Section 3.1

Aesthetics and Visual Resources

3.1.1 Introduction

3.1.1.1 Aesthetics

Visual or aesthetic resources generally are defined as the natural and man-made features of the landscape that can be seen and that contribute to appreciative enjoyment of the environment. The City of Los Angeles divides the treatment of aesthetic resources into four topics (City of Los Angeles, 2006):

- Aesthetics – “…the identification of visual resources and the quality of what can be seen, or the overall perception of the environment”
- Views – “…visual access and obstruction or whether it is possible to see a focal point or panoramic view from an area”
- Shading – the “…effects of shadows cast by existing or proposed structures on adjacent land uses”
- Nighttime illumination – “…the effects of a proposed project’s exterior lighting upon adjoining uses”

The goal of this section is to characterize the existing aesthetic conditions in the proposed Project area and assess how they would be altered by the construction and operation of the Project. This visual study employs assessment methods based, in part, on the U.S. Department of Transportation (USDOT) Federal Highway Administration (FHWA) (USDOT, 1988), U.S. Department of the Interior, Bureau of Land Management (BLM), and other accepted visual analysis techniques as summarized in Foundations for Visual Project Analysis (Smardon et al., 1986). The analysis addresses the aesthetic topics that the City of Los Angeles defines as aesthetics, views, shading, and nighttime illumination. The analysis includes a systematic documentation of the visual setting, an evaluation of visual changes associated with the Project, and measures designed to mitigate the visual effects of the Project. As explained in Section 1.4.2 of this document, the baseline conditions against which the changes under this Project are compared to are the conditions that existed on the Project site during the period just before March 2001.

3.1.1.2 Terminology Used in this Visual Analysis

- A viewshed is all of the surface area visible from a particular location or sequence of locations (e.g., roadway or trail).
Focal views provide focused visual access to a particular object, scene, setting, or feature of visual interest.

Panoramic views provide unfocused visual access to a large geographic area for which the field of view can be quite wide and extend into the distance. Panoramic views are usually associated with vantage points located on high ground and can provide views of valued resources such as mountains, valleys, cityscapes, or the ocean. They also can provide views of an area not commonly available.

Focal points are areas that draw the attention of the viewer, such as prominent structural features and water features.

Views might be discussed in terms of foreground, middleground, and background views. Foreground views are those immediately presented to the viewer, and include objects at close range that could tend to dominate the view. The foreground is generally thought to include the area extending 0.25 to 0.5 mile from the viewer. Middleground views occupy the center of the viewshed and tend to include objects that are the center of attention if they are sufficiently large or visually different from adjacent visual features. The middleground zone is generally considered to consist of the area that lies 0.5 to 3.0 miles from the viewer. Background views include distant objects and other objects that make up the horizon. Objects in the background fade to obscurity with increasing distance. In the context of the background, the skyline can be an important location because objects above this point are highlighted against the background of the sky or ocean. The background zone is generally considered to consist of the portion of the view that lies 3 miles and farther from the viewer.

Scenic views or vistas are the panoramic public views that provide visual access to natural features, including views of the ocean, striking or unusual natural terrain, or unique urban or historic features (City of Los Angeles, 1998).

Visual Quality, as defined by the FHWA, has to do with the excellence of the visual experience. The evaluative criteria that the FHWA uses to determine the level of visual quality are Vividness, Intactness, and Unity. FHWA defines Vividness as “…the visual power or memorability of landscape components as they combine in striking and distinctive visual patterns.” Intactness is defined as “…the visual integrity of the natural and man-built landscape and its freedom from encroaching elements; this factor can be present in well-kept urban and rural landscapes as well as in natural settings.” Unity is defined as “…the visual coherence and compositional harmony of the landscape considered as a whole; it frequently attests to the careful design of individual components in the landscape” (USDOT, 1988).

3.1.2 Existing Setting

3.1.2.1 Existing Visual Characteristics

Project Landscape Context

The Berth 97-109 Marine Terminal Project site is located within the West Basin area of the Port of Los Angeles (see Figures 3.1-1a and 3.1-1b). The West Basin is a small portion of the much larger Port of Los Angeles/Port of Long Beach complex that extends for over 6 miles along the northern shoreline of San Pedro Bay at the mouths of the Los Angeles River and the Dominguez Channel. The Port encompasses Terminal Island and
the adjacent shore lands in the San Pedro and Wilmington Districts of Los Angeles and the City of Long Beach.

The Port landscape is highly engineered, reflecting more than a century of construction of breakwaters, dredging of channels, filling for creation of berths and terminals, and construction of the infrastructure required to support Port operations. As a result, the Port is now a large and distinct landscape region of its own (Figure 3.1-2). Major features visible in the landscape of the Port region include berths, warehouses, container yards, tank farms, processing plants, buildings, and parking lots, as well as infrastructure such as bridges, intermodal facilities, rail lines and spurs, oil derricks, pipelines, gantry cranes, and other equipment.

The appearance of many Port operations is functional in nature and is characterized by exposed infrastructure, open storage, the use of unfinished or unadorned building materials, and the use of safety-conscious high-visibility colors such as orange or red for mobile equipment such as cranes, containers, and railcars.

In recent years, the development trend throughout the Los Angeles-Long Beach Port complex has been toward fewer, and more consolidated, berths and terminal backlands accommodating larger container ships and increased cargo throughput. As a result, longer berths and cranes with longer booms have been required. These changes have affected the visual character of the Port by increasing the scale of the facilities visible in the landscape.

The proposed Project area is located at the western edge of the Port in an area just east of the Harbor Freeway (I-110) and John S. Gibson Boulevard, and is across the freeway from the refinery facilities operated by Tosco Corporation. The majority of the industrial land uses of this area are concentrated along John S. Gibson Boulevard, immediately west of the West Basin; as well as along Gaffey Street, west of the Harbor Freeway.

On the southwest, the West Basin is bordered by Pacific Avenue, Front Street, the Terminal Island Freeway (State Route 47 [SR-47]) eastbound approach to the Vincent Thomas Bridge, Knoll Hill, and the MacArthur Avenue/Shields Drive residential neighborhood. To the south, in the area south of the Vincent Thomas Bridge approach, the West Basin is bordered by the World Cruise Center. On the east, the West Basin is bordered by Slip 1 and associated dry-bulk, break-bulk, and liquid-bulk terminals; and Mormon Island (liquid and containerized cargo facilities).

While commercial shipping and industry predominate in the Port, a number of recreational and tourist-oriented facilities have been developed in the Port area as well. Many of these facilities, which include marinas, shore-side commercial areas, and berths for cruise ships, are concentrated in San Pedro in the area to the south of the Vincent Thomas Bridge, along the western shoreline of the Main Channel and the Outer Harbor.

The Department of Water and Power’s Harbor Generating Station is located just northeast of the West Basin in the area along Harry Bridges Boulevard. The West Turning Basin is located in the area where the West Basin connects with the Main Channel. To the east of the Turning Basin, across the Main Channel, the shoreline of Terminal Island is lined with container terminals, including the Evergreen Terminal, the Terminal Island Transfer Container Facility, and the Yusen Container Terminal.

Vincent Thomas Bridge

One of the most important landmarks in the vicinity of the proposed Project is the Vincent Thomas Bridge, the 1.1-mile-long suspension bridge on SR-47 that spans the...
Main Channel of the Port and provides a connection between San Pedro and Terminal Island. The bridge consists of a main suspension span of approximately 1,500 feet, two suspended side spans of approximately 506 feet each, a 1,838-foot-long approach on the San Pedro side, and a 1,712-foot-long approach on the Terminal Island side.

The two towers of the bridge are 365 feet high, and the vertical clearance under the bridge is 185 feet. The H-frame towers, cables, and steel structural members of the bridge are painted a distinctive dark-green color. Flashing red navigational lights mark the top of each tower. Over the past decade, a number of attempts have been made by local community groups to have decorative lighting installed on the bridge to enhance its presence at night. These efforts were ultimately successful; and in January 2005, a special ceremony took place to switch on 160 blue lights composed of clusters of 360 light-emitting diodes (LEDs) that had been placed along the outer edges of the deck of the bridge and along its suspension cables. These lights, which are illuminated from sunset until midnight, highlight the outline of the bridge and make it an important nighttime landmark in the Port landscape.

The Vincent Thomas Bridge has been designated by the City as its official welcoming monument, but it has no official designation as a historic landmark (City of Los Angeles, 1995). The most complete views of the bridge are the views from the Main Channel waterway in the area to the south of the bridge (Photograph 1 in Figure 3.1-3a). Similar views of the bridge are also available from the recreational, commercial, and cultural facilities that line the Main Channel’s western shoreline. On postcards and in tourist materials, the views of the bridge that appear most frequently are those from the air, from the western end of the bridge near the World Cruise Center, or along SR-47 where a view of the bridge at an oblique angle allows the arc of its center span to be appreciated (Photograph 7 in Figure 3.1-3d). Views of the bridge from the north seldom appear in published materials, reflecting the fact that few vantage points in this area from which attractive views of the full span of the bridge are readily available or accessible to the public.

Project Site Features

Most of the Project site consists of the area that was once the site of the Todd Shipyards and a large tank farm with an array of large storage tanks.

Photograph 3 in Figure 3.1-3b is a view of the site from Knoll Hill as it appeared in October 2002, after filling and grading had begun to take place in preparation for the installation of four new gantry cranes. At this time, although the surface of the site had been disturbed by the construction activities, the site was still generally open, as was the case just before March 2001; and no cranes had yet been installed. As discussed in Section 2.2.4, prior to the construction of the Phase I development, the Project site was used for container storage by the adjacent Yang Ming Container Terminal. During that time, the land was open and undeveloped. Figure 2-9 in Section 2 is an aerial view of the site taken on 2/8/01 that documents the activities taking place immediately prior to the Phase I construction. The Phase I improvements were installed in 2002 and 2003, and are now operational. As required by the ASJ, this Recirculated Draft EIS/EIR includes a reanalysis of the impacts of Phase I.
Figure 3.1-2
Existing Conditions
Berth 97-109 Container Terminal Project EIS/EIR

Project site in the context of the Port of Los Angeles/Long Beach landscape region

* Project Site
Photograph 4 in Figure 3.1-3b is a view of a portion of the westernmost end of the site taken from MacArthur Avenue in October 2002. At that time, this area had been recently paved; but comparison of this view with features shown on air photographs taken around March 2001 indicates that the appearance of the site at this time was generally similar to the appearance conditions that existed just before March 2001. In this view, a portion of Pacific Avenue located below the hillside vantage point is visible, as well as the freight rail line that curves around the site at the edge of the existing road corridor.

In the area immediately adjacent to the Vincent Thomas Bridge, Berth 96 was used in 2001, and continues to be used, for the operations of the Catalina Express (Photograph 5 in Figure 3.1-3c). The area to the west of the terminal was then, and still is, a large paved expanse used for parking.

During the preproject period, the structures on the proposed Project area included the Catalina Terminal, the light standards in the parking lot surrounding it, and the utility poles and attached light fixtures along Front Street. Other developed features on the site included the rail freight lines that parallel John S. Gibson Boulevard, Pacific Avenue, and Front Street. The site contained none of the features of potential aesthetic concern defined in the City of Los Angeles CEQA Thresholds Guide.¹.

3.1.2.2 Areas from Which the Project Would Be Visible

The study process involved using geographic information system (GIS) mapping and analysis technology to identify the area from which the Project would be potentially visible (the project viewshed), and this information was used to define the visual resources study area. For the corridors along I-110 and the designated scenic route along John S. Gibson Boulevard and Front Street, additional analyses were conducted to identify areas where the proposed Project area would be within the primary cone of vision of drivers on these routes. Review of previous analyses of the visual effects of proposed Port development in the West Basin area, agency and citizen comments on those analyses, and transcripts of public hearings on the Project provided a sense of the agency and public concerns about aesthetics that the current version of the Project would be likely to engender. Local plans were reviewed to identify plan policies related to the aesthetic resources and design objectives of the proposed Project area. Based on the insights gained from these sources and from fieldwork conducted in the proposed Project area, the most important areas from which the Project is likely to be seen were identified. These areas were divided into a set of viewing areas that each offer similar kinds of views toward the Project and/or within which would likely be similar concerns about landscape issues. For each of these areas, a systematic assessment was made of the visual conditions as they existed in March 2001.

Within some of these viewing areas, simulation viewpoints (SVs) were selected as locations for taking photographs that could be used for the development of simulated views of the Project that provide a basis for evaluating its potential visual effects. The simulation viewpoints were used to capture views that are typical of the conditions in the viewing area and are important because they provide a basis for evaluating the potential project visual effects of greatest concern. The emphasis was placed on views from publicly accessible locations that are representative of views toward the Project site from

that general viewing area, and from locations that have the potential to be seen by the
largest numbers of people.

Figures 3.1-1a and 3.1-1b are maps that encompass areas from which the proposed
Project site is visible and in which the Project-related aesthetic issues have the potential
to be of concern. These maps identify the locations of the viewing areas discussed, and
indicate the locations of the simulation viewpoints and the locations from which the
photographs used to characterize visual conditions in the area were taken.

3.1.2.3 Methodology for Evaluating Existing Aesthetic Conditions

The USDOT FHWA has developed a methodology for visual impact assessment as set
forth in its Visual Impact Assessment for Highway Projects (USDOT, 1988); and the
Bureau of Land Management has developed a visual resource management and impact
assessment method that is documented in BLM Manual 8400 (BLM, 1984). In terms of
documentation and assessment of existing aesthetic conditions, both methods cover
similar ground, taking into account the elements of form, line, color, and texture in the
landscape setting. Of the two methods, the FHWA method is best adapted to evaluation
of urban landscape conditions2. For this reason, the FHWA method was selected for use
as the primary framework for documenting and assessing the existing aesthetic conditions
of the Project area.

FHWA defines the components of visual experience to include the visual resources,
which are evaluated in terms of the visual character and quality of the visible
environment; and viewer response, which is assessed in terms of the exposure of the
public to the environment of interest, and the sensitivity of the public to the character and
quality of the Project area.

Visual Character

FHWA guidance directs that the visual character of the project setting be systematically
described. FHWA specifies that (USDOT, 1988):

Descriptions of visual character can distinguish at least two levels of
attributes: pattern elements and visual character. Visual pattern elements
are primary visual attributes of objects; they include form, line, color, and
texture. The form of an object is its visual mass, bulk, or shape. Line is
introduced by the edges of objects or parts of objects. The color of an object
is both its value or reflective brightness (light, dark) and its hue (red, green).
Texture is apparent surface coarseness. A person’s awareness of these
pattern elements varies with distance. From afar, only the largest objects
are seen as individual forms; and a person may see a city hillside as textured
surface. Distance also attenuates the intensity of color.

The visual relationships between these pattern elements can be important
secondary visual attributes of an object or an entire landscape. For example,
there is a great difference between the visual character of a two-lane country
road and an eight-lane freeway, although both may exhibit similar line, color,

2 The Bureau of Land Management method was developed for use in evaluating and managing the lands that
the BLM manages, and takes an approach that is best suited to the evaluation of large scale, open landscapes
with relatively little development. In addition, the BLM method was designed to be used in the context of BLM
land management plans that include adopted standards for the degree of visual change that is permitted.
Outside of that context and the adopted standards for visual change, the BLM system cannot be directly applied.
and texture. The visual contrast between a highway project and its visual
environment can frequently be traced to four aspects of pattern character:
dominance, scale, diversity, and continuity.

Specific components in a landscape may be visually dominant because of
position, extent, or contrast of basic pattern elements. Scale is the apparent
size relationship between a landscape component and its surroundings: an
object can be made to look smaller or larger in scale by manipulating its
visual pattern elements. Visual diversity is a function of the number, variety,
and intermixing of visual pattern elements. Continuity is the uninterrupted
flow of pattern elements in a landscape and the maintenance of visual
relationships between immediately connected or related landscape
components.

Visual Quality

After the visual character of a landscape has been defined, the FHWA methodology
requires characterization of the existing level (i.e., high, moderate, or low) of the project
setting visual quality. The FHWA approach defines visual quality in terms of visual
relationships that have been found to correlate with public judgments of visual quality.
The criteria FHWA uses to document these relationships are vividness, intactness, and
unity. FHWA indicates that “None of these is itself equivalent to visual quality; all three
must be high to indicate high visual quality.” (USDOT, 1988). FHWA defines these
criteria as:

- **Vividness**: Visual power (i.e., memorability) of landscape components. Includes
 consideration of landforms and landcover (e.g., vegetation, water, and development).

- **Intactness**: Integrity of the natural or built environment and freedom from
 encroaching elements. Development could enhance or subtract from otherwise intact
 urban and pristine landscapes.

- **Unity**: Visual coherence or harmony of individual landscape elements; compatibility.
 Although most landscapes exhibit a greater or lesser degree of unity between natural
 and built landscape elements, entirely natural landscapes might be visually unified or
 chaotic, as could predominantly urban landscapes.

Viewing Audience and Sensitivity

The FHWA guidance recommends the identification of major viewer groups or audiences.
Such audiences have defining characteristics that can be identified for specific projects.
The FHWA approach entails identifying viewer groups by physical factors that modify
perception and, for each group, documenting viewer exposure and viewer sensitivity. In
the FHWA analysis system, viewer exposure is defined as the physical location of each
user group, the number of people in each group, and the duration of their view. FHWA
defines viewer sensitivity as the varying receptivity of different groups to the visual
environment and its elements. Also, FHWA links viewer sensitivity to viewer activity,
viewer awareness, local values and goals, and the cultural significance of the visual
resource (USDOT, 1988):

*Activities such as commuting in heavy traffic or working on a construction
site can distract an observer from many aspects of the visual environment.*

*Head-mounted cameras, for instance, have demonstrated that a driver can
look directly at a landmark and still not see it. On the other hand, such*
activities as driving for pleasure or relaxing in scenic surroundings can encourage an observer to look at the view more closely and at greater length. Therefore, viewer activity is another identifying characteristic of viewer groups. For example, we may well want to distinguish among project viewers located in residential, recreational, and industrial areas.

Viewer awareness is the extent to which the receptivity of viewers is heightened by the immediate experience of visual resource characteristics. Visual change heightens awareness: a landscape transition, such as entering a mountain range or a major city may heighten viewer awareness for a number of miles along a road.

Local values and goals operate indirectly on viewer experience by shaping view expectation, aspirations, and appreciations. If the existing appearance of a project site is uninspiring, a community may still object to projects that fall short of its visual goals. At the regional or national level, viewers may be particularly sensitive to the visual resources and appearance of a particular landscape as a result of its cultural significance. This significance may be due to the presence of historic values, scientific or recreational resources, or other unique feature: any visible evidence of change may be seen as a threat to these values or resources.

An approach to the evaluation of project aesthetic effects under NEPA developed by Lawrence Headley of Headley Associates, Santa Barbara, California, provides a useful typology of varying levels of visual sensitivity. The Headley approach draws on the principles embedded in a number of the federal landscape management/visual impact evaluation methods that has been applied successfully to analysis of a range of project types over the past 15 years.³ The descriptions of the levels of sensitivity drawn directly from the Headley framework and which are described using the language from framework descriptions Lawrence Headley has prepared are presented in italics (Headley, 2005).

High visual sensitivity is assumed to exist where landscapes, particular views, or the visual characteristics of certain features are protected through policies, goals, objectives, and design controls in public planning documents.

Visual significance is not always a function of obvious aesthetic appeal. The public may confer visual significance on landscape components and areas that would otherwise appear unexceptional (FHWA, 1981). For example, areas may have regional or national cultural significance, but not be especially scenic. Nonetheless, their visual character may be considered important to their cultural value (FHWA, 1981). The degree of visual sensitivity is treated by several federal agencies as occurring at one of three levels as follows:

- **High Sensitivity.** High sensitivity suggests that at least some part of the public is likely to react strongly to a threat to visual quality. Concern is expected to be great because the affected views are rare, unique, or in other ways are special to the region or locale. A highly concerned public is assumed to be more aware of any given level of adverse change and less tolerant than a public that has little concern. A small modification of the existing landscape may be visually distracting to a highly sensitive public and represent a substantial reduction in visual quality.

³For an example of a recent full explanation of and application of this approach, see the Venice Pumping Plant Dual Force Main Project EIR (Headley, 2005).
- **Moderate Sensitivity.** Moderate sensitivity suggests that the public would probably voice some concern over visual impacts of moderate to high intensity. Often the affected views are secondary in importance or are similar to others commonly available to the public. Noticeably adverse changes would probably be tolerated if the essential character of the views remains dominant.

- **Low Sensitivity.** Low sensitivity is considered to prevail where the public is expected to have little concern about changes in the landscape. Only a visual impact of the greatest intensity would be perceived as substantial (significant).

- **No Sensitivity.** There is no sensitivity where the potentially affected views are not “public” (not accessible to the general public) or because there are no indications that the affected views are valued by the public.

