
<tr>
<td>Trash</td>
<td>✔</td>
</tr>
<tr>
<td>Metals</td>
<td>✔</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>✔</td>
</tr>
<tr>
<td>Organics</td>
<td>✔</td>
</tr>
</tbody>
</table>

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Limitations
Safer alternative building and construction products may not be available or suitable in every instance.

Implementation
The following steps should be taken to minimize risk:

- Minimize use of hazardous materials onsite.

- Follow manufacturer instructions regarding uses, protective equipment, ventilation, flammability, and mixing of chemicals.

- Train personnel who use pesticides. The California Department of Pesticide Regulation and county agricultural commissioners license pesticide dealers, certify pesticide applicators, and conduct onsite inspections.

- The preferred method of termiticide application is soil injection near the existing or proposed structure foundation/slab; however, if not feasible, soil drench application of termiticides should follow EPA label guidelines and the following recommendations (most of which are applicable to most pesticide applications):

 - Do not treat soil that is water-saturated or frozen.

 - Application shall not commence within 24-hours of a predicted precipitation event with a 40% or greater probability. Weather tracking must be performed on a daily basis prior to termiticide application and during the period of termiticide application.

 - Do not allow treatment chemicals to runoff from the target area. Apply proper quantity to prevent excess runoff. Provide containment for and divert stormwater from application areas using berms or diversion ditches during application.

 - Dry season: Do not apply within 10 feet of storm drains. Do not apply within 25 feet of aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or ponds; estuaries; and commercial fish farm ponds).

 - Wet season: Do not apply within 50 feet of storm drains or aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or ponds; estuaries; and commercial fish farm ponds) unless a vegetative buffer is present (if so, refer to dry season requirements).

 - Do not make on-grade applications when sustained wind speeds are above 10 mph (at application site) at nozzle end height.

 - Cover treatment site prior to a rain event in order to prevent run-off of the pesticide into non-target areas. The treated area should be limited to a size that can be backfilled and/or covered by the end of the work shift. Backfilling or covering of the treated area shall be done by the end of the same work shift in which the application is made.

 - The applicator must either cover the soil him/herself or provide written notification of the above requirement to the contractor on site and to the person commissioning the
application (if different than the contractor). If notice is provided to the contractor or the person commissioning the application, then they are responsible under the Federal Insecticide Fungicide, and Rodenticide Act (FIFRA) to ensure that: 1) if the concrete slab cannot be poured over the treated soil within 24 hours of application, the treated soil is covered with a waterproof covering (such as polyethylene sheeting), and 2) the treated soil is covered if precipitation is predicted to occur before the concrete slab is scheduled to be poured.

- Do not over-apply fertilizers, herbicides, and pesticides. Prepare only the amount needed. Follow the recommended usage instructions. Over-application is expensive and environmentally harmful. Unless on steep slopes, till fertilizers into the soil rather than hydraulic application. Apply surface dressings in several smaller applications, as opposed to one large application, to allow time for infiltration and to avoid excess material being carried offsite by runoff. Do not apply these chemicals before predicted rainfall.

- Train employees and subcontractors in proper material use.

- Supply Material Safety Data Sheets (MSDS) for all materials.

- Dispose of latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths, when thoroughly dry and are no longer hazardous, with other construction debris.

- Do not remove the original product label; it contains important safety and disposal information. Use the entire product before disposing of the container.

- Mix paint indoors or in a containment area. Never clean paintbrushes or rinse paint containers into a street, gutter, storm drain, or watercourse. Dispose of any paint thinners, residue, and sludge(s) that cannot be recycled, as hazardous waste.

- For water-based paint, clean brushes to the extent practicable, and rinse to a drain leading to a sanitary sewer where permitted, or contain for proper disposal off site. For oil-based paints, clean brushes to the extent practicable, and filter and reuse thinners and solvents.

- Use recycled and less hazardous products when practical. Recycle residual paints, solvents, non-treated lumber, and other materials.

- Use materials only where and when needed to complete the construction activity. Use safer alternative materials as much as possible. Reduce or eliminate use of hazardous materials onsite when practical.

- Document the location, time, chemicals applied, and applicator’s name and qualifications.

- Keep an ample supply of spill clean up material near use areas. Train employees in spill clean up procedures.

- Avoid exposing applied materials to rainfall and runoff unless sufficient time has been allowed for them to dry.

- Discontinue use of erodible landscape material within 2 days prior to a forecasted rain event and materials should be covered and/or bermed.
Material Use

- Provide containment for material use areas such as masons’ areas or paint mixing/preparation areas to prevent materials/pollutants from entering stormwater.

Costs
All of the above are low cost measures.

Inspection and Maintenance
- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities.
- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
- Ensure employees and subcontractors throughout the job are using appropriate practices.

References
Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Description and Purpose
Stockpile management procedures and practices are designed to reduce or eliminate air and stormwater pollution from stockpiles of soil, soil amendments, sand, paving materials such as portland cement concrete (PCC) rubble, asphalt concrete (AC), asphalt concrete rubble, aggregate base, aggregate subbase or pre-mixed aggregate, asphalt minder (so called “cold mix” asphalt), and pressure treated wood.

Suitable Applications
Implement in all projects that stockpile soil and other loose materials.

Limitations
- Plastic sheeting as a stockpile protection is temporary and hard to manage in windy conditions. Where plastic is used, consider use of plastic tarps with nylon reinforcement which may be more durable than standard sheeting.
- Plastic sheeting can increase runoff volume due to lack of infiltration and potentially cause perimeter control failure.
- Plastic sheeting breaks down faster in sunlight.
- The use of Plastic materials and photodegradable plastics should be avoided.

Implementation
Protection of stockpiles is a year-round requirement. To properly manage stockpiles:

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
On larger sites, a minimum of 50 ft separation from concentrated flows of stormwater, drainage courses, and inlets is recommended.

After 14 days of inactivity, a stockpile is non-active and requires further protection described below. All stockpiles are required to be protected as non-active stockpiles immediately if they are not scheduled to be used within 14 days.

Protect all stockpiles from stormwater runon using temporary perimeter sediment barriers such as compost berms (SE-13), temporary silt dikes (SE-12), fiber rolls (SE-5), silt fences (SE-1), sandbags (SE-8), gravel bags (SE-6), or biofilter bags (SE-14). Refer to the individual fact sheet for each of these controls for installation information.

Implement wind erosion control practices as appropriate on all stockpiled material. For specific information, see WE-1, Wind Erosion Control.

Manage stockpiles of contaminated soil in accordance with WM-7, Contaminated Soil Management.

Place bagged materials on pallets and under cover.

Ensure that stockpile coverings are installed securely to protect from wind and rain.

Some plastic covers withstand weather and sunlight better than others. Select cover materials or methods based on anticipated duration of use.

Protection of Non-Active Stockpiles

A stockpile is considered non-active if it either is not used for 14 days or if it is scheduled not to be used for 14 days or more. Stockpiles need to be protected immediately if they are not scheduled to be used within 14 days. Non-active stockpiles of the identified materials should be protected as follows:

Soil stockpiles

- Soil stockpiles should be covered or protected with soil stabilization measures and a temporary perimeter sediment barrier at all times.
- Temporary vegetation should be considered for topsoil piles that will be stockpiled for extended periods.

Stockpiles of Portland cement concrete rubble, asphalt concrete, asphalt concrete rubble, aggregate base, or aggregate sub base

- Stockpiles should be covered and protected with a temporary perimeter sediment barrier at all times.

Stockpiles of “cold mix”

- Cold mix stockpiles should be placed on and covered with plastic sheeting or comparable material at all times and surrounded by a berm.

Stockpiles of fly ash, stucco, hydrated lime
Stockpile Management

- Stockpiles of materials that may raise the pH of runoff (i.e., basic materials) should be covered with plastic and surrounded by a berm.

Stockpiles/Storage of wood *(Pressure treated with chromated copper arsenate or ammoniacal copper zinc arsenate)*
- Treated wood should be covered with plastic sheeting or comparable material at all times and surrounded by a berm.

