INTERSTATE 110/C STREET INTERCHANGE PROJECT

City of Los Angeles, Los Angeles County, California
07-LA-110-PM 2.5/3.0
EA 264800

Mitigated Negative Declaration and Finding of No Significant Impact

Prepared by the
California Department of Transportation
and the
City of Los Angeles Harbor Department

The environmental review, consultation, and any other action required in accordance with applicable federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 USC 327.

June 2012
Interstate 110/C Street Interchange Project (07-LA-110-PM 2.5/3.0) in the Wilmington community of The City of Los Angeles, California

MITIGATED NEGATIVE DECLARATION AND FINDING OF NO SIGNIFICANT IMPACT

Submitted Pursuant to: (State) Division 13, California Public Resources Code (Federal) 42 USC 4332(2)(C)

The environmental review, consultation, and any other action required in accordance with applicable federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 USC 327

THE STATE OF CALIFORNIA
Department of Transportation

and

City of Los Angeles Harbor Department
MITIGATED NEGATIVE DECLARATION

Pursuant to: Division 13, Public Resources Code

Project Description

The California Department of Transportation (Caltrans) in cooperation with the City of Los Angeles Harbor Department proposes to realign Harry Bridges Boulevard and John S. Gibson Boulevard and combine the existing C Street and Figueroa Street intersection and the existing John S. Gibson Boulevard, Harry Bridges Boulevard, and Figueroa Street intersection into one new intersection that would connect to the Interstate 110/C Street interchange. The proposed project would also remove the existing northbound off-ramp and provide a new, direct, off-ramp from northbound I-110 to eastbound Harry Bridges Boulevard. This would involve the widening of the existing Union Oil undercrossing and the construction of a new separation structure over the realigned John S. Gibson Boulevard. Further improvements at the ramps would include a dedicated right-turn lane from the I-110 southbound off-ramp to southbound John S. Gibson Boulevard and a conventional signalized right turn from northbound John S. Gibson Boulevard to eastbound Harry Bridges Boulevard. The new intersection at Figueroa Street, Harry Bridges Boulevard, and John S. Gibson Boulevard would be widened to accommodate dual left turn pockets from westbound Harry Bridges Boulevard to southbound John S. Gibson Boulevard. The planned improvements will require no additional right of way acquisition. All land required for improvements is owned by Caltrans and the Los Angeles Harbor Department.

Determination

Caltrans has prepared an Initial Study for this project and has determined that the proposed project would not have a significant effect on the environment for the following reasons:

- The proposed project would have no effect on farms and timberlands, sole source aquifers, wild and scenic rivers, encroachment on state lands, relocations, and mineral resources.
- The proposed project would have no significant effect on growth, parks and recreation, environmental justice, hydrology and floodplains, geology/soils/seismicity/topography, hydrology and floodplains, and water quality and stormwater runoff.
- With mitigation/minimization measures incorporated, the proposed project would not have significantly adverse effects on land use and consistency, community character and cohesion, utilities and emergency services, traffic and circulation, visual/aesthetics, cultural resources, paleontological resources, hazardous materials, air quality, noise, and biological resources.

Christopher Cannon
Director, Environmental Management Division
City of Los Angeles Harbor Department

Date

Ronald Kosinski
Deputy District Director
Division of Environmental Planning, District 7
California Department of Transportation

Date
CALIFORNIA DEPARTMENT OF TRANSPORTATION
FINDING OF NO SIGNIFICANT IMPACT
FOR
Interstate 110/C Street Interchange Project

The California Department of Transportation (Caltrans) has determined that the Build Alternative will have no significant impact on the human environment. This Finding of No Significant Impact is based on the attached Environmental Assessment (EA) which has been independently evaluated by Caltrans and determined to adequately and accurately discuss the need, environmental issues, and impacts of the proposed project and appropriate mitigation measures. It provides sufficient evidence and analysis for determining that an Environmental Impact Statement is not required. Caltrans takes full responsibility for the accuracy, scope, and content of the attached Environmental Assessment and incorporated technical reports.

The environmental review, consultation, and any other action required in accordance with applicable Federal laws for this project is being, or has been, carried-out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327.

Notwithstanding any other provision of law, a claim arising under federal law seeking judicial review of the permit, license or approval issued by a federal agency for a highway or public transportation project shall be barred unless it is filed within 180 days after publication of a notice in the Federal Register announcing that the permit, license, or approval is final pursuant to the law under which agency action is taken, unless a shorter time is specified in the federal law pursuant to which judicial review is allowed.

June 14, 2012
Date

[Signature]
Ronald Kosinski
Deputy District Director
Division of Environmental Planning, District 7
California Department of Transportation
Interstate 110/C Street Interchange Project (07-LA-110-PM 2.5/3.0) in the Wilmington community of City of Los Angeles, California

INITIAL STUDY/ENVIRONMENTAL ASSESSMENT

Submitted Pursuant to: (State) Division 13, California Public Resources Code (Federal) 42 USC 4332(2)(C)

The environmental review, consultation, and any other action required in accordance with applicable federal laws for this project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 USC 327

THE STATE OF CALIFORNIA
Department of Transportation

and

Los Angeles Harbor Department

10-6-2011
Date of Approval

Christopher Carmon
Director, Environmental Management Division
City of Los Angeles Harbor Department

10-6-2011
Date of Approval

Ronald Kosinski
Deputy District Director
California Department of Transportation
District 7, Los Angeles
Contents

Chapter 1 Proposed Project

1.1 Introduction ...1-1
1.1.1 Existing Facility ..1-1
1.2 Purpose and Need ...1-6
1.2.1 Project Purpose ...1-6
1.2.2 Project Need ...1-6
1.3 Project Description ...1-12
1.4 Alternatives ..1-12
1.4.1 No-Build Alternative ...1-12
1.4.2 Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard) ...1-12
1.4.3 Comparison of Alternatives ..1-12
1.4.4 Identification of a Preferred Alternative...............................1-16
1.4.5 Alternatives Considered but Eliminated from Further Discussion ...1-16
1.5 Permits and Approvals Needed ...1-18

Chapter 2 Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

2.1 Human Environment ..2-1
2.1.1 Land Use ...2-1
2.1.2 Growth ...2-23
2.1.3 Community Impacts ...2-29
2.1.4 Utilities/Emergency Services ..2-36
2.1.5 Traffic and Transportation/Pedestrian and Bicycle Facilities ...2-42
2.1.6 Visual/Aesthetics ..2-64
2.1.7 Cultural Resources ..2-66
2.2 Physical Environment ..2-75
2.2.1 Hydrology and Floodplains ...2-75
2.2.2 Water Quality and Stormwater Runoff2-81
2.2.3 Geology/Soils/Seismicity/Topography2-93
2.2.4 Paleontology ..2-102
2.2.5 Hazardous Waste/Materials ...2-106
2.2.6 Air Quality ...2-113
2.2.7 Noise ..2-146
2.3 Biological Environment ..2-158
2.3.1 Natural Communities ...2-158
2.3.2 Wetlands and Other Waters ...2-161
2.3.3 Plant Species ..2-163
2.3.4 Animal Species ..2-164
2.3.5 Threatened and Endangered Species2-166
2.3.6 Invasive Species ..2-168
2.4 Cumulative Impacts ...2-171
2.4.1 Regulatory Setting...2-171
2.4.2 Land Use/Community Impacts ...2-178
2.4.3 Growth ... 2-179
2.4.4 Utilities/Emergency Services .. 2-180
2.4.5 Traffic and Transportation/Pedestrian and Bicycle Facilities .. 2-182
2.4.6 Visual/Aesthetics .. 2-183
2.4.7 Cultural Resources ... 2-184
2.4.8 Hydrology, Floodplain, Water Quality and Stormwater Runoff .. 2-185
2.4.9 Geology/Soils/Seismicity/Topography 2-187
2.4.10 Paleontology ... 2-188
2.4.11 Hazardous Waste/Materials .. 2-189
2.4.12 Air Quality .. 2-190
2.4.13 Noise ... 2-191
2.4.14 Biological Environment ... 2-192
2.5 Climate Change (CEQA). .. 2-194
 2.5.1 Regulatory Setting ... 2-194
 2.5.2 Climate Change Effects .. 2-197

Chapter 3 Comments and Coordination .. 3-1
 3.1 Scoping Process .. 3-1
 3.2 Consultation and Coordination with Public Agencies 3-1
 3.2.1 Biological Resources .. 3-1
 3.2.2 Cultural Resources ... 3-2
 3.3 Public Participation .. 3-3
 3.3.1 Public Information Meetings .. 3-3
 3.3.2 Public Circulation (Comments/Responses) 3-3

Chapter 4 List of Preparers .. 4-1

Chapter 5 Distribution List ... 5-1

References Cited .. 1

Appendix A CEQA Checklist
Appendix B Resources Evaluated Relative to the Requirements of Section 4(f)
Appendix C Caltrans Title VI Policy
Appendix D Plans and Cross-sections for the Proposed Project
Appendix E Notice of Initiation of Studies and Comment Letters
Appendix F Environmental Commitments Record
Appendix G List of Acronyms
Appendix H Air Quality
Appendix I Supplemental Noise Modeling
Appendix J Supplemental Traffic Analysis – “Existing+Project” Conditions
Appendix K Proof of Public Hearing Notice Publication
Appendix L FHWA Air Quality Conformity Determination
List of Tables

1-1 Traffic Level of Service Descriptions .. 1-6

1-2 Existing (2009) and Future No-Build (2014 and 2035) Peak-Hour Traffic at Project Site .. 1-8

1-3 Peak Hour Level of Service at Intersections and Segments for 2009 Traffic Volumes and No-Build Traffic Volumes for 2014 and 2035 (Highway Capacity Software [HCS]) .. 1-9

1-4 Permits and Approvals Needed .. 1-18

2-1 Approved Local and Related Projects .. 2-8

2-3 2008 SCAG RTP 2005–2035 Housing Projections 2-27

2-4 2008 SCAG RTP 2005–2035 Employment Projections 2-27

2-5 Population Estimates .. 2-30

2-6 Existing Regional and Local Population Characteristics—Age (2000) ... 2-30

2-7 Existing Regional and Local Housing Characteristics—Occupancy (2000) .. 2-31

2-8 Existing Regional and Local Housing Characteristics—Tenure (2000) .. 2-31

2-9 Population and Ethnic Distribution .. 2-34

2.10 Median Household Income ... 2-34

2-11 Existing (2009) Average Daily Traffic and Peak-Hour Traffic at Project Site .. 2-46

2.12 Existing 2009 Intersections Levels of Service 2-46

2.13 Existing 2009 Intersection Queue Lengths ... 2-47

2.14 Existing 2009 Freeway Ramp Levels of Service 2-48

2.15 Existing 2009 Freeway Mainline Levels of Service 2-48

2.16 Existing 2009 Freeway Weave-Area Levels of Service 2-49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.17</td>
<td>Accident Rates for I-110 Northbound Mainline and Ramps at C Street (Period: 04/01/2005–03/31/2008)</td>
<td>2-50</td>
</tr>
<tr>
<td>2-18</td>
<td>2014 Port-Area Trip Generation</td>
<td>2-51</td>
</tr>
<tr>
<td>2-19</td>
<td>2035 Port-Area Trip Generation</td>
<td>2-51</td>
</tr>
<tr>
<td>2-20</td>
<td>Future No-Build and Build (2014) Average Daily Traffic at Project Site</td>
<td>2-53</td>
</tr>
<tr>
<td>2.21</td>
<td>No-Build 2014 Intersection Levels of Service</td>
<td>2-53</td>
</tr>
<tr>
<td>2-22</td>
<td>No-Build 2014 Intersection Queue Lengths</td>
<td>2-54</td>
</tr>
<tr>
<td>2-23</td>
<td>2014 Freeway Ramp Level of Service</td>
<td>2-54</td>
</tr>
<tr>
<td>2-24</td>
<td>2014 Freeway Mainline Levels of Service</td>
<td>2-55</td>
</tr>
<tr>
<td>2-25</td>
<td>2014 Freeway Weave-Area Level of Service</td>
<td>2-56</td>
</tr>
<tr>
<td>2-26</td>
<td>Future No-Build and Build (2035) Average Daily Traffic at Project Site</td>
<td>2-56</td>
</tr>
<tr>
<td>2.27</td>
<td>No-Build 2035 Intersection Levels of Service</td>
<td>2-57</td>
</tr>
<tr>
<td>2-28</td>
<td>No-Build 2035 Intersection Queue Lengths</td>
<td>2-57</td>
</tr>
<tr>
<td>2-29</td>
<td>2035 Freeway Ramp Level of Service</td>
<td>2-58</td>
</tr>
<tr>
<td>2-30</td>
<td>2035 Freeway Mainline Levels of Service</td>
<td>2-58</td>
</tr>
<tr>
<td>2-31</td>
<td>2035 Freeway Weave Area Level of Service</td>
<td>2-59</td>
</tr>
<tr>
<td>2.32</td>
<td>Build 2014 Intersection Levels of Service</td>
<td>2-60</td>
</tr>
<tr>
<td>2-33</td>
<td>Build 2014 Intersection Queue Lengths</td>
<td>2-60</td>
</tr>
<tr>
<td>2-34</td>
<td>Build 2035 Intersection Levels of Service</td>
<td>2-61</td>
</tr>
<tr>
<td>2-35</td>
<td>Build 2035 Intersection Queue Lengths</td>
<td>2-62</td>
</tr>
<tr>
<td>2-36</td>
<td>Surface Water Quality Concerns on the Los Angeles RWQCB Section 303(d) List</td>
<td>2-85</td>
</tr>
<tr>
<td>2-37</td>
<td>Numerical Inland Surface Water Quality Objectives</td>
<td>2-87</td>
</tr>
<tr>
<td>2-38</td>
<td>Numerical Groundwater Quality Objectives</td>
<td>2-89</td>
</tr>
<tr>
<td>2-39</td>
<td>Known Water Quality Concerns from Roadway Stormwater Runoff</td>
<td>2-92</td>
</tr>
</tbody>
</table>
Contents

2-40 Ambient Air Quality Standards Applicable in California and the Attainment Status of the South Coast Air Basin ... 2-115

2-41 Ambient Air Quality Monitoring Data Measured at the North Long Beach Monitoring Station ... 2-119

2-42 South Coast Air Quality Management District’s Best Available Control Measures ... 2-125

2-43 Intersection Volumes for With- and Without-Project Conditions ... 2-131

2-44 Percentage Increase in Volumes between With- and Without-Project Conditions ... 2-131

2-45 LOS and Average Delays for With- and Without-Project Conditions ... 2-132

2-46 Peak-hour Approach Lane Volumes Used in the 2003 AQMP Attainment Demonstration .. 2-135

2-47 Proposed Project Peak-hour Approach Lane Volumes ... 2-135

2-48 Cross-street Truck Percentages ... 2-137

2-49 Mainline Truck Percentages .. 2-137

2-50 Mainline ADT and Truck ADT on I-110 ... 2-139

2-51 Summary of Daily Operational Emissions ... 2-140

2-52 Noise Abatement Criteria .. 2-146

2-53 Short-Term Receptor Sites ... 2-149

2-54 Comparison of Measured and Modeled Sound Levels (dB) in the TNM Model ... 2-151

2-55 Construction Equipment Noise ... 2-152

2-56 Traffic Noise Levels for Existing without-Project, Existing with-Project, Future without-Project, and Future with-Project Scenarios .. 2-154

2-57 Noxious Weed Species Observed within the Biological Study Area ... 2-169

2-58 Estimated Operational GHG Emissions (metric tons/year) ... 2-199

2-59 Department Climate Change Strategies ... 2-203
List of Figures

1-1 Project Location Map ... 1-2
1-2 Project Vicinity Map ... 1-3
1-3 Proposed Project ... 1-4
1-4 Levels of Service for Freeways .. 1-7
1-5 Existing Land Uses ... 1-10
2-1 Zoning Designations in Project Area ... 2-5
2-2 Land Use Designations in Project Area 2-6
2-3 Approved Local and Related Projects 2-13
2-4 Population Study Area ... 2-25
2-5 Study Area and Study Intersections .. 2-44
2-6a Area of Potential Effect for the Project 2-68
2-6b Area of Potential Effect for the Project 2-69
2-6c Area of Potential Effect for the Project 2-70
2-7 Proposed Project with Flood Zones .. 2-78
2-8 Groundwater Elevation Contours .. 2-79
2-9 Topographic Map Quadrangle .. 2-97
2-10 Air Quality Sensitive Receptors ... 2-122
2-11 Noise Levels of Common Activities 2-148
2-12 Noise Measurement Sites .. 2-150
2-13 Noise Evaluation Areas ... 2-155
2-14 Biological Study Area .. 2-159
2-15a Research Study Area for Cumulative Impacts 2-173
2-15b Research Study Area for Cumulative Impacts 2-175
2-15c Research Study Area for Cumulative Impacts 2-177
Contents

2-16 California Greenhouse Gas Forecast ..2-198
2-17 Fleet CO2 Emissions vs. Speed (Highway) ...2-200
2-18 Mobility Pyramid ...2-201
3-1 Notice of Intent to Adopt ...3-4
3-2 Notice of Public Hearing and Availability of Studies3-7
Technical Studies
[The following studies are printed under separate cover and are available at Caltrans’ District 7 offices during normal business hours.]

- Air Quality Report [ICF International, July 2011]
- Initial Site Assessment [Group Delta Consultants, January 2007]
- Phase II Hazardous Waste Investigation [Diaz Yourman and Associates, March 2009]
- Preliminary Foundation Report [Diaz Yourman and Associates, April 2009]
- Natural Environment Study (Minimal Impacts) [ICF International, November 2009]
- Traffic Study [Iteris, November 2009]
- Water Quality Report [ICF International, February 2010]

Note:
A vertical line in the margin indicates changes in the text from the original Draft Initial Study/Environmental Assessment.
Chapter 1 Proposed Project

1.1 Introduction

The California Department of Transportation, District 7 (Caltrans), in cooperation with the Los Angeles Harbor Department (LAHD), proposes to improve the existing Interstate 110 (I-110)/C Street interchange. The proposed project would include a northbound off-ramp for direct access to Harry Bridges Boulevard, modification of the northbound on-ramp from C Street, realignment of Harry Bridges Boulevard, and combining the I-110 ramp terminal/C Street/Figueroa Street intersection with the John S. Gibson Boulevard/Harry Bridges Boulevard intersection. The proposed project is within the City of Los Angeles’s (City’s) Wilmington community area and is predominantly surrounded by port-related facilities (see Figure 1-1 and Figure 1-2 for the project location and vicinity maps and Figure 1-3 for a map of the proposed project improvements). The project area falls within the Coastal Zone.

Within the harbor area, I-110, also known as the Harbor Freeway, is an access-controlled, grade-separated freeway that is used for commuter travel, goods movement, and interregional travel. This route is an important connection between the port and the rest of the Los Angeles region.

The proposed project is listed in the amendment to the final 2008 Regional Transportation Improvement Program (RTIP) as Project ID LA0F030 and is consistent with the description in the RTIP. As of 2008, the cost of the proposed project was estimated to be $24.8 million. The current estimated cost for the Build Alternative is $36 million, which includes $14 million for right-of-way acquisition and utility relocation and $22 million for construction. Funding from the Trade Corridor Improvement Fund (TCIF) has been allocated for the proposed project in the amount of $8.3 million, and Metro Prop C funds have been allocated in the amount of $6.6 million. LAHD will fund the remaining $21.1 million from the Infrastructure Cargo Fee and port revenue funds.

Caltrans is the California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA) lead agency for the initial study/environmental assessment (IS/EA) that has been prepared for this proposed project.

1.1.1 Existing Facility

The I-110/C Street interchange consists of a trumpet interchange. On the east side, the interchange provides on- and off-ramps for northbound traffic; in the northwest quadrant, a loop on-ramp is nestled within a hook off-ramp on the west side for southbound traffic. The interchange provides ingress and egress to/from I-110 at the Figueroa Street/C Street intersection.

1 With an access-controlled freeway, the owners of abutting lands have no right or easement of access to or from their abutting lands; such owners have only limited or restricted right or easement of access.

2 Trumpet interchanges are named as such because of their resemblance to trumpets. They have at least one loop ramp that connects traffic (either entering or leaving the terminating roadway) to the far lanes of the continuous highway. The bell of a trumpet can be seen where the terminating roadway begins to merge with the continuous roadway. The resemblance to the tubing is seen along the connecting loop ramps.
Figure 1-1: Project Location Map
Figure 1-2: Project Vicinity Map
Figure 1-3: Proposed Project
Access to C Street (a local road) from the ramps is currently blocked by a temporary raised median. The existing southbound and northbound off-ramps merge just east of the interchange, resulting in a short weaving distance. This tends to reduce the operational efficiency of the interchange.

Port traffic traveling southbound on I-110 to the TraPac container terminal via the C Street off-ramp is required to make an immediate right turn onto southbound Figueroa Street before entering the terminal gate at the intersection of Figueroa Street, Harry Bridges Boulevard, and John S. Gibson Boulevard.

The following is a brief description of the streets and highways that intersect the project site:

- **Interstate 110** is a north-south highway that extends from the port area to downtown Los Angeles. It has six lanes in the vicinity of the harbor and widens to eight lanes in the north.

- **John S. Gibson Boulevard** is a four-lane north-south street that runs adjacent to I-110 along the western boundary of LAHD’s West Basin project site. It provides direct access to the Yang Ming container terminal at Berths 121–131 and Phase I of the China Shipping Terminal at Berths 97–109. John S. Gibson Boulevard becomes Pacific Avenue as the street continues south into San Pedro. John S. Gibson Boulevard is classified as a Class II Major Highway in the City of Los Angeles General Plan, with a right-of-way of 100 feet. John S. Gibson Boulevard also provides Class II bike lanes. The existing right-of-way of the street in the project area is about 90 feet.

- **Harry Bridges Boulevard** is a four-lane east-west street that runs along the north side of LAHD’s West Basin. It provides direct access to the container terminal at Berths 136–139 as well as Berths 142–147 via Neptune Avenue, which extends southward from Harry Bridges Boulevard. Harry Bridges Boulevard is classified as a Class II Major Highway by the City of Los Angeles General Plan, with a right-of-way of 100 feet. The existing right-of-way of the street in the project area varies from 90 to 100 feet.

- **Figueroa Street** is a four-lane street that extends northward from the harbor area into the community of Wilmington and the City of Carson along the east side of I-110. The entrance to the TraPac Container Terminal is at the intersection of Figueroa Street and Harry Bridges Boulevard. Figueroa Street is classified as a Class II Major Highway by the City of Los Angeles General Plan, with a right-of-way of 100 feet. Figueroa Street also provides Class III bike lanes. The existing right-of-way of the street in the project area is about 85 feet.

Currently, three terminal entrance and exit gates along the West Basin affect the operation of the roadway system in the immediate area. The first gate is located at the intersection of Harry Bridges Boulevard, Figueroa Street, and John S. Gibson Boulevard. The second gate is located along John S. Gibson Boulevard, which is opposite the I-110 northbound ramps. The third gate is located along Front Street, which is opposite Knoll Drive.

Retaining walls exist between I-110 and John S. Gibson Boulevard south of C Street. There is a Union Oil undercrossing (Bridge No. 53-1035) that provides access between John S. Gibson Boulevard and C Street.
Boulevard and the Union Oil facility located on the west side of I-110. The undercrossing provides a 25-foot-wide roadway with access controlled by a chain link gate.

1.2 Purpose and Need

1.2.1 Project Purpose

The purpose of the proposed project is to

- improve traffic operations at the C Street/Figueroa Street intersection and reduce vehicular delays, and
- meet Caltrans’ goal of maximizing the performance and accessibility of transportation systems.

1.2.2 Project Need

The proposed project is needed to improve the existing intersection level of service (LOS), a non-standard weaving distance, and traffic circulation within the area. The need for this project is based on an assessment of transportation demand and current and projected traffic model volumes. The results of this assessment are discussed below.

1.2.2.1 Capacity and Transportation Demand

Roadway capacity is determined by the number of vehicles that can reasonably pass over a given section of roadway in a given period of time. The *Highway Capacity Manual*, prepared by the National Transportation Research Board, identifies travel speed, freedom to maneuver, and proximity to other vehicles as important factors in determining LOS for a roadway. As shown in Table 1-1, LOS conditions are designated as “A,” indicating the best free-flow condition, through “F,” indicating worst-case congested conditions. Daily traffic volumes are used to estimate the extent to which peak-hour traffic volumes equal or exceed the maximum desirable capacity of a roadway. The LOS for freeways is shown in Figure 1-4.

<table>
<thead>
<tr>
<th>LOS</th>
<th>Description</th>
<th>Volume-to-Capacity Ratio</th>
<th>Typical Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Indicates primarily free-flow operations and the ability to maneuver unimpeded.</td>
<td>0.00–0.33</td>
<td>50-Plus mph</td>
</tr>
<tr>
<td>B</td>
<td>Indicates stable flow, with few restrictions on operating speed or maneuverability.</td>
<td>0.34–0.50</td>
<td>48–49 mph</td>
</tr>
<tr>
<td>C</td>
<td>Indicates stable flow but higher volumes and more restrictions on speed and lane changing.</td>
<td>0.51–0.65</td>
<td>44–47 mph</td>
</tr>
<tr>
<td>D</td>
<td>Indicates that traffic is approaching an unstable flow, with little freedom to maneuver, but conditions are tolerable for short periods.</td>
<td>0.66–0.80</td>
<td>40–43 mph</td>
</tr>
<tr>
<td>E</td>
<td>Indicates unstable flow, lower operating speeds than LOS D speeds, and some momentary stoppages.</td>
<td>0.81–1.00</td>
<td>30–39 mph</td>
</tr>
<tr>
<td>F</td>
<td>Indicates a forced flow that is operating at low speeds; the highway acts as a storage area, and there are many stoppages.</td>
<td>Greater than 1.00</td>
<td>Less than 30 mph</td>
</tr>
</tbody>
</table>

Figure 1-4: Levels of Service for Freeways

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Flow Conditions</th>
<th>Operating Speed (mph)</th>
<th>Technical Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>![Image]</td>
<td>70</td>
<td>Highest quality of service. Traffic flows freely with little or no restrictions on speed or maneuverability. No delays</td>
</tr>
<tr>
<td>B</td>
<td>![Image]</td>
<td>70</td>
<td>Traffic is stable and flows freely. The ability to maneuver in traffic is only slightly restricted. No delays</td>
</tr>
<tr>
<td>C</td>
<td>![Image]</td>
<td>67</td>
<td>Few restrictions on speed. Freedom to maneuver is restricted. Drivers must be more careful making lane changes. Minimal delays</td>
</tr>
<tr>
<td>D</td>
<td>![Image]</td>
<td>62</td>
<td>Speeds decline slightly and density increases. Freedom to maneuver is noticeably limited. Minimal delays</td>
</tr>
<tr>
<td>E</td>
<td>![Image]</td>
<td>53</td>
<td>Vehicles are closely spaced, with little room to maneuver. Driver comfort is poor. Significant delays</td>
</tr>
<tr>
<td>F</td>
<td>![Image]</td>
<td><53</td>
<td>Very congested traffic with traffic jams, especially in areas where vehicles have to merge. Considerable delays</td>
</tr>
</tbody>
</table>
Chapter 1. Proposed Project

The *Traffic Operations Analysis Report* was prepared for the proposed project in 2009. Traffic volume data for the I-110/C Street interchange were collected in 2009 by Iteris. Table 1-2 presents the existing (2009) and future no-build peak-hour traffic volumes for 2014 and 2035 at the I-110/C Street interchange. The increased traffic on the ramps is attributable to expected growth at port facilities and an increase in local traffic.

Table 1-2: Existing (2009) and Future No-Build (2014 and 2035) Peak-Hour Traffic at Project Site

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM Peak-Hour Volume</td>
<td>PM Peak-Hour Volume</td>
<td>AM Peak-Hour Volume</td>
</tr>
<tr>
<td>Northbound (NB) I-110 south of C Street off-ramp</td>
<td>4,544</td>
<td>2,989</td>
<td>4,138</td>
</tr>
<tr>
<td>NB I-110 off-ramp to C Street</td>
<td>289</td>
<td>293</td>
<td>303</td>
</tr>
<tr>
<td>NB I-110 between C Street on- and off-ramps</td>
<td>4,255</td>
<td>2,969</td>
<td>3,835</td>
</tr>
<tr>
<td>NB I-110 on-ramp from C Street</td>
<td>133</td>
<td>226</td>
<td>454</td>
</tr>
<tr>
<td>NB I-110 between C Street on-ramp and Anaheim Street off-ramp</td>
<td>4,388</td>
<td>2,922</td>
<td>4,290</td>
</tr>
</tbody>
</table>

Roadway Segments and Intersection Operations

The results of the peak-hour LOS analysis for 2009, 2014, and 2035 are summarized in Table 1-3 for intersections and freeway segments. The intersection analysis shows that, under forecast 2014 and 2035 traffic conditions, one intersection is projected to operate at an unacceptable LOS of F in the AM and PM peak hours without the proposed improvements (see Table 1-3). This condition would improve to LOS B and LOS C in the AM and PM peak hours, respectively, with the proposed project.

1.2.2.2 Roadway Deficiencies

Various non-standard features exist that contribute to existing roadway deficiencies. The existing northbound off-ramp has one lane that is approximately 750 feet in length. The standard calls for two lanes that exceed 1,000 feet. The weaving distance between the existing northbound on-ramp from C Street to the Anaheim Street off-ramp is 730 feet. The standard weaving distance is 1,600 feet. The spacing between the existing C Street interchange and the Anaheim Street interchange to the north is approximately 0.5 mile (see Figure 1-2). The standard spacing is 1.0 mile. The existing spacing between the C Street interchange and the I-110/SR-47 interchange to the south is 1.8 miles. The standard spacing is 2.0 miles.
Table 1-3: Peak-Hour Level of Service at Intersections and Segments for 2009 Traffic Volumes and No-Build Traffic Volumes for 2014 and 2035 (Highway Capacity Software [HCS])

<table>
<thead>
<tr>
<th>Roadway Segment/Intersection</th>
<th>Existing (2009)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM Peak-Hour LOS</td>
<td>PM Peak-Hour LOS</td>
<td>AM Peak-Hour LOS</td>
<td>PM Peak-Hour LOS</td>
<td>AM Peak-Hour LOS</td>
<td>PM Peak-Hour LOS</td>
</tr>
<tr>
<td>Segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB I-110 south of C Street off-ramp</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>NB I-110 off-ramp to C Street</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>NB I-110 between C Street on- and off-ramps</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>NB I-110 on-ramp from C Street</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NB I-110 between C Street on-ramp and Anaheim Street off-ramp</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figueroa Street and I-110 ramps/C Street</td>
<td>B</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Figueroa Street /John S. Gibson Blvd/Harry Bridges Blvd</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

1 LOS is covered under the weaving segment.

The existing northbound and southbound off-ramps merge at a point just east of the C Street undercrossing structure. This merge distance is very short and tends to reduce operational efficiency of the C Street/Figueroa Street and I-110 intersection. Correcting this short merge distance or eliminating it altogether would improve future LOS and enhance the safety of the interchange.

1.2.2.3 Social Demands or Economic Development

Land Use Trends

The proposed project is located in an area that is both industrial and residential. Port facilities are located directly south of the proposed project, and industrial warehouse-type facilities are located to the east. The area near the D Street and Figueroa Street intersection is residential. The area between C Street and Harry Bridges Boulevard east of Figueroa Street is vacant land that is owned by the City of Los Angeles for public use. The City has constructed a green-space buffer between port facilities and the residential community in Wilmington, known as the Harry Bridges Boulevard Buffer Project and the Wilmington Waterfront Project. Figure 1-5 shows the existing land uses and the recently constructed buffer.
Figure 1-5: Existing Land Uses

Legend
- Existing Land Use
 - Elementary Schools
 - Freeways and Major Roads
 - Harbor Facilities
 - Harbor Water Facilities
 - High Density Single Family Residential
 - Low-Rise Apartments, Condominiums, and Townhouses
 - Proposed Buffer
 - Manufacturing, Assembly, and Industrial Services
 - Mixed Residential
 - Open Storage
 - Petroleum Refining and Processing
 - Vacant Undifferentiated
 - Wholesaling and Warehousing
 - Project Boundary

Source: ESRI USA Imagery (2003)
There are a few adjacent transportation projects that would occur in the vicinity of the C Street interchange. The SR-47/I-110/John S. Gibson interchange project (EA 26060K) is located less than 1 mile south of the proposed project. It is currently in the project initiation phase. The PSR for the SR-47/I-110/John S. Gibson interchange project is being developed concurrently with the proposed project. Two LAHD projects, the Harry Bridges Boulevard widening project (currently under construction) and the Fries Avenue grade separation project, are planned in the project vicinity. The Harry Bridges Boulevard widening project will match the widening and realignment modifications made under the proposed project. The Fries Avenue project is associated with relocation of the port’s entrance and exit gates.

Social Demands

In April 2006, LAHD launched a series of transportation-related community workshops for residents of the San Pedro and Wilmington areas in which conceptual improvements were developed. The intent was to maintain an open dialogue with residents by providing updates on the proposed project and obtaining public comments on potential future improvements. The Wilmington community voiced a strong desire to separate truck traffic from its residential areas. Currently, a temporary fix (i.e., a raised median) is provided to block port-related truck traffic from accessing C Street from the ramps. Also, the community would prefer to have more separation between port facilities and residential areas.

Modal Interrelationships and System Linkages

Interstate 110 is a major north-south freeway that connects San Pedro, Wilmington, and the port with the rest of the City of Los Angeles. In addition, I-110 is an important truck route, as evidenced by the large number of trucks that travel to and from port terminals. Therefore, it is an integral and essential part of the interstate system within Los Angeles County.

LAHD anticipates an increase in truck traffic at port terminals within the next 25 years in addition to increases in non-commercial traffic due to expected local growth. As a result, freeway interchanges, local roads, and highways near port terminals are expected to reach capacity during peak periods.

LAHD recognizes that a lack of peak-period capacity is a serious problem and has therefore initiated a number of studies to consider improvements to surrounding facilities. Four locations have been identified for conceptual development: (1) Harbor Boulevard and I-110, (2) the I-110 southbound on-ramp at Mira Flores, (3) the John S. Gibson Boulevard ramps, and (4) the I-110/SR-47 connector. The proposed project improvements described in this IS/EA would be consistent with all future projects.

John S. Gibson Boulevard is designated to provide Class II bike lanes, and Figueroa Street is designated to provide Class III bike lanes. The proposed improvements would accommodate the existing bike lane classifications and include 8-foot shoulders. There are existing bike lanes on northbound John S. Gibson Boulevard and Figueroa Street.
1.2.2.4 Independent Utility and Logical Termini

The proposed project would reduce congestion in the project area without creating a new chokepoint outside the project limits. The project would not require future construction to use the project’s design capabilities fully and meet the purpose and need. The proposed project has been designed 1) to connect logical termini and be of sufficient length to address environmental matters on a broad scope, 2) to have independent utility or independent significance, and 3) not to restrict consideration of alternatives for other reasonably foreseeable transportation improvements.

1.3 Project Description

This section describes the proposed project and the design alternatives that were developed by a multi-disciplinary team to achieve the project’s purpose and need while avoiding or minimizing environmental impacts. For the proposed project, a Build Alternative and a No-Build Alternative are being considered. The Build Alternative is described in the final 2008 RTIP as Project ID LA0F030.

The proposed project is located at the Port of Los Angeles, which is within the boundaries of the City of Los Angeles. The project limits for the interchange improvement project are along I-110, from 0.23 mile south of C Street to 0.20 mile north of C Street (LA-110 PM 2.5/3.0) (see Figure 1-2). The purpose of the proposed project is to improve traffic flow, enhance accessibility, and develop a design that is compatible with existing residential, industrial, and port uses.

1.4 Alternatives

1.4.1 No-Build Alternative

The No-Build Alternative provides a baseline for comparing potential impacts with the other alternatives. However, this alternative would not be consistent with the final 2008 RTIP, Project ID LA0F030.

Traffic congestion is expected to increase as cargo operations at port terminals continue to expand. As seen earlier in Table 1-3, under forecast 2035 traffic conditions, some traffic movements will be at an unacceptable LOS of F in the AM and PM peak hours without the proposed improvements. The existing intersection of Figueroa Street and C Street/I-110 ramps will continue to operate at LOS F. Without the proposed modifications to the C Street interchange, trucks will continue to use nearby residential streets in the Wilmington community. The No-Build Alternative will not improve the existing ramps and current intersection conditions and, therefore, will not meet the purpose and need of the proposed project.

1.4.2 Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The Build Alternative would combine the two existing intersections at Figueroa Street/C Street and Figueroa Street/John S. Gibson Boulevard/Harry Bridges Boulevard with one new intersection by realigning Harry Bridges Boulevard and John S. Gibson Boulevard. The new intersection would provide a “free” right-turn from the I-110 southbound off-ramp to southbound
John S. Gibson Boulevard and dual left-turn pockets from westbound Harry Bridges Boulevard to southbound John S. Gibson Boulevard. Access to Figueroa Street from C Street would be closed; an offset cul-de-sac at the existing intersection would eliminate any right-of-way impacts on surrounding commercial or residential properties.

The Build Alternative would remove the existing off-ramp from northbound I-110 and provide a direct off-ramp to eastbound Harry Bridges Boulevard. This would involve widening the existing Union Oil undercrossing and construction of a new separation structure over the realigned John S. Gibson Boulevard. Further improvements at the ramps would include a dedicated right-turn lane from the I-110 southbound off-ramp to southbound John S. Gibson Boulevard and a conventional signalized right turn from northbound John S. Gibson Boulevard to eastbound Harry Bridges Boulevard. The new intersection at Figueroa Street/Harry Bridges Boulevard/John S. Gibson Boulevard would be widened to accommodate dual left-turn pockets from westbound Harry Bridges Boulevard to southbound John S. Gibson Boulevard. The planned improvements would require no additional right-of-way acquisition of private property. All land required for the proposed improvements is owned by Caltrans and LAHD. Typical cross sections of the Build Alternative are provided in Appendix D. Table 1-2, which is based on the 2009 Traffic Operations Analysis Report, provides data regarding anticipated peak-hour traffic under existing conditions (2009) as well as in the opening year (2014) and the design year (2035). Table 1-3 provides data regarding peak-hour LOS under existing conditions (2009) as well as projected peak-hour LOS in the opening year (2014) and the design year (2035).

