PORT OF LOS ANGELES INVENTORY OF AIR EMISSIONS - 2020

Technical Report APP# 201113-540 A October 2021

Prepared by: STARCREST CONSULTING GROUP, LLC INVENTORY OF AIR EMISSIONS FOR CALENDAR YEAR 2020

Prepared for:

October 2021

Prepared by:

TABLE OF CONTENTS

EXECUTIVE SUMMARY	ES-1
Summary of 2020 Activity and Emission Estimates	
CAAP Standards and Emission Reduction Progress	
Health Risk Reduction Progress	
Section 1 Introduction	1
Geographical Domain	2
SECTION 2 REGULATORY AND CAAP MEASURES	
Clean Air Action Plan (CAAP) Strategies	4
Regulatory Programs by Source Category	6
SECTION 3 OCEAN-GOING VESSELS	
Source Description	12
Geographical Domain	
Data and Information Acquisition	14
Operational Profiles	14
Emissions Estimation Methodology	24
Emission Estimates	25
SECTION 4 HARBOR CRAFT	
Source Description	
Geographical Domain	29
Data and Information Acquisition	
Operational Profiles	
Emissions Estimation Methodology	
Emission Estimates	
SECTION 5 CARGO HANDLING EQUIPMENT	
Source Description	
Geographical Domain	
Data and Information Acquisition	
Operational Profiles	
Emissions Estimation Methodology	
Emission Estimates	41
SECTION 6 LOCOMOTIVES	
Source Description	
Geographical Domain	44
Data and Information Acquisition	
Operational Profiles	
Emissions Estimation Methodology	
Emission Estimates	

SECTION 7 HEAVY-DUTY VEHICLES	
Source Description	
Geographical Domain	
Data and Information Acquisition	
Operational Profiles	
Emissions Estimation Methodology	
Model Year Distribution	
Emission Estimates	
SECTION 8 SUMMARY OF 2020 EMISSION RESULTS	
SECTION 9 COMPARISON OF 2020 AND PREVIOUS YEARS' FINDINGS AND EMISSION	
ESTIMATES	
Ocean-Going Vessels	
	66
Ocean-Going Vessels Harbor Craft	66 69
Ocean-Going Vessels Harbor Craft Cargo Handling Equipment	66 69 73
Ocean-Going Vessels Harbor Craft Cargo Handling Equipment Locomotives	66 69 73 79
Ocean-Going Vessels Harbor Craft Cargo Handling Equipment	66 69 73 79 80

APPENDIX A: CHE Inventory

LIST OF FIGURES

Figure ES.1: 2020 PM ₁₀ Emissions in the South Coast Air Basin	ES-2
Figure ES.2: 2020 PM2.5 Emissions in the South Coast Air Basin	
Figure ES.3: 2020 DPM Emissions in the South Coast Air Basin	ES-3
Figure ES.4: 2020 NO _x Emissions in the South Coast Air Basin	ES-3
Figure ES.5: 2020 SO _x Emissions in the South Coast Air Basin	ES-4
Figure ES.6: Emissions Efficiency Trend	ES-9
Figure ES.7: DPM Reductions to Date	ES-11
Figure ES.8: NO _x Reductions to Date	
Figure ES.9: SO _x Reductions to Date	ES-12
Figure ES.10: Health Risk Reduction Benefits to Date	ES-13
Figure 1.1: Emissions Inventory Geographical Extent	2
Figure 1.2: Port Boundary Area of Study	3
Figure 4.1: Distribution of Commercial Harbor Craft Population by Vessel T	ype28
Figure 4.2: 2020 Distribution of Harbor Craft Engines by Engine Standards	
Figure 5.1: 2020 CHE Count Distribution by Equipment Type	
Figure 7.1: 2020 Model Year Distribution of the Heavy-Duty Truck Fleet	54
Figure 8.1: 2020 PM ₁₀ Emissions in the South Coast Air Basin	
Figure 8.2: 2020 PM2.5 Emissions in the South Coast Air Basin	
Figure 8.3: 2020 DPM Emissions in the South Coast Air Basin	63
Figure 8.4: 2020 NO _x Emissions in the South Coast Air Basin	
Figure 8.5: 2020 SO _x Emissions in the South Coast Air Basin	63
Figure 9.1: Emissions Trend	64
Figure 9.2: Emissions Efficiency Trends	65
Figure 9.3: HDV Model Year Distribution	

LIST OF TABLES

Table ES.1: Container Throughput and Vessel Arrival Call Comparison	.ES-1
Table ES.2: 2020 Maritime Industry-related Emissions by Category	
Table ES.3: Maritime Industry-related Emissions Comparison	
Table ES.4: Maritime Industry-related 2020-2005 Emissions Comparison by Source	
Category	.ES-5
Table ES.5: Maritime Industry-related 2020-2019 Emissions Comparison by Source	
Category	. ES-7
Table ES.6: Emissions Efficiency Metric Comparison, tons/10,000 TEUs	. ES-8
Table ES.7: Reductions as Compared to 2014 and 2023 Emission Reduction Standard	
Table 2.1: OGV Emission Regulations, Standards and Policies	
Table 2.2: Harbor Craft Emission Regulations, Standards and Policies	
Table 2.3: Cargo Handling Equipment Emission Regulations, Standards and Policies	
Table 2.4: Locomotives Emission Regulations, Standards and Policies	
Table 2.5: Heavy-Duty Vehicles Emission Regulations, Standards and Policies	
Table 3.1: 2020 Total OGV Activities	
Table 3.2: Average Auxiliary Engine Load Defaults, kW	
Table 3.3: Auxiliary Boiler Load Defaults by Mode, kW	
Table 3.4: Cruise Ship Average Auxiliary Engine Load Defaults, kW	
Table 3.5: Cruise Ship Auxiliary Boiler Load Defaults by Mode, kW	
Table 3.6: 2020 Hotelling Times at Berth, hours	
Table 3.7: 2020 Hotelling Times at Anchorage, hours	
Table 3.8: 2020 Percentage of Frequent Callers	
Table 3.9: 2020 Vessel Type Characteristics	
Table 3.10: 2020 Percent of OGV Activity by Main Engine Tier and Vessel Type	
Table 3.11: OGV Emission Factors for Diesel Propulsion, Steamship Propulsion and	
Turbine Engines, g/kWh	
Table 3.12: Emission Factors for Auxiliary Engines using 0.1% S, g/kWh	
Table 3.13: 2020 Ocean-Going Vessel Emissions by Engine Type	
Table 3.14: 2020 Ocean-Going Vessel Emissions by Vessel Type	
Table 3.15: 2020 Ocean-Going Vessel Emissions by Mode	
Table 4.1: 2020 Summary of Propulsion Engine Data by Vessel Category	
Table 4.2: 2020 Summary of Auxiliary Engine Data by Vessel Category	
Table 4.3: Harbor Craft Marine Engine EPA Tier Levels	
Table 4.4: Harbor Craft Energy Consumption by Engine Tier, kWh and %	
Table 4.5: 2020 Harbor Craft Emissions by Vessel and Engine Type	
Table 5.1: 2020 CHE Engine Characteristics for All Terminals	
Table 5.2: 2020 Count of CHE Utilizing Emission Reduction Technologies	
Table 5.3: 2020 Count of CHE Equipment by Fuel Type	
Table 5.4: 2020 Count of Diesel Engines by Engine Standards	
Table 5.5: 2020 Equipment Energy Consumption by Engine Tier, kWh and %	
Table 5.6: 2020 CHE Emissions by Terminal Type	
Table 5.7: 2020 CHE Emissions by Equipment and Engine Type	
Table 6.1: PHL Switching Fleet Mix, 2020	
Table 6.2: MOU Compliance Data, MWh and g NO _x /hp-hr	
1 · · · · · 1	

Table 6.3: Fleet MWh and PM, HC, CO Emission Factors, g/bhp-hr	.47
Table 6.4: Emission Factors for Line Haul Locomotives, g/bhp-hr	.47
Table 6.5: 2020 Estimated On-Port Line Haul Locomotive Activity	.48
Table 6.6: 2020 Gross Ton-Mile, Fuel Use, and Horsepower-hour Estimate	.48
Table 6.7: 2020 Locomotive Operations Estimated Emissions	.49
Table 7.1: Summary of Reported Container Terminal Operating Characteristics	.51
Table 7.2: Summary of Reported Non-Container Facility Operating Characteristics	
Table 7.3: 2020 Estimated On-Terminal VMT and Idling Hours by Terminal	.52
Table 7.4: Speed-Specific Composite Exhaust Emission Factors	.53
Table 7.5: 2020 HDV Emissions	
Table 7.6: 2020 HDV Emissions Associated with Container Terminals	.56
Table 7.7: 2020 HDV Emissions Associated with Other Port Terminals	.56
Table 8.1: 2020 Emissions by Source Category	
Table 8.2: 2020 DPM Emissions by Category and Percent Contribution	.58
Table 8.3: 2020 NO _x Emissions by Category and Percent Contribution	.59
Table 8.4: 2020 SO _x Emissions by Category and Percent Contribution	.60
Table 8.5: 2020 CO ₂ e Emissions by Category and Percent Contribution	.61
Table 9.1: Emissions Comparison	
Table 9.2: Emissions Efficiency Metric, tons/10,000 TEUs	.65
Table 9.3: OGV Emission Reduction Strategies	.66
Table 9.4: OGV Percentage of Calls by Main Engine Tiers	.67
Table 9.5: OGV Energy Consumption Comparison, kWh	
Table 9.6: OGV Emissions Comparison	
Table 9.7: OGV Emissions Efficiency Metric Comparison, tons/10,000 TEUs	
Table 9.8: Harbor Craft Count Comparison	
Table 9.9: Harbor Craft Engine Distribution Comparison by Tier	.69
Table 9.10: Harbor Craft Count and Activity Comparison	.71
Table 9.11: Harbor Craft Energy Consumption Comparison by Engine Tier, kWh	.71
Table 9.12: Harbor Craft Emission Comparison	
Table 9.13: Harbor Craft Emissions Efficiency Metric Comparison, tons/10,000 TEUs	
Table 9.14: CHE Count and Activity Comparison	.73
Table 9.15: Count of CHE Equipment Type	
Table 9.16: Count of CHE Diesel Equipment Emissions Control Matrix	
Table 9.17: Count of CHE Diesel Engine Tier and On-road Engine	.77
Table 9.18: Distribution of CHE Energy Consumption by Engine Type, %	.77
Table 9.19: CHE Emissions Comparison	
Table 9.20: CHE Emissions Efficiency Metric Comparison, tons/10,000 TEUs	.78
Table 9.21: Throughput Comparison, million TEUs	.79
Table 9.22: Locomotive Emission Comparison	.79
Table 9.23: Locomotive Emissions Efficiency Comparison, tons/10,000 on-dock lifts	.80
Table 9.24: HDV Idling Time Comparison, hours	.81
Table 9.25: HDV Fleet Weighted Average Age, years	
Table 9.26: HDV Emissions Comparison	
Table 9.27: HDV Fleet Average Emissions, g/mile	.82
Table 9.28: HDV Emissions Efficiency Metrics Comparison, tons/10,000 TEUs	
Table 9.29: Reductions as Compared to 2014 and 2023 Emission Reduction Standard	.84

Table 9.30:	DPM Emissions Comparison by Source Category, tons	84
Table 9.31:	NO _x Emissions Comparison by Source Category, tons	85
Table 9.32:	SO _x Emissions Comparison by Source Category, tons	85

ACKNOWLEDGEMENTS

The following individuals and their respective companies and organizations assisted with providing the technical and operational information described in this report, or by facilitating the process to obtain this information. This annual endeavor would not have been possible without their assistance and support. We truly appreciate their time, effort, expertise, and cooperation. The Port of Los Angeles and Starcrest Consulting Group, LLC (Starcrest) would like to recognize and thank the following individuals:

Megan Shahnazarian, American Marine Christopher Allen, APM Terminals Susie Rodriguez, APM Terminals David Seep, Burlington Northern Santa Fe Greg Bombard, Catalina Express David Scott, Conolly Pacific Geoffrey Romano, Everport Terminal Services Rob Brown, Everport Terminal Services Matthew Dickinson, Fenix Marine Services Peter Ramos, Fenix Marine Services Javier Montano, Foss Maritime Mark Steifel, Harley Marine Grant Westmoreland, Pacific Tugboat Service Bobby Lucin, Pasha Stevedoring & Terminals Greg Peters, Pacific Harbor Line Willy Won, Ports America Allie Bond, SA Recycling Larry Reeves, SoCal Ship Services Cesar Nevares, TP Services Bridget Liccardo, Toll Group Mark Jensen, TraPac Erica Montefusco, Union Pacific Railroad Jose Flores, U.S. Water Taxi & Port Services Quentin Yang, West Basin Container Terminal Octavio Sanchez, World Cruise Center Mike Takayama, Yusen Terminals, Inc. Chris Rados, Yusen Terminals, Inc. H.J. Yoon, Yusen Terminals, Inc.

ACKNOWLEDGEMENTS (CONT'D)

The Port of Los Angeles and Starcrest would like to thank the following regulatory agency staff who contributed, commented, and coordinated the approach and reporting of the emissions inventory:

Cory Parmer, California Air Resources Board Russel Furey, California Air Resources Board Nancy Bui, California Air Resources Board Zorik Pirveysian, South Coast Air Quality Management District Francisco Dóñez, U.S. Environmental Protection Agency, Region 9

Starcrest would like to thank the following Port of Los Angeles staff members for assistance during the development of the emissions inventory:

Christine Batikian, Project Manager Amber Coluso Tim DeMoss Teresa G. Pisano Jacob Goldberg Lisa Wunder

Authors:	Archana Agrawal, Principal, Starcrest Guiselle Aldrete, Consultant, Starcrest Bruce Anderson, Principal, Starcrest Jill Morgan, Consultant, Starcrest Rose Muller, Consultant, Starcrest Joseph Ray, Principal, Starcrest					
Contributors:	Steve Ettinger, Principal, Starcrest					
Document Preparation: Cover:	Denise Anderson, Consultant, Starcrest Melissa Silva, Principal, Starcrest					
Third party review:	Randall Pasek, PhD					

Please note that there may be minor numerical inconsistencies between the various sections, tables, and figures of this report, due to rounding associated with emission estimates, percent contribution, and other calculated numbers. Estimates are calculated using more significant figures than presented in the various tables. A detailed Methodology Report is available on the Port's website.¹ This 2020Air Emission Inventory correlates with Version 2 of the Methodology Report.

EXECUTIVE SUMMARY

The Port of Los Angeles (Port or POLA) annual activity-based emissions inventories serve as the primary tool to track the Port's efforts to reduce air emissions from maritime industryrelated sources through implementation of measures identified in the San Pedro Bay Ports (SPBP) Clean Air Action Plan (CAAP) and regulations promulgated at the state and federal levels. Development of the annual air emissions estimates is coordinated with a technical working group (TWG) comprised of representatives from the Port, the Port of Long Beach (POLB), and the following air regulatory agencies: U.S. Environmental Protection Agency, Region 9 (EPA), California Air Resources Board (CARB), and the South Coast Air Quality Management District (South Coast AQMD). Through collaboration with the TWG, the ports seek the consensus of the air regulatory agencies regarding the methodologies used to develop the emissions estimates.

Summary of 2020 Activity and Emission Estimates

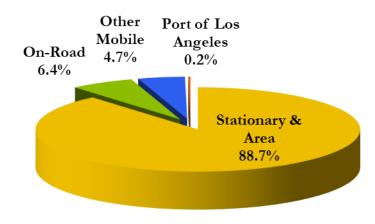
Table ES.1 presents the number of vessel calls and the container cargo throughput for calendar years 2005, 2019, and 2020. The twenty-foot equivalent unit (TEU) throughput decreased by 1% in 2020 as compared to the previous year. Containership arrivals decreased 2%, while the average TEU per call increased 1% as compared to the previous year. The average TEU per call in 2020 was 9,518 TEU per containership call.

Comparing 2020 to 2005, the TEU throughput increased 23%, containership arrivals decreased 35%, and the average TEU per call increased 88%. The decrease in containership calls with the significant increase in TEU per call handled shows the impact that larger containerships have made since 2005.

Year	TEUs	All Arrivals	Containership Arrivals	Average TEUs/Call
2020	9,213,396	1,533	968	9,518
2019	9,337,632	1,687	987	9,461
2005	7,484,625	2,516	1,479	5,061
Previous Year (2019-2020)	-1%	-9%	-2%	1%
CAAP Progress (2005-2020)	23%	-39%	-35%	88%

Table ES.1: Container Throughput and Vessel Arrival Call Comparison

¹www.portoflosangeles.org/environment/air-quality/air-emissions-inventory


Table ES.2 summarizes the 2020 total maritime industry-related mobile source emissions of air pollutants in the South Coast Air Basin (SoCAB) by the following categories: ocean-going vessels (OGVs), harbor craft, cargo handling equipment (CHE), locomotives, and heavy-duty vehicles (HDV).

Category	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	HC	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
Ocean-going vessels	52	48	34	2,867	96	273	127	212,248
Harbor craft	24	22	24	721	1	539	82	60,374
Cargo handling equipment	6	5	4	366	2	643	66	165,961
Locomotives	29	27	29	786	1	189	45	65,987
Heavy-duty vehicles	6	6	6	1,075	4	284	43	398,679
Total	117	108	97	5,814	104	1,928	363	903,250
								DB ID457

Table ES.2: 2020 Maritime Industry-related Emissions by Category

In order to put the maritime industry-related emissions into context, the following figures and tables compare the Port's contributions to the total emissions in the SoCAB by major emission source category. The 2020 SoCAB emissions are based on the 2016 Air Quality Management Plan (AQMP) Appendix III,² except for the SoCAB on-road emission estimates, which were updated to take into consideration EMFAC2021.³ Thus, the SoCAB total emissions do not exactly match 2016 AQMP Appendix III values. It should be noted that neither the SoCAB nor the Port's on-road heavy-duty diesel PM₁₀ and PM_{2.5} emissions include brake and tire wear emissions. Due to rounding, the percentages may not total 100%.

Figure ES.1: 2020 PM₁₀ Emissions in the South Coast Air Basin

²SCAQMD, Final 2016 AQMP Appendix III, Base & Future Year Emissions Inventories, March 2017. ³www.arb.ca.gov/emfac/

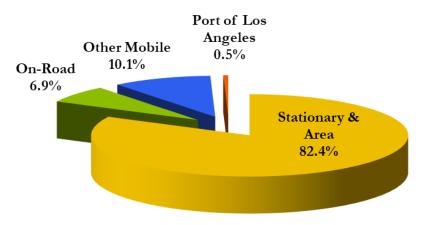


Figure ES.2: 2020 PM_{2.5} Emissions in the South Coast Air Basin

Figure ES.3: 2020 DPM Emissions in the South Coast Air Basin

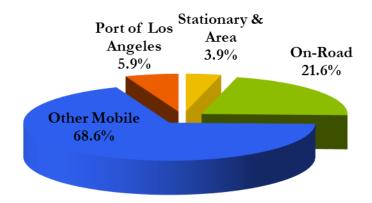
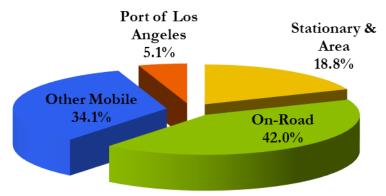
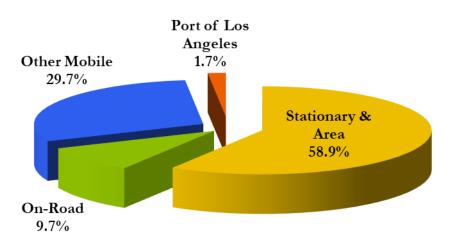




Figure ES.4: 2020 NO_x Emissions in the South Coast Air Basin

Figure ES.5: 2020 SO_x Emissions in the South Coast Air Basin

Comparison of 2020 Emissions to 2005 and 2019

Table ES.3 presents the total net change in emissions from all source categories in 2020 as compared to the previous year and to 2005, all using 2020 methodology. In order to maintain the consistency between the years compared, the previous years' emissions are recalculated whenever new estimation methodologies are introduced.

EI Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	CO	нс	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
2020	117	108	97	5,814	104	1,928	363	903,250
2019	119	109	98	5,963	104	2,073	373	904,887
2005	1,025	882	863	16,103	4,826	3,757	852	1,029,863
Previous Year (2019-2020)	-2%	-2%	-1%	-3%	-1%	-7%	-3%	-0.2%
CAAP Progress (2005-2020)	-89%	-88%	-89%	-64%	-98%	-49%	-57%	-12%

Table ES.3: Maritime Industry-related Emissions Comparison

Table ES.4 presents the 2020 and 2005 emissions comparison by source category. Despite a 23% increase in TEU throughput in 2020 as compared to 2005, emission reductions occurred in all pollutants for each source category, except for CO and CO₂e emissions for harbor craft and CO₂e emissions for CHE.

Table ES.4: Maritime Industry-related 2020-2005 Emissions Comparison by Source
Category

	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SO _x	CO	HC	CO_2e
	tons	tons	tons	tons	tons	tons	tons	tonnes
2020								
Ocean-going vessels	52	48	34	2,867	96	273	127	212,248
Harbor craft	24	22	24	721	1	539	82	60,374
Cargo handling equipment	6	5	4	366	2	643	66	165,961
Locomotives	29	27	29	786	1	189	45	65,987
Heavy-duty vehicles	6	6	6	1,075	4	284	43	398,679
Total	117	108	97	5,814	104	1,928	363	903,250
2005								
Ocean-going vessels	611	491	450	5,193	4,668	469	215	281,239
Harbor craft	55	51	55	1,318	6	364	87	56,925
Cargo handling equipment	54	50	53	1,573	9	822	92	134,621
Locomotives	57	53	57	1,712	98	237	89	82,201
Heavy-duty vehicles	248	238	248	6,307	45	1,865	368	474,877
Total	1,025	882	863	16,103	4,826	3,757	852	1,029,863
Change between 2005 and	2020 (per	cent)						
Ocean-going vessels	-91%	-90%	-93%	-45%	-98%	-42%	-41%	-25%
Harbor craft	-57%	-57%	-57%	-45%	-89%	48%	-6%	6%
Cargo handling equipment	-89%	-89%	-91%	-77%	-81%	-22%	-28%	23%
Locomotives	-48%	-49%	-48%	-54%	-99%	-20%	-50%	-20%
Heavy-duty vehicles	-98%	-98%	-98%	-83%	-92%	-85%	-88%	-16%
Total	-89%	-88%	-89%	-64%	-98%	-49%	-57%	-12%

Several factors contributed to lower emissions in 2020 compared to 2005. Major highlights by source category include:

- For OGVs, the primary reasons for emission reductions were fewer vessel calls, fuel switching, shore power, Port's Environmental Ship Index (ESI) Incentive Program, Vessel Speed Reduction (VSR) compliance, and newer vessels. In 2020, all engines for OGVs continued to use fuel with 0.1% sulfur or lower and the CARB At-Berth Regulation (i.e., shore power) was also in effect.
- For harbor craft, the emissions in 2020 were lower than 2005 emissions due to the repowers that occurred in the last few years as required by the CARB In-Use Harbor Craft Regulation or funding incentives, removal of older vessels due to attrition, and more efficient operations. For harbor craft, the increase in CO was related to an increase in Tier 2 and 3 engines that have higher CO emission rates compared to pre-Tier 2 and increase in activity. There are no CO₂ standards for engines or control measures for harbor craft, therefore, the CO₂e emissions increased along with increased activity.
- ➢ For CHE, implementation of CAAP measures and CARB's Cargo Handling Equipment Regulation, along with funding incentives, resulted in replacement of older equipment with cleaner units, retrofits, and repowers. The cleaner fleet, combined with efficiency in operations, led to lower emissions. The increased use of hybrid equipment, such as hybrid RTG cranes and straddle carriers, has also helped lower the emissions. The increase in CO₂e reflects the lack of lower emission standards or emission control measures and increased activity.
- ➢ For locomotives, the decreases in fleet-wide emissions from line haul locomotives were due to meeting the terms of the memorandum of understanding (MOU) with CARB, and the replacement of older switching locomotives with new low-emission and ultra-low emission switchers.
- ➢ For HDV, the 2012 implementation of the final phase of the Port's Clean Truck Program (CTP) resulted in significant turnover of older trucks to newer and cleaner trucks as compared to 2005. Also, as part of a Port Tariff amendment in 2018, all new trucks that register in the Ports' Drayage Truck Registry are required to be 2014 model year or newer.

Comparison of 2020 Emissions by Source Category to 2019

Calendar year 2020 proved to be a challenging year for the maritime industry. Several unique factors affected operations, activity, efficiency, and thus emissions in 2020 including: 1) the COVID-19 pandemic led cruise ships to stop passenger operations in mid-March; 2) CARB provided exemptions to the At-Berth Regulation for (a) excessive heat in August - September timeframe and for (b) COVID-19 emergency reasons in 2020 which resulted in fewer shore power calls for containerships; 3) the largest decline in world liquid fuels consumption⁴ in recent history resulted in less tankers calling the Port; and 4) increased anchorage calls for containerships and cruise ships, vessels that normally do not visit anchorage when calling the Port. The increase in anchorage calls for containerships was due to an increased demand in consumer goods in the second half of the year in addition to other factors. As for cruise ships, the increased anchorage calls were due to the lack of normal operations during the COVID-19 pandemic. Table ES.5 presents the 2020 and 2019 emissions comparison by source category.

	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SO _x	CO	HC	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
2020								
Ocean-going vessels	52	48	34	2,867	96	273	127	212,248
Harbor craft	24	22	24	721	1	539	82	60,374
Cargo handling equipment	6	5	4	366	2	643	66	165,961
Locomotives	29	27	29	786	1	189	45	65,987
Heavy-duty vehicles	6	6	6	1,075	4	284	43	398,679
Total	117	108	97	5,814	104	1,928	363	903,250
2019								
Ocean-going vessels	48	44	30	2,748	97	244	115	198,254
Harbor craft	26	24	26	755	1	543	83	60,884
Cargo handling equipment	7	6	5	410	2	805	83	177,264
Locomotives	32	29	32	882	1	205	49	71,364
Heavy-duty vehicles	6	6	6	1,168	4	277	43	397,121
Total	119	109	98	5,963	104	2,073	373	904,887
Change between 2019 and	2020 (per	cent)						
Ocean-going vessels	8%	8%	13%	4%	-1%	12%	10%	7%
Harbor craft	-8%	-8%	-8%	-4%	-1%	-1%	-2%	-1%
Cargo handling equipment	-14%	-14%	-10%	-11%	-5%	-20%	-20%	-6%
Locomotives	-7%	-7%	-7%	-11%	-8%	-8%	-7%	-8%
Heavy-duty vehicles	-7%	-7%	-7%	-8%	0%	3%	0%	0%
Total	-2%	-2%	-1%	-3%	-1%	-7%	-3%	-0.2%

Table ES.5: Maritime Industry-related 2020-2019 Emissions Comparison by Source Category

⁴U.S. Energy Information Administration, *www.eia.gov/outlooks/steo/report/global_oil.php*

Section 9 provides more information about the energy consumption and newer technology comparison by source category that contributed to the emission changes. Major highlights by source category include:

- For OGVs, the increase in emissions in 2020 compared to 2019 was primarily due to impacts resulting from the COVID-19 pandemic including more vessels visiting anchorages and more time spent at berth for majority of vessel calls. Despite the lower calls, the anchorage emissions were higher in 2020 due to increased number of containerships and cruise ships at anchorage.
- For harbor craft, activity was lower in 2020 for various vessel types, such as excursion vessels and ferries, due to COVID-19 pandemic and this coupled with increased usage of newer and cleaner engines resulted in lower emissions for 2020 as compared to the previous year. For the first time, a harbor craft with Tier 4 propulsion engines was included in the inventory.
- ➢ For CHE, the lower emissions are due to lower activity, less equipment, and increased usage of Tier 4 final CHE, hybrid RTG cranes, and hybrid straddle carriers.
- ➢ For locomotives, the emissions decreased due to a reduction in on-dock and Intermodal Container Transfer Facility (ICTF) rail transport and a decrease in the fleet composite NO_x emission factor resulting from fleet mix improvement.
- For heavy-duty vehicles, the emissions decreased due to continued fleet turnover and lower container throughput in 2020.

Comparison of Emissions Efficiency

Table ES.6 summarizes the annualized emissions efficiencies for all five source categories. The overall emissions efficiency in 2020 improved for all pollutants as compared to 2005 and the previous year, except for CO_2e for the previous year. In Table ES.6, a positive percentage means an increase in emissions efficiency.

EI Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	HC	CO ₂ e
2020	0.126	0.117	0.105	6.31	0.11	2.09	0.39	980
2019	0.127	0.117	0.105	6.39	0.11	2.22	0.40	969
2005	1.370	1.178	1.153	21.52	6.45	5.02	1.14	1,376
Previous Year (2019-2020) CAAP Progress (2005-2020)	1% 91%	0% 90%	0% 91%	1% 71%	0% 98%	6% 58%	3% 66%	-1% 29%

Table ES.6: Emissions Efficiency Metric Comparison, tons/10,000 TEUs

Figure ES.6 shows the emissions efficiency trend for NO_x , DPM, SO_x and CO_2e with million TEU bars. For the figure, a negative percentage means an increase in emissions efficiency.

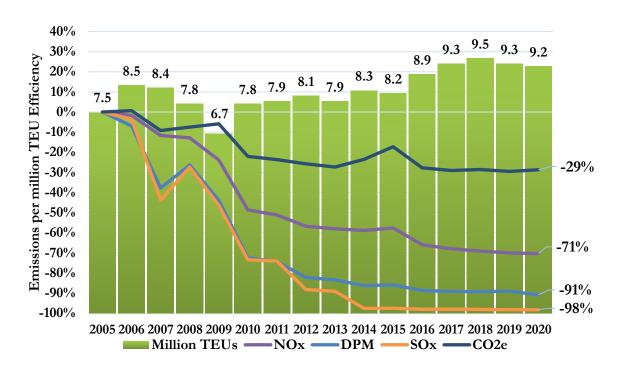


Figure ES.6: Emissions Efficiency Trend

CAAP Standards and Emission Reduction Progress

One of the main purposes of the annual inventories is to provide a progress update on achieving the San Pedro Bay CAAP Standards. These standards consist of the following emission reduction goals, using the 2005 published inventories as a baseline.

- Emission Reduction Standard:
 - $\circ~$ By 2014, reduce emissions by 72% for DPM, 22% for NOx, and 93% for SOx
 - $\circ~$ By 2023, reduce emissions by 77% for DPM, 59% for NOx, and 93% for SOx
- ▶ Health Risk Reduction Standard: 85% reduction by 2020

ES-9

Due to the many emission reduction measures undertaken by the Port, as well as statewide and federal regulations and standards, the 2014 and 2023 emission reduction standards were not only met, but exceeded in 2020 for DPM, NO_x and SO_x . Table ES.7 summarizes DPM, NO_x and SO_x percent reductions as compared to the 2014 and 2023 emission reduction standards.

Pollutant	2020 Actual Reductions	2014 Emission Reduction Standard	2023 Emission Reduction Standard
DPM	-89%	72%	77%
NO _x	-64%	22%	59%
SO _x	-98%	93%	93%

The emission reduction standards are represented as a percentage reduction of emissions from 2005 levels and are tied to the regional SoCAB attainment dates for the federal $PM_{2.5}$ and ozone ambient air quality standards in the 2007 AQMP. This emissions inventory (EI) is used as a tool to track progress in meeting the emission reduction standards.

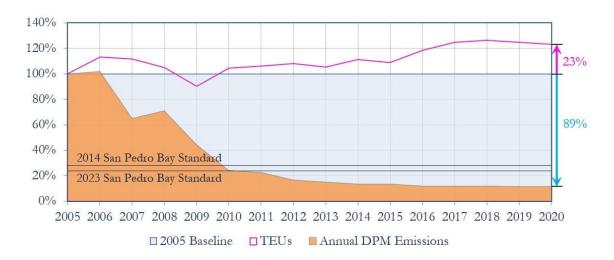
Figures ES.7 through ES.9 present the 2005 baseline emissions and the year-to-year percent change in emissions with respect to the 2005 baseline emissions. The 2014 and 2023 standards are also provided as a snapshot of progress to-date towards meeting those standards. The pink line in the figures represents the percentage of TEU throughput as compared to 2005 TEU throughput. These figures provide context to the relative correlation between cargo throughput and emissions.

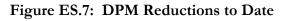
As summarized for Table ES.4 and Section 2 (Regulatory and CAAP Measures), the major factors contributing to the lower emissions over the years for the various pollutants include:

Fuel Switching for all source categories, but mainly OGV which originally used residual diesel fuel with an average 2.7% sulfur content. OGV switched to marine gas oil (MGO) fuel with 1% sulfur in 2012 and 0.1% sulfur in 2015. For harbor craft, CHE, trucks, and locomotives, ULSD has been used since 2006 and 2007 timeframe.

Various OGV programs and regulations that further reduced emissions are the use of at-berth shore power, VSR and ESI Incentive program that occurred in a phased approach.

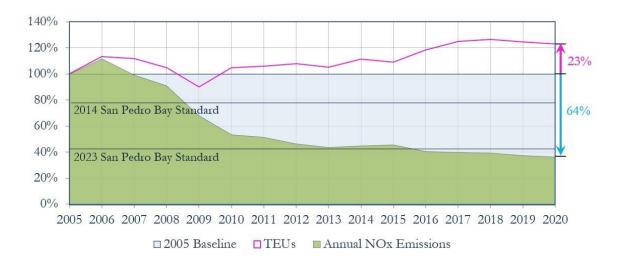
CARB Harbor Craft Regulation and funding incentives led to vessel repowers which lowered emissions for harbor craft. There was also vessel attrition over the course of the past 15 years.

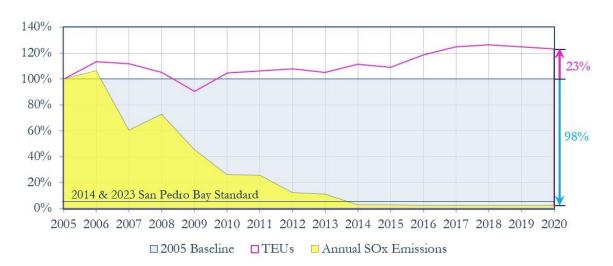

Cleaner CHE fleet over the years due to CAAP measures and CARB's CHE Regulation which occurred mainly between 2007 and 2015. CARB's LSI Regulation impacted the propane forklifts between 2007 and 2010.



For locomotives, EPA regulations that started in 2010 and phased in through 2015, in addition to CARB's statewide MOU and SPBP CAAP PHL Rail Switch Engine Modernization measure in 2010, decreased the locomotive emissions between 2010 to present.