Protection of Active Stockpiles
A stockpile is active when it is being used or is scheduled to be used within 14 days of the previous use. Active stockpiles of the identified materials should be protected as follows:

- All stockpiles should be covered and protected with a temporary linear sediment barrier prior to the onset of precipitation.

- Stockpiles of “cold mix” and treated wood, and basic materials should be placed on and covered with plastic sheeting or comparable material and surrounded by a berm prior to the onset of precipitation.

- The downstream perimeter of an active stockpile should be protected with a linear sediment barrier or berm and runoff should be diverted around or away from the stockpile on the upstream perimeter.

Costs
For cost information associated with stockpile protection refer to the individual erosion or sediment control BMP fact sheet considered for implementation (For example, refer to SE-1 Silt Fence for installation of silt fence around the perimeter of a stockpile.)

Inspection and Maintenance
- Stockpiles must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- It may be necessary to inspect stockpiles covered with plastic sheeting more frequently during certain conditions (for example, high winds or extreme heat).

- Repair and/or replace perimeter controls and covers as needed to keep them functioning properly.

- Sediment shall be removed when it reaches one-third of the barrier height.

References
Description and Purpose
Prevent or reduce the discharge of pollutants to drainage systems or watercourses from leaks and spills by reducing the chance for spills, stopping the source of spills, containing and cleaning up spills, properly disposing of spill materials, and training employees.

This best management practice covers only spill prevention and control. However, WM-1, Materials Delivery and Storage, and WM-2, Material Use, also contain useful information, particularly on spill prevention. For information on wastes, see the waste management BMPs in this section.

Suitable Applications
This BMP is suitable for all construction projects. Spill control procedures are implemented anytime chemicals or hazardous substances are stored on the construction site, including the following materials:

- Soil stabilizers/binders
- Dust palliatives
- Herbicides
- Growth inhibitors
- Fertilizers
- Deicing/anti-icing chemicals

Categories
EC	Erosion Control
SE	Sediment Control
TC	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater Management Control
WM	Waste Management and Materials Pollution Control

Legend:
- Primary Objective
- Secondary Objective

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Spill Prevention and Control

- Fuels
- Lubricants
- Other petroleum distillates

Limitations
- In some cases it may be necessary to use a private spill cleanup company.
- This BMP applies to spills caused by the contractor and subcontractors.
- Procedures and practices presented in this BMP are general. Contractor should identify appropriate practices for the specific materials used or stored onsite

Implementation
The following steps will help reduce the stormwater impacts of leaks and spills:

Education
- Be aware that different materials pollute in different amounts. Make sure that each employee knows what a “significant spill” is for each material they use, and what is the appropriate response for “significant” and “insignificant” spills.
- Educate employees and subcontractors on potential dangers to humans and the environment from spills and leaks.
- Hold regular meetings to discuss and reinforce appropriate disposal procedures (incorporate into regular safety meetings).
- Establish a continuing education program to indoctrinate new employees.
- Have contractor’s superintendent or representative oversee and enforce proper spill prevention and control measures.

General Measures
- To the extent that the work can be accomplished safely, spills of oil, petroleum products, substances listed under 40 CFR parts 110, 117, and 302, and sanitary and septic wastes should be contained and cleaned up immediately.
- Store hazardous materials and wastes in covered containers and protect from vandalism.
- Place a stockpile of spill cleanup materials where it will be readily accessible.
- Train employees in spill prevention and cleanup.
- Designate responsible individuals to oversee and enforce control measures.
- Spills should be covered and protected from stormwater runon during rainfall to the extent that it doesn’t compromise clean up activities.
- Do not bury or wash spills with water.
Spill Prevention and Control

- Store and dispose of used clean up materials, contaminated materials, and recovered spill material that is no longer suitable for the intended purpose in conformance with the provisions in applicable BMPs.

- Do not allow water used for cleaning and decontamination to enter storm drains or watercourses. Collect and dispose of contaminated water in accordance with WM-10, Liquid Waste Management.

- Contain water overflow or minor water spillage and do not allow it to discharge into drainage facilities or watercourses.

- Place proper storage, cleanup, and spill reporting instructions for hazardous materials stored or used on the project site in an open, conspicuous, and accessible location.

- Keep waste storage areas clean, well organized, and equipped with ample cleanup supplies as appropriate for the materials being stored. Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function.

Cleanup

- Clean up leaks and spills immediately.

- Use a rag for small spills on paved surfaces, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to either a certified laundry (rags) or disposed of as hazardous waste.

- Never hose down or bury dry material spills. Clean up as much of the material as possible and dispose of properly. See the waste management BMPs in this section for specific information.

Minor Spills

- Minor spills typically involve small quantities of oil, gasoline, paint, etc. which can be controlled by the first responder at the discovery of the spill.

- Use absorbent materials on small spills rather than hosing down or burying the spill.

- Absorbent materials should be promptly removed and disposed of properly.

- Follow the practice below for a minor spill:
 - Contain the spread of the spill.
 - Recover spilled materials.
 - Clean the contaminated area and properly dispose of contaminated materials.

Semi-Significant Spills

- Semi-significant spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities.
Spill Prevention and Control

- Spills should be cleaned up immediately:
 - Contain spread of the spill.
 - Notify the project foreman immediately.
 - If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely.
 - If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil.
 - If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff.

Significant/Hazardous Spills

- For significant or hazardous spills that cannot be controlled by personnel in the immediate vicinity, the following steps should be taken:
 - Notify the local emergency response by dialing 911. In addition to 911, the contractor will notify the proper county officials. It is the contractor's responsibility to have all emergency phone numbers at the construction site.
 - Notify the Governor's Office of Emergency Services Warning Center, (916) 845-8911.
 - For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the contractor should notify the National Response Center at (800) 424-8802.
 - Notification should first be made by telephone and followed up with a written report.
 - The services of a spills contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site.
 - Other agencies which may need to be consulted include, but are not limited to, the Fire Department, the Public Works Department, the Coast Guard, the Highway Patrol, the City/County Police Department, Department of Toxic Substances, California Division of Oil and Gas, Cal/OSHA, etc.

Reporting

- Report significant spills to local agencies, such as the Fire Department; they can assist in cleanup.

- Federal regulations require that any significant oil spill into a water body or onto an adjoining shoreline be reported to the National Response Center (NRC) at 800-424-8802 (24 hours).

Use the following measures related to specific activities:
Vehicle and Equipment Maintenance

- If maintenance must occur onsite, use a designated area and a secondary containment, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills.

- Regularly inspect onsite vehicles and equipment for leaks and repair immediately.

- Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.

- Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.

- Place drip pans or absorbent materials under paving equipment when not in use.

- Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the absorbent materials promptly and dispose of properly.

- Promptly transfer used fluids to the proper waste or recycling drums. Don’t leave full drip pans or other open containers lying around.

- Oil filters disposed of in trashcans or dumpsters can leak oil and pollute stormwater. Place the oil filter in a funnel over a waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters.

- Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Vehicle and Equipment Fueling

- If fueling must occur onsite, use designate areas, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills.

- Discourage “topping off” of fuel tanks.

- Always use secondary containment, such as a drain pan, when fueling to catch spills/ leaks.

Costs
Prevention of leaks and spills is inexpensive. Treatment and/or disposal of contaminated soil or water can be quite expensive.

Inspection and Maintenance

- Inspect and verify that activity–based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.
Spill Prevention and Control

- Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur.

- Keep ample supplies of spill control and cleanup materials onsite, near storage, unloading, and maintenance areas.

- Update your spill prevention and control plan and stock cleanup materials as changes occur in the types of chemicals onsite.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Description and Purpose

Solid waste management procedures and practices are designed to prevent or reduce the discharge of pollutants to stormwater from solid or construction waste by providing designated waste collection areas and containers, arranging for regular disposal, and training employees and subcontractors.