The proposed safety improvements associated with the Build Alternative would eliminate the short weaving condition between Figueroa Street and the northbound and southbound off-ramps. The proposed interchange modification would also eliminate the undesirable weaving condition on C Street at the ramp terminals and relocate the northbound off-ramp to access Harry Bridges Boulevard directly.

Highway planting adjacent to the existing Northbound I-110 off-ramp at C Street would be removed as part of the proposed project. The existing ramp would be removed and the embankment slope would be re-graded. The project would provide highway planting of embankment slopes within the state right of way. Landscaping will be provided along the local roadways in accordance with local jurisdiction requirements.

The proposed project would also seismically retrofit the existing Union Oil undercrossing (Bridge No. 53-1033). In addition, seismic retrofitting of the existing anchor slab section of retaining wall number 318 based on current design criteria would also be considered.

Non-Standard Design Features of the Build Alternative

A Mandatory Design Exception Fact Sheet for non-standard design features was prepared for the Build Alternative in conjunction with the PSR; it was approved on January 11, 2007. An Advisory Fact Sheet was prepared for the Build Alternative in conjunction with the PSR and was approved on January 19, 2007. The fact sheets were sent to the Federal Highway Administration (FHWA) for review in January 2007. Design standards are reported per the English standards
version of the Caltrans Highway Design Manual. The exceptions listed below have been identified.

Mandatory Design Exceptions

- Design Exception #1 – Stopping sight distance at the beginning of the northbound on-ramp and northbound off-ramp [Section 201.1].
- Design Exception #2 – Super-elevation rate on the northbound on-ramp [Section 202.2].
- Design Exception #3 – Horizontal curve radius on the northbound on-ramp [Section 203.2].

Advisory Design Exceptions

- Design Exception #1 – Super-elevation at the northbound on-ramp [Section 202.2].
- Design Exception #2 – Side slopes (2:1) within project limits [Section 304.1].
- Design Exception #3 – Design speed at the northbound on-ramp [504.3(1)(a)].

Utility and Other Owner Involvement

John S. Gibson Boulevard and Harry Bridges Boulevard are two major utility corridors within the City of Los Angeles. The proposed project intends to maintain utility corridors along the existing John S. Gibson and Harry Bridges Boulevard alignments in order to minimize relocation of the existing subsurface facilities. This will require a longitudinal encroachment permit from Caltrans. The existing overhead utilities will be relocated.

Utilities under Figueroa Street would not require relocation. However, two 12-inch by 14-foot storm drain structures, owned by the Los Angeles County Flood Control District, would need to be avoided. There are also oil, gas, and telephone lines that would either need to be protected in place or encased.

Construction Staging

Construction vehicle staging and worker parking areas would be provided within city and state rights-of-way. The parcel bounded by I-110, Figueroa Street, and John S. Gibson Boulevard (assessor’s parcel number 7417-001-900) would be used as a construction staging area.

Construction of the Build Alternative would be divided into three stages, as described below.

Stage 1

- Construct the new northbound off-ramp bridge structure over active Figueroa Street;
- Construct the ramp approach from I-110 to new northbound off-ramp bridge abutment number 1 (includes Union Oil bridge widening and retaining wall construction);
- Reduce John S. Gibson Boulevard and Harry Bridges Boulevard to one lane in each direction to facilitate construction of off-ramp and structure improvements;
Chapter 1. Proposed Project

- Construct the new John S. Gibson Boulevard roadway improvements between C Street and existing John S. Gibson Boulevard/Harry Bridges Boulevard;
- Construct the new Harry Bridges Boulevard between Figueroa Street and existing Harry Bridges Boulevard;
- Construct the C Street cul-de-sac;
- Construct the temporary intersection connecting new John S. Gibson Boulevard (south) to existing John S. Gibson Boulevard/Harry Bridges Boulevard;
- Construct the temporary intersection connecting new John S. Gibson Boulevard (north) to existing Figueroa Street;
- Construct a temporary connection between new and existing Harry Bridges Boulevard;
- Relocate aerial utilities from existing Figueroa Street to the new John S. Gibson Boulevard;
- Relocate aerial utilities from the existing Harry Bridges Boulevard to the new Harry Bridges Boulevard.

Stage 2

- Transfer traffic onto newly constructed John S. Gibson Boulevard (temporary intersections would connect existing roadways to maintain traffic circulation);
- Close existing Harry Bridges Boulevard between existing Figueroa Street and the new northbound ramp terminus;
- Relocate conflicting subsurface utilities within existing Harry Bridges Boulevard;
- Phase construction of the new Harry Bridges Boulevard/Figueroa Street/John S. Gibson Boulevard intersection;
- Construct the ramp approach (east of new bridge) to Harry Bridges Boulevard;
- Open the new northbound off-ramp.

Stage 3

- Remove the existing northbound off-ramp;
- Construct the northbound on-ramp improvements using short-term closures (less than 10 days);
- Construct the southbound ramp termini/C Street and permanent Figueroa Street/Harry Bridges Boulevard/John S. Gibson Boulevard intersection improvements;
- Remove the California Public Utilities Commission (CPUC) vehicular grade crossing at the existing TraPac terminal entrance;
- Remove the temporary intersection improvements at John S. Gibson Boulevard/Harry Bridges Boulevard.
- Construct the remaining contract items, including landscape and irrigation improvements.
A Transportation Management Plan (TMP) would be prepared as part of the project to minimize delay and inconvenience to the public. Construction of the proposed project would start in June 2013 and last until May 2015.

The proposed improvements would remove most of the existing I-110 northbound off-ramp at C Street and the associated embankment and landscaping. The new off-ramp alignment and the associated embankment would require new landscaping and irrigation.

1.4.3 Comparison of Alternatives

After public circulation of the Draft IS/EA, which included a discussion of the project alternatives and their respective impacts and benefits, all comments were considered. Caltrans and LAHD have selected the preferred alternative and made the final determination regarding the project’s effect on the environment. In accordance with CEQA, a Notice of Determination that provides formal notice of the significant impacts, if any, and the mitigation measures included as conditions of project approval will be filed with the State Clearinghouse and the County Recorder’s Office. Similarly, if Caltrans, as assigned by the Federal Highway Administration (FHWA), determines that the National Environmental Policy Act (NEPA) action does not significantly affect the environment, Caltrans will issue a Finding of No Significant Impact (FONSI) in accordance with NEPA.

1.4.4 Identification of a Preferred Alternative

The Build Alternative would meet the project’s purpose and need, which is to improve traffic operations at the C Street/Figueroa Street intersection and meet Caltrans’ goal of maximizing the performance and accessibility of transportation systems. After review of the comments received during the Draft IS/EA public circulation period, LAHD and Caltrans have identified the Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard) as the Preferred Alternative.

1.4.5 Alternatives Considered but Eliminated from Further Discussion

During the initial phase of the project development process, the Project Development Team (PDT) held meetings to discuss other possible alternatives. The following describes alternatives that were considered but have been eliminated from further discussion as the will not adequately address the purpose and need of the proposed project.

1.4.5.1 Alternative 3, Northbound Off-Ramp to Harry Bridges Boulevard and Figueroa Street

A second Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard and Figueroa Street) was developed and identified in the PSR. This alternative had improvements that were identical to those of the Build Alternative (Alternative 3 in the PSR) but with the addition of access to northbound Figueroa Street directly from the northbound off-ramp. However, this alternative was dropped from further consideration due to community opposition to the northbound off-ramp to Figueroa Street. The separation structure presented additional potential visual, noise, and right-of-way impacts. The local residences raised this concern through a community workshop held by LAHD in April 2006. Since access to the community east of
Figueroa Street and north of C Street is now provided from the new off-ramp at Harry Bridges Boulevard, as well as another freeway exit 2,000 feet north of C Street, the anticipated impacts on rights-of-way and the environment could not be justified to the community.

1.4.5.2 Transportation System Management

Transportation System Management (TSM) strategies consist of actions that increase the efficiency of existing facilities; they are actions that increase the number of vehicle trips a facility can carry without increasing the number of through lanes. Examples of TSM strategies include ramp metering, auxiliary lanes, turning lanes, reversible lanes, and traffic signal coordination. Because TSM strategies currently are employed in the project area (high-occupancy vehicle [HOV] and auxiliary lanes) and traffic congestion is still prevalent, TSM measures alone will not address the existing capacity deficiency of the I-110/C Street interchange.

Although TSM measures alone cannot satisfy the purpose and need of the proposed project, the following TSM measures have been incorporated into the proposed Build Alternative for the proposed project:

1. Maintain the TSM strategies that are currently in place on I-110, such as ramp metering, changeable message signs, and closed circuit television cameras; and
2. Maintain/add system elements to enhance existing freeway surveillance coverage, such as a system-wide fiber optic communication system, to tie in the Traffic Management Center (TMC).

1.4.5.3 Transportation Demand Management

Transportation Demand Management (TDM) encourages public and private transit, ridesharing programs, and bicycle and pedestrian improvements as elements of a unified urban transportation system. TDM addresses traffic congestion by reducing travel demand rather than increasing transportation capacity and focuses on alternatives such as ride sharing, flextime, increased transit usage, walking, and bicycling. TDM focuses on regional strategies for reducing the number of vehicle trips and vehicle miles traveled and increasing vehicle occupancy. It facilitates higher vehicle occupancy or reduces traffic congestion by expanding the traveler’s transportation choice. Because TDM strategies are currently employed in the project area and traffic congestion is still prevalent, TDM measures alone will not be adequate to meet the purpose of and need for the proposed project.

1.4.5.4 Multi-Modal Alternatives

Multi-modal alternatives integrate multiple forms of transportation, such as pedestrian, bicycle, automobile, rail, and mass transit. Because a range of transportation options is currently available in the project area and traffic congestion is still prevalent, multi-modal alternatives alone will not be adequate to meet the purpose of and need for the proposed project.
1.5 Permits and Approvals Needed

The permits, reviews, and approvals listed in Table 1-4 would be required to construct the proposed project.

Table 1-4: Permits and Approvals Needed

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Agency</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality Conformity Determination</td>
<td>FHWA</td>
<td>Applicable documentation will be transmitted to FHWA after circulation of the draft environmental document.</td>
</tr>
<tr>
<td>Freeway Agreement</td>
<td>City of Los Angeles</td>
<td>Following project approval.</td>
</tr>
<tr>
<td>Grading and Construction Permits: Permit to close signal gates existing at-grade crossing (CPUC #121W-502.90) at Figueroa Street</td>
<td>California Public Utilities Commission</td>
<td>Applicable documentation to be completed by contractor prior to construction.</td>
</tr>
<tr>
<td>Coastal Permit (construction)</td>
<td>Los Angeles Harbor Department</td>
<td>Applicable documentation to be completed prior to construction.</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System</td>
<td>State Water Resources Control Board</td>
<td>Applicable documentation to be completed by contractor prior to construction.</td>
</tr>
<tr>
<td>Groundwater dewatering permit for discharges of groundwater from construction and project dewatering to surface waters in coastal watersheds of Los Angeles</td>
<td>Regional Water Quality Control Board</td>
<td>Applicable documentation to be completed by contractor prior to construction.</td>
</tr>
<tr>
<td>Bureau of Engineering E Permit</td>
<td>City of Los Angeles</td>
<td>Applicable documentation to be completed prior to construction.</td>
</tr>
<tr>
<td>Encroachment Permit</td>
<td>California Department of Transportation</td>
<td>Applicable documentation to be completed prior to construction.</td>
</tr>
<tr>
<td>Railroad License/Agreement</td>
<td>Ports of Los Angeles and Long Beach</td>
<td>Applicable documentation to be completed prior to construction.</td>
</tr>
</tbody>
</table>

Chapter 2

Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

As part of the scoping and environmental analysis conducted for the proposed project, the following environmental resources were considered, and it was determined that there would be no impacts on these resources. Therefore, the resources listed below are not discussed in this document.

- **Farms and Timberlands**: There are no designated farmlands or agricultural lands in the area of the proposed project.
- **Wild and Scenic Rivers**: The proposed project would not be in the vicinity of a designated Wild and Scenic River.
- **Relocations**: The proposed project would be located entirely on land owned by Caltrans and LAHD and, therefore, would not result in any relocation.
- **Mineral Resources**: The proposed action is located in a highly urbanized area of the City of Los Angeles, the Wilmington community. The California Department of Conservation does not designate the project site as a Significant Mineral Aggregate Resource Area; thus, no impacts resulting from a loss of mineral resources would occur.
- **Section 4(f)**: No publicly owned land of a public park; wildlife and waterfowl refuge of national, state, or local significance; or land of a historic site of national, state, or local significance (as determined by the federal, state, or local officials having jurisdiction over the park, area, refuge, or site) exists within the project limits. Therefore, no impacts on Section 4(f) resources would result.

2.1 Human Environment

2.1.1 Land Use

2.1.1.1 Existing and Future Land Use

Regulatory Setting

City of Los Angeles General Plan

The City of Los Angeles General Plan Framework Element, adopted in December 1996 and re-adopted in August 2001, is a strategy for long-term growth that sets a citywide context to guide subsequent amendments of the City’s community plans, zoning ordinances, and other pertinent programs. The City of Los Angeles’ Citywide General Plan Framework Element establishes the
broad overall policy and direction for the entire general plan. It provides a citywide context and comprehensive long-range strategy to guide the general plan’s other elements.

Collectively, the City’s 35 community plans make up the Land Use Element of the general plan. The Department of City Planning established the New Community Plan Program (NCP) to study the land use plans, thereby ensuring that they are kept up to date, and guide growth effectively. The aim is to encourage sustainable growth patterns while balancing the unique character of individual communities.

The proposed project is located within the Wilmington-Harbor City Community Plan Area.

Wilmington-Harbor City Community Plan

The project site is located in the Wilmington-Harbor City Community Plan Area. Adopted in July 1999, the Wilmington-Harbor City Community Plan is one of 35 community plans that make up the Land Use Element of the City of Los Angeles General Plan. It outlines general opportunities for the development of residential, commercial, industrial, public, transportation, and port-related land uses. One of the goals outlined in the Transportation Element of the community plan is the provision of a well-maintained, safe, efficient transportation network. Using Transportation System Management practices, the Wilmington-Harbor City Community Plan seeks to improve the capacity of the existing transportation system through minor physical improvements to roadways and major corridors.

Policy 15-1.1 of the community plan requires all major highways, secondary highways, and collector streets to maintain an acceptable level of service of no less than LOS D. Growth projections, predicted increases in port throughput, and a 2004 traffic study conducted by LAHD all indicate that the C Street/Figueroa Street intersection will have an unacceptable LOS by 2030.

Port of Los Angeles Plan

The Port of Los Angeles (POLA) Plan, adopted September 1, 1991, is part of the City of Los Angeles General Plan. It provides a 20-year guide pertaining to continued development and operation at the port. The plan is designed to be consistent with both the City of Los Angeles General Plan and the POLA Master Plan, discussed below.

Port of Los Angeles Master Plan

The POLA Master Plan, which was certified by the California Coastal Commission (effective April 1980), constitutes the Local Coastal Program (LCP) for the portion of the harbor under the jurisdiction of the City of Los Angeles. The plan does not specifically address the proposed project, but it is supportive of transportation improvements to and from the port.

The proposed project was conceived under the Transportation Element of the POLA Master Plan as part of the I-110/SR-47 Connectors Improvement Program. A complementary array of projects that seek to improve freeway access to port facilities, eliminate traffic conflicts, improve
existing non-standard elements, and better accommodate existing and future traffic conditions for port and background traffic.

Transportation Plans and Programs

The Southern California Association of Governments (SCAG) is the federally designated Metropolitan Planning Organization (MPO) for the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura. SCAG develops the Regional Transportation Plan (RTP) to provide a regional investment framework to address the region’s transportation and related challenges. Transportation investments in the SCAG region that receive state and federal funds or require federal approvals (e.g., environmental clearance) must be consistent with the RTP and must be included in SCAG’s RTIP when ready for funding.

The proposed project was originally listed in SCAG’s federally approved 2008 RTP and 2008 RTIP, including amendments 1-15 and 1-17, as part of the Los Angeles County Local Highway Listings, with the following reference:

ID: LA0F030 – Description: Project will improve flow of traffic from I-110 freeway on-/off-ramps at C Street by consolidating two closely spaced intersections into one.

The concept and scope of the proposed project is consistent with the project description in the RTIP and the assumptions in SCAG’s regional air quality emissions analysis. As such, the project would not interfere with the timely implementation of all Transportation Control Measures (TCMs) identified in the currently approved State Implementation Plan (SIP). As such, project development would not conflict with or obstruct implementation of the SIP or TCMs.

The California Coastal Act of 1976

The proposed project is within the Coastal Zone. The Coastal Zone Management Act of 1972 (CZMA) is the primary federal law to preserve and protect coastal resources. Under the CZMA, coastal states are encouraged to develop coastal management plans. States with an approved coastal management plan are able to review federal permits and activities to determine if they are consistent with the state’s management plan.

California has not only developed a coastal management plan but has also enacted its own law, the California Coastal Act of 1976, to protect the coastline. The policies established under the California Coastal Act are similar to those of the CZMA. These policies protect public access, recreation, environmentally sensitive areas, agricultural lands, scenic beauty, and life and property from coastal hazards. The California Coastal Commission is responsible for implementation and oversight under the California Coastal Act.

Just as the federal CZMA delegates power to coastal states to develop their own coastal management plans, the California Coastal Act delegates power to local governments (15 coastal counties and 58 cities) to enact their own LCPs. LCPs are used to determine short- and long-term uses for coastal resources that are consistent with the goals of the California Coastal Act. However, a federal consistency determination may be needed as well.
The project site is within the boundary for the harbor Coastal Zone, as defined by the POLA Master Plan. Because construction would be limited to roadways surrounding the I-110/C Street interchange and would not involve existing waterways or other coastal resources, the proposed project would be consistent with the California Coastal Act of 1976. No further discussion is required.

Affected Environment

The project site and surrounding area are highly urbanized and have been for a number of decades. The Wilmington-Harbor City Community Plan designates land uses in the surrounding area as public facility, industrial, commercial, and single- and multiple-family uses. The area surrounding the I-110 interchange is designated mostly for public facility and industrial uses. East of Figueroa Street and north of C Street, land use designations are almost entirely single- and multi-family residential uses, with a small section designated for commercial uses adjacent to Figueroa Street. The area south of C Street is designated entirely for industrial use.

The existing I-110 interchange at C Street is a compact diamond interchange on the east side, providing on- and off-ramps for northbound traffic. On the west side, for those travelling south, the interchange provides a loop on-ramp in the northwest quadrant of the interchange nestled within a hook off-ramp. The interchange provides ingress and egress to/from I-110 at the Figueroa Street and C Street intersection. A brief description of the streets that intersect the project site (namely John S. Gibson Boulevard, Harry Bridges Boulevard, and Figueroa Street) is provided in Section 1.1.1, Existing Facility, of this document (page 1-1).

The proposed project would occur entirely in the Wilmington-Harbor City Community Planning Area. Port facilities are located just north of Harry Bridges Boulevard. These facilities extend into the Port of Los Angeles Planning Area just south of the project site. The area east of the project site is composed of industrial warehouse facilities. These are located east of the northbound on-ramp and the residential uses surrounding the D Street/Figueroa Street intersection. Finally, the area between C Street and Harry Bridges Boulevard, east of Figueroa Street and the northbound off-ramp was formerly vacant land which has recently been developed with a green buffer space, owned by the City of Los Angeles, between the port and the residential area of Wilmington along the north side of Harry Bridges Boulevard. Figure 1-5 shows existing land uses in the project area. Figures 2-1 and 2-2 show zoning and land use designations, respectively, for the project vicinity.

Future Land Use

Future land uses in the project area will be guided by the City’s General Plan and Zoning Ordinance. These land use guidance documents orient future land uses in terms of types of use, placement, and density. They are subject to limitations such as jurisdictional boundaries, topographical and environmental conditions, and overriding state or federal regulations. In assessing the effects of a project, information obtained from land use guidance documents and approved local development projects contribute substantially to the development of an accurate characterization of future project area conditions.
Figure 2-1: Zoning Designations in Project Area
Figure 2-2: Land Use Designations in Project Area
After a review of LAHD and City databases, it was determined that one related project would occur within 0.5 mile of the project site. The John S. Gibson Boulevard/I-110 interchange project has been proposed for development to improve transportation and circulation at the port. The John S. Gibson Boulevard/I-110 interchange project and the proposed project are part of the I-110/SR-47 Connectors Improvement Program, a complementary array of transportation projects aimed at improving freeway access to port facilities, decreasing congestion, improving existing non-standard elements, and accommodating existing and future traffic conditions. The following projects have been proposed as part of the I-110/SR-47 Connectors Improvement Program:

- **South Wilmington Grade Separation** – Project plans indicate completion sometime during the summer of 2011; project involves separating either Fries Avenue or Marine Avenue with a crossing above the existing rail line to reduce traffic delays and hazards;
- **I-110/SR-47 Interchange and John S. Gibson Boulevard Intersection/Northbound I-110 Ramp Access** – Currently in planning stages; the project involves improvements to the northbound I-110 on-ramp to reduce delays and emissions along I-110 and SR-47, and
- **SR-47 On-Ramp and Off-Ramp at Front Street** – In planning stages; the project involves construction of a new off-ramp to Front Street and the relocation of the existing Front Street on-ramp to eliminate existing non-standard weaving and turning conditions.

The area surrounding the project site contains a mixture of residential and industrial land uses, with a heavy presence of port-related traffic. Transportation improvements provided under the I-110/SR-47 Connectors Improvement Program would reduce delays and eliminate hazards created by various existing non-standard roadway elements. There would also be minor transportation improvements related to signage, road conditions, and safety along the I-110 and SR-47 corridors as part of state and federal roadway maintenance.

In addition to the aforementioned local projects, there are a number of residential and public projects within a 3-mile radius of the project site that may be affected by the proposed project. These projects are listed below in Table 2-1 and shown in Figure 2-3.

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not require construction; therefore, existing or future land uses would not be affected by construction.
Table 2-1: Approved Local and Related Projects

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
<th>Distance from Project (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>San Pedro Waterfront Project, Port of Los Angeles</td>
<td>A 5- to 7-year plan to develop the area along the west side of the Main Channel, from the Vincent Thomas Bridge to the 22nd Street Landing, including Crescent Avenue. Key components include construction of a North Harbor promenade, Downtown Harbor promenade, downtown water feature, Town Square at the foot of 6th Street, 7th Street Pier, Ports O’ Call promenade, additional cruise terminal facilities, and a Ralph J. Scott fireboat display; enhancements to John S. Gibson Park; development of the California Coastal Trail along the waterfront; relocation of the Catalina Express terminal and the S.S. Lane Victory; extension of the Waterfront Red Car Line; and related parking improvements.</td>
<td>Final environmental impact statement/environmental impact report (EIS/EIR) certified September 2009. Construction expected from late 2009 through 2014.</td>
<td>2.70</td>
</tr>
<tr>
<td>3</td>
<td>Cabrillo Way Marina, Port of Los Angeles</td>
<td>Redevelopment of the old marinas in the Watchorn Basin and development of the backland areas for a variety of commercial and recreational uses.</td>
<td>EIR certified December 2, 2003. Expected completion, June 2011.</td>
<td>3.46</td>
</tr>
<tr>
<td>4</td>
<td>Berths 226–236 (Evergreen) Container Terminal Improvements Project</td>
<td>Proposed redevelopment of existing container terminal, including improvements to wharves, adjacent backland, crane rails, lighting, utilities, gate complex, grade crossings, and adjacent roadways and railroad tracks.</td>
<td>EIR/EIS to be prepared. Construction expected 2011–2013.</td>
<td>2.22</td>
</tr>
<tr>
<td>5</td>
<td>Pacific L.A. Marine Terminal LLC, Crude Oil Terminal (formerly Pacific Energy), Pier 400, Port of Los Angeles</td>
<td>Proposal to construct a crude oil receiving facility on Pier 400, with tanks on Terminal Island and other locations on LAHD property; preferred location is the former Los Angeles Export Terminal. Construct new pipelines between Berth 408, storage tanks, and existing pipeline systems.</td>
<td>EIS/EIR certified November 2008. Construction expected to begin late 2010.</td>
<td>2.03</td>
</tr>
</tbody>
</table>

1 Project status information retrieved from Port of Los Angeles website (<http://www.portoflosangeles.org/>) via environmental document and harbor commission links.
2 Correspondence with Wilmington community planner Monique Acosta.
Table 2-

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
<th>Distance from Project (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Ultramar Lease Renewal Project, Port of Los Angeles</td>
<td>Proposal to renew the lease between LAHD and Ultramar for continued operation of the marine terminal facilities at Berths 163–164 as well as associated tank farms and pipelines. Project includes upgrades to existing facilities to increase the proposed minimum throughput to 10 million barrels per year (mby), compared with the existing 7.5 mby.</td>
<td>Lease negotiations under way</td>
<td>1.08</td>
</tr>
<tr>
<td>8</td>
<td>Berths 171–181, Pasha Marine Terminal Improvements Project, Port of Los Angeles</td>
<td>Redevelopment of existing facilities at Berths 171–181 as an multi-use) facility.</td>
<td>Conceptual design. EIR on hold.</td>
<td>1.32</td>
</tr>
<tr>
<td>9</td>
<td>Berths 206–209, Interim Container Terminal Reuse Project, Port of Los Angeles</td>
<td>Proposal to allow interim reuse of former Matson terminal while implementing “green” terminal measures.</td>
<td>Final EIR certified. Construction on hold.</td>
<td>1.80</td>
</tr>
<tr>
<td>10</td>
<td>Southern California International Gateway (SCIG) Project, Port of Los Angeles</td>
<td>Construction and operation of a 157-acre intermodal container transfer facility (ICTF) and various associated components, including the relocation of an existing rail operation.</td>
<td>NOP released September 30, 2005. Draft EIR expected in early 2010.</td>
<td>3.21</td>
</tr>
<tr>
<td>11</td>
<td>San Pedro Waterfront Enhancements Project, Port of Los Angeles</td>
<td>Project includes improving/developing new pedestrian corridors along the waterfront (4 acres), landscaping, parking, increased waterfront access from upland areas, and creating 16 acres of public open space.</td>
<td>Mitigated ND approved in April 2006. Construction began 2008, with completion expected in November 2010.</td>
<td>1.73</td>
</tr>
<tr>
<td>12</td>
<td>Joint Container Inspection Facility, Ports of Los Angeles and Long Beach</td>
<td>Construction and operation of a facility where random and suspicious containers arriving at the Ports of Los Angeles and Long Beach would be searched and inspected.</td>
<td>In planning stage. EIR to be prepared.</td>
<td>2.27</td>
</tr>
<tr>
<td>13</td>
<td>Berths 302–305, (APL) Container Terminal Improvements Project</td>
<td>Container terminal and wharf improvements project, including a terminal expansion area and new berth on the east side of Pier 300.</td>
<td>EIS/EIR to be prepared. Construction expected 2010–2013.</td>
<td>3.00</td>
</tr>
<tr>
<td>Map ID</td>
<td>Project Title and Location</td>
<td>Project Description</td>
<td>Project Status</td>
<td>Distance from Project (miles)</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>14</td>
<td>South Wilmington Grade Separation</td>
<td>An elevated grade separation structure would be constructed at Fries Avenue or Marine Avenue to eliminate traffic delays caused by trains using the existing rail line and those that will use the new ICTF railyard. The elevated grade would include a connection to Water Street. There would be a minimum of 24.5 feet of clearance for rail cars traveling under the grade separation structure.</td>
<td>Conceptual planning. Current planning indicates summer 2011 completion.</td>
<td>0.88</td>
</tr>
<tr>
<td>15</td>
<td>Wilmington Waterfront Master Plan (Avalon Development District Project)</td>
<td>Planned development intended to provide waterfront access and promote development along Avalon Boulevard.</td>
<td>Final EIR certified in June 2009. Construction expected 2009–2020.</td>
<td>1.03</td>
</tr>
<tr>
<td>16</td>
<td>John S. Gibson Boulevard/I-110 Interchange Project</td>
<td>Part of the I-110/SR-47 Connectors Improvement Program. Involves improvements to I-110 northbound ramp at the intersection with John S. Gibson Boulevard to reduce delays and emissions in the I-110/SR-47 area.</td>
<td>Initial study/environmental assessment being prepared for the project.</td>
<td>0.40</td>
</tr>
<tr>
<td>17</td>
<td>I-110 Southbound On-Ramp at Mira Flores</td>
<td>Part of the I-110/SR-47 Connectors Improvement Program. Involves improvements to the I-110 on-ramp at Mira Flores.</td>
<td>Conceptual planning.</td>
<td>1.45</td>
</tr>
<tr>
<td>18</td>
<td>Port Transportation Master Plan</td>
<td>Port-wide transportation master plan for roadways in and around port facilities. Present and future traffic improvement needs are being determined based on existing and projected traffic volumes. Some improvements under consideration include I-110/SR-47/ Harbor Boulevard interchange improvements, Wilmington grade separations, and additional traffic capacity analysis for the Vincent Thomas Bridge.</td>
<td>Conceptual planning completed.</td>
<td>0.60</td>
</tr>
<tr>
<td>19</td>
<td>Berths 212–224, (YTI) Container Terminal Improvements Project</td>
<td>Modifications involving wharf upgrades and backland reconfiguration, including new buildings.</td>
<td>EIR/EIS to be prepared. Construction expected 2011–2013.</td>
<td>1.47</td>
</tr>
<tr>
<td>20</td>
<td>Berths 121–131, (Yang Ming) Container Terminal Improvements Project</td>
<td>Reconfiguration of wharves and backlands. Expansion and redevelopment of the Yang Ming Terminal.</td>
<td>EIR/EIS to be prepared. Construction expected 2011–2013.</td>
<td>0.70</td>
</tr>
<tr>
<td>21</td>
<td>Berths 118–131, Marine Terminal West Basin</td>
<td>Element of the West Basin Transportation Improvements Projects. Reconfiguration of wharves and backlands. Joint operation of the Yang Ming and China Shipping terminals.</td>
<td>EIR being completed.</td>
<td>0.86</td>
</tr>
<tr>
<td>22</td>
<td>Waterfront Gateway</td>
<td>This is part of the San Pedro Waterfront Promenade Project. Development initiated for waterfront promenade between Vincent Thomas Bridge and Fire Station No. 112.</td>
<td>Approved project. Phase I construction underway.</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Interstate 110/C Street Interchange Project

Mitigated Negative Declaration and Finding of No Significant Impact

2-11 June 2012

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
<th>Distance from Project (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Port Police (New Station)</td>
<td>330 S. Centre Street (between 3rd and 5th Streets).</td>
<td>Construction in progress. Expected completion in April 2011.</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Port of Los Angeles and/or Port of Long Beach Potential Port-Wide Operational Projects

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Shuttle Train/Inland Container Yard</td>
<td>Preliminary study in progress.</td>
</tr>
</tbody>
</table>

Community of San Pedro Projects

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Gas Station and Mini-Mart, 311 N. Gaffey Street, San Pedro (north of Sepulveda Boulevard)</td>
<td>Construct six-pump gas station and 1,390-square-foot mini-mart.</td>
<td>Project on hold. Construction has not begun.</td>
</tr>
<tr>
<td>27</td>
<td>Mixed-Use Development, 407 W. 7th Street (at Mesa Street), San Pedro</td>
<td>Construct 5,000-square-foot retail space and 87-unit apartment complex.</td>
<td>In final stages of construction. Placed on hold by developer.</td>
</tr>
<tr>
<td>28</td>
<td>Single-Family Homes, 1427 N. Gaffey Street (at Basin Street), San Pedro</td>
<td>Construct 135 single-family homes on approximately 2 acres.</td>
<td>Under construction. Estimated completion year of 2009, according to LADOT.</td>
</tr>
<tr>
<td>29</td>
<td>Mixed-use Development, 281 W. 8th Street (near Centre Street)</td>
<td>Construct 72 condos and 7,000-square-foot retail space.</td>
<td>Construction has not begun. LADOT has no estimate for the completion year.</td>
</tr>
<tr>
<td>30</td>
<td>Palos Verdes Urban Village, 550 South Palos Verdes Street, San Pedro</td>
<td>Construct 251 condos and 4,000-square-foot retail space.</td>
<td>Construction has not begun. Estimated completion year is 2011, according to LADOT.</td>
</tr>
<tr>
<td>31</td>
<td>Condos, 319 N. Harbor Boulevard, San Pedro</td>
<td>Construct 94 residential condos.</td>
<td>LADOT has no estimate for the completion year.</td>
</tr>
</tbody>
</table>

Community of Wilmington Projects

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Distribution Center and Warehouse</td>
<td>Construct 135,000-square-foot distribution center and warehouse on 240,000-square-foot lot with 47 parking spaces at 755 East L Street (at McFarland Avenue) in Wilmington.</td>
<td>Construction has not begun; lot is vacant. LADOT has no estimate for the completion year.</td>
</tr>
</tbody>
</table>

Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and Finding of No Significant Impact

June 2012
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and Finding of No Significant Impact

2-12 June 2012

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
<th>Distance from Project (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Ponte Vista</td>
<td>Construct 1,725 condos, 575 senior housing units, and four baseball fields at 26900 Western Avenue (near Green Hills Park), Lomita. Rolling Hills Prep School being developed on an adjacent lot.</td>
<td>Draft EIR issued November 2006. Construction has not begun. LADOT estimates 2012 for completion year.</td>
<td>1.79</td>
</tr>
<tr>
<td>34</td>
<td>Sepulveda Industrial Park</td>
<td>Construct 154,105-square-foot industrial park (six lots) for Sepulveda Industrial Park (TT65665), 1309 Sepulveda Boulevard, Torrance (near Normandie Avenue).</td>
<td>Construction has not begun. LADOT has no estimate for the completion year.</td>
<td>3.18</td>
</tr>
</tbody>
</table>

Alameda Corridor Transportation Authority and Caltrans Projects

3 Project information from email correspondence with Sarah E. Berns, California Department of Transportation.

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Project Title and Location</th>
<th>Project Description</th>
<th>Project Status</th>
<th>Distance from Project (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Schuyler Heim Bridge Replacement and SR 47 Terminal Island Expressway</td>
<td>ACTA/Caltrans project to replace the Schuyler Heim Bridge with a fixed structure and improve the SR-47/Henry Ford Avenue/Alameda Street transportation corridor by constructing an elevated expressway from the Schuyler Heim Bridge to Pacific Coast Highway/SR-1.</td>
<td>Construction will begin 2010/2011.</td>
<td>2.28</td>
</tr>
<tr>
<td>36</td>
<td>I-710 (Long Beach Freeway) Major Corridor Project</td>
<td>Develop multi-modal, timely, cost-effective transportation solutions to traffic congestion and other mobility problems along approximately 18 miles of I-710 between the San Pedro ports and SR-60. Early action projects include a) Port Terminus: Reconfiguration of SR-1 (Pacific Coast Highway) and Anaheim interchange and expansion of the open/green space at Cesar E. Chavez Park; and b) Mid-Corridor Interchange: Reconfiguration project for Firestone Boulevard interchange and Atlantic/Bandini interchange.</td>
<td>The Major Corridor Study has been completed and the EIR/EIS for the I-710 Major Corridor Project is being prepared.</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Note: Construction date for port projects (projects 1–24) based on an assumption that the projects will be approved by LAHD unless otherwise stated.

Figure 2-3: Approved Local and Related Projects

SOURCE: ESRI Streetsmap USA (2007), ESRI Imagery (2009)
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and Finding of No Significant Impact

[This page left blank intentionally]
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction activities would occur along I-110, Harry Bridges Boulevard, C Street, Figueroa Street, John S. Gibson Boulevard, Mar Vista Avenue, King Avenue, and Hawaiian Avenue. Construction activities would be limited to the existing roadway and public rights-of-way; construction staging would occur on a publicly owned undeveloped lot. As such, the proposed project would be consistent with existing land uses and would not require the acquisition of adjacent properties or change established or planned future land uses in the surrounding area. John S. Gibson Boulevard and Harry Bridges Boulevard are two major utility corridors within the port. All utilities in the area of Harry Bridges Boulevard east of its intersection with Figueroa Street to end of the project alignment would require relocation. Further analysis of utility impacts is provided in Section 2.1.3.4.

Existing land use patterns in the project area would not be altered. Construction of the proposed project would last for approximately 23 months, resulting in some temporary short-term effects on surrounding land uses related to noise, air quality, and access because of lane closures, traffic detours, and utility disruptions.

No new right-of-way would be required, and all land used during construction would be publicly owned. Current transportation systems management (TSM) measures for I-110 would be maintained and updated as part of the project. Since construction activities would be temporary and would occur entirely within publicly owned rights-of-way, no adverse effects under NEPA or significant impacts under CEQA would occur that would affect land uses surrounding the project alignment.

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, the I-110/C Street interchange would continue to operate as is. No existing land uses or future land uses would be affected.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The proposed project is intended to support existing and projected future land uses in the area. Despite past improvements to this segment of I-110 and efforts to encourage multi-modal transportation, traffic congestion has become a problem at the I-110/C Street interchange due to a steady increase in port throughput and port-related development. Increases in port-related traffic, combined with local residents’ concerns about safety, noise, and air quality, have led to a need for transportation improvements, including improved freeway access and multi-modal transportation improvements on surrounding roadways. The proposed project would contribute to these objectives by replacing the existing northbound off-ramp with a more direct off-ramp that leads to eastbound Harry Bridges Boulevard, as well as by widening the Figueroa Street/Harry Bridges Boulevard/John S. Gibson Boulevard intersection to accommodate a left-turn pocket in both directions. This would help to separate port-bound traffic from local residential traffic, by providing more direct access to the port circulation system via Harry Bridges.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Boulevard. Upon completion of the project, traffic and safety conditions at the I-110/C Street and the Figueroa Street/Harry Bridges Boulevard/John S. Gibson Boulevard intersections are expected to improve. There will be a transfer of property among the City of Los Angeles, the Los Angeles Harbor Department, and Caltrans for the proposed project due to the realignment of the roadways.