For HDV, emission reductions have occurred in a phased approach starting with EPA/CARB emission standards for new 2007+ trucks in 2007 and 2010 and CARB's Drayage Truck Regulation which started in 2009 in a phased approach. The SPBP CAAP phased measures started in 2008 including the 2012 implementation of the final phase of the Port's Clean Truck Program (CTP) which stipulated trucks operating at SPBP must have 2007 or newer engines. Also, as part of a Port Tariff amendment in 2018, all new trucks that register in the Ports' Drayage Truck Registry are required to be 2014 model year or newer.


Figure ES.7 shows that the Port surpassed the 2023 DPM emission reduction standard (77%) with an 89% emission reduction in 2020. In 2020, the 0.1% sulfur fuel use requirement for OGVs from the IMO North American ECA was in effect. Additionally, reductions in DPM were associated with an increase in the number of ships using shore power, due to the CARB At-Berth Regulation and high vessel compliance with the Port's Vessel Speed Reduction program. The TEU throughput was 23% higher in 2020 as compared to 2005.



As illustrated in Figure ES.8, the Port surpassed the 2023 NO_x mass emission reduction standard (59%) in 2020 with a 64% reduction. The TEU throughput was 23% higher in 2020 as compared to 2005. Contributions to NO_x emission reductions in 2020, participation in the VSR and ESI programs, IMO NO_x Emission Standard for Marine Engines and the increase in the number of ships using shore power.

Figure ES.8: NO_x Reductions to Date

The Port surpassed the 2023 SO_x mass emission reduction standard (93%) with a 98% reduction in 2020. In 2020, the 0.1% sulfur fuel use requirement for OGVs from the IMO North American ECA and the increase in the number of ships using at-berth shore power, due to the CARB At-Berth Regulation, contributed to the reduction in SO_x . The TEU throughput was 23% higher in 2020 as compared to 2005.

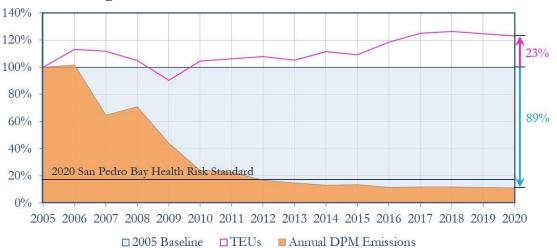


Figure ES.9: SO_x Reductions to Date

Health Risk Reduction Progress

Progress to-date on health risk reduction was determined by comparing the change in DPM mass emissions to the 2005 baseline. Figure ES.10 presents the progress of achieving the standard to date. In 2020, with an 89% reduction, the Port exceeded the 2020 Health Risk Reduction Standard (85%). The TEU throughput was 23% higher in 2020 as compared to 2005.

SECTION 1 INTRODUCTION

The Port of Los Angeles (Port or POLA) 2020 Inventory of Air Emissions study presents maritime industry-related emission estimates based on 2020 activity levels. The report also includes a comparison of the estimated 2020 emissions with the 2005 baseline year and the previous year emission estimates to track the Port's emission reduction progress under the San Pedro Bay Ports (SPBP) Clean Air Action Plan (CAAP). As in previous inventories, the following five source categories were included:

- Ocean-going vessels (OGV)
- ➢ Harbor craft
- Cargo handling equipment (CHE)
- Locomotives
- ➢ Heavy-duty vehicles (HDV)

Exhaust emissions of the following pollutants that can cause regional and local air quality impacts were estimated:

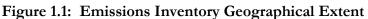
- Particulate matter (PM) (10-micron, 2.5-micron)
- Diesel particulate matter (DPM)
- Oxides of nitrogen (NO_x)
- Oxides of sulfur (SO_x)
- > Hydrocarbons (HC)
- Carbon monoxide (CO)

This study also includes estimates of the greenhouse gases (GHGs) carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) emitted from maritime industry-related tenant operational mobile sources. To normalize the three GHG values into a single number representing CO₂ equivalents (CO₂e) the GHG emission estimates were multiplied by the following values and summed.⁵

- \blacktriangleright CO₂ 1
- ➢ CH₄ 25
- ▶ N₂O 298

For presentation purposes in the report, only CO_2e values were reported because they include all three GHGs in an equivalent measure to CO_2 , which makes up by far the greatest mass of GHG emissions from the source categories included in this inventory. The greenhouse gas emissions are presented in metric tons (tonnes), while the criteria pollutant emissions are shown in tons.

⁵EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019, EPA 430-R-21-005, published 2021.


Calendar year 2020 proved to be a challenging year for the maritime industry. Several unique factors, particularly the COVID-19 pandemic, affected operations, activity, efficiency, and thus emissions at the Port of Los Angeles in 2020. This report, primarily Section 9, includes brief discussion on impacts related to the COVID-19 pandemic. For more in-depth analysis of COVID-19 impacts, see the 2020 Port of Los Angeles Emissions Inventory Highlights⁶ document.

Geographical Domain

The geographical extent of the inventory includes emissions from the aforementioned maritime industry-related emission sources operating within the harbor district. For commercial marine vessels, the domain lies within the harbor and up to the study area boundary comprised of an over-water area bounded in the north by the southern Ventura County line at the coast and in the south with the southern Orange County line at the coast.

For rail locomotives and on-road trucks, the domain extends from the Port to the cargo's first point of rest within the South Coast Air Basin (SoCAB) or up to the SoCAB boundary, whichever comes first. Figure 1.1 shows the geographical extent of this inventory, and other overlapping regulatory boundaries.

⁶ www.portoflosangeles.org/environment/air-quality/air-emissions-inventory

Figure 1.2 shows the land area of active Port terminals in 2020. The geographical scope for cargo handling equipment is the terminals and facilities on which they operate.

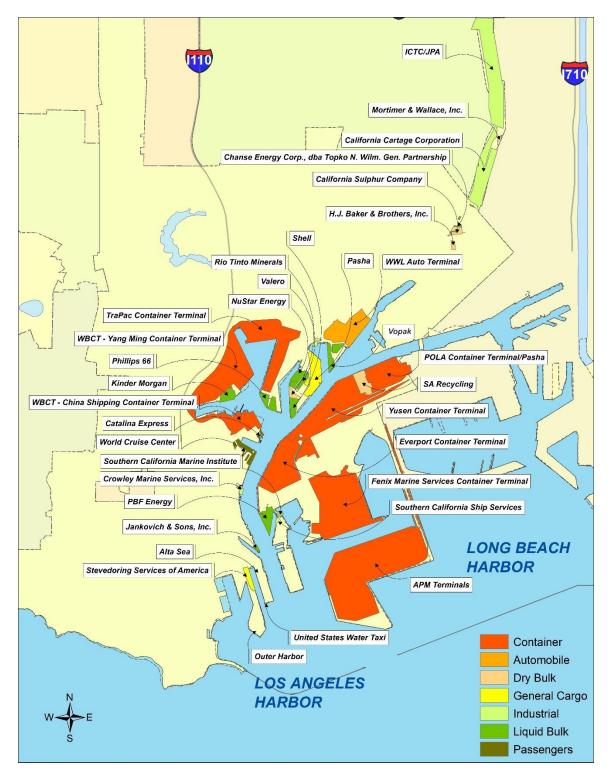


Figure 1.2: Port Boundary Area of Study

SECTION 2 REGULATORY AND CAAP MEASURES

This section summarizes the regulatory initiatives and Port measures related to port activity. Almost all maritime industry-related emissions come from five emission source categories: OGVs, harbor craft, CHE, locomotives, and HDVs. The responsibility for the control of emissions from the majority of these sources falls under the jurisdiction of local (South Coast AQMD), state (California Air Resources Board [CARB]), or federal (U.S. Environmental Protection Agency [EPA]) agencies.

Clean Air Action Plan (CAAP) Strategies

At the end of 2017, the ports of Los Angeles and Long Beach released the final CAAP 2017 Update.⁷ The CAAP 2017 Update contains new strategies for all sources that move cargo through the ports, including the deployment of zero and near-zero emission trucks and cargo handling equipment and the expansion of programs that reduce ship emissions. The focus of the Update is to work in collaboration with industry stakeholders, regulatory agencies, local communities, and environmental groups for the next 20 years to reduce emissions and combat climate change. The CAAP 2017 strategies that will affect future emission reductions for both Ports include:

- Advancing the Clean Trucks Program to phase out older trucks and transition to nearzero emissions in the early years and zero-emissions by 2035. Under this program, on March 2020, the Boards of Harbor Commissioners of the City of Los Angeles and the City of Long Beach approved a resolution to collect a Clean Truck Fund Rate of \$10 per loaded TEU moved by trucks in and out of port terminals. Zero-emission trucks will be exempt from the rate throughout the duration of the program. Other exemptions are under consideration. Currently, Port staff are working on strategies to implement the Clean Truck Fund rates and develop priorities and guidance for distributing funds to incentivize the transition to near-zero and zero-emission trucks.
- Requiring terminal operators to purchase zero-emissions equipment, if feasible, or near-zero or cleanest technology available when procuring new equipment.
- Further reducing emissions from ships at-berth, and transitioning the oldest, most polluting ships out of the San Pedro Bay fleet.
- Accelerating the deployment of cleaner engines and operational strategies to reduce harbor craft emissions.
- Expanding the use of on-dock rail to shift more cargo leaving the port to go by rail.

⁷www.cleanairactionplan.org/ documents/ final-2017-clean-air-action-plan-update.pdf/

San Pedro Bay Emissions Reduction Standards

The 2017 CAAP Update did not alter the 2010 CAAP Update goals that set health risk and emission reduction standards but did incorporate two new emission targets to reduce GHGs from port-related sources as described below.

Health Risk Reduction Standard

To complement the CARB's Air Pollution Reduction Programs, including the Diesel Risk Reduction Plan, the Ports developed the following standard for reducing overall maritime industry-related health risk impacts, relative to 2005 emission levels:

By 2020, reduce the population-weighted cancer risk of maritime industry-related DPM emissions by 85% in highly impacted communities located proximate to Port sources and throughout the residential areas in the Port region.

Emission Reduction Standard

The Ports developed the following standards for reducing air pollutant emissions from maritime industry-related activities, relative to 2005 emission levels:

- ➢ By 2014, reduce emissions of NO_x by 22%, SO_x by 93%, and DPM by 72% to support attainment of the National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM_{2.5}) standards.
- ➢ By 2023, reduce emissions of NO_x by 59%, SO_x by 93%, and DPM by 77% to support attainment of the federal 8-hour ozone standards and NAAQS fine particulate matter (PM_{2.5}) standards.

2017 CAAP Update New Emission Reduction Targets

- Reduce GHGs from port-related sources to 40% below 1990 levels by 2030
- ▶ Reduce GHGs from port-related sources to 80% below 1990 levels by 2050

Regulatory Programs by Source Category

The following section presents a list of currently adopted regulatory programs and CAAP measures by each major source category that influenced the progress towards the SPBP emission reduction targets from the maritime industry in and around the Port.

Agency	Regulation/Standard/Policy	Targeted Pollutants	Years Effective	Impact
International Maritime Organization (IMO)	NO _x Emission Standard for Marine Engines www.imo.org/en/OurWork/Enviro nment/Pages/Nitrogen-oxides- (NOx)-%E2%80%93-Regulation- 13.aspx	NO _x	2011 – Tier II 2016 – Tier III for ECA only	Auxiliary and propulsion engines over 130 kW output power on newly built vessels
IMO	Emissions Control Area, Low Sulfur Fuel Requirements for Marine Engines www.imo.org/ en/OurWork/Enviro nment/Pages/Sulphur-oxides- (SOx)-%E2%80%93-Regulation- 14.aspx	DPM, PM, and SO _x	2012 ECA – 1% Sulfur 2015 ECA – 0.1% Sulfur	Significantly reduce emissions due to low sulfur content in fuel by creating Emissions Control Area (ECA)
IMO	Initial IMO Strategy on reduction of GHG emissions from ships – Resolution MEPC.304(72) www.unfccc.int/sites/default/files/res ource/250_IMO%20submission_T alanoa%20Dialogue_April%20201 8.pdf	GHG	2050 - 50%	Initial IMO Strategy on reduction of GHG emissions from ships by 50% in 2050 from 2008 level. Goal is to phase out GHG
IMO	Energy Efficiency Design Index (EEDI) for International Shipping www.imo.org/en/OurWork/Enviro nment/Pages/Technical-and- Operational-Measures.aspx	CO2 and other pollutants	2013	Increases the design efficiencies of ships relating to energy and emissions

Table 2.1: OGV Emission Regulations, Standards and Policies

Agency	Regulation/Standard/Policy	Targeted Pollutants	Years Effective	Impact
ЕРА	Emission Standards for Marine Diesel Engines above 30 Liters per Cylinder (Category 3 Engines); Aligns with IMO Annex VI marine engine NO _x standards and low sulfur requirement <i>www.epa.gov/otaq/oceanvessels.htm</i> #en gine-fuel	DPM, PM, NO _x , and SO _x	2011 – Tier 2 2016 – Tier 3	Auxiliary and propulsion category 3 engines on US flagged new built vessels and requires use of low sulfur fuel
CARB	Regulation to Reduce Emissions from Diesel Auxiliary Engines on Ocean-Going Vessels While At- Berth at a California Port www.arb.ca.gov/regact/2007/shorepwr 07/shorepwr07.htm and www.arb.ca.gov/ports/shorepower/form s/regulatoryadvisory/regulatoryadvisory 12232013.pdf	DPM, PM, NO _x , SO _x , CO ₂	2014 - 50% 2017 - 70% 2020 - 80%	Shore power (or equivalent) requirements. Vessel operators based on fleet percentage visiting the ports.
CARB	Ocean-going Ship Onboard Incineration www.arb.ca.gov/ports/shipincin/shipin cin.htm	DPM, PM, and HC	2007	All vessels cannot incinerate within 3 nm of the California coast
СААР	CAAP Measure – OGV 1 Vessel Speed Reduction (VSR) Program www.cleanairactionplan.org/strategies/s hips/	All	2008	Vessel operators within 20 nm and 40 nm of Point Fermin
СААР	CAAP Measure – OGV 2 Reduction of At-Berth OGV Emissions www.portoflosangeles.org/environment/o gv.asp	All	2014	Vessel operators and terminals
СААР	CAAP Measure – OGV 5 and 6 Cleaner OGV Engines and OGV Engine Emissions Reduction Technology Improvements and Environmental Ship Index (ESI) Program www.cleanairactionplan.org/strategies/s hips/	DPM, PM, and NO _x	2012	Vessel operators who choose to participate in ESI and/or technology demonstrations.

Table 2.1: OGV Emission Regulations, Standards and Policies (cont'd)

Agency	Regulation/Standard/Policy	Targeted Pollutants	Years Effective	Impact
EPA	Emission Standards for Harbor Craft Engines www.epa.gov/regulations-emissions- vehicles-and-engines/domestic- regulations-emissions-marine- compression	All	2009 – Tier 3 2014 – Tier 4 for 800 hp or greater	Commercial marine diesel engines with displacement less than 30 liters per cylinder
CARB	Low Sulfur Fuel Requirement for Harbor Craft www.arb.ca.gov/regact/carblohc/carb lohc.htm	DPM, PM, NO _x , and SO _x	2006 – 15 ppm in SCAQMD area	Use of low sulfur diesel fuel in commercial harbor craft operating in SCAQMD
CARB	Regulation to Reduce Emissions from Diesel Engines on Commercial Harbor Craft www.arb.ca.gov/regact/2010/chc10 / chc10.htm	DPM, PM, and NO _x	2009 to 2020 - schedule varies depending on engine model year	Most harbor craft with home port in SCAQMD must meet more stringent emissions limits according to a compliance schedule
СААР	CAAP Measure – HC 1 Performance Standards for Harbor Craft www.portoflosangeles.org/environment / air-quality/san-pedro-bay-ports- clean-air-action-plan	All	Varies	Modernization of harbor craft operating at POLA upon lease renewal

Table 2.2: Harbor Craft Emission Regulations, Standards and Policies

Agency	Regulation/Standard/Policy	Targeted Pollutants	Years Effective	Impact
ЕРА	Emission Standards for Non- Road Diesel Powered Equipment www.epa.gov/otaq/standards/nonroa d/nonroadci.htm	All	2008 through 2015	All non-road equipment
CARB	Cargo Handling Equipment Regulation www.arb.ca.gov/regact/2011/cargo1 1/cargo11.htm	All	2007 through 2017; Opacity test compliance starting in 2016	All Cargo handling equipment
CARB	New Emission Standards, Test Procedures, for Large Spark Ignition (LSI) Engine Forklifts and Other Industrial Equipment www.arb.ca.gov/regact/2008/lsi200 8/lsi2008.htm	All	2007 – first phase 2010 – second phase	Emission standards for large spark-ignition engines with 25 hp or greater
CARB	Fleet Requirements for Large Spark Ignition Engines www.arb.ca.gov/regact/2010/offroad lsi10/lsifinalreg.pdf	All	2009 through 2013	More stringent emissions requirements for fleets of large spark-ignition engines equipment
СААР	CAAP Measure – CHE1 Performance Standards for CHE www.portoflosangeles.org/environment / air-quality/san-pedro-bay-ports- clean-air-action-plan	All	2007 through 2014	Turnover to Tier 4 cargo handling equipment per lease renewal agreement

Table 2.3: Cargo Handling Equipment Emission Regulations, Standards and Policies

Agency	Regulation/Standard/Policy	Targeted Pollutants	Years Effective	Impact
EPA	Emission Standards for New and Remanufactured Locomotives and Locomotive Engines- Latest Regulation www.epa.gov/otaq/standards/nonroa d/locomotives.htm	DPM and NO _x	2011 through 2013 – Tier 3 2015 – Tier 4	All new and remanufactured locomotive engines
ЕРА	Control of Emissions of Air Pollution from Nonroad Diesel Engines and Fuel www.epa.gov/otaq/fuels/dieselfuels/r egulations.htm	SO _x and PM	2010	All locomotive engines
CARB	Low Sulfur Fuel Requirement for Intrastate Locomotives www.arb.ca.gov/msprog/offroad/loco /loco.htm#intrastate	SO _x , NO _{x,} and PM	2007	Intrastate locomotives, mainly switchers
CARB	Statewide 1998 and 2005 Memorandum of Understanding (MOUs) www.arb.ca.gov/msprog/offroad/loco /loco.htm#intrastate	NO _x	2010	Union Pacific and BNSF locomotives
СААР	CAAP Measure – RL1 Pacific Harbor Line (PHL) Rail Switch Engine Modernization www.portoflosangeles.org/ environment / air-quality/ san-pedro-bay-ports- clean-air-action-plan	РМ	2010	Pacific Harbor Line switcher engines
СААР	CAAP Measure – RL2 Class 1 Line-haul and Switcher Fleet Modernization wnw.portoflosangeles.org/environment / air-quality/san-pedro-bay-ports- clean-air-action-plan	All	2023 – Tier 3	Class 1 locomotives at ports
СААР	CAAP Measure – RL3 New and Redeveloped Near- Dock Rail Yards www.portoflosangeles.org/environment / air-quality/san-pedro-bay-ports- clean-air-action-plan	All	2020 – Tier 4	New near-dock rail yards

Table 2.4: Locomotives Emission Regulations, Standards and Policies

Agency	Regulation/Standard/Policy	Targeted Pollutants	Years Effective	Impact
CARB/ EPA	Emission Standards for New 2007+ On-Road Heavy-Duty Vehicles www.arb.ca.gov/msprog/onroadhd/red ucstd.htm	NO _x and PM	2007 2010	All new on-road diesel heavy-duty vehicles
CARB	Heavy-Duty Vehicle On-Board Diagnostics (OBD and OBDII) Requirement ww2.arb.ca.gov/our- work/programs/obd	NO _x and PM	2010 +	All new on-road heavy-duty vehicles
CARB	ULSD Fuel Requirement www.arb.ca.gov/regact/ulsd2003/ulsd 2003.htm	All	2006 - ULSD	All on-road heavy- duty vehicles
CARB	Drayage Truck and Bus Regulation (amended in 2011 and 2014) www.arb.ca.gov/msprog/onroad/porttr uck/drayagevtruckbus.pdf	All	Phase-in started in 2009	All drayage trucks operating at California ports
CARB	Low NO _x Software Upgrade Program 2007 www.arb.ca.gov/msprog/hdsoftware/hd software.htm	NO _x	Starting 2005	1993 to 1998 on- road heavy-duty vehicles that operate in California
CARB	Heavy-Duty Vehicle Greenhouse Gas Emission Reduction Regulation ww2.arb.ca.gov/our- work/programs/ghg-std-md-hd-eng-veh	CO ₂	Phase 1 started in 2012	Heavy-duty tractors that pull 53-foot+ trailers in California
CARB	Assembly Bill 32 requiring GHG reductions targets and Governor's Executive Order B – 30-15 www.arb.ca.gov/cc/ab32/ab32.htm	$\rm CO_2$	GHG emissions reduction goals in 2020	All operations in California
СААР	CAAP Measure – HDV1 Performance Standards for On- Road Heavy-Duty Vehicles; Clean Truck Program www.portoflosangeles.org/environment/ air-quality/san-pedro-bay-ports-clean- air-action-plan	All	Phase-in started in 2008	Requires on-road heavy-duty vehicles that operate at POLA to have 2007 or newer Model Year (MY) engines by 2012

Table 2.5: Heavy-Duty Vehicles Emission Regulations, Standards and Policies

SECTION 3 OCEAN-GOING VESSELS

Source Description

Based on activity data obtained from the Marine Exchange of Southern California (MarEx), there was a total of 1,533 ocean-going vessels (OGVs, ships, or vessels) activities (arrivals not including shifts) to the Port in 2020. These vessels were grouped by the type of cargo they are designed to carry and fall into one of the following vessel categories or types:

- > Auto carrier
- ➢ Bulk carrier
- ➢ Containership
- ➢ Cruise vessel
- ➢ General cargo

- Miscellaneous vessel
- Ocean-going tugboat
- Refrigerated vessel (Reefer)
- ► RoRo
- ➤ Tanker

From an emissions contribution perspective, the three predominant vessel types are: containerships, tankers, and cruise ships, with containerships being the most significant vessel category. Emission sources on all vessel categories include main engines (propulsion), auxiliary engines (generators), and auxiliary boilers (boilers).

Table 3.1 presents the numbers of arrivals, departures, and shifts associated with vessels at the Port in 2020.

Vessel Type	Arrival	Departure	Shift	Total
Auto Carrier	74	73	9	156
Bulk	64	65	50	179
Container - 1000	2	3	7	12
Container - 2000	144	145	43	332
Container - 3000	14	13	13	40
Container - 4000	117	113	29	259
Container - 5000	61	59	37	157
Container - 6000	109	105	29	243
Container - 7000	38	38	10	86
Container - 8000	227	217	66	510
Container - 9000	98	91	23	212
Container - 10000	41	34	16	91
Container - 11000	18	17	4	39
Container - 12000	5	5	2	12
Container - 13000	56	57	14	127
Container - 14000	18	16	4	38
Container - 15000	9	9	4	22
Container - 16000	4	3	3	10
Container - 17000	1	1	0	2
Container - 19000	2	2	1	5
Container - 23000	4	2	0	6
Cruise	90	90	32	212
General Cargo	28	24	37	89
Ocean Tugboat (ATB)	102	104	151	357
Miscellaneous	7	7	2	16
Reefer	16	16	24	56
RoRo	5	5	0	10
Tanker - Chemical	135	142	232	509
Tanker - Handysize	22	21	27	70
Tanker - Panamax	22	24	66	112
Total	1,533	1,501	935	3,969 DB ID69

Table 3.1: 2020 Total OGV Activities

Geographical Domain

The geographical domain or overwater boundary for OGVs includes the berths and waterways in the Port proper and all vessel movements within the 40-nautical mile (nm) arc from Point Fermin as shown previously in Figure 1.1. The northern boundary is the Ventura County line, and the southern boundary is the Orange County line. It should be noted that the overwater boundary extends further off the coast to incorporate the South Coast AQMD modeling domain, although most of the vessel movements occur within the 40-nm arc.

Data and Information Acquisition

Similar to previous inventories, various sources of data and operational knowledge about the Port's marine activities were used to compile the data necessary to estimate emissions from OGVs:

- Marine Exchange of Southern California
- Vessel Speed Reduction Program speed data
- Los Angeles Pilot Service
- IHS Markit Maritime data⁸
- Vessel Boarding Program (VBP) data
- Environmental Ship Index (ESI) fuel and engine data⁹
- > Port Wharfinger data, including tanker load and discharge activity data
- Port and terminal shore power activity data, including usage of alternative at-berth emission control technologies (AMECS and METS-1)

During the 2019 EI process, uncertainty regarding the vessel maximum speed values provided by IHS Markit Maritime data were identified. For the 2020 EI, to the extent it was available, maximum speed from IHS Markit Maritime data was used and if not available, service speed (most populated speed field) was used.

The alternative technologies used in 2020 include the Maritime Emissions Treatment System (METS) and Advanced Maritime Emission Control System (AMECS). Note that the AMECS was unable to be utilized in the fourth quarter of 2020 due to CARB revoking certification.

Operational Profiles

Auxiliary engines provide the electricity for equipment used in the operation of oceangoing vessels. Actual VBP data, if available, were used to estimate emissions from auxiliary engines. For berth hotelling emissions, the actual shore power records were used if the vessel connected to shore power. If actual VBP data or shore power data is not available, default values were used. Table 3.2 presents the auxiliary engine load defaults by vessel type and by mode, used in the emissions calculations. These default values were produced by calculating the call-weighted average of all VBP data points collected from 2005-2020 for each vessel type for the auxiliary engines. There was no engine load data collected for a new vessel type (23,000 TEU)

⁸IHS, www.ihsmarkit.com/products/maritime-world-ship-register.html

⁹www.sustainableworldports.org/environmental-ship-index-esi/

containership). The at-berth engine load default was based on available shore power kWh usage and the defaults for the other modes were estimated by interpolating from the closest known data point, in this case, the 19,000 TEU containership.

Vessel Type	Transit	Maneuvering	Berth	Anchorage
			Hotelling	Hotelling
Auto Carrier	527	839	803	494
Bulk	222	235	544	250
Container - 1000	913	1,106	571	1,000
Container - 2000	1,287	1,887	694	528
Container - 3000	920	1,673	758	559
Container - 4000	1,419	2,526	1,073	1,056
Container - 5000	1,594	2,504	1,047	900
Container - 6000	1,558	2,477	1,083	1,266
Container - 7000	1,580	2,530	1,024	826
Container - 8000	1,635	2,519	1,161	1,052
Container - 9000	1,634	3,335	1,071	1,174
Container - 10000	1,634	2,003	1,130	1,181
Container - 11000	1,661	2,431	900	980
Container - 12000	2,048	2,634	1,786	1,724
Container - 13000	1,589	2,136	1,346	1,319
Container - 14000	1,553	2,042	1,152	1,155
Container - 15000	1,850	2,200	850	1,100
Container - 16000	1,793	2,179	1,150	1,271
Container - 17000	1,735	2,157	1,450	1,441
Container - 19000	1,950	2,275	1,350	1,475
Container - 23000	2,048	2,389	1,418	1,549
General Cargo	489	1,273	826	180
Ocean Tugboat (ATB)	79	208	102	79
Miscellaneous	284	379	230	233
Reefer	1,416	1,231	1,067	1,427
RoRo	434	1,301	751	434
Tanker - Chemical	498	598	1,209	415
Tanker - Handysize	659	682	1,055	560
Tanker - Panamax	480	549	882	386

Table 3.2: Average Auxiliary Engine Load Defaults, kW

Table 3.3 lists the auxiliary engine defaults for all cruise ships (diesel electric and non-diesel electric) that visited the Port in 2020. These auxiliary engine default values were produced by calculating the call-weighted average of all VBP data by mode collected from 2005-2020 for

each cruise vessel size group. Default loads for cruise ship anchorage hotelling were added for this inventory year to account for shifting of some cruise activities to anchorage as a result of the COVID-19 pandemic. Cruise ship anchorage activities were non-existent in previous years. Only anchorage loads that were collected under the VBP were included in the default table since the anchorage loads are not commonly used.

Passenger			Berth	Anchorage
Range	Transit	Maneuvering	Hotelling	Hotelling
<1,500	3,994	5,268	3,069	2,289
1,500 < 2,000	7,000	9,000	5,613	na
2,000 < 2,500	11,000	11,350	6,900	na
2,500 < 3,000	9,781	8,309	6,089	5,916
3,000 < 3,500	8,292	10,369	8,292	7,475
3,500 < 4,000	9,945	11,411	10,445	10,191
4,000 < 4,500	12,500	14,000	12,000	9,900
4,500 < 5,000	13,000	14,500	13,000	na

Table 3.3: Cruise Ship Average Auxiliary Engine Load Defaults, kW

On March 13, 2020, the cruise industry voluntarily suspended cruise ship operations due to the COVID-19 pandemic. This action came just one day before the U.S. Department of Health and Human Services Centers for Disease Control and Prevention (CDC) officially issued a no-sail order on March 14, 2020. Under the no-sail order, cruise ship operators were required to suspend passenger operations. This resulted in a significantly reduced auxiliary engine load requirement due to the reduction in onboard hotel services. Even without passengers on board, transitory cruise vessels were active in the area during this time and periodically berthed at the cruise terminal to receive food, supplies, and/or services. Additionally, cruise ships were participating in activities required by the CDC to develop plans to prevent, mitigate, and respond to the spread of COVID-19 and later, as part of the CDC's Conditional Sailing Order framework, were preparing for the eventual return to passenger operations.

Many cruise lines provided information on vessel operations and auxiliary loads during this time. Those values were used to calculate emissions from March 13 to December 31, 2020. Where information was not available directly from the cruise lines, the existing methodology was followed to calculate emissions with a reduction applied for reduced operational loads due to no passengers. This reduction was determined by conducting a comparison of the pre-COVID-19 POLA at berth shore power kW values with the values during the COVID-19 period. This comparison showed an average 27% reduction in kW energy use. Typically, hotel activities remain relatively constant across all modes (transit, maneuvering, berth, and anchor), therefore, this reduction was applied directly to all modes for cruise ships operating during this time frame.

Table 3.4 presents the load defaults for the auxiliary boilers by vessel type and by mode. These default values were produced by calculating the call-weighted average of all VBP data points collected from 2005-2020 for each vessel type. Tankers' boilers produce steam for steam-powered liquid cargo pumps when discharging, steam-powered inert gas fans, and to heat fuel for pumping. Less steam is needed when liquid cargo is being loaded. Since loading and discharging data were available for the tankers that visited the Port, a lower boiler load of 875 kW was used for tankers known to be loading cargo while at berth, while the higher boiler load listed in the table was used as a default for the tanker calls that were discharging cargo.

Vessel Type			Berth	Anchorage
	Transit Mar	neuvering	Hotelling	Hotelling
Auto Carrier	82	159	269	259
Bulk	63	154	184	184
Container - 1000	90	181	437	230
Container - 2000	188	359	444	441
Container - 3000	203	408	552	517
Container - 4000	180	351	457	453
Container - 5000	266	496	606	601
Container - 6000	248	471	616	612
Container - 7000	345	549	596	594
Container - 8000	210	446	561	588
Container - 9000	448	559	737	722
Container - 10000	368	473	656	656
Container - 11000	241	425	520	516
Container - 12000	349	602	687	687
Container - 13000	241	306	559	558
Container - 14000	266	481	402	532
Container - 15000	259	395	402	402
Container - 16000	206	290	470	470
Container - 17000	152	184	537	537
Container - 19000	355	581	783	783
Container - 23000	373	610	822	822
General Cargo	77	177	227	227
Ocean Tugboat (ATB)	0	0	0	0
Miscellaneous	54	85	144	144
Reefer	89	171	234	234
RoRo	67	148	259	251
Tanker - Chemical	90	135	316	203
Tanker - Handysize	143	285	3,064	321
Tanker - Panamax	223	346	3,803	517

Table 3.4: Auxiliary Boiler Load Defaults by Mode, kW

Table 3.5 presents the load defaults for the auxiliary boilers for diesel electric and non-diesel electric (last row) cruise ships. The default averages presented are an operational average, meaning they factor in if a vessel reported that they do not use their auxiliary boiler in a certain mode. There were two non-diesel electric cruise ships that visited the Port in 2020, while the rest were diesel electric.

Passenger			Berth	Anchorage
Range	Transit	Maneuvering	Hotelling	Hotelling
<1,500	992	784	766	867
1,500 < 2,000	1,070	1,145	976	1,951
2,000 < 2,500	1,382	1,773	1,506	3,005
2,500 < 3,000	596	602	431	895
3,000 < 3,500	697	1,199	1,068	1,984
3,500 < 4,000	401	347	868	989
4,000 < 4,500	0	0	503	503
4,500 < 5,000	0	0	503	503
Non- diesel electric	282	361	612	306

Table 3.5: Cruise Ship Auxiliary Boiler Load Defaults by Mode, kW

Hotelling

Table 3.6 summarizes the hotelling times in hours at berth. Hotelling time is the entire duration of time that a ship spends at berth or anchorage for each visit. In 2020, containerships spent more time at berth than in the previous year. This was mainly due to issues that arose as a result of the COVID-19 pandemic.

X7 1/7 1	24		
Vessel Type	Min	Max	Avg
	Hours	Hours	Hours
Auto Carrier	7.8	107.0	16.2
Bulk	14.1	202.1	73.5
Container - 1000	16.7	967.4	372.4
Container - 2000	8.6	4,399.2	70.5
Container - 3000	11.3	1,305.0	130.7
Container - 4000	11.5	308.5	45.4
Container - 5000	11.7	192.9	75.0
Container - 6000	9.2	182.9	73.3
Container - 7000	32.3	140.6	67.7
Container - 8000	10.1	290.2	99.7
Container - 9000	8.9	313.5	100.5
Container - 10000	16.4	212.0	105.5
Container - 11000	71.6	200.0	105.4
Container - 12000	100.0	179.1	130.9
Container - 13000	7.9	205.7	109.1
Container - 14000	10.5	246.4	114.6
Container - 15000	36.8	237.7	132.0
Container - 16000	123.3	289.5	208.6
Container - 17000	157.4	157.4	157.4
Container - 19000	18.5	147.0	99.5
Container - 23000	126.4	224.4	156.0
Cruise	5.4	671.8	36.7
General Cargo	6.2	284.1	58.0
Ocean Tugboat (ATB)	11.0	107.0	32.5
Miscellaneous	35.8	480.7	171.5
Reefer	4.9	75.8	28.4
RoRo	24.3	37.3	28.7
Tanker - Chemical	10.4	80.7	33.8
Tanker - Handysize	23.4	63.7	41.9
Tanker - Panamax	14.3	145.7	51.9
			DB ID

Table 3.6: 2020 Hotelling Times at Berth, hours

Table 3.7 summarizes the hotelling times in hours at anchorage. In 2020, more containerships and cruise ships were at anchorage than in the previous year mainly due to the COVID-19 pandemic.