Suitable Applications

This BMP is suitable for construction sites where the following wastes are generated or stored:

- Solid waste generated from trees and shrubs removed during land clearing, demolition of existing structures (rubble), and building construction
- Packaging materials including wood, paper, and plastic
- Scrap or surplus building materials including scrap metals, rubber, plastic, glass pieces, and masonry products
- Domestic wastes including food containers such as beverage cans, coffee cups, paper bags, plastic wrappers, and cigarettes
- Construction wastes including brick, mortar, timber, steel and metal scraps, pipe and electrical cuttings, non-hazardous equipment parts, styrofoam and other materials used to transport and package construction materials

Categories

EC	Erosion Control
SE	Sediment Control
TC	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater Management Control
WM	Waste Management and Materials Pollution Control

Legend:

- ☑ Primary Objective
- ☒ Secondary Objective

Targeted Constituents

- Sediment ☑
- Nutrients ☑
- Trash ☑
- Metals ☑
- Bacteria ☑
- Oil and Grease ☑
- Organics ☑

Potential Alternatives

None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Limitations
Temporary stockpiling of certain construction wastes may not necessitate stringent drainage related controls during the non-rainy season or in desert areas with low rainfall.

Implementation
The following steps will help keep a clean site and reduce stormwater pollution:

- Select designated waste collection areas onsite.
- Inform trash-hauling contractors that you will accept only watertight dumpsters for onsite use. Inspect dumpsters for leaks and repair any dumpster that is not watertight.
- Locate containers in a covered area or in a secondary containment.
- Provide an adequate number of containers with lids or covers that can be placed over the container to keep rain out or to prevent loss of wastes when it is windy.
- Cover waste containers at the end of each work day and when it is raining.
- Plan for additional containers and more frequent pickup during the demolition phase of construction.
- Collect site trash daily, especially during rainy and windy conditions.
- Remove this solid waste promptly since erosion and sediment control devices tend to collect litter.
- Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris.
- Do not hose out dumpsters on the construction site. Leave dumpster cleaning to the trash hauling contractor.
- Arrange for regular waste collection before containers overflow.
- Clean up immediately if a container does spill.
- Make sure that construction waste is collected, removed, and disposed of only at authorized disposal areas.

Education
- Have the contractor’s superintendent or representative oversee and enforce proper solid waste management procedures and practices.
- Instruct employees and subcontractors on identification of solid waste and hazardous waste.
- Educate employees and subcontractors on solid waste storage and disposal procedures.
Solid Waste Management

- Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings).
- Require that employees and subcontractors follow solid waste handling and storage procedures.
- Prohibit littering by employees, subcontractors, and visitors.
- Minimize production of solid waste materials wherever possible.

Collection, Storage, and Disposal

- Littering on the project site should be prohibited.
- To prevent clogging of the storm drainage system, litter and debris removal from drainage grates, trash racks, and ditch lines should be a priority.
- Trash receptacles should be provided in the contractor’s yard, field trailer areas, and at locations where workers congregate for lunch and break periods.
- Litter from work areas within the construction limits of the project site should be collected and placed in watertight dumpsters at least weekly, regardless of whether the litter was generated by the contractor, the public, or others. Collected litter and debris should not be placed in or next to drain inlets, stormwater drainage systems, or watercourses.
- Dumpsters of sufficient size and number should be provided to contain the solid waste generated by the project.
- Full dumpsters should be removed from the project site and the contents should be disposed of by the trash hauling contractor.
- Construction debris and waste should be removed from the site biweekly or more frequently as needed.
- Construction material visible to the public should be stored or stacked in an orderly manner.
- Stormwater runon should be prevented from contacting stored solid waste through the use of berms, dikes, or other temporary diversion structures or through the use of measures to elevate waste from site surfaces.
- Solid waste storage areas should be located at least 50 ft from drainage facilities and watercourses and should not be located in areas prone to flooding or ponding.
- Except during fair weather, construction and highway planting waste not stored in watertight dumpsters should be securely covered from wind and rain by covering the waste with tarps or plastic.
- Segregate potentially hazardous waste from non-hazardous construction site waste.
- Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris.
For disposal of hazardous waste, see WM-6, Hazardous Waste Management. Have hazardous waste hauled to an appropriate disposal and/or recycling facility.

Salvage or recycle useful vegetation debris, packaging and surplus building materials when practical. For example, trees and shrubs from land clearing can be used as a brush barrier, or converted into wood chips, then used as mulch on graded areas. Wood pallets, cardboard boxes, and construction scraps can also be recycled.

Costs
All of the above are low cost measures.

Inspection and Maintenance
- Inspect and verify that activity–based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect BMPs in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur.

- Inspect construction waste area regularly.

- Arrange for regular waste collection.

References

Description and Purpose
Prevent the discharge of pollutants to stormwater from concrete waste by conducting washout onsite or offsite in a designated area, and by employee and subcontractor training.

The General Permit incorporates Numeric Action Levels (NAL) for pH (see Section 2 of this handbook to determine your project’s risk level and if you are subject to these requirements).

Many types of construction materials, including mortar, concrete, stucco, cement and block and their associated wastes have basic chemical properties that can raise pH levels outside of the permitted range. Additional care should be taken when managing these materials to prevent them from coming into contact with stormwater flows and raising pH to levels outside the accepted range.

Suitable Applications
Concrete waste management procedures and practices are implemented on construction projects where:

- Concrete is used as a construction material or where concrete dust and debris result from demolition activities.
- Slurries containing portland cement concrete (PCC) are generated, such as from saw cutting, coring, grinding, grooving, and hydro-concrete demolition.
- Concrete trucks and other concrete-coated equipment are washed onsite.

Legend:
- Primary Category
- Secondary Category

Categories
EC Erosion Control
SE Sediment Control
TC Tracking Control
WE Wind Erosion Control
NS Non-Stormwater Management Control
WM Waste Management and Materials Pollution Control

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Concrete Waste Management

- Mortar-mixing stations exist.
- Stucco mixing and spraying.
- See also NS-8, Vehicle and Equipment Cleaning.

Limitations
- Offsite washout of concrete wastes may not always be possible.
- Multiple washouts may be needed to assure adequate capacity and to allow for evaporation.

Implementation
The following steps will help reduce stormwater pollution from concrete wastes:
- Incorporate requirements for concrete waste management into material supplier and subcontractor agreements.
- Store dry and wet materials under cover, away from drainage areas. Refer to WM-1, Material Delivery and Storage for more information.
- Avoid mixing excess amounts of concrete.
- Perform washout of concrete trucks in designated areas only, where washout will not reach stormwater.
- Do not wash out concrete trucks into storm drains, open ditches, streets, streams or onto the ground. Trucks should always be washed out into designated facilities.
- Do not allow excess concrete to be dumped onsite, except in designated areas.
- For onsite washout:
 - On larger sites, it is recommended to locate washout areas at least 50 feet from storm drains, open ditches, or water bodies. Do not allow runoff from this area by constructing a temporary pit or bermed area large enough for liquid and solid waste.
 - Washout wastes into the temporary washout where the concrete can set, be broken up, and then disposed properly.
 - Washouts shall be implemented in a manner that prevents leaching to underlying soils. Washout containers must be water tight and washouts on or in the ground must be lined with a suitable impervious liner, typically a plastic type material.
- Do not wash sweepings from exposed aggregate concrete into the street or storm drain. Collect and return sweepings to aggregate base stockpile or dispose in the trash.
- See typical concrete washout installation details at the end of this fact sheet.

Education
- Educate employees, subcontractors, and suppliers on the concrete waste management techniques described herein.
Concrete Waste Management

- Arrange for contractor’s superintendent or representative to oversee and enforce concrete waste management procedures.

- Discuss the concrete management techniques described in this BMP (such as handling of concrete waste and washout) with the ready-mix concrete supplier before any deliveries are made.

Concrete Demolition Wastes

- Stockpile concrete demolition waste in accordance with BMP WM-3, Stockpile Management.

- Dispose of or recycle hardened concrete waste in accordance with applicable federal, state or local regulations.

Concrete Slurry Wastes

- PCC and AC waste should not be allowed to enter storm drains or watercourses.