This alternative would not conflict with existing land uses and would be consistent with all existing and future land uses as well as new developments in the study area. As such, no substantial adverse effects under NEPA or significant impacts under CEQA on land use would occur as a result of the Build Alternative.

Avoidance, Minimization, and/or Mitigation Measures

Disruption of use during project construction related to traffic and access impacts on local roadways would be mitigated by implementing a Traffic Staging Plan and a Traffic Management Plan (TMP).

LU-1 LAHD or its designee shall prepare a TMP to minimize direct and cumulative construction impacts on the community. The TMP shall be developed in consultation with the Los Angeles Department of Transportation and the California Department of Transportation, and it shall be provided with the construction plan to the City of Los Angeles Police Department and the City of Los Angeles Fire Department prior to commencement of construction activities. The TMP shall include the following implementation plans:

- **Public Information**: Provide project updates to affected residents and businesses, including the general public, via brochures and mailers, community meetings, and web site information;
- **Motorist Information**: Provide project information using changeable message signs and ground-mounted signs;
- **Incident Management**: Implement Construction Zone Enhanced Enforcement Program, freeway service patrol, and California Highway Patrol traffic handling; and
- **Traffic Management during Construction**: Provide a traffic lane closure chart, detour routes, pedestrian routes, residential and commercial access routes, and temporary traffic signals during construction.
2.1.1.2 Consistency with State, Regional, and Local Plans and Programs

Regulatory Setting

State

The California Coastal Act of 1976

The proposed project is within 3 miles of the Coastal Zone. The CZMA is the primary federal law to preserve and protect coastal resources. The CZMA sets up a program under which coastal states are encouraged to develop coastal management plans. States with an approved coastal management plan are able to review federal permits and activities to determine if they are consistent with the state’s management plan.

California has not only developed a coastal management plan but has also enacted its own law, the California Coastal Act of 1976, to protect the coastline. The policies established under the California Coastal Act are similar to those of the CZMA. These policies protect public access, recreation, environmentally sensitive areas, agricultural lands, scenic beauty, and life and property from coastal hazards. The California Coastal Commission is responsible for implementation and oversight under the California Coastal Act.

Just as the federal CZMA delegates power to coastal states to develop their own coastal management plans, the California Coastal Act delegates power to local governments (15 coastal counties and 58 cities) to enact their own LCPs. LCPs are used to determine short- and long-term uses for coastal resources that are consistent with the goals of the California Coastal Act. A federal consistency determination may be needed as well.

The project site is within the boundary for the harbor Coastal Zone, as defined by the POLA Master Plan. Because construction would be limited to roadways surrounding the I-110/C Street interchange and would not involve existing waterways or other coastal resources, the proposed project would be consistent with the California Coastal Act of 1976. However, a permit will need to be obtained from the Los Angeles Harbor Commission once the environmental document has been approved and certified. No further discussion is required.

Regional

Regional Comprehensive Plan

The Regional Comprehensive Plan (RCP) was developed by SCAG in partnership with 13 subregions and adopted in 2008. SCAG is the metropolitan planning organization for six counties in Southern California: Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial. According to the RCP, SCAG projects that 24 million people will reside in the six-county SCAG region by 2035. The RCP is intended to be a problem-solving guidance document that responds directly to challenges facing Southern California as identified the annual State of the Region report card. It responds to SCAG’s Regional Council directive in the 2002 Strategic Plan to develop a holistic, strategic plan for defining and solving inter-related housing, traffic,
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

water, air quality, and other regional challenges. The RCP is a structured policy framework that links broad principles to an action plan that moves the region toward balanced goals. It includes vision statements and guiding principles based on the region’s adopted Compass Growth Vision Principles for Sustaining a Livable Region. These statements further articulate how the RCP can promote and sustain the region’s mobility, livability, and prosperity for future generations.

2008 Regional Transportation Plan

The RTP is a long-term (minimum of 20 years) vision document that outlines transportation goals, objectives, and policies for the SCAG region. The 2008 RTP, titled “Making the Connections 2035,” was adopted by SCAG on May 8, 2008. FHWA and the Federal Transit Administration (FTA) approved the 2008 RTP in June 2008. This regional planning document is required by a number of state and federal mandates and requirements, which include the Intermodal Surface Transportation Efficiency Act of 1991, the federal Clean Air Act, and the California Clean Air Act. The proposed I-110/C Street project is included in the SCAG 2008 RTP (project number 08-0H1300).

2008 Regional Transportation Improvement Program

The 2008 Regional Transportation Improvement Program (RTIP) is a capital listing of transportation projects proposed over a 6-year period. The RTIP must include all transportation projects that require federal funding as well as all regionally significant transportation projects for which federal approval (by FHWA or FTA) is required, regardless of funding source. The project is listed in the final 2008 RTIP under Project ID LA0F030 and project description “I-110 Freeway/C Street Interchange Improvement – Modification of Existing Interchange.” The project design concept and scope (Build Alternative) are consistent with the project description in the approved 2008 RTIP. All projects included in the 2008 RTIP (and in the State Transportation Improvement Program) are reviewed for conformity with air quality plans.

Local Plans

City of Los Angeles General Plan

Wilmington-Harbor City Community Plan. The Wilmington-Harbor City Community Plan was adopted on July 14, 1999. It establishes goals, objectives, policies, and programs applicable to the community. The Wilmington-Harbor City Community Plan Area is bounded by Lomita Boulevard, the City of Long Beach, the Port of Los Angeles, Gaffey Street, and Normandie Avenue. Because of its proximity to the Port of Los Angeles, a significant portion of the southeast community plan area is designated for industrial and light industrial uses. The industrial sector is a major contributor to the local economy. The plan encourages both new industrial growth as well as development of improved circulation systems to accommodate growth. It also contains policies to govern direct access to freeways for trucks, discourage nonresidential traffic on residential streets, and upgrade the circulation system.

The project site is located just north of Harry Bridges Boulevard, which forms the southern boundary of the Wilmington-Harbor City Community District. The plan recommends integrating
future development of the port with the Wilmington community, including changes to transportation and circulation systems and port land acquisitions. One of the goals of the plan is the maintenance of a safe and efficient transportation system through implementation of minor physical improvements and policies pertaining to LOS and growth. The plan also recommends interagency coordination in the planning and implementation of port projects to facilitate efficiency in port operations and serve the interests of adjacent communities (LAHD 2005).

Port of Los Angeles Plan. The POLA Plan is part of the City of Los Angeles General Plan. The POLA Plan provides a 20-year guide to the continued development and operation of the port. It is designed to be consistent with the POLA Master Plan. The preferred long-range water and land uses for the port include nonhazardous liquid and dry bulk cargo, general cargo, commercial fishing operations, and port-related commercial and industrial uses. However, these preferred goals are subject to the following criteria: changes in economic conditions that affect the types of commodities traded in waterborne commerce, the economic life of existing facilities handling or storing hazardous cargo, and the precautions deemed necessary to maintain national security (LAHD 2005).

Port of Los Angeles Master Plan. The POLA Master Plan, which was certified by the California Coastal Commission and became effective in April 1980, constitutes the LCP for the portion of the harbor under the jurisdiction of the City of Los Angeles. The plan does not specifically address the proposed project but is generally supportive of transportation improvements to and from the Port of Los Angeles.

The proposed project was conceived under the POLA Master Plan as part of the I-110/SR-47 Connectors Improvement Program, which is a complementary array of projects that seek to improve freeway access to port facilities, eliminate traffic movement conflicts, improve existing non-standard elements, and accommodate existing and future traffic conditions for port and background traffic.

Habitat Conservation Plan/Natural Community Conservation Plan

The project site is not located within an adopted Multiple Species Habitat Conservation Plan (MSHCP), Habitat Conservation Plan (HCP), or Natural Community Conservation Plan (NCCP).

Specific Development Proposals

There are a few adjacent transportation projects that will occur in the vicinity of the C Street interchange, which is part of the LAHD’s West Basin improvement plan. The SR-47/I-110/John S. Gibson Boulevard interchange project (EA 26060K) is located less than 1 mile south of the interchange on I-110. The SR-47/I-110/John S. Gibson Boulevard interchange project is being developed concurrently with this project. Two of the LAHD projects, the Harry Bridges Boulevard widening project and the Fries Avenue grade separation project, are currently in the design phase. The Harry Bridges Boulevard widening project will match the widening and realignment of the improvements proposed by this project. The Fries Avenue project is related to the relocation of the port’s entrance and exit gates.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, existing land uses in the project area would remain. The No-Build Alternative would not alter the existing conditions at the project site. Thus, no construction activities would be conducted at the project site, and no adverse effects under NEPA or significant impacts under CEQA would occur as a result of regional or local plan inconsistencies.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction activities would be conducted in accordance with the City’s applicable municipal code policies and guidelines as well as in accordance with Caltrans guidelines. As such, no plan inconsistencies are expected to occur during the construction period of the proposed Build Alternative.

Operational Impacts

Alternative 1: No-Build Alternative

Under this alternative, the proposed project would not occur. This alternative would not meet the objectives of the proposed project, which are designed to reduce congestion at the C Street, Harry Bridges Boulevard, I-110 interchange; accommodate local access demands for I-110; reduce traffic congestion on local roads as part of a number of planned roadway, intersection, and interchange improvements; and serve the local transportation network needs of planned future development on adjacent vacant land and at the port.

Under the No-Build Alternative, existing land uses in the project area would remain. This alternative would not be in compliance with the Wilmington Community Plan or the 2008 RTP and 2006 RTIP.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

This alternative would improve traffic operations at the on- and off-ramps (see Section 2.1.3.5 for a detailed discussion of traffic impacts). Alternative 2 is consistent with all of the previously referenced plans. The proposed improvements are consistent with the project description in the current 2008 RTIP and are identified in the 2008 RTP. The proposed I-110/C Street intersection has been designed so that it would be able to accommodate future growth in port cargo and expansion as well as a more direct route to the terminal while minimizing traffic congestion.

Alternative 2 involves the construction of an improved interchange, which is intended to reduce traffic congestion. Because I-110, C Street, and Harry Bridges Boulevard are existing roadways, no new physical division would be created under this alternative. Improvements to existing transportation facilities would be compatible with the Wilmington-Harbor City Community Plan and surrounding land uses, including residential and industrial uses.
Roadways are also considered an integral part of development and land use patterns because they are required to facilitate travel and connectivity between areas. Since I-110, C Street, and Harry Bridges Boulevard are existing roadways, Alternative 2 would not diminish access to or the ability to use project-adjacent vacant land and open spaces, nor would it physically divide an established community. No adverse effects under NEPA or significant impacts under CEQA would occur.

Alternative 2 would require no additional right-of-way acquisition. All land required for improvements is publicly owned land. This alternative would not conflict with existing land uses and would be considered consistent with the existing as well as future land uses in the study area.

Alternative 2 is consistent with all of the previously referenced plans. The proposed improvements (project number LA0F030) are consistent with the project description in the 2008 RTIP and identified in the 2006 RTP. I-110 would remain a primary freeway, while C Street would remain a residential road. Therefore, Alternative 2 would not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the proposed project (including a general plan, specific plan, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect.

Avoidance, Minimization, and/or Mitigation Measures

No avoidance, minimization, and/or mitigation measures are proposed because no adverse effects under NEPA or significant impacts under CEQA with respect to established plans or programs are anticipated.

2.1.1.3 Parks and Recreation

Regulatory Setting

City of Los Angeles General Plan

The general plan comprises park- and recreation-related goals, objectives, and policies that are applicable to the proposed project. The overall goal of the Open Space and Conservation section of the general plan is to provide regional public and private open space that serve the City’s population and is unthreatened by encroachment from other land uses.\(^4\)

Affected Environment

The area in the immediate vicinity of the project site has been developed primarily for industrial uses; it is generally not used for parks and recreational purposes. The closest park and recreational facility in the vicinity of the project site is the 7.5-acre Wilmington Recreation Center, located approximately 0.5 mile east of the existing interchange. The Harry Bridges Boulevard buffer area is located between Harry Bridges Boulevard and C Street, bounded by Figueroa Street to the west and Lagoon Avenue to the East. The Harry Bridges Boulevard buffer

provides a 30-acre public open space to separate port operations and adjacent residences north of C Street. Both resources are protected under Section 4(f).

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, the I-110/C Street interchange would continue to operate as is. Nearby recreational uses, including the Wilmington Recreation Center and the Harry Bridges Boulevard buffer, would not be affected.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction activities would be limited to the existing roadway areas and public rights-of-way. Construction activities and staging for the Build Alternative would occur on and near the Harry Bridges Boulevard buffer; however, construction planning of the Build Alternative has been coordinated with the construction of the buffer area which was completed mid-2011. Construction related activities would result in some increase in noise and dust which would affect the northeastern corner of the buffer area. This area has been developed with some trees and developed with the knowledge that the Build Alternative would affect a small portion of this area. Because this buffer has been developed in coordination with the proposed project, and construction activities would only effect a small section of the park which is not developed with any recreational uses, construction activities would not have adverse effects under NEPA or significant impacts under CEQA on the area. Additionally, the proposed project would not involve the use of Section 4(f) properties; therefore, no adverse effects on Section 4(f) resources would occur. See Appendix B, Resources Relative to the Requirements of Section 4(f) for further discussion of potential Section 4(f) uses resulting from the Build Alternative. Construction activities would not affect access to existing parks or the Wilmington Recreation Center. The proposed Build Alternative would not result in any permanent or temporary disruptions of recreational activities at the center or the buffer area. Additionally, pedestrian and vehicular access to the center and buffer area would be maintained during construction of the proposed Build Alternative.

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, the I-110/C Street interchange would continue to operate as is. Nearby recreational uses would not be affected.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The Build Alternative would require a small acquisition of land from the recently constructed Harry Bridges Boulevard buffer area in order to construct the cul-de-sac on C Street. However, construction

of the buffer area was carried out in coordination with the design of the Build Alternative. Consequently, the land to be acquired was not developed with recreational facilities and the green space would be allowed to function, as planned, as a buffer zone between the residential uses north of Harry Bridges Boulevard and the port operations to the south. No adverse effects on park users were identified, and soundwalls are not proposed in the vicinity of the green-space buffer. The proposed project would not involve the use of Section 4(f) properties. This alternative would not affect access to the buffer zone or the Wilmington Recreation Center. As such, no substantial adverse effects under NEPA or significant impacts under CEQA on park and recreational uses and no use of Section 4(f) park resources in the project area would occur as a result of the Build Alternative.

Avoidance, Minimization, and/or Mitigation Measures

Because the Build Alternative would not result in adverse effects on parks or recreation under NEPA or significant impacts under CEQA, no avoidance, minimization, and/or mitigation measures are required.

2.1.2 Growth

Regulatory Setting

The Council on Environmental Quality (CEQ) regulations, which implement the National Environmental Policy Act of 1969, require evaluation of the potential environmental consequences of all proposed federal activities and programs. This provision includes a requirement to examine indirect consequences, which may occur in areas beyond the immediate influences of a proposed action and at some time in the future. The CEQ regulations, 40 Code of Federal Regulations (CFR) 1508.8, refer to these consequences as “secondary impacts.” Secondary impacts may include changes in land use, economic vitality, and population density, which are all elements of growth.

CEQA requires the analysis of a project’s potential to induce growth. State CEQA Guidelines Section 15126.2(d) require that environmental documents “…discuss the ways in which the proposed project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment…”

Affected Environment

The City of Los Angeles has experienced constant population increases over the last two decades. According to the SCAG 2008 RTP, the City’s population is projected to increase by 11.6 percent between 2005 and 2035. The number of households in the City will increase by 24.8 percent, and employment is expected to increase by 13.0 percent in the same time period.

The study area includes census tract 2949, which contains the residential population that is likely to be affected by the proposed project (Figure 2-4 shows the population study area). Land uses in the study area include industrial and public facilities. Growth trends in the study area are in sync with those of the City and Los Angeles County. According to the SCAG 2008 RTP, between
2005 and 2035, the population of the study area will increase by 11.1 percent, the number of households will increase by 21.8 percent, and employment will increase by 9.2 percent.
Figure 2-4: Population Study Area
Tables 2-2 through 2-4 provide the projected population, housing, and employment estimates from the 2008 SCAG RTP through the planning year of 2035 for the City and County of Los Angeles as well as the census tract located within the study area.

Recognizing that future growth in port operations, which are projected to triple in cargo throughput by 2020 translating into increased traffic congestion, LAHD has adopted the Port Transportation Management Plan (PTMP), which identifies a series of high-priority transportation infrastructure improvements to enhance traffic flow throughout the study area. The I-110/C Street interchange is one of the projects included in the PTMP.

Development projects that are planned, programmed, under construction, or recently constructed within 2 miles of the proposed alignment are considered in this assessment of the project’s effects on growth and listed in Table 2-1 in the Land Use section. There are 36 development projects (see Table 2-1) in different stages of development in the vicinity of the proposed project; given the current growth projections, the existing I-110 ramps/C Street/Figueroa Street intersection is expected to operate at an unacceptable LOS in 2035. Therefore, the need to provide additional freeway access to support expected growth in the City and the study area is becoming crucial.

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not propose any transportation improvements; therefore, the potential for growth does not exist.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction activities would be temporary and short-term, lasting approximately 24 months. Therefore, there is no significant potential for population growth or local business impacts during construction from the proposed project.

Operational Impacts

Alternative 1: No-Build Alternative

The pattern and/or rate of existing or planned population or housing growth in the project area would not be affected by the proposed project because no property acquisitions or displacements would occur.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-2: 2008 SCAG RTP 2005–2035 Population Projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>10,206,001</td>
<td>10,971,602</td>
<td>7.5%</td>
<td>11,678,552</td>
<td>14.4%</td>
<td>12,338,620</td>
<td>20.9%</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>3,955,392</td>
<td>4,128,125</td>
<td>4.3%</td>
<td>4,277,732</td>
<td>8.1%</td>
<td>4,415,772</td>
<td>11.6%</td>
</tr>
<tr>
<td>Tract 2949</td>
<td>3,516</td>
<td>3,662</td>
<td>4.2%</td>
<td>3,790</td>
<td>7.8%</td>
<td>3,907</td>
<td>11.1%</td>
</tr>
</tbody>
</table>

Table 2-3: 2008 SCAG RTP 2005–2035 Household Projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>3,212,434</td>
<td>3,509,580</td>
<td>9.2%</td>
<td>3,788,732</td>
<td>18.0%</td>
<td>4,003,501</td>
<td>25.0%</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>1,306,079</td>
<td>1,424,701</td>
<td>9.1%</td>
<td>1,532,998</td>
<td>17.4%</td>
<td>1,616,578</td>
<td>24.8%</td>
</tr>
<tr>
<td>Tract 2949</td>
<td>839</td>
<td>909</td>
<td>8.3%</td>
<td>973</td>
<td>16.0%</td>
<td>1,022</td>
<td>21.8%</td>
</tr>
</tbody>
</table>

Source: SCAG RTP 2008 Household Projections.

Table 2-4: 2008 SCAG RTP 2005–2035 Employment Projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>4,397,025</td>
<td>4,675,875</td>
<td>6.3%</td>
<td>4,847,436</td>
<td>10.2</td>
<td>5,041,172</td>
<td>14.6</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>1,764,768</td>
<td>1,864,061</td>
<td>5.6</td>
<td>1,925,148</td>
<td>9.1%</td>
<td>1,994,134</td>
<td>13.0</td>
</tr>
<tr>
<td>Tract 2949</td>
<td>1,409</td>
<td>1,465</td>
<td>3.9</td>
<td>1,500</td>
<td>6.5</td>
<td>1,539</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Source: SCAG RTP 2008 Employment Projections.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

First-Cut Screening Analysis

The proposed project, in conjunction with other port improvements, is designed to correct existing problems and channel truck traffic directly to and from I-110 and port terminals. This would minimize truck traffic on local residential streets and improve LOS at intersections in the study area. Therefore, the proposed project would accommodate existing growth trends rather
than induce new growth. The first-cut screening analysis for the Build Alternative is presented below.

Accessibility

Although the proposed project would relocate the access ramps to I-110 between C Street and Harry Bridges Boulevard, it would not add new ramps or interchanges in an area where none existed previously; thus, the potential for growth due to the provision of new access is low. The proposed project would not affect accessibility to employment or shopping, nor would it attract new businesses and residents. The proposed project would provide some improvement in safety and congestion and would reduce port-related traffic on residential streets. Given the urban and built-out nature of surrounding development, as well as the purpose of the project, the project would not improve accessibility in areas not previously served by a transportation facility. For the reasons stated above, the proposed project is not growth inducing.

Land Use

The project area is built out with industrial and residential uses. The parcels north of Harry Bridges Boulevard and south of C Street have been developed as a green-space buffer. Land uses north of the project area include residential and industrial uses. Land uses in the southern and western portions of the site are generally industrial. The only future planned project in the area is the John S. Gibson Boulevard/I-110 interchange project. This is not indicative of substantial new growth in the area. The pattern and rate of population and housing growth following implementation of the proposed project would be expected to remain consistent with the population anticipated by existing plans for the area. Furthermore, no new or expanded infrastructure, housing, or other similar permanent physical changes to the environment would be necessary as an indirect consequence of the proposed project. However, the 36 projects in the vicinity of the proposed interchange, which are in various stages of development (see Table 2-1), increase the need for the proposed project, which is necessary to correct existing deficiencies in the area and improve traffic flow.

Resources of Concern

Resources of concern can be identified as wetlands, threatened/endangered species, prime farmland, etc. The project traverses an urban and highly disturbed area; it has limited potential to provide habitat to any biological species of concern or affect resources of concern.

Growth-inducing impacts are often secondary impacts resulting from 1) shifts in population growth or distribution, 2) fostering economic growth, or 3) removing obstacles to growth, such as providing access to an area that was previously inaccessible. Therefore, based on the first-cut screening analysis presented above, the proposed project would not be growth inducing, nor would it have growth-related impacts.

No additional analysis related to growth is warranted.
Avoidance, Minimization, and/or Mitigation Measures

Adverse effects under NEPA or significant impacts under CEQA related to growth would not occur as a result of the proposed project. Therefore, no avoidance, minimization, and/or mitigation measures are proposed.

2.1.3 Community Impacts

2.1.3.1 Community Character and Cohesion

Regulatory Setting

The National Environmental Policy Act of 1969, as amended, established that the federal government use all practicable means to ensure for all Americans safe, healthful, productive, and aesthetically and culturally pleasing surroundings (42 USC 4331[b][2]). FHWA, in its implementation of NEPA (23 USC 109[h]), directs that final decisions regarding projects are to be made in the best overall public interest. This requires taking into account adverse effects, such as the destruction or disruption of human-made resources, community cohesion, and the availability of public facilities and services.

Under CEQA, an economic or social change by itself is not to be considered a significant effect on the environment. However, if a social or economic change is related to a physical change, then the social or economic change may be considered in determining whether the physical change is significant. Since this proposed project would result in physical change to the environment, it is appropriate to consider changes to community character and cohesion in assessing the significance of the project’s impacts.

Affected Environment

The area immediately surrounding the project site includes vacant land between C Street and Harry Bridges Boulevard, port facilities, industrial uses, warehouse facilities, and some residential properties. The closest school to the project area is Hawaiian Elementary School, located near the intersection of Hawaiian Avenue and E Street (0.2 mile from the project site). Also, Robert F. Kennedy Head Start is located near the intersection of Figueroa Street and D Street (less than 100 feet from the project site). Businesses in the study area involve predominantly port-related activities. The majority of the commercial businesses in the Wilmington area are concentrated along Anaheim Street and Avalon Boulevard, approximately 0.5 mile north and northeast of the project limits.

Population data were collected from the 2000 census for the County, the City, and the census tract in the study area (i.e., census tract 2949). The study area is intended to encompass an area where population and housing impacts related to construction and operation of the proposed project could reasonably occur. This section provides demographic data for the project study area, the County, and the City.
Existing Regional and Local Population and Housing

Table 2-5 presents the County and City’s population as well as population growth estimates for the population study area (shown in Figure 2-2).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>8,863,164</td>
<td>9,519,338</td>
<td>9,758,886*</td>
<td>9,878,554</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>3,647,301</td>
<td>3,694,820</td>
<td>3,731,437*</td>
<td>3,834,340</td>
</tr>
<tr>
<td>Census Tract 2949</td>
<td>3,217</td>
<td>3,262</td>
<td>3,516**</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Sources:
* U.S. Census Bureau, 2005 American Community Survey.
**Southern California Association of Governments. 2008a. Regional Transportation Plan.

According to U.S. census records, the population of the City increased by only 1.3 percent between 1990 and 2000. Population increases in the census tracts surrounding the project site were also low.

Table 2-6 presents the regional and local age breakdown, according to 2000 census data.

<table>
<thead>
<tr>
<th>Area</th>
<th>Total Population</th>
<th>Under 5</th>
<th>%</th>
<th>20 to 64 Years</th>
<th>%</th>
<th>65 Years and Over</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>9,519,338</td>
<td>737,631</td>
<td>7.8</td>
<td>5,645,869</td>
<td>59.3</td>
<td>926,673</td>
<td>9.7</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>3,694,820</td>
<td>285,976</td>
<td>7.7</td>
<td>2,246,642</td>
<td>60.8</td>
<td>357,129</td>
<td>9.7</td>
</tr>
<tr>
<td>Census Tract 2949</td>
<td>3,262</td>
<td>365</td>
<td>11.2</td>
<td>1,616</td>
<td>50.0</td>
<td>163</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Tables 2-7 and 2-8 present regional and local housing occupancy and tenure characteristics. As shown, the percentage of occupied residential units in the County is 95.8, and the occupancy rate in the City is similar. Within the local area, census tract 2949 has occupancy rates that are similar to those of the City as a whole. Census tract 2949 has a much lower percentage of owner-occupied units than the County or the City.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-7: Existing Regional and Local Housing Characteristics—Occupancy (2000)

<table>
<thead>
<tr>
<th>Area</th>
<th>Total Units</th>
<th>Occupied</th>
<th>%</th>
<th>Vacant</th>
<th>%</th>
<th>Average Household Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>3,270,909</td>
<td>3,133,744</td>
<td>95.8</td>
<td>137,135</td>
<td>1.2</td>
<td>2.98</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>1,416,689</td>
<td>1,350,533</td>
<td>95.3</td>
<td>66,156</td>
<td>4.7</td>
<td>2.79</td>
</tr>
<tr>
<td>Census Tract 2949</td>
<td>839</td>
<td>815</td>
<td>97.1</td>
<td>24</td>
<td>2.9</td>
<td>3.99</td>
</tr>
</tbody>
</table>

Table 2-8: Existing Regional and Local Housing Characteristics—Tenure (2000)

<table>
<thead>
<tr>
<th>Area</th>
<th>Total Units</th>
<th>Occupied Units</th>
<th>Owner-Occupied Units</th>
<th>%</th>
<th>Renter-Occupied Units</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>3,270,909</td>
<td>3,133,774</td>
<td>1,499,744</td>
<td>47.9</td>
<td>1,634,030</td>
<td>52.1</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>1,416,689</td>
<td>1,350,533</td>
<td>522,905</td>
<td>38.7</td>
<td>827,628</td>
<td>61.3</td>
</tr>
<tr>
<td>Census Tract 2949</td>
<td>839</td>
<td>815</td>
<td>203</td>
<td>24.9</td>
<td>612</td>
<td>75.1</td>
</tr>
</tbody>
</table>

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no construction activities are proposed; consequently, there would be no adverse effects under NEPA or significant impacts under CEQA on the community.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction of the proposed project would last approximately 24 months. The Build Alternative would be temporary and could result in short-term construction impacts on the community. Access to school services could be temporarily affected due to reconfigured bus and pedestrian routes. Construction activities could result in temporary, localized, site-specific disruptions for local industrial uses and residences in the project area primarily because of construction-related traffic, partial and/or complete street and lane closures, and increased noise and vibration. However, access to port terminals, industrial facilities and warehouses, and community and public facilities in the area would be maintained during the construction period. A TMP would be prepared to minimize impacts due to reconfigured routes and lane closures. No substantial adverse effects under NEPA or significant impacts under CEQA would occur due to the proposed project.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, community character and cohesion would not be affected. Port-related truck traffic would continue to use local streets; there would be no adverse effects under NEPA or significant impacts under CEQA on the community.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The assessment of whether, and to what extent, the proposed project would adversely affect the cohesiveness of the adjacent community depends largely on whether the proposed project is likely to physically divide the community. Alternative 2 involves the construction of a new interchange, which is intended to reduce traffic congestion. Because I-110, C Street, and Harry Bridges Boulevard are existing roadways and right-of-way has been reserved for the future interchange, no physical division would be created by the proposed project. Alternative 2 would result in a beneficial impact on the community by removing port-related truck traffic from residential streets and improving traffic flow in the area. The proposed project would not physically divide an established community. Therefore, there would be no substantial adverse effects under NEPA or significant impacts under CEQA on community cohesion.

Avoidance, Minimization, and/or Mitigation Measures

The following measure shall be implemented to minimize disruptions to traffic and community access during the construction period:

C-1 The LAHD or its designee shall prepare a TMP to minimize direct and cumulative construction impacts on the community. The TMP shall be developed in consultation with the City of Los Angeles Department of Transportation and Caltrans, and it shall be provided with the construction plan to the City of Los Angeles Police and Fire Departments prior to commencement of construction activities. The TMP shall include, but is not limited to, the following implementation plans:

- **Public Information**: Provide project update to affected residents and businesses, including general public, via brochures and mailers, community meeting, and Web site.
- **Motorist Information**: Provide project information using changeable message signs and ground-mounted signs.
- **Incident Management**: Implement Construction Zone Enhanced Enforcement Program, freeway service patrol, and California Highway Patrol traffic handling.
- **Traffic Management during Construction**: Provide traffic lane closure chart, detour route, pedestrian routes, residential and commercial access routes, and temporary traffic signal during construction.
Chapter 2. Affected Environment, Environmental Consequences, and
Avoidance, Minimization, and/or Mitigation Measures

2.1.3.2 Environmental Justice

Regulatory Setting

All projects involving a federal action (funding, permit, or land) must comply with Executive Order (EO) 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, signed by President Clinton on February 11, 1994. This executive order directs federal agencies to take the appropriate and necessary steps to identify and address disproportionately high and adverse effects of federal projects on the health or environment of minority and low-income populations to the greatest extent practicable and permitted by law. “Low income” is defined based on the Department of Health and Human Services poverty guidelines. For 2005, this was $19,350 for a family of four, and for 2009, it was $22,050.

All considerations under Title VI of the Civil Rights Act of 1964 and related statutes have also been included in this project. Caltrans’ commitment to upholding the mandates of Title VI is evidenced by its Title VI policy statement, as signed by the director (Appendix C).

Minority Population

Definition: Individual(s) who are American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic origin; or Hispanic.

Minority populations occur where either:

(a) The minority population of the affected census tract or block group exceeds 50 percent, or
(b) The minority population percentage of the affected census tract or block group was meaningfully greater than the minority population percentage in the general population.

Low-income Population

Definition: Low-income populations were identified using the annual statistical poverty thresholds from the Bureau of the Census’ Current Population Reports, Series P-60, on Income and Poverty.

Low-income populations occur where the percentage of low-income populations in any census tract or block group is more than 10 percentage points greater than the average in the city and/or county in which the census tract block group is located.

Affected Environment

The information below was obtained from the 2000 United States census (Table 2-9). Figure 2-2 shows the study area for the project. The purpose of the data is to identify potential impacts on
people living in proximity to the project as well as identify minority and low-income populations in compliance with Executive Order 12898.

The population in census tract 2949 was 3,262 in 2000. Of the census tract’s population, Latino/Hispanic was the largest ethnic group, at 87 percent. African American represented the next-largest ethnic group, at 5 percent, and white represented the third-largest ethnic group, at 4 percent.

Table 2-9: Population and Ethnic Distribution

<table>
<thead>
<tr>
<th>Area</th>
<th>2000 Total Population</th>
<th>White (%</th>
<th>Hispanic or Latino (%)</th>
<th>Black or African American (%)</th>
<th>American Indian and Alaska Native (%)</th>
<th>Asian (%)</th>
<th>Native Hawaiian and Other Pacific Islander (%)</th>
<th>Some Other Race (%)</th>
<th>Two or more races (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>9,519,338</td>
<td>2,959,614 (31.1)</td>
<td>4,242,213 (44.6)</td>
<td>901,472 (9.5)</td>
<td>25,609 (0.3)</td>
<td>1,124,569 (11.8)</td>
<td>23,265 (0.2)</td>
<td>19,935 (0.2)</td>
<td>222,661 (2.3)</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>3,694,820</td>
<td>1,099,188 (29.7)</td>
<td>1,719,073 (46.5)</td>
<td>401,986 (10.9)</td>
<td>8,897 (0.2)</td>
<td>364,850 (9.9)</td>
<td>4,484 (0.1)</td>
<td>9,065 (0.2)</td>
<td>87,277 (2.4)</td>
</tr>
<tr>
<td>Census Tract 2949</td>
<td>3,262</td>
<td>142 (4.4)</td>
<td>2,825 (86.6)</td>
<td>170 (5.2)</td>
<td>5 (0.2)</td>
<td>57 (1.7)</td>
<td>33 (1.0)</td>
<td>3 (0.1)</td>
<td>27 (0.8)</td>
</tr>
</tbody>
</table>

As shown in the table below, the percentage of population below the poverty line is much higher in census tract 2949 (41.2 percent) than it is in the County of Los Angeles (17.9 percent) or the City of Los Angeles (22.1 percent). A similar trend is reflected for median household income. The median household income for census tract 2949 is lower than that of the City and County (see Table 2.10).

Table 2.10: Median Household Income

<table>
<thead>
<tr>
<th>Census Tract/City</th>
<th>1999 Median Household Income</th>
<th>Percentage of Population Below Poverty</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles</td>
<td>$42,189</td>
<td>17.9%</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>$37,338</td>
<td>22.1%</td>
</tr>
<tr>
<td>Census Tract 2949</td>
<td>$20,417</td>
<td>41.2%</td>
</tr>
</tbody>
</table>

Based on a comparative analysis of the demographic and income characteristics of the study area with those of the City and County, it is evident that the study area’s population is characterized by a substantial proportion of minority and low-income groups. The minority population of the study area exceeds 50 percent, and the percentage of low-income populations in the study area is more than 10 percentage points greater than the average in the City and/or County.
Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under Alternative 1, the No-Build Alternative, no construction would occur, and minority and low-income populations would not be affected. Therefore, no adverse effects under NEPA or significant impacts under CEQA involving environmental justice would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The effects of the Build Alternative would occur within an area having a small population that is both minority and low-income. Construction activities would result in occasional traffic delays due to the operation of construction equipment. Elevated noise levels and air pollutant emissions would also occur on a temporary basis as a result of the operation of construction equipment; however, given the results of the noise and air quality analyses performed as part of this environmental document, no impacts on noise and air quality, above the thresholds established by the local agencies having responsibilities over noise and air quality, would occur as a result of construction activities. The community as a whole is likely to be affected by the construction activities, not a particular minority group or economic class. I-110/C Street is an important part of both the local and regional circulation system. Local motorists and pedestrians from the immediate project area, as well as those traveling to and from the project area from elsewhere, would all be affected by traffic delays and other construction-related activities during the project construction period (a TMP would be prepared to prevent unreasonable traffic delays and impacts). All feasible avoidance, minimization, and mitigation measures would be implemented to minimize the adverse effects of the project. Thus, the proposed build alternative would not cause disproportionately high and adverse effects on any minority or low-income populations as per EO 12898 regarding environmental justice during construction.

Operational Impacts

Alternative 1: No-Build Alternative

Under Alternative 1, the No-Build Alternative, no adverse effects under NEPA or significant impacts under CEQA pertaining to the environment would occur, and minority or low-income populations would not be affected. Therefore, no adverse effects or significant impacts would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Alternative 2 would be developed in accordance with Title VI of the Civil Rights Act of 1964, which provides that no person in the United States shall, on the grounds of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving federal financial assistance. In addition, the proposed project would be developed in conformity with related statutes and regulations mandating that no person in the State of California shall, on grounds of race, color, sex, age,
nation origin, or disabling condition, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity administered by or on the behalf of Caltrans. The proposed project would prove beneficial to the residential and neighborhood portions of the study area by improving traffic flow and providing transportation safety elements through the removal of a large volume of the port-related truck traffic on the residential streets. No relocations or acquisitions would be required under the project alternative. No special needs or affordable housing would be displaced by implementation of Alternative 2. Any project impacts involving environmental justice associated with Alternative 2 would be addressed by proposed avoidance, minimization, and mitigation measures; the measures are expected to be equally effective for all groups.

Avoidance, Minimization, and/or Mitigation Measures

Caltrans has instituted public involvement and community outreach efforts to ensure that issues of concern or controversy to minority and low-income populations are identified and addressed where practicable as part of the project planning and development process. Efforts will continue to be made to ensure meaningful opportunities for public participation. This may include additional community meetings, informational mailings, a project web site, and news releases to local media.

The proposed project will also comply with applicable federal requirements promulgated in accordance with EO 13166, Improving Access to Services for Persons with Limited English Proficiency (August 11, 2000), which requires that federal programs and activities be accessible to persons with limited English language proficiency.

The proposed project will be developed in accordance with Title VI of the Civil Rights Act of 1964, which provides that no person in the United States shall, on the grounds of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving federal financial assistance.