3.1.2.4 Existing Conditions from Key Viewing Areas

Views from Harbor Freeway

Although the I-110 carries no formal scenic highway designation, this roadway and views from it are important because the freeway carries high volumes of traffic. The freeway serves as the major entry to the Port and the San Pedro area and provides most visitors with their first views of the Port landscape. Views from the southbound lanes are the views that are important for this analysis. Views of the proposed Project area from northbound lanes are severely limited by the direction of travel; the acute angle of the freeway alignment; and intervening topography, vegetation, and development.

For travelers approaching the Port on the southbound lanes of I-110, numerous existing cranes, the Vincent Thomas Bridge, and other tall features in the Project vicinity first appear briefly and distantly in view in the segment of the freeway approximately 0.75 mile north of the Pacific Coast Highway exit. South of this point, topography, the light rail station, and distance obscure the proposed Project area from view again until approaching the Anaheim Street exit.

In the area between the Anaheim Street and C Street exits, semipanoramic views encompassing the West Basin become available within the primary cone of vision of southbound motorists (Photograph 6 in Figure 3.1-3c). In this area, the cranes, ships, and stacked containers at the TraPac and Yang Ming Terminals dominate the view and substantially block views toward the Vincent Thomas Bridge. South of C Street, the cranes and stacked containers in the Yang Ming Terminal continue to block the views toward the proposed Project area and the Vincent Thomas Bridge for approximately 0.25 mile or so until the cranes are passed.

As the cranes are passed, the freeway alignment makes a pronounced curve toward the west; and, as a result, the proposed Project area and Vincent Thomas Bridge no longer fall within the primary view cone. As a result, the Vincent Thomas Bridge and Project area become less visible to drivers and those sitting on the right side of vehicles, and remain primarily visible only to passengers who can take advantage of the extreme oblique angle view out the left side of the vehicle (Photograph 7 in Figure 3.1-3d). Because of vehicle speeds, these views toward the bridge are short in duration; and

4"Cone of vision" is the term used to refer to the area within the field of view of individuals as they concentrate on driving. The width of the view cone varies with speed, with the field of view narrowing as speed increases. At a speed of 60 miles per hour, the view cone is assumed to encompass a 45-degree area.
because of the numerous vehicles, particularly trucks, these oblique views are frequently blocked by other vehicles. As the freeway approaches the Channel Street overpass, views toward the proposed Project area and bridge become even more oblique, and then are blocked by the promontory on which Shields Drive is located and by Knoll Hill.

SV-1 (Figure 3.1-4), the view from the freeway in the vicinity of the C Street exit, was selected as the representative view for development of a visual simulation. This view and others from the I-110 toward the proposed Project area can be characterized as views of a landscape of large-scale transportation infrastructure that include a wide freeway corridor and a heavily developed port complex. These views have a moderately high level of vividness that can be attributed to the large number of cranes visible while driving down the freeway and the presence of seagoing vessels berthed near the freeway. Levels of visual unity and intactness are low. Although glimpses of the Vincent Thomas Bridge add to visual interest, it is not the main focal event because views toward the bridge are substantially blocked by existing elements of the landscape.

Although the numbers of people who use the freeway and thus see the view from it are very large, the sensitivity of the views from this roadway is low. The road has neither an official or unofficial designation as a scenic route, and carries heavy commercial traffic.

Views from Terminal Island Freeway/Vincent Thomas Bridge

The Terminal Island Freeway (SR-47) connects San Pedro and the Harbor Freeway on the west with the Port lands on Terminal Island to the east by way of the Vincent Thomas Bridge. The bridge was designed for vehicles only, and no provisions were made for pedestrian or bicycle use.

At its western end, the Terminal Island Freeway begins where views toward the Port are restricted by hills on both sides. Traveling eastward, the view opens up; and the Vincent Thomas Bridge becomes visible in the center of the forward cone of vision as seen in Photograph 2 in Figure 3.1-3a and SV-2 (Figure 3.1-5.2). This view, which is present for no more than 0.5 mile, provides an attractive panorama of the west side of the bridge, revealing the arch of its center span. As travelers continue farther eastward and travel up the bridge approach, the view changes; and the traffic lanes become the primary feature of the forward view. As vehicles cross the central span, panoramic views over the Port become available in forward views and in views toward the side. For eastbound travelers, the forward views toward Terminal Island and the westward views toward the Main Channel tend to be the views that are the least obscured by the structure of the bridge and by vehicles in other lanes.

For motorists approaching the bridge from the Terminal Island side, the views are more open. Because of the curvature of the roadway, travelers do not have the attractive views of the bridge from the bridge approach that exist on the San Pedro side. However, as motorists travel up the first span of the bridge, the curve of this span reveals a view in the central cone of vision toward the bridge towers and arched central span (Photograph 8 in Figure 3.1-3d). In addition, this view includes a panorama across the Main Channel and West Turning Basin toward the West Basin and the proposed Project area. As westbound motorists travel across the central span, the West Basin and Project site can be seen in oblique views toward the right (Photograph 9 in Figure 3.1-3e). Because of the chain-link mesh attached to the sides of the bridge above the railing in this area, views toward the proposed Project area are partially obscured.

From the western approach to the bridge, the view can be characterized as that of a heavily developed freeway corridor and Port complex. The Vincent Thomas Bridge
serves as a landmark element and as the focal point of the view. Although the mature landscaping along the freeway in this area adds to the attractiveness of these views, the presence of large cranes and other Port-related structures in this view makes it clear that the bridge is an integral part of a working port. The views are vivid and attractive because of the curving view of the Vincent Thomas Bridge and its arched center section. The level of visual intactness and unity are moderate. The view from the eastern elevated approach to the bridge is attractive as well because it permits the arched central span of the bridge to be seen and because it provides an expansive view of the working Port.

Because SR-47 is not a designated scenic route, and because the traffic it carries is predominantly commercial in character, the level of sensitivity of views from this roadway corridor is low.

Views from Local Scenic Routes

John S. Gibson Boulevard, Pacific Avenue, Front Street, and Harbor Boulevard are identified as Scenic Highways in the Port of Los Angeles Plan, the San Pedro Community Plan, and in Appendix E of the City General Plan Transportation Element (City of Los Angeles, 1999a). These roadways were designated as scenic in acknowledgment of the views of Harbor activities and the Vincent Thomas Bridge available to northbound and southbound motorists. Harbor Boulevard, south of the Vincent Thomas Bridge, is similarly designated as a scenic highway because of Port views. The City has not adopted formal guidelines governing the scenic corridors (i.e., foreground viewsheds) associated with designated scenic highways, but has established interim guidelines as part of the Transportation Element addressing roadway alignment, earthwork, signage, landscaping, and utilities (City of Los Angeles, 1999b).

The views from John S. Gibson Boulevard, Harbor Boulevard, and Front Street toward the Project area can be characterized as views of utilitarian areas of a busy working port. The features of this view that are most vivid are undoubtedly the existing tall cranes, container-laden ships at the TraPac and Yang Ming Terminals, and the partial, oblique-view glimpses of the towers and suspension cables of the Vincent Thomas Bridge. The levels of visual intactness and unity of these views are low to moderate.

The views from Harbor Boulevard are of a higher visual quality than those on the portions of the scenic route north of the Vincent Thomas Bridge because the foreground is less obstructed and contains attractively designed and landscaped visitor facilities. These facilities provide the foreground for panoramic views toward the bridge with Port facilities in the more distant portions of the view. The levels of vividness, intactness, and unity in all of these views are moderately high.

Because of the status of these roadway segments as officially designated City scenic routes, the sensitivity of the views from them is considered to be high.

John S. Gibson Boulevard and Pacific Avenue

The John S. Gibson Boulevard portion of this route extends for approximately 1.8 miles from Harry Bridges Boulevard on the north, to the point where the roadway name changes to Pacific Avenue at Channel Street. The Pacific Avenue segment of the scenic route extends approximately 0.2 mile from Channel Street to the intersection with Front Street. Northbound travelers along these segments of the scenic route have no views of the Vincent Thomas Bridge, which is behind them, and only a relatively short view across the western portion of the proposed Project area.
Southbound travelers along these segments of the scenic route have limited views across the proposed Project area and toward the Vincent Thomas Bridge because of the angle of the road alignment. Instead, the forward view is dominated by the roadway itself and the portions of the site at the edge of the road. Photograph 10 in Figure 3.1-3e is a passenger’s view, taken at an oblique angle to the direction of travel, capturing the view into the West Basin area and toward the Vincent Thomas Bridge.

In this area, the roadway edge on the Port side of the road has a sidewalk and a row of recently planted street trees that provide a modest level of definition to the edge of the road corridor. Beyond the sidewalk is the Intermodal Container Transfer Facility (ICTF) rail corridor, which is often occupied by idled freight trains loaded with containers and other cargo that blocks views into the Port lands. During the baseline period, the area beyond the rail corridor was an open, unpaved expanse. Views toward the Port from this area are relatively fleeting for motorists because of the high levels of traffic, particularly trucks, and the intermittent presence of loaded trains in the foreground of the view.

Front Street

Front Street is the 0.5-mile segment of the scenic route that travels along the eastern base of Knoll Hill connecting Pacific Avenue with Harbor Boulevard south of the Vincent Thomas Bridge. Northbound travelers on Front Street have views that center on the roadway and the portions of the proposed Project area closest to the road. For southbound travelers, the view is similar for the first 0.25 mile. Then, as the road curves around Knoll Hill, the southern portion of the proposed Project area and a partial view of the Vincent Thomas Bridge become visible (Photograph 11 in Figure 3.1-3f). Along this portion of Front Street, the Port side of the road is lined with widely spaced palm trees. As on the road segments along John S. Gibson Boulevard and Pacific Avenue, views toward the Port lands are frequently blocked by stacks of containers and transportation equipment.

Harbor Boulevard

The Harbor Boulevard portion of the scenic route extends from Front Street just south of the Vincent Thomas Bridge for about 1.2 miles south to its terminus at Crescent Avenue. This segment of the scenic route provides access to the numerous visitor-oriented facilities along the western banks of the Main Channel, and also passes in front of the main commercial district of San Pedro. Photograph 12 in Figure 3.1-3f is a view from the northbound lanes of Harbor Boulevard south of the World Cruise Center. The eastern side of the street parallels rail tracks used by the red car trolleys connecting the cruise ship terminal to the other attractions along this section of the waterfront. The edges of Harbor Boulevard have been given special urban design treatment, including plantings of closely spaced palm trees to define the roadway corridor, other landscaping, and use of banners hung from streetlights.
In much of the area along Harbor Boulevard, the areas between the Main Channel and Harbor Boulevard are either open or occupied by relatively low-rise structures. As a consequence, many good views across the Main Channel toward more distant Port operations abound. For northbound travelers along the southern portions of the boulevard, good views exist toward the Vincent Thomas Bridge and its center span. Farther north, in areas closer to the bridge, the bridge approaches and the supporting piers become the dominant elements in the forward view.

The views from John S. Gibson Boulevard, Harbor Boulevard, and Front Street toward the proposed Project area can be characterized as views of utilitarian areas of a busy working port. The features of this view that are most vivid are undoubtedly the existing tall cranes, and the partial, oblique view glimpses of the towers and suspension cables of the Vincent Thomas Bridge. The levels of visual intactness and unity of these views is low to moderate.

The views from Harbor Boulevard are of a higher visual quality than those on the portions of the scenic route north of the Vincent Thomas Bridge because the foreground is less obstructed and contains attractively designed and landscaped visitor facilities. These facilities provide the foreground for panoramic views toward the bridge with Port facilities in the more distant portions of the view. The levels of vividness, intactness, and unity in all of these views are moderately high.

Because of the status of these roadway segments as officially designated City scenic routes, the sensitivity of the views from them is considered to be high.

Views from Wilmington

The West Basin is bordered on the north by a Southern Pacific Railroad line and Harry Bridges Boulevard, which mark the southern edge of the community of Wilmington. North of Harry Bridges Boulevard, the one-block-wide swath of land lying between Harry Bridges Boulevard and C Street has been acquired by the Port; and the industrial properties that once occupied this area have been razed to make way for redevelopment with community and recreational uses. North of this area lies a residential district with a mix of single-family, medium-density, and high-density housing, including the Dana Strand Public Housing Project. This residential area lies approximately 1.0 mile north of the proposed Project area.

Although the proposed Project area can be seen from the residential area north of C Street, views from this area toward the proposed Project area (Photograph 13 in Figure 3.1-3g) encompass the streetlights, telephone poles, and truck traffic associated with Harry Bridges Boulevard in the foreground; terminal buildings, 100-foot light standards, stacked cargo containers, and truck traffic associated with the TraPac Terminal in the near middleground; and waterfront cargo cranes, ship traffic in the channel, and distant terminals in the far middleground and distance. Because C Street is elevated barely above sea level, views do not constitute panoramic vistas, but could be characterized as open, with Port property constituting visual relief or open space in comparison to the densely developed urban areas north, east, and west of C Street. In many views from this area, the Vincent Thomas Bridge is visible to some degree; but, in most cases, the views toward the bridge are substantially blocked by the intervening features.
The Banning's Landing Community Center is located on East Water Street in Wilmington, at the head of Slip 5. This facility lies about 1.1 miles northeast of the proposed Project area. From the wharf level promenade in front of the Community Center, views toward the project site are substantially blocked by terminal buildings on Mormon Island (Photograph 14 in Figure 3.1-3g). The community center has an observation deck overlooking Slip 5 and the terminals on Mormon Island to the south (Photograph 15 in Figure 3.1-3h). The surface of the proposed Project site cannot be seen from this vantage point because terminal buildings, other structures, and equipment on Mormon Island block views to the south. The Vincent Thomas Bridge is visible in this view, but the bottom portion of the bridge is entirely blocked by the intervening terminal buildings; and a portion of the center span is blocked by silos.

The levels of vividness, intactness, and unity of the views from Wilmington are low. The sensitivity of the views from the residential areas is high, while the sensitivity of the views from the Banning’s Landing Community Center would be considered to be moderate.

Views from Shields Drive Residential Area

Shields Drive is a residential street located on the small hill due west of Knoll Hill near the southern terminus of the I-110, approximately 100 feet above the West Basin, and is similar in elevation to Knoll Hill. The hill is developed with a residential neighborhood made up primarily of single-family residences. Views across the West Basin toward the east are available from portions of Shields Drive and from a small portion of MacArthur Avenue (Photograph 2 in Figure 3.1-3a and Photograph 16 in Figure 3.1-3i). These views are panoramic and encompass a landscape in which Port facilities dominate. They also include foreground views of the surface of the western portion of the proposed Project area. The Vincent Thomas Bridge is an important element of the panorama; however, because of the viewing angle, the center span of the bridge is only partially visible.

The vividness, intactness, and unity of the views toward the Project site seen from this area are moderately low. Because the views are seen from residences and residential streets, the sensitivity is high.

Views from Knoll Hill

Knoll Hill is a 100-foot-high hill located west of the proposed Project site. The top of this hill had once been a residential neighborhood, but now all but one of the homes on the hill have been removed. In 2002, the cleared lots along the northern side and eastern end of Viewland Place were developed by a nonprofit group as a temporary off-leash dog park. This facility was opened to the public in August 2002 and operated through late 2007, at which time it was closed and relocated to a site at the bottom of the hill. During the time of its existence on Knoll Hill, the dog park included a 1.45-acre fenced area for large dogs and an approximately 1-acre fenced area for smaller dogs. In late 2007, after the closure of the dog park, construction began to redevelop the top of Knoll Hill with two baseball fields and a T-ball field for use by the East View Little League. The fields are located at the eastern end of the hilltop, and a parking lot has been constructed on the middle of the hilltop in the area along Center Street. Because the facility will not have nighttime lighting, it will be used only during the daytime. This Little League facility is intended to be temporary use of the hilltop, and is expected to be in use for no more than 3 years after its February 2008 date of completion.
The best views of the Port are at the eastern edge of the hilltop, in an area that is just beyond the outfields of the two larger baseball fields that are being developed. Although this location will be accessible after development of the Little League facility, the plans for the facility do not indicate any design treatments for this area (e.g., viewing platform or benches) that would indicate that it is intended to be used as a scenic overlook. However, because this location offers the best views across the Project site from Knoll Hill, the view from this location (SV-3, Figure 3.1-6.1) has been selected as a view for development of simulations to provide a basis for evaluation of the proposed Project’s effects. This view includes the Vincent Thomas Bridge; the entire Project site; the West Basin; and a middleground and background landscape of cranes, tank farms, and container storage areas. Because of the oblique angle of the view toward the bridge, the main bridge features that are visible are the western approach of the bridge and the western tower. This view of the bridge is less vivid than those in which the full arch of the center span can be seen. The level of vividness of this view that existed during the Project Baseline period was moderate, and the levels of intactness and unity were moderately low. The level of sensitivity of this view is moderate at most because the view is not directly visible from the few remaining residences in this area, and because the park on the hill is not oriented toward enjoyment of the view.

Views from Hillside Residential Areas to the West and Southwest of the Project Site

The Project site is visible to varying degrees from residential neighborhoods located in the hills to the west and southwest of the site. The hillside zone closest to the Project site is the area approximately .03 mile due west, where the terrain slopes up steeply to form a plateau where views toward the project site are available from the plateau’s eastern edge. The views from this area are represented by SV-4, a location on Channel Street at Cabrillo Avenue. This viewpoint lies at the eastern edge of the elevated plateau at a point approximately 1.1 miles west of the location of the nearest proposed crane. The baseline view from this location can be seen in Figure 3.1-7.1a. This view includes the landmark Vincent Thomas Bridge; the entire Project site; a portion of the West Basin; and a background landscape of cranes, tank farms, and container storage areas. Because of the oblique angle of the view toward the bridge, the center span of the bridge is only partially visible, and, therefore, this view of the bridge is less vivid than the views in which the full arch of the center span can be seen. The overall level of vividness of this view is moderate, and the levels of intactness and unity are moderately low. Because this view is seen from a number of residences in this area, and from Channel Street, which is heavily used by residents who live in this part of San Pedro, the sensitivity of this view is high.

5Because no photograph of this location during the baseline period was available, the photograph used here to represent baseline conditions is one that was taken in December 2003. This photograph was altered to remove the four cranes that were present on the site at that time. No alterations were made to the surface of the site. During the baseline period, the area of partial filling at the left side of the Project site would have appeared as open water; and the paved area in the center of the site where containers and light standards are visible would have been a vacant, unpaved expanse.
In the hillside areas farther to the west and southwest of the Project site, the site becomes an increasingly smaller part of the overall view. In many cases, the surface of the site is not visible because of the angle of the view and the presence of intervening landscape elements. The four photographs referred to and described below represent typical views from these areas. These photographs were taken in 2006 and 2007 at a time when four of the cranes that are part of the proposed Project were already in place. The presence of these cranes provides a basis for making a preliminary determination of the degree to which the proposed Project is likely to affect the character and quality of views from these areas.

Photograph 17 in Figure 3.1-3j is a view toward the site from the bleachers overlooking the ball field near the western end of Peck Park in San Pedro. This viewpoint lies approximately 0.9 mile from the western edge of the Project site, and 1.6 miles from the closest crane. In this view, the surface of the site is not visible because of the angle of the view and the presence of the large trees in the middleground. The project cranes are visible but do not interfere with views toward the bridge, do not dominate the view, and are consistent with the existing character of the view.

Photograph 18 in Figure 3.1-3j is of a view toward the site taken from Clevis Road in Rancho Palos Verdes. This viewpoint lies approximately 2.2 miles west of the project site and 3.0 miles west of the area where cranes are proposed to be installed. This view is typical of views toward the site from Rancho Palos Verdes in the upper reaches of the hillside areas to the west of the site. From this viewpoint, the Project site is a relatively small part of a broad panorama of the Ports of Los Angeles and Long Beach. The four cranes that are already on the Project site are consistent with the other elements of the view and are, to a large degree, visually absorbed into the backdrop.

Photograph 19 in Figure 3.1-3k is of a view toward the site taken from South Weymouth Avenue in front of Averill Park in San Pedro. This viewpoint is located approximately 1.8 miles southwest of the Project site and 2.4 miles southwest of the area where installation of cranes is proposed. This view is typical of views toward the site from elevated locations in the southwestern neighborhoods of San Pedro. In this view, the surface of the site is not visible because of the angle of the view. The four existing cranes are located to the left of the main span of the Vincent Thomas Bridge and do not interfere with the bridge’s profile. Because the cranes are seen against the backdrop of more distant Port elements, the cranes are, to a large degree, absorbed into the view. In addition, the cranes are consistent with the other elements of the view and have relatively little effect on the visual character and quality of the view.