- PCC and AC waste should be collected and disposed of or placed in a temporary concrete washout facility (as described in Onsite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below).

- A foreman or construction supervisor should monitor onsite concrete working tasks, such as saw cutting, coring, grinding and grooving to ensure proper methods are implemented.

- Saw-cut concrete slurry should not be allowed to enter storm drains or watercourses. Residue from grinding operations should be picked up by means of a vacuum attachment to the grinding machine or by sweeping. Saw cutting residue should not be allowed to flow across the pavement and should not be left on the surface of the pavement. See also NS-3, Paving and Grinding Operations; and WM-10, Liquid Waste Management.

- Concrete slurry residue should be disposed in a temporary washout facility (as described in Onsite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below) and allowed to dry. Dispose of dry slurry residue in accordance with WM-5, Solid Waste Management.

Onsite Temporary Concrete Washout Facility, Transit Truck Washout Procedures

- Temporary concrete washout facilities should be located a minimum of 50 ft from storm drain inlets, open drainage facilities, and watercourses. Each facility should be located away from construction traffic or access areas to prevent disturbance or tracking.

- A sign should be installed adjacent to each washout facility to inform concrete equipment operators to utilize the proper facilities.

- Temporary concrete washout facilities should be constructed above grade or below grade at the option of the contractor. Temporary concrete washout facilities should be constructed and maintained in sufficient quantity and size to contain all liquid and concrete waste generated by washout operations.
Temporary washout facilities should have a temporary pit or bermed areas of sufficient volume to completely contain all liquid and waste concrete materials generated during washout procedures.

Temporary washout facilities should be lined to prevent discharge to the underlying ground or surrounding area.

Washout of concrete trucks should be performed in designated areas only.

Only concrete from mixer truck chutes should be washed into concrete wash out.

Concrete washout from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated washout area or properly disposed of or recycled offsite.

Once concrete wastes are washed into the designated area and allowed to harden, the concrete should be broken up, removed, and disposed of per WM-5, Solid Waste Management. Dispose of or recycle hardened concrete on a regular basis.

Temporary Concrete Washout Facility (Type Above Grade)

- Temporary concrete washout facility (type above grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft; however, smaller sites or jobs may only need a smaller washout facility. With any washout, always maintain a sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations.

- Materials used to construct the washout area should conform to the provisions detailed in their respective BMPs (e.g., SE-8 Sandbag Barrier).

- Plastic lining material should be a minimum of 10 mil in polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material.

- Alternatively, portable removable containers can be used as above grade concrete washouts. Also called a “roll-off”; this concrete washout facility should be properly sealed to prevent leakage, and should be removed from the site and replaced when the container reaches 75% capacity.

Temporary Concrete Washout Facility (Type Below Grade)

- Temporary concrete washout facilities (type below grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft. The quantity and volume should be sufficient to contain all liquid and concrete waste generated by washout operations.

- Lath and flagging should be commercial type.

- Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material.
- The base of a washout facility should be free of rock or debris that may damage a plastic liner.

Removal of Temporary Concrete Washout Facilities

- When temporary concrete washout facilities are no longer required for the work, the hardened concrete should be removed and properly disposed or recycled in accordance with federal, state or local regulations. Materials used to construct temporary concrete washout facilities should be removed from the site of the work and properly disposed or recycled in accordance with federal, state or local regulations.

- Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities should be backfilled and repaired.

Costs

All of the above are low cost measures. Roll-off concrete washout facilities can be more costly than other measures due to removal and replacement; however, provide a cleaner alternative to traditional washouts. The type of washout facility, size, and availability of materials will determine the cost of the washout.

Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Temporary concrete washout facilities should be maintained to provide adequate holding capacity with a minimum freeboard of 4 in. for above grade facilities and 12 in. for below grade facilities. Maintaining temporary concrete washout facilities should include removing and disposing of hardened concrete and returning the facilities to a functional condition. Hardened concrete materials should be removed and properly disposed or recycled in accordance with federal, state or local regulations.

- Washout facilities must be cleaned, or new facilities must be constructed and ready for use once the washout is 75% full.

- Inspect washout facilities for damage (e.g. torn liner, evidence of leaks, signage, etc.). Repair all identified damage.

References

Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Concrete Waste Management

Plan

10' MIN

Lath & Flagging on All Sides

Sandbag

Berm

Varies

10 Mil Plastic Lining

SECTION A-A
NOT TO SCALE

Type "Below Grade"

NOT TO SCALE

Plan

2 x 12 Rough Wood Frame

Stake (Typ)

Two-Stacked

Berm

Wood Frame Securely Fastened Around Entire Perimeter with Two Stakes

Section B-B
NOT TO SCALE

10 Mil Plastic Lining

Notes

1. Actual Layout Determined in Field.

2. The Concrete Washout Sign Shall Be Installed Within 3D Ft. of the Temporary Concrete Washout Facility.
Concrete Waste Management

PLAN
NOT TO SCALE
TYPE "ABOVE GRADE" WITH STRAW BALES

NOTES
1. ACTUAL LAYOUT DETERMINED IN FIELD.
2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30 FT. OF THE TEMPORARY CONCRETE WASHOUT FACILITY.
Description and Purpose
Proper sanitary and septic waste management prevent the discharge of pollutants to stormwater from sanitary and septic waste by providing convenient, well-maintained facilities, and arranging for regular service and disposal.

Suitable Applications
Sanitary septic waste management practices are suitable for use at all construction sites that use temporary or portable sanitary and septic waste systems.

Limitations
None identified.

Implementation
Sanitary or septic wastes should be treated or disposed of in accordance with state and local requirements. In many cases, one contract with a local facility supplier will be all that it takes to make sure sanitary wastes are properly disposed.

Storage and Disposal Procedures
- Temporary sanitary facilities should be located away from drainage facilities, watercourses, and from traffic circulation. If site conditions allow, place portable facilities a minimum of 50 feet from drainage conveyances and traffic areas. When subjected to high winds or risk of high winds, temporary sanitary facilities should be secured to prevent overturning.

Legend:
☑ Primary Category
☒ Secondary Category

Categories
EC Erosion Control
SE Sediment Control
TC Tracking Control
WE Wind Erosion Control
NS Non-Stormwater Management Control
WM Waste Management and Materials Pollution Control

Targeted Constituents
Sediment
Nutrients
Trash
Metals
Bacteria
Oil and Grease
Organics

Potential Alternatives
None

If User/Subscriber modifies this fact sheet in any way, the CASQA name/logo and footer below must be removed from each page and not appear on the modified version.
Sanitary/Septic Waste Management WM-9

- Temporary sanitary facilities must be equipped with containment to prevent discharge of pollutants to the stormwater drainage system of the receiving water.

- Consider safety as well as environmental implications before placing temporary sanitary facilities.

- Wastewater should not be discharged or buried within the project site.

- Sanitary and septic systems that discharge directly into sanitary sewer systems, where permissible, should comply with the local health agency, city, county, and sewer district requirements.

- Only reputable, licensed sanitary and septic waste haulers should be used.

- Sanitary facilities should be located in a convenient location.

- Temporary septic systems should treat wastes to appropriate levels before discharging.

- If using an onsite disposal system (OSDS), such as a septic system, local health agency requirements must be followed.

- Temporary sanitary facilities that discharge to the sanitary sewer system should be properly connected to avoid illicit discharges.

- Sanitary and septic facilities should be maintained in good working order by a licensed service.

- Regular waste collection by a licensed hauler should be arranged before facilities overflow.

- If a spill does occur from a temporary sanitary facility, follow federal, state and local regulations for containment and clean-up.

Education

- Educate employees, subcontractors, and suppliers on sanitary and septic waste storage and disposal procedures.

- Educate employees, subcontractors, and suppliers of potential dangers to humans and the environment from sanitary and septic wastes.

- Instruct employees, subcontractors, and suppliers in identification of sanitary and septic waste.

- Hold regular meetings to discuss and reinforce the use of sanitary facilities (incorporate into regular safety meetings).