Vessel Type	Min	Max	Avg	Vessel
	Hours	Hours	Hours	Count
Auto Carrier	10.1	120.0	58.2	6
Bulk	1.2	326.3	41.0	42
Container - 1000	2.4	69.1	32.1	2
Container - 2000	2.8	232.2	67.3	15
Container - 3000	0.4	288.0	32.7	6
Container - 4000	2.6	307.4	82.9	20
Container - 5000	5.2	275.7	27.9	11
Container - 6000	5.7	191.5	76.2	16
Container - 7000	4.3	142.4	54.7	7
Container - 8000	4.5	262.8	77.2	38
Container - 9000	4.1	269.4	99.8	16
Container - 10000	20.3	215.1	90.5	9
Container - 11000	50.3	126.9	91.1	4
Container - 12000	7.6	118.1	62.9	2
Container - 13000	22.6	240.0	86.1	7
Container - 14000	10.5	181.4	87.8	5
Container - 15000	48.3	329.8	141.4	4
Container - 16000	22.7	93.4	59.6	2
Container - 17000	0.0	0.0	0.0	0
Container - 19000	0.0	0.0	0.0	0
Container - 23000	0.0	0.0	0.0	0
Cruise	3.8	407.8	105.3	9
General Cargo	1.9	164.2	46.4	20
Ocean Tugboat (ATB)	1.5	662.7	69.0	12
Miscellaneous	143	143	143	1
Reefer	48.8	48.8	48.8	1
RoRo	0.0	0.0	0.0	0
Tanker - Chemical	1.4	332.6	33.9	105
Tanker - Handysize	1.2	73.3	24.0	8
Tanker - Panamax	2.5	452.1	73.4	25
Total				393

Table 3.7: 2020 Hotelling Times at Anchorage, hour	s
--	---

Frequent Callers

Table 3.8 provides the percentage of frequent callers. For this EI, a frequent caller was defined as a vessel that made six or more calls in one calendar year. Table 3.8 shows that 10% of vessels that called the Port in 2020 were frequent callers with six or more calls.

			Percent
Vessel Type	Frequent	Total	Frequent
	Vessels	Vessels	Vessels
Auto Carrier	0	51	0%
Bulk	0	65	0%
Container - 1000	0	3	0%
Container - 2000	11	23	48%
Container - 3000	0	7	0%
Container - 4000	9	36	25%
Container - 5000	5	17	29%
Container - 6000	8	41	20%
Container - 7000	2	10	20%
Container - 8000	12	72	17%
Container - 9000	5	35	14%
Container - 10000	0	22	0%
Container - 11000	0	10	0%
Container - 12000	0	4	0%
Container - 13000	0	31	0%
Container - 14000	1	10	10%
Container - 15000	0	5	0%
Container - 16000	0	2	0%
Container - 17000	0	1	0%
Container - 19000	0	2	0%
Container - 23000	0	3	0%
Cruise	4	29	14%
General Cargo	0	24	0%
Ocean Tugboat (ATB)	6	14	43%
Miscellaneous	0	2	0%
Reefer	0	12	0%
RoRo	0	1	0%
Tanker - Chemical	2	119	2%
Tanker - Handysize	1	9	11%
Tanker - Panamax	0	27	0%
Total	66	687	
Average			10%

Table 3.8: 2020 Percentage of Frequent Callers

Vessel Characteristics

Averages by vessel type characteristics for the fleet calling the Port were based on the IHS Maritime World Register of Ships and are summarized in Table 3.9. Vessel type characteristics include averages of year built, deadweight, maximum rated speed, and main and auxiliary installed engine power ratings for the specific vessels that called the Port in 2020.

eed Mai	in Eng	Aux Eng
ots)	(kW)	(kW)
20.1	13,958	3,676
4.3	7,269	2,030
20.0	13,996	4,673
21.5	21,548	6,790
21.8	29,746	5,360
24.1	43,803	7,251
24.3	50,866	7,021
25.1	59,091	10,946
25.0	57,638	11,852
24.9	63,664	13,214
23.6	56,543	14,546
23.7	52,965	12,698
24.3	66,056	13,260
23.6	72,239	10,400
24.2	67,452	14,552
22.9	56,427	15,046
22.0	45,218	14,208
23.6	67,527	18,000
23.2	62,029	17,000
9.0	62,499	17,000
8.5	75,569	19,400
21.1	50,587	8,880
5.0	9,001	2,477
5.0	4,996	257
3.2	5,618	600
20.6	11,793	3,651
20.0	19,040	na
4.6	8,207	2,833
5.0	9,050	2,160
5.0	11,509	3,129
	4.6 5.0	4.68,2075.09,050

Table 3.9: 2020 Vessel Type Characteristics

Table 3.10 presents the percent of engine tier by vessel type for arrivals/shifts at the Port. In 2020, 18 vessels had certified Tier III main engines: seven containerships, one cruise vessel, and ten tankers. NO_x emissions for Tier III vessels are 75% cleaner than Tier II vessels when operating at or above 25% main engine load. The "No Tier" column includes steamships that called the Port in 2020.

Vessel Type	IMO	IMO	IMO	IMO	No	Calls
JI -	Tier 0	Tier I	Tier II	Tier III	Tier	Count
Auto Carrier	12%	80%	8%	0%	0%	76
Bulk	0%	30%	70%	0%	0%	64
Container - 1000	0%	100%	0%	0%	0%	4
Container - 2000	1%	77%	3%	0%	20%	148
Container - 3000	0%	92%	8%	0%	0%	13
Container - 4000	1%	98%	1%	0%	0%	116
Container - 5000	5%	90%	5%	0%	0%	60
Container - 6000	0%	84%	16%	0%	0%	107
Container - 7000	0%	100%	0%	0%	0%	37
Container - 8000	0%	51%	49%	0%	0%	225
Container - 9000	0%	61%	39%	0%	0%	95
Container - 10000	0%	7%	93%	0%	0%	41
Container - 11000	0%	67%	6%	28%	0%	18
Container - 12000	0%	60%	40%	0%	0%	5
Container - 13000	0%	40%	60%	0%	0%	57
Container - 14000	0%	18%	77%	6%	0%	17
Container - 15000	0%	0%	0%	100%	0%	9
Container - 16000	0%	0%	100%	0%	0%	4
Container - 17000	0%	0%	100%	0%	0%	1
Container - 19000	0%	0%	100%	0%	0%	2
Container - 23000	0%	0%	100%	0%	0%	4
Cruise	32%	29%	35%	3%	1%	91
General Cargo	28%	59%	14%	0%	0%	29
Ocean Tugboat (ATB)	0%	75%	25%	0%	0%	108
Miscellaneous	71%	29%	0%	0%	0%	7
Reefer	100%	0%	0%	0%	0%	16
RoRo	0%	0%	100%	0%	0%	5
Tanker - Chemical	0%	52%	42%	6%	0%	163
Tanker - Handysize	68%	32%	0%	0%	0%	22
Tanker - Panamax	0%	75%	21%	4%	0%	28
Total	6%	61%	30%	2%	2%	1,572

Table 3.10: 2020 Percent of OGV Activity by Main Engine Tier and Vessel Type

Emissions Estimation Methodology

The methodology to estimate 2020 emissions from OGVs activity is described in Section 2 of the San Pedro Bay Ports Emissions Inventory Methodology Report¹⁰ Version 2. The following improvements for methodology and activity were made in estimating 2020 OGV emissions:

- Emission factors were updated to be consistent with CARB and EPA's latest methodology.
- Tier II NO_x emission factor was used for Tier III vessels operating at loads below 25%.
- Updated call-weighted averages of VBP data collected by mode from 2005 to 2020 for auxiliary engine and auxiliary boiler default loads.
- Added cruise ship auxiliary engine and boiler loads to take into consideration the 2020 COVID-19 pandemic period which resulted in the cruise ship industry suspending cruise ship passenger operations from March 13 through the end of the year in 2020.

The updated emission factors are per EPA's Ports Emissions Inventory Guidance: Methodologies for Estimating Port-Related and Goods Movement Mobile Source Emissions (September 2020)¹¹. Table 3.11 lists the emission factors for propulsion engines using 0.1% sulfur MGO fuel. Auxiliary boilers use the emissions factors listed for steamships in Table 3.11.

Table 3.11: OGV Emission Factors for Diesel Propulsion, Steamship Propulsion and
Gas Turbine Engines, g/kWh

Engine Category	Tier	Model Year Range	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂	N ₂ O	CH_4
Slow Speed Main	0	1999 and older	0.18	0.17	0.18	17.0	0.36	1.40	0.60	593	0.029	0.012
Slow Speed Main	Ι	2000 to 2010	0.18	0.17	0.18	16.0	0.36	1.40	0.60	593	0.029	0.012
Slow Speed Main	Π	2011 to 2015	0.18	0.17	0.18	14.4	0.36	1.40	0.60	593	0.029	0.012
Slow Speed Main	III	2016 and newer	0.18	0.17	0.18	3.4	0.36	1.40	0.60	593	0.029	0.012
Medium Speed Main	0	1999 and older	0.19	0.17	0.19	13.2	0.40	1.10	0.50	657	0.029	0.012
Medium Speed Main	Ι	2000 to 2010	0.19	0.17	0.19	12.2	0.40	1.10	0.50	657	0.029	0.012
Medium Speed Main	Π	2011 to 2015	0.19	0.17	0.19	10.5	0.40	1.10	0.50	657	0.029	0.012
Medium Speed Main	III	2016 and newer	0.19	0.17	0.19	2.6	0.40	1.10	0.50	657	0.029	0.012
Gas Turbine		All	0.01	0.01	0.00	5.7	0.59	0.20	0.10	962	0.075	0.002
Steamship		All	0.20	0.19	0.00	2.0	0.59	0.20	0.10	962	0.075	0.002

¹⁰San Pedro Bay Ports Emissions Inventory Methodology Report, Version 2, www.polb.com/environment/air/#emissionsinventory

¹¹ www.epa.gov/state-and-local-transportation/port-emissions-inventory-guidance

Evidence from engine manufacturers¹² and classification societies¹³ suggest that Tier III propulsion engines will not meet Tier III emission standards when operating below 25% load because the exhaust heat does not reach the necessary temperature for selective catalytic reduction (SCR) or exhaust gas recirculation (EGR) systems to effectively reduce emissions. As such, when Tier III main engines operated below 25% within the emissions inventory domain, the default Tier II NO_x emission factor or, if available, Tier II Engine International Air Pollution Prevention (EIAPP) NO_x factors were used in emission calculations.

Table 3.12 lists the emission factors for auxiliary engines using 0.1% sulfur fuel.

Engine Category	Tier	Model Year Range	NO _x	PM ₁₀	PM _{2.5}	нс	со	SO _x	CO ₂	N ₂ O	CH ₄
Medium Auxiliary	0	1999 and older	13.8	0.19	0.17	0.40	1.10	0.42	696	0.029	0.008
Medium Auxiliary	Ι	2000 to 2010	12.2	0.19	0.17	0.40	1.10	0.42	696	0.029	0.008
Medium Auxiliary	Π	2011 to 2015	10.5	0.19	0.17	0.40	1.10	0.42	696	0.029	0.008
Medium Auxiliary	Ш	2016 and newer	2.6	0.19	0.17	0.40	1.10	0.42	696	0.029	0.008
High Auxiliary	0	1999 and older	10.9	0.19	0.17	0.40	0.90	0.42	696	0.029	0.008
High Auxiliary	Ι	2000 to 2010	9.8	0.19	0.17	0.40	0.90	0.42	696	0.029	0.008
High Auxiliary	Π	2011 to 2015	7.7	0.19	0.17	0.40	0.90	0.42	696	0.029	0.008
High Auxiliary	Ш	2016 and newer	2.0	0.19	0.17	0.40	0.90	0.42	696	0.029	0.008

Table 3.12: Emission Factors for Auxiliary Engines using 0.1% S, g/kWh

Emission Estimates

The following tables present the estimated OGV emissions categorized in different ways, such as by engine type, by operating mode, and by vessel type. The criteria pollutant emissions are in tons per year (tpy), while the greenhouse gas emissions are in tonnes per year. Table 3.13 presents summaries of emission estimates by engine type in tons per year. The emissions for the CARB-certified capture and control systems, which are used to treat emissions from auxiliary engines, were included in the auxiliary engine emissions in this table.

Table 3.13:	2020 Ocean-Going	Vessel Emissions	ov Engine Type

Engine Type	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
Main Engine	11	10	11	1,289	18	103	64	41,583
Auxiliary Engine	23	21	23	1,386	41	151	52	84,261
Auxiliary Boiler	18	17	0	191	37	19	10	86,404
Total	52	48	34	2,867	96	273	127	212,248
								DB ID692

¹²MAN Diesel & Turbo, "Tier III Two-Stroke Technology"

¹³DNV-GL, "NOx Tier III Update: Choices and challenges for on-time compliance," November 2017.

A summary of the OGV emission estimates by vessel type for all pollutants for the year 2020 is presented in Table 3.14. The emissions for bulk heavy load vessels were included in the bulk vessel type.

Vessel Type	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SOx	CO	HC	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
Auto Carrier	0.7	0.6	0.6	50.8	0.9	5.0	2.3	2,623
Bulk	1.2	1.1	0.9	68.9	2.7	6.5	2.2	4,575
Container - 1000	0.5	0.4	0.3	18.6	0.6	2.0	0.7	2,004
Container - 2000	4.3	3.9	2.6	211.7	9.0	19.5	8.3	16,821
Container - 3000	0.4	0.4	0.2	21.9	0.8	2.3	0.7	2,220
Container - 4000	3.0	2.7	2.3	232.5	5.2	17.2	7.9	13,102
Container - 5000	2.6	2.4	1.8	136.0	6.3	22.2	9.4	11,195
Container - 6000	3.5	3.2	2.3	216.8	4.7	21.5	11.8	13,965
Container - 7000	1.2	1.1	0.8	78.0	1.8	7.2	4.2	4,807
Container - 8000	8.0	7.4	4.3	466.8	9.8	39.8	22.8	35,322
Container - 9000	4.3	4.0	2.3	217.8	8.4	20.8	10.8	18,000
Container - 10000	1.6	1.5	0.8	83.8	2.8	6.4	3.0	7,624
Container - 11000	0.8	0.7	0.6	46.7	1.0	4.9	2.3	3,092
Container - 12000	0.2	0.2	0.1	13.8	0.4	0.9	0.4	1,125
Container - 13000	2.3	2.1	1.4	128.2	3.7	12.5	6.9	9,254
Container - 14000	0.7	0.7	0.5	30.6	1.5	4.5	2.5	2,567
Container - 15000	0.5	0.5	0.4	15.2	0.9	2.8	1.2	2,106
Container - 16000	0.3	0.3	0.2	15.4	0.7	1.6	0.7	1,297
Container - 17000	0.1	0.1	0.1	3.9	0.2	0.3	0.1	296
Container - 19000	0.1	0.1	0.0	4.9	0.2	0.2	0.1	400
Container - 23000	0.1	0.1	0.0	9.4	0.2	0.4	0.2	807
Cruise	6.5	5.9	5.7	374.8	14.0	34.7	13.1	22,862
General Cargo	0.7	0.7	0.6	43.6	1.3	4.0	1.6	2,851
Ocean Tugboat (ATB)	0.5	0.5	0.5	34.4	1.2	3.2	1.3	1,812
Miscellaneous	0.1	0.1	0.1	6.0	0.3	0.5	0.2	465
Reefer	0.4	0.4	0.4	27.7	1.0	2.4	1.0	1,457
RoRo	0.1	0.1	0.1	5.7	0.2	0.4	0.1	280
Tanker - Chemical	3.5	3.2	2.7	191.0	7.1	18.8	6.5	13,445
Tanker - Handysize	1.1	1.0	0.4	38.4	2.9	3.4	1.4	4,537
Tanker - Panamax	2.7	2.5	0.8	73.4	6.7	6.9	2.7	11,338
Total	51.9	47.8	33.6	2,866.7	96.5	272.7	126.5	212,248

Table 3.14: 2020 Ocean-Going Vessel Emissions by Vessel Type

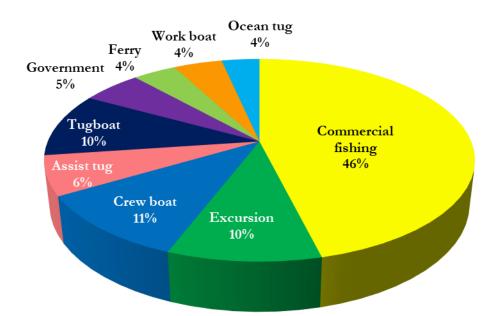
Table 3.15 presents summaries of emission estimates by the various modes in tons per year. For each mode, the engine type emissions are also listed. At-berth hotelling and at-anchorage hotelling are listed separately. Transit and harbor maneuvering emissions include both berth and anchorage calls.

Mode	Engine Type	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
		tons	tons	tons	tons	tons	tons	tons	tonnes
Transit	Main	9.8	9.0	9.4	1,151.1	16.5	87.1	50.8	37,864
Transit	Auxiliary Engine	4.0	3.6	4.0	241.3	6.4	24.5	8.9	14,257
Transit	Auxiliary Boiler	0.5	0.5	0.0	5.8	1.1	0.6	0.3	2,618
Total Transit		14.3	13.2	13.4	1,398.3	24.0	112.2	60.0	54,739
Maneuvering	Main	1.5	1.4	1.5	138.3	1.5	15.5	13.6	3,719
Maneuvering	Auxiliary Engine	1.2	1.1	1.2	75.8	2.0	7.6	2.8	4,445
Maneuvering	Auxiliary Boiler	0.2	0.2	0.0	2.4	0.4	0.2	0.1	1,063
Total Maneuvering		3.0	2.7	2.7	216.5	3.9	23.4	16.5	9,227
Hotelling at-berth	Main	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Hotelling at-berth	Auxiliary Engine	10.5	9.7	10.5	651.4	20.9	76.0	25.2	40,784
Hotelling at-berth	Auxiliary Boiler	14.0	12.9	0.0	149.3	29.0	15.1	7.6	67,544
Total Hotelling at-be	erth	24.5	22.6	10.5	800.7	49.9	91.1	32.8	108,329
Hotelling at-anchorage	e Main	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Hotelling at-anchorage	e Auxiliary Engine	7.0	6.4	7.0	417.7	12.0	42.6	15.5	24,775
Hotelling at-anchorage	e Auxiliary Boiler	3.2	2.9	0.0	33.6	6.7	3.4	1.7	15,178
Total Hotelling at-an	chorage	10.1	9.3	7.0	451.3	18.7	46.0	17.2	39,953
Total		51.9	47.8	33.6	2,866.7	96.5	272.7	126.5	212,248
]	DB ID694

Table 3.15: 2020 Ocean-Going Vessel Emissions by Mode

SECTION 4 HARBOR CRAFT

This section presents emission estimates for the commercial harbor craft source category, including source descriptions, geographical domain, data acquisition, operational profiles, emissions estimation methodology, and emission estimates.


Source Description

Harbor craft are commercial vessels that spend the majority of their time within or near the port and harbor. The harbor craft emissions inventory consists of the following vessel types:

- ➢ Assist tugboats
- Commercial fishing vessels
- ➢ Crew boats
- ➢ Ferry vessels
- Excursion vessels

- Government vessels
- ➤ Tugboats
- ➢ Ocean tugs
- ➢ Work boats

Recreational vessels are not considered to be commercial harbor craft; therefore, their emissions were not included in this inventory. Figure 4.1 presents the distribution of the 206 commercial harbor craft inventoried for the Port in 2020.

Figure 4.1: Distribution of Commercial Harbor Craft Population by Vessel Type

Ocean tugs included in this section are different from the articulated tug barge (ATB) discussed in the ocean-going vessels section of this report. ATBs are seen as specialized single vessels and were included in the MarEx data for ocean-going vessels. The ocean tugs in this section are not rigidly connected to the barge and are typically not home-ported at the Port but may make frequent calls with barges. They are different from tugboats because their average engine loads are higher than tugboats, which tend to idle more between jobs. Tugboats are typically home-ported in San Pedro Bay harbor and primarily operate within the harbor area but can also operate outside the harbor depending on their work assignments. For this inventory, assist tugs were separated from tugboats due to the load factor used for assist tugs, which is different than the load factor for tugboats.

Geographical Domain

The geographical domain for harbor craft is the same as that for ocean-going vessels.

Data and Information Acquisition

Commercial harbor craft companies were contacted to obtain key operational parameters for their vessels. These include:

- ➢ Vessel type
- ➢ Engine count
- Engine horsepower (or kilowatts) for main and auxiliary engines
- Engine model year
- Operating hours in calendar year 2020
- Vessel repower information

Operational Profiles

Tables 4.1 and 4.2 summarize the main and auxiliary engine data, respectively, for each vessel type. The averages by vessel type were used as defaults for vessels for which the model year, horsepower, or operating hour information was missing. Defaults were used mainly for commercial fishing vessels and resulted in the use of defaults for 10% of engine model year values, 8% of horsepower values, and 10% of operating hours.

There are a number of companies that operate harbor craft in both the ports of Los Angeles and Long Beach harbors. The activity hours for the vessels that are common to both ports reflect work performed during 2020 for the Port of Los Angeles harbor only.

Harbor	Vessel	Engine		Model year Horsepower					Annual	Annual Operating Hours			
Craft Type	Count	Count	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum A	Average		
Assist tug	13	26	2007	2019	2012	1,850	3,433	2,419	637	2,133	1,223		
Commercial fishing	95	105	1957	2016	2008	150	1,000	378	0	5,000	1,533		
Crew boat	22	53	2003	2020	2011	180	1,450	566	0	6,152	937		
Excursion	20	40	1981	2019	2010	250	630	389	0	2,000	1,034		
Ferry	8	20	2008	2015	2011	2,250	2,680	2,298	223	1,384	734		
Government	11	21	1993	2019	2006	240	1,770	610	0	712	320		
Ocean tug	7	14	2004	2015	2008	1,800	3,385	2,126	200	2,384	1,129		
Tugboat	21	41	2001	2018	2011	235	3,400	1,101	59	1,212	534		
Work boat	9	18	2008	2015	2012	210	1,000	564	0	3,545	1,347		
Total	206	338											
]	DB ID423		

 Table 4.1: 2020 Summary of Propulsion Engine Data by Vessel Category

Table 4.2: 2020 Summary of Auxiliary Engine Data by Vessel Category

Harbor	Vessel	Engine		Model year]	Horsepower		Annual	Annual Operating Hours			
Craft Type	Count	Count	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum	Average		
Assist tug	13	27	2006	2019	2014	107	296	195	494	2,382	1,265		
Commercial fishing	95	46	1957	2016	2009	12	185	78	0	5,000	2,024		
Crew boat	22	24	2002	2020	2011	11	180	62	128	2,476	754		
Excursion	20	22	1981	2020	2011	11	54	38	0	3,000	1,612		
Ferry	8	16	2008	2017	2012	18	120	69	204	1,530	705		
Government	11	16	2002	2019	2005	50	1555	522	0	869	150		
Ocean tug	7	15	2004	2019	2009	60	339	131	200	1,388	737		
Tugboat	21	36	2004	2019	2011	15	402	124	11	1,450	521		
Work boat	9	13	1979	2019	2008	40	133	79	0	3,236	785		
Total	206	215											

Harbor craft engines with known model year and horsepower (hp) were categorized according to their respective EPA marine engine standards (known as "tier level"). In the case where engine information gathered from harbor craft operators failed to identify the specific EPA tier level, the tier level was assigned for that engine based on engine model year and horsepower.¹⁴ These assumptions are consistent with CARB's harbor craft emission factors, which follow the same model year grouping as EPA emissions standards for marine engines.

EPA Tier Level	Marine Engine Model Year Range	Horsepower Range
Tier 0	1999 and older	All
Tier 1	2000 to 2003	< 500 hp
Tier 1	2000 to 2006	> 500 hp
Tier 2	2004 up to Tier 3	< 500 hp
Tier 2	2007 up to Tier 3	> 500 hp
Tier 3	2009 and newer	0 to 120 hp
Tier 3	2013 and newer	> 120 to 175 hp
Tier 3	2014 and newer	> 175 to 500 hp
Tier 3	2013 and newer	> 500 to 750 hp
Tier 3	2012 to 2016	> 750 to 1,900 hp
Tier 3	2013 to 2015	> 1,900 to 3,300 hp
Tier 3	2014 to 2015	> 3,300 hp
Tier 4	2017 and newer	> 750 to 1,900 hp
Tier 4	2016 and newer	> 1,900 to 3,300 hp
Tier 4	2016 and newer	> 3,300 hp

Table 4.3: Harbor Craft Marine Engine EPA Tier Levels

¹⁴CFR (Code of Federal Regulation), 40 CFR, subpart 94.8 for Tier 1 and 2 and subpart 1042.101 for Tier 3.

Figure 4.2 provides the distribution by tier of all harbor craft propulsion and auxiliary engines operating at the Port in 2020. If model year and/or horsepower information were not available, the engines were classified as "unknown." For the first time since the inception of the inventory, there was one vessel that had Tier 4 twin propulsion engines.

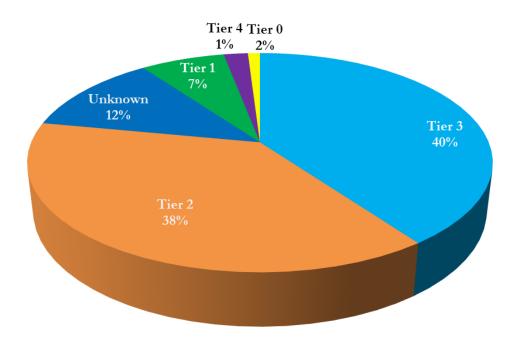


Figure 4.2: 2020 Distribution of Harbor Craft Engines by Engine Standards

Table 4.4 summarizes the energy consumption (kWh) per engine tier used to estimate 2020 harbor craft emissions. The newer Tier 2 to Tier 4 engines made up 94% of the harbor craft energy consumption, indicating higher use of cleaner engines. Energy consumption of harbor craft engines with unknown tier was distributed among other tiers based on defaults used for missing model year or horsepower for emissions calculations. In 2020, a total of 56 Tier 0 and Tier 1 engines accounted for the 8% of total activity.

Engine	2020	2020
Tier	kWh	% of Total
Tier 0	527,975	1%
Tier 1	5,956,289	7%
Tier 2	54,509,132	60%
Tier 3	28,851,994	32%
Tier 4	1,476,890	2%
Total	91,322,278	100%

Table 4.4:	Harbor Craft	Energy (Consumption	hy Engine	Tier, kWh a	nd %
	Harbor Oran	Lineigy	consumption	i sy nigine	1101, 11 11 11 11	110 / 0

Emissions Estimation Methodology

The emissions calculation methodology and the emission rates are described in Section 3 of the San Pedro Bay Ports Emissions Inventory Methodology Report¹⁵ Version 2. Harbor craft emissions were estimated for each engine individually, based on the engine's model year, power rating, and annual hours of operation. The Port's harbor craft emission calculation methodology is similar to the methodology used by the CARB emissions inventory for commercial harbor craft operating in California.¹⁶

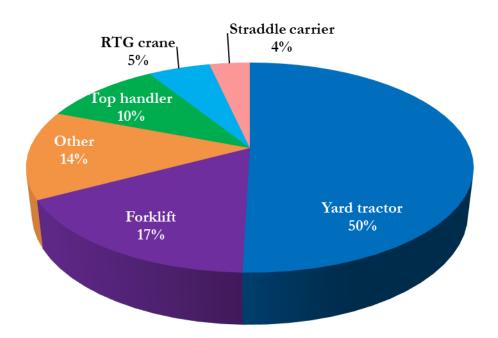
Emission Estimates

Table 4.5 summarizes the estimated 2020 harbor craft emissions by vessel type and engine type. In order for the total emissions to be consistently displayed for each pollutant, the individual values in each table column do not, in some cases, add up to the listed total in the table. This is because there are fewer decimal places displayed (for readability) than were included in the calculated total. The criteria pollutants are listed as tons per year while the CO_2e values are listed as tonnes (metric tons) per year.

¹⁵San Pedro Bay Ports Emissions Inventory Methodology Report Version 2. nnnw.portoflosangeles.org/environment/airquality/air-emissions-inventory

¹⁶CARB, *Commercial Harbor Craft Regulatory Activities*, Appendix B: Emissions Estimation Methodology for Commercial Harbor Craft Operating in California. *www.arb.ca.gov/msei/chc-appendix-b-emission-estimates-ver02-27-2012.pdf*.

Harbor Craft Type	Engine	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
	Туре	tons	tons	tons	tons	tons	tons	tons	tonnes
Assist Tug	Auxiliary	0.4	0.3	0.4	14.2	0.0	13.2	2.2	1,495
	Propulsion	4.4	4.1	4.4	131.0	0.1	108.0	14.4	11,648
Assist Tug Total		4.7	4.4	4.7	145.2	0.1	121.2	16.6	13,143
Commercial Fishing	Auxiliary	0.8	0.7	0.8	18.0	0.0	14.5	3.5	1,540
	Propulsion	3.3	3.0	3.3	105.0	0.1	79.1	11.7	8,499
Commercial Fishin	g Total	4.0	3.7	4.0	122.9	0.1	93.7	15.2	10,039
Crew boat	Auxiliary	0.1	0.1	0.1	2.6	0.0	2.1	0.5	206
	Propulsion	1.9	1.7	1.9	58.5	0.1	41.8	6.3	5,026
Crew boat Total		2.0	1.8	2.0	61.0	0.1	43.8	6.9	5,232
Excursion	Auxiliary	0.1	0.1	0.1	3.6	0.0	3.0	1.3	313
	Propulsion	1.1	1.0	1.1	37.7	0.0	29.7	4.3	3,270
Excursion Total		1.3	1.1	1.3	41.3	0.0	32.7	5.6	3,583
Ferry	Auxiliary	0.1	0.1	0.1	2.5	0.0	1.9	0.5	212
	Propulsion	2.9	2.7	2.9	84.6	0.1	65.8	9.3	7,028
Ferry Total		3.0	2.8	3.0	87.1	0.1	67.7	9.8	7,240
Government	Auxiliary	0.1	0.1	0.1	1.6	0.0	1.0	0.2	121
	Propulsion	0.5	0.5	0.5	11.9	0.0	6.3	1.2	826
Government Total		0.6	0.5	0.6	13.4	0.0	7.3	1.4	947
Ocean Tug	Auxiliary	0.1	0.1	0.1	3.7	0.0	3.3	0.6	377
	Propulsion	5.4	4.9	5.4	165.2	0.1	103.3	16.1	12,550
Ocean Tug Total		5.5	5.0	5.5	168.8	0.1	106.6	16.7	12,927
Tugboat	Auxiliary	0.2	0.2	0.2	5.3	0.0	4.3	0.9	479
	Propulsion	1.4	1.3	1.4	42.2	0.0	33.2	4.7	3,597
Tugboat Total		1.6	1.5	1.6	47.5	0.0	37.4	5.6	4,076
Work boat	Auxiliary	0.1	0.0	0.1	1.5	0.0	1.2	0.3	136
	Propulsion	0.9	0.9	0.9	32.7	0.0	27.3	3.8	3,052
Work boat Total		1.0	0.9	1.0	34.2	0.0	28.5	4.0	3,188
Harbor Craft Total		23.7	21.8	23.7	721.5	0.7	538.8	81.7	60,374
									DB ID427


SECTION 5 CARGO HANDLING EQUIPMENT

This section presents emissions estimates for the CHE source category, including source descriptions, geographical domain, data acquisition, operational profiles, emissions estimation methodology, and emission estimates.

Source Description

The CHE category includes equipment that moves cargo (including cargo in containers, general cargo, and bulk cargo) to and from marine vessels, railcars, and on-road trucks. The equipment is typically operated at marine terminals or at rail yards and not on public roadways. This inventory includes cargo handling equipment fueled by diesel, gasoline, propane, liquefied natural gas (LNG), and electricity. Due to the diversity of cargo handled by the Port's terminals, there is a wide range of equipment types.

Figure 5.1 presents the population distribution of the 1,915 pieces of equipment inventoried at the Port for calendar year 2020. The 14% for "other" equipment captures a variety of terminal equipment, such as bulldozer, cone vehicle, loader, man lift, material handler, rail pusher, reach stacker, skid steer loader, side pick, sweeper, telehandler, and truck. The hybrid and conventional rubber-tired gantry (RTG) crane counts were included under RTG crane. The hybrid and conventional straddle carrier counts were included under straddle carrier.

Figure 5.1: 2020 CHE Count Distribution by Equipment Type

Geographical Domain

The geographical domain for CHE is the terminals within the Port.

Data and Information Acquisition

The maintenance and/or CHE operating staff of each terminal were contacted in person, by e-mail, or by telephone, to obtain equipment count and activity information on the CHE specific to their terminal's operation for the 2020 calendar year.

Operational Profiles

Table 5.1 summarizes the cargo handling equipment data collected from the terminals and facilities for the calendar year 2020. The table includes the count of all equipment as well as the range and the average of horsepower, model year, and annual operating hours by equipment type for equipment with known operating parameters. For the electric-powered equipment shown in the table, "na" denotes "not applicable" for engine size, model year, and operating hours.

The averages by CHE engine and fuel type were used as defaults for the missing information. Defaults were used for 1% of engine model year values, 4% of horsepower values, and 1% of operating hours.