Photograph 20 in Figure 3.1-3k is a photograph of a view toward the site taken from the parking lot of Good Shepherd Lutheran Church on 25th Avenue in the hills of southwest San Pedro. This viewpoint is located approximately 2.3 miles southwest of the Project site and 2.4 miles southwest of the area where installation of cranes is proposed. This view is typical of views toward the site from hills where areas in the far southwestern neighborhoods of San Pedro. In this view, the surface of the site is not readily visible because of the angle of the view. The four existing cranes are located to the left of the main span of the Vincent Thomas Bridge and do not interfere with the profile of the bridge. The cranes have a backdrop of other Port elements and are well absorbed into the overall scene. The cranes are consistent with the other elements of the view and have little effect on the overall visual character and quality of the view.
Review of the existing views seen in Photos 17 to 20 suggests that, because of the
distance of these viewpoints from the Project site, the limited role the site plays in the
overall view and the visual absorption of the four existing cranes, the installation of
additional cranes on the Project site is likely to have a limited effect on the overall
character and quality of these views. For this reason, the analysis of the effects of the
Project on views from the hillside residential area focuses on the potential effects of the
Project on the view from Channel Street, which is representative of views toward the
Project site from the closest hillside areas.

Views from the Main Channel and Adjacent Areas

South of the Vincent Thomas Bridge, the Main Channel is a 0.2-mile-wide waterway that
extends 2.1 miles to the Outer Harbor. The channel is the primary route for much of the
shipping traffic approaching the Port berths, and receives a moderate level of use for
nonshipping traffic, including cruise ships, passenger ferries, sightseeing boats, and
recreational craft. Much of the land along the western edge of the channel is devoted to
recreational rather than shipping uses.

The Catalina Express Terminal is located at Berth 96, at the southern edge of the
proposed Project area beneath the Vincent Thomas Bridge. Daily passenger ferry service
is provided between the terminal and Catalina Island. Adjacent to the Catalina Express
Terminal and just south of the Vincent Thomas Bridge, the SS Lane Victory, a restored
World War II-era cargo ship (visible near the left bridge tower in Photograph 1 in
Figure 3.1-3a), is moored at Berth 94. This ship, designated as a national historic
landmark, is open to the public for tours on a regular basis, and is available to the public
for cruises. Because of the angle of the berth it occupies, the view from the SS Lane
Victory is oriented toward the Main Channel and away from the West Basin and the
proposed Project area.

The World Cruise Center is located just south of the SS Lane Victory alongside the Main
Channel and a small basin, and encompasses Berths 91, 92, and 93A/B. This facility was
specifically designed to accommodate large cruise ships, and is used by approximately
1 million passengers annually. By virtue of the east-west orientation of the World Cruise
Terminal, passengers on cruise ships moored at the terminal have the potential to see the
proposed Project area to the north through the piers supporting the western approach to
the Vincent Thomas Bridge.

Farther south along the Main Channel, the Los Angeles Maritime Museum is located on
Pier 84, and includes a deck that provides access to several historic ships moored behind
the museum, as well as views up the channel toward the Vincent Thomas Bridge. South
of the Maritime Museum, the shoreline is lined for approximately 0.4 mile with a series
of restaurants, shops, and commercial facilities that include Ports O’ Call Village, a
waterside complex containing shops and restaurants. Most of these facilities are oriented
toward the water and provide views of the Main Channel. Several Harbor cruise lines
depart daily from Berths 77, 78, and 79 at Ports O’ Call Village. These cruises cross the
Main Channel and some ship basins, including the West Basin, providing visitors with a
variety of waterside views of seaport operations. Such views take in the West Basin from
a waterfront perspective and encompass the waterfront, wharves, cranes, and ships.
As cruise ships, passenger ferries, and recreational craft travel up the Main Channel from the Outer Harbor, the Vincent Thomas Bridge comes into view. However, in much of the area in the channel, the full profile of the span of the bridge is partially blocked by the cranes at the Evergreen Terminal on the eastern shoreline of the channel. After ships pass the curve in the channel near Pier 87, the Evergreen cranes start to pass out of view; and the view of the bridge and its main span become relatively unobstructed. It is perhaps in this area directly in front of the basin of the World Cruise Center (Photograph 1 in Figure 3.1-3a) that the bridge best fulfills its role as the designated “welcoming landmark” for Los Angeles. For those on passenger craft traveling up the Main Channel, the proposed Project area, which lies in the area behind the left side of the bridge, is not visible.

Views toward the Project site, the Vincent Thomas Bridge, and the Main Channel are also available from the bluff that runs along the eastern edge of the Main Channel in the area above and immediately to the west of Harbor Boulevard. The area along the top of the bluff along Beacon Street from Seventh Street to Fourteenth Street has been developed as Plaza Park, a narrow park-strip with a bluff-edge walkway that provides an elevated view over the Main Channel that takes in a panoramic view of the Port that extends from the Vincent Thomas Bridge on the north to the Outer Harbor on the west (Photograph 21 in Figure 3.1-3l). In this view, the Vincent Thomas Bridge is a prominent landmark feature, and because of the elevated and panoramic quality of the view, the bridge’s relationship to the Port complex can be seen and appreciated. As review of Photograph 21 indicates, the four cranes in this view that were installed after the 2001 baseline period are not prominent and have relatively little effect on the overall profile of the Vincent Thomas Bridge.

SV-5 (Figure 3.1-8.1), a view taken from a dining deck at Ports O’Call, was selected as being generally representative of views from the channel and from the visitor-oriented facilities on the western shoreline of the channel. This view looks north up the channel toward the Vincent Thomas Bridge and the Project site, which lies behind the left side of the bridge. This viewpoint lies approximately 1.1 miles from the Project site and the location of the closest crane. This view is clearly the view of a working port environment. Although the Vincent Thomas Bridge is a major feature in this view, the view toward the center span of the bridge is partially blocked by the cranes at the Evergreen Terminal. The presence of the wide channel and the Vincent Thomas Bridge create a high level of vividness in the view. The level of unity is moderately high. The level of intactness is low because of the effect of the cranes at the Evergreen Terminal in blocking the view toward the center span of the Vincent Thomas Bridge. Because this view includes a City-designated landmark, and because it is seen by visitors entering the Port and by users of the recreational, commercial, and cultural/historical facilities along the western edge of the Main Channel, the level of visual sensitivity is high.
Photograph 1 - View toward the Vincent Thomas Bridge from the portion of the Main Channel in front of the World Cruise Center.

Photograph 2 - View toward the Vincent Thomas Bridge from the eastbound lanes of SR 47.
Photograph 3 - View of project site from Knoll Hill

Photograph 4 - View of the western end of project Site from MacArthur Avenue in the Shields Drive area. Pacific Avenue is visible in the foreground.
Photograph 5 - View of the Catalina Express Terminal from the Project site.

Photograph 6 - View toward the West Basin and the Project site in the forward cone of vision from I-110 near the C Street exit.
Photograph 7 - Oblique view toward Project site and Vincent Thomas Bridge from I-110.

Photograph 8 - View toward the Project site from the westbound approach to the center span of the Vincent Thomas Bridge.
Photograph 9 - View toward the Project site from the westbound lanes of SR-47 near the western end of the Vincent Thomas Bridge.

Photograph 10 - Oblique view toward the West Basin area and the Project site from the southbound lanes of John S. Gibson Boulevard.
Figure 3.1-3f
Baseline Conditions
Berth 97-109 Container
Terminal Project EIS/EIR

Photograph 11 - View of the Project site and the Vincent Thomas Bridge from the southbound lanes of Front Street.

Photograph 12 - View from the northbound lanes of Harbor Boulevard in the area south of the World Cruise Center. The Project site lies on the other side of the Vincent Thomas Bridge.
Photograph 13 - View from King Avenue and C Street illustrating the relationship of the four post-2001 cranes to the Vincent Thomas Bridge. The cranes are visible to the right of the western bridge tower in the background of the view.

Photograph 14 - View from the waterside promenade at the Banning's Landing Community Center. The tops of the four post-2001 cranes are visible to the right of the western bridge tower in the area behind the terminal building in the foreground.
Photograph 15 - View toward the Project site and the Vincent Thomas Bridge from the rooftop observation deck at the Banning's Landing Community Center during the period before installation of the post-2001 cranes.
Figure 3.1-3i
View from Shields Drive Area with Cranes Installed after March 2001
Berth 97-109 Container Terminal
Project EIS/EIR

Photograph 16 - View from Shields Drive toward the Vincent Thomas Bridge and the four post-2001 cranes.
Photograph 17 - View toward the Project site and the four post-2001 cranes from a ball field in Sam Peck Park in San Pedro.

Photograph 18 - View toward the Project site and the four post-2001 cranes from Clevis Road in Rancho Palos Verdes.
Photograph 19 - View toward the Project site and the four post-2001 cranes from South Weymouth Avenue in front of Averill Park in San Pedro.

Photograph 20 - View toward the Project site and the four post-2001 cranes from the parking lot of Good Shepherd Lutheran Church on 25th Avenue near Patton Avenue in southwest San Pedro.
Photograph 21 - Panoramic view from Plaza Park in San Pedro toward the Vincent Thomas Bridge and Main Channel. This photograph was taken in 2005, and at that time, the four post-2001 cranes were present at the left side of the view. The cranes are not visible in this photo because they are screened by the trees in the foreground at the photo's left edge.
Figure 3.1-4
Simulation View 1
Berth 97-109 Container
Terminal Project EIS/EIR

Source: Environmental Vision

a. Baseline conditions view from I-110 looking south

b. Visual simulation of Proposed Project
a. Baseline conditions view from SR 47 looking east

b. Visual simulation of Proposed Project with cranes in upright position

Figure 3.1-5.1
Simulation View 2
Berth 97-109 Container
Terminal Project EIS/EIR

Source: Environmental Vision
a. Baseline conditions view from SR-47 looking east

b. Visual simulation of Proposed Project with a ship at Berth 100

Figure 3.1-5.2
Simulation View 2
Berth 97-109 Container Terminal Project EIS/EIR

Source: Environmental Vision
a. Baseline conditions view from Knoll Hill looking east

b. Visual simulation of Proposed Project with cranes in upright position
a. Baseline conditions view from Knoll Hill looking east

b. Visual simulation of Proposed Project with a ship at Berth 100

Figure 3.1-6.2
Simulation View 3
Berth 97-109 Container
Terminal Project EIS/EIR
a. Baseline conditions view from Channel Street looking east

b. Visual simulation of Proposed Project with cranes in upright position
a. Baseline conditions view from Channel Street looking east

b. Visual simulation of Proposed Project with a ship at Berth 100

Figure 3.1-7.2
Simulation View 4
Berth 97-109 Container
Terminal Project EIS/EIR
a. Baseline conditions view from Ports O’ Call looking north

b. Visual simulation of Proposed Project with cranes in upright position

Figure 3.1-8.1
Simulation View 5
Berth 97-109 Container
Terminal Project EIS/EIR
a. Baseline conditions view from Ports O' Call looking north

b. Visual simulation of Proposed Project with a ship at Berth 100
3.1.2.5 Existing Night Lighting Conditions

During the baseline period before March 2001, much of the site had been cleared; thus, the areas in active use and with operating night lighting were somewhat limited. At that time, the portion of the site with the most nighttime illumination was the large parking area around the Catalina Terminal and in the former Todd Shipyard parking lot. This parking area was brightly lit by unshielded lamps on tall poles. On the Front Street portion of the site, nighttime sources of light included the streetlights along the southern edge of the roadway and the headlights of the vehicles using the road.

Although sources of light on the proposed Project site itself were somewhat limited, the levels of ambient lighting in the proposed Project area were high. This is because of terminal lighting and container facility backlight lighting throughout the West Basin and the rest of the Port. Lighting was in the industrial areas to the west and north of the West Basin, including the nearby several-hundred-acre Tosco Corporation refinery and tank farm. Streetlights and vehicle lights on the roads in the surrounding area and on the Vincent Thomas Bridge also made a contribution to the overall level of ambient nighttime light. At present, the Vincent Thomas Bridge has a low level of illumination. With the exception of the streetlighting along the edges of the roadway of the span, the only other lighting consists of red warning beacons on top of each of the towers of the bridge and the blue LED lights recently installed along the suspension cables and the outer edges of the bridge deck. Although the blue lights are visible and make the outline of the bridge visible, the level of illumination associated with these lights is low.

Because much of the area in the vicinity of the proposed Project consists of lands used for Port activities that are intensively illuminated, the level of sensitivity to changes in nighttime lighting conditions that could be brought about by the Project is low. Areas that would be candidates for high levels of sensitivity to Project-related changes in lighting would be on Knoll Hill, in the Shields Drive area, and on the bluff areas located to the west of the site, and represented by SV-4 (the view from Channel Street at Cabrillo Avenue). Because the Little League fields on Knoll Hill are used only during daylight hours, the Little League facility would not be sensitive to changes in nighttime lighting. Although most of the residences that once existed on the top of the hill have been acquired by the Port and removed, one of the residences remains. Because this residence is on the southern edge of the hilltop and does not directly overlook the Project site, and because views toward the site are, to some degree, screened by vegetation, this residence has only a moderate sensitivity to potential changes in nighttime lighting conditions on the Project site. Some of the residents in the Shields Drive area, particularly those who live at the edge of the bluff, have foreground to middleground views over the western portions of the Project site and could be sensitive to changes in nighttime lighting on the proposed Project area. Residents who live in the bluff area to the west of the Project site are potentially sensitive to Project-related lighting changes because many properties in this area have panoramic views over the Project site. However, the sensitivity of this area is limited by the fact that it is located 0.3 mile from the edge of the Project site and more than a mile from the location of the closest cranes that would be installed as part of the Project.

In views from all of these areas during the baseline period, most of the Project site appeared to be unilluminated, with the exception of the cluster of bright lights at the former Todd Shipyard parking lot located in the area near the Vincent Thomas Bridge. No data is available that provides measurements of lighting conditions in areas around the Project site during the period before March 28, 2001. However, data is available that
documents luminance measurements taken in November 2002, before installation of cranes or backland lighting on the Project site. These measurements produced readings on Knoll Hill that ranged from 19 candela/per square meter to 882 candela per square meter. The high readings were associated with illumination from several metal halide luminaires located at Berths 121-131 in the Yang Ming Terminal. Luminance measurements taken at Upland and MacArthur Avenues in the bluff area west of the Project site produced readings that ranged from 3.6 candela per square meter to 296 candela per square meter. Although no universally accepted thresholds for glare exist, a set of thresholds suggested by the Illuminating Engineering Society of North America (IES) that are well accepted in the industry are:

- \(\leq 100 \text{ candela/square meter: not noticeable} \)
- 100 to 500 candela/square meter: noticeable, but rarely objectionable
- \(> 500 \text{ candela/square meter: noticeable to prominent; could require attention} \)

Based on application of these thresholds, it appears that during the baseline period, no glare issues existed in the residential area on the bluffs west of the Project site; but on Knoll Hill, glare issues of concern were related to lights at Berths 121-131 in the Yang Ming terminal.

3.1.3 Applicable Regulations

The planning policies that pertain to the proposed Project area are described in detail in the Section 3.9, Land Use. Plan provisions that pertain specifically to aesthetic resources and urban design are identified below.

3.1.3.1 Port of Los Angeles Master Plan

The Port Master Plan (plus amendments) provides for the short- and long-term development, expansion, and alteration of the Port (POLA, 1979). The Port Master Plan has been certified by the California Coastal Commission and is part of the Local Coastal Program (LCP) of the City of Los Angeles, and is consistent with the Port of Los Angeles Plan, an Element of the City of Los Angeles General Plan.

3.1.3.2 City of Los Angeles General Plan

The City of Los Angeles General Plan is an advisory document comprising 11 Citywide Elements (Framework, Transportation, Infrastructure Systems, Housing, Noise, Air Quality, Conservation, Open Space, Historic Preservation and Cultural Resources, Safety, and Public Facilities and Services) plus the Land Use Element. The Land Use Element, in turn, comprises 35 local area plans, known as Community Plans, as well as counterpart plans for the Port of Los Angeles and Los Angeles International Airport Plans.

The Port of Los Angeles Plan (City of Los Angeles, 1982a) is intended to serve as the official 20-year guide to the continued development and operation of the Port, and is consistent with the Port Master Plan.

The Plan Land Use Map designates John S. Gibson Boulevard, Pacific Avenue, Front Street, and Harbor Boulevard as scenic routes with specific acknowledgment of the views of harbor activities and the Vincent Thomas Bridge available to northbound and southbound motorists (City of Los Angeles, 1999a). They are also designated as Super
Truck Routes, a designation related to the volume of Port-related truck traffic accessing Port facilities along these roadways (City of Los Angeles, 1982a). Front Street is additionally designated as a scenic route for its views westward of historic San Pedro. Harbor Boulevard, south of the Vincent Thomas Bridge, is similarly designated as a scenic route because of Port views (City of Los Angeles, 1999a). The City has not adopted formal guidelines governing the scenic corridors associated with designated scenic highways, but has established interim guidelines as part of the Transportation Element addressing roadway alignment, earthwork, signage, landscaping, and utilities (City of Los Angeles, 1999b).

No other area roadways are designated scenic routes, and no officially designated scenic lookouts exist.

The one objective of the Port of Los Angeles Plan that addresses aesthetic concerns is:

Objective 4: To assure priority for water and coastal dependent development within the Port while maintaining and, where feasible, enhancing the coastal zone environment and public views of, and access to, coastal resources.

With the Project as currently defined, the Project site does not include areas that fall under the jurisdiction of the San Pedro Community Plan.

3.1.3.3 Transportation Element (Scenic Highway Guidelines)

The General Plan Transportation Element has established recommended guidelines for Scenic Highways lacking adopted Corridor Plans, in its Scenic Highways Chapter (City of Los Angeles, 1999b). Because the designated scenic roadways in the vicinity of the proposed Project area do not have adopted Corridor Plans, the recommendations of the Transportation Element (summarized in Table 3.1-1) are applicable.

<table>
<thead>
<tr>
<th>Table 3.1-1. Scenic Highway Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
</tr>
<tr>
<td>1. Roadway</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. Earthwork/Grading</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3.1-1. Scenic Highway Guidelines

<table>
<thead>
<tr>
<th>Feature</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Planting/Landscaping</td>
<td>a. Fire-resistant native plants and trees shall be utilized in any parkway landscaping along Scenic Highways located within designated Hillside Areas.</td>
</tr>
<tr>
<td></td>
<td>b. In designated Hillside Areas, where previous plant material has been washed away or destroyed (due to conditions such as excessive rainfall, fire, and grading), erosion-controlling plants shall be planted to prevent erosion and mud/land slides. Such Hillside parkways and slope easements shall either be hydro-seeded, or terraced and then planted, with native fire-resistant plants.</td>
</tr>
<tr>
<td></td>
<td>c. Outstanding specimens of existing trees and plants located within the public right-of-way of a Scenic Highway shall be retained to the maximum extent feasible within the same public right-of-way.</td>
</tr>
<tr>
<td></td>
<td>d. Low-growing ground cover and/or shrubs shall be utilized as parkway planting along Scenic Highways to avoid blocking a desirable view of a scenic feature listed in Appendix E of this Element. Plant material size at maturity as well as overall scale of plants within the landscaped area must be carefully studied in the site analysis and design stages.</td>
</tr>
<tr>
<td></td>
<td>e. Landscaped medians of Scenic Highways shall not be removed. Such medians could be reduced in width (1) to accommodate left-turn channelization within 100 feet of a signalized intersection; or (2) to accommodate a designated Class II bikeway provided that the new median complies with Guideline 3c above, and that the resulting median width is not less than eight (8) feet.</td>
</tr>
<tr>
<td>4. Signs/Outdoor Advertising</td>
<td>a. Only traffic, informational, and identification signs shall be permitted within the public right-of-way of a Scenic Highway.</td>
</tr>
<tr>
<td></td>
<td>b. Offsite outdoor advertising is prohibited in the public right-of-way of, and on publicly owned land within 500 feet of the center line of, a Scenic Highway.</td>
</tr>
<tr>
<td></td>
<td>c. A standard condition for discretionary land use approvals involving parcels zoned for nonresidential use located within 500 feet of the center line of a Scenic Highway shall be in compliance with the sign requirements of the Commercial-Restricted (CR) zone.</td>
</tr>
<tr>
<td></td>
<td>d. Designated Scenic Highways shall have first priority for removal of nonconforming billboards or signs. Such priority extends to properties located along, or within 500 feet of the center line of, designated Scenic Highways.</td>
</tr>
<tr>
<td>5. Utilities</td>
<td>a. To the maximum extent feasible, all new or relocated electric, communication, and other public utility distribution facilities within 500 feet of the centerline of a Scenic Highway shall be placed underground.</td>
</tr>
<tr>
<td></td>
<td>b. Where locating such utilities underground is not feasible, all such new or relocated utilities shall be screened to reduce their visibility from a Scenic Highway.</td>
</tr>
</tbody>
</table>

3.1.4 Impacts and Mitigation

3.1.4.1 Impact Assessment Methodology

3.1.4.1.1 CEQA Baseline

Section 15125 of the CEQA Guidelines requires EIRs to include a description of the physical environmental conditions in the vicinity of a project that exist at the time of the
NOP. These environmental conditions would normally constitute the baseline physical conditions by which the CEQA lead agency determines whether an impact is significant. For purposes of this Recirculated Draft EIS/EIR, the CEQA baseline for determining the significance of potential Project impacts is the environmental setting prior to March 2001, pursuant to the ASJ described in Chapter 1, Section 1.4.3. The CEQA baseline for this proposed Project includes 45,135 TEUs/year that occurred on the Project site in the year prior to March 2001.