- Establish a continuing education program to indoctrinate new employees.

Costs

All of the above are low cost measures.
Inspection and Maintenance

- BMPs must be inspected in accordance with General Permit requirements for the associated project type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Arrange for regular waste collection.

- If high winds are expected, portable sanitary facilities must be secured with spikes or weighed down to prevent over turning.

- If spills or leaks from sanitary or septic facilities occur that are not contained and discharge from the site, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required.

References

Description and Purpose
Liquid waste management includes procedures and practices to prevent discharge of pollutants to the storm drain system or to watercourses as a result of the creation, collection, and disposal of non-hazardous liquid wastes.

Suitable Applications
Liquid waste management is applicable to construction projects that generate any of the following non-hazardous by-products, residuals, or wastes:

- Drilling slurries and drilling fluids
- Grease-free and oil-free wastewater and rinse water
- Dredgings
- Other non-stormwater liquid discharges not permitted by separate permits

Limitations
- Disposal of some liquid wastes may be subject to specific laws and regulations or to requirements of other permits secured for the construction project (e.g., NPDES permits, Army Corps permits, Coastal Commission permits, etc.).
- Liquid waste management does not apply to dewatering operations (NS-2 Dewatering Operations), solid waste management (WM-5, Solid Waste Management), hazardous wastes (WM-6, Hazardous Waste Management), or...
Concrete slurry residue (WM-8, Concrete Waste Management).

- Typical permitted non-stormwater discharges can include: water line flushing; landscape irrigation; diverted stream flows; rising ground waters; uncontaminated pumped ground water; discharges from potable water sources; foundation drains; irrigation water; springs; water from crawl space pumps; footing drains; lawn watering; flows from riparian habitats and wetlands; and discharges or flows from emergency fire fighting activities.

Implementation

General Practices

- Instruct employees and subcontractors how to safely differentiate between non-hazardous liquid waste and potential or known hazardous liquid waste.

- Instruct employees, subcontractors, and suppliers that it is unacceptable for any liquid waste to enter any storm drainage device, waterway, or receiving water.

- Educate employees and subcontractors on liquid waste generating activities and liquid waste storage and disposal procedures.

- Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings).

- Verify which non-stormwater discharges are permitted by the statewide NPDES permit; different regions might have different requirements not outlined in this permit.

- Apply NS-8, Vehicle and Equipment Cleaning for managing wash water and rinse water from vehicle and equipment cleaning operations.

Containing Liquid Wastes

- Drilling residue and drilling fluids should not be allowed to enter storm drains and watercourses and should be disposed of.

- If an appropriate location is available, drilling residue and drilling fluids that are exempt under Title 23, CCR § 2511(g) may be dried by infiltration and evaporation in a containment facility constructed in conformance with the provisions concerning the Temporary Concrete Washout Facilities detailed in WM-8, Concrete Waste Management.

- Liquid wastes generated as part of an operational procedure, such as water-laden dredged material and drilling mud, should be contained and not allowed to flow into drainage channels or receiving waters prior to treatment.

- Liquid wastes should be contained in a controlled area such as a holding pit, sediment basin, roll-off bin, or portable tank.

- Containment devices must be structurally sound and leak free.

- Containment devices must be of sufficient quantity or volume to completely contain the liquid wastes generated.
Precautions should be taken to avoid spills or accidental releases of contained liquid wastes. Apply the education measures and spill response procedures outlined in WM-4, Spill Prevention and Control.

Containment areas or devices should not be located where accidental release of the contained liquid can threaten health or safety or discharge to water bodies, channels, or storm drains.

Capturing Liquid Wastes
- Capture all liquid wastes that have the potential to affect the storm drainage system (such as wash water and rinse water from cleaning walls or pavement), before they run off a surface.
- Do not allow liquid wastes to flow or discharge uncontrolled. Use temporary dikes or berms to intercept flows and direct them to a containment area or device for capture.
- Use a sediment trap (SE-3, Sediment Trap) for capturing and treating sediment laden liquid waste or capture in a containment device and allow sediment to settle.

Disposing of Liquid Wastes
- A typical method to handle liquid waste is to dewater the contained liquid waste, using procedures such as described in NS-2, Dewatering Operations, and SE-2, Sediment Basin, and dispose of resulting solids per WM-5, Solid Waste Management.
- Methods of disposal for some liquid wastes may be prescribed in Water Quality Reports, NPDES permits, Environmental Impact Reports, 401 or 404 permits, and local agency discharge permits, etc. Review the SWPPP to see if disposal methods are identified.
- Liquid wastes, such as from dredged material, may require testing and certification whether it is hazardous or not before a disposal method can be determined.
- For disposal of hazardous waste, see WM-6, Hazardous Waste Management.
- If necessary, further treat liquid wastes prior to disposal. Treatment may include, though is not limited to, sedimentation, filtration, and chemical neutralization.

Costs
Prevention costs for liquid waste management are minimal. Costs increase if cleanup or fines are involved.

Inspection and Maintenance
- Inspect and verify that activity–based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect weekly during the rainy season and of two-week intervals in the non-rainy season to verify continued BMP implementation.
- Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur.
Liquid Waste Management

- Remove deposited solids in containment areas and capturing devices as needed and at the completion of the task. Dispose of any solids as described in WM-5, Solid Waste Management.

- Inspect containment areas and capturing devices and repair as needed.

References
Appendix I: BMP Inspection Form
BMP Inspection Report

<table>
<thead>
<tr>
<th>Date and Time of Inspection:</th>
<th>Date Report Written:</th>
</tr>
</thead>
</table>

Inspection Type:
(Circle one)
- **Weekly**
 Complete Parts I, II, III and VII
- **Pre-Storm**
 Complete Parts I, II, III, IV and VII
- **During Rain Event**
 Complete Parts I, II, III, V, and VII
- **Post-Storm**
 Complete Parts I, II, III, VI and VII

Part I. General Information

Site Information

Construction Site Name:

Construction stage and completed activities:

Approximate area of site that is exposed:

Photos Taken:
(Circle one)
- Yes
- No

Photo Reference IDs:

Weather

Estimate storm beginning:
(date and time)

Estimate storm duration:
(hours)

Estimate time since last storm:
(days or hours)

Rain gauge reading and location:
(in)

Is a "Qualifying Event" predicted or did one occur (i.e., 0.5" rain with 48-hrs or greater between events)? (Y/N)
If yes, summarize forecast:

Exemption Documentation (explanation required if inspection could not be conducted). Visual inspections are not required outside of business hours or during dangerous weather conditions such as flooding or electrical storms.

Inspector Information

Inspector Name:

Inspector Title:

Signature:

Date:

San Pedro Distribution Center SWPPP 85 October 2018
<table>
<thead>
<tr>
<th>Good Housekeeping for Construction Materials</th>
<th>Failures or other short comings (yes, no, N/A)</th>
<th>Action Required (yes/no)</th>
<th>Action Implemented (Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory of products (excluding materials designed to be outdoors)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockpiled construction materials not actively in use are covered and bermed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All chemicals are stored in watertight containers with appropriate secondary containment, or in a completely enclosed storage shed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction materials are minimally exposed to precipitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMPs preventing the off-site tracking of materials are implemented and properly effective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Good Housekeeping for Waste Management			
Wash/rinse water and materials are prevented from being disposed into the storm drain system			
Portable toilets are contained to prevent discharges of waste			
Sanitation facilities are clean and with no apparent for leaks and spills			
Equipment is in place to cover waste disposal containers at the end of business day and during rain events			
Discharges from waste disposal containers are prevented from discharging to the storm drain system / receiving water			
Stockpiled waste material is securely protected from wind and rain if not actively in use			
Procedures are in place for addressing hazardous and non-hazardous spills			
Appropriate spill response personnel are assigned and trained			
Equipment and materials for cleanup of spills is available onsite			
Washout areas (e.g., concrete) are contained appropriately to prevent discharge or infiltration into the underlying soil			

Good Housekeeping for Vehicle Storage and Maintenance			
Measures are in place to prevent oil, grease, or fuel from leaking into the ground, storm drains, or surface waters			
All equipment or vehicles are fueled, maintained, and stored in a designated area with appropriate BMPs			
Vehicle and equipment leaks are cleaned immediately and disposed of properly			
Part II. BMP Observations Continued. Describe deficiencies in Part III.