Equipment	Engine	Count	Р	ower ((hp)	N	lodel	Year	Annua	1 Activi	ty Hours
	Туре		Min	Max	Average	Min	Max	Average	Min	Max	Average
Stacking crane	Electric	29	na	na	na	na	na	na	961	2,869	2,151
Bulldozer	Diesel	3	200	310	237	2006	2007	2007	83	259	172
Cone Vehicle	Diesel	21	25	35	32	2010	2015	2013	48	2,056	620
Crane	Diesel	8	130	751	265	1969	2014	1997	0	909	308
Crane	Electric	3	na	na	na	na	na	na	929	1,045	975
Wharf crane	Electric	86	na	na	na	na	na	na	0	4,036	1,500
Forklift	Diesel	105	56	388	180	1993	2020	2012	0	3,514	492
Forklift	Electric	29	na	na	na	na	na	na	na	na	na
Forklift	Gasoline	6	45	45	45	2010	2012	2011	55	494	274
Forklift	Propane	181	42	200	82	1988	2020	2007	0	2,179	405
Loader	Diesel	11	55	460	259	1999	2015	2009	0	2,511	910
Loader	Electric	2	na	na	na	na	na	na	na	na	na
Man lift	Diesel	21	49	152	85	2000	2018	2008	0	431	147
Man lift	Electric	5	na	na	na	na	na	na	na	na	na
Man lift	Gasoline	1	60	60	60	2007	2007	2007	102	102	102
Material handler	Diesel	9	371	475	396	2005	2011	2008	352	3,628	1,843
Miscellaneous	Diesel	1	268	268	268	2007	2007	2007	1,619	1,619	1,619
Miscellaneous	Electric	1	na	na	na	2008	2008	2008	na	na	na
Rail pusher	Diesel	1	194	194	194	2012	2012	2012	740	740	740
Reach stacker	Diesel	2	250	449	350	2013	2018	2016	1,197	1,197	1,197
Hybrid RTG	Diesel	16	137	302	255	2009	2018	2016	953	5,894	3,751
RTG crane	Diesel	87	320	779	627	2002	2020	2009	49	5,615	2,487
Side pick	Diesel	14	152	275	245	2000	2017	2013	35	1,738	457
Skid steer loader	Diesel	4	56	75	68	1994	2012	2005	48	655	474
Hybrid straddle carrier	Diesel	39	102	103	103	2016	2018	2017	907	4,070	1,483
Straddle carrier	Diesel	28	425	425	425	2013	2015	2014	2,122	5,972	4,905
Sweeper	Diesel	7	96	260	187	2000	2019	2013	32	992	410
Sweeper	Gasoline	3	205	205	205	2005	2018	2013	na	na	na
Telehandler	Diesel	6	74	74	74	2013	2019	2016	69	164	129
Top handler	Diesel	194	250	400	337	1999	2018	2012	0	4,680	2,224
Top handler	Electric	2	na	na	na	2019	2019	2019	897	897	897
Truck	Diesel	23	185	540	349	1988	2014	2006	55	2,763	725
Truck	Propane	1	na	na	na	1973	1973	1973	148	148	148
Yard tractor	Diesel	781	158	250	228	1995	2020	2011	0	5,234	1,751
Yard tractor	Electric	5	na	na	na	2019	2019	2019	na	na	na
Yard tractor	LNG	22	250	250	250	2018	2018	2018	150	1,088	755
Yard tractor	Propane	158	174	231	200	2000	2011	2007	0	5,467	1,425
Total count		1,915								ć	ŕ

Table 5.1: 2020 CHE Engine Characteristics for All Terminals

Table 5.2 summarizes the emission reduction technologies utilized in cargo handling equipment, including diesel particulate filters (DPF) and BlueCAT retrofit for large-spark ignition (LSI) engines. In 2020, there were no equipment with diesel oxidation catalysts (DOC) because the older equipment equipped with DOCs were phased out of the terminal fleets. Additionally, equipment with DPF and the LSI retrofits are being phased out as they are replaced with newer pieces of equipment with Tier 4 engines. Hybrid equipment count, especially hybrid straddle carriers, has increased since the previous year.

Equipment	On-Road	DPF	Hybrid	BlueCAT
Lyupment	Engines	Retrofit	1190114	LSI Equip
Forklift	0	35	0	26
RTG crane	0	24	16	0
Straddle carrier	0	2	39	0
Top handler	0	61	0	0
Yard tractor	664	4	0	0
Sweeper	0	1	0	0
Other	12	37	0	0
Total	676	164	55	26
				DB ID234

Table 5.2: 2020 Count of CHE Utilizing Emission Reduction Technologies

Table 5.3 shows the distribution of equipment by fuel type. The "other" electric equipment includes automatic stacking carriers (ASCs), cranes, loaders, manlifts, and miscellaneous.

Equipment	Electric	LNG	Propane	Gasoline	Diesel	Total
Forklift	29	0	181	6	105	321
Wharf crane	86	0	0	0	0	86
RTG crane	0	0	0	0	103	103
Straddle carrier	0	0	0	0	67	67
Top handler	2	0	0	0	194	196
Yard tractor	5	22	158	0	781	966
Other	40	0	1	4	131	176
Total	162	22	340	10	1,381	1,915
						DP ID225

Table 5.3: 2020 Count of CHE Equipment by Fuel Type

Table 5.4 summarizes the distribution of diesel cargo handling equipment engines including smaller auxiliary RTG engines by off-road diesel engine standards¹⁷ (Tier 0, 1, 2, 3, 4 interim, and 4 final) based on model year and horsepower range. The table also lists the count of each type of equipment using on-road diesel engines. The table does not reflect the fact that some of the engines may be cleaner than the tier level they are certified to because of use of emissions control devices added to existing equipment. The "Unknown Tier" column shown in the table represents equipment with missing horsepower or model year information necessary for tier level classifications. Due to the recent significant number of straddle carriers in the inventory, they were taken out of the "other" category for the count of diesel engines by engine standards.

									Total
Equipment	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4i	Tier 4f	On-road	Unknown	Diesel
Туре							Engine	Tier	Engines
Forklift	1	1	7	25	34	27	0	10	105
RTG crane	0	0	36	2	39	26	0	0	103
Side pick	0	2	0	0	0	9	0	3	14
Top handler	0	2	21	39	38	94	0	0	194
Yard tractor	4	0	0	0	19	91	664	3	781
Other	5	7	11	28	20	31	12	3	117
Straddle carrier	0	0	0	0	17	50	0	0	67
Total	10	12	75	94	167	328	676	19	1,381
Percent	1%	1%	5%	7%	12%	24%	49%	1%	
									DB ID878

Table 5.4: 2020 Count of Diesel Engines by Engine Standards

¹⁷EPA, Nonroad Compression-Ignition Engines- Exhaust Emission Standards, June 2004

Table 5.5 summarizes the energy consumption (kWh) for the diesel equipment by engine tier and the other engine types (i.e., gasoline, propane and LNG), but not electric. Energy consumption of cargo handling equipment engines with unknown tier was distributed among other tiers based on defaults used for missing model year or horsepower for emissions calculations.

Engine	Engine	Energy	Percent
Туре	Tier	Consumption	Total
		kWh	
Diesel	Tier 0	560,280	0.3%
Diesel	Tier 1	591,335	0.3%
Diesel	Tier 2	11,423,788	5.3%
Diesel	Tier 3	14,534,404	6.8%
Diesel	Tier 4i	30,857,746	14.4%
Diesel	Tier 4f	60,551,220	28.3%
Diesel	Onroad engines	79,790,984	37.3%
Gasoline		147,079	0.1%
Propane		14,475,625	6.8%
LNG		1,205,615	0.6%
Total		214,138,075	

Table 5.5:	2020 Equipment	Energy Cons	umption by E	ngine Tier.	kWh and %
1 4010 0101	-o-oqaipineine	Lineigy Como	amption of L		ii wiic / v

Emissions Estimation Methodology

The emissions calculation methodology and the emission rates are described in Section 4 of the San Pedro Bay Ports Emissions Inventory Methodology Report¹⁸ Version 2. The Port's emissions calculation methodology used to estimate CHE emissions is consistent with CARB's latest methodology for estimating emissions from CHE.¹⁹

¹⁸San Pedro Bay Ports Emissions Inventory Methodology Report Version 2. www.portoflosangeles.org/environment/air-quality/airemissions-inventory

¹⁹CARB, Appendix B: Emission Estimation Methodology for Cargo Handling Equipment Operating at Ports and Intermodal Rail Yards in California. *www.arb.ca.gov/regact/2011/cargo11/cargo1ph.pdf*

Emission Estimates

Table 5.6 summarizes the CHE emissions by terminal type. The "Other" category represents CHE emissions for intermodal yard and other facilities located on Port property.

Terminal Type	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	HC	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
Auto	0.0	0.0	0.0	0.0	0.0	0.2	0.0	5
Break-Bulk	0.5	0.4	0.5	25.2	0.1	14.1	2.4	5,248
Container	5.0	4.7	3.8	326.2	1.7	596.8	61.9	154,613
Cruise	0.0	0.0	0.0	0.1	0.0	0.3	0.0	46
Dry Bulk	0.1	0.1	0.1	7.1	0.0	6.0	0.6	454
Liquid	0.0	0.0	0.0	0.1	0.0	0.2	0.1	49
Other	0.2	0.2	0.1	6.9	0.1	25.8	1.6	5,547
Total	5.8	5.4	4.5	365.6	1.8	643.3	66.5	165,961

Table 5.6: 2020 CHE Emissions by Terminal Type

Table 5.7 presents the emissions by cargo handling equipment type and engine type.

Equipment	Engine	\mathbf{PM}_{10}	PM _{2.5}	DPM	NOx	SOx	CO	HC	CO_2e
		tons	tons	tons	tons	tons	tons	tons	tonnes
Bulldozer	Diesel	0.0	0.0	0.0	0.2	0.0	0.1	0.0	42
Cone vehicle	Diesel	0.0	0.0	0.0	1.0	0.0	1.2	0.1	123
Crane	Diesel	0.1	0.1	0.1	2.2	0.0	0.9	0.2	244
Forklift	Diesel	0.1	0.1	0.1	5.2	0.0	7.0	0.5	1,529
Forklift	Gasoline	0.0	0.0	0.0	0.0	0.0	0.7	0.1	18
Forklift	Propane	0.1	0.1	0.0	4.1	0.0	40.6	1.3	1,274
Loader	Diesel	0.0	0.0	0.0	3.5	0.0	1.8	0.3	718
Man lift	Diesel	0.0	0.0	0.0	0.6	0.0	0.5	0.0	72
Man lift	Gasoline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
Material handler	Diesel	0.1	0.1	0.1	12.0	0.0	4.6	1.1	2,123
Miscellaneous	Diesel	0.0	0.0	0.0	0.7	0.0	0.3	0.1	127
Rail pusher	Diesel	0.0	0.0	0.0	0.1	0.0	0.1	0.0	42
Reach stacker	Diesel	0.0	0.0	0.0	0.4	0.0	0.6	0.1	283
Hybrid RTG	Diesel	0.0	0.0	0.0	1.2	0.0	4.1	0.5	1,792
RTG crane	Diesel	1.0	0.9	1.0	83.9	0.2	34.0	7.2	15,595
Side pick	Diesel	0.0	0.0	0.0	0.5	0.0	1.2	0.1	554
Skid steer loader	Diesel	0.0	0.0	0.0	0.4	0.0	0.3	0.0	39
Hybrid Straddle Carrier	Diesel	0.0	0.0	0.0	0.4	0.0	4.3	0.1	681
Straddle carrier	Diesel	0.2	0.1	0.2	12.9	0.1	14.6	2.3	6,691
Sweeper	Diesel	0.0	0.0	0.0	0.6	0.0	0.6	0.1	241
Sweeper	Gasoline	0.0	0.0	0.0	0.3	0.0	2.6	0.0	127
Telehandler	Diesel	0.0	0.0	0.0	0.1	0.0	0.1	0.0	10
Top handler	Diesel	1.4	1.2	1.4	108.0	0.6	109.0	16.9	50,009
Truck	Diesel	0.3	0.3	0.3	7.5	0.0	4.0	0.7	1,862
Truck	Propane	0.0	0.0	0.0	0.3	0.0	0.7	0.0	18
Yard tractor	Diesel	1.3	1.1	1.3	79.3	0.9	167.8	10.7	69,407
Yard tractor	LNG	0.0	0.0	0.0	0.0	0.0	0.4	0.0	529
Yard tractor	Propane	1.2	1.2	0.0	40.3	0.0	241.4	24.1	11,809
Total		5.8	5.4	4.5	365.6	1.8	643.3		165,961

Table 5.7: 2020 CHE Emissions by Equipment and Engine Type

SECTION 6 LOCOMOTIVES

This section presents emission estimates for the railroad locomotives source category, including source description, geographical domain, data and information acquisition, operational profiles, emissions estimation methodology, and emission estimates.

Source Description

Railroad operations are typically described in terms of two different types of operations, line haul and switching. Line haul refers to the movement of cargo by train over long distances. Line haul operations occur at or near the Port as the initiation or termination of a line haul trip; cargo is either picked up for transport to destinations across the country or is dropped off for shipment overseas. Switching refers to short movements of rail cars, such as in the assembling and disassembling of trains at various locations in and around the Port, sorting of the cars of inbound cargo trains into contiguous "fragments" for subsequent delivery to terminals, and the short distance hauling of rail cargo within the Port.

The Port is served by three railway companies:

- Burlington Northern Santa Fe Railway Company (BNSF)
- Union Pacific Railroad (UP)
- Pacific Harbor Line (PHL)

BNSF and UP provide line haul service to and from the Port and operate switching services at their off-port locations, while PHL performs most of the switching operations within the Port. Locomotives used for line haul operations are typically equipped with large, powerful engines of over 4,000 hp, while switch engines are smaller, typically having one or more engines totaling 2,000 to 3,000 hp. The locomotives used in switching service at the Port are primarily new, low-emitting locomotives specifically designed for switching duty. Switching locomotives are operated by PHL within the Port and by UP at the near-port railyard.

Geographical Domain

The specific activities included in this emissions inventory are movements of cargo within Port boundaries, directly to or from Port-owned properties such as terminals and on-Port rail yards, and within and to the boundary of the SoCAB. The inventory does not include rail movements of cargo that occur solely outside the Port, such as off-port rail yard switching, and movements that neither begin nor end at a Port property, such as east-bound line hauls that initiate in central Los Angeles intermodal yards. For rail locomotives, the domain extends from the Port to the cargo's first point of rest within the SoCAB or up to the SoCAB boundary, whichever comes first. Figure 1.1 in Section 1 illustrates the boundaries.

Data and Information Acquisition

Information from the following general sources was used to estimate emissions associated with maritime industry-related activities of locomotives operating both within the Port and outside the Port to the boundary of the SoCAB:

- Previous emissions studies
- Port cargo statistics
- Input from railroad operators
- Published information sources
- CARB MOU line-haul fleet compliance data

The Port continues to use the most recent, locally specific data available, including MOU compliance data reflective of actual recent line haul fleet mix characteristics in the SoCAB. In addition, PHL has provided fuel consumption information for each locomotive in service in each calendar year, along with the engine tier levels of the locomotives. Table 6.1 lists the number of locomotives for each tier level that were operated in 2020 and the percentage of fuel used by locomotives in each tier. Discussion of the tiers and a list of tier-specific emission factors are included in Section 5 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2 (2021).²⁰

Locomotive		
Tier Level	Count	% of Fuel
/Power Type		Consumed
Genset	6	5%
Tier 3	0	0%
Tier 3+	17	93%
Tier 4	1	3%
Totals	24	100%

Table 6.1: PHL Switching Fleet Mix, 2020

²⁰www.portoflosangeles.org/environment/air-quality/air-emissions-inventory

Operational Profiles

The goods movement rail system in terms of the activities that are carried out by locomotive operators is the same as described in detail in Section 5 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.²¹

Emissions Estimation Methodology

The emission calculation methodology used to estimate locomotive emissions is consistent with the methodology described in detail in Section 5 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2 (2021).²² Tables that contain information specific to this EI are presented below.

Table 6.2 presents the MOU compliance information submitted by both railroads and the composite of both railroads' pre-Tier 0 through Tier 4 locomotive NO_x emissions for calendar year 2019, showing a weighted average NO_x emission factor of 5.78 g/hphr.²³ The 2019 reports were used instead of the 2020 due to the timing of the inventory data collection phase and of the posting of the compliance reports by CARB. The emission factors based on the 2020 compliance report will be used for the future 2021 EI.

²¹www.portoflosangeles.org/environment/air-quality/air-emissions-inventory
²²www.portoflosangeles.org/environment/air-quality/air-emissions-inventory

²³Notes from railroads' MOU compliance submissions:

^{1.} For more information on the U.S. EPA locomotive emission standards please visit.

www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-emission-standards-locomotives-and-locomotive

^{2.} Number of locomotives is the sum of all individual locomotives that visited or operated within the SoCAB at any time during 2018.

Engine	Number of	Megawatt-	% MWh	Wt'd Avg	Tier Contribution
Tier	Locomotives	hours	by	NOx	to Fleet Average
		(MWh)	Tier Level	(g/bhp-hr)	(g/bhp-hr)
BNSF					
Pre-Tier 0	30	1,150	0.4%	13.0	0.05
Tier 0	198	11,007	4.0%	8.4	0.34
Tier 1	1,797	98,968	36%	6.1	2.21
Tier 2	1,630	97,310	36%	4.7	1.68
Tier 3	1,210	52,724	19%	3.8	0.74
Tier 4	280	11,418	4.2%	1.1	0.05
ULEL	0	0	0%	-	-
Total BNSF	5,145	272,577	100%		5.07
UP					
Pre-Tier 0	19	339	0.2%	9.0	0.01
Tier 0	1,135	31,784	15%	8.5	1.25
Tier 1	2,267	75,251	35%	7.3	2.55
Tier 2	1,545	62,369	29%	5.1	1.47
Tier 3	914	35,882	17%	5	0.83
Tier 4	192	10,096	4.7%	1.1	0.05
ULEL	0	0	0%		0.00
Total UP	6,072	215,721	100%		6.16
		ULE	L Credit Used		0.70
		UP F	leet Average		5.46
Both RRs, exclu	uding ULELs an	d ULEL credi	ts		
Pre-Tier 0	49	1,489	0%	12.1	0.04
Tier 0	1,333	42,791	9%	8.5	0.74
Tier 1	4,064	174,219	36%	6.6	2.36
Tier 2	3,175	159,679	33%	4.9	1.59
Tier 3	2,124	88,606	18%	4.3	0.78
Tier 4	472	21,514	4.41%	1.1	0.049
Total both	11,217	488,298	100%		5.56

Table 6.2: MOU Compliance Data, MWh and g NO_x/hp -hr

Emission factors for particulate matter (PM_{10}), HC, and CO were calculated using the tierspecific emission rates for those pollutants published by EPA.²⁴ The emission rates were used to develop weighted average emission factors using the megawatt hour (MWh) numbers provided in the railroads' submissions. These results are presented in Table 6.3.

Engine		% of	EPA Tier-specific			Fleet Composite		
Tier	MWh	MWh	PM ₁₀	HC	CO	PM ₁₀	HC	CO
			g/	/bhp-hr		g/	/bhp-hr	
Pre-Tier 0	1,489	0%	0.32	0.48	1.28	0.001	0.00	0.00
Tier 0	42,791	9%	0.32	0.48	1.28	0.028	0.04	0.11
Tier 1	174,219	36%	0.32	0.47	1.28	0.114	0.17	0.46
Tier 2	159,679	33%	0.18	0.26	1.28	0.059	0.09	0.42
Tier 3	88,606	18%	0.08	0.13	1.28	0.015	0.02	0.23
Tier 4	21,514	4%	0.015	0.04	1.28	0.000	0.00	0.06
Totals	488,298	100%				0.217	0.32	1.28

Table 6.3: Fleet MWh and PM, HC, CO Emission Factors, g/bhp-hr

Emission factors for $PM_{2.5}$ and DPM were calculated as fractions of PM_{10} , with $PM_{2.5}$ calculated as 94% of PM_{10} consistent with CARB methodology and DPM equal to PM_{10} , since all PM emissions from diesel engines are defined as DPM. Rounding of emission factors before and after the conversion resulted in the emission factor values shown in Table 6.4. Table 6.4 summarizes the latest emission factors for line haul locomotives, presented in unit of g/hp-hr. The greenhouse gas emission factors are unchanged from the previous EI.

Table 6.4: Emission Factors for Line Haul Locomotives, g/bhp-hr

	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	НС	CO ₂	N_2O	\mathbf{CH}_4
EF, g/bhp-hr	0.217	0.200	0.217	5.56	0.005	1.28	0.32	489	0.013	0.040

²⁴EPA Office of Transportation and Air Quality, "Emission Factors for Locomotives" EPA-420-F-09-025 April 2009.

On-Port Line Haul Emissions

The estimated number of trains per year, locomotives per train, and on-port hours per train were multiplied together to calculate total locomotive hours per year. This activity information is summarized in Table 6.5.

Activity Measure	Inbound	Outbound	Total
Trains per Year	3,613	3,482	7,095
Locomotives per Train	3	3	N/A
Hours on Port per Trip	1	2.5	N/A
Locomotive Hours per Year	10,839	26,115	36,954

Table 6.5: 2020 Estimated On-Port Line Haul Locomotive Activity

Out-of-Port Line Haul Emissions

Table 6.6 lists the estimated totals of travel distance, out-of-port trains per year, out-of-port million gross tons (MMGT), out-of-port MMGT-miles, gallons of fuel used, and horsepower-hours. The gross ton-miles were calculated by multiplying distance in miles by the number of trains and by the average weight of a train, which was estimated to be 7,402 tons. Fuel consumption was calculated by multiplying gross ton-miles by the average fuel consumption factor of 0.965 gallons per thousand gross ton-miles.²⁵ Overall horsepower hours were calculated by multiplying the fuel used by the fuel consumption factor of 20.8 hp-hr/gal.

Table 6.6: 2020 Gross Ton-Mile, Fuel Use, and Horsepower-hour	Estimate
---	----------

				MMGT-
	Distance	Trains	MMGT	miles
	miles	per year	per year	per year
Alameda Corridor	21	5,099	38	798
Central LA to Air Basin Boundary	84	5,099	38	3,192
Million gross ton-miles				3,990
Estimated gallons of fuel (millions)				3.85
Estimated million horsepower-hours				83.9

²⁵ Union Pacific, Class I Railroad Annual Report R-1 to the Surface Transportation Board for the Year Ending Dec. 31, 2016 and BNSF, Class I Railroad Annual Report R-1 to the Surface Transportation Board for the Year Ending Dec. 31, 2016, www.prod.stb.gov/reports-data/economic-data/annual-report-financial-data/

Emission Estimates

A summary of estimated emissions from locomotive operations related to the Port is presented below in Table 6.7. These emissions include operations within the Port and maritime industryrelated emissions outside the Port out to the boundary of the SoCAB. The "maritime industryrelated" off-port activity was associated with cargo movements having either their origin or termination at the Port. Emissions resulting from the movement of cargo originating or terminating at one of the off-port rail yards were not included. The criteria pollutants are listed as tons per year, while the CO₂e values are listed as tonnes (metric tons) per year.

In order for the total emissions to be consistently displayed for each pollutant, the individual values in the table entries do not, in some cases, add up to the totals listed in the table. This is because there are fewer decimal places displayed (for readability) than were included in the calculated totals.

Activity	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂ e
Component	tons	tons	tons	tons	tons	tons	tons	tonnes
Switching	0.4	0.4	0.4	44.2	0.06	18.6	2.3	6,254
Line Haul	28.9	26.7	28.9	741.3	0.67	170.6	42.7	59,733
Total	29.3	27.0	29.3	785.5	0.73	189.2	44.9	65,987
							DI	

Table 6.7: 2020 Locomotive Operations Estimated Emissions

SECTION 7 HEAVY-DUTY VEHICLES

This section presents emission estimates for the HDV emission source category, including source description, geographical domain, data and information acquisition, operational profiles, emissions estimation methodology, and the emission estimates.

Source Description

Heavy-duty vehicles (specifically heavy-duty trucks) are used extensively to move cargo, particularly containerized cargo, to and from the marine terminals. Trucks deliver cargo to both local and national destinations. The local activity is often referred to as drayage and includes the transfer of containers between terminals and off-port railcar loading facilities. In the course of their daily operations, both local and national destined trucks are driven onto and through the terminals, where they deliver and/or pick up cargo. They are also driven on public roads within the Port boundaries and on public roads outside the Port.

While most of the trucks are diesel-fueled vehicles, alternatively fueled trucks, primarily those fueled by liquefied natural gas (LNG) also service the SPBP. The emission estimates prepared using this methodology reflect the use of both types of fuel.

The most common configuration of HDV is the articulated tractor-trailer (truck and semitrailer) having five axles, including the trailer axles. The most common type of trailer in the study area is the container chassis, built to accommodate standard-sized cargo containers. Additional trailer types include tankers, boxes, and flatbeds. A tractor traveling without an attached trailer is called a "bobtail" while a tractor pulling an unloaded container trailer chassis is known simply as a "chassis." These vehicles are all classified as heavy HDVs regardless of their actual weight because the classification is based on gross vehicle weight rating (GVWR), which is a rating of the vehicle's total carrying capacity. Therefore, the emission estimates do not distinguish among the different configurations.

Geographical Domain

The two major geographical components of truck activities were evaluated for this inventory:

- On-terminal operations, which include waiting for terminal entry, transiting the terminal to drop off and/or pick up cargo, and departing the terminal.
- On-road operations, which consist of travel on public roads within the SoCAB. This also includes travel on public roads within the Port boundaries and those of the adjacent Port of Long Beach.

Data and Information Acquisition

Information regarding on-terminal truck activity, such as average times and distances while on the terminals, was collected during in-person and/or telephone interviews with terminal personnel. For on-road operations, the volumes (number of trucks), distances, and average speeds on roadway segments between defined intersections were estimated using trip generation and travel demand models that have been developed for these purposes. The trip generation model was used to develop truck trip numbers for container terminals, while the terminal interviews were used to obtain trip counts associated with non-container terminals.

Operational Profiles

Table 7.1 illustrates the range and average of reported operating characteristics of on-terminal truck activities at Port container terminals, while Table 7.2 shows similar summary data for the non-container terminals and facilities. In 2020, the total number of terminal calls associated with the Port's container terminals and non-container facilities was 3,903,349 and 585,120, respectively. The total number of container terminal calls was estimated by the trip generation model on which truck travel estimates are based, while non-container terminal calls were obtained from the terminal operators. The non-container terminal number includes activity at the Port's peel-off yard that operated in 2020, totaling approximately 30,000 calls. The peel-off yard was established to improve terminal efficiency by allowing containers offloaded from ships to be quickly removed from the container terminal and placed in the yard, to be picked up for further transport at a later time.

				Unload/	
	Speed	Distance	Gate In	Load	Gate Out
	(mph)	(miles)	(hours)	(hours)	(hours)
Maximum	15	1.90	0.19	0.9	0.07
Minimum	10	0.90	0.08	0.43	0.00
Average	12.5	1.48	0.14	0.73	0.02

Table 7.1:	Summary of	of Reported	Container	Terminal	Operating	Characteristics
------------	------------	-------------	-----------	----------	-----------	-----------------

Table 7.2:	Summary	of Repor	ted Non-	Container	Facility	Operating	Characteristics

				Unload/	
	Speed	Distance	Gate In	Load	Gate Out
	(mph)	(miles)	(hours)	(hours)	(hours)
Maximum	20	1.30	0.08	0.47	0.05
Minimum	5	0.02	0.00	0.00	0.00
Average	8.6	0.48	0.03	0.14	0.01

Table 7.3 presents further detail on the on-terminal operating parameters provided by terminal operators, listing total estimated miles traveled and hours of idling on-terminal and waiting at entry gates. Terminals are listed by type.

	Total	Total
Terminal	Miles	Hours Idling
Туре	Traveled	(all trips)
Container	1,480,677	1,056,216
Container	990,153	416,906
Container	937,389	362,457
Container	907,106	520,074
Container	882,376	606,634
Container	552,556	595,532
Auto	1,191	810
Break Bulk	28,000	6,300
Break Bulk	10,000	6,400
Dry Bulk	2,600	832
Dry Bulk	1,250	375
Liquid Bulk	3,125	375
Liquid Bulk	18	0
Other	347,755	156,490
Other	67,600	8,320
Other	13,520	1,976
Other	3,000	14,100
Other	520	910
Other	40	320
Total	6,228,875	3,755,027

Table 7.3: 2020 Estimated On-Terminal VMT and Idling Hours by Terminal

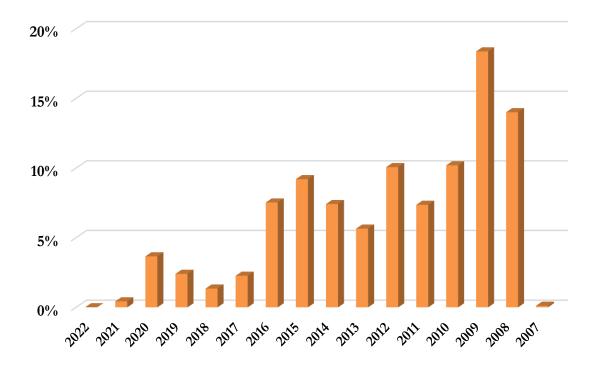
Emissions Estimation Methodology

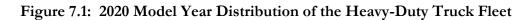
The emission estimating methodology for the Port's on-road truck fleet is described in Section 6 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.²⁶ HDV emission estimates were based on estimates of vehicle miles traveled (VMT), average speeds, CARB's on-road vehicle emissions model EMFAC2021, and HDV model year information specific to the San Pedro Bay Ports. The most recent version of the model, EMFAC2021, reflects CARB's current understanding of motor vehicle travel activities and their associated emission levels. A new feature of this version of the model is the ability to produce emission factors for natural gas fueled trucks in addition to the more common diesel fueled trucks.

Table 7.4 summarizes the 2020 speed-specific composite emission factors developed from the EMFAC2021 model and the model year distribution discussed below. These composite emission factors were developed using model year specific emission factors for the T7 POLA vehicle category of EMFAC2021 and reflect the use of diesel and natural gas fuel, based on evaluation of the Port's Clean Truck Program (CTP) activity records and the Port Drayage Truck Registry (PDTR).

Speed	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO_x	SO _x	CO	HC	CO_2	N_2O	\mathbf{CH}_4	Units
(mph)											
0 (Idle)	0.0057	0.0055	0.0037	25.3384	0.0516	27.1457	3.1002	6,082	0.8982	0.6750	g/hr
5	0.0355	0.0339	0.0352	12.9219	0.0330	4.3541	1.2013	3,691	0.5912	0.4985	g/mi
10	0.0318	0.0304	0.0315	10.4890	0.0285	3.4697	0.8752	3,176	0.5082	0.3279	g/mi
15	0.0271	0.0260	0.0269	7.9551	0.0235	2.5107	0.5652	2,609	0.4168	0.1929	g/mi
20	0.0241	0.0231	0.0239	6.5259	0.0205	1.9222	0.4007	2,275	0.3633	0.1349	g/mi
25	0.0222	0.0212	0.0220	5.6270	0.0186	1.5186	0.2989	2,051	0.3273	0.1027	g/mi
30	0.0211	0.0202	0.0210	4.9551	0.0170	1.2114	0.2285	1,880	0.3000	0.0821	g/mi
35	0.0208	0.0199	0.0207	4.4357	0.0158	0.9728	0.1775	1,748	0.2788	0.0679	g/mi
40	0.0213	0.0203	0.0212	4.0530	0.0150	0.7908	0.1402	1,649	0.2630	0.0576	g/mi
45	0.0224	0.0214	0.0223	3.7950	0.0144	0.6569	0.1129	1,580	0.2519	0.0498	g/mi
50	0.0241	0.0231	0.0241	3.6581	0.0140	0.5644	0.0930	1,539	0.2453	0.0439	g/mi
55	0.0265	0.0253	0.0264	3.6395	0.0139	0.5087	0.0789	1,525	0.2429	0.0392	g/mi
60	0.0297	0.0284	0.0296	3.7771	0.0141	0.4961	0.0762	1,549	0.2467	0.0390	g/mi
65	0.0337	0.0322	0.0336	4.0575	0.0147	0.5047	0.0787	1,607	0.2558	0.0391	g/mi
70	0.0337	0.0322	0.0336	4.0761	0.0147	0.5049	0.0787	1,607	0.2558	0.0391	g/mi

Table 7.4: Speed-Specific Composite Exhaust Emission Factors


²⁶San Pedro Bay Ports Emissions Inventory Methodology Report Version 2. nnnn.portoflosangeles.org/environment/airquality/air-emissions-inventory



Model Year Distribution

Since vehicle emissions vary according to the vehicle's model year and age, the activity level of trucks within each model year is an important part of developing emission estimates. The 2020 model year distribution for the current emissions inventory was based on call data originating from radio frequency identification (RFID) data, which tracked over 7 million truck calls made to the Port of Los Angeles and the Port of Long Beach in 2020, as well as model year data drawn from the PDTR. The PDTR contains model year information on all registered drayage trucks serving the Port and the fuel type used by each truck.

The distribution of the model years of the trucks that called at both the Port and POLB terminals during 2020, which was used to develop the composite emission factors listed above, is presented in Figure 7.1. The call weighted average age of the trucks calling at San Pedro Bay Ports terminals in 2020 was approximately 7 years.

Emission Estimates

The estimates of 2020 HDV emissions are presented in this section. As discussed above, onterminal emissions were based on terminal-specific information, such as the number of trucks passing through the terminal and the distance they travel on-terminal. The Port-wide totals are the sum of the terminal-specific estimates. The on-road emissions were estimated using travel demand model results to estimate how many miles in total the trucks traveled along defined roadways in the SoCAB on the way to their first cargo drop-off point. The on-terminal estimates include the sum of driving and idling emissions calculated separately. The idling emissions are likely to be somewhat over-estimated since the idling estimates were based on the entire time that trucks were on terminal (except for driving time), which does not account for times that trucks were turned off while on terminal. No data source was identified that would provide a reliable estimate of the average percentage of time the trucks' engines were turned off while on terminal. The on-road estimates include idling emissions as a normal part of the driving cycle because the average speeds include estimates of normal traffic idling times, and the emission factors were designed to take this into account.

In order for the total emissions to be consistently displayed for each pollutant, the individual values in each table column do not, in some cases, add up to the listed total in the tables. This is due to fewer decimal places displayed for readability than were included in the calculated total.

Emission estimates for HDV activity associated with Port terminals and other facilities are presented in the following tables. Table 7.5 summarizes emissions from HDVs associated with all Port terminals.

	Vehicle								
Activity	Miles	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	HC	CO ₂ e
Location	Traveled	tons	tons	tons	tons	tons	tons	tons	tonnes
On-Terminal	6,228,875	0.2	0.2	0.2	166	0.4	132.1	17.5	42,381
On-Road	215,265,343	5.6	5.3	5.6	908	3.4	152.0	25.7	356,299
Total	221,494,219	5.8	5.5	5.8	1,075	3.8	284.1	43.2	398,679

Table 7.5: 2020 HDV Emissions

Table 7.6 presents HDV emissions associated with container terminal activity separately from emissions associated with other Port terminals and facilities.

	Vehicle								
Activity	Miles	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	CO	HC	CO ₂ e
Location	Traveled	tons	tons	tons	tons	tons	tons	tons	tonnes
On-Terminal	5,750,256	0.2	0.2	0.2	156.3	0.4	124.9	16.5	39,796
On-Road	206,964,004	5.4	5.1	5.3	873.3	3.3	146.1	24.7	342,544
Total	212,714,260	5.6	5.3	5.5	1,030	3.6	271.0	41.3	382,340

Table 7.6: 2020 HDV Emissions Associated with Container Terminals

Table 7.7 presents emissions associated with other Port terminals and facilities separately.

Table 7.7:	2020 HDV	Emissions	Associated	with	Other Port	Terminals
-------------------	----------	-----------	------------	------	------------	-----------

	Vehicle								
Activity	Miles	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	CO	HC	CO ₂ e
Location	Traveled	tons	tons	tons	tons	tons	tons	tons	tonnes
On-Terminal	478,619	0.0	0.0	0.0	9.8	0.0	7.3	1.0	2,585
On-Road	8,301,339	0.2	0.2	0.2	35.1	0.1	5.9	1.0	13,754
Total	8,779,958	0.2	0.2	0.2	45	0.2	13.1	2.0	16,339

SECTION 8 SUMMARY OF 2020 EMISSION RESULTS

Table 8.1 summarizes the 2020 total maritime industry-related emissions associated with the Port of Los Angeles by category. Tables 8.2 through 8.4 present DPM, NO_x and SO_x emissions in the context of Port-wide and air basin-wide emissions by source category and subcategory. Table 8.5 presents the CO₂e emissions in the context of Port-wide emissions.