The CEQA baseline represents the setting at a fixed point in time and differs from the No Project Alternative (discussed in Section 2.5) in that the No Project Alternative addresses what is likely to happen at the site over time, starting from the existing conditions. The No Project Alternative allows for growth at the Project site that could be expected to occur without additional approvals.

3.1.4.1.2 NEPA Baseline

For purposes of this Recirculated Draft EIS/EIR, the evaluation of significance under NEPA is defined by comparing the proposed Project or other alternative to the NEPA baseline. The NEPA baseline condition for determining significance of impacts includes the full range of construction and operational activities the applicant could implement and is likely to implement absent permits from the USACE. The NEPA baseline begins in the year prior to 2001 but is not fixed in time. The NEPA baseline includes construction and operation of container backlands on up to 117 acres, but does not include wharves, dredging, and improvements that would require federal permits. The NEPA baseline assumes upland development beyond the 2001 baseline conditions. In addition, the NEPA baseline assumes the supplemental storage of up to 632,500 TEUs from the Berths 121-131 Container Terminal. No annual ships calls are included in the NEPA Baseline.

Unlike the CEQA baseline, which is defined by conditions at a point in time, the NEPA baseline is not bound by statute to a “flat” or “no growth” scenario. Therefore, the USACE may project increases in operations over the life of a project to properly describe the NEPA baseline condition. Normally, any ultimate permit decision would focus on direct impacts of the Project to the aquatic environment, as well as indirect and cumulative impacts in the uplands determined to be within the scope of federal control and responsibility. Significance of the proposed Project or alternative is defined by comparing the proposed Project or alternative to the NEPA baseline (i.e., the increment). The NEPA baseline conditions are described in Section 2.6.2.

The NEPA baseline also differs from the No Project Alternative, where the Port would take no further action to construct and develop additional backlands (other than the 72 acres that were developed under Phase I). Under the No Project Alternative, Phase I construction would apply, but no new construction activities would occur other than removal of the four A-frame cranes installed as part of Phase 1 (the 1.3 acres of fill and the bridge over the Southwest slip would be abandoned). However, forecasted increases in cargo throughput would still occur as greater operational efficiencies are made.

It is expected that appearance of these activities would be similar in scale and aesthetic character to existing Port facilities that are generally visible to the public in the immediate vicinity. In this respect, the No Project Alternative aesthetic conditions will not be substantially different from the baseline visual setting of the area (i.e., an urban landscape defined principally by a working urban port environment).
3.1.4.1.3 Documentation of Project-Related Visual Changes

As described in Section 3.1.2.2, within each of the viewing areas from which it appeared possible that the Project could have the potential to create a substantial impact, a representative view was selected to be used as the basis for preparation of a visual simulation of the changes that the proposed Project would bring about. For each view, computer modeling and rendering techniques were used to produce the simulated images. Existing topographic and site data provided the basis for developing an initial digital model. Project engineers provided site plans and digital data for the proposed Project. These were used to create three-dimensional (3-D) digital models of the facilities. These models were combined with the digital site model to produce a complete computer model of the Project changes.

For each simulation viewpoint, a viewer location was digitized from topographic maps and scaled aerial photographs, using 5 feet as the assumed viewer eye level. Computer “wire frame” perspective plots were then overlaid on the photographs of the views from the simulation viewpoints to verify scale and viewpoint location. Digital visual simulation images were produced as a next step, based on computer renderings of the 3-D model combined with high-resolution digital versions of base photographs. The simulations produced show not only the appearance of the cranes that have been and will be installed as part of the Project, but also the appearance of containers stacked in the backland area of the Project and the appearance of a ship loaded with containers moored at one of the planned berths.

The final “hardcopy” visual simulation images that appear in this document were produced from the digital image files using a color printer. Comparison of the “before” photographs with the simulations of the Project buildout conditions provided the basis for determining Project impacts on aesthetics and views. Night lighting impacts were determined by comparing the pre-March 2001 lighting conditions with lighting measurements taken in November 2004, a time at which much of the lighting called for in the plans for the proposed Project had been installed and was in use.

3.1.4.1.4 Evaluative Framework

3.1.4.1.4.1 CEQA Analysis

This analysis of potential aesthetic effects of the proposed Project was conducted using the evaluative criteria specified in the L.A. CEQA Thresholds Guide (City of Los Angeles, 2006) and the analytic principles that underlie the FHWA Visual Impact Assessment and BLM Visual Resource Management systems. Although the City of Los Angeles CEQA Thresholds Guide does not define specific thresholds to determine the significance of aesthetic impacts, for each significance criteria, a list of issues provides guidance for analysis of the variables related to the criteria (City of Los Angeles, 2006). The issues the City identifies as being related to each of its significance criteria are listed in Section 3.1.4.3, Thresholds of Significance. In evaluating the proposed Project effects in the context of the significance criteria of the City, a systematic evaluation was made of each of the issues the City Thresholds Guide raises in relationship to the criteria.
3.1.4.1.4.2 NEPA Analysis

3.1.4.1.4.2.1 Overview

In conducting the analysis of the Project aesthetic impacts in the context of the NEPA, use was made of the analytic principles on which both the FHWA Visual Impact Assessment and BLM Visual Resource Management systems are based. The FHWA Visual Impact Assessment system requires that a project be assessed in terms of the degree of change it creates in the visual character and quality of its visual setting and the implications of those changes for viewer response. In assessing these changes, the FHWA approach calls for evaluation of the compatibility of pattern elements (form, line, color, and texture) of the introduced elements with the existing landscape setting, and the compatibility of the pattern character of the new elements, based on consideration of the dimensions of dominance, scale diversity, and continuity. To consider the implications of the changes for viewer response, the FHWA method considers viewer exposure (the extent to which viewers see the project changes); viewer sensitivity, which is a product of a combination of viewer activities and awareness; local values and goals regarding the landscape; and the cultural significance of the landscape features affected by the project.

The BLM Visual Resource Management (VRM) technique employs a contrast rating system, a systematic process that generates information that the BLM uses to evaluate the potential visual impact of proposed projects and activities on the open, generally undeveloped, lands under its jurisdiction. This methodology assumes that the degree of contrast created between a project and the existing landscape is related to the degree to which a project affects the visual quality of the landscape. Similar to FHWA visual attributes, the basic design elements of form, line, color, and texture are considered in making this assessment and in describing the visual contrast created by the project. A number of difficulties exist in making a direct application of the BLM methodology to a visually complex, highly developed setting like the Port of Los Angeles because the BLM method was devised to assess change in nonurban landscapes. In addition, because the BLM method was designed to work within the specific context of the BLM land management planning process, it is not readily transferable to situations outside the BLM jurisdiction.

To make use of the analytic strengths of the FHWA and BLM visual resource management systems, the basic principles of these systems have been adapted to create an analytic approach appropriate for projects at the Port and in other urban and highly developed contexts that are not under the jurisdiction of Federal Land Management agencies. The basic elements of this approach are described below. This approach for the evaluation of the proposed Project aesthetic effects under NEPA draws heavily on an analytic framework developed by Lawrence Headley of Headley Associates, Santa Barbara, California. The Headley approach has been applied successfully to analysis of a range of project types over the past 15 years. The portions of the analysis approach applied that draw directly from the Headley framework and which are described using the language from framework descriptions Lawrence Headley has prepared are presented in italics (Headley, 2005).

6For an example of a recent full explanation of and application of this approach, see the Venice Pumping Plant Dual Force Main Project EIR (Headley, 2005).
3.1.4.1.4.2.2 Definition of Visual Impact and Intensity for the NEPA Analysis

The definitions of “visual impact” and “visual impact intensity” from the Headley approach applied in conducting the analysis of the project’s visual impacts under NEPA are:

An “adverse change” in aesthetics/visual resources occurs when, relative to a public view:

An action will perceptibly change features of the physical environment so that they no longer appear to be characteristic of those inherent to the region and/or locale;

An action will introduce features to the physical environment that are perceptibly uncharacteristic of the region and/or locale; and/or

Visual access to the landscape, or the visibility of one or more valued features of the landscape, will be adversely affected (e.g., partially or totally blocked from view);

(Features that are, or have become, uncharacteristic are those that appear out of place, discordant, or distracting.)

The terms “intensity” and “magnitude” are used interchangeably. The magnitude—or intensity—of a visual impact is the degree to which Existing Visual Conditions (the baseline for the analyses) would change as a result of features of project construction and operation. Visual Conditions are described in terms of Visual Modification Classes (Table 3.1-2).

3.1.4.1.4.2.3 Visual Modification Classes and Determination of Significance

In conducting the analyses that provide a basis for determining whether the visual changes that would be brought about by a project would create impacts that would be significant, the Headley analysis approach makes use of a four-class definition of the degree of visual modification that a project might bring about. These classes are referred to as Visual Modification Classes and are defined in Table 3.1-2.

Table 3.1-2. Visual Modification Class Definitions7

<table>
<thead>
<tr>
<th>VM Class 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not noticeable: changes in the landscape that have occurred in the past, or potentially could occur in the future due to a proposed project, when within public view generally would be overlooked by all but the most concerned and interested viewers; they generally would not be noticed unless pointed out (inconspicuous because of such factors as distance, screening, low contrast with context, or other features in view, including the adverse impacts of past activities).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VM Class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noticeable, visually subordinate: changes in the landscape that have occurred in the past, or potentially could occur in the future due to a proposed project when within public view would not be overlooked (noticeable to most without being pointed out). They could attract some attention but do not compete for it with other features in the field of view, including the adverse impacts of past activities. Such changes often are perceived as being in the</td>
</tr>
</tbody>
</table>

7 This table is based on a categorization of levels of visual modification developed by Lawrence Headley, but it has been modified to focus on the changes that would be brought about by a proposed project.
Table 3.1-2. Visual Modification Class Definitions

<table>
<thead>
<tr>
<th>VM Class 3</th>
<th>VM Class 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distracting, visually co-dominant: changes in the landscape that have occurred in the past, or potentially could occur in the future due to a proposed project, when within public view would compete for attention with other features in view (attention is drawn to the change about as frequently as to other features in the landscape).</td>
<td>Visually dominant, demands attention: changes in the landscape that have occurred in the past, or potentially could occur in the future due to a proposed project, when within public view would be the focus of attention and tend to become the subject of the view. Such changes often cause a lasting impression of the affected landscape.</td>
</tr>
</tbody>
</table>

In applying this classification system to evaluation of view changes, a number of factors affecting the context of views are considered: viewer activity; primary viewing direction(s); viewing distance; project exposure; duration of viewing; relationship of the subject view to the sequence available; the presence of existing features of competing visual interest; and established features tending to draw attention toward the project facilities (focal point sensitivity).

To determine impact significance, applying the NEPA impact significance criteria described in Section 3.1.4.2, the intensity of the impact (the degree of change as identified by the Visual Modification Class ratings) is compared to the existing level of visual quality and the sensitivity of the affected view to determine if a substantial negative reduction in visual character and quality is likely to occur.

3.1.4.2 Thresholds of Significance

CEQA Criteria

The following thresholds based on the *City of Los Angeles Draft Thresholds Guide* (City of Los Angeles, 2006) are used to determine whether the Project or Alternative would result in significant impacts under California Environmental Quality Act (CEQA).

AES-1: Would the proposal have a substantial negative aesthetic effect?

This City of Los Angeles criterion is related to CEQA Appendix D Aesthetics question I.c) “Would the project substantially degrade the existing visual character or quality of the site and its surroundings?” The *L.A. CEQA Thresholds Guide* directs that (City of Los Angeles, 2006):

> The determination shall be made on a case-by-case basis, considering the following factors:

- The amount or relative proportion of existing features or elements that substantially contribute to the valued visual character or image of a neighborhood, community, or localized area, which would be removed, altered, or demolished.

- The amount of natural open space to be graded or developed;
The degree to which proposed structures in natural open space areas would be effectively integrated into the aesthetics of the site, through appropriate design, etc;

The degree of contrast between proposed features and existing features that represent the valued aesthetic image of an area;

The degree to which a proposed zone change would result in buildings that would detract from the existing style or image of the area due to density, height, bulk, setbacks, signage, or other physical elements;

The degree to which the project would contribute to the area’s aesthetic value; and

Applicable guidelines and regulations.

AES-2: Would the proposal substantially and negatively affect a recognized or valued view, scenic vista, or scenic highway?

This City of Los Angeles criterion is related to CEQA Appendix D Aesthetics questions I.a) “Would the project have a substantial adverse effect on a scenic vista?” and I.b) “Would the project substantially damage scenic resources, including, but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?” The L.A. Thresholds Guide directs that:

The determination shall be made on a case-by-case basis, considering the following factors:

- The nature and quality of recognized or valued views (such as natural topography, settings, man-made or natural features of visual interest, and resources such as mountains or the ocean);
- Whether the project affects views from a designated scenic highway, corridor, or parkway;
- The extent of obstruction (e.g., total blockage, partial interruption, or minor diminishment); and
- The extent to which the project affects recognized views available from a length of a public roadway, bike path, or trail, as opposed to a single, fixed vantage point.

AES-3: Would the proposal create substantial negative shadow effects on nearby shadow-sensitive uses?

This City of Los Angeles criterion is related to CEQA Appendix D Aesthetics question I.c) “Would the project substantially degrade the existing visual character or quality of the site and its surroundings?” The L.A. Thresholds Guide specifies that:

A project impact would normally be considered significant if shadow-sensitive uses would be shaded by project-related structures for more than three hours between the hours of 9:00 a.m. and 3:00 p.m. Pacific Standard Time (between late October and early April), or for more than four hours between the hours of 9:00 a.m. and 5:00 p.m. Pacific Daylight Time (between early April and late October).
AES-4: Would the proposal create substantial negative light or glare?

This City of Los Angeles criterion is related to CEQA Appendix D Aesthetics question 1.d) “Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?” The L.A. Thresholds Guide directs that:

> The determination shall be made on a case-by-case basis, considering the following factors:

- The change in ambient illumination levels as a result of project sources; and
- The extent to which project lighting would spill off the project site and affect adjacent light sensitive areas.

3.1.4.2.2 NEPA (Federal) Criteria

The following threshold is used to determine if the Project or Alternative would result in significant impacts under NEPA. The intent of this criterion is to assess whether the Project would have substantial adverse aesthetic effects when evaluated in terms of the principles that are a part of the visual resource management systems employed by federal agencies.

AES-5: Would the proposal result in substantial negative changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Factors considered in making this determination include the existing character and quality of important views toward the Project site as evaluated in terms of the variables used by the federal visual resource analysis methods, the degree to which the project will change the character and quality of those views, and the significance of those changes in light of the public’s degree of sensitivity toward the views. The methods and standards applied to make this determination are presented in Section 3.1.4.1.4.2.

3.1.4.3 Project Impacts and Mitigation

3.1.4.3.1 Description of Project Visual Effects

The major elements of the proposed Project are described in Chapter 2, Project Description. As discussed in Chapters 1 and 2, this analysis reasseses the Phase I facilities, which already have been constructed and are operating now. The visible physical changes that would be brought about by the proposed Project include:

- Minor filling of the area along the Main Channel and construction of a new 1,200-foot-long wharf at Berth 100, a new 925-foot-long wharf at Berth 102, and a 375-foot wharf on the southern end of Berth 100.
- Installation of 10 new shoreside A-frame cranes on the wharves at Berths 100 and 102.
- Demolition of the Catalina Express Terminal. As described in Section 2.2.6.2, the terminal will be relocated on floating docks south of the Vincent Thomas Bridge.
- Development of most of the existing and newly filled lands on the site into approximately 142 acres of backland facilities.
+ Construction of several small office and maintenance buildings to serve the
backlands development.
+ Construction of two bridges across the narrowed portion of the Southwest Slip to
connect the Project area with the Berth 121-131 area to the north.
+ Construction of a gate and entrance facilities at a point along John S. Gibson
Boulevard.
+ The most prominently visible of these changes would be the 10 new A-frame cranes
installed at the wharves at Berths 100 and 102. The standard A-frame design has
fixed towers that are 243 feet high. When stowed at a 45-degree angle, the
articulated booms on these cranes normally extend to a height of about 280 feet and,
for maintenance, are capable of being extended up to 360 feet. Figure 3.1-7.1b is a
simulation of these cranes. Four cranes of this design were installed at Berth 100 in
2002.
+ The cranes would be painted a green color that matches the color of the Vincent
Thomas Bridge, the same color used on the existing cranes.
+ The backland areas would have an appearance similar to that of backland areas at
other terminals in the Port and would appear as vast, flat areas, paved with asphalt,
used for storage of containers stacked up to five high, creating a regular series of
stacks 40 feet high. The backlands also would be used for storage of trucks, toppicks,
or RTG cranes, and other equipment. Twenty-five or more tall light standards would
be arrayed in a regularly spaced pattern across the site to provide illumination for
nighttime operations. The light fixtures on the tops of these standards would meet
International Dark Skies standards. The lights would be hooded to direct the light
downward and to prevent light from straying offsite.

3.1.4.3.2 Construction Period Impacts

During the construction periods that would be associated with the development of the
Proposed Project and Alternatives 1 through 6, the appearance of the site would be
characterized for periods ranging from 9 to 15 months (see Table 2-2) by the presence of
heavy earth-moving equipment, paving equipment, other construction equipment, and
cranes for the installation of light standards. For the proposed Project and the alternatives
entailing filling required for the construction of berths, piles of fill material would be
present on the site for short periods. For the projects entailing installation of cranes, the
cranes would be delivered preconstructed to the site, and their installation would be
accomplished within a short period of time. The construction-period features visible on
the site will be relatively small in scale, will not be out of character when seen in the
context of a working port, and will be present for relatively short periods of time. As a
consequence, they have no potential to create visual impacts that would be significant in
terms of the criteria the City of Los Angeles has established for determining the CEQA
significance of project-related aesthetic changes or in terms of the criteria applied for
determination of the significance of visual impacts in the NEPA context.

Under Alternative 7, the Nonshipping Use Alternative that would convert the site to a
Regional Center, the intensity of activity on the site would be greater than what would
occur under the Proposed Project and Alternatives 1-6. Under Alternative 7, construction
activities, particularly those related to the construction of large, multistory buildings
could extend up to 18 months or longer, and entail the use of large construction cranes.
In addition, construction of the many structures that would be included in the Regional
Center would be likely to require the presence of heavy equipment, stored construction materials, and large numbers of parked cars belonging to construction workers. Should development of the project entail nighttime activity, bright construction lighting would be required. Although the visible changes on the site would be greater for this alternative than would be the case for the proposed Project and the other alternatives, because of their relatively short duration (plausibly, no more than 18 months to 2 years), any construction-period impacts would be less than significant.

3.1.4.3.3 Operational Period Impacts

3.1.4.3.3.1 Changes in Views by Viewing Area

3.1.4.3.3.1.1 Introduction

As a foundation for the assessment of Project impacts in light of the CEQA and NEPA significance criteria that appear in Section 3.1.4.4, this section of the report provides descriptions of each viewing area, detailing the visible changes that the Project would create. As in the case of the viewpoints for which simulations were prepared, the descriptions are based on close review of the simulations. Although these descriptions identify the nature and extent of the visual changes that would be associated with the proposed Project, the determination of the significance of these impacts is made in Section 3.1.4.4 where the CEQA and NEPA significance criteria are applied.

3.1.4.3.3.1.2 Interstate 110

Figure 3.1-4b is a visual simulation that represents views toward the Project from SV-1, a point on the southbound lanes of I-110 located near the C Street off-ramp, approximately 1.4 miles north of the proposed Project area.

Review of this simulation and comparison with the photograph of this view as it appeared under the baseline condition (Figure 3.1-4a) indicates that, under the proposed Project, the new cranes would be located behind a large freeway signboard and existing cranes located at the Yang Ming Terminal. As a result, they would not be visually dominant elements in the view. Although the new cranes would be visible to some degree in the view, given the large numbers of existing cranes and other vertical elements in the foreground and middleground of the view toward the proposed Project area, the presence of the additional cranes would not substantially alter the baseline character or visual quality of this view.

As review of the photographs of the baseline condition indicates, from SV-1, prior to crane installation on the proposed Project area, views toward the center span of the Vincent Thomas Bridge were already obscured by the presence of other cranes in the foreground and middleground of the view. The cranes associated with the proposed Project would have no effect on views toward the center span of the bridge. However, a small degree of new blockage of views would exist toward the western span of the bridge. Because of the relatively small amount of blockage involved and because it does not affect the central span of the bridge (the portion of the span that is most striking and is an important contributor to the status of the bridge as a landmark), the effects on this view of the bridge would not be substantial.