<table>
<thead>
<tr>
<th>Minimum BMPs for Risk Level _____ Sites</th>
<th>Adequately designed, implemented and effective (yes, no, N/A)</th>
<th>Action Required (yes/no)</th>
<th>Action Implemented (Date)</th>
</tr>
</thead>
</table>

Good Housekeeping for Landscape Materials

- Stockpiled landscape materials such as mulches and topsoil are contained and covered when not actively in use
- Erodible landscape material has not been applied 2 days before a forecasted rain event or during an event
- Erodible landscape materials are applied at quantities and rates in accordance with manufacturer recommendations
- Bagged erodible landscape materials are stored on pallets and covered

Good Housekeeping for Air Deposition of Site Materials

- Good housekeeping measures are implemented onsite to control the air deposition of site materials and from site operations

Non-Stormwater Management

- Non-Stormwater discharges are properly controlled
- Vehicles are washed in a manner to prevent non-stormwater discharges to surface waters or drainage systems
- Streets are cleaned in a manner to prevent unauthorized non-stormwater discharges to surface waters or drainage systems.

Erosion Controls

- Wind erosion controls are effectively implemented
- Effective soil cover is provided for disturbed areas inactive (i.e., not scheduled to be disturbed for 14 days) as well as finished slopes, open space, utility backfill, and completed lots
- The use of plastic materials is limited in cases when a more sustainable, environmentally friendly alternative exists.

Sediment Controls

- Perimeter controls are established and effective at controlling erosion and sediment discharges from the site
- Entrances and exits are stabilized to control erosion and sediment discharges from the site
- Sediment basins are properly maintained
- **Linear sediment control along toe of slope, face of slope an at grade breaks (Risk Level 2 & 3 Only)**
- **Limit construction activity to and from site to entrances and exits that employ effective controls to prevent offsite tracking (Risk Level 2 & 3 Only)**
Ensure all storm, drain inlets and perimeter controls, runoff control BMPs and pollutants controls at entrances and exits are maintained and protected from activities the reduce their effectiveness (Risk Level 2 & 3 Only)

Inspect all immediate access roads daily (Risk Level 2 & 3 Only)

Run-On and Run-Off Controls

Run-on to the site is effectively managed and directed away from all disturbed areas.

Other

Are the project SWPPP and BMP plan up to date, available on-site and being properly implemented?

Part III. Descriptions of BMP Deficiencies

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Repairs Implemented: Note - Repairs must begin within 72 hours of identification and, complete repairs as soon as possible.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start Date</td>
</tr>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>

Part IV. Additional Pre-Storm Observations

Note the presence or absence of floating and suspended materials, sheen, discoloration, turbidity, odors, and source(s) of pollutants(s).

<table>
<thead>
<tr>
<th>Do stormwater storage and containment areas have adequate freeboard? If no, complete Part III.</th>
<th>Yes, No, N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are drainage areas free of spills, leaks, or uncontrolled pollutant sources? If no, complete Part VII and describe below.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

| Are stormwater storage and containment areas free of leaks? If no, complete Parts III and/or VII and describe below. | |
|--| |
Notes:

<table>
<thead>
<tr>
<th>Location Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Description</td>
</tr>
</tbody>
</table>
Part VI. Additional Post-Storm Observations. Visually observe (inspect) stormwater discharges at all discharge locations within two business days (48 hours) after each qualifying rain event, and observe (inspect) the discharge of stored or contained stormwater that is derived from and discharged subsequent to a qualifying rain event producing precipitation of ½ inch or more at the time of discharge. Complete Part VII (Corrective Actions) as needed.

<table>
<thead>
<tr>
<th>Discharge Location, Storage or Containment Area</th>
<th>Visual Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part VII. Additional Corrective Actions Required. Identify additional corrective actions not included with BMP Deficiencies (Part III) above. Note if SWPPP change is required.

<table>
<thead>
<tr>
<th>Required Actions</th>
<th>Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix J: Project Specific Rain Event Action Plan Template
Not required for Risk Level 1 Projects.
Appendix K: Training Reporting Form
Trained Contractor Personnel Log
Stormwater Management Training Log and Documentation

Project Name: ________________________________

WDID #: ________________________________

Stormwater Management Topic: (check as appropriate)

☐ Erosion Control ☐ Sediment Control
☐ Wind Erosion Control ☐ Tracking Control
☐ Non-Stormwater Management ☐ Waste Management and Materials Pollution Control
☐ Stormwater Sampling

Specific Training Objective: ________________________________

Location: _______________ Date: _______________

Instructor: _______________ Telephone: _______________

Course Length (hours): ______

Attendee Roster (Attach additional forms if necessary)

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As needed, add proof of external training (e.g., course completion certificates, credentials for QSP, QSD).
Appendix L: Responsible Parties
OPTIONAL

Authorization of Approved Signatories

Project Name: __

WDID #: ____________________________

<table>
<thead>
<tr>
<th>Name of Personnel</th>
<th>Project Role</th>
<th>Company</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

___ _____________________________
LRP’s Signature Date

___ _____________________________
LRP Name and Title Telephone Number
Identification of QSP

Project Name: ________________________________

WDID #: ________________________________

The following are QSPs associated with this project

<table>
<thead>
<tr>
<th>Name of Personnel(1)</th>
<th>Company</th>
<th>Date</th>
</tr>
</thead>
</table>

(1) If additional QSPs are required on the job site add additional lines and include information here
Authorization of Data Submitters

Project Name: ________________________________

WDID #: ________________________________

<table>
<thead>
<tr>
<th>Name of Personnel</th>
<th>Project Role</th>
<th>Company</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

__

Approved Signatory’s Signature ____________________________ Date ____________________

__

Approved Signatory ____________________________ Telephone Number

Name and Title
Appendix M: Contractors and Subcontractors
Appendix N: Construction General Permit
ATTACHMENT C
RISK LEVEL 1 REQUIREMENTS

A. Effluent Standards

[These requirements are the same as those in the General Permit order.]

1. Narrative – Risk Level 1 dischargers shall comply with the narrative effluent standards listed below:

 a. Storm water discharges and authorized non-storm water discharges regulated by this General Permit shall not contain a hazardous substance equal to or in excess of reportable quantities established in 40 C.F.R. §§ 117.3 and 302.4, unless a separate NPDES Permit has been issued to regulate those discharges.

 b. Dischargers shall minimize or prevent pollutants in storm water discharges and authorized non-storm water discharges through the use of controls, structures, and management practices that achieve BAT for toxic and non-conventional pollutants and BCT for conventional pollutants.

2. Numeric – Risk Level 1 dischargers are not subject to a numeric effluent standard.

B. Good Site Management "Housekeeping"

1. Risk Level 1 dischargers shall implement good site management (i.e., "housekeeping") measures for construction materials that could potentially be a threat to water quality if discharged. At a minimum, Risk Level 1 dischargers shall implement the following good housekeeping measures:

 a. Conduct an inventory of the products used and/or expected to be used and the end products that are produced and/or expected to be produced. This does not include materials and equipment that are designed to be outdoors and exposed to environmental conditions (i.e. poles, equipment pads, cabinets, conductors, insulators, bricks, etc.).

 b. Cover and berm loose stockpiled construction materials that are not actively being used (i.e. soil, spoils, aggregate, fly-ash, stucco, hydrated lime, etc.).
c. Store chemicals in watertight containers (with appropriate secondary containment to prevent any spillage or leakage) or in a storage shed (completely enclosed).

d. Minimize exposure of construction materials to precipitation. This does not include materials and equipment that are designed to be outdoors and exposed to environmental conditions (i.e. poles, equipment pads, cabinets, conductors, insulators, bricks, etc.).

e. Implement BMPs to prevent the off-site tracking of loose construction and landscape materials.