Category	PM ₁₀	PM _{2.5}	DPM	NO_x	SO _x	CO	HC	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
Ocean-going vessels	52	48	34	2,867	96	273	127	212,248
Harbor craft	24	22	24	721	1	539	82	60,374
Cargo handling equipment	6	5	4	366	2	643	66	165,961
Locomotives	29	27	29	786	1	189	45	65,987
Heavy-duty vehicles	6	6	6	1,075	4	284	43	398,679
Total	117	108	97	5,814	104	1,928	363	903,250

Table 8.1: 2020 Emissions by Source Category

DB ID457

			Percent DPM	Emissions of	Total
Category	Subcategory	DPM	Category	Port	SoCAB
					AQMP
OGV	Auto carrier	0.6	2%	1%	0.0%
OGV	Bulk vessel	0.9	3%	1%	0.1%
OGV	Containership	20.8	62%	21%	1.3%
OGV	Cruise	5.7	17%	6%	0.4%
OGV	General cargo	0.6	2%	1%	0.0%
OGV	Other	0.7	2%	1%	0.0%
OGV	Reefer	0.4	1%	0%	0.0%
OGV	Tanker	3.9	12%	4%	0.2%
OGV	Subtotal	34	100%	35%	2.1%
Harbor Craft	Assist tug	4.7	20%	5%	0.3%
Harbor Craft	Harbor tug	1.6	7%	2%	0.1%
Harbor Craft	Commercial fishing	4.0	17%	4%	0.2%
Harbor Craft	Ferry	3.0	13%	3%	0.2%
Harbor Craft	Ocean tugboat	5.5	23%	6%	0.3%
Harbor Craft	Government	0.6	2%	1%	0.0%
Harbor Craft	Excursion	1.3	5%	1%	0.1%
Harbor Craft	Crewboat	2.0	8%	2%	0.1%
Harbor Craft	Work boat	1.0	4%	1%	0.1%
Harbor Craft	Subtotal	24	100%	24%	1.4%
CHE	RTG crane	1.0	22%	1%	0.1%
CHE	Forklift	0.1	2%	0%	0.0%
CHE	Top handler, side pick	1.4	30%	1%	0.1%
CHE	Other	0.8	17%	1%	0.0%
CHE	Yard tractor	1.3	28%	1%	0.1%
CHE	Subtotal	4	100%	5%	0.3%
Locomotives	Switching	0.4	1%	0%	0.0%
Locomotives	Line haul	28.9	99%	30%	1.8%
Locomotives	Subtotal	29	100%	30%	1.8%
HDV	On-Terminal	0.2	4%	0%	0.0%
HDV	On-Road	5.6	96%	6%	0.3%
HDV	Subtotal	6	100%	6%	0.4%
Port	Total	97		100%	5.9%
SoCAB AQMP	7 Total	1,636			

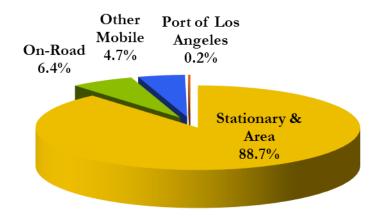
Table 8.2: 2020 DPM Emissions by Category and Percent Contribution

			Percent NO _x Emissions of To				
Category	Subcategory	NO _x	Category	Port	SoCAB		
					AQMP		
OGV	Auto carrier	51	2%	1%	0.0%		
OGV	Bulk vessel	69	2%	1%	0.1%		
OGV	Containership	1,952	68%	34%	1.7%		
OGV	Cruise	375	13%	6%	0.3%		
OGV	General cargo	44	2%	1%	0.0%		
OGV	Other	46	2%	1%	0.0%		
OGV	Reefer	28	1%	0%	0.0%		
OGV	Tanker	303	11%	5%	0.3%		
OGV	Subtotal	2,867	100%	49%	2.5%		
Harbor Craft	Assist tug	145	20%	2.5%	0.1%		
Harbor Craft	Harbor tug	48	7%	0.8%	0.0%		
Harbor Craft	Commercial fishing	123	17%	2.1%	0.1%		
Harbor Craft	Ferry	87	12%	1.5%	0.1%		
Harbor Craft	Ocean tugboat	169	23%	2.9%	0.1%		
Harbor Craft	Government	13	2%	0.2%	0.0%		
Harbor Craft	Excursion	41	6%	0.7%	0.0%		
Harbor Craft	Crewboat	61	8%	1.0%	0.1%		
Harbor Craft	Work boat	34	5%	0.6%	0.0%		
Harbor Craft	Subtotal	721	100%	12%	0.6%		
CHE	RTG crane	85	23%	1.5%	0.1%		
CHE	Forklift	9	3%	0.2%	0.0%		
CHE	Top handler, side pick	108	30%	1.9%	0.1%		
CHE	Other	43	12%	0.7%	0.0%		
CHE	Yard tractor	120	33%	2.1%	0.1%		
CHE	Subtotal	366	100%	6%	0.3%		
Locomotives	Switching	44	6%	0.8%	0.0%		
Locomotives	Line haul	741	94%	12.7%	0.6%		
Locomotives	Subtotal	786	100%	14%	0.7%		
HDV	On-Terminal	166	15%	3%	0.1%		
HDV	On-Road	908	85%	16%	0.8%		
HDV	Subtotal	1,075	100%	18%	0.9%		
Port	Total	5,814		100%	5.1%		
SoCAB AQMP	Total	114,898					

Table 8.3: 2020 NO_x Emissions by Category and Percent Contribution

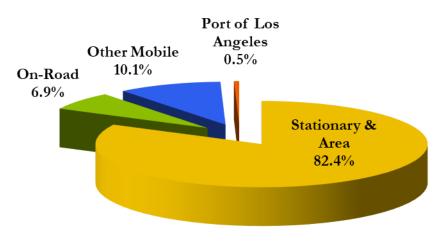
			Percent SO _x	Emissions of	ofTotal
Category	Subcategory	SO _x	Category	Port	SoCAB
					AQMP
OGV	Auto carrier	0.9	1%	1%	0%
OGV	Bulk vessel	2.7	3%	3%	0%
OGV	Containership	58.1	60%	56%	1%
OGV	Cruise	14.0	15%	14%	0%
OGV	General cargo	1.3	1%	1%	0%
OGV	Other	1.7	2%	2%	0%
OGV	Reefer	1.0	1%	1%	0%
OGV	Tanker	16.8	17%	16%	0%
OGV	Subtotal	96.5	100%	93%	2%
Harbor Craft	Assist tug	0.1	22%	0%	0%
Harbor Craft	Harbor tug	0.0	7%	0%	0%
Harbor Craft	Commercial fishing	0.1	17%	0%	0%
Harbor Craft	Ferry	0.1	12%	0%	0%
Harbor Craft	Ocean tugboat	0.1	21%	0%	0%
Harbor Craft	Government	0.0	2%	0%	0%
Harbor Craft	Excursion	0.0	6%	0%	0%
Harbor Craft	Crewboat	0.1	9%	0%	0%
Harbor Craft	Work boat	0.0	5%	0%	0%
Harbor Craft	Subtotal	0.7	100%	1%	0%
CHE	RTG crane	0.2	11%	0%	0%
CHE	Forklift	0.0	1%	0%	0%
CHE	Top handler, side pick	0.6	31%	1%	0%
CHE	Other	0.2	8%	0%	0%
CHE	Yard tractor	0.9	48%	1%	0%
CHE	Subtotal	1.8	100%	2%	0%
Locomotives	Switching	0.1	8%	0%	0%
Locomotives	Line haul	0.7	92%	1%	0%
Locomotives	Subtotal	0.7	100%	1%	0%
HDV	On-Terminal	0.4	10%	0%	0%
HDV	On-Road	3.4	90%	3%	0%
HDV	Subtotal	3.8	100%	4%	0%
Port	Total	104		100%	1.7%
SoCAB AQMP	Total	6,033			

Table 8.4: 2020 SO_x Emissions by Category and Percent Contribution



			Percent CO ₂ e Emissions of Total			
Category	Subcategory	CO ₂ e	Category	Port		
OGV	Auto carrier	2,623	1%	0%		
OGV	Bulk vessel	4,575	2%	1%		
OGV	Containership	146,004	69%	16%		
OGV	Cruise	22,862	11%	3%		
OGV	General cargo	2,851	1%	0%		
OGV	Other	2,557	1%	0%		
OGV	Reefer	1,457	1%	0%		
OGV	Tanker	29,320	14%	3%		
OGV	Subtotal	212,248	100%	23%		
Harbor Craft	Assist tug	13,143	22%	1%		
Harbor Craft	Harbor tug	4,076	7%	0%		
Harbor Craft	Commercial fishing	10,039	17%	1%		
Harbor Craft	Ferry	7,240	12%	1%		
Harbor Craft	Ocean tugboat	12,927	21%	1%		
Harbor Craft	Government	947	2%	0%		
Harbor Craft	Excursion	3,583	6%	0%		
Harbor Craft	Crewboat	5,232	9%	1%		
Harbor Craft	Work boat	3,188	5%	0%		
Harbor Craft	Subtotal	60,374	100%	7%		
CHE	RTG crane	17,387	10%	2%		
CHE	Forklift	2,821	2%	0%		
CHE	Top handler, side pick	50,563	30%	6%		
CHE	Other	13,446	8%	1%		
CHE	Yard tractor	81,744	49%	9%		
CHE	Subtotal	165,961	100%	18%		
Locomotives	Switching	6,254	9%	1%		
Locomotives	Line haul	59,733	91%	7%		
Locomotives	Subtotal	65,987	100%	7%		
HDV	On-Terminal	42,381	11%	5%		
HDV	On-Road	356,299	89%	39%		
HDV	Subtotal	398,679	100%	44%		
Port	Total	903,250		100%		

Table 8.5: 2020 CO₂e Emissions by Category and Percent Contribution



To place the maritime industry-related emissions into context, the following figures compare the Port's contributions to the total emissions in the South Coast Air Basin by major emission source category. The 2020 SoCAB emissions were based on the 2016 AQMP Appendix III,²⁷ except for the SoCAB on-road emission estimates which were updated to take into consideration EMFAC2021.²⁸ Thus, the 2020 SoCAB total emissions do not exactly match 2016 AQPM Appendix III values. It should be noted that neither the SoCAB nor the Port's on-road heavy-duty diesel PM₁₀ and PM_{2.5} emissions include brake and tire wear emissions. Due to rounding, the percentages may not total 100%.


Figure 8.1: 2020 PM₁₀ Emissions in the South Coast Air Basin

Figure 8.2: 2020 PM_{2.5} Emissions in the South Coast Air Basin

²⁷SCAQMD, *Final 2016 AQMP Appendix III, Base & Future Year Emissions Inventories*, March 2017. Except onroad emissions based on EMFAC2014 are replaced with EMFAC2021 estimates. ²⁸wnw.arb.ca.gov/emfac/

Figure 8.3: 2020 DPM Emissions in the South Coast Air Basin

Figure 8.4: 2020 NO_x Emissions in the South Coast Air Basin

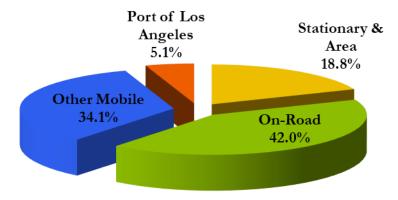
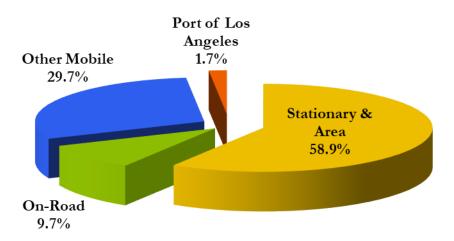
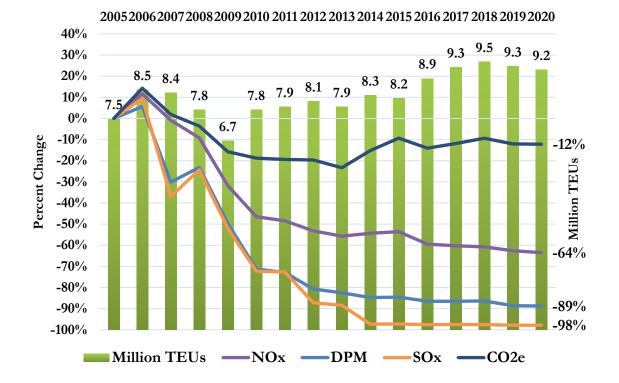



Figure 8.5: 2020 SO_x Emissions in the South Coast Air Basin

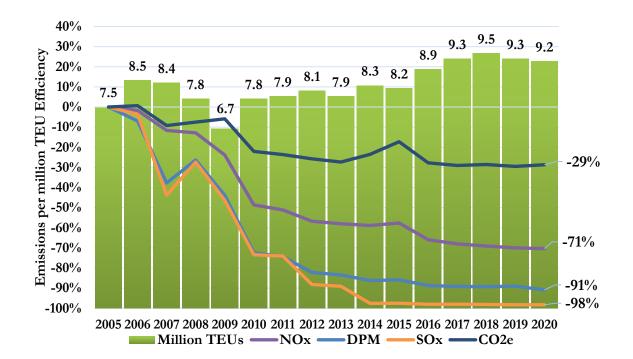


SECTION 9 COMPARISON OF 2020 AND PREVIOUS YEARS' FINDINGS AND EMISSION ESTIMATES

This section compares 2020 emissions to emissions in both the previous year and 2005, in terms of overall emissions and for each source category. Comparisons by emission source categories are addressed in separate subsections in table and chart formats, with the explanation of the findings and differences in emissions between years. The tables and charts in this section summarize the percent change from the previous year (2020 vs 2019) and for the CAAP Progress (2020 vs 2005) using 2020 methodology. Table 9.1 presents the port-wide emissions comparison for 2020, 2019, and 2005. Figure 9.1 illustrates the emissions trend for 2005 to 2020.

EI Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	HC	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
2020	117	108	97	5,814	104	1,928	363	903,250
2019	119	109	98	5,963	104	2,073	373	904,887
2005	1,025	882	863	16,103	4,826	3,757	852	1,029,863
Previous Year (2019-2020)	-2%	-2%	-1%	-3%	-1%	-7%	-3%	-0.2%
CAAP Progress (2005-2020)	-89%	-88%	-89%	-64%	-98%	-49%	-57%	-12%

Figure 9.1: Emissions Trend


64

In order to measure progress of the various emission reduction goals, the Port has established metrics to track emissions per unit of work. In this section, the emissions efficiency table will be provided for each source category. Table 9.2 and Figure 9.2 show emissions efficiency as tons of emissions per 10,000 TEUs for total emissions. In Table 9.2, a positive percent change for the emissions efficiency comparison means an improvement in efficiency. In Figure 9.2, for illustrative purposes, a negative percent change shows the improvement from the baseline year.

EI Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
2020	0.126	0.117	0.105	6.31	0.11	2.09	0.39	980
2019	0.127	0.117	0.105	6.39	0.11	2.22	0.40	969
2005	1.370	1.178	1.153	21.52	6.45	5.02	1.14	1,376
Previous Year (2019-2020) CAAP Progress (2005-2020)	1% 91%	0% 90%	0% 91%	1% 71%	0% 98%	6% 58%	3% 66%	-1% 29%

Table 9.2: Emissions Efficiency Metric, tons/10,000 TEUs

Ocean-Going Vessels

The methodology used to estimate OGV emissions changed in the 2020 EI. The previous year OGV emissions were re-estimated to reflect the 2020 emission factors and the Tier III vessel rule that requires switching the emission rate of the main engine from Tier III level to Tier II when the main engine load is at 25% or below. The emissions calculation methodology and the emission rates are described in Section 2 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.

The various emission reduction strategies implemented for ocean-going vessels are listed in Table 9.3. The table lists the percentage of all vessel calls that participated in the specific control strategy for 2020, the previous year, and 2005. The following OGV emission reductions strategies are listed:

- Shore Power²⁹ refers to vessel calls using shore power at berth, instead of running their diesel-powered auxiliary engines.
- VSR³⁰ refers to the vessels reducing their transit speed to 12 knots or lower within 20 and 40 nm of the Port.
- > ESI³¹ refers to the number of vessel calls that participated in the Ports' ESI program and used ship-specific low sulfur (S) fuel, which in several cases contained S levels below the regulated S level of 0.1% resulting in additional SO_x, PM, PM_{2.5}, and DPM benefit.
- Engine International Air Pollution Prevention (EIAPP) certificates refer to the number of vessel calls using ship-specific NO_x emission factors for main and auxiliary engines, where vessel specific EIAPP certificates with actual NO_x rating were available through the ESI program or the VBP.

Year	Shore	VSR	VSR	ESI	EIAPP	EIAPP
	Power	20 nm	40 nm		Main Eng	Aux Eng
2020	41%	96%	93%	59%	68%	67%
2019	42%	91%	87%	55%	61%	60%
2005	2%	65%	na	0%	5%	5%
						DB ID1790

Table 9.3: Participation Rates of OGV Emission Reduction Strategies

In 2020, in addition to the shore power calls listed in the table, an additional 6% of all vessel arrivals used alternative technology to comply with the CARB At-Berth Regulation. The alternative at-berth emission control technologies used in 2020 include the Maritime Emissions Treatment System (METS) and Advanced Maritime Emission Control System

²⁹ www.portoflosangeles.org/environment/air-quality/alternative-maritime-power-(amp)

³⁰www.portoflosangeles.org/environment/air-quality/vessel-speed-reduction-program

³¹www.portoflosangeles.org/environment/air-quality/environmental-ship-index

(AMECS). Note that the AMECS was unable to be utilized in the fourth quarter of 2020 due to system losing its CARB certification.

In 2020, vessels were more compliant with VSR and ESI. Additionally, a greater percentage of vessels had EIAPP certificates available that listed the specific NO_x rating. Shore power percent participation was 1% lower when compared to the previous year.

Since 2005, fuel switching from heavy fuel oil (HFO) to low sulfur content fuel, such as marine gas oil (MGO) or marine distillate oil (MDO), has played a major role in reducing emissions from OGVs. In 2005, fuel switching was voluntary and only 7% of main engines and 27% of auxiliary engines switched fuel. In 2020, all vessels have switched fuel (100%) to 0.1% sulfur content MGO to comply with Phase II of CARB's marine fuel regulation and the North American Emissions Control Area (ECA) requirements or less than 0.1% S fuel reported by vessels participating in the ESI program.

Table 9.4 summarizes the percentage of calls utilizing the main engine IMO NO_x standards tiers (Tier) for 2020, the previous year, and 2005. The "No Tier" column characterizes vessels that do not have diesel engines, such as steamships. Tier I refers to calls by vessels meeting or exceeding Tier I NO_x standards (vessels constructed from 2000-2010), Tier II refers to calls by vessels meeting or exceeding Tier II NO_x standards (vessels constructed from 2000-2010), Tier II refers to calls by vessels meeting or exceeding Tier II NO_x standards (vessels constructed from 2011-2015), and Tier III NO_x refers to calls by vessels meeting or exceeding the IMO's Tier III standards, which are in effect in the North American ECA for vessels constructed on or after January 1, 2016. In 2020, 18 vessels, including seven containerships, one cruise ship, and ten tankers, with certified Tier III main engines called the Port. Compared to the previous year, the number of Tier 0 engines continued their downward trend.

Year	IMO Tier 0	IMO Tier I	IMO Tier II	IMO Tier III	No Tier
2020	6%	61%	30%	2%	2%
2019	7%	59%	29%	0.5%	5%
2005	59%	37%	0%	0.0%	4%
					DB ID1789

Table 9.4: OGV Percentage of Calls by Main Engine Tiers

Table 9.5 presents the OGV activity by engine type in terms of total energy consumption (expressed as kWh). In 2020, the total energy consumption increased 7% compared to the previous year and decreased by 29% compared to 2005. The kWh associated with the METS and AMECS technology generators were included in the total auxiliary engine kWh shown in the table. The main engine activity has decreased through the years mainly due to the VSR program and fewer vessel calls. The auxiliary engine activity increased in 2020 due to 1) longer times at berth and at anchorage associated with COVID-19 impact and 2) less use of shore power due to vessels requesting exemptions to the CARB At-Berth Regulation for (a)

excessive heat in August - September timeframe and for (b) COVID-19 emergency reasons in 2020.

Year	All Engines Total kWh	Main Eng Total kWh	Aux Eng Total kWh	Boiler Total kWh
2020	262,495,136	55,762,605	118,167,529	87,799,499
2019	244,767,705	69,230,554	92,278,000	82,493,882
2005	369,750,230	109,201,774	185,924,166	74,624,290
Previous Year (2019-2020)	7%	-19%	28%	6%
CAAP Progress (2005-2020)	-29%	-49%	-36%	18%

Table 9.5: OGV Energy Consumption Comparison, kWh

Table 9.6 compares the OGV emissions for calendar years 2020, the previous year, and 2005. Reductions in OGV emissions since 2005 are mainly attributed to increased participation in the Port's VSR program, the CARB At-Berth Regulation, CARB marine fuel regulation, and the Port's ESI-based incentive program.

EI Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
2020	52	48	34	2,867	96	273	127	212,248
2019	48	44	30	2,748	97	244	115	198,254
2005	611	491	450	5,193	4,668	469	215	281,239
Previous Year (2019-2020)	8%	8%	13%	4%	-1%	12%	10%	7%
CAAP Progress (2005-2020)	-91%	-90%	-93%	-45%	-98%	-42%	-41%	-25%
								DB ID692

Table 9.6: OGV Emissions Comparison

Between 2019 and 2020, OGV emissions increased due to more vessels at anchorage, more time at berth, and less shore power use. These factors can be attributed mainly to impacts resulting from the COVID-19 pandemic and are summarized below:

- 1) the COVID-19 pandemic led cruise ships to stop passenger operations in mid-March which lowered berth calls, but increased anchorage calls for cruise ships.
- 2) CARB provided exemptions to the At-Berth Regulation for (a) excessive heat in AugustSeptember timeframe and for (b) COVID-19 emergency reasons in 2020 which resulted in fewer shore power calls for containerships.
- the largest decline in world liquid fuels consumption³² in recent history resulted in less tankers calling the Port.
- 4) increased anchorage calls for containerships due to demand in consumer goods in second half of the year.

³² U.S. Energy Information Administration, www.eia.gov/outlooks/steo/report/global_oil.php

5) worker safety agreement during 2020 to cap the number of gangs per ship to four. The reduced number of cranes for the larger containerships resulted in extended time at berth.

Table 9.7 shows the emissions efficiency changes between 2020, the previous year, and 2005. A positive percent change for the emissions efficiency comparison means an improvement in efficiency.

EI Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	со	нс
2020	0.06	0.05	0.04	3.11	0.10	0.30	0.14
2019	0.05	0.05	0.03	2.94	0.10	0.26	0.12
2005	0.82	0.66	0.60	6.94	6.24	0.63	0.29
Previous Year (2019-2020)	-20%	0%	-33%	-6%	0%	-15%	-17%
CAAP Progress (2005-2020)	93%	92%	93%	55%	98%	52%	52%

Table 9.7: OGV Emissions Efficiency Metric Comparison, tons/10,000 TEUs

Harbor Craft

The methodology used to estimate harbor craft emissions for the 2020 inventory did not change from the methodology used in the previous year inventory. The emissions calculation methodology and the emission rates are described in Section 3 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.

Table 9.8 summarizes the percent distribution of engines based on EPA's engine standards. Tier 1 to Tier 4 engine categories for the Port's harbor craft inventory were based on the EPA's emission standards for marine engines.³³ Tier 0 engines are unregulated engines built prior to the promulgation of the EPA emission standards. The percentages in the "unknown" column represent engines missing model year, horsepower, or both. In 2020, a Tier 4 vessel was included in the inventory for the first time.

 Table 9.8: Harbor Craft Engine Distribution Comparison by Tier

Year	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4	Unknown
2020	2%	7%	38%	40%	1%	12%
2019	3%	8%	44%	34%	0%	11%
2005	15%	27%	3%	0%	0%	55%
					DB ID	1631

³³Code of Federal Regulation, 40 CFR, subpart 94.8 for Tier 1 and 2 and subpart 1042.101 for Tier 3

Table 9.9 summarizes the number of harbor craft inventoried for 2020, the previous year, and 2005. Overall, the total vessel count increased by 4% between 2020 and the previous year and decreased by 28% between 2005 and 2020. The increase in vessels from the previous year was due to more tugboats in 2020 added to SPBP inventory to keep up with demand and larger containerships and tankers.

Harbor	2020	2019	2005
Vessel Type			
Assist tug	13	13	16
Commercial fishing	95	95	156
Crew boat	22	21	14
Excursion	20	19	24
Ferry	8	8	7
Government	11	11	26
Ocean tug	7	7	7
Tugboat	21	16	21
Work boat	9	9	14
Total	206	199	285
		DE	B ID196

Table 9.9: Harbor Craft Count Comparison

Table 9.10 summarizes the overall harbor craft activity in million kWh by vessel type, which decreased slightly (1%) in 2020 as compared to the previous year. The COVID-19 pandemic impacted excursion vessels and ferries with decreased operations during pandemic lockdown which is in line with ceasing operations from mid-March to mid-June 2020 per California Governor's Executive Order. In 2020, tugboats and workboats saw an increase activity as compared to 2019. Compared to 2005, the harbor craft activity increased by 6% in 2020.

Vessel Type	2020	2019	2005
Assist Tug	19.9	18.7	25.2
Commercial Fishing	15.2	15.0	14.1
Crew boat	7.9	8.1	2.4
Excursion	5.4	6.9	12.4
Ferry	11.0	15.2	12.4
Government	1.4	1.6	3.0
Ocean Tug	19.5	20.3	3.1
Tugboat	6.2	2.8	11.9
Work boat	4.8	3.5	1.6
Total	91.3	92.1	86.1

Table 9.10: Harbor Craft Activity by Vessel Type, million kWh

Table 9.11 shows the harbor craft energy consumption (kWh) comparison by engine tier for calendar years 2020, the previous year, and 2005.

Engine	2020	2019	2005
Tier	% of Total	% of Total	% of Total
Tier 0	0.6%	0.6%	55.1%
Tier 1	6.5%	6.9%	30.3%
Tier 2	59.7%	71.3%	14.6%
Tier 3	31.6%	21.2%	0.0%
Tier 4	1.6%	0.0%	0.0%
Total	100%	100%	100%

Table 9.11: Harbor Craft Energy Consumption Comparison by Engine Tier, kWh

Table 9.12 shows the emissions comparisons for calendar 2020, the previous year, and 2005 for harbor craft. In 2020, emissions for all pollutants decreased as compared to the previous year. The decrease is mainly due to lower energy consumption (see Table 9.10) and cleaner engines doing the majority (93%) of work (see Table 9.11).

Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
2020	24	22	24	721	0.7	539	82	60,374
2019	26	24	26	755	0.7	543	83	60,884
2005	55	51	55	1,318	6.3	364	87	56,925
Previous Year (2019-2020)	-8%	-8%	-8%	-4%	-1%	-1%	-2%	-1%
CAAP Progress (2005-2020)	-57%	-57%	-57%	-45%	-89%	48%	-6%	6%
								DB ID427

Table 9.12: Harbor Craft Emission Comparison

Compared to 2005, emissions decreased for PM, NO_x , and SO_x . The emissions increased for CO and CO_2e . The increase in CO is more directly related to an increase in Tier 2 and Tier 3 engines that have higher CO emission rates compared to pre-Tier 2. Due to the stringency of PM and ($NO_x + HC$) standards of Tier 2 engines, less stringent Tier 2 CO standards were adopted which resulted in higher CO emission rates.

Since 2005, there has been an increase in Tier 2 and Tier 3 engines due to vessel repowers, CARB's in-use harbor craft regulation, and new vessels bought by companies over the last few years. The focus of Tier 2 and Tier 3 engine standards is on PM and NO_x reduction; there are no CO_2 standards, therefore the CO_2 e emissions have increased over time.

Table 9.13 shows the emissions efficiency changes in 2020 as compared to the previous year and 2005. It should be noted that total harbor craft emissions were used for this efficiency comparison although emissions from several harbor craft types (e.g., commercial fishing vessels) are not dependent on container throughput. A positive percent for the emissions efficiency comparison means an improvement in efficiency.

Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂ e
2020	0.03	0.02	0.03	0.78	0.001	0.59	0.09	66
2019	0.03	0.03	0.03	0.81	0.001	0.58	0.09	65
2005	0.07	0.07	0.07	1.76	0.008	0.49	0.12	76
Previous Year (2019-2020)	7%	4%	7%	3%	0%	-1%	0%	0%
CAAP Progress (2005-2020)	65%	65%	65%	56%	88%	-20%	24%	14%

Table 9.13:	Harbor Crat	t Emissions	Efficiency	Metric	Comparison,	tons/10,000 TEUs
-------------	-------------	-------------	------------	--------	-------------	------------------

Cargo Handling Equipment

The methodology used to estimate CHE emissions for the 2020 inventory did not change from the methodology used in the previous year inventory. The emissions calculation methodology and the emission rates are described in Section 4 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.

Table 9.14 shows that the number of units of cargo handling equipment and the overall energy consumption decreased by 6% in 2020 as compared to the previous year. Energy consumption is measured as total kWh, the product of the rated engine size in kW, annual operating hours and load factors. Less equipment was operating at the terminals and there was lower usage level to handle TEU throughput which was 1% lower than the previous year.

From 2005 to 2020, there was a 7% increase in population and 24% increase in activity level to handle the 23% increase in TEU throughput.

Year	Count	Energy Consumption kWh	TEU	Activity per TEU
2020	1,915	214,138,075	9,213,396	23
2019	2,038	227,587,451	9,337,632	24
2005	1,782	173,108,402	7,484,624	23
Previous Year (2019-2020)	-6%	-6%	-1%	-5%
CAAP Progress (2005-2020)	7%	24%	23%	0%

Table 9.14: CHE Count and Activity Comparison

Table 9.15 summarizes the numbers of pieces of cargo handling equipment using various engine and power types, including electric, LNG, diesel, propane, and gasoline. Compared to the previous year, there were fewer propane equipment and more diesel equipment in 2020. Hybrid RTG cranes and straddle carriers were included in the diesel count.

Equipment	Electric	LNG	Propane	Gasoline	Diesel	Total
2020						
Forklift	29	0	181	6	105	321
Wharf crane	86	0	0	0	0	86
RTG crane	0	0	0	0	103	103
Straddle carrier	0	0	0	0	67	67
Top handler	2	0	0	0	194	196
Yard tractor	5	22	158	0	781	966
Other	40	0	1	4	131	176
Total	162	22	340	10	1,381	1,915
	8.5%	1.1%	17.8%	0.5%	72.1%	
2019						
Forklift	11	0	355	7	110	483
Wharf crane	86	0	0	0	0	86
RTG crane	0	0	0	0	98	98
Straddle carrier	0	0	0	0	40	40
Top handler	0	0	0	0	198	198
Yard tractor	0	17	158	0	790	965
Other	41	0	1	3	123	168
Total	138	17	514	10	1,359	2,038
	6.8%	0.8%	25.2%	0.5%	66.7%	
2005						
Forklift	0	0	263	8	151	422
Wharf crane	67	0	0	0	0	67
RTG crane	0	0	0	0	98	98
Straddle carrier	0	0	0	0	0	0
Top handler	0	0	0	0	127	127
Yard tractor	0	0	53	0	848	901
Other	12	0	0	3	152	167
Total	79	0	316	11	1,376	1,782
	4.4%	0.0%	17.7%	0.6%	77.2%	
						DB ID235

Table 9.15: Count of CHE Equipment Type

Table 9.16 summarizes the number and percentage of diesel-powered CHE with various emission controls by equipment type in 2020, the previous year, and 2005. The emission controls for CHE include:

- > Hybrid equipment counts (included for the first time in 2020 EI)
- DPF retrofits counts
- On-road engines (CHE equipped with on-road certified engines instead of off-road engines)
- ▶ ULSD with a maximum sulfur content of 15 ppm

Several items to note include:

- Since some emission controls can be used in combination with others, the number of units of equipment with controls cannot be added across to come up with the total equipment count (counts of equipment with controls would be greater than the total equipment counts).
- DOC count was no longer included in the table since there were no DOC retrofits in the 2020 inventory. This is due to fleet turnover and newer equipment with Tier 4f engines that do not require the use of DOCs.
- A column for hybrid equipment count was added and straddle carriers were included instead of side picks as there has been an increase in the use of straddle carriers at the Port since 2018.
- In 2020, there was an increase in equipment counts for hybrid RTG cranes and hybrid straddle carriers. Hybrid equipment reduce overall equipment emissions as opposed to using conventional equipment.
- With implementation of the Port's CAAP measure for CHE and CARB's CHE regulation, the relative percentage of cargo handling equipment equipped with new on-road engines increased significantly when compared to 2005.
- ULSD is used by all diesel equipment since 2006. For 2005, ULSD was used by some diesel equipment, but not all. Compared to the previous year, in 2020 there were more diesel-powered equipment.
- Comparing to the previous year, in 2020 there were more RTG cranes with DPFs.
- Compared to the previous year, in 2020 there were less yard tractors with on-road engines as terminal operators opted to purchase yard tractors with offroad Tier 4f engines instead of yard tractors with on-road engines.
- 26 emission controls for propane forklifts are not included in Table 9.15 since only strategies for diesel equipment are included.

					Total	tal % of Diesel Powered Equipment				
Equipment	DOC	On-Road	DPF	ULSD	Diesel-Powered	DOC	On-Road	DPF	ULSD	
_	Retrofit	Engines	Retrofit	Fuel	Equipment	Retrofit	Engines	Retrofit	Fuel	
2020		-			_		-			
Forklift	0	0	35	105	105	0.0%	0%	33%	100%	
RTG crane	0	0	24	103	103	0.0%	0%	23%	100%	
Side pick	0	0	2	14	14	0.0%	0%	14%	100%	
Top handler	0	0	61	194	194	0.0%	0%	31%	100%	
Yard tractor	0	664	4	781	781	0.0%	85%	1%	100%	
Sweeper	0	0	1	7	7	0.0%	0%	14%	100%	
Other	0	12	37	177	177	0.0%	7%	21%	100%	
Total	0	676	164	1,381	1,381	0.0%	49%	12%	100%	
2019										
Forklift	0	0	42	110	110	0.0%	0%	38%	100%	
RTG crane	6	0	8	98	98	6.1%	0%	8%	100%	
Side pick	0	0	3	15	15	0.0%	0%	20%	100%	
Top handler	0	0	62	198	198	0.0%	0%	31%	100%	
Yard tractor	0	675	4	790	790	0.0%	85%	1%	100%	
Sweeper	0	1	2	8	8	0.0%	13%	25%	100%	
Other	0	12	36	140	140	0.0%	9%	26%	100%	
Total	6	688	157	1,359	1,359	0.4%	51%	12%	100%	
2005										
Forklift	3	0	0	27	151	2%	0%	0%	18%	
RTG crane	0	0	0	36	98	0%	0%	0%	37%	
Side pick	14	0	0	16	41	34%	0%	0%	39%	
Top handler	48	0	0	79	127	38%	0%	0%	62%	
Yard tractor	520	164	0	483	848	61%	19%	0%	57%	
Sweeper	0	0	0	0	8	0%	0%	0%	0%	
Other	0	1	0	65	103	0%	1%	0%	63%	
Total	585	165	0	706	1,376	43%	12%	0%	51%	

Table 9.17 compares the total number of cargo handling equipment with off-road diesel engines (meeting Tier 0, 1, 2, 3, 4i, and 4 off-road diesel engine standards) and those equipped with on-road diesel engines for 2020, the previous year, and 2005. Since classification of engine standards was based on the engine's model year and horsepower, equipment with missing horsepower or model year information were listed separately under the "Unknown Tier" column in this table.