Farther south on the I-110, where views toward the bridge are at an oblique angle, places would exist where the cranes would appear in front of views of the bridge. The overall impacts of the 10 Project cranes on views from this segment of freeway would be low. From most points along the I-110, the cranes for the proposed Project would not block or
Section 3.1 Aesthetics and Visual Resources

dominate views of the bridge. An important consideration in evaluating the potential
effects of the proposed Project on these views is that these views of the bridge have a low
level of sensitivity because they do not appear within the primary cone of vision of
southbound I-110 motorists. Instead, they are views available only at an oblique angle.
In addition, they are available only for short periods of elapsed time and are often
blocked by trucks and other traffic.

3.1.4.3.1.3 SR-47/Vincent Thomas Bridge

Figure 3.1-5.1b is a visual simulation that represents views toward the project from SV-2,
a point on the westbound lanes of SR-47 as it approaches the western end of the Vincent
Thomas Bridge.

As this simulation indicates, under the proposed Project, up to 10 cranes would be visible
in the view. When the A-frame cranes would be in upright storage or maintenance
positions, the tops of the booms would appear to be nearly as tall as the towers of the
bridge. Because their structural elements would appear to be considerably lighter than
those of the central towers, the A-frame cranes appear as secondary elements in the view
and would not reduce the visual importance of the bridge.

Review of the simulation indicates that the cranes would compete with the bridge for
attention in the view to some extent. Because the cranes would be no taller in height and
smaller in scale than the bridge towers, the cranes would not supplant the bridge as the
dominant element in the view. Because the structural components of the cranes would
appear to be generally similar in form (but lighter in mass) to those of the bridge towers,
the overall visual unity of the view would not be diminished.

In the simulation presented as Figure 3.1-5.1b, a ship loaded with containers is depicted
at Berth 100. Because of the angle of the view and the intervening vegetation, the ship
and the containers stacked on its deck are not readily visible and have little effect on the
view.

In views from the eastern approaches to the bridge, the presence of the cranes and loaded
container ships would not substantially alter the existing character and visual quality of
the view. In addition, no blockage of views would occur toward visually important
background features. As eastbound motorists travel across the bridge, the cranes and
berthed container ships, visible only at an oblique angle for a short period on the
approach up to the central span, would have little effect on views out toward the Port, and
would have no effect on views south down the Main Channel.

In views on the westbound approach to the bridge on the Terminal Island side
(Photograph 8 in Figure 3.1-3d), the 10 new cranes and any berthed container ships
would be visible in the middleground as new features to the right of the bridge. The
cranes would be seen as vertical elements located to the side of the bridge and the berthed
ships as horizontal elements, and neither would block views of any of the important
elements of the bridge. Because some separation would exist between the cranes and the
bridge, and because the cranes would be shorter and smaller in scale than the towers, the
cranes would not diminish the importance of the bridge in the view. In addition, the
cranes would be consistent with the other cranes visible in the overall setting. Because
the cranes would have structural elements that would appear generally similar to those of
the bridge towers, the cranes would not detract from the overall visual unity of the view.
The cranes would be silhouetted against the ridgeline of the Palos Verdes peninsula that
is visible in the background. However, the cranes and any berthed container ships would
not create a substantial blockage of the view toward the bridge. From this vantage point,
the new cranes would clearly be visible; but the presence of the cranes would not
substantially degrade the existing character and quality of the view.

As westbound motorists travel across the bridge and approach and pass the cranes and
berthed container ships, the tops of the cranes would be visible in the foreground at an
oblique angle to the right of the roadway. Because only the tops of the cranes would be
visible, they would not dominate the view, and would create relatively little view
blockage. As suggested by Photograph 9 in Figure 3.1-3e, the existing view is one of a
port and industrial setting and is seen through the filter of a chain-link fence located in
the immediate foreground. In this context, the presence of the cranes and berthed
container ships would have relatively little effect on the existing character and quality of
the view.

3.1.4.3.3.1.4 Harbor Scenic Route

For northbound travelers on the Pacific Avenue and John S. Gibson Boulevard portions
of the Harbor Scenic Route, the Project cranes would not be visible because they would
be located behind these northward-bound viewers. The only portions of the Project
visible to these viewers would be the edges of the backland areas of the Project that front
Pacific Avenue and John S. Gibson Boulevard.

Because the areas adjacent to these roadway segments have a long history of use for Port
or industrial purposes and because views into these areas are frequently blocked by
containers and other stored material and equipment in the portion of the site alongside the
roadway, the modification of this area by the Project for backland activities would have
relatively little effect on the character and quality of these views.

For southbound travelers on John S. Gibson Boulevard and Pacific Avenue, because of
the angle of the roadway, the cranes installed as a part of the Project would not be visible
in their primary cone of vision. The cranes, however, would be visible in oblique angle
views, to the extent that views toward the cranes are not screened by trees planted along
the roadway, parked freight trains on the rail corridor alongside the road, or stacked
containers in the adjacent backland areas. To the extent that views toward the cranes
would be available, some points exist at which the cranes would appear in front of views
toward the Vincent Thomas Bridge. In these views, the distance of the cranes from the
viewers (ranging from 0.6-mile to over a mile) would reduce their apparent height and
visual prominence and dominance. The cranes would not appear to overtop or
substantially obstruct views toward the bridge whether working ships or in the boom
stowed position (boom between 30 and 60 degrees from vertical).

From a short segment of Front Street, where it curves toward the east, some of the cranes
would be potentially visible within the driver’s cone of vision, but with the stacks of
containers that will be located in the backland area between the road and Berths 100 and
102, these cranes will frequently be substantially screened in the view. In addition,
because of the angle of the view, the cranes will not directly interfere with views of the
Vincent Thomas Bridge.

8 For confirmation of the use of the area alongside John s. Gibson Boulevard, Pacific Avenue, and Front Street
during the baseline period for storage, see Figure 2-9, which presents an oblique aerial view of the Project site
on 2/08/01. It is also important to note that this photo documents the fact that during the Baseline period, a
portion of the edge of the Project site along Front Street was bordered by a wall that would have blocked views
into the site from that segment of Front Street.
Because these views already have a well-established character as a working port environment, the changes brought about by the cranes and by the presence of equipment and stacked containers related to the backland development on the Project site would have relatively little effect on the overall character and visual quality of what is seen from this portion of the Harbor Scenic Route. As noted, views into the project site from the Scenic Route are frequently blocked by containers and other cargo stacked on freight cars parked on the rail line that runs along the edge of the site adjacent to the roadway. For northbound travelers on Harbor Boulevard (Photograph 12 in Figure 3.1-3f), the Project cranes would be visible to some degree. From many locations along this segment of the Harbor Scenic Route, the buildings and docked ships at the World Cruise Center and other features in the foreground and middleground would substantially block views toward the cranes. To the extent that the cranes are visible from Harbor Boulevard, their impacts on the view would be limited.

Because the cranes would be located behind the Vincent Thomas Bridge, they would not block views toward the bridge. When in the operating position, the A-frame cranes would appear considerably shorter than the towers of the bridges; but when they are in the raised position, the crane booms would extend to a height that is close to that of the bridge towers. The cranes would have a form that is visually compatible with the bridge. In addition, because of their placement, the cranes would not intrude on views toward the central span of the bridge. As a consequence, the cranes would not have an adverse or significant effect on views toward the bridge. Based on the distance of the cranes from viewers along Harbor Boulevard, their location behind the bridge, and their consistency with other elements of the Port environment, they would not be visually dominant elements of the view, and would not substantially alter the overall character and level of visual quality of the view.

From Harbor Boulevard, the equipment and stacked containers on the site’s backland areas would not be visible because of the distance, angle of view, and intervening features. As a consequence, these aspects of the Project would have no effect on the character and quality of views from the Harbor Boulevard portion of the Harbor Scenic Route.

3.1.4.3.1.5 Wilmington

From most portions of the residential areas located north of C Street, views toward the Project cranes would be blocked or substantially screened by the existing buildings, cranes, container stacks, and other features in the immediate foreground of the view. To the extent that the cranes would be visible, they would appear in the far middleground, a mile or more distant from the viewer, reducing their apparent size and potential for visual dominance. Because the cranes would be consistent in appearance with the cranes and other Port-related features that dominate the foreground of the views from this area, they would have little effect on the overall character and quality of the views.

Review of the viewpoint map (Figure 3.1-1b) and of photographs of the four cranes installed on the proposed Project area subsequent to March 2001 (Photographs 13 and 14 in Figure 3.1-3g) underscores the fact that, in views from locations in Wilmington, the cranes would appear in the area to the right of the center span of the Vincent Thomas Bridge. As a consequence, to the extent to which unobstructed views of the bridge now might exist, the cranes would not block or otherwise interfere with views toward the towers and center span, its most visually important elements.

As would be the case with views from the area north of C Street, the views from Banning’s Landing would be little affected with implementation of the proposed Project.
The cranes would be located over 1 mile from this viewpoint, and would appear as somewhat distant elements in the view. Because the cranes would not be dominant elements in the view, and because they would be consistent with the other Port-related features that make up the view, they would have little effect on the overall character and quality of the view.

From this vantage point, the cranes would appear well to the right of the western tower of the Vincent Thomas Bridge and would be smaller in scale than the bridge towers; therefore, they would not interfere with views of the central span of the bridge and would appear as visually subordinate to the bridge. The relationship the cranes would have to the bridge in this view is suggested by Photograph 14 in Figure 3.1-3g. This represents the view toward the bridge and Project site from the waterside promenade at Banning’s Landing that includes the four cranes installed on the proposed Project area subsequent to March 2001.

3.1.4.3.3.1.6 Shields Drive Residential Area

From vantage points along the edge of the bluff in the Shields Drive neighborhood, the changes to the proposed Project area that would be most noticeable would include the introduction of 10 cranes at Berths 100 and 102.

The cranes would be visible in the middleground, approximately 0.75 mile in the distance, and would appear in a row that extends to the left of the Vincent Thomas Bridge. Photograph 16 in Figure 3.1-3i is a view from the Shields Drive area of the four cranes installed on the Project site subsequent to March 2001. As this photograph indicates, the cranes would not block the views toward the bridge. The cranes when in the horizontal operating position, would be shorter than the bridge towers. In the raised storage and maintenance positions, the cranes would appear to be no taller than the bridge towers. Because the crane structural elements would be smaller in scale than those of the bridge, the cranes would not detract from the importance of the bridge in this view. Because of the similarity of the forms of the cranes to those of the bridge towers and the use of the same color, the presence of the cranes would not detract from the overall sense of visual unity of the view. Although the cranes would block views toward the portions of the Port on Terminal Island, the primary elements of the view being screened would consist of other cranes and Port facilities.

3.1.4.3.3.1.7 Knoll Hill

From Knoll Hill, the features of the proposed Project that would be most noticeable would include Berths 100 and 102; the 10 cranes at Berths 100 and 102; and the paved backland area with its tall light standards and stacks of containers. These visual changes the Project would make in the view from Knoll Hill are shown in Figure 3.1-6.1b, which represents views from SV-3, a point at the eastern edge of Knoll Hill. Figure 3.1-6.1b also depicts the presence of a container ship stacked with containers at Berth 100.

Comparison of the baseline view (Figure 3.1-6.1a), a photograph toward the site taken early in the Project development process, with the simulation indicates that, with conversion of most of the site to a backland area, the primary change would be that stacks of containers that would be present in the middleground of the view. Comparison of the before and after views suggests that in some ways, the conversion of much of the proposed Project area to a paved backland with neatly arrayed rows of equipment and stacks of containers would not create a substantial change in the visual quality of the view. The backland area would appear to be organized and would have a visually unified appearance. The cranes and berthed container ship would be visible in the far
middleground of the view, approximately 0.45 mile in the distance. As is evident in the simulations, the cranes would appear in a row that extends to the left of the Vincent Thomas Bridge. From this viewpoint, the cranes would not block the views toward the bridge.

As can be seen in the simulations, a space would appear to exist between the bridge and the cranes. When in the horizontal operating position, the cranes would be shorter than the bridge towers. In the raised storage and maintenance positions, the cranes would not appear to be substantially taller than the bridge towers. Because the crane structural elements would be smaller in scale than those of the bridge, the cranes would not supplant the importance of the bridge in this view. Because of the similarity of the forms of the cranes to those of the bridge towers, the presence of the cranes would not detract from the overall sense of visual unity of the view.

To some degree, the stacked containers, cranes, and berthed container ship would block views toward the portions of the Port on Terminal Island. However, the primary elements of the view that will be screened will consist of other cranes and Port facilities, and not resources that could be considered to be scenic. Overall, the cranes and berthed container ship would be in scale with other elements of the view; and the cranes, berthed ship, and the new backland development would be visually consistent with the overall view context. As a consequence, the Project would not cause a substantial change to either the visual quality or character of this view.

3.1.4.3.1.8 Channel Street

Figure 3.1-7.1b is a simulation that depicts the effects of the proposed Project on views from Channel Street at Cabrillo Avenue, a view that is representative of views toward the Project from residential areas in the hills to the west of the Project site. As this simulation indicates, from this vantage point, the Project cranes would become highly visible elements in the view. The cranes would be seen at a distance of 1.1 miles or more, placing them in the middleground of the view. The cranes would appear to the left of the Vincent Thomas Bridge and would not obstruct views toward the bridge. As the simulations indicate, when the booms of the A-frame cranes are in the raised position, the tops of the booms would not appear to be substantially taller than the bridge towers. Review of the simulations indicates that, although the Project cranes would compete with the bridge for attention in the view, they would not appear to dominate the bridge because they would not appear to be taller than the bridge and because their structural elements would appear to be lighter than those of the central towers of the bridge. Because of the similarity of the forms of the cranes to those of the bridge towers, the presence of the cranes would not detract from the overall sense of visual unity of the view. Although the cranes would partially obstruct views toward the portions of the Port on Terminal Island, the primary elements of the view being screened consist of other cranes and Port facilities.

Although the berthed container ship would be visible, because of its horizontal form and comparatively low profile, it would integrate into the view and have a relatively small effect on the view’s overall character and quality.

The paving of the surface of the backland portion of the Project site, the installation of tall light standards, and the use of this area for container stacks would constitute a noticeable change from the baseline condition when this area was unpaved and vacant.

Overall, the effect of the Project on views from this area would be to create a more intense level of development and a more complex scene in the middleground zone. The overall character of the view as that of a working port environment would not be changed.
However, for the very large number of residential viewers and travelers on Channel Street who see this scene, the open panorama that existed during the baseline period would include a more dense pattern of developed features; and the prominence of the Vincent Thomas Bridge as the focal element in the view would be diminished.

3.1.4.3.3.1.9 Main Channel and Nearby Areas

Figure 3.1-8.1a is a photograph representing the pre-March 2001 view up the Main Channel that was taken from SV-4, a location on a dining deck located along the Main Channel at the Ports O’Call complex. Besides being typical of views up the Main Channel from shore-side areas along the western edge of the Main Channel, this photograph is also generally representative of views experienced by people on craft traveling up the Main Channel toward the Vincent Thomas Bridge and the proposed Project area.

Figure 3.1-8.1b is a visual simulation that represents the same view with development of the Project. The simulation depicts the Project’s cranes and a loaded container ship at Berth 100. From this viewpoint, equipment and stacked containers in the Project site’s backland area would not be readily visible. Although the berthed container ship would be detectable from this viewpoint, it would not be highly visible, would not block any view features of critical importance, and would have relatively little effect on the overall view. The proposed Project cranes would be visible from this vantage point, but because they would be located behind the Vincent Thomas Bridge, they would not block views of the bridge. For the most part, the cranes would be located behind the western approach to the bridge and away from the visually important central span. When the cranes are in the stored or maintenance positions (Figure 3.1-8.1b), the raised booms would appear from this vantage point to extend to a height as high as that of the central towers of the bridge. When in the raised position, the cranes would, to some degree, create a more visually complex backdrop against which the northern span of the bridge is seen. The result would be that some reduction in the clarity of the profile of the bridge would occur as seen in this view. The presence of the cranes would not substantially change the visual character of the views from this area. However, given the large numbers of recreational viewers, and the number of viewers on cruise ships and other recreational craft, the view toward the Vincent Thomas Bridge is particularly important and sensitive. Although the Project cranes would not block views toward the bridge, they would diminish these views to some degree by substantially reducing the clarity of the western span of the bridge.

3.1.4.3.3.2 Light and Glare Impacts

3.1.4.3.3.2.1 Changes to Lighting on the Project Site

Overview

As a part of the Project, the lighting on the site associated with the Catalina Express Terminal and the surrounding parking area that was present during the baseline period would be removed. New sources of light that would be installed on the site would include 25 or more 40- to 100-foot-tall mast light standards with light fixtures arranged in a circle around the top of the pole. The light poles in the center of the site would be the tallest, and the light fixtures would be arranged in a 360-degree circle. At the perimeter of the backland areas, closest to adjacent roads and the nearest residential areas, the light masts would be 40 feet tall; and the lights would be directed inward toward the interior of the site. In addition, floodlights would be located along the western perimeter of the backlands. Lighting associated with the 10 shoreside gantry cranes to be installed would...
include lighting arrays along the underside of each crane boom to illuminate container handling operations (the single most intense source of light on the site), lighting on the underside of the crane frames, and interior and exterior lighting associated with the housing of the crane. The tops of the fixed crane tower and the tips of the cantilevered booms would be fitted with aircraft warning lights. The crane boom is extended horizontally during operations and stowed at a 30- or 60-degree angle when not in use, and lights could be on in any of these positions during daytime and nighttime operations. Crane lights are operated manually by terminal employees and, in existing operations, are observed to be on during both daytime and nighttime hours.

Ships berthed at the terminals would serve as relatively minor secondary sources of light because of safety lighting and light emanating from the illuminated housing of the ship. Mobile light sources would include trucks, cars, cargo-moving equipment on the access road and in the backland areas, and trains along the rail line.

To attenuate the potential offsite effects of the Berth 100-102 project lighting, the Port of Los Angeles has developed a set of general guidelines for the lighting that would be installed as a part of the project. These guidelines requirements are given below.

Light Fixtures

1. The fixtures shall be symmetric or asymmetric distribution to minimize light trespass.
2. Prismatic glass reflectors would be used to control the spread of the illumination.
3. Dark-colored shade accessories would be used to prevent light spillover.

Light Controls

1. Lights shall have the flexibility to illuminate all of the units at one time or only two for security reasons.
2. Photocells and timers shall be utilized to automatically control the use of lighting during daytime hours.

Pole Distribution and Height

1. Peripheral lighting adjacent (to the residential community) would focus lighting away from the residential community.
2. Where applicable, floodlights with shields would be used to prevent (light) spillover.
3. If feasible, pole height would be lowered adjacent to hillside residential areas.
4. Poles would be distributed to minimize light in the residential area.

3.1.4.3.2.2 Lighting Impacts

Development of the Project would eliminate the concentration of bright lights that now illuminate the parking lots around the Catalina Express Terminal and the former Todd Shipyard parking lot. The visibility of the new lighting associated with the project and its contribution to ambient lighting conditions in areas around the Project site would be minimized by the lighting guidelines that the Port has adopted for the development of this area. Because the existing levels of ambient lighting in the area are already high, the incremental change in ambient lighting conditions that would be brought about by the removal of the existing lighting on the site, and the installation of the crane and backland
lighting, would not create a substantial change in existing levels of ambient light in potentially sensitive areas in the Project vicinity.

Because much of the Project backland lighting and some of the crane-related lighting has already been installed on the Project site and is now in use, measurements of current light conditions in areas around the Project provide a good indicator of what the lighting effects of the Project would be. As a part of the Port-Wide Lighting Study, measurements were taken in November 2004 of lighting conditions in three areas where the lighting effects of the Project are of the greatest potential concern; and these data are referred to as a part of this analysis.

The area where the changes in lighting have the greatest potential to be evident, the Little League field at the northern edge of Knoll Hill, is not designed to be used during nighttime hours. The remaining residence on Knoll Hill would be less sensitive to any changes in lighting on the Project site because it is set back from the edge of the hill overlooking the Project site, and because trees along the edge of the bluff provide a measure of screening. November 2004 light measurements on Knoll Hill found that, at this location, the crane lights produced readings of 4.4 candela/square meter; the high-mast, cut-off lights, 26.8 candela/square meter; and the floodlights, 188.2 candela/square meter. By way of comparison, a streetlight located in the neighborhood, close to the point of measurement, produced a reading of 361 candela/square meter.

The effects on ambient lighting conditions in the Shields Drive area would be attenuated by the distance of this neighborhood from the cranes; the implementation of the Port guidelines to minimize the use of the lighting and to direct it only where it is needed; and the fact that the light standards in the portions of the backland areas closest to the neighborhood would be 40 feet high and, thus, well below the elevation of the bluff where the neighborhood is located. In this area, the November 2004 light measurements documented readings of 1.6 candela/square meter for the lights on the cranes; 49.5 candela/square meter for the floodlights; and 6.4 candela/square meter for the high-mast, cut-off lights.