2. Risk Level 1 dischargers shall implement good housekeeping measures for waste management, which, at a minimum, shall consist of the following:

a. Prevent disposal of any rinse or wash waters or materials on impervious or pervious site surfaces or into the storm drain system.

b. Ensure the containment of sanitation facilities (e.g., portable toilets) to prevent discharges of pollutants to the storm water drainage system or receiving water.

c. Clean or replace sanitation facilities and inspecting them regularly for leaks and spills.

d. Cover waste disposal containers at the end of every business day and during a rain event.

e. Prevent discharges from waste disposal containers to the storm water drainage system or receiving water.

f. Contain and securely protect stockpiled waste material from wind and rain at all times unless actively being used.

g. Implement procedures that effectively address hazardous and non-hazardous spills.

h. Develop a spill response and implementation element of the SWPPP prior to commencement of construction activities. The SWPPP shall require that:

i. Equipment and materials for cleanup of spills shall be available on site and that spills and leaks shall be cleaned up immediately and disposed of properly; and
ii. Appropriate spill response personnel are assigned and trained.

i. Ensure the containment of concrete washout areas and other washout areas that may contain additional pollutants so there is no discharge into the underlying soil and onto the surrounding areas.

3. Risk Level 1 dischargers shall implement good housekeeping for vehicle storage and maintenance, which, at a minimum, shall consist of the following:

 a. Prevent oil, grease, or fuel to leak in to the ground, storm drains or surface waters.

 b. Place all equipment or vehicles, which are to be fueled, maintained and stored in a designated area fitted with appropriate BMPs.

 c. Clean leaks immediately and disposing of leaked materials properly.

4. Risk Level 1 dischargers shall implement good housekeeping for landscape materials, which, at a minimum, shall consist of the following:

 a. Contain stockpiled materials such as mulches and topsoil when they are not actively being used.

 b. Contain fertilizers and other landscape materials when they are not actively being used.

 c. Discontinue the application of any erodible landscape material within 2 days before a forecasted rain event or during periods of precipitation.

 d. Apply erodible landscape material at quantities and application rates according to manufacture recommendations or based on written specifications by knowledgeable and experienced field personnel.

 e. Stack erodible landscape material on pallets and covering or storing such materials when not being used or applied.

5. Risk Level 1 dischargers shall conduct an assessment and create a list of potential pollutant sources and identify any areas of the site where additional BMPs are necessary to reduce or prevent pollutants in storm water discharges and authorized non-storm water discharges. This potential pollutant list shall be kept with the SWPPP and shall identify...
all non-visible pollutants which are known, or should be known, to occur on the construction site. At a minimum, when developing BMPs, Risk Level 1 dischargers shall do the following:

a. Consider the quantity, physical characteristics (e.g., liquid, powder, solid), and locations of each potential pollutant source handled, produced, stored, recycled, or disposed of at the site.

b. Consider the degree to which pollutants associated with those materials may be exposed to and mobilized by contact with storm water.

c. Consider the direct and indirect pathways that pollutants may be exposed to storm water or authorized non-storm water discharges. This shall include an assessment of past spills or leaks, non-storm water discharges, and discharges from adjoining areas.

d. Ensure retention of sampling, visual observation, and inspection records.

e. Ensure effectiveness of existing BMPs to reduce or prevent pollutants in storm water discharges and authorized non-storm water discharges.

6. Risk Level 1 dischargers shall implement good housekeeping measures on the construction site to control the air deposition of site materials and from site operations. Such particulates can include, but are not limited to, sediment, nutrients, trash, metals, bacteria, oil and grease and organics.

C. Non-Storm Water Management

1. Risk Level 1 dischargers shall implement measures to control all non-storm water discharges during construction.

2. Risk Level 1 dischargers shall wash vehicles in such a manner as to prevent non-storm water discharges to surface waters or MS4 drainage systems.

3. Risk Level 1 dischargers shall clean streets in such a manner as to prevent unauthorized non-storm water discharges from reaching surface water or MS4 drainage systems.
D. Erosion Control

1. Risk Level 1 dischargers shall implement effective wind erosion control.

2. Risk Level 1 dischargers shall provide effective soil cover for inactive\(^1\) areas and all finished slopes, open space, utility backfill, and completed lots.

3. Risk Level 1 dischargers shall limit the use of plastic materials when more sustainable, environmentally friendly alternatives exist. Where plastic materials are deemed necessary, the discharger shall consider the use of plastic materials resistant to solar degradation.

E. Sediment Controls

1. Risk Level 1 dischargers shall establish and maintain effective perimeter controls and stabilize all construction entrances and exits to sufficiently control erosion and sediment discharges from the site.

2. On sites where sediment basins are to be used, Risk Level 1 dischargers shall, at minimum, design sediment basins according to the method provided in CASQA’s Construction BMP Guidance Handbook.

F. Run-on and Runoff Controls

Risk Level 1 dischargers shall effectively manage all run-on, all runoff within the site and all runoff that discharges off the site. Run-on from off site shall be directed away from all disturbed areas or shall collectively be in compliance with the effluent limitations in this General Permit.

G. Inspection, Maintenance and Repair

1. Risk Level 1 dischargers shall ensure that all inspection, maintenance repair and sampling activities at the project location shall be performed or supervised by a Qualified SWPPP Practitioner (QSP) representing the discharger. The QSP may delegate any or all of these activities to an employee trained to do the task(s) appropriately, but shall ensure adequate deployment.

2. Risk Level 1 dischargers shall perform weekly inspections and observations, and at least once each 24-hour period during extended

\(^1\) Inactive areas of construction are areas of construction activity that have been disturbed and are not scheduled to be re-disturbed for at least 14 days.
storm events, to identify and record BMPs that need maintenance to operate effectively, that have failed, or that could fail to operate as intended. Inspectors shall be the QSP or be trained by the QSP.

3. Upon identifying failures or other shortcomings, as directed by the QSP, Risk Level 1 dischargers shall begin implementing repairs or design changes to BMPs within 72 hours of identification and complete the changes as soon as possible.

4. For each inspection required, Risk Level 1 dischargers shall complete an inspection checklist, using a form provided by the State Water Board or Regional Water Board or in an alternative format.

5. Risk Level 1 dischargers shall ensure that checklists shall remain onsite with the SWPPP and at a minimum, shall include:

a. Inspection date and date the inspection report was written.

b. Weather information, including presence or absence of precipitation, estimate of beginning of qualifying storm event, duration of event, time elapsed since last storm, and approximate amount of rainfall in inches.

c. Site information, including stage of construction, activities completed, and approximate area of the site exposed.

d. A description of any BMPs evaluated and any deficiencies noted.

e. If the construction site is safely accessible during inclement weather, list the observations of all BMPs: erosion controls, sediment controls, chemical and waste controls, and non-storm water controls. Otherwise, list the results of visual inspections at all relevant outfalls, discharge points, downstream locations and any projected maintenance activities.

f. Report the presence of noticeable odors or of any visible sheen on the surface of any discharges.

g. Any corrective actions required, including any necessary changes to the SWPPP and the associated implementation dates.

h. Photographs taken during the inspection, if any.

i. Inspector’s name, title, and signature.
H. Rain Event Action Plan
 Not required for Risk Level 1 dischargers.
I. Risk Level 1 Monitoring and Reporting Requirements

Table 1- Summary of Monitoring Requirements

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Visual Inspections</th>
<th>Sample Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarterly Non-storm Water Discharge</td>
<td>Pre-storm Event</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1. Construction Site Monitoring Program Requirements

a. Pursuant to Water Code Sections 13383 and 13267, all dischargers subject to this General Permit shall develop and implement a written site-specific Construction Site Monitoring Program (CSMP) in accordance with the requirements of this Section. The CSMP shall include all monitoring procedures and instructions, location maps, forms, and checklists as required in this section. The CSMP shall be developed prior to the commencement of construction activities, and revised as necessary to reflect project revisions. The CSMP shall be a part of the Storm Water Pollution Prevention Plan (SWPPP), included as an appendix or separate SWPPP chapter.

b. Existing dischargers registered under the State Water Board Order No. 99-08-DWQ shall make and implement necessary revisions to their Monitoring Programs to reflect the changes in this General Permit in a timely manner, but no later than July 1, 2010. Existing dischargers shall continue to implement their existing Monitoring Programs in compliance with State Water Board Order No. 99-08-DWQ until the necessary revisions are completed according to the schedule above.

c. When a change of ownership occurs for all or any portion of the construction site prior to completion or final stabilization, the new discharger shall comply with these requirements as of the date the ownership change occurs.