For a discussion of avoidance, minimization, and mitigation measures that would be implemented to ensure that construction impacts would be minimized, refer to Section 2.2.6, Air Quality; Section 2.1.3.5, Traffic; and Section 2.2.3.6, Noise

2.1.4 Utilities/Emergency Services

Affected Environment

The project area is located within the community of Wilmington, in the City of Los Angeles. The City receives utility and public services from several agencies, as discussed below. John S. Gibson Boulevard and Harry Bridges Boulevard are two major utility corridors within the port.
Utilities

Electricity

Electrical services in the project area are provided by the Los Angeles Department of Water and Power (LADWP). LADWP maintains various generating and distribution substations throughout the greater Los Angeles area, including generating and distribution centers within and near the port that serve the project site. The Harbor generating station is located at the intersection of Island Avenue and Harry Bridges Boulevard. Receiving Station Q and numerous above- and below-ground electrical transmission lines are located in the project area as well. Overall, LADWP supplies nearly 22 billion kilowatt (kW) hours of electricity a year to the City’s 1.4 million electric customers.6

Water

Water services in the project area are provided by LADWP. The 2005 Urban Water Management Plan (UWMP) estimates water demand and supply through a 25-year outlook period and is updated every 5 years by LADWP. In the 2005 UWMP, LADWP forecast that the City of Los Angeles would grow 0.4 percent annually over the next 25 years, or by approximately 368,000 persons. Total citywide demand for water is predicted to be 755,000 acre-feet in 2025 and 766,000 acre-feet in 2030. According to the 2005 UWMP, under wet, average, and dry years throughout the 25-year projection period, LADWP’s supply portfolio is expected to be reliable, with adequate supplies available to meet projected demands through 2030.7 In terms of the location of utility lines, a 12-inch line is located along the east side of Figueroa Street between C Street and Harry Bridges Boulevard, and 6-inch lines are located along most north-south cross streets throughout the project site, including Mar Vista Avenue and Hawaiian Avenue.

All of the water lines contain water service laterals, meters, fire hydrants, and other appurtenances, which is typical for water distribution systems. There is no reclaimed water system in the project area.

Wastewater

The City of Los Angeles Department of Public Works, Bureau of Sanitation, provides wastewater treatment and sewer service to the City. The existing system comprises two treatment plants; two water reclamation plants; a collection system consisting of over 6,500 miles of local, trunk, mainline, and major interceptor sewers; five major outfall sewers; and 48 pumping plants. The sewer infrastructure in the vicinity of the proposed Project includes an active 8-inch and an abandoned 4-inch sewer lines on Harry Bridges Boulevard. There are active 21-inch and an abandoned 12-inch sewer lines on Mar Vista Avenue. These sewage lines feed into double 24-inch lines located in John S. Gibson Boulevard, which discharge into the Terminal Island.

7 City of Los Angeles Department of Water and Power. 2005 Urban Water Management Plan.
Treatment Plant (TITP). All of the sewer lines contain sewer laterals and manholes, which is typical for sewer systems.

Stormwater

The City of Los Angeles owns and operates the storm drain system within City ROW, and Caltrans owns and operates storm drains within State ROW. Storm drains are located throughout the project area and maintained by LAHD, the City, and the County. There are two 24-inch storm drains located within John S. Gibson Boulevard ROW. A series of 18-inch to 24-inch storm drain lines and inlets cross I-110 and John S. Gibson Boulevard. Five storm drain lines of various sizes are located within the Figueroa Street ROW.

Solid Waste

Regional planning for solid waste facilities in the area is under the jurisdiction of Los Angeles County, which is the local enforcement agency under integrated waste management laws. The Los Angeles County Sanitation District oversees the operation of landfills that would accept solid waste generated during construction of the proposed project. The County encourages source reduction and recycling objectives that meet or exceed the requirements of State Assembly Bill (AB) 939. AB 939 mandates a 50 percent reduction in waste volumes from 1990 levels by 2010. Nonhazardous and hazardous waste can be landfilled or recycled at several facilities throughout the state. Any hazardous waste generated within the project area is managed in accordance with federal and state requirements. The nearest landfill to the proposed project location is Puente Hills Landfill, which is located at 13130 Crossroads Parkway South in the City of Industry. The newly opened Puente Hills Material Recovery Facility could be used for material recycling purposes. Solid waste collection and disposal services for residential development in the Wilmington area are provided by the City’s Bureau of Sanitation.

Natural Gas

The Southern California Gas Company provides natural gas within the project area. John S Gibson Boulevard ROW contains an abandoned 10-inch gas line, an active 8-inch gas line, and an active 12-inch gas line. Figueroa Street ROW contains an active 12-inch gas line, and abandoned 12-inch and 4-inch gas lines. Harry Bridges Boulevard ROW contains an abandoned 4-inch gas line and an active 4-inch gas line.

Telephone, Cable, and Fiber Optics

Multiple telephone, cable, and fiber-optic lines are located in the study area. Time Warner Cable and AT&T have underground telephone and cable conduits throughout the project area. Both companies have underground conduits within State ROW along I-110 that cross under the freeway and run along the shoulder, providing service to Emergency Call Boxes located along the I-110 mainline within the project limits. Four underground conduits (two active and two abandoned) exist within the John S. Gibson Boulevard ROW. Four 4-inch active underground conduits are located along Harry Bridges Boulevard. Active conduits are also located along
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figueroa Street and residential streets (Mar Vista Avenue and Hawaiian Avenue) in the project area.

Oil Lines

Several active and abandoned oil lines exist in the project area. The owners of the oil lines include ARCO, Texaco, Conoco Phillips, Union Oil, Kinder Morgan Energy Partners, Mobil Oil, Ultramar, the U.S. Navy, the Golden Eagle Refinery, Chevron, Pacific States Petroleum, Time Oil, etc. Several oil lines lie within the Pacific Harbor Line Railroad and John S. Gibson Boulevard rights-of-way as well as other major rights-of-way within project area, such as Figueroa Street and Harry Bridges Boulevard. Because of the presence of nearby LAHD terminals, several oil lines cross John S Gibson Boulevard and Harry Bridges Boulevard at various locations. Some of these oil lines are active, but many others have been abandoned.

Emergency Services

Police Services

The LAPD Harbor community station is located at 221 N. Bayview Avenue in Wilmington and includes a staff of 300. The harbor area has an officer-to-population ration of 1 officer for every 450 citizens. Average emergency response time for the area is approximately 10.6 minutes. The department-wide response time is 7 minutes. LAPD’s level of service and response times in the project area are considered adequate.

Fire Services

LAFD provides fire protection and emergency services for the project site. Fire protection capabilities are based on the distance from the emergency to the nearest fire station and the number of simultaneous emergency or fire-related calls.

LAFD facilities in the vicinity of the project site include land-based fire stations and fireboat companies. The three fire stations in the vicinity of the project area consist of the following:

- Station 38, at 124 East I Street, Wilmington, is a task force station with a staff of nine that maintains a truck and engine company as well as a paramedic ambulance. This would be the primary responding fire station to the proposed project.

- Station 49, at 400 Yacht Street, Berth 194, in Wilmington has a single engine, two boats, and a rescue ambulance. Station 49 is Battalion 6 headquarters. There are 13 staff members at this station. This would be a secondary responding fire station for the proposed project.

8 Personal communication from C. Plows, officer in charge, Harbor Area community relations. Email on June 11, 2008.
11 Personal communication from C. Plows, officer in charge, harbor area community relations. Email on June 11, 2008.
12 Personal communication with Chief Lou Roupoli. LAFD, Phone conversation on March 17, 2008.
13 Ibid.
• Station 85, at 1331 W. 253rd Street, Harbor City, is a task force station with a paramedic ambulance, urban search and rescue unit, a medical supply trailer, and an emergency lighting trailer.

LAFD’s response time in the project area is 5 minutes or less by land. The citywide average response time is approximately 6 to 8 minutes. This response time is considered adequate in the study area.15

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no construction activities would occur that would result in adverse effects under NEPA or significant impacts under CEQA.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Utilities

Construction of the Build Alternative could result in temporary impacts on utilities, such as an increase in electrical demand or solid waste volumes. Construction activities would use machinery and tools that would consume additional electrical power. However, this increase in electrical usage would be temporary, and the contractor would be able to tap into the existing power grid or generate power on site. Construction activities would not cause a substantial increase in the existing demand for electricity or require the development of new sources. Under the Build Alternative, utility corridors along the existing John S. Gibson Boulevard and Harry Bridges Boulevard alignments would be maintained. However, this would require a longitudinal encroachment permit from Caltrans. Existing overhead utility lines would be relocated. Two 12-inch by 14-foot storm drain structures owned by the Los Angeles County Flood Control District would be avoided by the project during construction; furthermore, the oil, gas, and telephone lines in the project area that are not located under or along the existing Harry Bridges Boulevard alignment would either be protected in place during construction or provided a casing to ensure that no damage would occur. Mitigation Measure U&ES-1, regarding consultation with utility service providers, would ensure that the substantial adverse effects under NEPA or significant impacts under CEQA on utilities would not occur.

Police Service

The temporary closure of lanes or ramps at the I-110/C Street interchange could affect the LAPD harbor community station, the primary responder in the area. The station is located approximately 0.5 mile to the east of the project area and uses C Street to access its service area.

14 Ibid.
15 Ibid.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

The average response time is currently 10.6 minutes. Due to temporary lane closures during construction, it is assumed that response times during this period would be affected. However, alternative routes exist that would provide access to the project area for emergency service providers. Alternative routes north of the project include Wilmington Boulevard and D Street. Furthermore, construction of the proposed project would be conducted in three stages, allowing partial access to the project area at all times. Finally, given that all project-related traffic disruptions would be temporary, lasting only for the period of construction, approximately 24 months, and mitigation measure U&ES-2 for preparation of a TMP would be implemented to minimize adverse effects associated with construction activities, substantial adverse effects under NEPA or significant impacts under CEQA on police services would not occur.

Fire Service

The temporary closure of some lanes in the vicinity could affect LAFD’s access to the project area for emergency services. The average response time for the LAFD is currently 5 minutes. Due to temporary lane closures during construction, it is assumed that response times during this period would be affected. However, alternative routes exist that would provide access to the project area for emergency service providers. Alternative routes to the north include Wilmington Boulevard and D Street. Furthermore, construction of the proposed project would be conducted in three stages, allowing for partial access to the project area at all times. Finally, given that all project-related traffic disruptions would be temporary, lasting only for the period of construction, approximately 24 months, and mitigation measure U&ES-2 for preparation of a TMP would be implemented to minimize adverse effects associated with construction activities, substantial adverse effects under NEPA or significant impacts under CEQA on fire services would not occur.

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, there would be no adverse effects under NEPA or significant impacts under CEQA on utilities or police, fire, or emergency medical services. Existing conditions in the area would not change.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The proposed Build Alternative is designed to correct current and future deficiencies in the level of service caused by the current roadway configuration. The Build Alternative would provide a safe and efficient configuration for the I-110/C Street interchange and would aid future traffic flow by reducing and managing congestion. The operational impacts of the Build Alternative on utilities as well as access and response times for police, fire, and emergency services in the local project area would be beneficial in the long term.

Avoidance, Minimization, and/or Mitigation Measures

The proposed project would be designed to avoid adverse effects on existing utilities and emergency services. Utilities in the area, other than those currently located under Harry Bridges Boulevard, would be avoided during construction to reduce impacts on utility providers. Should
construction need to occur at or near a utility line, the utility line would be protected with a
casing to ensure that disruption impacts would not occur. The mitigation measures below would
ensure that impacts on utilities and emergency services would be minimized.

U&ES-1 LAHD shall work in close coordination with the utility service providers in
advance of construction activities to relocate affected utilities and minimize
impacts on consumers.

U&ES-2 LAHD or its designee shall prepare a TMP to minimize direct and cumulative
construction impacts on the community, similar to mitigation measures LU-1
and C-1.

2.1.5 Traffic and Transportation/Pedestrian and Bicycle Facilities

Regulatory Setting

Caltrans, as assigned by FHWA, directs that full consideration should be given to the safe
accommodation of pedestrians and bicyclists during the development of federal-aid highway
projects (see 23 CFR 652). It further directs that the special needs of the elderly and the disabled
must be considered in all federal-aid projects that include pedestrian facilities. When current or
anticipated pedestrian and/or bicycle traffic presents a potential conflict with motor vehicle
traffic, every effort must be made to minimize the detrimental effects on all highway users who
share the facility.

Caltrans is committed to carrying out the 1990 Americans with Disabilities Act (ADA) by
building transportation facilities that provide equal access for all persons. The same degree of
convenience, accessibility, and safety available to the general public will be provided to persons
with disabilities.

Affected Environment

A traffic operations analysis report (Iteris 2009a) was prepared for the proposed project. The
report documented the existing interchange operating conditions and expected future operational
conditions for the years 2014 and 2035 with and without the proposed improvements. For each
of the conditions, the traffic study area included the freeway mainline, ramps, the weaving
segment, and intersections.

The traffic study evaluated existing traffic conditions at two intersections, which are listed below
and shown in Figure 2-5:

1. Figueroa Street and I-110 off-ramps/C Street, and
2. Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard

The following operational factors are analyzed in this report for existing (2009), opening-year
2014, and design-year 2035 conditions:

- Intersection LOS,
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

• Queuing analysis,
• Freeway ramp (merge/diverge) analysis,
• Freeway mainline analysis, and
• Freeway weaving analysis.

Analysis Methodologies

Intersection Level of Service Analysis

The study intersection, I-110 ramps/C Street and Figueroa Street, is a stop-controlled intersection. The intersection of Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard Street is signalized. The study intersection type and configurations will not change under the no-build conditions. Intersection levels of service were calculated using Highway Capacity Manual 2000 (HCM 2000) analysis methodologies and Synchro 6 software.

Intersection Queuing Analysis

Intersection queuing analysis was conducted for the signalized intersection to determine queue lengths at turn lanes using Synchro 6 software, which accounts for the 95th percentile queue lengths.16

Freeway Ramp (Merge/Diverge) Analysis

Peak-hour ramp volumes were analyzed using the methodology contained in Chapter 13, Freeway Concepts, and Chapter 25, Ramps and Ramp Junctions, of the Highway Capacity Manual, with calculations performed using Highway Capacity Software (HCS+, Version 5.21). This analysis examined the levels of service within the ramp influence areas of the freeway. The analysis of the onramps examined the impact of merging onto the freeway, while the analysis of the off-ramps examined the impacts of diverging from the freeway. Consistent with Highway Capacity Manual 2000 procedures, a single-lane on-ramp that results in a lane addition was not analyzed as a merge area (HCM 2000). A dual-lane off-ramp that results in a lane drop was analyzed as a major diverge area. Lane additions and major diverge areas were analyzed by means of a capacity analysis at each leg of the lane addition or major diverge area.

16 The 95th percentile queue is defined to be the queue length (in vehicles) that has only a 5 percent probability of being exceeded during the analysis time period. It is a useful parameter for determining the appropriate length of turn pockets.
Figure 2-5: Study Area and Study Intersections

Freeway Mainline Analysis

Peak-hour volumes along the freeway mainline were analyzed using the methodology contained in Chapter 13, Freeway Concepts, and Chapter 23, Basic Freeway Segments, of the *Highway Capacity Manual*, with analysis performed using the Highway Capacity Software (HCS+, Version 5.21).

Weaving Analysis

Peak-hour weave segments were analyzed using the methodology contained in Chapter 13, Freeway Concepts, and Chapter 24, Freeway Weaving, of the *Highway Capacity Manual*, with analysis performed using Highway Capacity Software (HCS+, Version 5.21). This analysis examined the levels of service within the weaving segment.

Level of Service Standards

The LOS parameters and LOS standards used for analyses were as follows:

- Minimum LOS standard for freeways: LOS E, and
- Minimum LOS standard for intersections: LOS D.

Existing (2009) Traffic Conditions

Current Facility

The existing I-110 interchange at C Street is a compact diamond-type interchange. The interchange provides ingress and egress to I-110 from the Figueroa Street and C Street intersection, although C Street has been barricaded with a raised island to prohibit traffic from proceeding eastbound from the interchange. Only westbound right turns are allowed along C Street at this intersection. The existing southbound and northbound off-ramps merge just east of the interchange, resulting in a less-than-standard weaving distance, which tends to reduce the operational efficiency of the interchange. Port traffic traveling southbound on I-110 to the TraPac terminal via the C Street off-ramps is required to make an immediate right onto southbound Figueroa Street before entering the terminal gate at the intersection of Figueroa Street and Harry Bridges Boulevard/John S. Gibson Boulevard.

Existing Traffic Volumes

Existing (2009) traffic volumes for the intersection, freeway ramps, and freeway mainline within the study area were obtained from field data collected over a 3-hour period during the typical weekday peak hours (6:00–9:00 a.m. and 3:00–6:00 p.m.). However, the AM and PM peak hours observed during field data collection for the traffic operations analysis occurred at different times. As a result, the time period with the greatest traffic volume (7:15–8:15 a.m.; 4:30–5:30 p.m.) was selected for all locations of the analysis. Per guidelines from Los Angeles Harbor Department staff, the following conversion factors were used to obtain Passenger Car Equivalents (PCE) volumes for the various truck classifications:
• Bobtail = 1.1,
• Chassis = 2.0,
• Container = 2.0, and
• Other trucks = 2.0.

Table 1-2 of this document presents the existing (2009) peak-hour traffic volumes at the I-110/C Street interchange. Table 2-11 presents the existing (2009) average daily traffic (ADT) and truck ADT for road segments in project area.

Table 2-11: Existing No-Build and Build (2009) Average Daily Traffic and Peak-Hour Traffic at Project Site

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Total ADT</th>
<th>Truck ADT</th>
<th>% Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB I-110 south of C Street off-ramp</td>
<td>42,717</td>
<td>4,517</td>
<td>11%</td>
</tr>
<tr>
<td>NB I-110 off-ramp to C Street</td>
<td>3,286</td>
<td>140</td>
<td>4%</td>
</tr>
<tr>
<td>NB I-110 between C Street on- and off-ramps</td>
<td>39,431</td>
<td>4,377</td>
<td>11%</td>
</tr>
<tr>
<td>NB I-110 on-ramp from C Street</td>
<td>5,994</td>
<td>1,888</td>
<td>31%</td>
</tr>
<tr>
<td>NB I-110 between C Street on-ramp and Anaheim Street off-ramp</td>
<td>45,425</td>
<td>6,265</td>
<td>14%</td>
</tr>
</tbody>
</table>

Note:
PCE = passenger car equivalents

Level of Service

An LOS analysis using the previously described methodologies was conducted to evaluate existing traffic conditions in the study area. The results of the intersection LOS analysis are summarized in Table 2-12.

Table 2-12: Existing 2009 Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (sec)</td>
<td>V/C</td>
<td>LOS</td>
</tr>
<tr>
<td>Figueroa Street and I-110 Ramps/C Street</td>
<td>B</td>
<td>11.1</td>
<td>0.37</td>
<td>C</td>
</tr>
<tr>
<td>Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard</td>
<td>A</td>
<td>8.1</td>
<td>0.44</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes:
HCM 2000 Operations Methodology.
LOS = level of service, delay = average vehicle delay (seconds), V/C = volume-to-capacity ratio

17 According to the project traffic engineers, ADT volumes would be the same for the build and no-build condition.
An examination of the data in Table 2-12 indicates that the study intersections are currently operating at satisfactory levels of service (LOS C or better during both peak hours).

Intersection Queuing Analysis

A queuing analysis using the previously described methodologies was conducted to determine the queue lengths at turn lanes at the intersection of Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard. The results of the queuing analysis are summarized in Table 2-13.

<table>
<thead>
<tr>
<th>Intersection Movement</th>
<th>Existing Storage (ft)</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBL</td>
<td>209</td>
<td>105</td>
<td>84</td>
</tr>
<tr>
<td>EBL</td>
<td>284</td>
<td>49</td>
<td>29</td>
</tr>
<tr>
<td>WBR</td>
<td>97</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>WBL</td>
<td>198</td>
<td>16</td>
<td>27</td>
</tr>
</tbody>
</table>

Notes:
SBL = southbound left, EBL = eastbound left, WBR = westbound right, WBL = westbound left

As can be seen in Table 2-13, all turn movements at the intersection of Figueroa Street/John S. Gibson Boulevard/Harry Bridges Boulevard have adequate queuing distance during both the AM and PM peak hours.

Freeway Ramp Analysis

Existing AM and PM peak-hour levels of service at the study freeway interchange and adjacent interchange ramp influence areas are summarized in Table 2-14. As Table 2-14 indicates, the freeway ramp junction is currently operating at satisfactory levels of service during both the AM and PM peak hours (LOS C or better). The northbound I-110 on-ramp from C Street is not considered to be a part of a ramp configuration because it is in a weaving configuration and is analyzed as a weaving segment.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-14: Existing 2009 Freeway Ramp Levels of Service

<table>
<thead>
<tr>
<th>Freeway Ramp</th>
<th>AM Peak Hour</th>
<th></th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density</td>
<td>LOS</td>
<td>Volume (PCE)</td>
<td>Density</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 Off-Ramp to C Street</td>
<td>289</td>
<td>22.9</td>
<td>C</td>
<td>293</td>
<td>16.5</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:
LOS criteria are provided in the *Highway Capacity Manual* and based on density.

Freeway Mainline Analysis

Existing AM and PM peak-hour levels of service for the study area freeway segments are summarized in Table 2-15. As Table 2-15 indicates, all the freeway segments in the study area are currently operating at satisfactory levels of service during both the AM and PM peak hours (LOS C or better).

Table 2-15: Existing 2009 Freeway Mainline Levels of Service

<table>
<thead>
<tr>
<th>Freeway Segment</th>
<th>AM Peak Hour</th>
<th></th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density</td>
<td>LOS</td>
<td>Volume (PCE)</td>
<td>Density</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 South of C Street Off-Ramp</td>
<td>4,544</td>
<td>18.4</td>
<td>C</td>
<td>2,989</td>
<td>12.1</td>
<td>B</td>
</tr>
<tr>
<td>Northbound I-110 between C Street Off- and On-Ramps</td>
<td>4,255</td>
<td>17.2</td>
<td>B</td>
<td>2,696</td>
<td>10.9</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes:
1 Average passenger-car speed based on HCS output.
LOS criteria are provided in the *Highway Capacity Manual* and based on density.

Freeway Weave Analysis

Existing AM and PM peak-hour levels of service for the study area freeway weaving segment are summarized in Table 2-16.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-16: Existing 2009 Freeway Weave-Area Levels of Service

<table>
<thead>
<tr>
<th>Freeway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Average Speed (mph)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 between C Street On-Ramps and Anaheim Street Off-Ramps</td>
<td>4,388</td>
<td>16.64</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:
- I-110 northbound weaving segment between C Street on-ramp and Anaheim Street off-ramp
- \(^1\) Average passenger-car speed based on HCS output.
- LOS criteria are provided in the *Highway Capacity Manual* and based on density.

As Table 2-16 indicates, the freeway weaving segment in the study area is currently operating at satisfactory levels of service during both the AM and PM peak hours (LOS B).

Accident Analysis

Accident data obtained from Caltrans’ TASAS Table B for the 3-year period from April 1, 2005, to March 31, 2008, reveal that the accident rate for northbound I-110 within the project limits is less than the statewide average for the similar facilities. The accident rates at the on- and off-ramps at C Street are also less than the average rates. The total number of accidents and the accident rates are summarized in Table 2-17.

Pedestrian and Bicycle Facilities

Under the City of Los Angeles General Plan, John S. Gibson Boulevard is designated to provide Class II bike lanes, and Figueroa Street is designated to provide Class III bike lanes. Currently, a bike lane exists on northbound John S. Gibson Boulevard and Figueroa Street. All the streets in the project area have sidewalks and ramps as well as pedestrian intersection crossings.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2.17: Accident Rates for I-110 Northbound Mainline and Ramps at C Street
(Period: 04/01/2005–03/31/2008)

<table>
<thead>
<tr>
<th>Route Segment</th>
<th>Accident Summary</th>
<th>Actual Accident Rates</th>
<th>Average Accident Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fatalities</td>
<td>Injuries and Fatalities</td>
</tr>
<tr>
<td>I-110 Northbound Mainline and Ramps at C Street</td>
<td></td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>(post mile [PM] 2.5/PM 3.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound mainline (PM 2.9)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>on-ramp (PM 2.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound off-ramp (PM 2.7)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Accident rates listed are per million vehicles (for ramps) and per million vehicle miles (for mainline).
Source: TASAS Table B, Caltrans, District 7, 2009.

Methodology for Future Traffic Forecasts

Future no-build traffic conditions for 2014 and 2035 were estimated by adding traffic due to regional traffic growth and traffic increases resulting from port terminal throughput growth. Local traffic growth was forecast based on a computerized traffic analysis tool known as the Port Area Travel Demand Model, which includes traffic growth for the port and the local area. The Port Travel Demand Model was originally developed for the *Ports of Long Beach and Los Angeles Transportation Study* (2001) and was subsequently revised and updated for several efforts, including the Port of Los Angeles Baseline Transportation Study and the Port of Los Angeles Roadway Study.

Background (not project-related) Traffic Growth

Background traffic growth occurs as a result of regional growth in employment, population, school enrollment, and other factors. To determine the appropriate growth rates, growth in non-port trips was determined using data from the SCAG Regional Travel Demand Forecasting Model. Other local projects were not included in the SCAG regional model and were thus accounted for separately in the Port Travel Demand Model. Although not included in the SCAG regional model, projects such as the San Pedro Waterfront Project and the Wilmington Waterfront and Promenade Project were added to the Port Travel Demand Model. All projected Port of Long Beach and Port of Los Angeles container and non-container terminal traffic growth was included in the Port Travel Demand Model. The background future traffic volumes were developed based on SCAG socioeconomic projections for 2014 and 2035.
Ports of Los Angeles and Long Beach Trip Generation

Future trip generation at the Ports of Los Angeles and Long Beach for 2014 and 2035 was estimated by adding traffic resulting from terminal expansion and associated throughput growth. Port-related trip generation was developed using LAHD’s QuickTrip truck trip generation model. The QuickTrip spreadsheet model was developed for the Ports of Long Beach and Los Angeles Transportation Study, which estimates terminal truck flow by hour of the day. The QuickTrip model was run and tested against the gate data, consisting of gate counts and historical gate data from the terminals. The data were input into QuickTrip for each terminal. QuickTrip was validated by comparing estimates of gate activity with actual gate counts conducted in the field. The results of the validation exercise show that the QuickTrip model was able to estimate truck movements by day and peak hour within 2 to 10 percent of actual counts for all terminals combined. Table 2-18 and Table 2-19 show ambient peak-hour trips (PCE) associated with the port and adjacent areas.

Table 2-18: 2014 Port-Area Trip Generation

<table>
<thead>
<tr>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucks (PCE)</td>
<td>6,826</td>
<td>9,469</td>
</tr>
<tr>
<td>Autos</td>
<td>1,930</td>
<td>2,183</td>
</tr>
<tr>
<td>Total</td>
<td>8,756</td>
<td>11,652</td>
</tr>
</tbody>
</table>

*The data were obtained from the Ports of Los Angeles and Long Beach Throughput and Trip Generation Model for Existing Terminals (QuickTrip).

Table 2-19: 2035 Port-Area Trip Generation

<table>
<thead>
<tr>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucks (PCE)</td>
<td>35,071</td>
<td>37,303</td>
</tr>
<tr>
<td>Autos</td>
<td>7,338</td>
<td>11,262</td>
</tr>
<tr>
<td>Total</td>
<td>42,409</td>
<td>48,565</td>
</tr>
</tbody>
</table>

*The data were obtained from the Ports of Los Angeles and Long Beach Throughput and Trip Generation Model for Existing Terminals (QuickTrip).

Build-Condition Traffic Flow

For build conditions, the raw 2009, 2014, and 2035 model volumes at the future Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard and John S. Gibson Boulevard and I-110 ramps/Yang Ming driveway intersections were manually adjusted to reflect existing and revised future traffic patterns. Adjustments were made to the AM and PM peak periods for the southbound through traffic volumes at the future John S. Gibson Boulevard/Figueroa Street and Harry Bridges Boulevard/I-110 ramps signalized intersection.
Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, there would be no construction impacts on traffic and transportation because no construction activities would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

During project construction, temporary impacts could affect fire protection agencies, law enforcement agencies, and emergency services. For example, the Harbor police station could be affected by widening along I-110 and other construction activities. The impacts would include traffic delays caused by the operation of construction equipment and partial lane closures on an occasional basis.

Construction of the build alternative could require temporary and intermittent lane or ramp closures, which could increase congestion and diminish access in the area. Access would be maintained to the TraPac terminal during construction period. As part of mitigation measure TR-1, a TMP would be developed to minimize the impact of construction activities on traffic flow. Signage would be put at optimal locations to notify motorists about the detours in advance. No road closures are anticipated during peak periods, and because the impacts would be temporary and limited to the construction period, which is approximately 24 months, the effects would not be substantially adverse under NEPA, or there would be no significant impacts under CEQA (see mitigation measures LU-1, C-1, and TR-1).

Operational Impacts

Impacts were assessed by quantifying differences between future no-build conditions and build conditions.

Alternative 1: No-Build Alternative

No-Build 2014 Traffic Conditions

Table 2-20 of this document shows future no-build and build traffic volumes for the project study area for 2014. The increased traffic on the ramps is attributable to expected growth at port facilities.
Intersection Levels of Service

An analysis was conducted to evaluate no-build 2014 traffic conditions in the study area. The results of the intersection level of service analysis are summarized in Table 2-21. An examination of the data in Table 2-21 indicates that the Figueroa Street and I-110 ramps/C Street intersection is anticipated to operate at LOS F during the peak hours. The Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard intersection would operate at acceptable LOS during the peak hours (LOS B).

Table 2-21: No-Build 2014 Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (sec)</td>
</tr>
<tr>
<td>Figueroa Street and I-110 Ramps/C Street</td>
<td>F</td>
<td>122.5</td>
</tr>
<tr>
<td>Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard</td>
<td>B</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Notes:
- HCM 2000 Operations Methodology.
- LOS = level of service, delay = average vehicle delay (seconds), V/C = volume-to-capacity ratio

Intersection Queuing Analysis

A queuing analysis using the previously described methodologies was conducted to determine the queue lengths at the turn lanes at the Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard intersection. The results of the queuing analysis are summarized in Table 2-22.

18 According to the project traffic engineers, ADT volumes are the same for the build and no-build conditions.
As can be seen in Table 2-22, the southbound left-turn movement at the intersection of Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard has an inadequate queuing distance during both the AM and PM peak hours.

Table 2-22: No-Build 2014 Intersection Queue Lengths

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Movement</th>
<th>Existing Storage (ft)</th>
<th>No-Build 2014</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AM Peak Hour</td>
<td>PM Peak Hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Queue Length</td>
<td>Queue Length 95th Percentile (ft)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95th Percentile (ft)</td>
<td>Percentage (ft)</td>
<td></td>
</tr>
<tr>
<td>Figueroa Street and John S. Gibson Boulevard</td>
<td>SBL</td>
<td>209</td>
<td>458^1</td>
<td>506^1</td>
<td></td>
</tr>
<tr>
<td>and Harry Bridges Boulevard</td>
<td>EBL</td>
<td>284</td>
<td>33</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WBR</td>
<td>97</td>
<td>54</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
^1 95th percentile volume exceeds capacity; queue may be longer.
SBL = southbound left, EBL = eastbound left, WBR = westbound right

Freeway Ramp Analysis

Levels of service for the freeway ramps for the no-build 2014 scenario during the AM and PM peak hour are summarized in Table 2-23. As Table 2-23 indicates, the freeway ramp will continue to operate at satisfactory levels of service during both the AM and PM peak hours. The northbound I-110 on-ramp from C Street is not considered to be a part of a ramp configuration because it is in a weaving configuration and analyzed as a weaving segment.

Table 2-23: 2014 Freeway Ramp Level of Service

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>Northbound I-110 Off-Ramp to C Street</td>
<td>307</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Notes:
LOS criteria are provided in the Highway Capacity Manual and based on density.

19 The freeway ramp level of service is the same for the build and no-build scenarios.
Freeway Mainline Analysis

Freeway mainline levels of service in the no-build 2014 scenario during the AM and PM peak hour at the study area freeway segments are summarized in Table 2-24. As Table 2-24 indicates, all the freeway segments in the study area continue to operate at satisfactory levels of service during both the AM and PM peak hours.

Table 2-24: 2014 Freeway Mainline Levels of Service

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>HCM Average Speed (mph)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 South of C Street Off-Ramp</td>
<td>5,151</td>
<td>20.9</td>
<td>C</td>
</tr>
<tr>
<td>Northbound I-110 between C Street Off- and On-Ramps</td>
<td>4,844</td>
<td>19.6</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes:
\(^1\) Average passenger-car speed based on HCS output

LOS criteria provided in the *Highway Capacity Manual* and based on density.

Freeway Weave Analysis

The no-build 2014 AM and PM peak-hour levels of service for the study area freeway weaving segment are summarized in Table 2-25. As Table 2-25 indicates, the freeway weaving segment in the study area continues to operate at satisfactory levels of service during both the AM and PM peak hours (LOS C).

\(20\) The freeway mainline level of service is the same for the build and no-build scenarios.
Table 2-25: 2014 Freeway Weave-Area Level of Service\(^1\)

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>HCM Average Speed (mph)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 between C Street On-Ramp and Anaheim Street Off-Ramp</td>
<td>5,380</td>
<td>21.98</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes:
\(^1\) Average passenger-car speed based on HCS output

LOS criteria are provided in the *Highway Capacity Manual* and based on density.

No-Build 2035 Traffic Conditions

Table 2-26 of this document shows future no-build and build traffic volumes for the project study area for 2035. The increased traffic on the ramps is attributable to expected growth at port facilities.

Table 2-26: Future No-Build and Build (2035) Average Daily Traffic at Project Site\(^2\)

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Total ADT</th>
<th>Truck ADT</th>
<th>% Trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB I-110 south of C Street off-ramp</td>
<td>61,578</td>
<td>10,447</td>
<td>17%</td>
</tr>
<tr>
<td>NB I-110 off-ramp to C Street</td>
<td>5,100</td>
<td>506</td>
<td>10%</td>
</tr>
<tr>
<td>NB I-110 between C Street on- and off-ramps</td>
<td>56,478</td>
<td>9,941</td>
<td>18%</td>
</tr>
<tr>
<td>NB I-110 on-ramp from C Street</td>
<td>6,510</td>
<td>2,298</td>
<td>35%</td>
</tr>
<tr>
<td>NB I-110 between C Street on-ramp and Anaheim Street off-ramp</td>
<td>62,989</td>
<td>12,240</td>
<td>19%</td>
</tr>
</tbody>
</table>

Intersection Levels of Service

A levels of service analysis using the previously described methodologies was conducted to evaluate no-build 2035 traffic conditions in the study area. The results of the intersection level of service analysis are summarized in Table 2-27. An examination of the data in Table 2-27 indicates that the Figueroa Street and I-110 ramps/C Street intersection is anticipated to operate at LOS F during the peak hours. Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard will operate at an acceptable LOS C during the peak hours.

\(^{21}\) The freeway weave-area level of service is the same for the build and no-build scenarios.

\(^{22}\) According to the project traffic engineers, ADT volumes are the same for the build and no-build conditions.
Table 2-27: No-Build 2035 Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (sec)</td>
</tr>
<tr>
<td>Figueroa Street and I-110 Ramps/C Street</td>
<td>F</td>
<td>165.1</td>
</tr>
<tr>
<td>Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard</td>
<td>C</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Notes:

HCM 2000 Operations Methodology.

LOS = level of service, delay = average vehicle delay (seconds), V/C = volume-to-capacity ratio

Intersection Queuing Analysis

A queuing analysis using the previously described methodologies was conducted to determine the queue lengths at the turn lanes at the Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard intersection. The results of the queuing analysis for no-build 2035 conditions are summarized in Table 2-28.

As can be seen in Table 2-28, the southbound left-turn movement at the intersection of Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard has an inadequate queuing distance during both the AM and PM peak hours.

Table 2-28: No-Build 2035 Intersection Queue Lengths

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Movement</th>
<th>Existing Storage (ft)</th>
<th>No-Build 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Queue Length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95th Percentile (ft)</td>
</tr>
<tr>
<td>Figueroa Street and John S. Gibson Boulevard/Harry Bridges Boulevard</td>
<td>SBL</td>
<td>209</td>
<td>584(^1)</td>
</tr>
<tr>
<td></td>
<td>EBL</td>
<td>284</td>
<td>88(^1)</td>
</tr>
<tr>
<td></td>
<td>WBR</td>
<td>97</td>
<td>64</td>
</tr>
</tbody>
</table>

Notes:

\(^1\) 95th percentile volume exceeds capacity; queue may be longer.

SBL = southbound left, EBL = eastbound left, WBR = westbound right

Freeway Ramp Analysis

Levels of service for the freeway ramps for the no-build 2035 scenario during the AM and PM peak hour are summarized in Table 2-29. As Table 2-29 indicates, the freeway ramp will continue to operate at satisfactory levels of service during both the AM and PM peak hours. The northbound I-110 on-ramp from C Street is not considered to be a part of a ramp configuration because it is in a weaving configuration and is analyzed as a weaving segment.

Table 2-29: 2035 Freeway Ramp Level of Service

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>Northbound I-110 Off-Ramp to C Street</td>
<td>355</td>
<td>26.4</td>
</tr>
</tbody>
</table>

Notes:
- LOS criteria are provided in the Highway Capacity Manual and based on density.

Freeway Mainline Analysis

Freeway mainline levels of service in the no-build 2035 scenario during the AM and PM peak hours at the study area freeway segments are summarized in Table 2-30. As Table 2-30 indicates, all the freeway segments in the study area continue to operate at satisfactory levels of service during both the AM and PM peak hours.

Table 2-30: 2035 Freeway Mainline Levels of Service

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>HCM Average Speed (mph)<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 South of C Street Off-Ramp</td>
<td>5,617</td>
<td>22.5</td>
<td>C</td>
</tr>
<tr>
<td>Northbound I-110 between C Street Off- and On-Ramps</td>
<td>5,262</td>
<td>21.3</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes:
- Average passenger-car speed based on HCS output
- LOS criteria are provided in the Highway Capacity Manual and based on density.