In the residential area located on the bluff west of the Project site, the lighting effects of the Project are attenuated by the heavily shielded design of the lighting, and by distance of this area from the Project-related lighting sources. The November 2004 light measurements taken on Channel Street at Cabrillo Avenue documented readings of 1.1 candela/square meter for the lights on the cranes; 27.5 candela/square meter for the flood lights; and 3.1 candela/square meter for the high-mast, cut-off lights.

All of the Project-related light readings in these three areas are far below the 500 candela/square meter IES threshold for glare problems, indicating that the Project-related lighting now on the Project site is not a source of lighting impacts in these areas. The low levels of impact associated with the lighting now on the Project site suggests that the lighting associated with the additional cranes and the relatively small areas of backland development that would be added and illuminated in future Project phases is unlikely to result in impacts that exceed the IES threshold of 500 candela/square meter.

At the time when the four A-frame cranes now on the Project site were installed, speculation was that cranes located close to the bridge could direct focused, disabling, and even blinding glare at westbound motorists on the Vincent Thomas Bridge. This concern has turned out to be unwarranted. Observations from the travel lanes of the bridge of the illuminated cranes, even in the raised positions, indicate that crane lights do not create glare issues for westbound drivers. These observations support a conclusion
that the lights on the additional cranes that are installed, which will be located even further from the bridge’s roadway will not create problems for drivers on the bridge.

3.1.4.4 Assessment of the Impact Significance of the Proposed Project and Project Alternatives Under CEQA and NEPA

3.1.4.4.1 Proposed Project

CEQA Impact Determination

Proposed Project – Impact AES-1 (CEQA Criteria): Would the proposed Project have a demonstrable negative aesthetic effect?

The proposed Project would not remove or demolish any features that substantially contribute to the valued visual character of the area. The proposed Project would not require grading or development of any area of designated open space.

The proposed Project cranes and backland facilities would be consistent with the existing features of the Port landscape region, and would not contrast with the valued landscape features of the area. From several viewpoints, the presence of the cranes has the potential to interfere with views toward the Vincent Thomas Bridge, a valued landscape feature, and compete with it in the view. This impact is evaluated under Significance Criterion AES-2 below.

As described in the analysis of the changes in views by viewing area presented in Section 3.1.4.3.3.1, although the proposed Project would probably not be thought of as contributing to the aesthetic values of the area, for the most part, it would not substantially detract from them, either. The proposed Project would be visually consistent with the development in the surrounding areas of the Port, and its main effect would be to contribute to an intensification of the level of development in the area. This effect would not constitute a significant impact. Although the proposed Project would not result in significant impacts to the visual features along the roadways around the terminal, the Port has begun to landscape roadway areas for new development projects in an effort to “green” the Port, and MM AES-1 would define this landscaping around the terminal to further enhance its aesthetics. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.

Mitigation Measures

The following mitigation measure will be implemented by the responsible parties identified in Section 3.1.4.6.

MM AES-1

1. Reconfigure the fenceline bordering Front Street to create a 5-foot-wide planting strip alongside the edge of the street to be planted with low shrubs and some trees. Plant species used for this landscaping must be selected for their attractiveness, their relationship to existing planting themes in the surrounding area, and their environmental values. The plants installed must be of an adequate size to create an attractive planting composition within 5 years. Plants shall be monitored over the entire time frame of the lease. If any plants die, they must be replaced.
2. Implement the recommendations of the Northwest Harbor Beautification Plan as applicable and allowed under the State Tidelands Trust Guidelines. The recommendations include landscaping two gateways to the Port: the area adjacent to the Channel Street on- and off-ramps from I-110 and SR-47, and the Harbor Boulevard on- and off-ramps from SR-47 Freeway.

Residual Impacts
With implementation of measure MM AES-1, the impact would remain less than significant.

Proposed Project – Impact AES-2 (CEQA Criteria): Would the proposed Project affect a recognized or valued view, scenic vista, or scenic highway?

As described in the analysis of the changes in views by viewing area presented in Section 3.1.4.3.3.1, the proposed Project would not, for the most part, have a substantial or significant effect on the character and quality of views in the Project area. Two areas, however, have recognized or valued views that would be significantly affected by the proposed Project.

In views from the Main Channel and the recreational and commercial areas along its western banks, the presence of the proposed Project would detract from views toward the Vincent Thomas Bridge. As indicated by a comparison of the baseline view from SV 5 (Figure 3.1-8.1a) with the visual simulation of the proposed Project in the same view (Figure 3.1-8.1b) and, as described in the analysis in Section 3.1.4.3.3.1.9, cranes would be visible in the area behind the western span of the bridge and would tend to visually merge with the bridge, substantially detracting from the clarity of its form, and diminishing its role as the gateway landmark of the Port. This would be considered a significant impact.

In views from Channel Street and other nearby hillside residential areas, review of the simulation presented as Figure 3.1-7.1b and the analysis presented in Section 3.1.4.3.3.1.8 indicate that the presence of the 10 cranes in proximity to the bridge would compete visually with the bridge and would diminish the role of the bridge as the focal point of the view. In addition, for the very large number of residential viewers and travelers on Channel Street who see this view, the presence of the 10 large cranes would substantially diminish the open panorama that existed during the baseline period, which is considered a significant impact.

As analyzed in the Harbor Scenic Route analysis in Section 3.1.4.3.3.1.4, the proposed Project would be visible from the John S. Gibson Boulevard, Pacific Avenue, Harbor Boulevard, and Front Street segments of the Harbor Scenic Route. The elements of the proposed Project would be consistent with what is now seen in these views and would not significantly affect the character and quality of these views. The impact would be less than significant.

As visible in a review of Figure 3.1-4 (a and b) and documented in the Harbor Freeway I-110 analysis in Section 3.1.4.3.3.1.2, the proposed Project impacts on views in the primary cone of vision from the Harbor Freeway toward the Vincent Thomas Bridge, the recognized view element of primary concern, would be very limited; and the impacts on views from this road segment would be less than significant. Because these views of the bridge are seen at oblique angles for short periods of time by passengers in fast-moving...
vehicles, and are not the more imageable and widely disseminated views of the bridge, the impacts of changes to these views would be less than significant.

As visible in a review of Figure 3.1-5.1 (a and b) and Figure 3.1-5.2 (a and b) discussed in the analysis presented in Section 3.1.4.3.3.1.2, the proposed Project and its 10 cranes would have relatively little effect on the views of the bridge from the SR-47 approach to the bridge from the San Pedro side, which is the roadway view of the bridge in which the bridge form can be most appreciated and which most commonly appears in published materials. The impact on this view would be less than significant.

Review of Figure 3.1-6.1 (a and b) and Figure 3.1-6.2 (a and b) indicates that the proposed Project and its 10 cranes would be highly visible in views from Knoll Hill. The presence of the proposed Project cranes and backland operations would not create a substantial change in the character of the view. In some ways the proposed Project changes could be considered to be a visual improvement because they would provide the foreground area of the view with an appearance that is better organized and more visually unified than what existed on the site during the baseline period. Although the cranes would block views toward the portions of the Port on Terminal Island to some degree, the primary elements of the view being screened consist of other cranes and Port facilities. Overall, the cranes would be in scale with other elements of the view; and both the cranes and the new backlands development would be visually consistent with the overall view context. As a consequence, the proposed Project would not cause a substantial change to either the visual quality or character of this view. The impact would be less than significant.

MM AES-2

Use a neutral gray color for the cranes that to make them visually distinct from the Vincent Thomas Bridge, reduce their contrast with the sky backdrop, and reduce their visual prominence and apparent mass. This color should be specified for use as the factory-applied color for the additional cranes proposed for installation at the Project site and for repainting the four cranes that now exist at the site.

MM AES-3

To offset the reduction in the quality of views from the upper portions of the Channel Street corridor, implement beautification plan improvements along the portion of John S. Gibson Boulevard and Pacific Avenue at the intersection of Channel Street. These improvements, which will include landscaping and creation of view areas of the Port, walkways, and bike paths, should be designed with the objectives of upgrading the visual quality of the eastern end of the Pacific Avenue corridor and creating an attractive gateway to the Port that links with the system of amenities the Port is developing along the western edge of Port lands. One of the key improvements proposed is removal of a large billboard and deteriorated building on the east side of Pacific Avenue adjacent to the China Shipping site and close to the intersection with Channel Street. Removal of the billboard and building will improve the visual quality of this area and will provide space for installation of landscaping and visitor amenities.

Additionally, the utility poles along this segment will be removed and all utility lines will be placed underground if feasible.
Placement of utility lines underground will be subject to cost feasibility. If costs exceed $1,000 per linear foot, the Port will reassess placement of utility lines underground and propose alternative measures, such as additional landscaping and/or reduced numbers of underground utility placements. The Port also will begin voluntary negotiations to remove and possibly relocate a truck resale facility on the northeast corner of the Pacific Avenue and Front Street intersection. If removed, the vacated area would be landscaped with vegetation consistent with the Pacific Avenue Corridor Improvements.

MM AES-4

To offset the reduction in the quality of views from the area along the Main Channel, implement plans to improve the role of Plaza Park as a place to enjoy views of the Port and of the Vincent Thomas Bridge. Because of the angle of the view, the views from the park toward the bridge will not be substantially affected by the presence of the cranes that are a part of the Project. To improve the connection between the Main Channel area and Plaza Park, a system of safe, attractive, pedestrian paths and stairways should be developed. This system should include signs, arrows, and other design elements that direct visitors up to the park to take advantage of the opportunities that it provides to view the Port. Improvements in the park itself should include new walkways and railings; a Harbor overview seating area; a Port and bridge overlook area with interpretive signage and improved view corridors; a visitor center; and upgraded landscaping, lighting, and other improvements to make the park a safe and attractive place from which Port and bridge views could be appreciated.

One additional mitigation measure that was thought to have potential to reduce aesthetic and visual impacts associated with the impacts of cranes is the use of low-profile cranes in lieu of standard A-frame cranes. However, based on extensive study and analysis by POLA staff and consultants over a multi-year period, the Port has concluded that use of low-profile cranes is both infeasible and ineffective as mitigation for the significant CEQA or NEPA aesthetic impacts of the Project.

The Engineering Division of the Port began conducting extensive analysis of low-profile cranes in 2003. The Port engaged Liftech Consultants, Inc., the leading expert in the field of container crane engineering, which has participated in the design of nearly all the low-profile cranes in the world. Port staff and Liftech developed and submitted to crane manufacturers throughout the world a Request for Proposals (RFP), which included technical specifications for low-profile cranes. After determining that the two proposals submitted in response to that RFP were infeasible (primarily for exceeding allowable wharf loadings and due to concerns about crane stability during wind and seismic conditions), Port staff and Liftech investigated revised designs for low-profile cranes, including subsequent issuance of four revised specifications.

9Articulated boom cranes were considered as potential mitigation, but withdrawn because they are similar in height as standard A-frame cranes when in an operational configuration and would not be as effective as low-profile cranes in reducing the height of the cranes.
Additionally, in July 2005, the Port sent a team of its engineers and representatives from the International Longshore and Warehouse Union (ILWU) to the Port of Boston to examine and operate the low-profile cranes installed there because of crane height restrictions due to aircraft clearance requirements. (There are some low-profile cranes operating in ports adjacent to airports; however, those cranes are not designed for current seismic standards, and low-profile cranes have never been used to mitigate aesthetic impacts or preserve views.) During the visit to Boston, Port staff and ILWU representatives raised safety and operational concerns about the low-profile cranes. Liftech also concluded that the cost of low-profile cranes adequate for the operational and seismic conditions at the Port would greatly exceed the cost of conventional low-profile cranes (memorandum from Arun K. Bhimani to Port of Los Angeles, January 2008). On February 15, 2006, the Board of Harbor Commissioners adopted a new policy against use of low-profile cranes at the Port, including detailed findings that low-profile cranes have safety, design, operational, cost and productivity deficiencies that make them infeasible for use at the Port, and that low-profile cranes are ineffective in mitigating the visual impacts of A-frame cranes (Board of Harbor Commissioners Resolution No. 6411, dated February 15, 2006; Staff Report re: proposed Resolution No. 6411, dated February 8, 2006, and attachments thereto). Notwithstanding the Port’s new policy, the Port sent out a sixth RFP based on revised specifications in March 2006, but did not receive any bids in response. Finally, Port staff ran simulations which show that the aesthetic impacts of using low-profile cranes for the China Shipping Project were either not improved or were slightly greater, compared to conventional A-frame cranes, because the greater mass of the structural members of the low-profile cranes would give them a more pronounced presence in the view. Therefore, Port staff has determined that the use of low-profile cranes in lieu of A-frame cranes is neither feasible from a safety, design, operational, cost or productivity standpoint, nor effective in mitigating the aesthetic impacts of A-frame cranes proposed for the Project. ([Low Profile Cranes for the Berth 97-109 | China Shipping | Container Terminal Project, Feasibility Memo, March 2008].) For these reasons, use of low-profile cranes is not further evaluated as mitigation for the CEQA or NEPA impacts of the A-frame cranes proposed for this Project.

Residual Impacts

With use of a gray color for the cranes as proposed in MM AES-2, there is a potential to bring about a small reduction in the proposed Project impacts on the Main Channel and Channel Street views (see Figures 3.1-9 and 3.1-10). However, the proposed Project residual impacts on these views would remain significant and unavoidable.

With implementation of MM AES-3, aesthetic and amenity improvements at the lower end of Channel Street and the immediately adjacent area of Pacific Avenue would partially offset the Project effects on the quality of the views seen from the roadway and residences located at the upper end of the Channel Street corridor. This mitigation measure, however, would not reduce the impacts on views from the upper Channel Street corridor to a level that is less than significant.

With implementation of MM AES-4, the enhanced opportunities for viewing the Port and the Vincent Thomas Bridge from Plaza Park would partially offset the Project effects on the quality of the views toward the Vincent Thomas Bridge seen from the Main Channel and the area alongside it. This mitigation measure, however, would not reduce the impacts on views from the Main Channel and surrounding area to a level that is less than significant.
a. Visual simulation of proposed Project with green cranes, as seen from Channel Street

b. Visual simulation of proposed Project with gray cranes seen from Channel Street, as proposed under Mitigation Measure AES-2

Figure 3.1-9
Simulation View 4
Mitigation Measure AES-2
Berth 97-109 Container Terminal Project EIS/EIR

Source: Environmental Vision
a. Visual simulation of proposed Project with green cranes seen from the Main Channel.

b. Visual simulation of proposed Project with gray cranes seen from the Main Channel, as proposed under Mitigation Measure AES-2.
Proposed Project – Impact AES-3 (CEQA Criteria): Would the proposed Project create substantial negative shadow effects on nearby shadow-sensitive uses?

The screening criterion for the City for shading is, “Would the project include light-blocking structures in excess of 60 feet in height above the ground elevation that would be located within a distance of three times the height of the proposed structure to a shadow-sensitive use on the north, northwest, or northeast?” (L.A. CEQA Thresholds Guide, City of Los Angeles, 2006). The only structures that would be over 60 feet tall would be the proposed cranes that would have a height of 243 feet. Because the cranes are not a solid structure, they are not considered to be “light blocking.” However, the light-blocking issue aside, the areas within three times the height of the cranes (729 feet) to the northeast, north, and northwest consist of portions of the adjacent waterways and Container Terminal backlands and are not shadow sensitive. Consequently, no impacts would occur under this criterion.

Mitigation Measures

No mitigation is required.

Residual Impacts

There would be no impacts.

Proposed Project – Impact AES-4 (CEQA Criteria): Would the proposed Project create substantial negative light or glare?

Under the proposed Project, lighting at the site would consist of the lights on the 10 cranes and the backland lights mounted on tall light standards arrayed in a regularly spaced pattern across the backland area. The visibility of this new lighting and its contribution to ambient lighting conditions in areas around the Project site would be attenuated by a number of design and operational measures mandated by the lighting guidelines the Port has adopted for this proposed Project, including providing shielding and directing lights downward to reduce backscatter and offsite light trespass. As discussed in the analysis presented in Section 3.1.4.3.2.2, incremental change in ambient lighting conditions that would be brought about by the removal of existing lighting on the site, and installation of the crane and backland lighting, would not create a substantial change in existing levels of ambient light in sensitive areas in the Project vicinity. The impact would be less than significant.

Because much of the area in the vicinity of the Project site consists of lands used for Port activities that are themselves intensively illuminated, in most areas near the Project and on the streets that serve them, the level of sensitivity to changes in nighttime lighting conditions brought about by the proposed Project is low.

The areas close to the Project site with the greatest potential sensitivity to light spill are Knoll Hill, where one residence remains from the residential neighborhood that once existed on the hill, the Shields Drive area where residences along the edge of the bluff have foreground to middleground views over the western end of the site, and the residential area on the bluff to the west of the Project site in the vicinity of Channel Street. Because of the design measures for the backland lighting that would include directing the lights downward and use of shielding, these lights are not expected to produce light that would affect the remaining residence on Knoll Hill.
In the Shields Drive area, which is located 800 feet away from the closest of the planned backland light standards and is at an elevation higher than that of the closest backland area light fixtures, recent nighttime light measurements that reflect installation and operation of most of the lighting called for by the proposed Project, indicate that the level of light spill is limited. Recent measurements taken on Channel Street in the residential area on the bluff west of the Project site indicate that the level of light spill from the lighting that has been installed on the Project site to date is low. The results of these recent light measurements are presented in more detail in Section 3.1.4.3.3.2. In summary, the proposed Project is not expected to result in significant impacts from light or glare.

Mitigation Measures

No mitigation is required.

Residual Impacts

There would be no residual significant impacts.

NEPA Impact Determination

Proposed Project – Impact AES-5 (NEPA Criteria): Would the proposed Project result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Table 3.1-3 summarizes the results of the analysis related to this significance criterion that was conducted using an evaluative framework based on the analytic principles that underlie the FHWA Visual Impact Assessment and BLM Visual Resource Management systems. This analysis was conducted for the five representative viewpoints for which visual simulations were prepared, and evaluated the potential effects of the proposed Project and several proposed mitigation measures.

As the results of the analysis summarized in this table indicate, in three of the views (those from the I-110 Harbor Freeway, the SR-47 Terminal Island Freeway/Vincent Thomas Bridge, and Knoll Hill), the proposed Project would not result in changes to the overall character and quality of the landscape that would have a significant effect on viewer response. However, in views from the residential area along Channel Street and from the Main Channel, which is used by passengers on cruise ships and recreational vessels and seen by viewers using the visitor-oriented facilities in the Ports O’Call area alongside it, the proposed Project would create effects that would be significant.

Mitigation Measures

The following mitigation measures will be implemented by the responsible parties identified in Section 3.1.4.6: MM AES-2, MM AES-3, and MM AES-4.

Residual Impacts

Implementation of MM AES-2 has the potential to bring about a substantial reduction in Project effects on views from Channel Street and the Main Channel, but the proposed Project residual visual effects would still be significant. With use of a gray color for the cranes as proposed in MM AES-2, there is a potential to bring about a small reduction in the proposed Project impacts on the Main Channel and Channel Street views (see Figures 3.1-9 and 3.1-10). However, the proposed Project...
residual impacts on these views would remain significant and unavoidable. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Project impacts on views from the Channel Street and Main Channel areas, but the impacts would remain significant and unavoidable under NEPA.