2. Objectives

The CSMP shall be developed and implemented to address the following objectives:

a. To demonstrate that the site is in compliance with the Discharge Prohibitions;
b. To determine whether non-visible pollutants are present at the construction site and are causing or contributing to exceedances of water quality objectives;

c. To determine whether immediate corrective actions, additional Best Management Practice (BMP) implementation, or SWPPP revisions are necessary to reduce pollutants in storm water discharges and authorized non-storm water discharges; and

d. To determine whether BMPs included in the SWPPP are effective in preventing or reducing pollutants in storm water discharges and authorized non-storm water discharges.

3. **Risk Level 1 - Visual Monitoring (Inspection) Requirements for Qualifying Rain Events**

 a. Risk Level 1 dischargers shall visually observe (inspect) storm water discharges at all discharge locations within two business days (48 hours) after each qualifying rain event.

 b. Risk Level 1 dischargers shall visually observe (inspect) the discharge of stored or contained storm water that is derived from and discharged subsequent to a qualifying rain event producing precipitation of ½ inch or more at the time of discharge. Stored or contained storm water that will likely discharge after operating hours due to anticipated precipitation shall be observed prior to the discharge during operating hours.

 c. Risk Level 1 dischargers shall conduct visual observations (inspections) during business hours only.

 d. Risk Level 1 dischargers shall record the time, date and rain gauge reading of all qualifying rain events.

 e. Within 2 business days (48 hours) prior to each qualifying rain event, Risk Level 1 dischargers shall visually observe (inspect):

 i. All storm water drainage areas to identify any spills, leaks, or uncontrolled pollutant sources. If needed, the discharger shall implement appropriate corrective actions.

 ii. All BMPs to identify whether they have been properly implemented in accordance with the SWPPP. If needed, the discharger shall implement appropriate corrective actions.
iii. Any storm water storage and containment areas to detect leaks and ensure maintenance of adequate freeboard.

f. For the visual observations (inspections) described in e.i and e.iii above, Risk Level 1 dischargers shall observe the presence or absence of floating and suspended materials, a sheen on the surface, discolorations, turbidity, odors, and source(s) of any observed pollutants.

g. Within two business days (48 hours) after each qualifying rain event, Risk Level 1 dischargers shall conduct post rain event visual observations (inspections) to (1) identify whether BMPs were adequately designed, implemented, and effective, and (2) identify additional BMPs and revise the SWPPP accordingly.

h. Risk Level 1 dischargers shall maintain on-site records of all visual observations (inspections), personnel performing the observations, observation dates, weather conditions, locations observed, and corrective actions taken in response to the observations.

4. Risk Level 1 – Visual Observation Exemptions

a. Risk Level 1 dischargers shall be prepared to conduct visual observation (inspections) until the minimum requirements of Section I.3 above are completed. Risk Level 1 dischargers are not required to conduct visual observation (inspections) under the following conditions:

i. During dangerous weather conditions such as flooding and electrical storms.

ii. Outside of scheduled site business hours.

b. If no required visual observations (inspections) are collected due to these exceptions, Risk Level 1 dischargers shall include an explanation in their SWPPP and in the Annual Report documenting why the visual observations (inspections) were not conducted.

5. Risk Level 1 – Monitoring Methods

Risk Level 1 dischargers shall include a description of the visual observation locations, visual observation procedures, and visual observation follow-up and tracking procedures in the CSMP.

6. Risk Level 1 – Non-Storm Water Discharge Monitoring Requirements
a. Visual Monitoring Requirements:

i. Risk Level 1 dischargers shall visually observe (inspect) each drainage area for the presence of (or indications of prior) unauthorized and authorized non-storm water discharges and their sources.

ii. Risk Level 1 dischargers shall conduct one visual observation (inspection) quarterly in each of the following periods: January-March, April-June, July-September, and October-December. Visual observation (inspections) are only required during daylight hours (sunrise to sunset).

iii. Risk Level 1 dischargers shall ensure that visual observations (inspections) document the presence or evidence of any non-storm water discharge (authorized or unauthorized), pollutant characteristics (floating and suspended material, sheen, discoloration, turbidity, odor, etc.), and source. Risk Level 1 dischargers shall maintain on-site records indicating the personnel performing the visual observation (inspections), the dates and approximate time each drainage area and non-storm water discharge was observed, and the response taken to eliminate unauthorized non-storm water discharges and to reduce or prevent pollutants from contacting non-storm water discharges.

7. Risk Level 1 – Non-Visible Pollutant Monitoring Requirements

a. Risk Level 1 dischargers shall collect one or more samples during any breach, malfunction, leakage, or spill observed during a visual inspection which could result in the discharge of pollutants to surface waters that would not be visually detectable in storm water.

b. Risk Level 1 dischargers shall ensure that water samples are large enough to characterize the site conditions.

c. Risk Level 1 dischargers shall collect samples at all discharge locations that can be safely accessed.

d. Risk Level 1 dischargers shall collect samples during the first two hours of discharge from rain events that occur during business hours and which generate runoff.

e. Risk Level 1 dischargers shall analyze samples for all non-visible pollutant parameters (if applicable) - parameters indicating the
presence of pollutants identified in the pollutant source assessment required (Risk Level 1 dischargers shall modify their CSMPs to address these additional parameters in accordance with any updated SWPPP pollutant source assessment).

f. Risk Level 1 dischargers shall collect a sample of storm water that has not come in contact with the disturbed soil or the materials stored or used on-site (uncontaminated sample) for comparison with the discharge sample.

g. Risk Level 1 dischargers shall compare the uncontaminated sample to the samples of discharge using field analysis or through laboratory analysis.²

h. Risk Level 1 dischargers shall keep all field/or analytical data in the SWPPP document.

8. **Risk Level 1 – Particle Size Analysis for Project Risk Justification**

 Risk Level 1 dischargers justifying an alternative project risk shall report a soil particle size analysis used to determine the RUSLE K-Factor. ASTM D-422 (Standard Test Method for Particle-Size Analysis of Soils), as revised, shall be used to determine the percentages of sand, very fine sand, silt, and clay on the site.

9. **Risk Level 1 – Records**

 Risk Level 1 dischargers shall retain records of all storm water monitoring information and copies of all reports (including Annual Reports) for a period of at least three years. Risk Level 1 dischargers shall retain all records on-site while construction is ongoing. These records include:

 a. The date, place, time of facility inspections, sampling, visual observation (inspections), and/or measurements, including precipitation.

 b. The individual(s) who performed the facility inspections, sampling, visual observation (inspections), and or measurements.

 c. The date and approximate time of analyses.

 d. The individual(s) who performed the analyses.

² For laboratory analysis, all sampling, sample preservation, and analyses must be conducted according to test procedures under 40 CFR Part 136. Field discharge samples shall be collected and analyzed according to the specifications of the manufacturer of the sampling devices employed.
e. A summary of all analytical results from the last three years, the method detection limits and reporting units, and the analytical techniques or methods used.

f. Rain gauge readings from site inspections.

g. Quality assurance/quality control records and results.

h. Non-storm water discharge inspections and visual observation (inspections) and storm water discharge visual observation records (see Sections I.3 and I.6 above).

i. Visual observation and sample collection exception records (see Section I.4 above).

j. The records of any corrective actions and follow-up activities that resulted from analytical results, visual observation (inspections), or inspections.