²³ The freeway ramp level of service is the same for the build and no-build scenarios.
²⁴ The freeway mainline level of service is the same for the build and no-build scenarios.
Freeway Weave Analysis

No-build 2035 AM and PM peak-hour levels of service for the study area freeway weaving segment are summarized in Table 2-31 (on the next page). As Table 2-31 indicates, the freeway weaving segment in the study area continues to operate at satisfactory levels of service during both the AM and PM peak hours (LOS C).

Table 2-31: 2035 Freeway Weave-Area Level of Service\(^\text{25}\)

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>HCM Average Speed (mph)(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
</tr>
<tr>
<td>Northbound I-110 between C Street On-Ramp and Anaheim Street Off-Ramp</td>
<td>5,844</td>
<td>25.45</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes:

\(^1\) Average passenger-car speed based on HCS output

LOS criteria are provided in the Highway Capacity Manual and based on density.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Build 2014 Traffic Conditions

Table 2-20 of this document shows future no-build and build traffic volumes for the project study area for 2014. The increased traffic on the ramps is attributable to expected growth at port facilities. This section summarizes future traffic operations and conditions in 2014 after the proposed interchange improvements are constructed.

Intersection Levels of Service

An analysis was conducted to evaluate build 2014 traffic conditions in the study area. The results of the intersection level of service analysis are summarized in Table 2-32. An examination of the data in Table 2-32 indicates that the study intersection is anticipated to operate at satisfactory levels of service (LOS C or better).

\(^{25}\) The freeway weaving segment level of service is the same for the build and no-build scenarios.
Table 2-32: Build 2014 Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay (Sec)</td>
</tr>
<tr>
<td>Figueroa St and John S. Gibson Blvd and I-110 Ramps/Harry Bridges Blvd</td>
<td>B</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Notes:
- HCM 2000 Operations Methodology.
- LOS = level of service, delay = average vehicle delay (seconds), V/C = volume-to-capacity ratio

Intersection Queuing Analysis

A queuing analysis using the previously described methodologies was conducted to determine the queue lengths at the turn lanes at the Figueroa Street/John S. Gibson Boulevard and Harry Bridges Boulevard/I-110 ramps intersection. The results of the queuing analysis are summarized in Table 2-33.

Table 2-33: Build 2014 Intersection Queue Lengths

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Movement</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Queue Length 95th Percentile (ft)</td>
<td>Queue Length 95th Percentile (ft)</td>
</tr>
<tr>
<td>Figueroa St and John S. Gibson Blvd and Harry Bridges Blvd</td>
<td>SBL</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>NBR</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>NBL</td>
<td>0¹</td>
<td>0¹</td>
</tr>
<tr>
<td></td>
<td>EBR</td>
<td>0¹</td>
<td>0¹</td>
</tr>
<tr>
<td></td>
<td>EBL</td>
<td>39</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>WBR</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>WBL</td>
<td>191</td>
<td>247²</td>
</tr>
</tbody>
</table>

Notes:
- ¹ Values not reported by Synchro.
- ² 95th percentile volume exceeds capacity; queue may be longer.
- SBL = southbound left, NBR = northbound right, NBL = northbound left, EBR = eastbound right, EBL = eastbound left, WBR = westbound right, WBL = westbound left, SBL = southbound left

As can be seen in Table 2-33, the 95th percentile queue length for the westbound left-turn is approximately 250 feet at the intersection of Figueroa Street/John S. Gibson Boulevard/Harry Bridges Boulevard.
Freeway Ramp Analysis

There would be no change in freeway ramp levels of service between the build 2014 scenario and no-build 2014 scenario during the AM and PM peak hour. Please see Table 2-23 for the summarized results.

There would be no change in freeway mainline levels of service between the build 2014 scenario and no-build 2014 scenario during the AM and PM peak hour. Please see Table 2-24 for the summarized results.

Freeway Weave Analysis

There would be no change in freeway weaving segment levels of service between the build 2014 scenario and no-build 2014 scenario during the AM and PM peak hour. Please see Table 2-25 for the summarized results.

Build 2035 Traffic Conditions

Table 2-26 of this document shows future no-build and build traffic volumes for the project study area for 2035. The increased traffic on the ramps is attributable to expected growth at port facilities. This section summarizes future traffic operations and conditions in 2035 after the proposed interchange improvements are constructed.

Intersection Levels of Service

A level of service analysis using the previously described methodologies was conducted to evaluate build 2035 traffic conditions in the study area. The results of the intersection level of service analysis are summarized in Table 2-34. An examination of the data in Table 2-34 indicates that the study intersection is anticipated to operate at satisfactory levels of service (LOS C or better during the AM and PM peak hours).

Table 2-34: Build 2035 Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS Delay (sec) V/C</td>
<td>LOS Delay (sec) V/C</td>
</tr>
<tr>
<td>Figueroa Street/John S. Gibson Boulevard and I-110 Ramps/Harry Bridges Boulevard</td>
<td>C 20.5 0.59</td>
<td>C 24.4 0.59</td>
</tr>
</tbody>
</table>

Notes:

- HCM 2000 Operations Methodology.
- LOS = level of service, delay = average vehicle delay (seconds), V/C = volume-to-capacity ratio

Intersection Queuing Analysis

A queuing analysis using the previously described methodologies was conducted to determine the queue lengths at the turn lanes at the Figueroa Street/John S. Gibson Boulevard/Harry Bridges Boulevard intersection. The results of the queuing analysis are summarized in Table 2-35.

As can be seen in Table 2-35, the westbound left-turn 95th percentile queue length is approximately 308 feet at the intersection of Figueroa Street/John S. Gibson Boulevard/Harry Bridges Boulevard during the PM peak hour.

Table 2-35: Build 2035 Intersection Queue Lengths

<table>
<thead>
<tr>
<th>Intersection Movement</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Recommended Storage (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Queue Length 95th Percentile (ft)</td>
<td>Queue Length 95th Percentile (ft)</td>
<td></td>
</tr>
<tr>
<td>SBL</td>
<td>105</td>
<td>139</td>
<td>150</td>
</tr>
<tr>
<td>NBR</td>
<td>57</td>
<td>59</td>
<td>100</td>
</tr>
<tr>
<td>NBL</td>
<td>11</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>EBR</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>EBL</td>
<td>55</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>WBR</td>
<td>19</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>WBL</td>
<td>255</td>
<td>308</td>
<td>325</td>
</tr>
</tbody>
</table>

Notes:
1 Values not reported by Synchro.
2 95th percentile volume exceeds capacity; queue may be longer.

Freeway Ramp Analysis

There would be no change in freeway ramp levels of service between the build 2035 scenario and no-build 2035 scenario during the AM and PM peak hour. Please see Table 2-29 for the summarized results.

Freeway Mainline Analysis

There would be no change in freeway mainline levels of service between the build 2035 scenario and no-build 2035 scenario during the AM and PM peak hour. Please see Table 2-30 for the summarized results.
Freeway Weave Analysis

There would be no change in freeway weaving segment levels of service between the build 2035 scenario and no-build 2035 scenario during the AM and PM peak hour. Please see Table 2-31 for the summarized results.

The improvements constructed under the proposed project would result in improvement in intersection LOS and intersection queuing condition in the build scenario in 2014 and 2035. The freeway operations (ramps, mainline, and weaving segment LOS) would not differ under the build and no-build scenarios. Thus, there would be no adverse effect under NEPA or significant impact under CEQA on traffic as a result of the proposed project.

Pedestrian and Bicycle Facilities

The proposed improvements would accommodate the existing bike lane classifications on John S. Gibson Boulevard and Figueroa Street and would include 8-foot shoulders. The proposed project also includes curb, gutter, and sidewalk improvements on Mar Vista Avenue and Hawaiian Avenue, just north of Harry Bridges Boulevard. Concrete sidewalks are proposed along the local roadways to provide a clear and unobstructed path for pedestrian travel within the project limits. Curb ramps would be constructed at intersection and street crossings to ensure that the facilities would be in compliance with ADA requirements. Pedestrian signals and crosswalk pavement delineation would also be provided. Thus, there would be no adverse effect under NEPA or significant impact under CEQA on pedestrian and bicycle facilities as a result of the proposed project.

Avoidance, Minimization, and/or Mitigation Measures

A TMP would be prepared and implemented to minimize impacts on traffic and pedestrian safety during project construction.

TR-1 LAHD or its designee shall prepare a TMP to minimize direct and cumulative construction impacts on the community. The TMP shall be developed in consultation with the Los Angeles Department of Transportation and the California Department of Transportation, and it shall be provided with the construction plan to the City of Los Angeles Police Department and the City of Los Angeles Fire Department prior to commencement of construction activities. The TMP shall include the following implementation plans:

- *Public Information*: Provide project updates to affected residents and businesses, including the general public, via brochures and mailers, community meetings, and web site information;
- *Motorist Information*: Provide project information using changeable message signs and ground-mounted signs;
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

• **Incident Management:** Implement Construction Zone Enhanced Enforcement Program, freeway service patrol, and California Highway Patrol traffic handling; and

• **Traffic Management during Construction:** Provide a traffic lane closure chart, detour routes, pedestrian routes, residential and commercial access routes, and temporary traffic signals during construction.

2.1.6 Visual/Aesthetics

Regulatory Setting

The National Environmental Policy Act of 1969, as amended, establishes that the federal government use all practicable means to ensure all Americans safe, healthful, productive, and aesthetically (emphasis added) and culturally pleasing surroundings (42 USC 4331[b][2]). To further emphasize the point, FHWA in its implementation of NEPA (23 USC 109[h]) directs that final decisions regarding projects are to be made in the best overall public interest, taking into account adverse environmental impacts, including, among others items, the destruction or disruption of aesthetic values.

Likewise, CEQA establishes that it is the policy of the state to take all action necessary to provide the people of the state “with…enjoyment of aesthetic, natural, scenic and historic environmental qualities” (California Public Resources Code Section 21001[b]).

Affected Environment

The proposed I-110/C Street interchange is located within an existing transportation corridor surrounded by fully built port facilities, light industrial facilities, and a residential neighborhood. The topography of the project area is flat, with no mature trees or landscape vegetation in the project vicinity.

Views from the residential neighborhood on Figueroa Street include roads and housing to the north, I-110, smoke stacks of industries west of I-110, warehouses and other light manufacturing uses to the west, port-related facilities, vacant land, transportation infrastructure to the south, and roads and residences to the east. No pertinent visual resources appear within the project viewshed except for the Vincent Thomas Bridge (eligible for listing in National Register of Historic Places), which is located approximately 1.5 miles southeast of the project site. The first row of residents along the north side of C Street east of Figueroa Street could possibly see the Vincent Thomas Bridge in the distance because it is in their line of sight. The planned green space may become a future visual resource for the community. I-110 has been designated a local scenic highway south of Harry Bridges Boulevard (see Map E of the Transportation Element of the City of Los Angeles General Plan, 1999).

The sensitive viewer groups in the vicinity include those who reside in the single-family residences along Figueroa Street, users of the green space between C Street and Harry Bridges Boulevard, and motorists along I-110. Motorists on local streets could have some views of the
Vincent Thomas Bridge from C Street, but motorists have low sensitivity to changes in views. Other viewer groups include workers in the light manufacturing and port-related facilities. However, these workers are not considered as having high sensitivity to changes in views.

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no construction work is proposed. Therefore, no substantial adverse effects under NEPA or significant impacts under CEQA on the existing visual setting and aesthetic conditions would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Temporary minor visual impacts may result from construction activities (e.g., staging/stockpiling road-building materials, operating construction equipment, erecting temporary traffic barricades) taking place in the project area and vicinity. Construction hours are not expected to extend into the night; therefore, the use of lights would be minimal. If lights are used, an adequate buffer would be provided to prevent nighttime light spillover effects on adjacent or nearby sensitive viewer groups. Visible activities would include routine construction activities and truck deliveries. These activities would be visible from residential areas located north of C Street. Nonetheless, these visual impacts would be limited to the period of construction. The presence of construction personnel and equipment would be temporary and short term. Due to the temporary nature of the impacts, the loss of visual quality during construction is not considered substantial; therefore, no adverse effects under NEPA or significant impacts under CEQA would occur.

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no changes to the existing interchange would occur. Therefore, there would be no adverse effects under NEPA or significant impacts under CEQA on the existing visual setting and aesthetic conditions.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The proposed I-110/C Street interchange modifications would take place mostly within the existing right-of-way of the state and the City, with some slight shifting of Harry Bridges Boulevard near Figueroa Street to the north. Most of the construction would be on the existing grades, with the exception of the elevated overpass, which would be approximately 30-feet above ground level, connecting the northbound I-110 off-ramp with eastbound Harry Bridges Boulevard. Since the proposed overpass would be located southwest of the first-row residences north of C Street and future green space users, it is not likely that it would block views of the Vincent Thomas Bridge. No visual effects on any group of viewers, including residents north of
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

C Street, future green space users, and motorists using I-110 and local roadways, are anticipated for the Build Alternative. Most views for sensitive viewers would not be adversely affected. The project would provide planting on embankment slopes within the state right-of-way. Landscaping would be provided along local roadways in accordance with the requirements of local jurisdictions. The proposed project would be consistent with the urban nature of the existing visual settings. The proposed project would comply with Caltrans design guidelines to minimize impacts (design guidelines applicable to proposed project are outlined under mitigation measures VIS-1 to VIS-4). Thus, no adverse effects under NEPA or significant impacts under CEQA would occur.

Avoidance, Minimization, and/or Mitigation Measures

Even though no adverse effects under NEPA or significant impacts under CEQA on visual resources are anticipated under the proposed project, the minimization measures discussed below would ensure that any impacts on visual resources would be minimized.

VIS-1 Develop Context-Sensitive Solutions for the aesthetic and landscape treatments of the project elements based on the Caltrans Aesthetic and Landscape Master Plan.

VIS-2 Utilize drainage and water quality elements, where required, that maximize the allowable landscape. Place any water quality or detention ponds out of clear view of the interchange and the highway.

VIS-3 Use a visually compatible ornamental groundcover in any detention/water quality basins or geoswales that are located within ornamental landscape areas.

VIS-4 Landscape and revegetate disturbed areas to the greatest extent feasible. Landscaping should include appropriate irrigation, establishment, and maintenance to assure ongoing success of the plantings.

2.1.7 Cultural Resources

The information presented in this section is based on the January 2010 Historic Resources Evaluation Report (ICF International 2010a) and the January 2010 Historic Property Survey Report (ICF International 2010b) that were prepared for this project, which is incorporated by reference.

Regulatory Setting

“Cultural resources” as used in this document refers to all “built environment” resources (structures, bridges, railroads, water conveyance systems, etc.), culturally important resources, and archaeological resources (both prehistoric and historic), regardless of significance. Laws and regulations dealing with cultural resources include:

The National Historic Preservation Act of 1966, as amended, (NHPA) sets forth national policy and procedures regarding historic properties, defined as districts, sites, buildings, structures, and objects included in or eligible for the National Register of Historic Places. Section 106 of NHPA requires federal agencies to take into account the effects of their undertakings on such properties
and to allow the Advisory Council on Historic Preservation the opportunity to comment on those undertakings, following regulations issued by the Advisory Council on Historic Preservation (36 CFR 800). On January 1, 2004, a Section 106 Programmatic Agreement (PA) between the Advisory Council, the Federal Highway Administration (FHWA), State Historic Preservation Officer (SHPO), and the Department went into effect for Department projects, both state and local, with FHWA involvement. The PA implements the Advisory Council’s regulations, 36 CFR 800, streamlining the Section 106 process and delegating certain responsibilities to the Department. The FHWA’s responsibilities under the PA have been assigned to the Department as part of the Surface Transportation Project Delivery Pilot Program (23 CFR 327) (July 1, 2007).

The Archaeological Resources Protection Act (ARPA) applies when a project may involve archaeological resources located on federal or tribal land. ARPA requires that a permit be obtained before excavation of an archaeological resource on such land can take place.

Historic properties may also be covered under Section 4(f) of the U.S. Department of Transportation Act, which regulates the “use” of land from historic properties. See Appendix B for specific information regarding Section 4(f).

Historical resources are considered under CEQA, as well as California Public Resources Code Section 5024.1, which establishes the California Register of Historical Resources. Public Resources Code Section 5024 requires state agencies to identify and protect state-owned resources that meet National Register of Historic Places listing criteria. It further specifically requires Caltrans to inventory state-owned structures in its rights-of-way. Sections 5024(f) and 5024.5 require state agencies to provide notice to and consult with the SHPO before altering, transferring, relocating, or demolishing state-owned historical resources that are listed or eligible for inclusion in the National Register of Historic Places or are registered or eligible for registration as California Historical Landmarks.

Affected Environment

Methodology

Prior to the built environment and archaeological field investigations of the area of potential effects (APE), a literature and records search was conducted at the South Central Coastal Information Center at California State University, Fullerton on January 8, 2009. The search included a review of all recorded cultural sites within a 0.5-mile radius of the project area as well as a review of cultural resource reports on file. In addition, the California Points of Historical Interest, the California Historical Landmarks, the California Register of Historical Resources, the National Register of Historic Places, and the California State Historic Resources Inventory were reviewed. Historic maps, Sanborn fire insurance maps, and U.S. Geological Survey (USGS) quadrangles were inspected as well. Figures 2-6a through 2-6c show the APE for the project.

A letter was sent to the NAHC on January 23, 2009, requesting a review of the sacred lands file as well as a list of Native American representatives who could be contacted for information regarding sacred sites within the project area (see Attachment H of the *Archaeological Survey Report*).
Figure 2-6a: Area of Potential Effect for the Project—Cover Sheet
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-6b: Area of Potential Effect for the Project
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-6c: Area of Potential Effect for the Project
According to the NAHC response dated January 26, 2009, no known sacred sites are located within the project area. The NAHC provided a list of seven local Native Americans who can be contacted for information (see Attachment C of the Archaeological Survey Report). This information was forwarded to Caltrans staff for review.

ICF International staff consulted national, state, and local inventories of architectural and historic resources to determine the location of previously documented historic and architectural resources near the project. The following standard sources of information were consulted in the process of compiling this report:

- National Register of Historic Places (http://www.cr.nps.gov/nr);
- California Historical Landmarks (State of California 1996);
- California Points of Historical Interest (State of California 1992); and
- California Register of Historical Resources.

Staff also conducted archival research to establish a context for resource significance and identify local historical events and personages and development patterns. Additional resources consulted in the process of compiling this report include the following:

- ProQuest digital archives for the Los Angeles Times,
- Wilmington Public Library,
- TRW/Experian, and
- Los Angeles Department of Building and Safety.

No properties within the APE were listed on federal or state lists of historic resources.

In addition, on January 7, 2009, a letter and map set were sent to consulting and interested parties who may have knowledge of or concerns regarding historic properties in the area. The letter requested information pertaining to historic buildings, districts, sites, objects, or archeological sites of significance and was sent to the following recipients:

- City of Los Angeles, Board of Harbor Commissioners Office;
- Councilwoman Janice Hahn;
- Filipino American National Historical Society, Los Angeles Chapter;
- Filipino Community, Harbor Area, Wilmington;
- Getty Conservation Institute;
- Historic Landmarks and Records Commission of Los Angeles County;
- Historical Society of Southern California;
- Los Angeles City Historical Society;
- Los Angeles Conservancy;
Los Angeles Maritime Museum;
Office of Historic Resources;
San Pedro Bay Historical Society; and
Wilmington Historical Society.

On February 2, 2009, Councilwoman Janice Hahn’s deputy corresponded with John Heller, an architect at ICF International, stating that Councilwoman Hahn had no objection to the project. To date, no other correspondence addressing the proposed project has been received.

Cultural Resources within the Project Area Limits

The APE was established as the limits of 1) current and proposed new rights-of-way, 2) temporary construction easements, 3) staging areas, and 4) discernible noise increases. It was also used to define the resource study area for cultural resources. The APE was delineated to include whole parcels along the project limits regardless of full or partial property acquisition, permanent acquisition or temporary easement, or direct or indirect impact.

The record search revealed that 18 cultural resource surveys have been conducted within a 0.5-mile radius of the APE. Of these surveys, one survey investigated a portion of the APE. No archaeological resources have been recorded or identified during the surface survey within the project APE; however, 27 resources have been recorded within a 1-mile radius. Currently, there are no listings in the California Points of Historical Interest, the California Historical Landmarks, the California Register of Historical Resources, the National Register of Historic Places, or the California State Historic Resources Inventory for the project area.

A Phase I archaeological reconnaissance survey was conducted on January 30, 2008. The archaeological survey located no surficial archaeological sites. Architectural field surveys of all properties within the proposed APE were undertaken on December 30, 2008, according to standard Caltrans guidelines and procedures. No new surficial prehistoric or historical archaeological resources were observed within the proposed project archaeological APE during the survey.

Five built environment properties were evaluated for the National Register of Historic Places. Of those, four were found ineligible; the fifth, Air Raid Siren #82, located on the northwest corner of Harry Bridges Boulevard and South Figueroa Street, was found eligible as a contributing element of a geographically discontiguous historic district with roughly 165 sirens (see *Historical Property Survey Report*, page 4, as well as page 7-2 of the HRER).
Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not involve any construction activities or improvements; therefore, temporary adverse effects under NEPA or significant impacts under CEQA on any historical or archaeological resources would not occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Under the Build Alternative, construction in the proposed area would occur only within the current right-of-way and would therefore not result in a direct adverse effect under NEPA or significant impact under CEQA on Air Raid Siren #82. However, the air raid siren is not individually eligible for the National Register of Historic Places. It could not be evaluated as part of a geographically extensive historic district within the scope of this project. The siren would not be affected by the proposed project because the proposed alignment would cut through the adjacent vacant parcel. There are no proposed changes to the immediate area in which the siren is located; and Air Raid Siren #82 will be preserved in place. Localized and intermittent increases in noise levels, the generation of groundborne vibration and dust, and changes in visual resources are expected to occur during construction activities; however, these temporary effects/impacts would not be substantial enough to result in indirect adverse effects under NEPA or significant impacts under CEQA on Air Raid Siren #82 or any other cultural or historical resources. However, ground-disturbing construction activities have the potential to affect unknown buried cultural resources.

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, there would be no improvements to I-110 and no substantial adverse effects under NEPA or significant impacts under CEQA on cultural resources would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

No properties individually eligible for the National Register of Historic Places or California Register of Historical Resources are located in the APE. Physical changes to the parcel that contains Air Raid Siren #82 would be confined to the existing right-of-way in the vicinity of the siren; therefore, the Build Alternative would not affect any historical resources, and a finding of no effect/no impact is appropriate because there would be no adverse effects under NEPA or significant impacts under CEQA on historical resources within the APE, pursuant to State CEQA Guidelines Section 15064.5(b)(3). Furthermore, the air raid siren is not individually eligible for the National Register of Historic Places. It could not be evaluated as part of a geographically extensive historic district within the scope of this project. The siren would not be affected by the
proposed project because the proposed alignment would cut through the adjacent vacant parcel. No changes are proposed in the immediate area in which the siren is located; Air Raid Siren #82 will be preserved in place.

The proposed operational transportation improvements to the existing transportation facility would result in no substantial changes in land use or the pattern of development in the area of any cultural resource that would cause indirect effects/impacts.

Avoidance, Minimization, and/or Mitigation Measures

Construction activities associated with the Build Alternative have the potential to affect unknown buried cultural resources adversely under NEPA or significantly under CEQA if any such unanticipated resources are unearthed during construction. Avoidance or a reduction in the nature of this effect/impact on buried or otherwise unidentified cultural resources would be achieved by implementing mitigation measures CR-1 and CR-2, which are standard practice on all Caltrans projects.

- **CR-1** If cultural materials are discovered during construction, all earthmoving activity within and around the immediate discovery area shall be stopped until a qualified archaeologist can assess the nature and significance of the find.

- **CR-2** If human remains are discovered, State Health and Safety Code Section 7050.5 states that further disturbances and activities shall cease in any area or nearby area suspected to overlie remains, and the county coroner shall be contacted. Pursuant to Public Resources Code Section 5097.98, if the remains are thought to be Native American, the coroner shall notify the Native American Heritage Commission (NAHC), which shall then notify the Most Likely Descendent (MLD). At this time, the person who discovered the remains shall contact Gary Iverson, Branch Chief of District 7, Division of Environmental Planning, so that he may work with the MLD on the respectful treatment and disposition of the remains. Further provisions of Public Resources Code Section 5097.98 are to be followed as applicable.

The proposed alignment would cut through the adjacent vacant parcel. No changes are proposed in the immediate area in which the siren is located; Air Raid Siren #82 will be preserved in place.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

2.2 Physical Environment

2.2.1 Hydrology and Floodplains

The information presented in this section is based on the January 2010 *Water Quality Technical Report* prepared for the proposed project (ICF International 2010c).

Regulatory Setting

National Flood Insurance Program: The National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973 were intended to reduce the need for large, publicly funded flood control structures and disaster relief by restricting development in floodplains. The Federal Emergency Management Agency (FEMA) administers the National Flood Insurance Program (NFIP) to provide subsidized flood insurance to communities that comply with FEMA regulations limiting development in floodplains. FEMA issues Flood Insurance Rate Maps (FIRMs) for communities participating in the NFIP. These maps delineate flood hazard zones in the community.

Executive Order 11988 (Floodplain Management): This directs all federal agencies to refrain from conducting, supporting, or allowing actions in floodplains unless there is no practical alternative. FHWA requirements for compliance are outlined in 23 CFR 650 Subpart A. In order to comply, the following must be analyzed:

- The practicability of alternatives to any longitudinal encroachments,
- Risks of the action,
- Impacts on natural and beneficial floodplain values,
- Support of incompatible floodplain development, and
- Measures to minimize floodplain impacts and restore any beneficial floodplain values affected by the project.

The base floodplain is defined as “the area subject to flooding by the flood or tide having a one percent chance of being exceeded in any given year.” An encroachment is defined as “an action within the limits of the base floodplain.”

Affected Environment

Surface Water

The proposed project is located within the jurisdiction of the Los Angeles Regional Water Quality Control Board (RWQCB) (District 4), within the Los Angeles Harbor Watershed and over the West Coast Basin. The Los Angeles Harbor Watershed drains directly into the Los Angeles and Long Beach Harbors and includes portions of Los Angeles, Long Beach, Rancho Palos Verdes, and Rolling Hills. The main open-channel drain in the Harbor Subwatershed is the Gaffey Street Drain (Los Angeles Department of Public Works 2004).
However, the proposed project would not drain into the Gaffey Street Drain but would directly to the storm drain that flows into the West Basin portion of the Los Angeles Harbor.

Stormwater

The City of Los Angeles’ stormwater drain system is an extensive network of open channels and underground pipes designed to prevent flooding. The storm drain system is separate from Los Angeles’ sewer system and receives no treatment or filtering prior to discharging to the ocean.

Existing drainage at the project site includes flow conveyance to storm drain inlets. The water then enters the various underground storm pipes, which empty into the West Basin. The various underground storm pipes belong to three different agencies (i.e., the State of California, the County, and the City). The agencies’ systems intertwine; for example, water from state stormwater pipes flows into City stormwater pipes before flowing into the West Basin. Only County and City stormwater pipes empty into the West Basin. A more detailed discussion of the City’s stormwater drainage system and impacts related to stormwater runoff is provided in Section 2.2.2 (Water Quality and Stormwater Runoff).

Flood and Tsunami/Seiche Risk

According to FEMA’s FIRM and the City’s flood zone mapping, the project is not located within a 100-year floodplain. However, portions of the site are identified as being within a 500-year floodplain. Figure 2-7 shows the proposed project area with flood zones.

The project is, at its closest point, approximately 250 feet from the West Basin (Harbor Waters) and, at its farthest point, approximately 400 feet away. A small area in the southernmost portion of the project site is a tsunami hazard area (City of Los Angeles General Plan Safety Element 1996).

Groundwater

The West Coast Basin, with a surface area of 91,300 acres, is an adjudicated entity, meaning, in this instance, that the groundwater rights of all overlying parties and appropriators are determined by the court. The court also decides who the extractors are, how much groundwater those well owners can extract, and who the watermaster will be to ensure that the basin is managed in accordance with the court’s decree (Department of Water Resources 2009). The West Coast Basin is bound on the west by Santa Monica Bay; on the east by the Newport-Inglewood fault zone; on the north by the Ballona escarpment, an abandoned erosional channel from the Los Angeles River; and on the south by San Pedro Bay and Palos Verdes Hills. The West Coast Basin supplies approximately 53,000 acre-feet per year (AFY) of groundwater (Department of Water Resources 2004). Figure 2-8 identifies the aforementioned features as well as groundwater elevation contours as of fall 2008.

Groundwater levels have risen about 30 feet from the levels measured before adjudication of the subbasin in 1961. The general regional groundwater flow pattern is southward and westward from the Central Coastal Plain to the ocean (Department of Water Resources 2004).
There are several aquifers present in the subbasin. The storage capacity of the primary water-producing aquifer, the Silverado aquifer, is estimated to be 6,500,000 acre-feet (Department of Water Resources 2004).
Figure 2-7: Proposed Project with Flood Zones
Figure 2-8: Groundwater Elevation Contours
Seawater intrusion occurs in some aquifers that are exposed to the ocean offshore. Injection wells located near Wilmington form a protective mound at the Dominguez Gap Injection Barrier. This projective mound inhibits the inland flow of saltwater into the subbasin. The Dominguez Gap Injection Barrier injected 3,787 acre-feet of imported water and 1,695 acre-feet of recycled water during fiscal year 2008. The Dominguez Gap Injection Barrier has 94 injection wells and 224 observation wells (Department of Water Resources 2008). These wells are located upgradient from the proposed project location (Los Angeles Department of Public Works 2004).

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Since no construction activities are proposed under the No-Build Alternative, no adverse effects under NEPA or significant impacts under CEQA would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The existing drainage pattern in the project area would be maintained during construction, although temporary drainage detours around facilities undergoing reconstruction would be required to convey any storm flows. The potential for erosion during construction is discussed in Section 2.2.2, Water Quality and Stormwater Runoff.

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no modifications to existing drainage facilities would occur, and existing hydrological and flood conditions would remain. Therefore, the No-Build Alternative would not result in adverse effects under NEPA or significant impacts under CEQA involving hydrological and/or flood conditions.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The current drainage area will not be altered. The site currently drains into the City’s stormwater drainage system. As described above, the City’s stormwater drainage system is an extensive network of open channels and underground pipes designed to prevent flooding. The storm drain system is separate from Los Angeles’ sewer system and receives no treatment or filtering prior to discharging to the ocean. Stormwater runoff from the project site is captured by the City’s stormwater drainage system and discharged into the West Basin (Harbor Waters). This would continue after the project is built.

The proposed project would result in less water entering the drainage system due to a reduction in the total area of impervious surfaces. The existing impervious area is 9.5 acres. The project would reduce this to 6.6 acres, or a 2.9-acre reduction in impervious surface area. Therefore, the
effects on the site’s hydrology will not be substantially adverse under NEPA or significant under CEQA.

A portion of the proposed project is located within the X500 zone, which is defined as the area between the limits of the 100-year and the 500-year flood zone. Therefore, the proposed project would not result in substantial adverse effects under NEPA or significant impacts under CEQA.

Because of the depth of the port and the proximity of the West Basin to the Pacific Ocean and the fact that the proposed project would be carried out along an existing transportation corridor and would not result in any new traffic, the proposed project would not expose people or structures to tsunami risks any greater than the existing conditions. As such, no adverse effects would occur. Therefore, tsunami/seiche effects would not be substantially adverse under NEPA or significant under CEQA.

Avoidance, Minimization, and/or Mitigation Measures

Avoidance, Minimization, and/or Mitigation Measures

Adverse effects under NEPA or significant impacts under CEQA involving hydrology and floodplain would not occur as a result of the proposed project, and no avoidance, minimization, and/or mitigation measures are proposed.

2.2.2 Water Quality and Stormwater Runoff

The information presented in this section is based on the January 2010 *Water Quality Technical Report* prepared for the proposed project.

Regulatory Setting

Federal Requirements: Clean Water Act

In 1972, the federal Water Pollution Control Act was amended, making the discharge of pollutants to the waters of the United States from any point source unlawful, unless the discharge is in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. The federal Water Pollution Control Act was subsequently amended in 1977 and renamed the Clean Water Act (CWA). The CWA, as amended in 1987, directed that stormwater discharges are point-source discharges. The 1987 CWA amendment established a framework for regulating municipal and industrial stormwater discharges under the NPDES program. Important CWA sections are listed below.

- Sections 303 and 304 provide for water quality standards, criteria, and guidelines.
- Section 401 requires an applicant for any federal project that proposes an activity that may result in a discharge to waters of the United States to obtain certification from the state that the discharge will comply with other provisions of the act.
- Section 402 establishes NPDES, a permitting system for discharges (except for dredged or fill material) into waters of the United States. RWQCBs administer this permitting program in California. Section 402(p) addresses stormwater and non-stormwater discharges.
Section 404 establishes a permit program for the discharge of dredged or fill material into waters of the United States. This permit program is administered by the U.S. Army Corps of Engineers (USACE).

The objective of the CWA is “to restore and maintain the chemical, physical, and biological integrity of the nation’s waters.”

State Requirements: Porter-Cologne Water Quality Control Act (California Water Code)

California’s Porter-Cologne Act, enacted in 1969, provides the legal basis for water quality regulation within California. This act requires a Report of Waste Discharge for any discharge of waste (liquid, solid, or otherwise) to land or surface waters that may impair beneficial uses of the surface and/or groundwater of the state.

The State Water Resources Control Board (SWRCB) and RWQCBs are responsible for establishing the water quality standards (objectives) required by the CWA and regulating discharges to ensure that the objectives are met. Details regarding water quality standards in a project area are contained in the applicable RWQCB Basin Plan. States designate beneficial uses for all water body segments and then set criteria necessary to protect these uses. Consequently, the water quality standards developed for particular water segments are based on the designated use and vary depending on such use. In addition, each state identifies waters failing to meet standards for specific pollutants, which are state listed in accordance with CWA Section 303(d). If a state determines that waters are impaired for one or more constituents and the standards cannot be met through point-source controls, the CWA requires establishing total maximum daily loads (TMDLs). TMDLs establish allowable pollutant loads from all sources (point, non-point, and natural) for a given watershed.

State Water Resources Control Board and Regional Water Quality Control Boards

The SWRCB administers water rights, water pollution control, and water quality functions throughout the state. RWQCBs are responsible for protecting beneficial uses of water resources within their regional jurisdiction using planning, permitting, and enforcement authorities to meet this responsibility.

NPDES Program. The SWRCB adopted Caltrans’ Statewide NPDES Permit (Order No. 99-06-DWQ) on July 15, 1999. This permit covers all Caltrans rights-of-way, properties, facilities, and activities in the state. NPDES permits establish a 5-year permitting time frame. NPDES permit requirements remain active until a new permit has been adopted.

In compliance with the permit, Caltrans developed the statewide Stormwater Management Plan (SWMP) to address stormwater pollution controls related to highway planning, design, construction, and maintenance activities throughout California. The SWMP describes the minimum procedures and practices Caltrans uses to reduce pollutants in stormwater and non-stormwater discharges. It outlines procedures and responsibilities for protecting water quality, including the selection and implementation of best management practices (BMPs). The proposed
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

The project would be programmed to follow the guidelines and procedures outlined in the 2003 SWMP to address stormwater runoff or any subsequent SWMP version draft and approved.

Municipal Separate Storm Sewer System Program. The U.S. Environmental Protection Agency (EPA) defines a Municipal Separate Storm Sewer System as any conveyance or system of conveyances (roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, human-made channels, and storm drains) owned or operated by a state, city, town, country, or other public body having jurisdiction over stormwater that are designed or used for collecting or conveying stormwater. As part of the NPDES program, EPA initiated a program requiring that entities having Municipal Separate Storm Sewer Systems to apply to their local RWQCBs for stormwater discharge permits. The program proceeded through two phases. Under Phase I, the program initiated permit requirements for designated municipalities with populations of 100,000 or greater. Phase II expanded the program to municipalities with populations less than 100,000.

The Los Angeles County Department of Public Works (LACDPW) regulates a Standard Urban Stormwater Mitigation Plan (SUSMP). This plan requires various BMPs to be implemented in an effort to remove unwanted pollutants and trash from the existing storm drain systems.

Construction Activity Permitting. Section H.2, Construction Program Management, of Caltrans’ NPDES permit states that “The Construction Management Program shall be in compliance with requirement of the NPDES General Permit for Construction Activities (Construction General Permit).” Construction General Permit (Order No. 2009-009-DWQ, adopted on September 2, 2009, became effective on July 1, 2010. The permit regulates stormwater discharges from construction sites that result in a disturbed soil area of 1 acre or greater and/or are part of a common plan of development. By law, all stormwater discharges associated with construction activity where clearing, grading, and excavation results in soil disturbance of at least 1 acre must comply with the provisions of the General Construction Permit.

The newly adopted permit separates projects into Risk Levels 1 through 3. Requirements apply according to the risk level determined. For example, a Risk Level 3 (highest risk) project would require compulsory stormwater runoff pH and turbidity monitoring. Risk levels are determined during the design phase and are based on potential erosion and transport to receiving waters. Applicants are required to develop and implement an effective Stormwater Pollution Prevention Plan (SWPPP).

During the construction phase, compliance with the permit and Caltrans’ Standard Special Conditions requires appropriate selection and deployment of both structural and non-structural BMPs. These BMPs must achieve performance standards of best available technology economically achievable/best conventional pollutant control technology to reduce or eliminate stormwater pollution.