Implementation of the CAAP's CHE measure and CARB's CHE regulation have resulted in a steady increase in the prevalence of newer and cleaner equipment (i.e., primarily Tier 3 and Tier 4) replacing the older and higher-emitting equipment (Tier 0, Tier 1, and Tier 2). In 2020, the increase in Tier 2 and Tier 4i engines is due to improved data from terminals on their existing fleet. Terminals did not add any older equipment to their existing fleet.

Year	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4i	Tier 4f	On-road	Unknown	Total Diesel
							Engine	Tier	Engines
2020	10	12	75	94	167	328	676	19	1,381
2019	16	13	69	107	158	296	688	12	1,359
2005	256	582	360	0	0	0	165	13	1,376
Previous Year	-38%	-8%	9%	-12%	6%	11%	-2%	58%	2%
CAAP Progress	-96%	-98%	-79%	NA	NA	NA	310%	46%	0%
									DB ID878

Table 9.17: Count of CHE Diesel Engine Tier and On-road Engine

Table 9.18 shows the distribution of equipment energy consumption (kWh) comparison by engine type. The Tier 4f energy consumption increased from the previous year.

Engine Type	Engine Tier	2020 % of Total	2019 % of Total	2005 % of Total
Diesel	Tier 0	0.3%	0.3%	11.0%
Diesel	Tier 1	0.3%	0.2%	39.3%
Diesel	Tier 2	5.3%	4.0%	31.2%
Diesel	Tier 3	6.8%	8.4%	0.0%
Diesel	Tier 4i	14.4%	12.8%	0.0%
Diesel	Tier 4	28.3%	25.8%	0.0%
Diesel	Onroad engines	37.3%	39.8%	12.0%
Gasoline		0.1%	0.2%	0.3%
Propane		6.8%	8.2%	6.2%
LNG		0.6%	0.2%	0.0%

Table 9.18: Distribution of CHE Energy Consumption by Engine Type, %

Table 9.19 shows the cargo handling equipment emissions comparisons for 2020, the previous year, and 2005. Compared to the previous year, all emissions decreased, due to reduced activity and increased usage of newer equipment. It is difficult to determine whether the reduced equipment activity and emissions are due to COVID-19 impacts.

The reductions in 2020 emissions compared to 2005 emissions are largely due to the implementation of the Port's CHE measures and CARB's CHE regulation. The efforts resulted in the introduction of newer equipment with cleaner engines and the installation of emission controls. The increase in CO_2e is mainly due to the 23% increase in energy consumption in 2020 as compared to 2005.

Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂ e
	tons	tons	tons	tons	tons	tons	tons	tonnes
2020	6	5	4	366	2	643	66	165,961
2019	7	6	5	410	2	805	83	177,264
2005	54	50	53	1,573	9	822	92	134,621
Previous Year (2019-2020)	-14%	-14%	-10%	-11%	-5%	-20%	-20%	-6%
CAAP Progress (2005-2020)	-89%	-89%	-91%	-77%	-81%	-22%	-28%	23%
								DB ID23

Table 9.19: CHE Emissions Comparison

Table 9.20 shows the emissions efficiency changes in 2020 from 2005 and the previous year. A positive percentage change for the emissions efficiency comparison means an improvement in efficiency with respect to a particular pollutant.

Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂ e
2020	0.006	0.006	0.005	0.397	0.002	0.698	0.072	180
2019	0.007	0.007	0.005	0.439	0.002	0.862	0.089	190
2005	0.072	0.066	0.071	2.102	0.013	1.099	0.123	180
Previous Year (2019-2020)	12%	13%	9%	10%	0%	19%	19%	5%
CAAP Progress (2005-2020)	91%	91%	93%	81%	85%	36%	41%	0%

Table 9.20: CHE Emissions Efficiency Metric Comparison, tons/10,000 TEUs

Locomotives

The methodology used to estimate locomotive emissions in this 2020 inventory is the same as that used in the previous year inventory. The emissions calculation methodology and the emission rates are described in Section 5 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.

Table 9.21 shows the throughput comparisons for locomotives for 2020, the previous year, and 2005.

Throughput	2005	2019	2020
Total	7.48	9.34	9.21
On-dock lifts	1.02	1.29	1.17
On-dock TEUs	1.84	2.32	2.11
% On-Dock	25%	25%	23%

Table 9.21: Throughput Comparison, million TEUs

Table 9.22 shows the locomotive emission estimates for calendar years 2020, the previous year, and 2005.

Year	PM ₁₀ tons	PM _{2.5} tons	DPM tons	NO _x tons	SO _x tons	CO tons	HC tons	CO ₂ e
2020								
2020	29.3	27.0	29	786	0.7	189	45	65,987
2019	31.7	29.2	31.7	881.8	0.8	204.6	48.6	71364.1
2005	57	53	57	1,712	98.0	237	89	82,201
Previous Year (2018-2019)	-7%	-7%	-7%	-11%	-8%	-8%	-7%	-8%
CAAP Progress (2005-2019)	-49%	-49%	-49%	-54%	-99%	-20%	-49%	-20%
								DB ID428

Table 9.22: Locomotive Emission Comparison

Compared to 2005, the decrease in emissions were due to PHL's and UP's fleet turnover to ultra-low emissions switching locomotives, the use of ULSD, the Class 1 railroads' compliance with the MOU, and introduction of newer locomotives. CO₂e emissions have been reduced since 2005 despite the increase in rail throughput through the freight movement efficiency improvements implemented by the railroads and terminals.

The decrease in emissions from 2019 to 2020 were due to a decrease in on-dock and ICTF rail transport and a decrease in the fleet composite NO_x emission factor resulting from fleet mix improvement. In 2020, rail activity and emissions were affected by the throughput changes that resulted from the COVID-19 pandemic, resulting in overall lower emissions.

Table 9.23 shows the emissions efficiency changes in 2020 from the previous year and from 2005. A positive percentage for the emissions efficiency comparison indicates an improvement in efficiency. For locomotive emissions efficiency, the on-dock lifts were used as opposed to TEU throughput, since this is a more direct way to measure efficiency for the locomotives. For the CAAP progress (2020 vs. 2005), emissions efficiencies have improved for all pollutants. The locomotive emissions efficiency decreased in 2020 as compared to 2019 despite the emission reductions.

Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
2020	0.251	0.231	0.251	6.716	0.006	1.618	0.384	564
2019	0.246	0.226	0.246	6.836	0.006	1.586	0.376	553
2005	0.558	0.518	0.558	16.747	0.959	2.318	0.871	804
Previous Year (2018-2019)	-2%	-2%	-2%	2%	0%	-2%	-2%	-2%
CAAP Progress (2005-2019)	55%	55%	55%	60%	99%	30%	56%	30%

Table 9.23: Locomotive Emissions Efficiency Comparison, tons/10,000 on-dock lifts

Heavy-Duty Vehicles

The methodology used to estimate HDV emissions in this 2020 inventory is different from the methodology used in the previous year inventory. The latest version of CARB's emission estimating model, EMFAC2021, was used for the 2020 estimates, and 2019 emissions were re-estimated using this latest model. The emissions calculation methodology and the emission rates are described in Section 6 of the San Pedro Bay Ports Emissions Inventory Methodology Report Version 2.

Table 9.24 shows the total port-wide idling time based on information provided by the terminal operators which, as noted previously, relates to time spent on terminal that may not solely be time spent idling. Total idling increased 7% as compared to the previous year and increased 24% since 2005. The increase in idling since 2005 may be due to the increase in TEU throughput, which resulted in more truck trips. In 2020, the increase in idling from the previous year was due to the COVID-19 pandemic, as terminals saw increased turn times.

	Total
EI Year	Idling Time
	(hours)
2020	3,753,051
2019	3,520,156
2005	3,017,252
Previous Year (2019-2020)	7%
CAAP Progress (2005-2020)	24%

Table 9.24: HDV Idling Time Comparison, hours

Table 9.25 summarizes the average age of the truck fleet in 2020, the previous year, and 2005. The average age of the trucks visiting the Port was 7 years in 2020.

Year	Call-Weighted Average Age (years)
2020	7
2019	8
2005	11

Table 9.25: HDV Fleet Weighted Average Age, years

Table 9.26 summarizes the HDV emissions for 2020, the previous year, and 2005. The HDV emissions of all pollutants have decreased significantly from 2005 largely due to increasingly stringent on-road engine emission standards and the implementation of the CTP. Compared to the previous year, VMT increased by 2% due to decrease in on-dock rail which increased truck activity and lengthened average trip distances, but most emissions were lower or not changed. Despite the increase in VMT, overall emissions were lower in 2020 due to the continued improvement in the fleet, with a higher percentage of trips made by newer trucks.

Year	VMT	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
		tons	tons	tons	tons	tons	tons	tons	tonnes
2020	221,494,219	5.8	5.5	5.8	1,075	3.8	284	43	398,679
2019	216,458,602	6.2	5.9	6.2	1,168	3.8	277	43	397,121
2005	266,434,761	248	238	248	6,307	45	1,865	368	474,877
Previous Year (2019-2020)	2%	-7%	-7%	-7%	-8%	0%	3%	0%	0%
CAAP Progress (2005-2020)	-17%	-98%	-98%	-98%	-83%	-92%	-85%	-88%	-16%

Table 9.26: HDV Emissions Comparison

As an overall measure of the changes in HDV emissions independent of fluctuations in throughput, Table 9.27 illustrates the changes in emissions in average grams per mile (g/mi) between 2005 and 2020 and between 2019 and 2020. The unit of grams per mile was used because it shows the changes in emissions independent of variations in throughput, which can complicate the comparisons. The values were calculated by dividing overall HDV emissions by overall miles traveled and include idling emissions, as well as emissions from driving at various speeds, on-terminal and on-road. Particulate emissions have been reduced most dramatically from 2005 to 2020, followed by the other pollutants. The CTP and engine emission standards are responsible for most reductions, including the particulate and NO_x decreases, while fuel sulfur standards, specifically the introduction of ultra-low sulfur diesel fuel (ULSD), are responsible for the SO_x reduction.

Table 9.27: HDV Fleet Average Emissions, g/mile

Year	PM ₁₀	PM _{2.5}	DPM	NO _x	SO _x	со	нс	CO ₂ e
2020	0.0237	0.0227	0.0236	4.4012	0.0156	1.1637	0.1771	1,800
2019	0.0260	0.0249	0.0259	4.8963	0.0159	1.1600	0.1817	1,835
2005	0.8457	0.8091	0.8457	21.4756	0.1529	6.3487	1.2536	1,782
Previous Year (2019-2020)	-9%	-9%	-9%	-10%	-2%	0%	-3%	-2%
CAAP Progress (2005-2020)	-97%	-97%	-97%	-80%	-90%	-82%	-86%	1%

Figure 9.3 illustrates the HDV model year distribution for calendar years 2018 to 2020. It shows model year 2009 trucks remain dominant but continue to decline in number. It also shows the elevated percentages of newer, 2010+ trucks.

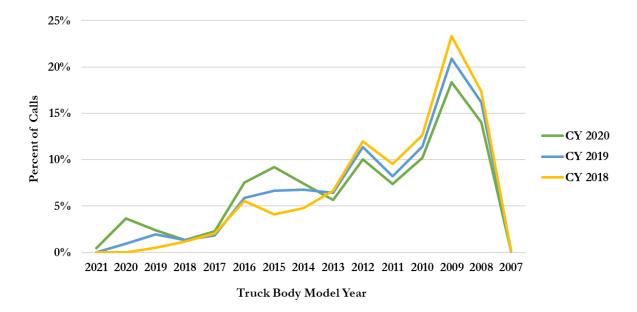


Figure 9.3: HDV Model Year Distribution

Table 9.28 shows the emissions efficiency changes for HDVs. A positive percentage for the emissions efficiency comparison means an improvement in efficiency. Comparing 2020 to 2005 for CAAP progress, HDV emissions efficiency has improved for all pollutants. Comparing 2020 to the previous year, emissions efficiency improved for PM and NO_x, while it remained the same for SO_x and hydrocarbon. Emissions efficiency for CO and CO₂e did not improve.

Year	\mathbf{PM}_{10}	PM _{2.5}	DPM	NO _x	SO _x	СО	нс	CO ₂ e
2020	0.0063	0.0060	0.0063	1.166	0.004	0.31	0.05	433
2019	0.0067	0.0064	0.0066	1.251	0.004	0.30	0.05	425
2005	0.3318	0.3175	0.3318	8.427	0.060	2.49	0.49	634
Previous Year (2019-2020)	6%	6%	5%	7%	0%	-3%	0%	-2%
CAAP Progress (2005-2020)	98%	98%	98%	86%	93%	88%	90%	32%

Table 9.28: HDV Emissions Efficiency Metrics Comparison, tons/10,000 TEUs

CAAP Standards and Progress

One of the main purposes of the annual inventories is to provide a progress update on achieving the CAAP's San Pedro Bay Standards. These standards consist of the following emission reduction goals, compared to the 2005 inventories:

- Emission Reduction Standard:
 - $\circ~$ By 2014, achieve emission reductions of 72% for DPM, 22% for NOx, and 93% for SOx
 - $\circ~$ By 2023, achieve emission reductions of 77% for DPM, 59% for NOx, and 93% for SOx
- ▶ Health Risk Reduction Standard: 85% reduction by 2020

Due to the many emission reduction measures undertaken by the Port, as well as statewide and federal regulations and standards, the 2023 emission reduction standards were met and exceeded in 2020 for DPM, NO_x, and SO_x. Below is a summary of DPM, NO_x, and SO_x percent reductions as compared to the 2014/2023 emission reduction standards.

Table 9.29: Reductions as Compared to 2014 and 2023 Emission Reduction Standard

Pollutant	2020 Actual	2014 Emission Reduction	2023 Emission Reduction
	Reductions	Standard	Standard
DPM	-89%	72%	77%
NO _x	-64%	22%	59%
SO_x	-98%	93%	93%

Tables 9.30 through 9.32 show the standardized estimates of DPM, NO_x and SO_x emissions by source category for calendar years 2020, the previous year, and 2005 using current year methodology. The tables also present the percent reduction of emissions from 2005 levels.

Table 9.30: DPM Emissions Comparison by Source Category, tons

Category	2005	2019	2020
Ocean-going vessels	450	30	34
Harbor Craft	55	26	24
Cargo handling equipment	53	5	4
Locomotives	57	32	29
Heavy-duty vehicles	248	6	6
Total	863	98	97
% Cumulative Change		89%	89%

Category	2005	2019	2020
Ocean-going vessels	5,193	2,748	2,867
Harbor Craft	1,318	755	721
Cargo handling equipment	1,573	410	366
Locomotives	1,712	882	786
Heavy-duty vehicles	6,307	1,168	1,075
Total	16,103	5,963	5,814
% Cumulative Change		63%	64%

Table 9.31: NO_x Emissions Comparison by Source Category, tons

Table 9.32: SO_x Emissions Comparison by Source Category, tons

Category	2005	2019	2020
Ocean-going vessels	4,668	97	96
Harbor Craft	6	1	1
Cargo handling equipment	9	2	2
Locomotives	98	1	1
Heavy-duty vehicles	45	4	4
Total	4,826	104	104
% Cumulative Change		98%	98%

APPENDIX A: CHE Inventory

						р ·					
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Automatic Stacking Crane	Kalmar	ASC 4+	Electric	0			0	2418 CHE Electric			
Automatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2301 CHE Electric			
Automatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2381 CHE Electric			
Automatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2221 CHE Electric			
Automatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2307 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	1961 CHE Electric			
Automatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2347 CHE Electric			
Automatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2150 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2027 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	1631 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	1338 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	1998 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2196 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2062 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2216 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	1928 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	961 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2361 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2467 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2491 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2402 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2527 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2366 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2421 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2315 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2869 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 4+	Electric				0	2150 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 5.0	Electric				0	1992 CHE Electric			
utomatic Stacking Crane	Kalmar	ASC 5.0	Electric				0	1586 CHE Electric			
ulldozer	Caterpillar	D8T	Diesel	Caterpillar	C15	2006	310	259 CHE Diesel			
ulldozer	Caterpillar	D6R	Diesel	Caterpillar	C9	2007	200	83 CHE Diesel		5/15/2011	
ulldozer	Caterpillar	D6R	Diesel	Caterpillar	C9	2007	200	174 CHE Diesel		5/7/2015	
one Vehicle	Motrec	RR662SD	Diesel			2010	35	2056 CHE Diesel		1/1/2014	
one Vehicle	Motrec	RR662SD	Diesel			2010	35	1139 CHE Diesel		1/1/2014	
one Vehicle	Motrec	RR662SD	Diesel			2010	35	287 CHE Diesel		1/1/2014	
one Vehicle	Motrec	RR662SD	Diesel			2010	35	1753 CHE Diesel		1/1/2014	
one Vehicle	Motrec	RR662SD	Diesel			2014	35	883 CHE Diesel			
one Vehicle	Motrec	RR662SD	Diesel			2014	35	159 CHE Diesel			
one Vehicle	Motrec	RR662SD	Diesel			2014	35	1498 CHE Diesel			
one Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	199 CHE Diesel			
one Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	263 CHE Diesel			
one Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	255 CHE Diesel			
cone Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	175 CHE Diesel			
one Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	353 CHE Diesel			
one Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	48 CHE Diesel			
one Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	77 CHE Diesel			
Cone Vehicle	Motrec	RR-662	Diesel	Kubota Corp	V1505-ET04	2015	35	79 CHE Diesel			
Cone Vehicle	MEC	IBZ	Diesel	Kubota	D1105E	2013	25	CHE Diesel			
Cone Vehicle	MEC	IBZ	Diesel	Kubota	D1105E	2013	25	CHE Diesel			
Cone Vehicle	MEC	IBZ	Diesel	Kubota	D1105E	2013	25	CHE Diesel			
one Vehicle	MEC	IBZ	Diesel	Kubota	D1105E	2013	25	CHE Diesel			
Cone Vehicle	MEC	IBZ	Diesel	Kubota	D1105E	2013	25	690 CHE Diesel			
	MEC	IBZ	Diesel	Kubota	D1105E	2013	25	CHE Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Crane	Paceco		Electric				0	951 CHE Electric			
Crane	Paceco		Electric				0	1045 CHE Electric			
Crane	Paceco		Electric				0	929 CHE Electric			
Crane	P&H	Omega 35T	Diesel	Detroit Diesel	6V53	1987	244	42 CHE Diesel			
Crane	P&H 75T	75T	Diesel	Detroit Diesel	75T	1987	244	423 CHE Diesel			
Crane	Manitowoc	400W	Diesel	Detroit Diesel	NS-743-B320	1969	245	0 CHE Diesel			
Crane	Grove	RT855B	Diesel	Caterpillar	3116	5 1995	205	563 CHE Diesel			
Crane	Liebherr	LHM550	Diesel	Liebherr	D9512A7-04	2014	751	909 CHE Diesel			
Crane	Terex	RT550	Diesel	Cummins	6bta5.9	2003	174	221 CHE Diesel			
Crane	Terex	RT230	Diesel	Cummins	6BT5.9	2004	130	154 CHE Diesel			
Crane	Terex	RT230-2	Diesel	Cummins	6BT5.9	2014	130	154 CHE Diesel			
Electric wharf crane	Noell		Electric				0	1208 CHE Electric			
Electric wharf crane	Noell		Electric				0	1688 CHE Electric			
Electric wharf crane	Noell		Electric				0	2232 CHE Electric			
Electric wharf crane	Noell		Electric				0	2392 CHE Electric			
Electric wharf crane	Noell		Electric				0	2072 CHE Electric			
Electric wharf crane	Noell		Electric				0	1548 CHE Electric			
Electric wharf crane	Noell		Electric				0	600 CHE Electric			
Electric wharf crane	Noell		Electric				0	1196 CHE Electric			
Electric wharf crane	ZPMC	J481A	Electric				0	2960 CHE Electric			
Electric wharf crane	ZPMC	J481A	Electric				0	3572 CHE Electric			
Electric wharf crane	ZPMC	J481A	Electric				0	3928 CHE Electric			
Electric wharf crane	ZPMC	J481A	Electric				0	3784 CHE Electric			
Electric wharf crane	ZPMC	ZP-1002000014					0	4036 CHE Electric			
Electric wharf crane	ZPMC	ZP-1002000014					0	3808 CHE Electric			
Electric wharf crane	ZPMC	ZP-1002000015					0	3595 CHE Electric			
Electric wharf crane	ZPMC	ZP-1002000015					0	3152 CHE Electric			
Electric wharf crane	Mitsui/Paceco	21 1002000013	Electric				0	3401 CHE Electric			
Electric wharf crane	Mitsui/Paceco		Electric				0	2832 CHE Electric			
Electric wharf crane	Mitsubishi	60T	Electric				0	1026 CHE Electric			
Electric wharf crane	Mitsubishi	60T	Electric				0	1251 CHE Electric			
Electric wharf crane	Mitsubishi	50T	Electric				0	1980 CHE Electric			
Electric wharf crane	Mitsubishi	50T	Electric				0	3269 CHE Electric			
Electric wharf crane	Mitsui/Paceco	70T	Electric				0	2423 CHE Electric			
Electric wharf crane	Mitsui/Paceco	70T	Electric				0	2569 CHE Electric			
Electric wharf crane	Mitsui/Paceco	70T	Electric				0	2756 CHE Electric			
Electric wharf crane							0				
	Mitsui/Paceco	70T	Electric				0	2308 CHE Electric			
Electric wharf crane	Mitsubishi	60T	Electric				0	238 CHE Electric			
Electric wharf crane Electric wharf crane	Paceco		Electric Electric				0	341 CHE Electric 558 CHE Electric			
	Paceco										
Electric wharf crane	Paceco		Electric				0	2110 CHE Electric			
Electric wharf crane	Paceco		Electric				0	398 CHE Electric			
Electric wharf crane	Paceco		Electric				0	2577 CHE Electric			
Electric wharf crane	Paceco		Electric				0	2718 CHE Electric			
Electric wharf crane	Paceco		Electric				0	1431 CHE Electric			
Electric wharf crane	Paceco		Electric				0	2717 CHE Electric			
Electric wharf crane	Paceco		Electric				0	3479 CHE Electric			
Electric wharf crane	Paceco		Electric				0	1941 CHE Electric			
Electric wharf crane			Electric				0	123 CHE Electric			
Electric wharf crane			Electric				0	521 CHE Electric			
Electric wharf crane			Electric				0	454 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			

DF LOS ANGELES											_
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	нр	Annual Hours Category	DPF level 2	DPF level 3	Blue C
Electric wharf crane	-1-1 mile	-1-pouer	Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	61 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	248 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	351 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	386 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	265.5 CHE Electric			
Electric wharf crane	Noell		Electric				0	3850 CHE Electric			
Electric wharf crane	Noell		Electric				0	3715 CHE Electric			
Electric wharf crane	Noell		Electric				0	2162 CHE Electric			
							0				
Electric wharf crane	Noell		Electric					3786 CHE Electric			
Electric wharf crane	Noell		Electric				0	3606 CHE Electric			
Electric wharf crane	Noell		Electric				0	3478 CHE Electric			
Electric wharf crane	Noell		Electric				0	3091 CHE Electric			
Electric wharf crane	Noell		Electric				0	3499 CHE Electric			
Electric wharf crane	Noell		Electric				0	3359 CHE Electric			
Electric wharf crane	Noell		Electric				0	3323 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	3012 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	2809 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	2021 CHE Electric			
Electric wharf crane	ZPMC		Electric				0	744 CHE Electric			
Electric wharf crane	MITSUBISHI	7820-7	Electric				0	0 CHE Electric			
Electric wharf crane	ZPMC	J111A00-8	Electric				0	0 CHE Electric			
Electric wharf crane	ZPMC	J111A00-9	Electric				0	0 CHE Electric			
Electric wharf crane	ZPMC	ZP-2073-10	Electric				0	0 CHE Electric			
Electric wharf crane	ZPMC	ZP-2073-11	Electric				0	0 CHE Electric			
Electric wharf crane	ZPMC	ZP-2073-12	Electric				0	0 CHE Electric			
Electric wharf crane	ZINIC	21 2075 12	Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Electric wharf crane			Electric				0	0 CHE Electric			
Forklift	Hyster	N40FR	Electric				0	28 CHE Electric			
Forklift	Kalmar	DCE160-12	Electric					2 CHE Electric			
Forklift	Kalmar	DCE160-12	Electric					23 CHE Electric			
Forklift	Kalmar	DCE160-12	Electric					42 CHE Electric			
Forklift	Nissan	CSP01L15S	Electric				0	0 CHE Electric			
Forklift	Hyster	N40XMR2	Electric				0	0 CHE Electric			
Forklift	Nissan	CK1B1L15S	Electric				0	0 CHE Electric			
Forklift	Nissan	MCJ1B1L15S	Electric				0	432 CHE Electric			
Forklift	Raymond Pace		Electric				0	0 CHE Electric			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours	Category	DPF level 2	DPF level 3	Blue Cat
Forklift	Mitsubishi	FB16KT	Electric						CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric						CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric						CHE Electric			
Forklift	Mitsubishi	FB16NT	Electric						CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric						CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	EP16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	EP16KT	Electric						CHE Electric			
Forklift	Mitsubishi	EP16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16NT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16KT	Electric					250	CHE Electric			
Forklift	Mitsubishi	FB16NT	Electric					250	CHE Electric			
Forklift	Toyota		Gasoline			2010		494	CHE Gasoline			
Forklift	Toyota		Gasoline			2011		127	CHE Gasoline			
Forklift	Toyota		Gasoline			2011		158	CHE Gasoline			
Forklift	Mitsubishi		Gasoline	Nissan		2012		414	CHE Gasoline			
Forklift	Nissan	CF01A15V	Gasoline				45	396	CHE Gasoline			
Forklift	Nissan	CPH01A15V	Gasoline				45	55	CHE Gasoline			
Forklift	Hyster	H135XL	LPG	Mitsubishi	4G52	1992	49	0	CHE Propane			
Forklift	Daewoo	G355-2	LPG	GM	Vortec	2000	85	180	CHE Propane			
Forklift	Clark	GCS20MB	LPG	Mitsubishi	4G52	1988	49	92	CHE Propane			
Forklift	Clark	GCS 20	LPG	Mitsubishi	4G52	1988	49	52	CHE Propane			
Forklift	Komatsu	FG40ZT-8	LPG	Nissan	TB45L	2007	86	35	CHE Propane			
Forklift	Komatsu	FG40ZT-8	LPG	Nissan	TB45L	2007	86	1086	CHE Propane			
Forklift	Nissan	PF80YLP	LPG	Nissan	TB45	2010	95	100	CHE Propane			
Forklift	Nissan	PF80YLP	LPG	Nissan	TB45	2010	95	1385	CHE Propane			
Forklift	Nissan	PF80YLP	LPG	Nissan	TB45	2010	95	948	CHE Propane			
Forklift	Nissan	PF80YLP	LPG	Nissan	TB45	2010	95		CHE Propane			
Forklift	Nissan	PF80YLP	LPG	Nissan	TB45	2010	95		CHE Propane			
Forklift	Clark	C40L	LPG	GM	4.3L	2012	120		CHE Propane			
Forklift	Clark	C40L	LPG	GM	4.3L	2012	120		CHE Propane			
Forklift	Clark	C40L	LPG	GM	4.3L	2012	120		CHE Propane			
Forklift	Clark	C40L	LPG	GM	4.3L	2012	120		CHE Propane			
Forklift	Clark	C40L	LPG	GM	4.3L	2012	120		CHE Propane			
Forklift	Toyota		LPG	Toyota	:2403050	2012	51		CHE Propane			
Forklift	Toyota		LPG	Toyota	:2403050	2012	51		CHE Propane			
Forklift	Mitsubishi	FG45N-LE	LPG	Nissan	TB45	2012	95		CHE Propane			
Forklift	Mitsubishi	FG45N-LE	LPG	Nissan	TB45	2013	95		CHE Propane			
Forklift	Mitsubishi	FG45N-LE	LPG	Nissan	TB45	2013	95		CHE Propane			
Forklift	Hyster	H90FT	LPG	GM	4.3L	2013	100		CHE Propane			
Forklift	Hyster	H90FT	LPG	GM	4.3L	2014	100		CHE Propane			
Forklift	Hyster	H90FT	LPG	GM	4.3L	2014	100		CHE Propane			
Forklift	Hyster	H90FT	LPG	GM	4.3L	2014	100		CHE Propane			
Forklift	Toyota	8FGU25	LPG	Toyota	4.3L 204Y	2014	51		CHE Propane			
	ισχυια	51 0025	L U	109010	2071	2014	21	24/	CITE LIOPUNE			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Eng Year		нр	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Forklift	Nissan) LPG	Nissan	K25L		2007		324 CHE Propane	DITRUCT	DITIEVEIS	Dide Oat
orklift	Nissan) LPG	Nissan	K25L		2007		159 CHE Propane			
orklift	Nissan		LPG	Nissan	N20L		2007		497 CHE Propane			
orklift	CAT		LPG	Nissan	K25L		2008		265 CHE Propane			
orklift	CAT		LPG	Nissan	K25L		2008		325 CHE Propane			
orklift	CAT		LPG	Nissan	K25L		2008		133 CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	141 CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	119 CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	118 CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	157 CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	52 CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	CHE Propane			
orklift	Toyota	8FGU32	LPG	Toyota	4Y		2017	42	155 CHE Propane			
Forklift	Hyster	H50FT	LPG	Mazda	2.2L		2010	42	7 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L		2010	46	CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L 2.2L		2010	40	CHE Propane			
orklift	Clark	C55S	LPG	GM	2.2L V6 4.3		2010	40 93	317 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93	175 CHE Propane			
orklift	Clark	C555	LPG	GM	V6 4.3 V6 4.3		2013	93 93	112 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3 V6 4.3		2013	93 93	410 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93	170 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93	376 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3 V6 4.3		2013	93 93	236 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3 V6 4.3		2013	93 93	236 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93 93	367 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93	425 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93 93	395 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3		2013	93 93	212 CHE Propane			
orklift	Clark	C555	LPG	GM	V6 4.3 V6 4.3		2013	93 93	351 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3 V6 4.3		2013	93 93	241 CHE Propane			
orklift	Clark	C55S	LPG	GM	V6 4.3 V6 4.3		2013	93 93	138 CHE Propane			
orklift	Clark	C75L	LPG	GM	V6 4.3		2013	93 93	89 CHE Propane			
orklift	Clark	C75L	LPG	GM	V6 4.3 V6 4.3		2013	93 93	68 CHE Propane			
orklift		H100XM	LPG	GMC	V0 4.3		2013	93 165	0 CHE Propane			
	Hyster											
orklift	Hyster	H80XL	LPG	GMC			L995	165	21 CHE Propane			
orklift	Hyster	H50FT	LPG	PSI			2014	59	234 CHE Propane			
orklift	Hyster	H50FT	LPG	PSI			2015	59	210 CHE Propane			
orklift	Yale	GLP100MJNB	LPG	GMC			2005	160	0 CHE Propane			
orklift	Yale	GLP100MJNB	LPG	GMC			2005	160	329 CHE Propane			
orklift	Yale	GLP100MJNB	LPG	GMC			2005	160	69 CHE Propane			
orklift	Yale	GLP100	LPG				2008	160	157 CHE Propane			
orklift	Yale	GLP100	LPG				2008	160	37 CHE Propane			
orklift	Hyster	H100FT	LPG				2011		609 CHE Propane			
orklift	Nissan	FO4G40V-LP	LPG				2002	122	69 CHE Propane			
orklift	Nissan	PL50LP	LPG				2007	122	300 CHE Propane			
orklift	Nissan	PL50LP	LPG				2007	122	258 CHE Propane			
orklift	Nissan	JP80BYLP	LPG				2007	122	410 CHE Propane			
orklift	Nissan	JP80BYLP	LPG				2007	122	438 CHE Propane			
orklift	Nissan	JP80BYLP	LPG				2007	122	464 CHE Propane			
orklift	Nissan	JP80BYLP	LPG				2007	122	301 CHE Propane			
orklift	Nissan	JP80BYLP	LPG				2007	122	118 CHE Propane			
orklift	Nissan	JP80BYLP	LPG				2007	122	400 CHE Propane			
orklift	Nissan	JP80BYLP	LPG			2	2007	122	546 CHE Propane			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
orklift	Nissan	JP80BYLP	LPG			2007	122	280 CHE Propane			
orklift	Clark	C40L	LPG	PSI	PSI-4.3	2020		CHE Propane			
orklift	Clark	C40L	LPG	PSI	PSI-4.3	2020		CHE Propane			
orklift	Clark	C40L	LPG	PSI	PSI-4.3	2020		CHE Propane			
orklift	Clark	C40L	LPG	PSI	PSI-4.3	2020		CHE Propane			
orklift	Yale	GLP050MXNEA	E LPG	Yale		2020	103	642 CHE Propane			
orklift	Yale	GLP050MXNEA	E LPG	Yale		2020	103	952 CHE Propane			
orklift	Caterpillar	5,000 lb.	LPG	Caterpillar		1994	122	100 CHE Propane			
orklift	Mitsubishi	5,000 lb	LPG	Mitsubishi		1994	122	0 CHE Propane			
orklift	Hyster	H50XM	LPG	Hyster				250 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2010	51	116 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2010	51	107 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2010	51	126 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2011	51	129 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2012	51	86 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2011	51	88 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2012	51	149 CHE Propane			
orklift	Hyster	H50FT	LPG	GM	Vortex 4.3L	2011		214 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2011	51	79 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2012	51	116 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2012	51	64 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2012	51	110 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2012	51	60 CHE Propane			
orklift	Yale	GLP-100	LPG	GM	VORTEX 4.3L	2007		1089 CHE Propane			
orklift	Hyster	H50FT	LPG	Mazda	2.2L	2011	51	189 CHE Propane			
orklift	Caterpillar	V80F	LPG	Perkins		1989	65	179 CHE Propane			
orklift	Hyster	H80XL	LPG	GM		2007	100	227 CHE Propane			
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			2
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			2
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			2
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			2
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			20
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			2
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			20
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	46	250 CHE Propane			20
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	40	250 CHE Propane			20
orklift	Komatsu	FG15HT-15	LPG	Nissan	H2O	1994	40	250 CHE Propane			20
orklift	Komatsu	FG15HT-15	LPG	Nissan	K21L	2008	48	250 CHE Propane			20
orklift	Komatsu	FG15HT-15	LPG	Nissan	K21L K21L	2008	40 48	250 CHE Propane			
orklift	Komatsu	FG15HT-15	LPG	Nissan	K21L	2008	40 48	250 CHE Propane			
							40 48				
orklift	Komatsu	FG15HT-15	LPG	Nissan	K21L	2008	48	250 CHE Propane			2
orklift orklift	Komatsu Komatsu	FG30G-11 FG30G-11	LPG LPG	Nissan		1991 1991		250 CHE Propane 250 CHE Propane			2
				Nissan							
orklift	Komatsu	FG30G-11	LPG	Nissan		1994		250 CHE Propane			2
orklift	Komatsu	FG40ZT-5	LPG	Nissan	TD 42	1991	05	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane			2