Table 3.1-3. Summary of AES 5 Impacts

<table>
<thead>
<tr>
<th>Viewing Area/Project Variant/Existing and Simulation View Figure Numbers</th>
<th>Existing Visual Character and Quality</th>
<th>Level of Visual Modification</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 Harbor Freeway Proposed Project Figures 3.1-4a and b</td>
<td>Visual Character: Heavily developed freeway corridor and Port complex with multiple freeway lanes and large scale cranes dominating the view. Visual Quality: Large-scale cranes in foreground and middleground create a moderately high level of vividness. Levels of intactness and unity are low.</td>
<td>VM Class 2</td>
<td>No</td>
</tr>
<tr>
<td>Terminal Island Freeway (SR-47)/Vincent Thomas Bridge Proposed Project Figures 3.1-5.1 (a and b) and 3.1-5.2 (a and b)</td>
<td>Visual Character: Heavily developed freeway corridor and port complex. The Vincent Thomas Bridge serves as landmark element and as the focal point in the view. Visual Quality: The Vincent Thomas Bridge creates a high degree of vividness. The levels of visual intactness and unity are moderate.</td>
<td>VM Class 2</td>
<td>No</td>
</tr>
<tr>
<td>Knoll Hill Proposed Project Figures 3.1-6.1 (a and b) and 3.1-6.2 (a and b)</td>
<td>Visual Character: Developed port environment with a highly disturbed open area in the foreground. The Vincent Thomas Bridge serves as landmark element in the view. Visual Quality: Overall, the level of vividness is low, but the presence of the Vincent Thomas Bridge in the view raises the vividness level to moderate. The levels of unity and intactness are low.</td>
<td>VM Class 3</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3.1-3. Summary of AES 5 Impacts

<table>
<thead>
<tr>
<th>Viewing Area/ Project Variant/ Existing and Simulation View Figure Numbers</th>
<th>Existing Visual Character and Quality</th>
<th>Sensitivity</th>
<th>Level of Visual Modification</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Street Residential Area</td>
<td>Visual Character: Panoramic view of a large, highly developed port complex with a partially developed open area in the middleground of the view. The Vincent Thomas Bridge serves as landmark element in the view. Visual Quality: The presence of the Vincent Thomas Bridge in the view raises the vividness level to moderate. The levels of unity and intactness are low.</td>
<td>High</td>
<td>VM Class 3</td>
<td>Yes</td>
</tr>
<tr>
<td>Proposed Project Figures 3.1-7.1 (a and b) and 3.1-7.2 (a and b)</td>
<td></td>
<td></td>
<td>The stacks of containers would be visible, but would be subordinate elements. The 10 proposed Project cranes, however, would be fully visible and appear as co-dominant elements in the view. The cranes would compete for attention with the Vincent Thomas Bridge, and would alter the open panorama that existed during the baseline period.</td>
<td></td>
</tr>
<tr>
<td>With implementation of MM AES-2, the cranes would be painted gray to reduce their contrast with the sky backdrop and reduce their apparent mass, visual prominence, and level of dominance; however, the reduction in impact level would not be sufficient to reduce the impacts to a level that is less than significant.</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation of MM AES 3 would bring about a substantial aesthetic improvement of the lower end of Channel Street and the area at its intersection with John S. Gibson Boulevard and Pacific Avenue, providing partial compensation for the decrease in view quality experienced by residents and road users at the upper end of the Channel Street corridor. This compensation would not reduce the impacts on the views from the upper Channel Street corridor to a level that is less than significant.</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.1-3. Summary of AES 5 Impacts

<table>
<thead>
<tr>
<th>Viewing Area/ Project Variant/ Simulation View</th>
<th>Existing Visual Character and Quality</th>
<th>Level of Visual Modification</th>
<th>Significant?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Channel/Ports O'Call</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Project</td>
<td>Existing Visual Character: Panoramic view of a navigation channel surrounded by large-scale port facilities. The landmark Vincent Thomas Bridge serves as the focal point of the view. Visual Quality: The presence of the wide channel and the Vincent Thomas Bridge create a high level of vividness. The level of unity is moderately high. The level of intactness is low because of the effect of the cranes at the Evergreen Terminal in blocking the view toward the center span of the Vincent Thomas Bridge.</td>
<td>VM Class 3 Yes</td>
<td></td>
</tr>
<tr>
<td>Figures 3.1-8.1 (a and b) and 3.1-8.2 (a and b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With implementation of MM AES-2, the cranes would be painted gray to reduce their contrast with the sky backdrop; reduce their apparent mass, visual prominence, and level of dominance; and make them visually distinct from the bridge, lessening their effect on the clarity of the bridge profile. However, the reduction in impact level would not be sufficient to reduce the impacts to a level that is less than significant.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation of MM AES-4 would improve the role of Plaza Park as a place to enjoy views of the Port and the Vincent Thomas Bridge. The substantial enhancement of the park linkage to the Main Channel area, the park environment, and the viewing opportunities the park provides would give partial compensation for the effects of the Project on views toward the Vincent Thomas Bridge from the Main Channel area. However, this compensation would not reduce the Project impacts on views from the Main Channel area to a level that is less than significant.</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.4.4.2 Alternatives

3.1.4.4.2.1 Alternative 1 – No Project Alternative

3.1.4.4.2.1.1 Description of Alternative 1

Alternative 1 would utilize the terminal site, as constructed under Phase I of the proposed Project, for container storage. Thus, impacts associated with construction of the 72 acres of backlands and in-water elements would be assessed under Alternative 1. In addition, as described in Chapter 2, under Alternative 1, the operation of wharf-related Phase I components (bridge over the Southwest Slip, A-frame cranes, wharves, dike and fill) or other additional improvements at Berths 97-109 beyond those constructed prior to the court injunction or Amended Stipulated Judgment would not occur. In addition, the wharf, 1.3 acres of fill and the bridge over the Southwest Slip would be abandoned and the existing four A-frame cranes on the Project site would be removed. The No Project Alternative would not preclude the future use of Berths 97-109. The No Project Alternative would operate with increased backland acreage (compared to the CEQA baseline) strictly for the supplemental storage of containers from a nearby terminal. This alternative would involve the removal of the four existing A-frame cranes located on the site and the westerly bridge would be abandoned in place. The baseline condition photographs taken from five simulation viewpoints portray the visual effect associated with eliminating these four cranes from the Project site (Figures 3.1-4a, 3.1-5.1a, 3.1-6.1a, 3.1-7.1a, and 3.1-8.1a). This change would be beneficial as compared to the proposed Project.

Alternative 1 also could include changes associated with future Port-related use of Berths 97-109, including new lighting and additional container storage. It is expected that the appearance of these activities would be similar in scale and aesthetic character to the existing Port facilities that are generally visible to the public in the immediate vicinity. In this respect, the future use of Berths 97-109 would represent an incremental visual change that would not substantially alter the existing visual setting of the area i.e., an urban landscape defined principally by a working urban port environment.

CEQA Impact Determination

Alt 1 – Impact AES-1: Would Alternative 1 have a demonstrable negative aesthetic effect?

The visual changes associated with Alternative 1 would not create significant aesthetic impacts under CEQA because the amount or relative proportion of features or elements that substantially contribute to the valued visual character of the area that would be affected by this alternative would be small. No areas of natural open space would be graded or developed, thus would not be affected by this alternative. The contrast between the features of Alternative 1 and the baseline features that represent the Port landscape region’s valued aesthetic image would be low. This alternative would not entail a zone change, would not detract from the aesthetic value of the area, and would not conflict with applicable guidelines and regulations. Consequently, Alternative 1 would not result in a significant aesthetic impact under CEQA.

Mitigation Measures

None required.
Residual Impacts

There would be no significant residual impacts.

Alt 1 – Impact AES-2: Would Alternative 1 affect a recognized or valued view, scenic vista or scenic highway?

The visual changes associated with Alternative 1 would not create significant impacts under this CEQA significance criterion. This alternative would not result in obstruction of recognized or valued views. Although the backland activities that would occur on the Project site under this alternative would have some effect on views from the Harbor Boulevard Scenic Route, these changes would be consistent with the intent of this route, which is to provide views of Port activities. The extent to which this alternative would affect recognized views available from a length of public roadway, bike path, or trail, as opposed to a single, fixed vantage point, would be limited.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 1 – Impact AES-3: Would Alternative 1 create substantial negative shadow effects on nearby shadow-sensitive uses?

This alternative would not create substantial negative shadow effects on nearby shadow-sensitive uses, and thus would create no impacts under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 1 – Impact AES-4: Would Alternative 1 create substantial negative light or glare?

The lighting associated with the backland development that could occur under Alternative 1 would be similar to the backland lighting associated with the proposed Project, and would not be significant. At the perimeter of the backland areas, closest to adjacent roads and the nearest residential areas, the light masts would be 40 feet tall; and the lights would be directed inward toward the interior of the site. In addition, floodlights would be located along the western perimeter of the backlands. This backland lighting would create relatively little change in ambient illumination levels), and the extent to which lighting under this Alternative would spill off the Project site affecting adjacent light-sensitive areas would be limited. As a consequence, this alternative would not create a significant impact under CEQA related to light and glare.

Mitigation Measures

None required.
Residual Impacts

There would be no significant residual impacts.

NEPA Impact Determination

Alt 1 – Impact AES-5: Would Alternative 1 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

The impacts of this No Project Alternative are not required to be analyzed under NEPA. NEPA requires the analysis of a No Federal Action Alternative (see Alternative 2 in this document).

Mitigation Measures

No mitigation measures would be required.

Residual Impacts

No residual impacts would occur.

3.1.4.2.2 Alternative 2 – No Federal Action Alternative

Alternative 2 would utilize the terminal site constructed as part of Phase I for container storage and would increase the backland area (during Phase II) to 117 acres. Thus, Phase I construction activities are included under Alternative 2. As described in Section 2.5.1.2, several key features of the proposed Project would not be included in Alternative 2. Under this alternative, there would be no additional filling of the area along the Main Channel to permit the southern extension of Berth 100 or the construction of Berth 102. The southern extension of Berth 100 and construction of Berth 102 would not take place. The wharf and 1.3 acres of fill (Phase I elements) would be abandoned, the four cranes that have been installed at Berth 100 would be removed, and no additional cranes would be installed at the site. The westerly bridge that has already been installed (under Phase I) across the narrowed portion of the Southwest Slip to connect the Project site with the Berth 121-131 area to the north would be abandoned. The upland area of the site under Alternative 2 would total 117 acres. This area would be developed for backland activities. Like the proposed Project, features of this area would include several small office and maintenance buildings and construction of a gate and entrance facilities at a point along John S. Gibson Boulevard. The lighting on the backland areas of the site would be similar to the backland lighting associated with the Proposed project. Under this alternative, none of the lighting that is specific to the cranes would be present on the site. Because of the considerably reduced scope of the Project under this alternative, the alteration of baseline visual conditions would be substantially less than the alteration that would occur under the proposed Project.

CEQA Impact Determination

Alt 2 – Impact AES-1: Would Alternative 2 have a demonstrable negative aesthetic effect?

As would be the case under the proposed Project, Alternative 2 would not result in a significant negative aesthetic effect. However, because the alternative would still include development, the Port would landscape roadway areas for new development projects in
an effort to “green” the Port. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.

Mitigation Measures

Measure MM AES-1 will be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project.

Residual Impacts

With implementation of measure MM AES-1, the impact would be less than significant

Alt 2 – Impact AES-2: Would Alternative 2 affect a recognized or valued view, scenic vista or scenic highway?

Because this Alternative does not include retention or installation of cranes on the Project site, under this alternative, unlike the proposed Project, the impacts on the views from Channel Street and the Main Channel would not be significant.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 2 – Impact AES-3: Would Alternative 2 create substantial negative shadow effects on nearby shadow-sensitive uses?

Like the proposed Project, Alternative 2 would create no impacts under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 2 – Impact AES-4: Would Alternative 2 create substantial negative light or glare?

Under this alternative, there would be less lighting on the site than under the Proposed project, and like the proposed Project, Alternative 2 would not create significant light or glare impacts under CEQA.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.
NEPA Impact Determination

Alt 2 – Impact AES-5: Would Alternative 2 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Under this alternative, Phase I construction would be applied, but the Phase I cranes would be removed and the wharf and fill would be abandoned but remain in place. In addition, backland development and operations under Alternative 2 would be the same as under the NEPA baseline. Although the wharf would remain in place, no cranes would be present to affect views from Channel Street or the Main Channel. Therefore, potential impacts under NEPA would be less than significant because there would be no substantial change in the environmental conditions between Alternative 2 and the NEPA baseline.

Mitigation Measures

No mitigation measures are necessary under NEPA.

Residual Impacts

Less than significant residual impacts would occur under NEPA.

3.1.4.2.3 Alternative 3 – Reduced Fill: No New Wharf Construction at Berth 102

Alternative 3 would be developed similar to the proposed Project except that 925 linear feet of wharf proposed at Berth 102 would not be constructed. The visual changes associated with this alternative would involve backlands and wharf improvements including five new A-frame cranes at the Project site. The cranes would be situated at Berth 100. The new cranes would be visible in some views from the surrounding area including the five simulation viewpoints that are delineated in Figure 3.1-1b. In terms of their general physical appearance and scale, the cranes and backlands improvements would be comparable to existing Port facilities seen in the vicinity. The five new cranes proposed under this alternative represent half the number included in the proposed Project. The new cranes, however, would be located at Berth 100, which lies on the south side of the Project site, closest to the Vincent Thomas Bridge. Based on review of the proposed Project visual simulation images, it can be inferred that by reducing the number of new A-frame cranes, the degree of overall visual change associated with Alternative 3 would be noticeably less than the proposed Project (refer to Figures 3.1-4b, 3.1-5.1b, 3.1-5.2b, 3.1-6.1b, 3.1-6.2b, 3.1-7.1b, 3.1-7.2b, 3.1-8.1b, and 3.1-8.2b). It is expected, therefore, that the visual changes associated with Alternative 3 would not alter baseline visual conditions to the same extent as the proposed Project.

CEQA Impact Determination

Alt 3 – Impact AES-1: Would Alternative 3 have a demonstrable negative aesthetic effect?

As would be the case under the proposed Project, Alternative 3 would not result in a significant negative aesthetic effect. However, because the alternative would still include development, the Port would landscape roadway areas for new development projects in
an effort to “green” the Port. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.

Mitigation Measures

MM AES-1 will be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project.

Residual Impacts

With implementation of measure MM AES-1, the impact would be less than significant

Alt 3 – Impact AES-2: Would Alternative 3 affect a recognized or valued view, scenic vista or scenic highway?

Some of the significant impacts that would occur under Alternative 3 would be related to the effects of the five A-frame cranes on views from Channel Street and the Main Channel. These impacts would be similar to those described for the proposed Project, although they would be somewhat lower in magnitude because only 5 rather than 10 cranes would be present.

Mitigation Measures

MM AES-2, MM AES-3, and MM AES-4 would be implemented.

Residual Impacts

Implementation of MM AES-2 would reduce impacts under Alternative 3, but the residual impacts would still be significant. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 3 impacts on views from the Channel Street and Main Channel areas, but would not reduce those impacts to levels that are less than significant.

Alt 3 – Impact AES-3: Would Alternative 3 create substantial negative shadow effects on nearby shadow-sensitive uses?

Like the proposed Project, Alternative 3 would create no impacts under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 3 – Impact AES-4: Would Alternative 3 create substantial negative light or glare?

Like the proposed Project, Alternative 3 would not create significant light or glare impacts under CEQA.

Mitigation Measures

None required.
Residual Impacts

There would be no significant residual impacts.

NEPA Impact Determination

Alt 3 – Impact AES-5: Would Alternative 3 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Similar to the proposed Project, Alternative 3 would have significant effects on views from the Main Channel and Channel Street areas.

Mitigation Measures

MM AES-2, MM AES-3, and MM AES-4 would be implemented by the responsible parties identified in Section 3.1.4.6 as described for the proposed Project.

Residual Impacts

With implementation of MM AES-2, the impacts that would occur under Alternative 3 would be reduced; but the residual effects have the potential to be significant under NEPA. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 3 impacts on views from the Channel Street and Main Channel areas, but these impacts would remain significant under NEPA.

3.1.4.4.2.4 Alternative 4 – Reduced Fill: No South Wharf Extension at Berth 100

Alternative 4 would be developed similar to the proposed Project except that the proposed southern extension of Berth 100 would not be constructed. This alternative would involve a total of 9 A-frame cranes at the Project site as opposed to 10 with the proposed Project. In addition, this alternative proposes improvements on 130 gross terminal acres (compared with 142 gross acres of the proposed Project). The visual changes associated with Alternative 4 would be very similar to the proposed Project effects, which are described in Section 3.1.4.3.1.

CEQA Impact Determination

Alt 4 – Impact AES-1: Would Alternative 4 have a demonstrable negative aesthetic effect?

As would be the case under the proposed Project, Alternative 4 would not result in a significant negative aesthetic effect. However, because the alternative would still include development, the Port would landscape roadway areas for new development projects in an effort to “green” the Port. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.

Mitigation Measures

MM AES-1 will be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project.

Residual Impacts

With implementation of MM AES-1, the impact would be less than significant.
Alt 4 – Impact AES-2: Would Alternative 4 affect a recognized or valued view, scenic vista or scenic highway?

Some of the significant impacts that would occur to views under this alternative would be related to the effects of the nine A-frame cranes on views of the Vincent Thomas Bridge from Channel Street and the Main Channel. These impacts would be nearly the same as those described for the proposed Project.

Mitigation Measures

MM-AES-2, MM AES-3, and MM AES-4 would be implemented.

Residual Impacts

With use of a gray color for the cranes as proposed in MM AES-2, there is a potential to bring about a small reduction in the proposed Project impacts on the Main Channel and Channel Street views (see Figures 3.1-9 and 3.1-10). However, the proposed Project residual impacts on these views would remain significant and unavoidable. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 4 impacts on views from the Channel Street and Main Channel areas but would not reduce those impacts to levels that are less than significant.

Alt 4 – Impact AES-3: Would Alternative 4 create substantial negative shadow effects on nearby shadow-sensitive uses?

Like the proposed Project, Alternative 4 would create no impacts under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 4 – Impact AES-4: Would Alternative 4 create substantial negative light or glare?

Like the proposed Project, Alternative 4 would not create a significant impact under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

NEPA Impact Determination

Alt 4 – Impact AES-5: Would Alternative 4 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

As would be the case with the proposed Project, Alternative 4 would have significant effects on views from the Main Channel and Channel Street areas.
Mitigation Measures

MM AES-2, MM AES-3, and MM AES-4 as described for the proposed Project, will be implemented.

Residual Impacts

Although AES-2 would reduce the impacts of Alternative 4 to some degree, the residual impacts would be significant. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 4 impacts on views from the Channel Street and Main Channel areas; however, these impacts would remain significant.

3.1.4.2.5 Alternative 5 – Reduced Construction and Operation: Phase I
Construction Only

Under Alternative 5, development of the site would be restricted to the development that has taken place under Project Phase 1. Berth 100 and the four A-frame cranes that have been installed there would be retained. There would be no extension of Berth 100 to the south. Berth 102 would not be built, and there would be no installation of additional cranes. The backland area would be restricted to 72 acres. The terminal and gate buildings constructed as a part of Phase I would be retained, as would the westerly bridge connecting the Project site to the Berth 121-131 area. The second bridge that is included as a part of the proposed Project would not be built. The visual changes associated with this alternative would involve backland and wharf improvements including the four A-frame cranes at Berth 100. The cranes would be visible in some views from the surrounding area including the five simulation viewpoints that are delineated in Figure 3.1-1b. In terms of their general physical appearance and scale, the cranes and backland improvements would be comparable to existing Port facilities seen in the vicinity.

The four new cranes proposed under this alternative represent less than half the number included in the proposed Project. The new cranes, however, would be located at Berth 100, which lies on the south side of the Project site, closest to the Vincent Thomas Bridge. Based on review of the proposed Project visual simulation images, it can be inferred that by reducing the number of new A-frame cranes, the degree of overall visual change associated with Alternative 5 would be noticeably less than the proposed Project (refer to Figures 3.1-4b, 3.1-5.1b, 3.1-5.2b, 3.1-6.1b, 3.1-6.2b, 3.1-7.1b, 3.1-7.2b, 3.1-8.1b, and 3.1-8.2b). It is expected, therefore, that the visual changes associated with Alternative 5 would not alter baseline visual conditions to the same extent as the proposed Project.

CEQA Impact Determination

Alt 5 – Impact AES-1: Would Alternative 5 have a demonstrable negative aesthetic effect?

As would be the case under the proposed Project, Alternative 5 would not result in a significant negative aesthetic effect. However, because the alternative would still include development, the Port would landscape roadway areas for new development projects in an effort to “green” the Port. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.
Mitigation Measures

MM AES-1 will be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project.

Residual Impacts

With implementation of MM AES-1, the impact would remain less than significant

Alt 5 – Impact AES-2: Would Alternative 5 affect a recognized or valued view, scenic vista or scenic highway?

The significant impacts that would occur under Alternative 5 would be related to the effects of the four A-frame cranes on views from Channel Street and the Main Channel. These impacts would be somewhat similar to those described for the proposed Project, although they would be considerably lower in magnitude because only 4 rather than 10 cranes would be present.

Mitigation Measures

MM AES-2, MM AES-3, and MM AES-4 would be implemented.

Residual Impacts

Implementation of MM AES-2 would reduce impacts under Alternative 5, but the residual impacts would still be significant. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 5 impacts on views from the Channel Street and Main Channel areas, but would not reduce impacts to less than significant.

Alt 5 – Impact AES-3: Would Alternative 5 create substantial negative shadow effects on nearby shadow-sensitive uses?

Like the proposed Project, Alternative 5 would create no impacts under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 5 – Impact AES-4: Would Alternative 5 create substantial negative light or glare?

Like the proposed Project, Alternative 5 would not create significant light or glare impacts under CEQA.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.
NEPA Impact Determination

Alt 5 – Impact AES-5: Would Alternative 5 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Similar to the proposed Project, the Phase I improvements (4 A-frame cranes and backlands) that are included in Alternative 5 would have significant effects on views from the Main Channel and Channel Street areas.

Mitigation Measures

MM AES-2, MM AES-3, and MM AES-4 would be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project.

Residual Impacts

With implementation of MM AES-2, the impacts that would occur under Alternative 5 would be reduced; however, the residual effects have the potential to be significant under NEPA. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 5 impacts on views from the Channel Street and Main Channel areas, but these impacts would remain significant under NEPA.