Discussion of the Los Angeles RWQCB Basin Plan and CWA Section 303(d) list is included in the Affected Environment section, below.
Affected Environment

Surface Water

The proposed project is located within the jurisdiction of the Los Angeles RWQCB (Region 4). The California Water Code, Division 7, Chapter 4, Section 13241, specifies that each RWQCB shall establish water quality objectives that are necessary for the reasonable protection of beneficial uses and the prevention of nuisances. The Los Angeles RWQCB enforces water quality objectives for inland surface waters, wetlands, and groundwaters as part of the Basin Plan. The statewide objectives for ocean waters under the SWRCB’s Water Quality Control Plan for Ocean Waters of California (Ocean Plan) and the Water Quality Control Plan for Control of Temperature in the Coastal and Interstate Waters and Enclosed Bays and Estuaries of California (Thermal Plan) apply to all ocean waters in the region. The proposed project does not include the discharge of thermal waste or elevated-temperature waste into ocean waters. Therefore, the Thermal Plan and Ocean Plan will not be discussed further.

The regional inland surface water quality objectives contained in the Basin Plan pertain to ammonia, bacteria, coliform, bioaccumulation, biochemical oxygen demand (BOD), biostimulatory substances, chemical constituents, chlorine, total residual, color, exotic vegetation, floating material, methylene blue activated substances (MBAs), mineral quality, nitrogen (nitrate, nitrite), oil and grease, oxygen, dissolved (DO), pesticides, pH, polychlorinated biphenyls (PCBs), radioactive substances, solid, suspended, or settleable materials, taste and odor, temperature, toxicity, and turbidity.

Wetlands are under the regional objectives for surface water quality but also have regional narrative objectives for hydrology and habitat protection.

Stormwater from the proposed project would eventually reach Los Angeles Harbor, which is included on the CWA Section 303(d) list for many water quality impairments. However, the “Tributary Rule” states that projects shall not contribute to any downstream water quality impairment.

The following contaminants are cited in the most recent 2006 CWA Section 303(d) list of water-quality-limited segments for the Los Angeles RWQCB, which was adopted by EPA in 2007 (see Table 2-36) (Los Angeles RWQCB 2006).

On July 1, 2004, the Los Angeles Harbor bacteria TMDL (Inner Cabrillo Beach and Main Ship Channel) was adopted by the Los Angeles RWQCB (effective March 10, 2005). The reason for the TMDL was because elevated bacterial indicator densities were causing impairments associated with water contact recreation (REC-1) and beneficial uses at Inner Cabrillo Beach and potential REC-1 uses at the Main Ship Channel in the Los Angeles Harbor. Swimming in marine waters with elevated bacterial indicator densities has long been associated with adverse health effects (Los Angeles RWQCB 2004).
Table 2-36: Surface Water Quality Concerns on the Los Angeles RWQCB Section 303(d) List

<table>
<thead>
<tr>
<th>Name</th>
<th>Pollutant/Stressor</th>
<th>Potential Sources</th>
<th>Estimated Area Affected</th>
<th>Proposed TMDL Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Harbor—Cabrillo Marina</td>
<td>DDT</td>
<td>Source Unknown</td>
<td>77 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>PCBs (polychlorinated biphenyls)</td>
<td>Source Unknown</td>
<td>77 acres</td>
<td>2019</td>
</tr>
<tr>
<td>Los Angeles Harbor—Consolidated Slip</td>
<td>2-Methylnaphthalene</td>
<td>Source Unknown</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>This listing was made by EPA for 2006.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benthic Community Effects</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Benzo(a)pyrene (PAHs)</td>
<td>Source Unknown</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>This listing was made by EPA for 2006.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzo(a)anthracene</td>
<td>Source Unknown</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>This listing was made by EPA for 2006.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium (sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Historical use of pesticides and lubricants, stormwater runoff, aerial deposition, and historical discharges for metals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlordane (tissue and sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Chromium (sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Chrysene (C1-C4)</td>
<td>Source Unknown</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>This listing was made by EPA for 2006.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper (sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>DDT (tissue and sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Dieldrin</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Lead (sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Mercury (sediment)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Historical use of pesticides and lubricants, stormwater runoff, aerial deposition, and historical discharges for metals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Pollutant/Stressor</td>
<td>Potential Sources</td>
<td>Estimated Area Affected</td>
<td>Proposed TMDL Completion</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>PCBs (Polychlorinated biphenyls) (tissue and sediment) Fish Consumption Advisory for PCBs.</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Phenanthrene This listing was made by EPA for 2006.</td>
<td>Source Unknown</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Pyrene This listing was made by EPA for 2006.</td>
<td>Source Unknown</td>
<td>36 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Sediment Toxicity</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Toxaphene (tissue)</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Zinc (sediment) Historical use of pesticides and lubricants, stormwater runoff, aerial deposition, and historical discharges for metals.</td>
<td>Nonpoint Source</td>
<td>36 acres</td>
<td>2019</td>
</tr>
<tr>
<td>Los Angeles Harbor—Fish Harbor</td>
<td>Benzo(a)pyrene (PAHs) This listing was made by EPA for 2006.</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Benzo(a)anthracene</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Chlordane</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Chrysene (C1-C4)</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td>Nonpoint Source</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Dibenz(a,h)anthracene</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Source Unknown</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>PAHs (Polycyclic Aromatic Hydrocarbons)</td>
<td>Nonpoint Source</td>
<td>91 acres</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>PCBs (Polychlorinated biphenyls) (tissue and sediment) Fish Consumption Advisory for PCBs.</td>
<td>Nonpoint Source</td>
<td>91 acres</td>
<td>2019</td>
</tr>
</tbody>
</table>
Table 2-37 provides a summary of the surface water quality objectives that are applicable to the proposed project. The regional water quality objectives are set to ensure beneficial uses are maintained. Not all of the objectives have numerical thresholds. Also, because the project does not affect waters with existing or potential municipal uses, the objectives that contain a municipal threshold are not shown in the table.

Table 2-37: Numerical Inland Surface Water Quality Objectives

<table>
<thead>
<tr>
<th>Surface Water Quality Objectives</th>
<th>Rolling 30-day Geometric Mean Limits<sup>1</sup></th>
<th>Single-Sample Limits</th>
</tr>
</thead>
</table>
| Bacteria, Coliform | a. Total coliform density shall not exceed 1,000/100ml
b. Fecal coliform density shall not exceed 200/100 ml
c. Enterococcus density shall not exceed 35/100 ml | a. Total coliform density shall not exceed 10,000/100 ml
b. Fecal coliform density shall not exceed 400/100 ml
c. Enterococcus density shall not exceed 104/100 ml
d. Total coliform density shall not exceed 1,000/100 ml, if the ratio of fecal to total coliform exceeds 0.1 |

Surface Water Quality Objectives

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine, Total Residual</td>
<td>< 0.1 mg/L</td>
</tr>
</tbody>
</table>
| Nitrogen (Nitrate, Nitrite) | Shall not exceed:
- 10 mg/L nitrogen as nitrate-nitrogen + nitrite-nitrogen
- 45 mg/L at nitrate
- 10 mg/L as nitrate-nitrogen
- 1 mg/L as nitrite-nitrogen |
| Dissolved Oxygen | At minimum mean annual DO for all waters:
- > 7 mg/L
- No single determination < 5.0 mg/L
- Outer Harbor area of Los Angeles/Long Beach Harbors:
- > 6.0 mg/L
- No single determination < 5.0 mg/L |
| pH | Inland Surface Waters:
- Not < 6.5 or > 8.5 as a result of waste discharge
- Ambient pH shall not change more than 0.5 unit from natural conditions due to waste discharge
- Bays or Estuaries:
- Not < 6.5 or > 8.5 as a result of waste discharge
- Ambient pH shall not change more than 0.2 unit from natural conditions due to waste discharge |
| PCBs | Purposeful discharge is prohibited
- Pass through or uncontrollable discharges to waters of the region or locations where the waste can subsequently reach waters of the region limited to
- 70 pg/L\(^7\) (30-day average) – protection of human health
- 14 ng/L\(^8\) (daily average) – protection of aquatic life in inland freshwaters
- 30 ng/L (daily average) – protection of aquatic life in estuarine waters |
| Turbidity | When natural turbidity is 0–50 NTU\(^9\) increase < 20%
- When natural turbidity is > 50 NTU increase < 10% |

Notes:
\(^1\) Based on a minimum of not less than four samples for any 30-day period.
\(^2\) NO\(_2^-\)N + NO\(_3^-\)N.
\(^3\) NO\(_3^-\).
\(^4\) NO\(_2^-\)N.
\(^5\) NO\(_2^-\).n.
\(^6\) Except when natural conditions cause lesser concentrations.
\(^7\) pg/L = picograms per liter (1 picogram/liter = 1.0e-12 gram/liter).
\(^8\) ng/L = nanograms per liter (1 nanogram/liter = 1.0e-9 gram/liter).
\(^9\) NTU = nephelometric turbidity units.

Groundwater

The project is located in the west subbasin of the Coastal Plain of the Los Angeles Groundwater Basin (West Basin).

The regional water quality objectives for groundwater contained in the Basin Plan pertain to bacteria, chemical constituents and radioactivity, mineral quality, nitrogen (nitrate, nitrite), and taste and odor. The Water Quality Technical Report includes the Los Angeles RWQCB’s Basin Plan list of water quality objectives for the region in Chapter 3 of the Basin Plan. Table 2-38 provides information on the groundwater quality objectives from the Basin Plan for the project. Because the West Coast Basin has municipal beneficial uses, chemical constituents and radioactivity levels are not to exceed the limits specified under Title 22 of the California Code of Regulations (64431, 64443, 64444) (see the Water Quality Technical Report).

Table 2-38: Numerical Groundwater Quality Objectives

<table>
<thead>
<tr>
<th>Groundwater Basin</th>
<th>TDS (mg/L)</th>
<th>Sulfate (mg/L)</th>
<th>Chloride (mg/L)</th>
<th>Boron (mg/L)</th>
<th>NO₃-N + NO₂-N (mg/L)</th>
<th>NO₃ (mg/L)</th>
<th>NO₂-N (mg/L)</th>
<th>NO₂-N (mg/L)</th>
<th>Bacteria (counts/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Coast Basin</td>
<td>800</td>
<td>250</td>
<td>250</td>
<td>1.5</td>
<td>< 10</td>
<td>< 45</td>
<td>< 10</td>
<td>< 1</td>
<td>< 1.1/100 ml</td>
</tr>
<tr>
<td>(4.11-03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key groundwater quality constituents include TDS, iron, manganese, nitrate, trichloroethylene, tetrachloroethylene, arsenic, hexavalent chromium, methyltertiary butyl ether (MTBE), perchlorate, and radon (Los Angeles Department of Public Works 2004).

Data from 400 regularly sampled production and 250 regularly sampled observation wells in the Central and West Coast Basins indicate that groundwater is generally of high quality and requires little to no treatment before being pumped and served to the public (Water Replenishment District 2008). Less than 0.5 percent of 750,000 records of groundwater test results for monitoring and production wells exceeded their Primary Maximum Contaminant Levels (PMCLs). Only 2 percent exceeded their Secondary Maximum Contaminant Levels (SMCLs). The highest eight PMCL exceedances include arsenic, perchloroethylene, trichloroethylene, di (2-thylhexyl) phthalate, nitrate, aluminum, gross alpha radiation, and perchlorate, listed in order of most common detection above their PMCLS. The highest eight SMCLs exceedances include TDS, manganese, odor, iron, color, chloride, sulfate and aluminum (Water Replenishment District 2008).

26 Primary Maximum Contaminant Levels: Regulatory limits established for compounds that pose a health risk to consumers.
27 Secondary MCLs: Established for compounds that are not a health risk but are an aesthetic nuisance, such as taste, odor, or discoloration of the water or plumbing fixtures.
Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Since no construction activities would occur, there would be no adverse effects under NEPA or significant impacts under CEQA on water quality.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The proposed project would be regulated under Caltrans’ NPDES General Construction Permit and, if necessary, the CWA Section 402 General Dewatering Permit (to be obtained if amount of dewatering is greater than expected and therefore not covered under the NPDES General Construction Permit). Because the proposed project would be constructed within City and State ROW, NPDES Caltrans Statewide Permit (Order No. 99-06-DWQ) (NPDES No. CAS 000003) and Construction General Permit (Order No. 2009-0009-DWQ) (NPDES No. CAS 000002) would apply to this project. The City of Los Angeles would file a Notice of Intent (NOI) with SWRCB at least 30 days prior to the start of construction.

Per Caltrans’ NPDES General Construction Permit, water quality pollution-minimization measures could include requiring the contractor to submit a SWPPP prior to the start of construction and implementing site design measures, source-control measures, and stormwater treatment measures. A SWPPP and Monitoring Program would be prepared and implemented prior to construction activities. The SWPPP would describe structural and nonstructural BMPs to minimize or eliminate the potential for spills and leakage of construction materials and erosion of disturbed areas by water and wind. The SWPPP would identify construction-period BMPs to reduce water quality impacts. The SWPPP would emphasize: (1) temporary erosion control measures to reduce sedimentation and turbidity of surface runoff from disturbed areas; (2) personnel training; (3) scheduling and implementation of BMPs during construction and for the various seasons, noting the rainy season is from October 1 to May 1; (4) identification of non-stormwater discharge BMPs; and (5) mitigation and monitoring during construction.

The following Construction Site BMPs are expected to be implemented for this project: SS-1 Scheduling; SS-2 Preservation of Existing Vegetation; SS-5 Soil Binders; SS-8 Temporary Mulch; SS-9 Earth Dikes/Drainage Swales & Ditches; SC-1 Silt Fence; SC-5 Temporary Fiber Rolls; SC-7 Street Sweeping and Vacuuming; SC-10 Storm Drain Inlet Protection; TC-1 Stabilized Construction Entrance/Exit; NS-1 Water Conservation Practices; NS-6 Illicit Connection/Illegal Discharge Detection and Reporting; NS-8 Vehicle and Equipment Cleaning; NS-9 Vehicle and Equipment Fueling; NS-10 Vehicle and Equipment Maintenance; NS-12 Concrete Curing; WM-1 Material Delivery and Storage; WM-2 Material Use; WM-3 Stockpile Management; WM-4 Spill Prevention and Control; WM-5 Solid Waste Management; WM-8 Concrete Waste Management; WM-9 Sanitary/Septic Waste Management; WM-10 Liquid Waste Management; and Type D Erosion Control.
The proposed project would comply with all water quality standards and waste discharge requirements.

If dewatering is required above the amount covered in Caltrans’ General Construction Permit, a General Dewatering Permit would be required. This permit requires the submission of an NOI and a Pollution Prevention and Monitoring Program (PPMP). The PPMP includes a description of the discharge location and its characteristics, primary pollutants, receiving waters, treatment systems, spill prevention plans, and other measures necessary to comply with the discharge limits. It must also include a representative sampling and analysis program as well as record keeping and a quarterly monitoring report.

Proper BMPs would be implemented to ensure that runoff from the proposed project would be filtered and polished so that it would not contribute to any impairment, irrespective of the concentration of the contribution.

Adverse effects/significant impacts on water quality and stormwater runoff would be minimized with the incorporation of design pollution prevention, treatment, and maintenance BMPs, and thus, the proposed project would not result in substantial adverse effects under NEPA or significant impacts under CEQA.

Operational Impacts

Alternative 1: No-Build Alternative

While no operational changes would be made, the No-Build Alternative may result in greater impacts on water quality than those of Alternative 2, the Build Alternative. The existing effect/impact of current conditions on water quality at the project location is not known. However, due to the implementation of stormwater treatment BMPs and the reduction in impervious surface area under Alternative 2, Alternative 1 would have a greater effect/impact on water quality than Alternative 2. See the Alternative 2 analysis (below) for more information.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The U.S. Department of Transportation completed a study in 1996 to identify possible pollutants from roadways that may affect water quality. The following table (Table 2-39) contains a list of pollutants from roadways that are known to contribute to water quality-related issues.

The operations-related water contaminants of concern are consistent with the contaminants found in the table above (Table 2-39). Cross referencing these contaminants with the CWA Section 303(d) list identifies six contaminants that may have an effect/impact on an already-impaired harbor. These contaminants are copper, chromium, lead, PCBs, zinc, and sediment.
Table 2-39: Known Water Quality Concerns from Roadway Stormwater Runoff

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Primary Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulates</td>
<td>Pavement wear, vehicles, atmosphere, maintenance, snow/ice abrasives, sediment disturbance</td>
</tr>
<tr>
<td>Nitrogen, Phosphorus</td>
<td>Atmosphere, roadside fertilizer application, sediments</td>
</tr>
<tr>
<td>Lead</td>
<td>Auto exhaust, tire wear, lubricating oil and grease, bearing wear, atmospheric fallout</td>
</tr>
<tr>
<td>Zinc</td>
<td>Tire wear, motor oil, grease</td>
</tr>
<tr>
<td>Iron</td>
<td>Auto body rust, steel highway structures, moving engine parts</td>
</tr>
<tr>
<td>Copper</td>
<td>Metal plating, bearing and bushing wear, moving engine parts, brake lining wear, fungicide and insecticide application</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Tire wear, insecticide application</td>
</tr>
<tr>
<td>Chromium</td>
<td>Metal plating, moving engine parts, brake lining wear</td>
</tr>
<tr>
<td>Nickel</td>
<td>Diesel fuel and gasoline, lubricating oil, metal plating, bushing wear, brake lining wear, asphalt paving</td>
</tr>
<tr>
<td>Manganese</td>
<td>Moving engine parts</td>
</tr>
<tr>
<td>Bromide</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Anticake compound used to keep deicing salt granular</td>
</tr>
<tr>
<td>Sodium, Calcium</td>
<td>Deicing salts, grease</td>
</tr>
<tr>
<td>Chloride</td>
<td>Deicing salts</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Roadway bed, fuel, deicing salts</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Spills, leaks or blow-by of motor lubricants, antifreeze and hydraulic fluids, asphalt leachate</td>
</tr>
<tr>
<td>PCBs, Pesticides</td>
<td>Spraying of highway rights-of-way, atmospheric deposition, PCB catalyst in synthetic tires</td>
</tr>
<tr>
<td>Pathogenic Bacteria</td>
<td>Soil litter, bird droppings, trucks hauling livestock/stockyard waste</td>
</tr>
<tr>
<td>Rubber</td>
<td>Tire wear</td>
</tr>
<tr>
<td>Asbestos*</td>
<td>Clutch and brake lining wear</td>
</tr>
</tbody>
</table>

Note:

* No asbestos has been identified in runoff; however, some breakdown products of asbestos have been measured.

Impervious Area

The proposed project would reduce the amount of impervious surfaces. The existing impervious area is 9.5 acres (415,232 square feet); the total amount of impervious area after the proposed project is built would be 6.6 acres (288,049 square feet). Thus, there would be 2.9 fewer acres of impervious surface.

This reduction in the amount of impervious surfaces would translate into a reduction in the amount of runoff. Since runoff can both cause soil erosion and carry contaminants, this reduction would result in a beneficial effect/impact. However, any additional contribution of copper, chromium, lead, PCBs, zinc, or sediment would be considered an adverse effect/significant impact on the already-impaired Los Angeles Harbor.

Design pollution prevention and treatment BMPs would be considered and incorporated where appropriate and feasible in accordance with the procedures outlined in stormwater quality handbooks and the Project Planning and Design Guide (May 2007 or subsequent issuance). This would include coordination with the Los Angeles RWQCB with respect to feasibility, maintenance, and monitoring of treatment BMPs as set forth in Caltrans’ State Stormwater Management Plan.

Avoidance, Minimization, and/or Mitigation Measures

No Build Alternative

No avoidance, minimization, and/or mitigation measures are required.

Build Alternative

Construction

With temporary construction site BMPs incorporated into the construction site management of the project, as described in the Storm Water Data Report (SWDR), no further avoidance, minimization, and/or mitigation measures are required.

Permanent

With the permanent treatment BMPs incorporated into the project, as described in the SWDR, no further avoidance, minimization, and/or mitigation measures are required.

2.2.3 Geology/Soils/Seismicity/Topography

The key sources of data used in the preparation of this section were the *Preliminary Foundation Report*, C Street/I-110 Freeway Access Ramp Improvements, San Pedro, California (Diaz Yourman & Associates 2009a); the *Phase I Initial Site Assessment* (ISA) for the project site, completed in January 2007 (Group Delta Consultants 2007); and the *Phase II Hazardous Waste Investigation* for the project site that was completed in March 2009 (Diaz Yourman & Associates 2009b). All of these reports include a survey of the geology, soils, seismic, and topographic conditions of the project site.
Regulatory Setting

For geologic and topographic features, the key federal law is the Historic Sites Act of 1935, which establishes a national registry of natural landmarks and protects “outstanding examples of major geological features.” Topographic and geologic features are also protected under CEQA.

This section also discusses geology, soils, and seismic concerns as they relate to public safety and project design. Earthquakes are prime considerations in the design and retrofit of structures. Caltrans’ Office of Earthquake Engineering is responsible for assessing the seismic hazard for Caltrans projects. The current policy is to use the anticipated Maximum Credible Earthquake (MCE) from young faults in and near California. The MCE is defined as the largest earthquake that can be expected to occur on a fault over a particular period of time.

Additional Regulatory Information

National Natural Landmarks Program

The National Natural Landmarks Program was established in 1962 under authority of the Historic Sites Act of 1935. Administered by the National Park Service, the National Natural Landmarks Program lists sites that represent the nation’s “best” examples of various types of biological communities or geologic features (meaning that they are in good condition and effectively illustrate the specific character of a certain type of resource) in the National Registry of Natural Landmarks. At present, the registry includes 587 sites. The goals of the National Natural Landmarks Program are as follows:

- to encourage the preservation of sites that illustrate the nation’s geological and ecological character,
- to enhance the scientific and educational value of the sites preserved, and
- to strengthen public appreciation of natural history and foster increased concern for the conservation of the nation’s natural heritage.

Alquist-Priolo Earthquake Fault Zoning Act

California’s Alquist-Priolo Earthquake Fault Zoning Act (Public Resources Code Section 2621 et seq.), originally enacted in 1972 as the Alquist-Priolo Special Studies Zones Act and renamed in 1994, is intended to reduce the risk to life and property from surface fault rupture during earthquakes. The Alquist-Priolo Act prohibits the location of most types of structures intended for human occupancy across the traces of active faults and strictly regulates construction in the corridors along active faults (referred to as earthquake fault zones). It defines criteria for identifying active faults, giving legal weight to terms such as “active,” and establishes a process for reviewing building proposals in and adjacent to earthquake fault zones. It also encourages and regulates seismic retrofits of some types of structures.

Seismic Hazards Mapping Act of 1990

The Seismic Hazards Mapping Act of 1990 (Public Resources Code Sections 2690–2699.6) is intended to avoid or reduce damage resulting from earthquakes. While the Alquist-Priolo
Earthquake Fault Zoning Act addresses surface fault rupture, the Seismic Hazards Mapping Act addresses other earthquake-related hazards, including strong ground shaking, liquefaction, and seismically induced landslides. Its provisions are similar in concept to those of the Alquist-Priolo Earthquake Fault Zoning Act (i.e., the state is charged with identifying and mapping areas at risk of strong ground shaking, liquefaction, landslides, and other corollary hazards, and cities and counties are required to regulate development within mapped seismic hazard zones).

Under the Seismic Hazards Mapping Act, permit review is the primary mechanism for local regulation of development. Specifically, cities and counties are prohibited from issuing development permits for sites within seismic hazard zones until appropriate site-specific geologic and/or geotechnical investigations have been carried out and measures to reduce potential damage have been incorporated into the development plans.

Surface Mining and Reclamation Act of 1975

The principal piece of legislation addressing mineral resources in California is the Surface Mining and Reclamation Act of 1975 (Public Resources Code Sections 2710–2719), which was enacted in response to land use conflicts between urban growth and essential mineral production. The stated purpose of this act is to provide a comprehensive surface mining and reclamation policy that will encourage the production and conservation of mineral resources while ensuring that adverse environmental effects of mining are prevented or minimized, that mined lands are reclaimed and residual hazards to public health and safety are eliminated, and that consideration is given to recreation, watershed, wildlife, aesthetics, and other related values. The Surface Mining and Reclamation Act of 1975 provides for the evaluation of an area’s mineral resources using a system of mineral resource zone classifications that reflect the known or inferred presence and significance of a given mineral resource.

Affected Environment

The project site is located within the southern coastal margin of the Los Angeles Coastal Plain. The site is located within the southwestern block of the Los Angeles Basin on the San Pedro Bay portion of the southward sloping continental shelf. Prior to harbor development, the Los Angeles and San Gabriel Rivers emptied into the area, which consisted of low-lying tidal lagoons, marshes, mud flats, and sand bars. Since the early 1900s, extensive land reclamation for harbor use has modified the natural topography and the landforms of the area into the present configuration, as shown on the Torrance, California, 7.5-minute series topographic map quadrangle. Figure 2-9 shows the topographic map quadrangle with the proposed project.

The project site is relatively flat, gently sloping toward the southeast. The ground surface at the project site is at an elevation ranging from 10 feet above mean sea level (MSL) in the southern part of the alignment to 20 feet above MSL in the northern part of the project site. The I-110 alignment runs along the east side of the elevated area of the oil refinery that slopes down toward I-110. General surface drainage is toward the southeast. I-110 is generally above the adjacent grade. Drainage along the freeway is away from the alignment and toward the designed collection area along the roadway. Street drainage within the project site is generally toward the southwest. An existing retaining wall on the east side of the I-110 right-of-way protects
commercial property improvements. A 10-foot-wide paved right shoulder exists along this retaining wall. There are no designated natural landmarks at the project site.
Chapter 2. Affected Environment, Environmental Consequences, and
Avoidance, Minimization, and/or Mitigation Measures

Figure 2-9: Topographic Map Quadrangle
Site Geology

The Los Angeles Coastal Plain is underlain by up to 9,000 to 11,000 feet of Tertiary28 and Quaternary29 sediments, which have filled the presently subsiding basin since Miocene time. According to the State Seismic Hazard map, most of the site is mapped as older Quaternary alluvial and fan deposits, consisting mainly of sand, silt, clay and gravel. In addition, an isolated area, underlain by Pleistocene to Holocene nonmarine terrace deposits, is present near I-110 and John S. Gibson Boulevard. These nonmarine terrace deposits consist of calcareous sands, shell fragments, and scattered gravels and cobbles. Manmade fill materials are also reported to be present east of I-110 and south of C Street. Dredging of marsh soils and construction of the West Basin occurred in the 1920s and 1930s. Some of the backland areas were reportedly under water but were filled by 1946. The presence of salt clays below elevations of 0 to 3 or more feet indicate that the area originally consisted of soft marsh deposits, and up to 10 to 15 feet of fill was placed in the area to bring it to the present grades as part of the harbor development.

Groundwater Conditions

Based on the published highest historical groundwater contours for the San Pedro and Torrance quadrangles, groundwater appears to be at a depth of 10 feet or less below the ground surface. According to published maps, groundwater could be 3 to 10 feet below the surface. The site area is located south and downgradient of the Dominguez Gap Sea Water Injection Barrier, which is maintained by the County (Water Replenishment District 2007). Based on the barrier’s location and site physiography, shallow groundwater is expected to be within a zone of 0 to 5 feet (or 3 to 8 feet mean lower low water [MLLW]). It generally flows southerly but is subject to minor tidal fluctuations near the water’s edge. Environmental groundwater testing was not planned as part of this investigation. Three USGS water wells are identified within 1 mile of the project site: Sites 004S013W31P001S, 004S013W31J001S, and 004S013W31N004S. These wells are reported to be completed to depths of 900 feet, 1,005 feet, and 836 feet, respectively. It is not known whether they continue to be used for water supply, and the quality of the water produced was not reported.

Seismic Conditions

No active, potentially active, or major inactive faults cross the project site. Furthermore, the project site is not located within any Alquist-Priolo Earthquake Fault Zone designated by the California Geological Survey.

The major controlling Holocene fault for the project site is the Palos Verdes fault, located about 0.7 mile from the project site. The alternate San Pedro fault is present about 0.1 mile from the

28 The Tertiary is a term for a geologic period 65 million to 2.588 million years ago. The Tertiary covered the time span between the superseded Secondary period and the Quaternary. The period began with the demise of the non-avian dinosaurs in the Cretaceous–Tertiary extinction event, at start of the Cenozoic era, spanning to beginning of the most recent Ice Age, at the end of the Pliocene epoch.

29 The Quaternary period is the youngest of three periods of the Cenozoic era in the geologic time scale of the International Commission on Stratigraphy. It follows after the Neogene period, spanning 2.588 +/- 0.005 million years ago to the present. The Quaternary includes two geologic epochs: the Pleistocene and the Holocene epochs.
inferred branch and about 0.4 mile from the proposed project construction area. Neither the alternate nor the inferred traces have been located in this area, though the evidence of the fault is very strong. The Gaffey anticline is about 0.5 mile west of the project site. This anticline is active, with upward movement cutting off the Harbor Lake drainage to the West Basin. The Palos Verdes fault has been assigned a 7.75 earthquake Moment Magnitude (MW), and according to Caltrans (1996), the project site is located next to the 0.6g peak ground acceleration contour. However, a model for seismic hazards analysis for the Port of Los Angeles assigns a fault rupture of 30 to 60 kilometers (km), resulting in a MW 7.0 to 7.25 for this potential seismic source. The maximum rupture would be associated with a maximum earthquake of MW 7.25, with an average recurrence of approximately 900 years. Slip on the fault occurs at a rate of 3 millimeters/year and represents one of the highest slip rates in Los Angeles Basin. The sense of motion is predominantly strike slip, with approximately a 15 percent vertical component. Maximum surface displacement during the maximum earthquake is estimated to be about 2.35 meters (m) horizontal and 0.35 m vertical, emanating from a hypocenter at an approximate depth of 10 to 15 km (Schell 2007; McNeilan et al. 1996).

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Since no construction activities are proposed under the No-Build Alternative, no adverse effects under NEPA or significant impacts under CEQA would occur with respect to geology, soils, seismicity, or topography from existing conditions.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction of the project would require excavation, along with disturbances of soils and vegetation. Stormwater runoff could cause soil erosion of disturbed areas. The BMPs required under the SWMP and SWPPP would be implemented to minimize soil erosion due to any ground cover loss. In addition, all construction work would meet the requirements of State of California building and structural codes and be performed in accordance with the recommendations in the geotechnical investigation conducted for the project.

Expansive soils may be present on or in the vicinity of the project site. Expansive soils beneath the proposed project’s foundations could result in cracking and distress of foundations. Existing structures built on these sediments could be cracked and warped by such settlement. Caltrans foundation guidelines indicate where the peak ground acceleration is more than 0.6g, such as this site, the abutments and bent should be supported on pile foundations. The project would be constructed in compliance with the recommendations of the geotechnical engineer, consistent with implementation of regulations in the Los Angeles Municipal Code, and in conjunction with criteria established by Caltrans and would not result in substantial damage to structures or infrastructure or expose people to substantial risk of injury. Thus, the impacts from expansive soils would have no substantial adverse effects under NEPA or significant impacts under CEQA.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no modifications to geological settings and soils would occur. Therefore, the No-Build Alternative would not result in adverse effects under NEPA or significant impacts under CEQA related to geological conditions.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Seismicity

According to Exhibit A in the Safety Element of the City of Los Angeles General Plan, the project site is located within the boundaries of a fault rupture study area. There would be a minor increase in the exposure of people and property to seismic hazards relating to current and future baseline conditions. The project area lies in the vicinity of the Palos Verdes fault zone. Strands of the fault may pass beneath the perimeter and immediately west of the project area. Strong to intense ground shaking, surface rupture, and liquefaction could occur in these areas due to the location of the fault beneath the project area and the presence of water-saturated hydraulic fill. With the exception of ground rupture, similar seismic impacts could occur due to earthquakes on other regional faults. Earthquake-related hazards, such as liquefaction, ground rupture, ground acceleration, and ground shaking cannot be avoided in the Los Angeles region and in particular in the harbor area where the Palos Verdes fault is present and hydraulic and alluvial fill is pervasive.

The Los Angeles Building Code regulates construction in the City through building codes and criteria that provide requirements for construction, grading, excavation, use of fill, and foundation work, including requirements regarding types of materials, design, procedures, etc. These codes are intended to limit the probability of occurrence and the severity of consequences from geological hazards such as earthquakes. Necessary permits, plan checks, and inspections are also specified. The Los Angeles Municipal Code also incorporates structural seismic requirements of the California Uniform Building Code, which classifies almost all of coastal California (including the project site) as a Seismic Zone 4 (on a scale of 1 to 4, with 4 being most severe). The proposed project engineers would review the proposed project plans for compliance with the appropriate standards in the building codes.

As discussed above, seismic activity along the Palos Verdes fault zone, or other regional faults, could produce fault rupture, seismic ground shaking, liquefaction, or other seismically induced ground failure. Seismic hazards are common to the Los Angeles region and are not increased by the proposed project. However, because the project area is potentially underlain by strands of the active Palos Verdes fault and liquefaction-prone hydraulic fill, there is a substantial risk of seismic impacts. Seismic upgrades would be completed along with reconfiguration and construction of the new interchange and seismic retrofitting of the existing Union Oil undercrossing (Bridge No. 53-1033) as part of the proposed project. The proposed project would also consider seismic retrofitting for the existing anchor slab section of the retaining wall (No. 318) based on current design criteria. Thus, the proposed project would result in beneficial impacts. The proposed project would be carried out in an existing transportation corridor and would not result in any new traffic. Thus, it would not create new risks for people or
structures related to seismic activities. As such, no substantial adverse effects under NEPA or significant impacts under CEQA would occur.

Tsunamis and Seiches

According to Exhibit G in the Safety Element of the City of Los Angeles General Plan (1996), a small portion of the project site is located within the boundaries of an area that could be affected by a tsunami. Local or distant seismic activity and/or offshore landslides could result in the occurrence of tsunamis or seiches within the project area and vicinity. Due to the depth of the port and the proximity of the West Basin to the Pacific Ocean, as well as the fact that the proposed project would be carried out along an existing transportation corridor and would not result in any new traffic, the proposed project would not expose people or structures to tsunami risks that would be any greater than the existing conditions. Thus, it would not create new risks for people or structures related to tsunami. As such, no adverse effects under NEPA or significant impacts under CEQA would occur.

Subsidence/Soil Settlement

Subsidence in the vicinity of the project site, due to previous oil extraction in the port area, has been mitigated and is not anticipated to adversely affect the proposed project. However, in the absence of proper engineering, proposed structures could be cracked and warped as a result of saturated, unconsolidated/compressible sediments. As such, during project design, the project engineer would evaluate the settlement potential in all areas where structures are proposed.

No substantial adverse effects under NEPA or significant impacts under CEQA would occur because the project would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with regulations of the Los Angeles Municipal Code, and in conjunction with criteria established by Caltrans. It would not result in substantial damage to structures or infrastructure or expose people to substantial risk of injury.

Expansive Soils

Impacts from expansive soil in the project area would be less than significant under CEQA and not substantially adverse under NEPA because the project would be designed and constructed in compliance with the recommendations of the geotechnical engineer, consistent with implementation of regulations in the Los Angeles Municipal Code, and in conjunction with criteria established by Caltrans. It would not result in substantial damage to structures or infrastructure or expose people to substantial risk of injury.

Landslides and Mudslides

The topography in the vicinity of the project site is flat and not subject to landslides or mudflows. In addition approach embankments would be designed to minimize any potential erosion hazards. The approach embankment slopes would be designed to be consistent with regulations in the Los Angeles Municipal Code and criteria established by Caltrans. The proposed project would maintain the existing condition for the retaining wall along the east side
of the I-110 right-of-way. Therefore, no substantial adverse effects under NEPA or significant impacts under CEQA would occur.

Unstable Soil Conditions

Groundwater is locally present at depths as shallow as 10 feet. Materials near and below the shallow groundwater table would be relatively fluid, requiring implementation of standard engineering practices regarding saturated, collapsible soils, such as dredging, dewatering wells, and other special handling procedures to facilitate excavation. Various types of temporary shoring would also be used to stabilize excavations with saturated, collapsible soils. Such engineering practices would be implemented where necessary. As described in the *Foundation Report*, granular soils with low moisture contents in dry climates, such as that at the site, may be subjected to hydro collapse when inundated with water. One hydro collapse test performed on a medium-dense sand sample in one of the borings made for the *Preliminary Foundation Report* showed very low collapse potential (less than 1 percent). Based on the blow counts noted in the borings, the site soils at shallow depths are, in general, medium dense; therefore, the potential for hydro collapse is expected to be low to negligible.

No excavations would be taking place as a part of proposed project operations after construction has been completed; therefore, on-site soils would not be subject to collapse or caving. As such, no adverse effects under NEPA or significant impacts under CEQA would occur.

Prominent Geologic and Topographic Features

Since the project area is relatively flat and paved, with no prominent geologic or topographic features, proposed project operations would not result in any distinct and prominent geologic or topographic features being destroyed, permanently covered, or materially and adversely modified. The proposed project would not result in any adverse effects under NEPA or significant impacts under CEQA.

Avoidance, Minimization, and/or Mitigation Measures

All project components will be designed in accordance with standard engineering practices and Caltrans standard specifications. Since no substantial adverse effects under NEPA or significant impacts under CEQA would occur related to geology, soils, topography and seismicity, no avoidance, minimization, and/or mitigation measures are required.

2.2.4 **Paleontology**

Regulatory Setting

Paleontology is the study of life in past geologic time based on fossil plants and animals. A number of federal statutes specifically address paleontological resources, their treatment, and funding for mitigation as a part of federally authorized or funded projects (e.g., the Antiquities Act of 1906 [16 USC 431–433] and the Federal-Aid Highway Act of 1935 [20 USC 78]). Under California law, paleontological resources are protected by CEQA; the California Code of Regulations, Title 14, Division 3, Chapter 1, Sections 4307 and 4309; and Public Resources Code Section 5097.5.
Any rock material that contains fossils has the potential to yield fossils that are unique or significant to science. However, paleontologists consider geological formations having the potential to contain vertebrate fossils more “sensitive” than those likely to contain only invertebrate fossils. Invertebrate fossils found in marine sediments are usually not considered by paleontologists to be significant resources because the geological contexts in which they are encountered are widespread and fairly predictable. Invertebrate fossil species are usually abundant and well preserved; therefore, they are not unique. In contrast, vertebrate fossils are much rarer than invertebrate fossils and are often poorly preserved. Therefore, when found in a complete state, vertebrate fossils are more likely to be a more significant resource than are invertebrate fossils. As a result, geologic formations having the potential to contain vertebrate fossils are considered the most sensitive. Vertebrate fossil sites are usually found in non-marine upland deposits. Occasionally, vertebrate marine fossils such as whale, porpoise, seal, or sea lion can be found in marine rock units such as the Miocene Monterey Formation and the Pliocene Sisquoc Formations, which are known to occur throughout Central and Southern California.