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2 DPF level	3 Blue Cat
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1991	85	250 CHE Propane		2013
orklift	Komatsu	FG45T-6	LPG	Nissan	TB42	1994	85	250 CHE Propane		2013
Forklift	Komatsu	FG45K1	LPG	Nissan	TB45L	2006	117	250 CHE Propane		
Forklift	Komatsu	FG45K1	LPG	Nissan	TB45L	2006	117	250 CHE Propane		
Forklift	Komatsu	FG45T-8	LPG	Nissan	TB45L	2008	84	250 CHE Propane		
Forklift	Komatsu	FG45K1	LPG	Nissan	TB45L	2007	84	250 CHE Propane		
Forklift	Komatsu	FG45T-8	LPG	Nissan	TB45L	2006	117	250 CHE Propane		
Forklift	Komatsu	FG15HT-17	LPG	Nissan	K21L	2006	50	250 CHE Propane		
Forklift	Komatsu	FG15HT-17	LPG	Nissan	K21L	2006	50	250 CHE Propane		
Forklift	Komatsu	FG15HT-17	LPG	Nissan	K21L	2006	50	250 CHE Propane		
Forklift	Komatsu	FG15HT-17	LPG	Nissan	K21L	2006	50	250 CHE Propane		
Forklift	Komatsu	FG45T-6	LPG	Nissan	TB45L	2005	96	250 CHE Propane		
Forklift	Clark	CT-50	LPG	Ford				250 CHE Propane		2013
Forklift	Komatsu	FG15HT-15	LPG	Nissan	H2O			250 CHE Propane		2013
Forklift	Komatsu	5000 lb	LPG			2002	58	1000 CHE Propane		
Forklift	Komatsu	5000 lb	LPG			2002	58	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2002	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2002	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2002	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2002	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2002	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2002	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2008	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2008	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2008	60	1000 CHE Propane		
Forklift	Komatsu	6000 lb	LPG			2008	60	1000 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	YALE		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HYSTER		LPG					500 CHE Propane		
Forklift	HIJIEN		LPG			2015	125	2179 CHE Propane		
Forklift	Mitsubishi	FG40N	LPG	Nissan	TB45L	2013	76	1174 CHE Propane		
		7FU45	LPG	GM	4.3 Vortec	2011	200			
Forklift	Toyota Yale	GLP050VXESV	LPG		4.3 Vortec F2-Z25D	2008	200 51	1200 CHE Propane		
Forklift Forklift				Mazda Mazda			51	721 CHE Propane		
Forklift	Yale	GLP050VXESV	LPG LPG	Mazda IMPCO	F2-Z25D	2006	51 46	221 CHE Propane		
Forklift	Heyster	H50FT				2010		580 CHE Propane		
Forklift	Taylor	TE800L	Diesel	Cummins		2018	330	12 CHE Diesel		
Forklift	Hoist	P360	Diesel	Cummins	QSB6.7	2013	173	202 CHE Diesel	40 100 100	10
Forklift	Hyster	P360	Diesel	Cummins	QSB6.7	2016	164	579 CHE Diesel	12/30/20	
Forklift	Hyster	P360	Diesel	Cummins	QSB6.7	2016	164	798 CHE Diesel	12/30/20	13
Forklift	Hyster	P360	Diesel	Cummins	QSB6.7	2018	164	2527 CHE Diesel		

A-7

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Ca
Forklift	Hyster	P360	Diesel	Cummins	QSB6.7	2018	164	3514 CHE Diesel			
orklift	Hyster	P360	Diesel	Cummins	QSB6.7	2018	164	723 CHE Diesel			
orklift	Hyster	P360	Diesel	Cummins	QSB6.7	2018	164	879 CHE Diesel			
orklift	Kalmar	15T	Diesel	Cummins	QSB 6.7	2007	220	109 CHE Diesel		5/4/2012	
orklift	Kalmar	15T	Diesel	Cummins	QSB 6.7	2007	220	65 CHE Diesel			
orklift	Kalmar	15T	Diesel	Cummins	QSB 6.7	2007	220	54 CHE Diesel			
orklift	Capacity	TJ7000	Diesel	Cummins	QSC8.3L	2007	230	94 CHE Diesel		1/1/2009	
orklift	Capacity	TJ7000	Diesel	Cummins	QSB6.7	2008	220	75 CHE Diesel		3/1/2010	
orklift	Capacity	TJ7000	Diesel	Cummins	QSB6.7	2008	220	95 CHE Diesel		3/1/2010	
orklift			Diesel			2012		281 CHE Diesel			
orklift			Diesel	Cummins		2015		953 CHE Diesel			
orklift			Diesel	Cummins		2015		135 CHE Diesel			
orklift			Diesel	Cummins		2015		1851 CHE Diesel			
orklift	Hyundai		Diesel	Cummins		2017		89 CHE Diesel			
orklift	Taylor		Diesel			2019		391 CHE Diesel			
orklift	Taylor		Diesel			2019		663 CHE Diesel			
orklift	Kalmar	DCD160-12	Diesel	Cummins	QSB6.7	2016	173	717 CHE Diesel			
orklift	Kalmar	DCD160-12	Diesel	Cummins	QSB 6.7	2016	173	627 CHE Diesel			
orklift	Kalmar	DCD160-12	Diesel	Cummins	QSB 6.7	2016	173	725 CHE Diesel			
orklift	Kalmar	DCE-150-6	Diesel	Cummins	QSB6.7	2008	173	75 CHE Diesel		3/12/2015	
orklift	Kalmar	DCE-150-6	Diesel	Cummins	QSB6.7	2008	173	112 CHE Diesel		1/21/2015	
orklift	Kalmar	DCE-150-6	Diesel	Cummins	QSB6.7	2008	173	0 CHE Diesel		1/23/2015	
orklift	Kalmar	DCE-150-6	Diesel	Cummins	QSB6.7	2008	173	3 CHE Diesel		3/12/2015	
orklift	Kalmar	DCE160-12	Diesel	Cummins	QSB 5.9L B	2007	185	20 CHE Diesel		8/31/2015	
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2011	160	79 CHE Diesel		7/17/2015	
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2011	160	195 CHE Diesel		7/21/2015	
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2011	160	248 CHE Diesel		7/23/2015	
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2011	160	147 CHE Diesel		7/24/2015	
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	377 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	362 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	280 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	256 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	354 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	256 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2013	173	0 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	480 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	395 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	447 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	438 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	503 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	502 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	456 CHE Diesel			
orklift	Taylor	TXH350L	Diesel	Cummins	QSB6.7	2014	173	480 CHE Diesel			
orklift	Taylor	XH350L	Diesel	Cummins	QSB6.7	2017	173	100 CHE Diesel			
orklift	Taylor	XH350L	Diesel	Cummins	QSB6.7	2017	173	129 CHE Diesel			
orklift	Taylor	TX550RC	Diesel	Cummins	QSB6.7	2017	220	72 CHE Diesel		7/1/2016	
orklift	Taylor	TX550RC	Diesel	Cummins	QSB6.7	2012	220	217 CHE Diesel		7/1/2016	
orklift	Taylor	TX550RC	Diesel	Cummins	QSB6.7 QSB6.7	2012	220	131 CHE Diesel		7/1/2016	
orklift	Taylor	TX550RC	Diesel	Cummins	QSB6.7 QSB6.7	2012	220	149 CHE Diesel		7/1/2016	
orklift	Taylor	TX550RC	Diesel	Cummins	QSB6.7 QSB6.7	2012	220	192 CHE Diesel		6/27/2017	
orklift		TX550RC	Diesel	Cummins	QSB6.7 QSB6.7	2012	220	171 CHE Diesel		6/17/2017	
orklift	Taylor Kalmar					2012	220			2/5/2016	
	гандаг	DCD250	Diesel	Cummins	QSB6.7	2008	260	44 CHE Diesel		2/3/2010	

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model		Engine Tear	HP	Hours Category	DPF level 2 DPF level 3	Blue
Forklift	Taylor	TX1700L	Diesel	Cummins	QSL-9		2013	230	319 CHE Diesel		
orklift	Taylor	TX1700L	Diesel	Cummins	QSL-9		2013	230	388 CHE Diesel		
orklift	Kalmar	DCD370-12	Diesel	Volvo	TAD1170VE		2014	319	115 CHE Diesel		
orklift	Kalmar	DCD370-12	Diesel	Cummins	QSM11		2004	330	0 CHE Diesel		
orklift	Kalmar	DCF500-12	Diesel	Cummins	QSM11		2008	350	402 CHE Diesel	4/8/2016	
orklift	Kalmar	DCF500-12	Diesel	Volvo	TAD1360VE		2013	348	361 CHE Diesel		
orklift	Taylor	X1000RC	Diesel	Volvo	TAD1371VE		2014	388	188 CHE Diesel		
orklift	Taylor	X1000RC	Diesel	Volvo	TAD1371VE		2014	388	197 CHE Diesel		
orklift	Kalmar	DCE90-6L	Diesel	Perkins	S6S		2004	114	72 CHE Diesel	7/31/2014	
orklift	Hyster	H50FT	Diesel	YANMAR	3.3L		2014	165	699 CHE Diesel		
orklift	Taylor	TX360L	Diesel	Cummins		5.9	2007	137	464 CHE Diesel	5/13/2013	
orklift	Taylor	TX360L	Diesel	Cummins		5.9	2007	137	40 CHE Diesel	3/12/2014	
orklift	Yale	GDP360EBECC	V Diesel				2009		153 CHE Diesel	8/13/2013	
orklift	Taylor	TH350L	Diesel	Cummins		5.9	2004	190	872 CHE Diesel	1/15/2014	
orklift	Taylor	TH350L	Diesel	Cummins		5.9	2004	152	1731 CHE Diesel	8/18/2014	
orklift	Taylor	TH350L	Diesel	Cummins		5.9	2005	152	1061 CHE Diesel	2/21/2013	
orklift	Taylor	TH350L	Diesel	Cummins		5.9	2005	152	1386 CHE Diesel	8/14/2014	
orklift	Taylor	TE650	Diesel	Volvo	TAD870VE		2015	210	119 CHE Diesel	1/1/2012	
orklift	Taylor	T-360L	Diesel	Taylor	T360L		2007	260	2261 CHE Diesel	1/1/2012	
orklift	Hoist	P36	Diesel	Hyster	P360		2007	160	126 CHE Diesel	1/1/2012	
orklift	Kone	SMV16-600B	Diesel	Kone	SMV 16-1600B		2011	248	951 CHE Diesel		
orklift	Kone	SMV16-600B	Diesel	Kone	SMV 16-1600B		2011	248	587 CHE Diesel		
orklift	Hyster	H250HD2	Diesel	Hyster	H250HD2		2015		854 CHE Diesel		
orklift	Hyster	H250HD2	Diesel	Hyster	H250HD2		2015		955 CHE Diesel		
orklift	Taylor	TX360L	Diesel	Cummins	QSB 6.7		2012	173	1745 CHE Diesel		
orklift	Fantuzzi	FDC180/1600	Diesel	Caterpillar	Tier 4i C4.4		2014	174	772 CHE Diesel		
orklift	Fantuzzi	FDC180/1600	Diesel	Caterpillar	Tier 4i C4.4		2014	174	2501 CHE Diesel		
orklift	Taylor	TX360L	Diesel	Cummins	QSB 6.7		2015	173	532 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	261 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	231 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	96 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	124 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	261 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	310 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	277 CHE Diesel		
orklift	Clark	C50sD	Diesel	Deutz	TD 3.6 L4		2015	56	291 CHE Diesel		
orklift	Yale	GDP360EF	Diesel	Deutz	10 3.0 24		2020	164	71 CHE Diesel		
orklift	Hyster	H330XL	Diesel	Perkins	YH70393*U660	2001	1997	150	147 CHE Diesel		
orklift	Caterpillar	DP150	Diesel	Deutz	TCD2012L042V	5550	2010	131	280 CHE Diesel		
orklift	Caterpillar	P33000-D	Diesel	Mitsubishi	6M60		2010	148	901 CHE Diesel		
orklift	Caterpillar	PD10000	Diesel	Mitsubishi	SS-DP		2007	75	890 CHE Diesel		
orklift	Caterpillar	PD10000 PD10000	Diesel	Mitsubishi	SS-DP		2011	75	770 CHE Diesel		
orklift	Caterpillar	DP50CN1-D	Diesel	Caterpillar	3914/2200		2011	75	932 CHE Diesel		
					3914/2200		1993	175		4/5/2011	
orklift	Hyster	H300XL H35D	Diesel	Perkins	DAGU		2007	175 59	94 CHE Diesel	4/5/2011	
orklift	Linde		Diesel	Volkswagon	BAEU				686 CHE Diesel		
orklift	Hyster	H300HD	Diesel	Cummins	QSB6.7		2013	129	670 CHE Diesel		
orklift	Sany	SCO160H4	Diesel	Cummins	ISB6.7		2019	225	444 CHE Diesel		
lybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7		2018	249	5831 CHE Diesel		
lybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7		2018	249	5643 CHE Diesel		
lybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7		2018	249	5694 CHE Diesel		
lybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7		2018	249	5894 CHE Diesel		
lybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7		2018	249	5356 CHE Diesel		
lybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7		2018	249	5357 CHE Diesel		

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Hybrid RTG	Paceco-Mitsui	• •	Diesel	Caterpillar	C7	2018	249	1996 CHE Diesel			
Hybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7	2018	249	953 CHE Diesel			
Hybrid RTG	Paceco-Mitsui		Diesel	Caterpillar	C7	2018	249	2043 CHE Diesel			
Hybrid RTG	ZPMC	RTG	Diesel			2011	197	2616 CHE Diesel			
Hybrid RTG	Paceco	RTG	Diesel	Caterpillar	C7.1 ACERT	2015	302	3593 CHE Diesel			
Hybrid RTG	Paceco	RTG	Diesel	Caterpillar	C7.1 ACERT	2015	302	3402 CHE Diesel			
Hybrid RTG	Paceco	RTG	Diesel	Caterpillar	C7.1 ACERT	2015	302	3399 CHE Diesel			
Hybrid RTG	Paceco	RTG	Diesel	Caterpillar	C7.1 ACERT	2015	302	3447 CHE Diesel			
Hybrid RTG	Paceco	RTG	Diesel	Caterpillar	C7.1 ACERT	2015	302	3645 CHE Diesel			
Hybrid RTG	Mi Jack	1200 REH	Diesel	John Deere	4045HF485	2009	137	1140 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2422 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2667 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2932 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2791 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2815 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	3065 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2006 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	2735 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	3187 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	3184 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	HSC350A	Diesel	AGCO	44AWF	2016	102	4070 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
, Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Hybrid Straddle Carrier	Kalmar	44AWF.1184	Diesel	Agco Sisu	D49FSR	2018	103	907 CHE Diesel			
Loader	Hustler		Electric	. 1800 3130	5-5151	2010	103	0 CHE Electric			
Loader	Hustler		Electric				0	0 CHE Electric			
Loader	Mijack	M115	Diesel	Cummins	QSX11.9	2010	460	8 CHE Diesel			
Loader	Mijack	MJ150	Diesel	Cummins	QSB 6.7	2010	260	487 CHE Diesel			
LOUGE	IVIJACK	IAIT TOO	DIESEI	cummits	0.0 0.7	2012	200	407 CITE DIESEI			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2 DPF level 3	Blue
_oader	Caterpillar	966-D	Diesel	Caterpillar	C-7	2010	300	0 CHE Diesel		
oader	Caterpillar	966-D	Diesel	Caterpillar	C-7	2010	232	604 CHE Diesel	7/22/2010	
.oader	Caterpillar	966G	Diesel	Caterpillar	3176C	2005	259	2044 CHE Diesel	9/8/2010	
oader	Caterpillar	980H	Diesel	Caterpillar	C15	2007	318	1192 CHE Diesel	5/8/2015	
oader	Caterpillar	988-F	Diesel	Caterpillar	3408E	1999	430	0 CHE Diesel	1/7/2014	
oader	Caterpillar	988H	Diesel	Caterpillar		2011	210	2201 CHE Diesel	2/27/2015	
oader	Caterpillar	988K	Diesel	Caterpillar		2013	210	2511 CHE Diesel		
.oader	Caterpillar	904H	Diesel	Mitsubishi	S4Q2-T	2008	55	0 CHE Diesel		
oader	Case) Diesel			2009	110	964 CHE Diesel		
/an Lift	Skyjack	SJIH 4740	Electric				0	0 CHE Electric		
/an Lift	Skyjack	0,000	Electric				0	0 CHE Electric		
/lan Lift	JLG Lift	GS2646	Electric				0	0 CHE Electric		
/lan Lift	Skyjack		L Electric				0	0 CHE Electric		
/an Lift	Skyjack		5 Electric				0	0 CHE Electric		
/an Lift		660SJ				2007				
	JLG		Gasoline				60	102 CHE Gasoline	4/4/2014	
/lan Lift	Genie	S-125	Diesel			2003	75	89 CHE Diesel	1/1/2014	
1an Lift	Genie	S-65	Diesel	_		2007	75	135 CHE Diesel	1/1/2014	
1an Lift	JLG		Diesel	Deutz	BF4M2011	2004	87	36 CHE Diesel	9/1/2010	
/lan Lift	JLG	G6-42A	Diesel	Cummins	QSF3.8	2015	110	121 CHE Diesel		
/lan Lift	JLG		Diesel	Deutz	BF4M2011	2006	87	230 CHE Diesel	9/1/2010	
/lan Lift	Skyjack		Diesel			2018	107	0 CHE Diesel		
1an Lift	Skyjack		Diesel			2018	107	0 CHE Diesel		
lan Lift	Terex	TB85	Diesel	Cummins	B3.9	2000	152	54 CHE Diesel	9/5/2013	
lan Lift	Skyjack	SJ1256	Diesel	Deutz AG	TCD 3.6 l4	2017	107	39 CHE Diesel		
1an Lift	Terex	TB60	Diesel	Cummins	B3.9-C	2002	73	88 CHE Diesel	8/20/2014	
1an Lift	JLG	1350SJP	Diesel	Deutz	TD2011L04	2012	73	161 CHE Diesel		
1an Lift	JLG	86055	5 Diesel	Deutz	FRM2011	2002	87	223 CHE Diesel	1/1/2012	
1an Lift	Terex	ТВ60	Diesel	Cummins	B3.9	2000	80	374 CHE Diesel	1/1/2012	
/an Lift	JLG	86JS	Diesel	Deutz		2007	87	386 CHE Diesel	1/1/2012	
lan Lift	120	0000	Diesel	Deutz		2007	87	CHE Diesel	1/1/2012	
lan Lift	Motrec	RR662	Diesel			2008	87	CHE Diesel	1/1/2012	
lan Lift	JLG Lift	600AJ	Diesel			2000	80	0 CHE Diesel	1/1/2012	
Nan Lift	JLG Lift	800AJ	Diesel	Deutz	D2011L040	2012	49	4 CHE Diesel		
lan Lift	JLG Lift	800AJ 800 AJ	Diesel	Perkins	GP65-4N	2010	49 65	431 CHE Diesel		
Nan Lift	JLG Lift	800 AJ	Diesel	Perkins	GP65-4N	2009	65	275 CHE Diesel		
1an Lift	Genie lift	S60	Diesel	Deutz	D2011L031	2007	49	146 CHE Diesel	0 /07 /00 / 5	
1aterial Handler	Caterpillar	345C MH	Diesel	Caterpillar	C13	2008	371	2453 CHE Diesel	2/27/2015	
1aterial Handler	Caterpillar	345C MH	Diesel	Caterpillar	C13	2007	371	2812 CHE Diesel	3/24/2015	
1aterial Handler	Caterpillar	345C MH	Diesel	Caterpillar	C13	2007	371	1317 CHE Diesel	9/23/2013	
1aterial Handler	Caterpillar	345C MH	Diesel	Caterpillar	C13	2008	371	3019 CHE Diesel	2/27/2015	
1aterial Handler	Caterpillar	345	5 Diesel	Caterpillar	C13	2005	371	3628 CHE Diesel	5/9/2016	
1aterial Handler	Caterpillar	375-L	Diesel	Caterpillar	C15	2009	475	352 CHE Diesel	6/1/2012	
1aterial Handler	Caterpillar	375-L	Diesel	Caterpillar	C15	2009	450	400 CHE Diesel	8/1/2011	
laterial Handler	Caterpillar	385C	Diesel	Caterpillar	C18	2008	390	1337 CHE Diesel	3/23/2015	
1aterial Handler	Caterpillar	385C	Diesel	Caterpillar	C18	2011	390	1268 CHE Diesel	3/20/2015	
1iscellaneous	Al John		Electric			2008	0	0 CHE Electric		
Aiscellaneous	Caterpillar	330DL	Diesel	Caterpillar	C9	2007	268	1619 CHE Diesel	4/1/2011	
ail Pusher	Rail King	RK320	Diesel	Cummins		2012	194	740 CHE Diesel		
leach Stacker	Kalmar	TD100G	Diesel	Cummins	QSL9 250	2013	250	CHE Diesel		
each Stacker	CVS Ferrari	TF500-4	Diesel	Cummins	QSG12	2018	449	1197 CHE Diesel		
ub-trd Gantry Crane	Sumitomo	RTG62 / 22.555		Cummins	QSX15G	2010	750	3428 CHE Diesel		
ub-trd Gantry Crane	Sumitomo	RTG62 / 22.555		Cummins	QSX15G	2014	750	4442 CHE Diesel	1/1/2016	
ab du Gandy Claile	Junitonio	11002/22.333) Diesei	Cummis	027120	2014	130	HHHZ CITE DIESEI	1/1/2010	

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Mode		Engine Year	нр	Annual Hours Category	DPF level 2	DPF level 3	Blue Ca
Rub-trd Gantry Crane	Noell	RTG62 / 22.555	· · ·	Cummins	KTA 19-G2		2013	600	4935 CHE Diesel	Di i icvel 2	211 10013	Diac Ca
Rub-trd Gantry Crane	Noell	RTG62 / 22.555		Cummins	KTA 19-02 KTA 19-G2		2013	600	5615 CHE Diesel			
Rub-trd Gantry Crane	Noell	RTG62 / 22.555		Cummins	KTA 19-G2		2013	600	5065 CHE Diesel			
Rub-trd Gantry Crane	Noell	RTG62 / 22.555		Cummins	KTA 19-G2		2013	600	3443 CHE Diesel			
Rub-trd Gantry Crane	Noell	RTG62 / 22.555		Cummins	KTA 19-G2		2013	600	4649 CHE Diesel			
Rub-trd Gantry Crane	Noell	RTG62 / 22.555		Cummins	KTA 19-G2		2013	600	5155 CHE Diesel			
Rub-trd Gantry Crane	Noell	RTG62 / 22.555		Cummins	KTA 19-G2		2013	600	2482 CHE Diesel			
Rub-trd Gantry Crane	Paceco-Mitsui	11002 / 22.555	Diesel	Cummins	QSX15G		2013	750	4551 CHE Diesel			
Rub-trd Gantry Crane	Noell		Diesel	Caterpillar	C15		2014	624	3664 CHE Diesel			
Rub-trd Gantry Crane	Noell		Diesel	Caterpillar	C15		2015	624	2615 CHE Diesel			
Rub-trd Gantry Crane	Noell		Diesel	Caterpillar	C15		2015	624	3383 CHE Diesel			
Rub-trd Gantry Crane	Noell		Diesel	Caterpillar	C15		2015	624	1709 CHE Diesel			
Rub-trd Gantry Crane	Paceco-Mitsui		Diesel	Cummins	C15X		2015	750	222 CHE Diesel			
Rub-trd Gantry Crane	Paceco-Mitsui		Diesel	Cummins	C15X		2020	750	350 CHE Diesel			
Rub-trd Gantry Crane	Paceco-Mitsui		Diesel	Cummins	C15X		2020	750	280 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-I-5	Diesel	Cummins	NTA855		2020	550	2628 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-1-5	Diesel	Cummins	QSX-G14		2012	627	2307 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-1-5	Diesel	Cummins	QSX-G14 QSX-G14		2013	627	2449 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-1-5	Diesel	Cummins	QSZ15		2013	410	2202 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-1-5 RT-4020-8-1-5	Diesel		Q3215 NTA855		2011	410 550	2148 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-1-5 RT-4020-8-1-5		Cummins	QSZ15		2012	550 410	2319 CHE Diesel			
,			Diesel	Cummins								
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-I-5	Diesel	Cummins	NTA855		2012	550	2345 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-I-5	Diesel	Cummins	NTA855		2012	550	2420 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-I-5	Diesel	Cummins	NTA855		2012	550	2741 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-I-5	Diesel	Cummins	NTA855		2012 2011	550	2623 CHE Diesel 2836 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco Mitsui/Paceco	RT-4020-8-I-5 RT-4020-8-I-5	Diesel	Cummins	QSZ15		2011	410 550				
Rub-trd Gantry Crane Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-1-5	Diesel Diesel	Cummins Cummins	NTA855 NTA855		2012	550	2551 CHE Diesel 2594 CHE Diesel			
							2012		2576 CHE Diesel			
Rub-trd Gantry Crane	Mitsui/Paceco	RT-4020-8-I-5 RTG	Diesel	Cummins	NTA855	2456	2012	550 612		12/1/2012		
Rub-trd Gantry Crane	ZPMC ZPMC	RTG	Diesel Diesel	Caterpillar		3456 3456	2003	612	2613 CHE Diesel 2772 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane				Caterpillar								
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Caterpillar		3456	2003 2003	612 612	1812 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Caterpillar		3456			2433 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Caterpillar		3456	2003	612	1599 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Caterpillar		3456	2003	612	1949 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Caterpillar		3456	2003	612	2543 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Caterpillar	01410450	3456	2003	612	2225 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	Paceco	RTG	Diesel	Deutz	8M1015C		2004	454	2545 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	Paceco	RTG	Diesel	Deutz	8M1015C		2004	454	1933 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Cummins	QSX15-G7		2005	685	1139 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Cummins	QSX15-G7		2005	685	209 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Cummins	QSX15-G7		2005	685	67 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Cummins	QSX15-G7		2005	685	2778 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	ZPMC	RTG	Diesel	Cummins	QSX15-G7		2005	685	2574 CHE Diesel	12/1/2012		
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2002	680	310 CHE Diesel		1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2004	680	2557 CHE Diesel		1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2004	680	2488 CHE Diesel		1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2004	680	2731 CHE Diesel		1/23/2013	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2005	680	2556 CHE Diesel		1/31/2013	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2004	680	3189 CHE Diesel		1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2004	680	2713 CHE Diesel		1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2005	680	2562 CHE Diesel		1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7		2004	680	2845 CHE Diesel		10/1/2014	

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2 DPF level 3	Blue Cat
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	2865 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	3085 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	2374 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	2125 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2006	680	2080 CHE Diesel	2/26/2013	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2005	680	2471 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	3078 CHE Diesel	2/13/2013	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX X 15 T4f	2019	680	2001 CHE Diesel	10/1/2014	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	3311 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	3218 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	2818 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	2876 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Kone	D1703	Diesel	Cummins	QSX 15-G7	2004	680	2982 CHE Diesel	1/1/2020	
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2104 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2622 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2770 CHE Diesel		
Rub-trd Gantry Crane	ZMPC	RC40.6/56	Diesel	Caterpillar	3456ATAAC	2005	612	390 CHE Diesel	1/1/2015	
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2724 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2163 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	1654 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	1781 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	1869 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2030 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2226 CHE Diesel		
Rub-trd Gantry Crane	Mitsui-Paceco	RT4023-8-1	Diesel	Caterpillar	C-15	2013	779	2988 CHE Diesel		
Rub-trd Gantry Crane	Mi Jack	1000RC	Diesel	Detroit	DDEC	2011	320	49 CHE Diesel		
Rub-trd Gantry Crane	Mi Jack	1200R	Diesel	Cummins	QSL9	2011	320	2237 CHE Diesel		
Rub-trd Gantry Crane	Mi Jack	1200R	Diesel	Detroit	DDEC	2011	320	2090 CHE Diesel		
Rub-trd Gantry Crane	Mi Jack	1200R	Diesel	Cummins	QSL9	2011	320	1182 CHE Diesel		
Rub-trd Gantry Crane	Mi Jack	1200R	Diesel	Cummins	QSL9	2011	320	1947 CHE Diesel		
Rub-trd Gantry Crane	Mi Jack	1200R	Diesel	Cummins	QSL9 333	2015	320	2826 CHE Diesel		
Side pick	Kalmar		Diesel	Cummins	QSL9 275	2017	275	250 CHE Diesel		
Side pick	Fantuzzi	FDC25K7	Diesel	Cummins	QSL9 275	2017	275	1738 CHE Diesel		
Side pick	Fantuzzi	FDC25K7	Diesel	Cummins	QSL	2016	275	56 CHE Diesel		
Side pick	Terex	FDC25K7	Diesel	Cummins	QSL	2016	275	585 CHE Diesel		
Side pick	Terex	FDC25K7	Diesel	Cummins	QSL	2016	275	CHE Diesel		
Side pick	Terex	FDC25K7	Diesel	Cummins	QSL	2016	275	316 CHE Diesel		
Side pick	Taylor	TEC 155H	Diesel	Cummins	5.9L B series	2000	152	111 CHE Diesel	7/11/2014	
Side pick	Taylor	TEC 155H	Diesel	Cummins	5.9L B series	2000	152	197 CHE Diesel	7/11/2014	
Side pick			Diesel			2015		393 CHE Diesel		
Side pick			Diesel			2015		393 CHE Diesel		
Side pick			Diesel			2015		393 CHE Diesel		
Side pick	Fantuzzi	FDC25K5	Diesel	Caterpillar	C 7.1 Tier 4F	2014	250	35 CHE Diesel		
Side pick	Fantuzzi	FDC25K5	Diesel	Cummins	C 7.1 Tier 4F	2014	240	1072 CHE Diesel		
Side pick	Fantuzzi	FDC25K5	Diesel	Caterpillar	C 7.1 Tier 4F	2014	250	401 CHE Diesel		
Skid Steer Loader	Caterpillar	252B	Diesel	Mitsubishi	3044C	2007	70	624 CHE Diesel		
Skid Steer Loader	Caterpillar	252B	Diesel	Mitsubishi	3044C	2007	70	655 CHE Diesel		
Skid Steer Loader	Caterpillar	252B	Diesel	Caterpillar	S4S-DTDPB	2012	56	567 CHE Diesel		
Skid Steer Loader	Bobcat	853	3 Diesel	bobcat	KUBTA	1994	75	48 CHE Diesel		
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5853 CHE Diesel		
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	2946 CHE Diesel		
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5440 CHE Diesel		
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5564 CHE Diesel		

A-13

						Engine		Annual			
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Year	HP	Hours Category	DPF level 2	DPF level 3	Blue Cat
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5735 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	4265 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5399 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	3981 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	4926 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5300 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	3638 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	4357 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	4909 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	4902 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5329 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	3727 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5647 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5972 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5742 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5764 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	Volvo	TAD1172VE	2015	425	5423 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5558 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5240 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5425 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	2122 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5148 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	5270 CHE Diesel			
Straddle Carriers	Kalmar	ESC350WA	Diesel	AGCO	SISU POWER 98ATI	2013	425	3753 CHE Diesel			
Sweeper	Elgin	Crosswind	Gasoline			2005	205	CHE Gasoline			
Sweeper	Elgin	Crosswind	Gasoline			2015	205	CHE Gasoline			
Sweeper	Tymco	DST-6	Gasoline			2018		CHE Gasoline			
Sweeper	Schwarze		Diesel	John Deere		2019	200	887 CHE Diesel			
Sweeper	Elgin	Crosswind	Diesel		ISB 6.7	2013	200	105 CHE Diesel			
Sweeper	Caterpillar	IT14G	Diesel	Caterpillar	3054 DIT	2000	96	32 CHE Diesel		9/19/2013	
Sweeper	Caterpillar	DL200TC-5	Diesel	Doosan	1204F-E44TAN	2016	173	292 CHE Diesel			
Sweeper	Caterpillar	DL200TC-5	Diesel	Doosan	1204F-E44TAN	2016	173	272 CHE Diesel			
Sweeper	Tymco	500X	Diesel	Isuzu	44K1TC	2018	210	292 CHE Diesel			
Sweeper	Tymco	DST-6	Diesel	Isuzu	6HKIX	2008	260	992 CHE Diesel			
Telehandler	JCB	509-42 F	Diesel	JCB	444TA4I8IL1	2013	74	164 CHE Diesel			
Telehandler	JCB	509-42 F	Diesel	JCB	444TA4I8IL1	2014	74	129 CHE Diesel			
Telehandler	JCB	509-42 F	Diesel	JCB	444TA4I8IL1	2014	74	123 CHE Diesel			
Telehandler	JCB	509-42 F	Diesel	JCB	444TA4I8IL1	2018	74	69 CHE Diesel			
Telehandler	JCB	509-42 F	Diesel	JCB	444TA4I8IL1	2019	74	129 CHE Diesel			
Telehandler	JCB	509-42 F	Diesel	JCB	444TA4I8IL1	2019	74	157 CHE Diesel			
Top handler	Taylor	ZLC	Electric					897 CHE Electric			
Top handler	Taylor	ZLC	Electric					897 CHE Electric			
Top handler	Taylor	TXC-976	Diesel			2015	330	1221 CHE Diesel			
Top handler	Taylor	TXC-976	Diesel			2015	330	458 CHE Diesel			
Top handler	Taylor	TXC-976	Diesel	Volvo	TAD1360VE	2014	335	0 CHE Diesel			
Top handler	Taylor	TXC-976	Diesel			2015	330	2709 CHE Diesel			
Top handler	Taylor	TXC-976	Diesel	Volvo	TAD1360VE	2012	335	2263 CHE Diesel			
Top handler	Taylor	TXC-976	Diesel	Volvo	TAD1360VE	2012	335	1244 CHE Diesel			
Top handler	Taylor	TXC-976	Diesel	Volvo	TAD1360VE	2012	335	2376 CHE Diesel			
Top handler	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2012	335	2581 CHE Diesel			
•	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2012	335	2144 CHE Diesel			
Top handler											
Top handler Top handler	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2012	335	2129 CHE Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Ca
Top handler	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2012	335	2949 CHE Diesel	DFF level 2	DI l'ievel 3	- Dide Ca
Fop handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2012	350	1929 CHE Diesel			
rop handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350	2143 CHE Diesel			
op handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350	2143 CHE Diesel			
lop handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350 350	2540 CHE Diesel			
Fop handler	,	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350 350	2647 CHE Diesel			
	Hyster					2014	350				
Top handler Top handler	Taylor	TXLC-976	Diesel	Volvo	L-TAD1360VE			3061 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350	2093 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350	2043 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350	2505 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2014	350	2265 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2015	350	1870 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2015	350	2039 CHE Diesel			
Top handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L	2015	350	2492 CHE Diesel			
Top handler	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2015	335	3314 CHE Diesel			
Top handler	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2015	335	3296 CHE Diesel			
Top handler	Taylor	TXLC-976	Diesel	Volvo	TAD1360VE	2015	335	3112 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4596 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3122 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3541 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3725 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	1968 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3961 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4058 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4342 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4003 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3788 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3884 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4472 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4680 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3539 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3179 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	4205 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3699 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3498 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3173 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	3319 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	2424 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	1248 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	1998 CHE Diesel			
Top handler	Taylor	XLC-976	Diesel	Volvo	TAD1371VE	2018	389	1964 CHE Diesel			
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	266 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	0 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	141 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	33 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	62 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	313 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	321 CHE Diesel		1/1/2012	
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	333 CHE Diesel			
Top handler	Fantuzzi	FDS500	Diesel	Cummins	QSM11	2005	330	283 CHE Diesel			
Top handler	Taylor	TH976	Diesel	Cummins	QSM11	2008	335	1404 CHE Diesel		1/1/2010	
Top handler	Taylor	TH976	Diesel	Cummins	QSM11	2008	335	1652 CHE Diesel		2/1/2010	
Top handler	Taylor	TH976	Diesel	Cummins	QSM11	2008	335	2143 CHE Diesel		1/1/2010	