3.1.4.2.6 Alternative 6 – Omni Cargo Terminal

This alternative would entail physical land improvements and wharf construction as required for the proposed Project. Under this alternative, however, the existing backland would be reconstructed to match the needs of an omni terminal. Like the proposed Project, this alternative would involve construction of 2,500 linear feet of wharf improvements and 2.5 acres of fill. A new 250,000- to 350,000-square-foot transit storage shed would be constructed onsite, as well as new entrance and exit gate facilities, a heavy-lift pad, and utility relocations.

The visual changes associated with this alternative would involve backlands and wharf improvements including five A-frame cranes at the Project site. The changes and potential impacts are virtually the same as for Alternative 2 because both alternatives would have five A-frame cranes.

CEQA Impact Determination

Alt 6 – Impact AES-1: Would Alternative 6 have a demonstrable negative aesthetic effect?

As would be the case under the proposed Project, Alternative 6 would not result in a significant negative aesthetic effect. However, because the alternative would still include development, the Port would landscape roadway areas for new development projects in an effort to “green” the Port. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.
Mitigation Measures

MM AES-1 will be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project.

Residual Impacts

With implementation of MM AES-1, the impact would remain less than significant.

Alt 6 – Impact AES-2: Would Alternative 6 affect a recognized or valued view, scenic vista, or scenic highway?

Alternative 6 would result in significant impacts related to the effects of the five A-frame cranes on views from Channel Street and the Main Channel. These impacts would be similar to those described for the proposed Project, although they would be somewhat lower in magnitude because only 5 rather than 10 cranes would be present.

Mitigation Measures

MM-AES-2, MM AES-3, and MM AES-4 would be implemented.

Residual Impacts

Implementation of MM AES-2 would reduce impacts under Alternative 6, but the residual impacts still could be significant. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for Alternative 6 impacts on views from the Channel Street and Main Channel areas, but would not reduce those impacts to levels that are less than significant.

Alt 6 – Impact AES-3: Would Alternative 6 create substantial negative shadow effects on nearby shadow-sensitive uses?

Like the proposed Project, Alternative 6 would create no impacts under this criterion.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 6 – Impact AES-4: Would Alternative 6 create substantial negative light or glare?

Like the proposed Project, Alternative 6 would not create significant light or glare impacts under CEQA.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.
NEPA Impact Determination

Alt 6 – Impact AES-5: Would Alternative 6 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Similar to the proposed Project, the Alternative 6 would have significant effects under NEPA on views from the Main Channel and Channel Street areas.

Mitigation Measures

MM AES-2 would be implemented by the responsible parties identified in Section 3.1.4.6, as described for the proposed Project. MM AES-3 and MM AES-4 would also be implemented.

Residual Impacts

With implementation of MM AES 2, the impacts that would occur under Alternative 6 would be reduced; however, the residual effects have the potential to be significant under NEPA. Implementation of MM AES-3 and MM AES-4 would provide partial compensation for the impacts of Alternative 4 on views from the Channel Street and Main Channel areas, but these impacts would remain significant.

3.1.4.2.7 Alternative 7 – Nonshipping Use

This alternative would convert 117 acres of the site into a Regional Center composed of retail, office park, and light industrial uses. Berth construction would continue to occur but the berths would be developed only to support small watercraft.

The visual changes associated with Alternative 7 involve replacing the mostly open and paved site conditions that existed in 2001 with a new Regional Center composed of mixed-uses such as retail, office, parking, and light industrial uses supporting maritime activity. In addition, a public dock could be constructed to support the retail and restaurant uses onsite.

According to the City of Los Angeles General Plan (2003), a Regional Center is defined as:

A focal point of regional commerce, identity and activity and containing a diversity of uses such as corporate and professional offices, residential, retail commercial malls, government buildings, major health facilities, major entertainment and cultural facilities, and supporting services. Generally, different types of Regional Centers will fall within the range of floor area ratios from 1.5:1 to 6.0:1. Some will only be commercially oriented; others will contain a mix of residential and commercial uses. Generally, Regional Centers are characterized by 6- to 20-stories (or higher).

Although the General Plan definition of a Regional Center specifies buildings that are 6 to 20 stories or higher, under the current M-3 zoning of the Project site, building heights would be restricted to 61 feet, which would effectively limit buildings that would be developed under this alternative to 5 stories. To varying degrees, the structures and parking areas envisioned under this alternative would be visible from the surrounding vicinity in locations where views are not obstructed by intervening landforms, vegetation, and/or existing structures. The most visible proposed Project elements would likely be the new mixed-use buildings, which, in some cases, could extend up to 5 stories in height.
The potentially affected viewing areas include the Terminal Island Freeway (SR-47)/Vincent Thomas Bridge, John Gibson/ Harbor Boulevard, Front Street, Knoll Hill, the Shields Drive residential area, Channel Street, and the Main Channel.

Documentation of baseline visual conditions is provided in the simulation view baseline photographs (Figures 3.1-5.1a, 3.1-6.1a, 3.1-7.1a, and 3.1-8.1a). The corresponding visual simulations demonstrate the degree of visibility associated with cranes situated near the edge of the water in raised positions reaching about 280 to 360 feet in height as seen from the five simulation viewpoints.

As suggested by the baseline photographs and accompanying simulation images, structures in the 1- to 5-story range (i.e., up to approximately 61 feet tall) would be visible to varying degrees from each of the simulation viewpoint locations. The visual changes associated with Alternative 7 could be highly noticeable when seen from some of the closer locations in these viewing areas, and could change the existing character of the views to some degree. However, because of the relatively low scale of the structures, the structures would not be likely to dominate the views; and the visual changes would not be likely to substantially alter existing view quality. Although the overall visual impact is likely to be less than significant, the degree of impact would depend on the specific layout of the features of the Regional Center and the massing of the structures.

CEQA Impact Determination

Alt 7 – Impact AES-1: Would Alternative 7 have a demonstrable negative aesthetic effect?

Under the assumptions of a 5-story height limit and sensitive site and building design, the visual changes associated with Alternative 7 would not create significant impacts under CEQA. The amount or relative proportion of features or elements that substantially contribute to the valued visual character of the area that would be removed, altered, or demolished would be small. No area of natural open space would be graded or developed. Because no areas of natural open space would be graded or developed, integration of structures into the aesthetics of a natural site would not be a consideration. The contrast between the features of Alternative 7 and the existing features that represent the valued aesthetic image of the Port landscape region would be low. This alternative would not entail a zone change, would not detract from the aesthetic value of the area, and would not conflict with applicable guidelines and regulations.

Mitigation Measures

None required.

Residual Impacts

There would be no significant residual impacts.

Alt 7 – Impact AES-2: Would Alternative 7 affect a recognized or valued view, scenic vista, or scenic highway?

The visual changes associated with Alternative 7 could create significant impacts under CEQA because of potential effects on views from Pacific Avenue and Front Street. These roadways have been designated by the City of Los Angeles as part of the Harbor Scenic Route in recognition of the views these streets provide of Port activities. With implementation of the mixed-use development assumed by this alternative, Port activities...
would no longer be visible from these roadway segments, thus creating a visual impact that would be significant under this impact criterion.

Mitigation Measures

The following mitigation measures will be implemented by the responsible parties identified in Section 3.1.4.6.

MM AES-5 Measures including site layout and building massing guidelines to address view corridor protection might be required. In addition, site/architectural guidelines might be required to address proposed Project compatibility with the visual setting that is defined by a working Port environment. To compensate for loss of views of the Port environment from the City-designated Harbor Scenic Route, Harbor viewing areas should be provided in the Regional Center at locations along the edge of the Turning Basin that are conveniently accessible to motorists using Pacific Avenue and Front Street.

Residual Impacts

MM AES-5 would protect view corridors, address proposed Project compatibility with the visual setting that is defined by a working Port environment, and offset the loss of views of the Port environment from the Harbor Scenic Route under Alternative 7. With implementation of MM AES-5, the aesthetic impacts of this alternative would be less than significant.

Alt 7 – Impact AES-3: Would Alternative 7 create substantial negative shadow effects on nearby shadow-sensitive uses?

The City screening standard for shade and shadow effects from structures pertains to light-blocking structures in excess of 60 feet in height. Because zoning regulations limit the buildings that would be developed under this alternative to no more than a maximum of 61 feet in height, it is likely that this alternative would be built in a way that would not be subject to the provisions of this significance criterion. Consequently, there would be no impacts related to it.

Mitigation Measures

No mitigation is required.

Residual Impacts

There would be no residual significant impacts.

Alt 7 – Impact AES-4: Would Alternative 7 create substantial negative light or glare?

Assuming that the lighting for the Regional Center would be designed in a sensitive way that applies the latest International “Dark Skies” standards, it can be assumed that it would create relatively little change in ambient illumination levels and that the extent to which proposed Project lighting would spill off the Project site and affect adjacent light-sensitive areas would be limited. Consequently, it would not create significant light or glare impacts under CEQA.
Mitigation Measures

No mitigation is required.

Residual Impacts

There would be no residual significant impacts.

NEPA Impact Determination

Alt 7 – Impact AES-5: Would Alternative 7 result in changes to the overall visual character and quality of a landscape that has a significant effect on viewer response?

Assuming that the buildings of the “Regional Center” would be laid out and designed in an aesthetically sensitive way, Alternative 7 would not result in a substantial change in the overall visual character or quality of the landscape that would have a significant effect on viewer response. As a consequence, it would not create significant impacts under NEPA based on the evaluative criteria used by federal agencies.

Mitigation Measures

No mitigation is required.

Residual Impacts

There would be no residual significant impacts.

3.1.4.5 Significant Unavoidable Impacts

With implementation of the recommended mitigation measures, the proposed Project residual aesthetic and visual resource effects would create several significant unavoidable impacts. Table 3.1-4 presents a summary of the CEQA and NEPA impact determinations of the proposed Project and its alternatives.

In views from the Main Channel and the recreational and commercial areas along its western banks, the proposed Project cranes would be visible in the area behind the western span of the bridge. They would tend to visually merge with the bridge, substantially detracting from the clarity of its form, and diminishing its role as the gateway landmark of the Port, thus creating a significant impact.

In views from Channel Street and other nearby hillside residential areas, the presence of the 10 cranes in proximity to the Vincent Thomas Bridge would compete visually with the bridge and would diminish the role of the bridge as the focal point of the view. For the residential viewers in the area and travelers on Channel Street who see this view, the presence of the cranes would substantially diminish the open panorama that existed during the baseline period. Both of these effects would combine to create a significant visual impact.
Table 3.1-4. Summary Matrix of Potential Impacts and Mitigation Measures for Aesthetic Effects Associated with the Proposed Project and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project</td>
<td>AES-1: The Proposed Project would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>MM AES-1: Landscape along Front Street and implement Northwest Harbor Beautification</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-3: The Proposed Project would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td>AES-4: The Proposed Project would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-5: The Proposed Project would not result in changes to the overall visual character of the landscape but would change the visual quality of some views in a way that could have a significant adverse effect on viewer response.</td>
<td>NEPA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>NEPA: Significant impact</td>
</tr>
</tbody>
</table>
Table 3.1-4. Summary Matrix of Potential Impacts and Mitigation Measures for Aesthetic Effects Associated with the Proposed Project and Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1, No Project</td>
<td>AES-1: Alternative 1 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-2: Alternative 1 would not affect views, scenic vistas, or scenic highways</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-3: Alternative 1 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-4: Alternative 1 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-5: Alternative 1 would not result in changes to the overall visual character of the landscape</td>
<td>NEPA: Not Applicable</td>
<td>Mitigation not required</td>
<td>NEPA: Not Applicable</td>
</tr>
<tr>
<td>Alternative 2, No Federal Action</td>
<td>AES-1: Alternative 2 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>MM AES-1</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-2: Alternative 2 would not affect views, scenic vistas, or scenic highways</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-3: Alternative 2 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-4: Alternative 2 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-5: Alternative 2 would not result in changes to the overall visual character and quality of the landscape that would have a significant effect on viewer response</td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
</tbody>
</table>
Table 3.1-4. Summary Matrix of Potential Impacts and Mitigation Measures for Aesthetic Effects Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 3 No Berth 100 South</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AES-1: Alternative 3 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>MM AES-1</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-2: Alternative 3 would affect views of the Vincent Thomas Bridge</td>
<td>CEQA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>CEQA: Significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-3: Alternative 3 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-4: Alternative 3 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-5: Alternative 3 would not result in changes to the overall visual character of the landscape but would change the visual quality of some views in a way that could have a significant adverse effect on viewer response.</td>
<td>NEPA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>NEPA: Significant impact</td>
<td></td>
</tr>
<tr>
<td>Alternative 4 No Berth 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AES-1: Alternative 4 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>MM AES-1</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-2: Alternative 4 would affect views of the Vincent Thomas Bridge</td>
<td>CEQA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>CEQA: Significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-3: Alternative 4 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
<tr>
<td>AES-4: Alternative 4 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.1-4. Summary Matrix of Potential Impacts and Mitigation Measures for Aesthetic Effects Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 4
No Berth 102 (continued)</td>
<td>AES-5: Alternative 4 would not result in changes to the overall visual character of the landscape but would change the visual quality of some views in a way that could have a significant adverse effect on viewer response.</td>
<td>NEPA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>NEPA: Significant impact</td>
</tr>
<tr>
<td>Alternative 5
Phase I only</td>
<td>AES-1: Alternative 5 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>MM AES-1</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-2: Alternative 5 would affect views of the Vincent Thomas Bridge</td>
<td>CEQA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>CEQA: Significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-3: Alternative 5 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-4: Alternative 5 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-5: Alternative 5 would not result in changes to the overall visual character of the landscape but would change the visual quality of some views in a way that could have a significant adverse effect on viewer response.</td>
<td>NEPA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>NEPA: Significant impact</td>
</tr>
<tr>
<td>Alternative 6
Omni Cargo Terminal</td>
<td>AES-1: Alternative 6 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>MM AES-1</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-2: Alternative 6 would affect views of the Vincent Thomas Bridge</td>
<td>CEQA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>CEQA: Significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-3: Alternative 6 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-4: Alternative 6 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
</tbody>
</table>
Table 3.1-4. Summary Matrix of Potential Impacts and Mitigation Measures for Aesthetic Effects Associated with the Proposed Project and Alternatives (continued)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Environmental Impacts*</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Residual Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 6</td>
<td>AES-5: Alternative 6 would not result in changes to the overall visual character of the landscape but would change the visual quality of some views in a way that could have a significant adverse effect on viewer response.</td>
<td>NEPA: Significant impact</td>
<td>MM AES-2, MM AES-3, MM AES-4</td>
<td>NEPA: Significant impact</td>
</tr>
<tr>
<td>Omni Cargo Terminal</td>
<td>(continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AES-1: Alternative 7 would not have a demonstrable negative aesthetic effect</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-2: Alternative 7 would affect views of the Port from the scenic highway (Harbor Scenic Route).</td>
<td>CEQA: Significant impact</td>
<td>MM AES-5: Provide Harbor viewing areas within the Regional Center</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-3: Alternative 7 would not create negative shadows on sensitive uses</td>
<td>CEQA: No impact</td>
<td>Mitigation not required</td>
<td>CEQA: No impact</td>
</tr>
<tr>
<td></td>
<td>AES-4: Alternative 7 would not create substantial negative light and glare</td>
<td>CEQA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>CEQA: Less than significant impact</td>
</tr>
<tr>
<td></td>
<td>AES-5: Alternative 7 would not result in changes to the overall visual character and quality of the landscape in a way that would have a significant effect on viewer response</td>
<td>NEPA: Less than significant impact</td>
<td>Mitigation not required</td>
<td>NEPA: Less than significant impact</td>
</tr>
</tbody>
</table>
3.1.4.6 Mitigation Monitoring Program

AES-1: Although the proposed Project would not result in significant impacts to the visual features along the roadways around the terminal, the Port has begun to landscape roadway areas for new development projects in an effort to “green” the Port. MM AES-1 provides for landscaping around the terminal boundary and gateways into the Port.

<table>
<thead>
<tr>
<th>Mitigation Measure</th>
<th>MM AES-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reconfigure fence line bordering Front Street to create a 5-foot-wide planting strip alongside the edge of the street that will be planted with low shrubs and some trees. Plant species used for the relandscaping must be selected for their attractiveness, their relationship to existing planting themes in the surrounding area, and their environmental values. The plants installed must be of an adequate size to create an attractive planting composition within 5 years.</td>
<td></td>
</tr>
<tr>
<td>2. Implement the recommendations of the Northwest Harbor Beautification Plan as applicable. The recommendations include landscaping two gateways to the Port: the area adjacent to the Channel Street on- and off-ramps from I-110 and SR-47; and the Harbor Boulevard on- and off-ramps from SR-47.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timing</th>
<th>Design and construction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology</td>
<td>The LAHD shall implement mitigation as described here.</td>
</tr>
<tr>
<td>Responsible Parties</td>
<td>LAHD, City of Los Angeles, Caltrans.</td>
</tr>
<tr>
<td>Residual Impacts</td>
<td>Less than significant before and after mitigation.</td>
</tr>
</tbody>
</table>

AES-2 and AES-5: Proposed cranes would diminish views of the Vincent Thomas Bridge as seen from the Channel Street and the Main Channel areas.

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>MM AES-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify a gray color for the cranes that to make them visually distinct from the Vincent Thomas Bridge, reduce their contrast with the sky backdrop, and reduce their visual prominence and apparent mass. An appropriate shade of gray should be specified as the color for repainting the four cranes now at the site and as the factory-applied color for the six additional cranes proposed for installation.</td>
<td></td>
</tr>
</tbody>
</table>
MM AES-3
To offset the reduction in the quality of views from the upper portions of the Channel Street corridor, implement beautification plan improvements along the portion of John S. Gibson Boulevard and Pacific Avenue at the intersection of Channel Street. These improvements, which will include landscaping and creation of view areas of the Port, walkways, and bike paths, should be designed with the objectives of upgrading the visual quality of the eastern end of the Pacific Avenue corridor and creating an attractive gateway to the Port that links with the system of amenities the Port is developing along the western edge of Port lands. One of the key improvements proposed is removal of a large billboard and deteriorated building on the east side of Pacific Avenue adjacent to the China Shipping site and close to the intersection with Channel Street. Removal of the billboard and building will improve the visual quality of this area and will provide space for installation of landscaping and visitor amenities.

Additionally, the utility poles along this segment will be removed and all utility lines will be placed underground if feasible. Placement of utility lines underground will be subject to cost feasibility. If costs exceed $1,000 per linear foot, the Port will reassess placement of utility lines underground and propose alternative measures, such as additional landscaping and/or reduced numbers of underground utility placements. The Port also will begin negotiations to remove and possibly relocate a truck resale facility on the northeast corner of the Pacific Avenue and Front Street intersection. When removed, the vacated area would be landscaped with vegetation consistent with the Pacific Avenue Corridor Improvements.

MM AES-4
Implement plans to improve the role of Plaza Park as a place to enjoy views of the Port and of the Vincent Thomas Bridge. Design components should include a system of safe, attractive, pedestrian paths and stairways. This system should include signs, arrows, and other design elements that direct visitors up to the park to take advantage of the opportunities that it provides to view the Port. Improvements in the park itself should include new walkways and railings; a Harbor overview seating area; a Port and bridge overlook area with interpretive signage and improved view corridors; a visitor center; and upgraded landscaping, lighting, and other improvements to make the park a safe and attractive place from which Port and bridge views could be appreciated.

<table>
<thead>
<tr>
<th>Timing</th>
<th>Design and Construction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology</td>
<td>The LAHD shall implement mitigation as described here.</td>
</tr>
<tr>
<td>Responsible Parties</td>
<td>LAHD and Terminal Operator. (AES-2)</td>
</tr>
<tr>
<td></td>
<td>LAHD (MM AES-3 and AES-5)</td>
</tr>
</tbody>
</table>

Residual Impacts
Significant.
AES-2: Alternative 7 development would block Port views from Pacific Avenue and Front Street segments of the Harbor Scenic Route.

<table>
<thead>
<tr>
<th>Mitigation Measure</th>
<th>MM-AES 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures including site layout and building massing guidelines to address view corridor protection might be required. In addition, site/architectural guidelines might be required to address proposed Project compatibility with the visual setting that is defined by a working Port environment. To compensate for loss of views of the Port environment from the City-designated Harbor Scenic Route, Harbor viewing areas should be provided in the Regional Center at locations along the edge of the Turning Basin that are conveniently accessible to motorists using Pacific Avenue and Front Street.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timing</th>
<th>Design.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology</td>
<td>The LAHD shall implement mitigation as described here.</td>
</tr>
<tr>
<td>Responsible Parties</td>
<td>LAHD and Developer.</td>
</tr>
<tr>
<td>Residual Impacts</td>
<td>Not Significant.</td>
</tr>
</tbody>
</table>