Affected Environment

The proposed project APE is mapped geologically (Dibblee 1999) as being underlain in the central and southern extent by Quaternary alluvium and Quaternary older alluvium and by Malaga Mudstone at the northern end of the APE. Figures 2-4a through 2-4c show the APE for the proposed project. Late Pleistocene alluvium and older alluvial sand deposits such as those in the central and southern portion of the APE, between Harry Bridges Boulevard and C Street, are known to contain intact vertebrate fossils, which are considered fossils of regional, if not statewide, significance due to their rarity.

The Malaga Mudstone is the uppermost member in the Miocene-age Monterey Shale and consists of light chocolate-brown or olive-gray, massive, radiolarian mudstone and fine-grained siltstone (Woodring et al. 1946; Kennedy 1975). The Malaga Mudstone was deposited during the late Miocene, approximately 10 to 12 million years ago. In the project APE, the Malaga Mudstone member is overlain by shallow non-marine alluvial deposits and possibly artificial fill. Fossil localities are rare in the Malaga Mudstone but have been recorded from coastal sites in the Palos Verdes Hills. Woodring et al. (1946) described three fossil localities from the Malaga Mudstone, and there are fossils from 13 localities reported at the Natural History Museum of Los Angeles County (LACM) (Kennedy 1975; LACM online database). Fossils collected from these sites consist primarily of remains of open-marine microfossils, which include diatoms, foraminifera, radiolarians, and sponge spicules (Woodring et al. 1946; Kennedy 1975).

No field survey of the project site was conducted because the site is covered by extensive development and artificial fill. A paleontological record search identified a number of fossil sites (localities) within 0.5 mile of the project area in upland geological deposits (LSA Associates 1992; LAHD 1993).
Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Since no construction activities are proposed under the No-Build Alternative, no adverse effects under NEPA or significant impacts under CEQA would occur with respect to paleontological resources.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

The geologic assessment and literature review demonstrate that grading and excavation in the proposed project APE have the potential to affect significant nonrenewable fossil resources. The central and southern portions of the project area contain a Late Pleistocene geological formation that is considered to have high sensitivity for paleontological resources due to the presence of a diverse array of vertebrate fossils that have been encountered previously within that deposit. This area of potential sensitivity is located at the western end of Harry Bridges Boulevard and C Street between Figueroa Street and I-110. Excavation into undisturbed geologic deposits underlying the project area, which include Quaternary alluvium, older Quaternary alluvium, and Miocene-age marine deposits of Malaga Mudstone, could affect fossil resources. Project grading and excavation could adversely affect these unknown but potentially significant paleontological resources. Construction of the proposed project would result in adverse effects because of the potential to damage or destroy significant nonrenewable fossil resources. With implementation of mitigation measure PAL-1, there would be no substantial adverse effects under NEPA or significant impacts under CEQA.

Operational Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not result in any changes to the existing operational conditions. Therefore, the No-Build Alternative would not result in any adverse effects under NEPA or significant impacts under CEQA on paleontological resources.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Once the construction has been completed, the proposed project would not result in any activities that have the potential to damage or destroy significant nonrenewable fossil resources.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Avoidance, Minimization, and/or Mitigation Measures

PAL-1 Develop a Program to Mitigate Impacts on Nonrenewable Paleontologic Resources Prior to Excavation or Construction of Any Proposed Project Components.

This mitigation measure shall be carried out by a qualified vertebrate paleontologist consistent with the proposed guidelines of the Society of Vertebrate Paleontology. This shall include the following:

- An assessment of site-specific excavation plans to determine areas that shall be designated for paleontological monitoring during initial ground disturbance;
- Development of monitoring protocols for these designated areas. Areas consisting of artificial fill materials shall not require monitoring. Paleontologic monitors who are qualified according to Society of Vertebrate Paleontology standards shall be equipped to salvage fossils as they are unearthed to avoid construction delays and remove samples of sediments that are likely to contain the remains of small fossil invertebrates and vertebrates. Monitors shall be empowered to temporarily halt or divert equipment to allow removal of abundant or large specimens. Monitoring may be reduced if some of the potentially fossiliferous units described herein are determined upon exposure and examination by qualified paleontologic personnel to have a low potential to contain fossil resources;
- Preparation of all recovered specimens to a point of identification and permanent preservation, including washing of sediments to recover small invertebrates and vertebrates. Preparation and stabilization of all recovered fossils are essential to mitigate adverse impacts on the resources fully;
- Identification and curation of all specimens into an established, accredited museum repository with permanent retrievable paleontologic storage. These procedures are also essential steps in effective paleontologic mitigation and CEQA compliance (Scott and Springer 2003). The paleontologist shall have a written repository agreement in hand prior to the initiation of mitigation activities. Mitigation of adverse impacts on significant paleontologic resources is not considered complete until such curation into an established museum repository has been fully completed and documented; and
- Preparation of a report of findings with an appended itemized inventory of specimens. The report and inventory, when submitted to the appropriate lead agency along with confirmation of the curation of recovered specimens into an established, accredited museum repository, shall signify completion of the program to mitigate impacts on paleontologic resources.
2.2.5 Hazardous Waste/Materials

Regulatory Setting

Hazardous materials and hazardous wastes are regulated by many state and federal laws. These include not only specific statutes governing hazardous waste but also a variety of laws regulating air and water quality, human health, and land use.

The primary federal laws regulating hazardous wastes/materials are the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). The purpose of CERCLA, often referred to as Superfund, is to clean up contaminated sites so that public health and welfare are not compromised. RCRA provides for “cradle to grave” regulation of hazardous wastes. Other federal laws include the following:

- Community Environmental Response Facilitation Act (CERFA) of 1992,
- Clean Water Act,
- Clean Air Act,
- Safe Drinking Water Act,
- Occupational Safety and Health Act,
- Atomic Energy Act,
- Toxic Substances Control Act (TSCA), and
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

In addition to the acts listed above, Executive Order 12088, Federal Compliance with Pollution Control, mandates that necessary actions be taken to prevent and control environmental pollution when federal activities or federal facilities are involved.

Hazardous waste in California is regulated primarily under the authority of the federal Resource Conservation and Recovery Act of 1976 and the California Health and Safety Code. Other California laws that affect hazardous waste are specific to handling, storage, transportation, disposal, treatment, reduction, cleanup, and emergency planning.

Worker health and safety and public safety are key issues when dealing with hazardous materials that may affect human health and the environment. Proper disposal of hazardous material is vital if it is disturbed during project construction.

Affected Environment

The key source for the data used in the preparation of this section is the Phase I ISA for the project site, completed in January 2007 (Group Delta Consultants 2007), and the Phase II Hazardous Waste Investigation for the project site, which was completed in March 2009 (Diaz Yourman & Associates 2009b).
Historical Records Review

The history of the project site was reviewed to supplement regulatory agency database records. Aerial photographs and topographic maps were also reviewed. Prior to development, the site consisted of an estuary of the Los Angeles River characterized by tidal lagoons, marshes, and mud flats and referred to as the Wilmington Lagoon. During the late 1800s through the mid-1920s, the shoreline near the site was approximately 300 feet south of Harbor Boulevard (present-day John S. Gibson and West Harry Bridges Boulevards). As a portion of Wilmington Lagoon was developed into the West Basin of the Port of Los Angeles in the early 20th century, the area south of the site was filled in with material dredged from the developing harbor. From the mid-1920s to the mid-1940s, the shoreline south of West Harry Bridges Boulevard gradually moved approximately 1,100 feet farther south as a result of dredge and fill operations.

Through the late 19th and early 20th centuries, the site was occupied by both commercial and residential properties. The oil refinery located on the west side of I-110 was constructed in the early 1920s, and the portion of I-110 on the western boundary of the site was constructed between 1948 and 1951 (Group Delta Consultants 2007).

Environmental Database Search

The ISA defines the subject property as the area extending approximately 1,000 feet south of the intersection of Figueroa Street and Harry Bridges Boulevard, approximately 1,000 feet east of the intersection of Figueroa Street and Harry Bridges Boulevard, and to the north along Figueroa Street up to the intersection of Figueroa Street and D Street. A computerized environmental information database search was performed by Environmental Data Resources (EDR) for the 1-mile radius area outside of the subject property. The search included federal, state, and local databases. The review was conducted to evaluate whether the site or properties within the vicinity of the site have been reported as having experienced substantial unauthorized releases of hazardous substances or other events with potentially adverse environmental effects. Numerous sites within the search area were recorded in the database. Six sites are located within the subject property alignment; two of them (No. 2 and No. 3 in the list below) are listings for the same site. The rest of the sites are located outside of the subject property and the area of the planned project improvements. The sites located within the subject property alignment include the following:

1. Los Angeles Bunker Surveyors, 239 Mar Vista Avenue. Formerly a small-quantity generator. No violations were reported. The site is being cleared out. This location is currently an empty lot.

2. Garin Oil Company #5, 302 North Figueroa Street. The address is located at the northeast corner of the intersection of C Street and Figueroa Street. The site was probably a gasoline station at one time, and there were underground storage tanks for diesel fuel. The site is currently under remediation.

3. Rocket #5, 302 North Figueroa Street (located at the same address as site No. 2). Leaking of the underground gasoline tank was discovered in 1995 by subsurface monitoring. Testing of groundwater indicated a concentration of 2,200 parts per million (ppm) of dissolved benzene. MTBE was recorded in groundwater. In 2003, it was reported that the site cleanup was under way. Remediation at the site is ongoing.
4. Transit Contracts, 221 Mar Vista Avenue. Formerly a small-quantity generator with one underground fuel tank. No violations were found. The facility that occupied this location was a producer of solid and aqueous waste material. No soil or water contamination reported due to these processes. The site is currently an empty lot.

5. SOS Control Services, 225 Mar Vista Avenue. Formerly a small-quantity generator. No violations were found. The site is currently an empty lot.

6. Los Angeles Pumping Plant, 1220 West B Street. Formerly a small-quantity generator. No violations were found. The site is currently an empty lot.

Out of the six sites reported in the database to be located within the proposed project alignment area, the sites marked as No. 2 and No. 3 in the list above are the sites of a gasoline station, which is currently under remediation. This site is an environmental concern because it has likely contaminated the groundwater in the area; the soil contamination is being remediated. No violations were reported at the remaining four sites located within the subject property alignment.

Three sites located outside of the subject property improvement area are reported in the leaking underground storage tank (LUST) and Cortese database search. Two of them have the same address.

1. Yang Ming Container Terminal, 2050 John S. Gibson Boulevard. The address is located 0.15 mile south of the intersection of Harry Bridges Boulevard and Figueroa Street. Leaking at three underground diesel tanks was discovered in 2000 during tank repair. The groundwater and soil tested positive to MTBE. It was reported that the case was treated as a minor incident and no action was required. The leaking tanks were removed in 2000. The case was reportedly closed in 2004.

2. American President Lines, 2050 John S. Gibson Boulevard. The address is located 0.15 mile south of the intersection of Harry Bridges Boulevard and Figueroa Street. The site is listed in HIST UST database. Underground diesel tanks used to occupy the site. This is the same site as No. 1, above.

3. Dichter Lumber Sales, 220 Gulf Avenue. The address is located 0.4 mile east of the intersection of Harry Bridges Boulevard and Figueroa Street. Leaking of the underground tank was reported in 1992 when hydrocarbons and MTBE were recorded in the groundwater. It was not reported how the leak was discovered. The case was reportedly closed in 2004. A spill of petroleum was also reported at this site in the Spills, Leaks, Investigations, and Cleanups (SLIC) database. The case is open.

These three sites are located at approximately the same elevation as the subject property. The sites present a potential environmental concern due to potential residual contamination of the groundwater. In addition to the aforementioned sites, an oil refinery is located on the west side of the subject property alignment adjacent to southbound I-110. The refinery has been the subject of environmental investigations since the 1980s. It is recorded in several databases and should be considered an environmental concern because its operations have likely contaminated the groundwater in the area and downstream.
Site Reconnaissance

Site reconnaissance was conducted on October 10 and November 9, 2006, to assess and photograph present site conditions at the time of preparation of the ISA. The following observations were noted during site reconnaissance, which may suggest the presence of hazardous conditions at the project site:

- Piles of concrete and soil of an unknown source were observed on an empty lot located at the northeast corner of the intersection of Figueroa Street and Harry Bridges Boulevard;
- Debris, trash, and several buckets of discarded motor oil were found at the intersection of C Street and Mar Vista Avenue;
- Above-ground propane tanks and a treatment system were found at a site known to contain leaking underground storage tanks. The treatment system is a soil vapor extraction unit;
- Piled soil along the eastbound lane of Mar Vista Boulevard between C Street and Harry Bridges Boulevard. Observations in November 2006 found that the soil was being removed by City street maintenance personnel;
- Piles of oil-stained soil, oil-stained tire tracks, and oily water were observed along the west lane of King Avenue, near Harry Bridges Boulevard;
- Several pole-mounted transformers were noted to exist along the alignment; and
- Unpaved areas adjacent to I-110 are landscaped with plants. These areas are likely to contain aerially deposited lead (ADL) from gasoline emissions.

Former land uses deemed to contain hazardous materials adjacent to the project site include an oil refinery. Leaking underground storage tanks at or near the site and releases from the nearby refinery have likely affected groundwater conditions in the area of the project improvements. Additionally, vegetated landscaping at the project site and adjacent properties was likely treated with pesticides and herbicides during landscape maintenance. Groundwater at the project site may have been affected as a result.

Elevated concentrations of lead (from use of leaded gasoline) and other metals are sometimes associated with older roadways. Both C Street and I-110 were depicted in historical topographic maps from 1964 to present. Additionally, pole-mounted electric transformers have been known to contain PCBs. The pole-mounted transformers observed on site appeared to be in good condition, and no leaking was observed. Roadway structures, attached pipelines, and appurtenances may have asbestos-containing material (ACM) in the form of coatings, insulation, expansion joint compounds, and lead-based paint (LBP). The buildings along Figueroa Street may contain both ACM and LBP.

All the areas of excavation would require an investigation for total petroleum hydrocarbon contamination. Additionally, shallow soil (upper 2 feet) in unpaved areas will require an investigation for ADL and pesticides.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and Finding of No Significant Impact

Phase II Hazardous Waste Investigation

A draft Phase II Hazardous Waste Investigation for the proposed project was completed in March 2009 (Diaz Yourman & Associates 2009b). The objectives of this Phase II investigation were to evaluate whether soil contamination in the right-of-way may affect construction activities and provide a hazard assessment for the mitigation of impacts during earthwork. Seventy soil samples from 15 locations were collected, tested, and analyzed for contamination. The results of the field investigation indicate subsurface conditions only at specific locations and times and only to the depths penetrated. This report included site reconnaissance conducted on October 9, 2008, as well as follow-up site visits for the sampling of ADL. Subsequent lab tests analyzed soil samples for the following chemicals of concern: ADL, hydrocarbons, pesticides, herbicides, polycyclic aromatic hydrocarbons (PAH), PCBs, asbestos, and other lead-containing materials. The Phase II report resulted in the following field observations and results from laboratory testing:

- Groundwater was not encountered in the shallow borings (less than 6 feet) during sampling excavations. Depth to groundwater could not be determined when drilling the deeper borings with the mud-rotary drilling method;
- None of the discrete soil samples tested had concentrations of lead that exceeded the regulatory total threshold limit concentration (TTLC) of 1,000 milligrams per kilogram (mg/kg), but three samples exceeded the regulatory soluble threshold limit concentration (STLC) of 5 mg/L. The samples with STLC values greater than 5 mg/L were tested for toxicity characterization leaching procedure (TCLP). The results of the 11 tests performed were below the federal regulatory limit of 5 mg/L;
- The values of pH varied from 7 to 8.4. None of the discrete soil samples tested had pH levels less than 5;
- None of the discrete soil samples tested for Title 22 metals had concentrations that exceeded the regulatory TCLC values for hazardous waste specified in the California Code of Regulations Title 22, excluding lead. Other than lead, one sample had arsenic and copper values that were considered above background levels. A second sample had zinc values that were considered above background levels; and
- Based on the results of limited random environmental screening of soil samples obtained during the geotechnical engineering investigation, it appears there is the potential for subsurface soils at some locations to be affected by petroleum hydrocarbons. Based on the presence of high concentration of isopropylbenzene in one sample location, the hydrocarbons appear to be associated with the petroleum refinery located northwest (upgradient) of the project area.

Findings and Recommendations

Based upon review of the data collected during the Phase II site assessment, the following recommendations have been made:

- The existing undisturbed soils are not considered potentially hazardous waste until the soils are excavated;
- There is potential for deeper subsurface soils at some locations to be affected by petroleum hydrocarbons;
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

- Based on linear regression analysis and statistical analysis for the samples collected within the upper 2.5 feet, if the composite soil has an ADL TTLC greater than 100 mg/kg, the lead STLC will be greater than 6 mg/L. Because the STLC is greater than 5 mg/L, it should be classified in accordance with the California Code of Regulations Title 22 as hazardous waste. Most of the higher concentrations of ADL were within the upper 2.5 feet of soil; and

- The samples with STLC values of lead greater than 5 mg/L were tested for TCLP. The results of the four tests performed were below the federal regulatory limit of 5 mg/L. The four samples were located in the upper 3 feet of soil.

Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Since no construction activities are proposed under the No-Build Alternative, no adverse effects under NEPA or significant impacts under CEQA would occur with respect to hazardous waste and materials.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Activities related to hazardous materials handling during construction of the project include refueling and servicing construction equipment on site, demolition of existing structures, and the removal and export of potentially contaminated soils from the site. These activities would be short-term or one-time events and subject to federal, state, and local health and safety requirements. All refuse, trash, and miscellaneous debris scattered across the project site would require collection and proper disposal. The proposed project could result in adverse effects under NEPA or significant impacts under CEQA without mitigation. However, implementation of mitigation measures HAZ-1 through HAZ-4, as well as compliance with state and federal laws regarding waste disposal, would ensure that the proposed project would not result in substantial adverse effects or significant impacts during the construction phase.

Operational Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not result in any changes to existing operational conditions. Therefore, the No-Build Alternative would not result in any adverse effects under NEPA or significant impacts under CEQA due to hazards and hazardous materials.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Following construction of Alternative 2, operations are not expected to result in the creation of health hazards or expose people to potential health hazards because Alternative 2 is for roadway improvements only, and the storage of toxic materials or chemicals is not a component of the proposed project. The project is located in an area that services industrial goods transportation.
Many of the vehicles using the interchange may contain materials deemed hazardous; however, these alternatives are not anticipated to increase the potential for vehicles carrying hazardous materials to travel in the project area or increase the potential for accidents to occur in the project area. The hazards associated with vehicular transport of hazardous waste are regulated under existing programs and would not be affected by Alternative 2. Thus, there would be no adverse effects under NEPA or significant impacts under CEQA in the operational phase.

Avoidance, Minimization, and/or Mitigation Measures

The following sections present mitigation measures and available BMPs for the proposed project. The appropriate BMPs will be chosen when the project needs are more specifically defined.

HAZ-1 To reduce the aerially deposited lead levels in the composite soil that shall remain on site, the upper 2.5 feet of soil adjacent to the existing roadways within a 150-foot radius of boring B-10 shall be removed and disposed off site as hazardous waste. The recommended depths of removal for the site are displayed graphically in the ISA. The ultimate extent of the excavation shall consist of the area bound by the existing edge of pavement and the limits of the excavation as shown on the plans, as deemed necessary for construction or as directed by the engineer. Upon completion of the recommended removals (within a 150-foot radius of boring B-10), the revised linear regression analysis of the composite of the upper 2.5 feet of soil remaining on site shall have a TTLC of less than 55 mg/kg and STLC of less than 5 mg/L, thereby clearing restrictions on the reuse of the remaining soil within the project limits.

HAZ-2 Soils from deep excavations (greater than approximately 6 feet, particularly for CIDH pile foundation excavations) shall be stockpiled and secured as potential regulated waste pending environmental evaluation and laboratory testing to determine appropriate disposal or reuse of the excavated soils.

HAZ-3 Waste with TTLC levels greater than 1,000 mg/kg or STLC levels greater than 5 mg/L are in excess of California hazardous waste criteria and must be disposed of in a Class I hazardous waste landfill. In addition, waste with TTLC levels greater than 5 mg/L are in excess of federal hazardous waste criteria and must be disposed of in a Class I hazardous waste landfill. A remediation specialist should be consulted for options other than disposal off site.

HAZ-4 The contractor shall prepare a project-specific lead compliance plan to prevent or minimize worker exposure to lead while handling material containing ADL. Attention is directed to Title 8, California Code of Regulations, Section 1532.1, “Lead,” for specific California Department of Industrial Relations, Division of Occupational Safety and Health Administration (OSHA), requirements when working with lead.
A construction health and safety program should be prepared, including provisions for worker awareness, dust control procedures, and air quality monitoring for lead contained in airborne particulate. All site excavation, as well as construction activities, would be completed according to OSHA standards (29 CFR 1926.62, Appendix A) for workers exposed to lead through inhalation and conducted by an abatement company certified by the State of California Department of Health Services. With these mitigation measures, the proposed project would ensure impacts during construction or operations would remain below adverse/significant levels.

2.2.6 Air Quality

The following technical reports were reviewed in preparation of this document:

• Interstate 110/C Street Interchange Air Quality Study Report, ICF International 2011;
• Transportation Conformity Guidance for Qualitative Hot-spot Analyses in PM2.5 and PM10 Nonattainment and Maintenance Areas, Federal Highway Administration and U.S. Environmental Protection Agency 2006;
• Interim Guidance Update on Mobile-Source Air Toxic Analysis in NEPA Documents, Federal Highway Administration 2009a; and

The Interstate 110/C Street Interchange Air Quality Study Report (AQSR) (ICF International 2011) provides a comprehensive description of the affected environment, including the regulatory setting, physical setting, and the project area’s attainment status, relevant pollutants, and sensitive receptors. A discussion of this information is provided below.

Regulatory Setting

Federal Standards

The Federal Clean Air Act (FCAA) as amended in 1990 is the federal law that governs air quality. The California Clean Air Act of 1988 is its companion state law. These laws, and related regulations by the United States Environmental Protection Agency (U.S. EPA) and California Air Resources Board (ARB), set standards for the quantity of pollutants that can be in the air. At the federal level, these standards are called National Ambient Air Quality Standards (NAAQS). NAAQS and State ambient air quality standards have been established for six transportation-related criteria pollutants that have been linked to potential health concerns. The criteria pollutants are: carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM, broken down for regulatory purposes into particles of 10 micrometers or smaller – PM10 and particles of 2.5 micrometers and smaller – PM2.5), lead (Pb), and sulfur dioxide (SO2). In addition, State standards exist for visibility reducing particles, sulfates, hydrogen sulfide (H2S), and vinyl chloride. The NAAQS and State standards are set at a level that protects public health with a margin of safety, and are subject to periodic review and revision. Both State and Federal regulatory schemes also cover toxic air contaminants (air toxics); some criteria pollutants are also air toxics or may include certain air toxics within their general definition.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Transportation Conformity

Federal and State air quality standards and regulations provide the basic scheme for project-level air quality analysis under the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). In addition to this type of environmental analysis, a parallel “Conformity” requirement under the FCAA also applies.

FCAA Section 176(c) prohibits the U.S. Department of Transportation and other Federal agencies from funding, authorizing, or approving plans, programs or projects that are not first found to conform to State Implementation Plan (SIP) for achieving the goals of Clean Air Act requirements related to the NAAQS. “Transportation Conformity” takes place on two levels: the regional, or planning and programming, level, and the project level. The proposed project must conform at both levels to be approved. Conformity requirements apply only in nonattainment and “maintenance” (former nonattainment) areas for the NAAQS, and only for the specific NAAQS that are or were violated. U.S. EPA regulations at 40 CFR 93 govern the conformity process.

Regional conformity is concerned with how well the regional transportation system supports plans for attaining the standards set for carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM10 and PM2.5), and in some areas sulfur dioxide (SO2). California has attainment or maintenance areas for all of these transportation-related “criteria pollutants” except SO2, and also has a nonattainment area for lead (Pb). However, lead is not currently required by the FCAA to be covered in transportation conformity analysis. Regional conformity is based on Regional Transportation Plans (RTPs) and Federal Transportation Improvement Programs (FTIPs) that include all of the transportation projects planned for a region over a period of at least 20 years for the RTP and 4 years for the FTIP. RTP and FTIP conformity is based on use of travel demand and air quality models to determine whether or not the implementation of those projects would conform to emission budgets or other tests showing that requirements of the Clean Air Act and the SIP are met. If the conformity analysis is successful, the Metropolitan Planning Organization (MPO), Federal Highway Administration (FHWA), and Federal Transit Administration (FTA), make determinations that the RTP and FTIP are in conformity with the SIP for achieving the goals of the FCAA. Otherwise, the projects in the RTP and/or FTIP must be modified until conformity is attained. If the design concept, scope, and “open to traffic” schedule of a proposed transportation project are the same as described in the RTP and FTIP, then the proposed project is deemed to meet regional conformity requirements for purposes of project-level analysis.

Conformity at the project-level also requires “hot spot” analysis if an area is “nonattainment” or “maintenance” for carbon monoxide (CO) and/or particulate matter (PM10 or PM2.5). A region is “nonattainment” if one or more of the monitoring stations in the region measures violation of the relevant standard and U.S. EPA officially designates the area nonattainment. Areas that were previously designated as nonattainment areas but subsequently meet the standard may be officially redesignated to attainment by U.S. EPA and are then called “maintenance” areas. “Hot spot” analysis is essentially the same, for technical purposes, as CO or particulate matter analysis performed for NEPA purposes. Conformity does include some specific procedural and documentation standards for projects that require a hot spot analysis. In general, projects must not cause the “hot spot”-related standard to be violated, and must not
cause any increase in the number and severity of violations in nonattainment areas. If a known CO or particulate matter violation is located in the project vicinity, the project must include measures to reduce or eliminate the existing violation(s) as well.

Affected Environment

Unless otherwise noted, the information in this section was synthesized from the AQSR prepared for the proposed project (ICF International 2011).

Ambient air quality is affected by climatological conditions, topography, and the types and amounts of pollutants emitted. The following discussion describes the relevant characteristics of the Basin and offers an overview of the conditions that affect ambient air concentrations of pollutants. A detailed description of the ambient pollutants for which there are standards, as well as mobile-source air toxics (MSATs)/toxic air contaminants (TACs) and naturally occurring asbestos (NOA), is provided in the AQSR.

Climate and Topography

The Basin is a coastal plain with connecting broad valleys and low hills that covers an approximately 6,745-square-mile area bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto mountains to the north and east. The Basin includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino counties as well as the San Gorgonio Pass area in Riverside County. Terrain and geographical location determine the distinctive climate of the Basin.

Table 2-40: Ambient Air Quality Standards Applicable in California and the Attainment Status of the South Coast Air Basin

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Principal Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td>1 hour</td>
<td>0.09 ppm</td>
<td>0.070 ppm</td>
<td>High concentrations irritate lungs. Long-term exposure may cause lung tissue damage and cancer. Long-term exposure damages plant materials and reduces crop productivity. Precursor organic compounds include many known toxic air contaminants. Biogenic VOC may also contribute.</td>
<td>Low-altitude ozone is almost entirely formed from reactive organic gases/volatile organic compounds (ROG or VOC) and nitrogen oxides (NOx) in the presence of sunlight and heat. Major sources include motor vehicles and other mobile sources, solvent evaporation, and industrial and other combustion processes.</td>
<td>Federal: Extreme nonattainment (8 hours) State: Extreme nonattainment (1 hour); Nonattainment (8 hours)</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>0.075 ppm ²</td>
<td>0.08 ppm ³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 hours (conformity process ⁴)</td>
<td>---</td>
<td>(4th highest in 3 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>0.08 ppm</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>1 hour</td>
<td>20 ppm</td>
<td>35 ppm</td>
<td>CO interferes with the transfer of oxygen to the blood and depletes sensitive tissues of oxygen. CO also is a minor precursor for photochemical ozone.</td>
<td>Combustion sources, especially gasoline-powered engines and motor vehicles. CO is the traditional signature pollutant for on-road mobile sources at the local and neighborhood scale.</td>
<td>Federal: Attainment-maintenance (1 hour and 8 hours) State: Attainment (1 hour and 8 hours)</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>9.0 ppm</td>
<td>9 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 hours (Lake Tahoe)</td>
<td>6 ppm</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Principal Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respirable Particulate Matter (PM₁₀)²</td>
<td>24 hours</td>
<td>50 μg/m³</td>
<td>150 μg/m³</td>
<td>Irritates eyes and respiratory tract. Decreases lung capacity. Associated with increased cancer and mortality. Contributes to haze and reduced visibility. Includes some toxic air contaminants. Many aerosol and solid compounds are part of PM₁₀.</td>
<td>Dust- and fume-producing industrial and agricultural operations; combustion smoke; atmospheric chemical reactions; construction and other dust-producing activities; unpaved road dust and re-entrained paved road dust; natural sources (wind-blown dust, ocean spray).</td>
<td>Federal: Serious nonattainment State: Nonattainment</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM₂.₅)²</td>
<td>24 hours</td>
<td>12 μg/m³</td>
<td>35 μg/m³</td>
<td>Increases respiratory disease, lung damage, cancer, and premature death. Reduces visibility and produces surface soiling. Most diesel exhaust particulate matter – a toxic air contaminant – is in the PM₂.₅ size range. Many aerosol and solid compounds are part of PM₂.₅.</td>
<td>Combustion including motor vehicles, other mobile sources, and industrial activities; residential and agricultural burning; also formed through atmospheric chemical (including photochemical) reactions involving other pollutants including NOx, sulfur oxides (SOx), ammonia, and ROG.</td>
<td>Federal: Nonattainment State: Nonattainment</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>1 hour</td>
<td>0.18 ppm</td>
<td>0.100 ppm</td>
<td>Irritating to eyes and respiratory tract. Colors atmosphere reddish-brown. Contributes to acid rain. Part of the “NOx” group of ozone precursors.</td>
<td>Motor vehicles and other mobile sources; refineries; industrial operations.</td>
<td>Federal: attainment-Maintenance (1 hour and annual) State: Nonattainment (1 hour and annual)</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.030 ppm</td>
<td>0.053 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>---</td>
<td>0.075 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(conformity process ³)</td>
<td>---</td>
<td>(98th percentile over 3 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 hours</td>
<td>0.04 ppm</td>
<td>0.05 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>---</td>
<td>0.14 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>---</td>
<td>0.030 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15 μg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>1 hour</td>
<td>0.25 ppm</td>
<td>0.075 ppm</td>
<td>Irritates respiratory tract; injures lung tissue. Can yellow plant leaves. Destructive to marble, iron, steel. Contributes to acid rain. Limits visibility.</td>
<td>Fuel combustion (especially coal and high-sulfur oil), chemical plants, sulfur recovery plants, metal processing; some natural sources like active volcanoes. Limited contribution possible from heavy-duty diesel vehicles if ultra-low sulfur fuel not used.</td>
<td>Federal: attainment-Maintenance (1 hour and annual) State: attainment (1 hour and annual)</td>
</tr>
<tr>
<td></td>
<td>3 hours</td>
<td>---</td>
<td>(98th percentile over 3 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>0.04 ppm</td>
<td>0.5 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>---</td>
<td>0.14 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>0.030 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)²</td>
<td>Monthly</td>
<td>1.5 μg/m³</td>
<td>1.5 μg/m³</td>
<td>Disturbs gastrointestinal system. Causes anemia, kidney disease, and neuromuscular and neurological dysfunction. Also a toxic air contaminant and water pollutant.</td>
<td>Lead-based industrial processes like battery production and smelters. Lead paint, leaded gasoline. Aerially deposited lead from gasoline may exist in soils along major roads.</td>
<td>Federal: attainment-unclassified (3-month average and quarter) State: Nonattainment (monthly)</td>
</tr>
<tr>
<td>Quarterly Rolling 3-month average</td>
<td>---</td>
<td>---</td>
<td>0.15 μg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>24 hours</td>
<td>25 μg/m³</td>
<td>---</td>
<td>Premature mortality and respiratory effects. Contributes to acid rain. Some toxic air contaminants attach to sulfate aerosol particles.</td>
<td>Industrial processes, refineries and oil fields, mines, natural sources like volcanic areas, salt-covered dry lakes, and large sulfide rock areas.</td>
<td>State Only: attainment</td>
</tr>
</tbody>
</table>
The greatest air pollution effects in the Basin occur from June to September. This condition is generally attributed to large amounts of pollutant emissions, light winds, and shallow vertical atmospheric mixing. This frequently reduces pollutant dispersion, thereby causing elevated air pollution levels. Pollutant concentrations in the Basin vary with location, season, and time of day. Ozone concentrations, for example, tend to be low along the coast, high in the near inland valleys, and low in the far inland areas of the Basin and adjacent desert (ICF International 2009).

The project site is located in the Harbor District of Los Angeles. The average project-area summer (August) high and low temperatures are 79°F and 62°F, respectively. The average project-
area winter (January) high and low temperatures are 66°F and 46°F, respectively. Annual average rainfall for the project area is 1.23 inches (Weather Channel 2009). Wind patterns in the project area display a unidirectional flow, with winds rising primarily from the west at an average speed of just under 4 mph. Calm wind conditions occur 17.48 percent of the time (Servin 2003).

Existing Air Quality Conditions

Existing air quality conditions in the project area can be characterized according to the ambient air quality standards that the federal and state governments have established for the various pollutants (see Table 2-40) and data collected in the region. Monitored data concentrations are typically expressed in terms of parts per million or micrograms per cubic meter (µg/m³). The nearest monitoring station to the project site is the North Long Beach monitoring station, located approximately 6 miles away. The North Long Beach monitoring station is located at 3648 North Long Beach Boulevard in Long Beach, California (California Air Resources Board 2006). This station is also most representative of the project site.

Current cross-street ADT in the vicinity of the North Long Beach monitoring station is 10,000. According to interim-year data provided by the traffic engineering firm for the project area, anticipated cross-street ADT in 2014 will be between 9,701 and 20,074 (Iteris 2009b). It is assumed that cross-street ADT in the project area under existing conditions is significantly lower than the 2014 numbers because projected 2014 ADT takes background traffic growth into consideration. Traffic counts at the North Long Beach monitoring station are similar to traffic counts at the project site.

The monitoring station and the project site experience similar meteorological conditions because of their proximity to the Pacific Ocean. The predominant wind direction at the North Long Beach monitoring station is from the southwest (California Air Resources Board 2006). Los Angeles Harbor, which is near the project site, is located southwest of the monitoring station. Therefore, it is expected that air pollutants originating from Los Angeles Harbor would be blown in the direction of the monitoring station.

The North Long Beach monitoring station is approximately 0.4 mile north of the Interstate 405 (I-405) interchange at Long Beach Boulevard. The project site is adjacent to I-110. According to Caltrans’ Traffic Data Branch, ADT near the I-405 interchange at Long Beach Boulevard ranges from 282,000 to 284,000 (California Department of Transportation 2008), while the highest ADT on I-110 near the C Street interchange is estimated to be 82,609 (California Department of Transportation 2009; Iteris 2009b). The numbers clearly indicate that I-405 experiences significantly higher ADT than I-110 (approximately 29 percent higher).

Air quality monitoring data from the North Long Beach station are summarized in Table 2-38. The air quality monitoring data are from 2007 to 2009, the last 3 years for which complete data are available.

As shown in Table 2-41, the North Long Beach monitoring station has experienced one violation of the state 8-hour ozone standard (2008), no violations of the state 1-hour ozone standard or the federal 8-hour ozone standard, no violations of the federal or state CO standards, four violations of the state 24-hour PM10 standard (2008 and 2009), no violations of the state 24-hour PM10...
standard, and 14 violations of the federal 24-hour standard for particulate matter less than or equal to 2.5 microns in diameter (PM2.5) during the 3-year monitoring period.