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Fop handler	Taylor	TH976	Diesel	Cummins	QSM11	2008	335	1814 CHE Diesel		3/1/2010	
Гор handler	Taylor	TH976	Diesel	Cummins	QSM11	2008	335	2046 CHE Diesel		1/1/2012	
Top handler	Taylor	TH976	Diesel	Cummins	QSM11	2008	335	2378 CHE Diesel		3/1/2010	
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360V	2011	348	2294 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360V	2011	348	2292 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2012	343	2760 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2012	343	1945 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2851 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2747 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2498 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2444 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2547 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2287 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2891 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2013	343	2509 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	2589 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	2446 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	2614 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	2713 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	3072 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	2981 CHE Diesel			
Top handler	Taylor	TXCL976	Diesel	Volvo	TAD1360VE	2015	343	2959 CHE Diesel			
Top handler	Taylor	THDC-975	Diesel	Cummins	QSL	2016	350	931 CHE Diesel			
Top handler	Taylor	FDC550G5	Diesel	Cummins	QSG12	2016	400	2164 CHE Diesel			
Top handler	Fantuzzi	FDC500G5	Diesel	Cummins		2016	350	3616 CHE Diesel			
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11	2002	250	1499 CHE Diesel		12/1/2012	
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11	2006	260	1628 CHE Diesel		12/1/2012	
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11	2006	260	1639 CHE Diesel		12/1/2012	
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11	2006	260	1460 CHE Diesel		12/1/2012	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2006	260	2066 CHE Diesel		12/1/2012	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2006	260	1795 CHE Diesel		12/1/2012	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2007	260	1587 CHE Diesel		1/1/2009	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2007	260	2038 CHE Diesel		1/1/2009	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2007	260	1961 CHE Diesel		1/1/2009	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2007	260	1197 CHE Diesel		1/1/2009	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2007	260	1291 CHE Diesel		1/1/2009	
Top handler	Taylor	THDC-975	Diesel	Cummins	QSM11	2007	260	988 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2750 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2322 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2725 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	3013 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	3177 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2201 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2844 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2959 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	1849 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11	2008	260	2816 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11 QSM11	2008	260	2468 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11 QSM11	2008	260	2412 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11 QSM11	2008	260	2800 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11 QSM11	2008	260	2768 CHE Diesel		1/1/2009	
Top handler	Taylor	TXC-976	Diesel	Cummins	QSM11 QSM11	2008	260	3287 CHE Diesel		1/1/2009	
Top handler	Taylor	TXLC976	Diesel	Cummins	QSM11 QSM11	2003	335	2553 CHE Diesel		1, 1, 2009	

D . D . M	D · · · · ·		D · M		D • • •		Engine		Annual		D1 -
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine M	lodel	Year	HP	Hours Category	DPF level 2 DPF level 3	Blue Ca
op handler	Taylor	TXLC976	Diesel	Cummins	QSM11		2011	335	2406 CHE Diesel		
op handler	Taylor	TXLC976	Diesel	Cummins	QSM11		2011	335	1487 CHE Diesel		
op handler	Hyster	H-1150-HDCH	Diesel	Cummin		QSL 9L		370	2326 CHE Diesel		
op handler	Hyster	H1150HD-CH	Diesel	Cummin		QSL 9L		363	1506 CHE Diesel		
op handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L		2017	363	2411 CHE Diesel		
op handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L		2017	363	2102 CHE Diesel		
Fop handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L		2017	363	1868 CHE Diesel		
Γop handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L		2017	363	2468 CHE Diesel		
Fop handler	Hyster	H1150HD-CH	Diesel	Cummins	QSL 9L		2017	363	1738 CHE Diesel		
Top handler	Taylor	XLC 976E	Diesel	Volvo	12.8 L		2017	388	1605 CHE Diesel		
Fop handler	Taylor	XLC 976E	Diesel	Volvo	12.8 L		2017	388	1951 CHE Diesel		
Fop handler	Taylor	TEC-950L	Diesel	Cummins	M11		1999	250	2169 CHE Diesel	1/1/2012	
Fop handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2005	330	2169 CHE Diesel	1/1/2012	
Fop handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2005	330	2169 CHE Diesel	1/1/2012	
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2005	330	2169 CHE Diesel	1/1/2012	
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2005	330	2169 CHE Diesel	1/1/2012	
Fop handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2006	335	2169 CHE Diesel	1/1/2012	
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2006	335	2169 CHE Diesel	1/1/2012	
Fop handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2006	335	2169 CHE Diesel	1/1/2012	
Fop handler	Taylor	THDC-955	Diesel	Cummins	QSM11 QSM11		2000	335	2169 CHE Diesel	1/1/2012	
Fop handler	Taylor	THDC-975	Diesel	Cummins	QJIVITT		2000	348	2169 CHE Diesel	1/1/2012	
Top handler	Taylor	THDC-975	Diesel	Cummins			2012	348	2169 CHE Diesel		
rop handler	Taylor	THDC-975	Diesel	Cummins			2012	348 348	2169 CHE Diesel		
op handler		THDC-975	Diesel	Cummins			2012	348 348	2169 CHE Diesel		
op handler	Taylor	THDC-975	Diesel	Cummins			2012	348 348	2169 CHE Diesel		
•	Taylor	100-975									
Top handler	Taylor		Diesel	Volvo			2012	335	2169 CHE Diesel		
Top handler	Taylor		Diesel	Volvo			2012	335	2169 CHE Diesel		
Top handler	Taylor		Diesel	Volvo			2013	335	2169 CHE Diesel		
Top handler	Taylor		Diesel	Volvo			2013	335	2169 CHE Diesel		
Fop handler	Taylor		Diesel	Volvo			2013	335	2169 CHE Diesel		
Top handler	Taylor		Diesel	Volvo			2013	335	2169 CHE Diesel		
Fop handler	Taylor		Diesel	Volvo			2013	335	2169 CHE Diesel		
Fop handler	Taylor		Diesel	Volvo			2014	335	2169 CHE Diesel		
Fop handler	Taylor		Diesel	Volvo			2014	335	2169 CHE Diesel		
Top handler	Hyster		Diesel	Cummins	QSL9		2015	350	2169 CHE Diesel		
Fop handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
op handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Fop handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Fop handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Fop handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Гop handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Top handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Top handler	Hyster		Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Fop handler	Hyster	H1150HD	Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Top handler	Hyster	H1150HD	Diesel	Cummins	QSL9		2014	350	2169 CHE Diesel		
Top handler	,		Diesel	-	•		2015	325	2169 CHE Diesel		
Top handler			Diesel				2015	325	2169 CHE Diesel		
Top handler			Diesel				2015	325	2169 CHE Diesel		
Top handler			Diesel				2015	325	2169 CHE Diesel		
Top handler	Taylor	THDC-955	Diesel	Cummins	QSM11		2015	335	2169 CHE Diesel	1/1/2012	
Fop handler		THDC-955	Diesel	Cummins	QSM11 QSM11		2006	335	2169 CHE Diesel	1/1/2012	
	Taylor									1/1/2012	
Top handler	TXLC976		Diesel	Volvo	TAD13		2015	325	2169 CHE Diesel		
Fop handler	TXLC976	2016	Diesel	Volvo	TAD13		2015	325	2169 CHE Diesel		

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Mode		Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Top handler	Taylor	TEC-950L	Diesel	Cummins	QSM-11		2011	330	3 CHE Diesel		1/1/2012	
Fop handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2003	330	1784 CHE Diesel		1/1/2011	
Γop handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2004	330	395 CHE Diesel		1/1/2011	
Гор handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2004	330	374 CHE Diesel		1/1/2011	
Top handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2003	330	441 CHE Diesel		1/1/2011	
Top handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2004	330	228 CHE Diesel		1/1/2011	
Top handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2004	330	623 CHE Diesel		1/1/2013	
Top handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2004	330	760 CHE Diesel		1/1/2011	
Top handler	Fantuzzi	FDC500G5	Diesel	Cummins	QSM11		2004	330	619 CHE Diesel		1/1/2011	
Top handler	Taylor	TXLC976	Diesel	Volvo T4i	TAD1360WE		2012	256	1595 CHE Diesel			
Top handler	Taylor	TXLC976	Diesel	Volvo T4i	TAD1360WE		2012	256	1462 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	2887 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	3222 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	3256 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	3098 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	3471 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	2609 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	3030 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	2988 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	3102 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	2558 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	1886 CHE Diesel			
Top handler	Taylor	XLC976	Diesel	Volvo T4F	TAD1375VE		2016	388	1873 CHE Diesel			
Top handler	Linde	C400	Diesel	Cummins	QSM11		2006	325	142 CHE Diesel		8/1/2011	
Truck	Ford	FT001	LPG	Ford	330EFV		1973		148 CHE Propane			
Truck	Freightliner		Diesel	Cummins		5.9	2005	185	132 CHE On Road Diesel		1/1/2012	
Truck	Freightliner		Diesel	Cummins		5.9	2005	185	304 CHE On Road Diesel		1/1/2012	
Truck	Freightliner		Diesel	Cummins		5.9	2005	185	131 CHE On Road Diesel		1/1/2012	
Truck	Peterbuilt		Diesel	Cummins	ISC		2006	240	898 CHE On Road Diesel			
Truck	Ford	F750	Diesel	Cummins	ISC		2008	240	990 CHE On Road Diesel			
Truck	Peterbuilt		Diesel	Cummins	ISC		2006	240	821 CHE On Road Diesel			
Truck			Diesel				1988		55 CHE Diesel			
Truck			Diesel				1996		1017 CHE Diesel			
Truck	Sterling		Diesel	Caterpillar	C7		2005	250	463 CHE On Road Diesel		11/13/2013	
Truck	Sterling		Diesel	Caterpillar	C7		2005	250	513 CHE On Road Diesel		11/7/2013	
Truck	Sterling		Diesel	Cummins	ISC		2007	330	672 CHE On Road Diesel		11,7,2010	
Truck	Sterling	LT8500	Diesel	Cummins	ISC		2008	250	923 CHE On Road Diesel			
Truck	Peterbilt		5 Diesel	Cummins	ISC		2008	250	623 CHE On Road Diesel			
Fruck	Freightliner		Diesel	Cummins	ISL		2013	350	724 CHE On Road Diesel			
Truck	Terex	40T33-07	Diesel	Caterpillar	C15		2007	540	1364 CHE Diesel			
Truck	Terex	40T 33-07	Diesel	Caterpillar	C-15		2009	540	265 CHE Diesel			
Truck	Terex	40T 33-07	Diesel	Cummins	QSK19		2005	525	1258 CHE Diesel			
Truck	Terex	40T 33-07	Diesel	Cummins	QSK19		2000	525	478 CHE Diesel			
Truck	Terex	40T 33-07	Diesel	Cummins	QSK19		2007	525	765 CHE Diesel			
Truck	Terex	T40K-800	Diesel	Cummins	QJKIJ		2007	390	141 CHE Diesel			
Truck	Terex	TR45	Diesel	Cummins	QSK19		2012	525	1119 CHE Diesel			
Truck	Caterpillar	TA30	Diesel	Cummins	QSM19 QSM11		2009	350	250 CHE Diesel			
Truck	Terex	TA400	Diesel	Scania	CONT		2008	444	2763 CHE Diesel			
Yard tractor	BYD	8Y	Electric	Scama			2014		CHE Electric			
Yard tractor	BYD	8Y	Electric						CHE Electric			
Yard tractor	BYD	8Y	Electric									
									CHE Electric			
Yard tractor	BYD	8Y	Electric						CHE Electric			
Yard tractor	BYD	8Y	Electric						CHE Electric			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
ard tractor	Capacity		LNG	Cummins	ISLG-LNG 8.9L	2018	250	790 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	577 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	835 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	570 CHE On Road LNG			
ard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	567 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	150 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	1088 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	446 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	717 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	324 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	945 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	1063 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	900 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	802 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	784 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	820 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	914 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	746 CHE On Road LNG			
Yard tractor	Capacity	000elt	LNG	Cummins	ISLG-LNG 8.9L	2018	250	921 CHE On Road LNG			
Yard tractor	Capacity	000elt	LNG	Cummins	ISLG-LNG 8.9L	2018	250	860 CHE On Road LNG			
Yard tractor	Capacity	000elt	LNG	Cummins	ISLG-LNG 8.9L	2018	250	717 CHE On Road LNG			
Yard tractor	Capacity	TJ9000	LNG	Cummins	ISLG-LNG 8.9L	2018	250	1084 CHE On Road LNG			
Yard tractor	Magnum	TT120	LPG	Cummins	LPG 195	2000	174	194 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	961 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	508 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1018 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	146 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1277 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1323 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	3 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	153 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1301 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	968 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	0 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1667 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	0 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1147 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1332 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1074 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1335 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	182 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1506 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1051 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	0 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1223 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1030 CHE Propane			
Yard tractor	Kalmar	PT122 PT122	LPG	Cummins	LPG 195	2004	195	1549 CHE Propane			
Yard tractor	Kalmar	PT122 PT122	LPG	Cummins	LPG 195	2004	195	1210 CHE Propane			
Yard tractor	Kalmar	PT122 PT122	LPG	Cummins	LPG 195	2004	195	644 CHE Propane			
Yard tractor	Kalmar	PT122 PT122	LPG	Cummins	LPG 195	2004	195	1506 CHE Propane			
Yard tractor Yard tractor	Kalmar Kalmar	PT122 PT122	LPG LPG	Cummins	LPG 195 LPG 195	2004 2004	195 195	0 CHE Propane			
	Kalmar Kalmar	PT122 PT122	LPG LPG	Cummins	LPG 195 LPG 195	2004 2004	195 195	1162 CHE Propane			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1402 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1187 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	208 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	922 CHE Propane			
Yard tractor	Kalmar	PT122	LPG	Cummins	LPG 195	2004	195	1640 CHE Propane			
Yard tractor	Capacity	ТЈ9000	LPG	Ford	6.8L V10	2011	231	1423 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1469 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1548 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1848 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1158 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1706 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	834 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1359 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	943 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1174 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1394 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1562 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	371 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1097 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	901 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1300 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1041 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1333 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1564 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	982 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1526 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1708 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG	Ford	6.8L V10	2011	231	1672 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1334 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1949 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	2019 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1315 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1938 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1723 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1335 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1602 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1550 CHE Propane			
Yard tractor	Capacity	0009LT	LPG			2007	195	1811 CHE Propane			
Yard tractor	Capacity	ТЈ9000	LPG			2007	195	1419 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1625 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1580 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1922 CHE Propane			
Yard tractor	Capacity	ТЈ9000	LPG			2007	195	1706 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1634 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1909 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1929 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	2213 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	306 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1420 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1679 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1299 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1904 CHE Propane			
			LPG LPG			2007	195 195				
Yard tractor	Capacity	TJ9000	LPG			2007	192	1584 CHE Propane			

OF LOS ANGELES											
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	нр	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	ТЈ9000	LPG	Engine Make	Eligine Model	2007	195	1817 CHE Propane	DITIEVEL	DITIEVEIS	Dide Out
Yard tractor	Capacity	TJ9000	LPG			2007	195	1610 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1152 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1617 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	2296 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	50 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1400 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1628 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1821 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1685 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1332 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1924 CHE Propane			
		TJ9000	LPG			2007	195	1442 CHE Propane			
Yard tractor Yard tractor	Capacity		LPG				195				
	Capacity	TJ9000	LPG LPG			2007	195 195	2043 CHE Propane			
Yard tractor	Capacity	TJ9000				2007		2083 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1396 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	0 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1801 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	9 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	981 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1817 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1087 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1831 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	5467 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1517 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1820 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1982 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1982 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1815 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	2392 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1633 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	1705 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	2004 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2007	195	2220 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1765 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1865 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1861 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2054 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2221 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	726 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1973 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1241 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2157 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1838 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1233 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2235 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	31 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1775 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1078 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1873 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1525 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	882 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1767 CHE Propane			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	TJ9000	LPG			2008	195	1826 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2075 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1843 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1846 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	0 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1517 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2072 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1939 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1812 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1854 CHE Propane			
Yard tractor	Capacity	ТЈ9000	LPG			2008	195	2107 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1903 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1789 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1802 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	260 CHE Propane			
Yard tractor	Capacity	ТЈ9000	LPG			2008	195	1959 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1738 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1816 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	2191 CHE Propane			
Yard tractor	Capacity	TJ9000	LPG			2008	195	1879 CHE Propane			
Yard tractor	Capacity	ТЈ9000	LPG			2008	195	2060 CHE Propane			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	3593 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2860 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2097 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2015	225	3174 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2399 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2015	225	3834 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2188 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2015	225	2727 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	408 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2727 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	3170 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2782 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2041 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2977 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2198 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2442 CHE On Road Diesel			
Yard tractor	Capacity	000elt	Diesel	Cummins	ISB	2015	225	2634 CHE On Road Diesel			
Yard tractor	Capacity	000elt	Diesel	Cummins	ISB	2015	225	3135 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	3274 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2015	225	3238 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2015	225	2617 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2015	225	3634 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	2084 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2646 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2206 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1213 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2847 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1281 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1815 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1976 CHE On Road Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1537 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2171 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1824 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1668 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1974 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	2137 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2042 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	921 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	2049 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1828 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB240	2007	240	105 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2223 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	167 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1118 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	649 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	489 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1013 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2296 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1834 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2808 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2763 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	586 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2091 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2273 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	1826 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2497 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2314 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB240	2007	240	2012 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2007	240	1430 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor		TJ7000	Diesel	Cummins	ISB	2008	240 240	2322 CHE On Road Diesel			
	Capacity Capacity	TJ7000 TJ7000	Diesel	Cummins	ISB	2008	240 240	2476 CHE On Road Diesel			
Yard tractor											

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB	2008	240	2053 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2150 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1925 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1863 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB	2008	240	2590 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1528 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2704 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1984 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2343 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1795 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2186 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2346 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	400 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2328 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1535 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1890 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	1810 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2897 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB	2008	240	2189 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	2194 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1840 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1229 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	2444 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	665 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2355 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	1453 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2597 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2545 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1613 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1048 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2233 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1838 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2294 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2241 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2253 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1358 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	1656 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2303 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	1824 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	656 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2437 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2247 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	нр	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1641 CHE On Road Diesel	Di i level 2	DIT IEVELD	Diuc Gal
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2686 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2008	240	2196 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2510 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	1865 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	2223 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2008	240	545 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2000	220	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	2277 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	2670 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	2631 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	2303 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	3178 CHE On Road Diesel			
		TJ9000	Diesel	Cummins	ISB	2012	220	2803 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	2723 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	299 CHE On Road Diesel			
Yard tractor	Capacity						220				
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2012	220	2547 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins Cummins	ISB	2011 2011	220	1047 CHE On Road Diesel 0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel		ISB		220				
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2011		2556 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2011	220	1972 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000 TJ9000	Diesel	Cummins	ISB	2011	220 220	804 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB	2011		2457 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2011	220	1705 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1192 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2442 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2277 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2287 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2298 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	229 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2635 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2845 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2630 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1879 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2500 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2513 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2409 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1356 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2715 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1913 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1430 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2651 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2868 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2363 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1942 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2013	220	173 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2013	220	2386 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2013	220	2501 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1697 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	4651 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	1852 CHE On Road Diesel			

OF LOS ANGELES											
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	нр	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB	2013	220	2327 CHE On Road Diesel	DIT RVC12	DITIEVELS	Blue Cat
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2469 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	3341 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2687 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2671 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2013	220	2837 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2319 CHE On Road Diesel			
Yard tractor		TJ9000	Diesel	Cummins	ISB	2014	220	2502 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2845 CHE On Road Diesel			
	Capacity	TJ9000		Cummins			220	2616 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel Diesel		ISB ISB	2014 2014	220	3171 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000		Cummins		2014	220				
Yard tractor	Capacity		Diesel	Cummins	ISB			2461 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2702 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2696 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2585 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2327 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2713 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2999 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	3068 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	3102 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	1830 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2807 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2559 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	0 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2312 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	3587 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2523 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2790 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	1760 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2526 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2348 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2293 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	1888 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2627 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	3426 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2079 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	3412 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	221 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	1792 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2551 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2058 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2469 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2014	220	2641 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	2234 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB	2015	225	671 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	941 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1057 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1860 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1180 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	682 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	510 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1230 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1190 CHE On Road Diesel			
							0				

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	909 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	339 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	38 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1402 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1507 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1038 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1199 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1960 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1700 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	205 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1279 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	723 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	776 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	0 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	913 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1751 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	475 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1210 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1005 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1435 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1925 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	962 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	807 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1569 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	932 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	30 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	964 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1633 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	844 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1907 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1291 CHE On Road Diesel			
Yard tractor	Ottawa	C-50	Diesel	Cummins	ISB07 240	2008	240	1765 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2000	240	1821 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1239 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1564 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1270 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1346 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1884 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1445 CHE On Road Diesel			
Yard tractor		TJ7000	Diesel	Cummins	ISB6.7	2012	240	928 CHE On Road Diesel			
	Capacity			Cummins			240 240				
Yard tractor	Capacity	TJ7000	Diesel		ISB6.7	2012	240 240	1371 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012		1521 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	2015 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1690 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1928 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1743 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1565 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	2062 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1872 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1743 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1755 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	2101 CHE On Road Diesel			

OF LOS ANGELES											
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	нр	Annual Hours Category	DPE lovel 2	DPF level 3	Blue Cat
Yard tractor	Capacity	ТЈ7000	Diesel	Cummins	ISB6.7	2012	240	1976 CHE On Road Diesel	DFF level 2	DIT level 3	Diue Cat
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	2436 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1520 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1786 CHE On Road Diesel			
		TJ7000	Diesel		ISB6.7	2012	240 240	2131 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240 240				
Yard tractor	Capacity			Cummins			240 240	2172 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000 TJ7000	Diesel	Cummins	ISB6.7	2012	240 240	1910 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB6.7	2012		2057 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240 240	1770 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012		2149 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	2340 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	2154 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1359 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1794 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB6.7	2012	240	1482 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1947 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2848 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2114 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2054 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2257 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2134 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2176 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2099 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2469 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2398 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2084 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2323 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2026 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2140 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2028 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2427 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2152 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1977 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2042 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1986 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2411 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1783 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2363 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1898 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2656 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2487 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	539 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2167 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2525 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1678 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2442 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1763 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2349 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	2323 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1708 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel	Cummins	ISB6.7	2014	240	1755 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		5234 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		976 CHE On Road Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	НР	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Ottawa	1.1.1.1.1.1.1	Diesel	8	8	2015		1562 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		1472 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		1443 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		968 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		1635 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		1142 CHE On Road Diesel			
Yard tractor	Ottawa		Diesel			2015		1020 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210	1463 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210	1365 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210	1468 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210	1597 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210	2163 CHE On Road Diesel			
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
Yard tractor	Capacity		Diesel	Cummins	ISB 07	2008	210				
			Diesel	Cummins	ISB 07	2008	210	850 CHE On Road Diesel			
Yard tractor	Capacity		Diesel		ISB 07		210				
Yard tractor	Capacity		Diesel	Cummins Cummins	ISB 07 ISB 07	2008 2008	210				
Yard tractor	Capacity	T17000					210				
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB-200	2007					
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB-07	2007	200				
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB-07	2007	200				
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB-07	2007	200				
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB-07	2007	200				
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB-07	2007	200				
Yard tractor	Ottowa	4x2	Diesel	Cummins	ISB-6.7	2015	200				
Yard tractor	Ottowa	4x2	Diesel	Cummins	ISB-6.7	2015	200				
Yard tractor	Ottowa	T2-4x2	Diesel	Cummins	QSB-6.7	2015	173	39 CHE Diesel			
Yard tractor	Ottowa	T2-4x2	Diesel	Cummins	QSB-6.7	2015	173	260 CHE Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1617 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1081 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1203 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1440 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	2125 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1595 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1673 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1469 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1729 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	932 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	135 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1693 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1550 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1432 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1521 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1644 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1751 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	2074 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1968 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1474 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1679 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1493 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1770 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1709 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1389 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1796 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1198 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1583 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	2016 CHE Diesel			
Yard tractor	TICO	Pro-spotter	Diesel	Cummins	QSB Tier 4f	2019	158	1922 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel		QSB 6.7	2011	200	1951 CHE Diesel			
Yard tractor	Ottowa	4x2 C-50	Diesel	Cummins	ISB6.7	2011	200	1951 CHE On Road I	Diesel		
Yard tractor		C-50	Diesel				240	1951 CHE On Road I			
Yard tractor Yard tractor	Ottowa Ottowa	C-50 C-50	Diesel	Cummins Cummins	ISB6.7 ISB6.7	2008 2007	240 240	1951 CHE On Road I 1951 CHE On Road I			
							240 240				
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	∠40	1951 CHE On Road I	Jiesei		

OF LOS ANGELES						D ·		•				
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	нр	Annual Hours	Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel	Di i levei 2	Diricver5	Diuc Gat
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240 240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240 240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50 C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
		C-50 C-50	Diesel		ISB6.7 ISB6.7	2007	240 240					
Yard tractor Yard tractor	Ottowa Ottowa	C-50 C-50	Diesel	Cummins Cummins	ISB6.7 ISB6.7	2007	240 240		CHE On Road Diesel CHE On Road Diesel			
		C-50	Diesel				240		CHE On Road Diesel			
Yard tractor	Ottowa			Cummins	ISB6.7	2007	240 240					
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240 240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007			CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			

OF LOS ANGELES												
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Males	Engine Model	Engine Year	нр	Annual Hours	Catagony	DPF lovel 2	DPF level 3	Blue Cat
1 4 74		Equip Model C-50	Diesel	Engine Make	ISB6.7	2007	240		Category CHE On Road Diesel	DFF level 2	DFF level 5	Diue Cat
Yard tractor Yard tractor	Ottowa Ottowa	C-50 C-50	Diesel	Cummins	ISB6.7 ISB6.7	2007	240 240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins Cummins	ISB6.7	2008	240		CHE On Road Diesel			
		C-50 C-50					240					
Yard tractor	Ottowa	C-50 C-50	Diesel	Cummins	ISB6.7	2008	240 240		CHE On Road Diesel			
Yard tractor	Ottowa		Diesel	Cummins	ISB6.7	2008			CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240 240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50 C-50	Diesel	Cummins	ISB6.7 ISB6.7	2007 2008	240 240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50 C-50	Diesel	Cummins			240 240		CHE On Road Diesel			
Yard tractor	Ottowa		Diesel	Cummins	ISB6.7	2008			CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2008	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottowa	C-50	Diesel	Cummins	ISB6.7	2007	240		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2012	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250		CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951	CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951	CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7 ISB6.7	2014 2014	250 250	1951	CHE On Road Diesel			

OF LOS ANGELES											
D . E . /T	E ' 14 1	E . M . I	т. · т	E . M.	E · M 11	Engine	TID	Annual	DDE1 10	DDE1 14	
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Year	HP	Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250 250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250 250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014		1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2016	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
						2014	250				
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7			1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	ISB6.7	2014	250	1951 CHE On Road Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins	QSB 6.7	2015	250	1951 CHE Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins	QSB 6.7	2015	200	1951 CHE Diesel			
		4x2 4x2			QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2 4x2	Diesel	Cummins			200				
Yard tractor	Ottawa	472	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Ottawa	4x2	Diesel	Cummins	QSB 6.7	2016	200	1951 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1608 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB6.7	2013	240	1855 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1708 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1427 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	492 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1574 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1069 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	2007 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1780 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1932 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1873 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1922 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1242 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1528 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1954 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	14 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1467 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	822 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	2269 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	2067 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	51 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	14 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	1175 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	15 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	38 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 6.7	2007	220	256 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1511 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1545 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	2092 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1686 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1908 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	2067 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	2067 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1777 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	2022 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1982 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	1062 CHE On Road Diesel			
Yard tractor	Capacity	TJ7000	Diesel	Cummins	ISB 220	2008	220	600 CHE On Road Diesel			
		TJ9000	Diesel	Cummins	ISB 220	2008	220	2079 CHE On Road Diesel			
Yard tractor	Capacity	139000	Diesei	cummins	10 10	2011	240	2079 CHE OII KOAU DIESEI			

OF LOS ANGELES											
D . D	D · M ·				T . N	Engine		Annual			DI C
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Year	HP	Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	1404 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	3614 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	1833 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	1737 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB 10	2011	240	1798 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	1704 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	1638 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 10	2011	240	1832 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB 240	2012	240	1434 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1687 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1993 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1947 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1817 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1888 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1613 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1696 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1493 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1495 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1268 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB 240	2012	240	1214 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1682 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1603 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1687 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1547 CHE On Road Diesel			
Yard tractor							240	1941 CHE On Road Diesel			
	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240 240				
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012		1613 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1779 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1322 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB 240	2012	240	1037 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	136 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	892 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	2333 CHE On Road Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	ISB6.7	2013	240	1047 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1901 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1393 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1053 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	ISB6.7	2013	240	1173 CHE On Road Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1762 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	2072 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1142 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1224 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1941 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1244 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1346 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1903 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1453 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1981 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1335 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1552 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1690 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1175 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7 QSB6.7	2015	225	678 CHE Diesel			
		TJ9000	Diesel		QSB6.7 QSB6.7	2015	225				
Yard tractor	Capacity	119000	Diesei	Cummins	J300.7	2015	223	1472 CHE Diesel			

Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Engine Year	HP	Annual Hours Category	DPF level 2	DPF level 3	Blue Cat
ard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	932 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1550 CHE Diesel			
ard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1753 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1880 CHE Diesel			
ard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	957 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1901 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1559 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1078 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1934 CHE Diesel			
Yard tractor	Capacity	ТЈ9000	Diesel	Cummins	QSB6.7	2015	225	1036 CHE Diesel			
Yard tractor	Capacity	TJ9000	Diesel	Cummins	QSB6.7	2015	225	1510 CHE Diesel			
Yard tractor	OTTAWA		Diesel			2007		500 CHE Diesel			
Yard tractor	OTTAWA		Diesel			2007		100 CHE Diesel			
Yard tractor	OTTAWA		Diesel			2011		500 CHE Diesel			
Yard tractor			Diesel			1995	250	2147 CHE Diesel		1/1/2012	
Yard tractor			Diesel			1995	250	1872 CHE Diesel		1/1/2012	
Yard tractor			Diesel			1995	250	1168 CHE Diesel		1/1/2012	
Yard tractor			Diesel			1995	250	1353 CHE Diesel		1/1/2012	
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1292 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	417 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	737 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1200 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1361 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	2373 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	446 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1156 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	562 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	2477 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	2117 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1881 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	541 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1392 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1648 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	491 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	1844 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	392 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2012	200	3348 CHE On Road Diesel			
Yard tractor	Ottawa	4 x 2	Diesel	Cummins	ISB6.7 200	2012	200	279 CHE On Road Diesel			
Yard tractor	Ottawa	4 x 2	Diesel	Cummins	ISB6.7 200	2015	200	1668 CHE On Road Diesel			
Yard tractor	Ottawa	4 x 2	Diesel	Cummins	ISB6.7 200	2013	200	1436 CHE On Road Diesel			
Yard tractor	Ottawa	4 x 2	Diesel	Cummins	ISB6.7 200	2015	200	1853 CHE On Road Diesel			
Yard tractor	Ottawa	4 x 2	Diesel	Cummins	ISB6.7 200	2015	200	2961 CHE On Road Diesel			
Yard tractor	Ottawa	4 x 2	Diesel	Cummins	ISB6.7 200	2013	200	2051 CHE On Road Diesel			
		4 x 2 4 x 2	Diesel		ISB6.7 200	2015	200	3040 CHE On Road Diesel			
Yard tractor Yard tractor	Ottawa	4 x 2 4 x 2	Diesel	Cummins	ISB6.7 200		200	2264 CHE On Road Diesel			
Yard tractor Yard tractor	Ottawa	4 x 2 4 x 2	Diesel	Cummins Cummins		2015	200	1550 CHE On Road Diesel			
	Ottawa				ISB6.7 200	2015					
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2019	200	4713 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2019	200	5161 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2019	200	4721 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2019	200	5026 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	4636 CHE On Road Diesel			

						Engine		Annual			
Port Equip Type	Equip Make	Equip Model	EngineType	Engine Make	Engine Model	Year	HP	Hours Category	DPF level 2	DPF level 3	Blue Cat
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	2671 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	5079 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	2999 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	3430 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	4030 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	3970 CHE On Road Diesel			
Yard tractor	Autocar	ACTT42	Diesel	Cummins	ISB6.7 200	2020	200	3675 CHE On Road Diesel			