Table 2-41: Ambient Air Quality Monitoring Data Measured at the North Long Beach Monitoring Station

<table>
<thead>
<tr>
<th>Pollutant Standards</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Hour Ozone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>0.093</td>
<td>0.089</td>
<td>0.068</td>
</tr>
<tr>
<td>1-hour California designation value</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>1-hour expected peak-day concentration</td>
<td>0.086</td>
<td>0.087</td>
<td>—</td>
</tr>
<tr>
<td>Number of days standard exceeded<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAAQS 1-hour (> 0.09 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8-Hour Ozone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National maximum 8-hour concentration (ppm)</td>
<td>0.074</td>
<td>0.067</td>
<td>0.055</td>
</tr>
<tr>
<td>State maximum 8-hour concentration (ppm)</td>
<td>0.074</td>
<td>0.067</td>
<td>0.055</td>
</tr>
<tr>
<td>State second-highest 8-hour concentration (ppm)</td>
<td>0.067</td>
<td>0.067</td>
<td>0.054</td>
</tr>
<tr>
<td>8-hour national designation value</td>
<td>0.059</td>
<td>0.061</td>
<td>0.058</td>
</tr>
<tr>
<td>8-hour California designation value</td>
<td>0.068</td>
<td>0.068</td>
<td>0.074</td>
</tr>
<tr>
<td>8-hour expected peak-day concentration</td>
<td>0.070</td>
<td>0.072</td>
<td>—</td>
</tr>
<tr>
<td>Number of days standard exceeded<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAAQS 8-hour (> 0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 8-hour (> 0.070 ppm)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National<sup>b</sup> maximum 8-hour concentration (ppm)</td>
<td>2.49</td>
<td>2.17</td>
<td>2.07</td>
</tr>
<tr>
<td>California<sup>c</sup> maximum 8-hour concentration (ppm)</td>
<td>2.49</td>
<td>2.14</td>
<td>1.70</td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>3.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Number of days standard exceeded<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAAQS 8-hour (> 9.0 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 8-hour (> 9.0 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NAAQS 1-hour (> 35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 1-hour (> 20 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Particulate Matter (PM10)<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National<sup>e</sup> maximum 24-hour concentration (µg/m³)</td>
<td>62.0</td>
<td>62.0</td>
<td>35.5</td>
</tr>
<tr>
<td>State<sup>e</sup> maximum 24-hour concentration (µg/m³)</td>
<td>61.0</td>
<td>62.0</td>
<td>—</td>
</tr>
<tr>
<td>State annual average concentration (µg/m³)<sup>e</sup></td>
<td>—</td>
<td>30.2</td>
<td>—</td>
</tr>
<tr>
<td>Number of days standard exceeded<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAAQS 24-hour (> 150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 24-hour (> 50 µg/m³)</td>
<td>1</td>
<td>3</td>
<td>—</td>
</tr>
</tbody>
</table>
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and Finding of No Significant Impact

<table>
<thead>
<tr>
<th>Pollutant Standards</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Matter (PM2.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National maximum 24-hour concentration (µg/m³)</td>
<td>57.2</td>
<td>63.0</td>
<td>—</td>
</tr>
<tr>
<td>National second-highest 24-hour concentration (µg/m³)</td>
<td>45.4</td>
<td>40.9</td>
<td>—</td>
</tr>
<tr>
<td>State maximum 24-hour concentration (µg/m³)</td>
<td>57.2</td>
<td>63.0</td>
<td>—</td>
</tr>
<tr>
<td>State second-highest 24-hour concentration (µg/m³)</td>
<td>45.4</td>
<td>40.9</td>
<td>—</td>
</tr>
<tr>
<td>National annual designation value (µg/m³)</td>
<td>14.3</td>
<td>13.9</td>
<td>—</td>
</tr>
<tr>
<td>National annual average concentration ((g/m³)</td>
<td>14.1</td>
<td>12.9</td>
<td>—</td>
</tr>
<tr>
<td>State annual designation value ((g/m³)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>State annual average concentration ((g/m³))</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Number of days standard exceeded

| NAAQS 24-hour (> 35 (g/m³) | 8 | 6 | 0 |

Notes:

CAAQS = California Ambient Air Quality Standards.
NAAQS = National Ambient Air Quality Standards.
— = insufficient data available to determine the value.

a An exceedance is not necessarily a violation.
b National statistics are based on standard conditions data. In addition, national statistics are based on samplers, using federal reference or equivalent methods.
c State statistics are based on local conditions data, except in the South Coast Air Basin; statistics there are based on standard conditions data. In addition, state statistics are based on California-approved samplers.
d Measurements are usually collected every 6 days.
e The state criteria for ensuring that the data are complete for calculating valid annual averages are more stringent than the national criteria.
f Mathematical estimate of how many days concentrations would have been measured as higher than the level of the standard had each day been monitored.
Sources: California Air Resources Board 2009; U.S. Environmental Protection Agency 2009a.

Attainment Status

EPA has classified the Basin as an extreme nonattainment area for the 8-hour ozone standard, an attainment-maintenance area for both the 1- and 8-hour CO standards, a serious nonattainment area for the 24-hour PM10 standard, and a nonattainment area for both the annual arithmetic mean and the 24-hour PM2.5 standards.

CARB has classified the Basin as an extreme nonattainment area for the 1-hour ozone standard and a nonattainment area for the 8-hour standard, an attainment area for both the 1- and 8-hour CO standards, a nonattainment area for both the annual arithmetic mean and the 24-hour PM10 standards, and a nonattainment area for the annual arithmetic mean PM2.5 standard.

The Basin’s attainment status for each of these pollutants relative to the NAAQS and CAAQS is provided in Table 2-40.

Sensitive Receptors

The South Coast Air Quality Management District (SCAQMD) defines a sensitive receptor as a person in the population who is particularly susceptible to health problems resulting from exposure to air pollutants (e.g., persons at schools, playgrounds, childcare centers, long-term health care facilities, rehabilitation centers, convalescent centers, hospitals, retirement homes, or residences) (South Coast Air Quality Management District 2005a). Within the vicinity of the project area, sensitive receptors include persons at the single-family residences along Figueroa Street; students at Hawaiian Elementary School, located near the intersection of Hawaiian Avenue and E Street (about 0.2 mile from the project site); and children at Robert F. Kennedy Head Start, located near the intersection of Figueroa Street and D Street (less than 100 feet from the project site). Refer to Figure 2-10, below, for the locations of sensitive receptors.

Environmental Consequences

The proposed project would generate operational and construction-related emissions. The methodology used to evaluate operational and construction effects is described below.

Construction Impacts

Construction is a source of fugitive dust and exhaust emissions that can have substantial temporary effects on local air quality (i.e., exceed state air quality standards for PM2.5 and PM10). Such emissions would result from earthmoving and the use of heavy equipment as well as land clearing, ground excavation, cut-and-fill operations, and the construction of roadways. Dust emissions can vary substantially from day to day, depending on the level of activity, the specific operations, and the prevailing weather.
Figure 2-10: Air Quality Sensitive Receptors

Legend
- Project Boundary
- Proposed Improvements
- Construction Detail

EXISTING LAND USE
- Elementary Schools *
- Freeways and Major Roads
- Harbor Facilities
- Harbor Water Facilities
- High-Density Single Family Residential *
- Low-Rise Apartments, Condominiums, and Townhouses *
- Manufacturing, Assembly, and Industrial Services
- Mixed Residential *
- Open Storage
- Petroleum Refining and Processing
- Vacant Undifferentiated
- Wholesaling and Warehousing
- Air Quality Sensitive Receptors
Alternative-1: No-Build Alternative

Under the No-Build Alternative, there would be no changes to existing conditions at the project site; therefore, there would be no construction-related effects.

Alternative-2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction projects lasting less than 5 years are not anticipated to result in adverse air quality effects; given this NEPA determination, FHWA and Caltrans do not require quantification of construction emissions when the construction period for a project is less than 5 years. Because construction of the proposed project would last for approximately 23 months, emissions resulting from construction were not quantified. However, LAHD, as the local sponsor and the responsible agency for the proposed project, requires a quantitative analysis for all of its projects. Therefore, a quantitative construction impact analysis is provided in Appendix H3, Impact Analyses Required for LAHD as the Responsible Agency.

Potential Generation of Adverse Construction-Related Emissions of Ozone Precursors, Carbon Monoxide, and Particulate Matter. The following discussion provides a qualitative analysis of the construction emissions expected to result from the proposed project, in accordance with Caltrans’ Standard Environmental Reference (California Department of Transportation 2010).

Construction is anticipated to last from November 2012 to October 2014, a period of approximately 23 months. Therefore, the proposed project is exempt from federal transportation conformity requirements because construction activities would not occur for more than 5 years.

During construction, short-term degradation of air quality may occur because of particulate emissions (airborne dust) generated by excavation, grading, hauling, and other activities related to construction. Emissions from construction equipment also are anticipated and would include CO, NOX, ROG, directly emitted particulate matter (PM10 and PM 2.5), and toxic air contaminants (aka MSATs) such as diesel exhaust particulate matter. Furthermore, ozone is a regional pollutant that is derived from NOX and ROG in the presence of sunlight and heat.

Site preparation and roadway construction typically involves clearing, cut-and-fill activities, grading, removing or improving existing roadways, building bridges, and paving roadway surfaces. Construction-related effects on air quality from most highway projects would be greatest during the site preparation phase because most engine emissions are associated with the excavation, handling, and transport of soils to and from the site. These activities could temporarily generate enough PM10, PM2.5, and small amounts of CO, SO2, NOx, and VOCs to be of concern. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soil. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. PM10 emissions would vary from day to day, depending on the nature and magnitude of construction activity as well as local weather conditions. PM10 emissions would depend on soil moisture, the silt content of the soil, wind speed, and the amount of equipment operating. Larger dust particles would settle near the source, while fine particles would be dispersed over great distances from the construction site.
In addition to dust-related PM10 emissions, heavy trucks and construction equipment powered by gasoline and diesel engines would generate CO, SO2, NOX, ROG, and some soot particulate (PM10 and PM2.5) in exhaust emissions. If construction activities were to increase traffic congestion in the area, CO and other emissions from traffic would increase slightly while vehicles are delayed. However, such emissions would be temporary and limited to the immediate area surrounding the construction site.

SO2 is generated by oxidation during the combustion of organic sulfur compounds contained in diesel fuel. Off-road diesel fuel meeting Federal standards can contain 300 ppm or more of sulfur, whereas on-road diesel is restricted to less than 15 ppm of sulfur. However, under California law and ARB regulations, off-road diesel fuel used in California must meet the same sulfur and other standards as on-road diesel fuel (not more than 15 ppm), so SO2 related issues due to diesel exhaust will be minimal. Some phases of construction, particularly asphalt paving, would result in short-term odors in the immediate area of the paving sites. Such odors would be quickly dispersed below detectable thresholds as distance from the site increases.

Pursuant Caltrans’ Standard Specifications, Section 14-9.01 the construction contractor will be required to comply with and adhere to all applicable rules and regulations, such as SCAQMD Rule 401 for visible emissions control, Rule 402 for nuisance, Rule 403 for fugitive dust control, Rule 1113 for control of VOC emissions from asphalt operations, Rule 1403 for limiting asbestos emissions, and other pertinent requirements concerning the operation of construction equipment and dust control. Table 2-42 summarizes the applicable measures required by Rule 403. Implementation of these control measures would reduce uncontrolled fugitive dust emissions by approximately 50 percent.

Construction activities for large development projects are estimated by U.S. EPA to add 1.09 tonne (1.2 tons) of fugitive dust per acre of soil disturbed per month of activity. If water or other soil stabilizers are used to control dust, the emissions would be reduced by up to 50 percent. Caltrans’ Standard Specifications (Section 14-9.0230) pertaining to dust minimization requirements requires use of water or dust palliative compounds and will reduce potential fugitive dust emissions during construction.

Furthermore, the LAHD has developed Sustainable Construction Guidelines for reducing air emissions from all LAHD-sponsored construction projects. The Guidelines include the use of BMPs to reduce or eliminate environmental impacts from construction activities.

With implementation of the LAHD Sustainable Construction Guidelines for Reducing Air Emissions as well as applicable specifications, rules, and regulations during the project construction phase, impacts from air pollutant emissions during project construction would not be substantial.

30 Section 14-9.02 is directed at controlling dust. If dust palliative materials other than water are to be used, material specifications are contained in Section 18.
Table 2-42: South Coast Air Quality Management District’s Best Available Control Measures

<table>
<thead>
<tr>
<th>Source Category</th>
<th>Control Measure</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backfilling</td>
<td>01-1 Stabilize backfill material when not actively handling; and</td>
<td>Mix backfill soil with water prior to moving</td>
</tr>
<tr>
<td></td>
<td>01-2 Stabilize backfill material during handling; and</td>
<td>Dedicate water truck or high-capacity hose to backfilling equipment</td>
</tr>
<tr>
<td></td>
<td>01-3 Stabilize soil at completion of activity.</td>
<td>Empty loader bucket slowly so that no dust plumes are generated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimize drop height from loader bucket</td>
</tr>
<tr>
<td>Clearing and grubbing</td>
<td>02-1 Maintain stability of soil through pre-watering of site prior to clearing</td>
<td>Maintain live perennial vegetation where possible</td>
</tr>
<tr>
<td></td>
<td>and grubbing; and</td>
<td>Apply water in sufficient quantities to prevent the generation of dust plumes</td>
</tr>
<tr>
<td></td>
<td>02-2 Stabilize soil during clearing and grubbing activities; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02-3 Stabilize soil immediately after clearing and grubbing activities.</td>
<td></td>
</tr>
<tr>
<td>Clearing forms</td>
<td>03-1 Use water spray to clear forms; or</td>
<td>Use of high-pressure air to clear forms may cause exceedance of rule requirements</td>
</tr>
<tr>
<td></td>
<td>03-2 Use sweeping and water spray to clear forms; or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03-3 Use vacuum system to clear forms.</td>
<td></td>
</tr>
<tr>
<td>Crushing</td>
<td>04-1 Stabilize surface soils prior to operation of support equipment; and</td>
<td>Follow permit conditions for crushing equipment</td>
</tr>
<tr>
<td></td>
<td>04-2 Stabilize material after crushing.</td>
<td>Pre-water material prior to loading into crusher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitor crusher emissions opacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apply water to crushed material to prevent dust plumes</td>
</tr>
<tr>
<td>Cut and fill</td>
<td>05-1 Pre-water soils prior to cut-and-fill activities; and</td>
<td>For large sites, pre-water with sprinklers or water trucks and allow time for penetration</td>
</tr>
<tr>
<td></td>
<td>05-2 Stabilize soil during and after cut-and-fill activities.</td>
<td>Use water trucks/pulls to water soils to depth of cut prior to subsequent cuts</td>
</tr>
<tr>
<td>Demolition – mechanical/manual</td>
<td>06-1 Stabilize wind-erodible surfaces to reduce dust; and</td>
<td>Apply water in sufficient quantities to prevent the generation of visible dust plumes</td>
</tr>
<tr>
<td></td>
<td>06-2 Stabilize surface soil where support equipment and vehicles will operate;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06-3 Stabilize loose soil and demolition debris; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06-4 Comply with SCAQMD Rule 1403.</td>
<td></td>
</tr>
<tr>
<td>Disturbed soil</td>
<td>07-1 Stabilize disturbed soil throughout the construction site; and</td>
<td>Limit vehicular traffic and disturbances on soils where possible</td>
</tr>
<tr>
<td></td>
<td>07-2 Stabilize disturbed soil between structures.</td>
<td>If interior block walls are planned, install as early as possible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apply water or a stabilizing agent in sufficient quantities to prevent the generation of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>visible dust plumes</td>
</tr>
<tr>
<td>Source Category</td>
<td>Control Measure</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Earthmoving activities</td>
<td>08-1 Pre-apply water to depth of proposed cuts; and</td>
<td>Grade each project phase separately, timed to coincide with construction phase</td>
</tr>
<tr>
<td></td>
<td>08-2 Reapply water as necessary to maintain soils in a damp condition and ensure that visible emissions do not exceed 100 feet in any direction; and</td>
<td>Upwind fencing can prevent material movement on site</td>
</tr>
<tr>
<td></td>
<td>08-3 Stabilize soils once earthmoving activities are complete.</td>
<td>Apply water or a stabilizing agent in sufficient quantities to prevent the generation of visible dust plumes</td>
</tr>
<tr>
<td>Importing/exporting of</td>
<td>09-1 Stabilize material while loading to reduce fugitive dust emissions; and</td>
<td>Use tarps or other suitable enclosures on haul trucks</td>
</tr>
<tr>
<td>bulk materials</td>
<td>09-2 Maintain at least 6 inches of freeboard on haul vehicles; and</td>
<td>Check belly-dump truck seals regularly and remove any trapped rocks to prevent spillage</td>
</tr>
<tr>
<td></td>
<td>09-3 Stabilize material while transporting to reduce fugitive dust emissions; and</td>
<td>Comply with track-out prevention/mitigation requirements</td>
</tr>
<tr>
<td></td>
<td>09-4 Stabilize material while unloading to reduce fugitive dust emissions; and</td>
<td>Provide water while loading and unloading to reduce visible dust plumes</td>
</tr>
<tr>
<td></td>
<td>09-5 Comply with California Vehicle Code Section 23114.</td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>10-1 Stabilize soils, materials, slopes.</td>
<td>Apply water to materials to stabilize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintain materials in a crusted condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintain effective cover over materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stabilize sloping surfaces using soil binders until vegetation or ground cover can effectively stabilize the slopes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydroadseed prior to rainy season</td>
</tr>
<tr>
<td>Road shoulder maintenance</td>
<td>11-1 Apply water to unpaved shoulders prior to clearing; and</td>
<td>Installation of curbing and/or paving of road shoulders can reduce recurring maintenance costs</td>
</tr>
<tr>
<td></td>
<td>11-2 Apply chemical dust suppressants and/or washed gravel to maintain a stabilized surface after completing road shoulder maintenance.</td>
<td>Use of chemical dust suppressants can inhibit vegetation growth and reduce future road shoulder maintenance costs</td>
</tr>
<tr>
<td>Screening</td>
<td>12-1 Pre-water material prior to screening; and</td>
<td>Dedicate water truck or high-capacity hose to screening operation</td>
</tr>
<tr>
<td></td>
<td>12-2 Limit fugitive dust emissions to opacity and plume length standards; and</td>
<td>Drop material through the screen slowly and minimize drop height</td>
</tr>
<tr>
<td></td>
<td>12-3 Stabilize material immediately after screening.</td>
<td>Install wind barrier with a porosity of no more than 50% upwind of screen to the height of the drop point</td>
</tr>
<tr>
<td>Staging areas</td>
<td>13-1 Stabilize staging areas during use; and</td>
<td>Limit size of staging area</td>
</tr>
<tr>
<td></td>
<td>13-2 Stabilize staging area soils at project completion.</td>
<td>Limit vehicle speeds to 15 miles per hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit number and size of staging area entrances/exits</td>
</tr>
<tr>
<td>Source Category</td>
<td>Control Measure</td>
<td>Guidance</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Stockpiles/bulk material handling</td>
<td>14-1 Stabilize stockpiled materials; and Stockpiles within 100 yards of off-site occupied buildings must not be greater than 8 feet in height or must have a road bladed to the top to allow water truck access or must have an operational water irrigation system that is capable of complete stockpile coverage.</td>
<td>Add or remove material from the downwind portion of the storage pile Maintain storage piles to avoid steep sides or faces</td>
</tr>
<tr>
<td>Traffic areas for construction activities</td>
<td>15-1 Stabilize all off-road traffic and parking areas; and 15-2 Stabilize all haul routes; and 15-3 Direct construction traffic over established haul routes.</td>
<td>Apply gravel/paving to all haul routes as soon as possible to all future roadway areas Barriers can be used to ensure vehicles are used only on established parking areas/haul routes</td>
</tr>
<tr>
<td>Trenching</td>
<td>16-1 Stabilize surface soils where trencher or excavator and support equipment will operate; and 16-2 Stabilize soils at the completion of trenching activities.</td>
<td>Pre-watering of soils prior to trenching is an effective preventive measure. For deep trenching activities, pre-trench to 18 inches, soak soils via the pre-trench, and resume trenching Washing mud and soils from equipment at the conclusion of trenching activities can prevent crusting and drying of soil on equipment</td>
</tr>
<tr>
<td>Truck loading</td>
<td>17-1 Pre-water material prior to loading; and 17-2 Ensure that freeboard exceeds 6 inches (California Vehicle Code 23114).</td>
<td>Empty loader bucket such that no visible dust plumes are created Ensure that the loader bucket is close to the truck to minimize drop height while loading</td>
</tr>
<tr>
<td>Turf overseeding</td>
<td>18-1 Apply sufficient water immediately prior to conducting turf vacuuming activities to meet opacity and plume length standards; and 18-2 Cover haul vehicles prior to exiting the site.</td>
<td>Haul waste material immediately off site</td>
</tr>
<tr>
<td>Unpaved roads/parking lots</td>
<td>19-1 Stabilize soils to meet the applicable performance standards; and 19-2 Limit vehicular travel to established unpaved roads (haul routes) and unpaved parking lots.</td>
<td>Restricting vehicular access to established unpaved travel paths and parking lots can reduce stabilization requirements</td>
</tr>
<tr>
<td>Vacant land</td>
<td>20-1 In instances where vacant lots are 0.10 acre or larger and have a cumulative area of 500 square feet or more and are driven over and/or used by motor vehicles and/or off-road vehicles, prevent motor vehicle and/or off-road vehicle trespassing, parking, and/or access by installing barriers, curbs, fences, gates, posts, signs, shrubs, trees, or other effective control measures.</td>
<td>Source: South Coast Air Quality Management District 2005b.</td>
</tr>
</tbody>
</table>
Potential Generation of Adverse Construction-Related Toxic Air Contaminants. The greatest potential for TAC emissions would be related to diesel particulate emissions associated with heavy equipment operations during grading and excavation activities. According to SCAQMD methodology, health effects from carcinogenic air toxics are usually described in terms of individual cancer risk.

Individual cancer risk is the likelihood that a person exposed to concentrations of TACs over a 70-year lifetime will contract cancer, based on the use of standard risk-assessment methodology. Given the construction schedule of 23 months, and considering that most grading and excavation activities would occur intermittently during different construction phases, the proposed project would not result in a long-term (i.e., 70 years) substantial source of TAC emissions, with no residual emissions after construction and corresponding individual cancer risk.

Potential Odors during Construction. During project construction, potential sources of objectionable odors would be related to the operation of diesel-powered equipment and to off-gas emissions during road-building activities, such as paving and asphalting. Such odors, however, would be short-term and limited to the area where the specific activity is occurring. The perception of these odors is dependent upon climatic conditions such as temperature, humidity, wind speed, and wind direction. Furthermore, SCAQMD Rule 1113 (Architectural Coatings) limits the amount of volatile organic compounds (VOCs) from paving, asphalt, concrete curing, and cement coatings operations. Construction of the proposed project would be performed in compliance with SCAQMD Rules, which limit VOC emissions. In addition, construction activities would be located within fenced, secured sites as far from receptors as feasible, with no public access. Due to the relatively short-term nature of construction odors, controlled access, and the distance to the nearest receptors, odors are not likely to affect a substantial number of people.

Operational Impacts

Alternative-1: No-Build Alternative

Under the No-Build Alternative, there would be no changes to existing conditions at the project site; therefore, a regional conformity analysis or a project-level conformity analysis is not required. Due to no changes to existing conditions, the alternative would also not result in project-related emissions of MSATs or operational emissions.

Alternative-2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Regional Transportation Conformity

Conformity with the RTP. The proposed project is listed in the 2008 Regional Transportation Plan: Making the Connections financially constrained Regional Transportation Plan under Project ID# LA0F030 (I-110 Freeway/C Street Interchange Improvements—Modification of Existing Interchange) (Southern California Association of Governments 2008a) which was found to conform by SCAG on May 8, 2008 (U.S. Department of Transportation 2008a), and FHWA and
FTA made a regional conformity determination on November 17, 2008 (U.S. Department of Transportation 2008a). The project is also included in SCAG’s financially constrained 2008 Regional Transportation Improvement Program Project ID# LA0F030 (Project Will Improve Flow of Traffic from I-110 Freeway On-/Off-Ramps at C Street by Consolidating Two Closely Spaced Intersections into One) (Southern California Association of Governments 2008b), page 70. The SCAG Regional Transportation Improvement Program was determined to conform by FHWA and FTA on November 17, 2008 (U.S. Department of Transportation 2008a). The design concept and scope of the proposed project is consistent with the project description in the 2008 RTP and the 2008 RTIP, and the open to traffic assumptions of the SCAG’s regional emissions analysis.

Project-level Conformity—Carbon Monoxide

The proposed project is located in an attainment-maintenance area with respect to the federal CO standard (Table 2-40). Consequently, the effects of localized CO hot-spot emissions were evaluated using the *Transportation Project-level Carbon Monoxide Protocol* (CO Protocol), which was developed for Caltrans by the Institute of Transportation Studies at the University of California, Davis (Garza et al. 1997). The CO Protocol provides a qualitative step-by-step procedure to determine whether project-related CO concentrations have the potential to generate new air quality violations, worsen existing violations, or delay attainment of the NAAQS or CAAQS for CO.

Potential Violations of Carbon Monoxide NAAQS or CAAQS

The project was evaluated using the CO Protocol described above. The CO Protocol includes two flowcharts that illustrate when a detailed CO analysis needs to be prepared. The first flowchart, Figure 1 of the CO Protocol, is used to ascertain the CO modeling requirements for new projects. The questions (shown in the first flowchart) relevant to the project and the answers to those questions are listed below.

3.1.1: Is the project exempt from all emissions analyses?

Response: No, the proposed project does not qualify for an exemption. As shown in Table 1 of the CO Protocol, the proposed project does not fall into a project category that is exempt from all emissions analysis (proceed to 3.1.2).

3.1.2: Is the project exempt from regional emissions analyses?

Response: Yes, the proposed project is exempt from a regional emissions analysis. The proposed project is classified as an interchange reconfiguration project. As shown in Table 2 of the CO Protocol, interchange reconfiguration projects are exempt from regional emissions analysis (proceed to 3.1.9).

3.1.9: The conclusion from this series of questions and answers is that the project needs to be examined for its local air effects (proceed to Section 4, Figure 3 of the CO Protocol).
On the basis of the answers to the first flowchart, a second flowchart, Figure 3 of the CO Protocol, is used to determine the level of local CO effect analysis required for the project. The questions applicable to the project in the second flowchart, and the answers to those questions are listed below.

Level 1: Is the project in a CO nonattainment area?
Response: No, the South Coast Air Basin is classified as an attainment-maintenance area for the federal CO standards (Table 2-37).

Level 1: Was the area redesignated as “attainment” after the 1990 Clean Air Act?
Response: Yes, the South Coast Air Basin was reclassified to attainment-maintenance from serious nonattainment, effective June 11, 2007.

Level 1: Has “continued attainment” been verified with the local air district, if appropriate?
Response: Yes, based on ambient air monitoring data collected by SCAQMD, the South Coast Air Basin has continually met the federal ambient air quality standards for CO since 2003 (California Air Resources Board 2009) (Proceed to Level 7).

Level 7: Does project worsen air quality?
Response: Yes, according to Section 4.7.1 of the CO Protocol, the following criteria provide a basis for determining if a project has the potential to worsen localized air quality:

- *The project significantly increases the percentage of vehicles operating in the cold-start mode. Increasing the number of vehicles in cold-start mode by as little as 2% should be considered potentially significant.*

 Given the nature of the proposed project, which is to reconfigure the existing I-110/C Street interchange, there would be no measurable effect on the percentage of vehicles operating in the cold-start mode.

- *The project significantly increases traffic volumes. Increases in traffic volumes in excess of 5% should be considered potentially significant. Increasing the traffic volume by less than 5% may still be potentially significant if there is also a reduction in average speeds.*

Tables 2-43 and 2-44, below, summarize the anticipated intersection volumes and the percentages pertaining to growth, respectively, for with- and without-project conditions.

As shown in Table 2-44, increases in traffic volumes are anticipated to exceed the CO Protocol’s 5% traffic volume increase criteria; therefore, the increase in traffic volumes is considered potentially significant.
Table 2-43. Intersection Volumes for With- and Without-Project Conditions

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueroa Street/C Street</td>
<td>965</td>
</tr>
<tr>
<td>Figueroa Street/John S. Gibson Blvd.</td>
<td>1,776</td>
</tr>
<tr>
<td>Average^b</td>
<td>1,371</td>
</tr>
</tbody>
</table>

2014 No Build Alternative

<table>
<thead>
<tr>
<th>Intersection</th>
<th>PM Peak-hour Volumes^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueroa Street/C Street</td>
<td>2,542</td>
</tr>
<tr>
<td>Figueroa Street/John S. Gibson Blvd.</td>
<td>3,015</td>
</tr>
</tbody>
</table>

2014 Build Alternative

<table>
<thead>
<tr>
<th>Intersection</th>
<th>PM Peak-hour Volumes^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueroa Street/Harry Bridges Blvd.</td>
<td>3,118</td>
</tr>
</tbody>
</table>

2035 No-Build Alternative

<table>
<thead>
<tr>
<th>Intersection</th>
<th>PM Peak-hour Volumes^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueroa Street/C Street</td>
<td>2,852</td>
</tr>
<tr>
<td>Figueroa Street/John S. Gibson Blvd.</td>
<td>3,445</td>
</tr>
</tbody>
</table>

2035 Build Alternative

<table>
<thead>
<tr>
<th>Intersection</th>
<th>PM Peak-hour Volumes^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueroa Street/Harry Bridges Blvd.</td>
<td>3,579</td>
</tr>
</tbody>
</table>

^a The most severe traffic conditions were determined to be in the PM peak hour under interim and design-year conditions; therefore, the PM peak hour was chosen for the intersection volume analysis.

Sources: Akkinepally pers. comm.; Iteris 2009a and 2011

Table 2-44. Percentage Increase in Volumes between With- and Without-Project Conditions

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Percentage Increase^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 No-Build Alternative to 2014 Build Alternative</td>
<td>3.3%</td>
</tr>
<tr>
<td>2035 No-Build Alternative to 2035 Build Alternative</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

^a The percentage increase was calculated by comparing the intersection under the no-build alternative with the greatest volumes (Figueroa St/ John S. Gibson Blvd intersection) shown in Table 2-43 with the build intersection volumes. This was done because the project would combine two intersections under the no-build alternative into one intersection under the build alternative, and summing the intersection volumes under the no-build alternative would artificially inflate intersection volumes.

Sources: Akkinepally pers. comm.; Iteris 2009a.
- The project worsens traffic flow. For uninterrupted roadway segments, a reduction in average speeds (within a range of 3 to 50 miles per hour) should be regarded as worsening traffic flow. For intersection segments, a reduction in average speed or an increase in average delay should be considered a worsening of traffic flow.

Intersection LOS and average delay data provided by the project traffic engineer, Iteris, indicates average delays will improve with implementation of the proposed project. Table 2-45 summarizes LOS and average delays for with- and without-project conditions.

Table 2-45. LOS and Average Delays for With- and Without-Project Conditions

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delaya</td>
</tr>
<tr>
<td>Figueroa Street and I-110 Ramps/C Street</td>
<td>B</td>
<td>11.1</td>
</tr>
<tr>
<td>Figueroa Street/POLA and John S. Gibson Blvd./Harry Bridges Blvd.</td>
<td>A</td>
<td>8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delaya</td>
</tr>
<tr>
<td>Figueroa Street and I-110 Ramps/C Street</td>
<td>F</td>
<td>122.5</td>
</tr>
<tr>
<td>Figueroa Street/POLA and John S. Gibson Blvd./Harry Bridges Blvd.</td>
<td>B</td>
<td>17.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delaya</td>
</tr>
<tr>
<td>Figueroa Street/John S. Gibson Blvd. and Harry Bridges Blvd. and I-110 Ramps</td>
<td>B</td>
<td>18.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delaya</td>
</tr>
<tr>
<td>Figueroa Street and I-110 Ramps/C Street</td>
<td>F</td>
<td>165.1</td>
</tr>
<tr>
<td>Figueroa Street/POLA and John S. Gibson Blvd./Harry Bridges Blvd.</td>
<td>C</td>
<td>21.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delaya</td>
</tr>
<tr>
<td>Figueroa Street/John S. Gibson Blvd. and Harry Bridges Blvd. and I-110 Ramps</td>
<td>C</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Note [Table 2-45]:

The intersections analyzed for build and no-build conditions are not the same because the proposed project would...
replace the two existing intersections (one at C Street/Figueroa Street and the other at John S. Gibson Boulevard/Harry Bridges Boulevard/Figueroa Street) with one new intersection that would align Harry Bridges Boulevard and John S. Gibson Boulevard with the C Street interchange.

\[\text{delay} = \text{average vehicle delay in seconds} \]

\[\text{a} \quad \text{averaging the delay associated with the two no-build intersections to compare the delay with the one build intersection was recommended by the project traffic engineer, Iteris.} \]

Adapted from Iteris 2009c and 2011, and Akkinepally pers. comm.

As shown in Table 2-45, the No-Build Alternative intersections (Figueroa Street and I-110 ramps/C Street and Figueroa Street/POLA and John S. Gibson Boulevard/Harry Bridges Boulevard) are represented as one intersection (Figueroa Street/John S. Gibson Boulevard and Harry Bridges Boulevard/I-110 ramps) under the Build Alternative. A comparison of intersection delay between the No-Build Alternative and Build Alternative indicates that implementation of the proposed project would result in a substantial improvement in delay at the Figueroa Street and I-110 ramps/C Street intersection (from 122.5 seconds [LOS F] to 18.5 seconds [LOS B] [85% improvement in delay] in the AM peak hour and from 243.6 seconds [LOS F] to 20.4 seconds [LOS C] [92% improvement in delay] in the PM peak hour).

At the Figueroa Street/POLA and John S. Gibson Boulevard/Harry Bridges Boulevard intersection, implementation of the proposed project would result in a slight degradation in delay (from 17.9 seconds [LOS B] to 18.5 seconds [LOS B] [3% degradation in delay] in the AM peak hour and from 19.0 seconds [LOS B] to 20.4 seconds [LOS C] [7% degradation in delay] in the PM peak hour). However, the slight degradation in delay at the Figueroa Street/POLA and John S. Gibson Boulevard/Harry Bridges Boulevard intersection is considered minor when compared with the substantial improvement in delay that would result at the Figueroa Street and I-110 ramps/C Street intersection.

Level 7: Is the project suspected of resulting in higher CO concentrations than those existing within the region at the time of attainment demonstration?

Note: The Final 2007 Air Quality Management Plan (AQMP) is the most recent AQMP; no additional regional or hot-spot CO modeling was conducted to demonstrate further attainment of the 8-hour average ozone standard. This is because SCAQMD submitted a request to EPA to redesignate the SCAB as an attainment area for the 8-hour federal CO standard (South Coast Air Quality Management District 2007). Therefore, the 2003 AQMP is used as the basis for the analysis that follows. In addition, the 2003 AQMP did not provide model input assumptions. Instead, it referred to the 1992 CO plan in which a general description of input assumptions was provided (South Coast Air Quality Management District 2003).
Response: No. According to Section 4.7.2 of the CO Protocol, project sponsors are encouraged to use the following criteria to determine the potential for the project to result in higher CO concentrations than those existing within the region at the time of attainment demonstration:

a. **The receptors at the location under study are at the same distance or farther from the traveled roadway than the receptors at the location where attainment has been demonstrated.**

A receptor distance of 3 meters from the traveled roadway was used in the CO attainment demonstration prepared for the 2003 AQMP. With respect to the proposed project, all sensitive receptors are located more than 3 meters from the traveled roadway.

b. **The roadway geometry of the two locations is not significantly different. An example of a significant difference would be a larger number of lanes at the location under study compared to the location where attainment has been demonstrated.**

In the CO attainment demonstration prepared for the 2003 AQMP, four approach lanes, in all directions, were used to model the intersections at Wilshire/Veteran and La Cienega/Century, while three approach lanes, in all directions, were used to model the intersections at Sunset/Highland and Long Beach/Imperial. With respect to the proposed project, there would be four approach lanes or fewer under the Build Alternative, with the exception of westbound Harry Bridges Boulevard, which has five approach lanes: two left-turn lanes, two through lanes, and one right-turn lane. However, in comparing the total number of intersection approach lanes, the intersections where attainment has been demonstrated had 12 to 16 approach lanes each, compared with 16 approach lanes for the proposed project’s Build Alternative.

c. **Expected worse-case meteorology at the location under study is the same or better than the worst-case meteorology at the location where attainment has been demonstrated. Relevant meteorological variables include wind speed, wind direction, temperature, and stability class.**

In the CO attainment demonstration prepared for the 2003 AQMP, a wind speed of 1 meter per second, stability class D, and worst-case wind angle were used as modeling assumptions. These assumptions are considered worst case; as such, the expected worst-case meteorology at the location under study would be the same or better. In addition, there is no meaningful difference in temperature between the intersections where attainment has been demonstrated and the proposed project’s intersection location.

d. **Traffic lane volumes at the location under study are the same or lower than those at the location where attainment has been demonstrated.**
A comparison of the traffic volumes per lane used for modeling in the attainment demonstration and the volumes per lane projected to occur at the study intersection locations is provided in Tables 2-46 and 2-47, respectively.

Table 2-46. Peak-hour Approach Lane Volumes Used in the 2003 AQMP Attainment Demonstration

<table>
<thead>
<tr>
<th>Location</th>
<th>Eastbound (AM/PM)</th>
<th>Westbound (AM/PM)</th>
<th>Southbound (AM/PM)</th>
<th>Northbound (AM/PM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilshire and Veteran (four lanes all directions)</td>
<td>1,238/517</td>
<td>458/829</td>
<td>180/350</td>
<td>140/233</td>
</tr>
<tr>
<td>Sunset and Highland (three lanes all directions)</td>
<td>472/588</td>
<td>447/513</td>
<td>768/611</td>
<td>517/746</td>
</tr>
<tr>
<td>La Cienega and Century (four lanes all directions)</td>
<td>635/561</td>
<td>473/682</td>
<td>346/507</td>
<td>205/419</td>
</tr>
<tr>
<td>Long Beach and Imperial (three lanes all directions)</td>
<td>406/673</td>
<td>587/467</td>
<td>160/315</td>
<td>252/383</td>
</tr>
</tbody>
</table>

Source: South Coast Air Quality Management District 2003.

Table 2-47. Proposed Project Peak-hour Approach Lane Volumes

<table>
<thead>
<tr>
<th>Alternative/Roadway Intersection</th>
<th>Eastbound a (AM/PM)</th>
<th>Westbound a (AM/PM)</th>
<th>Southbound a (AM/PM)</th>
<th>Northbound a (AM/PM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Year (2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figueroa Street/Harry Bridges Blvd.</td>
<td>190/242</td>
<td>29/13</td>
<td>78/54</td>
<td>133/109</td>
</tr>
<tr>
<td>Opening Year (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figueroa Street/Harry Bridges Blvd.</td>
<td>150/164</td>
<td>252/313</td>
<td>220/190</td>
<td>77/82</td>
</tr>
<tr>
<td>Design Year (2035)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figueroa Street/Harry Bridges Blvd.</td>
<td>212/174</td>
<td>270/345</td>
<td>266/234</td>
<td>128/114</td>
</tr>
</tbody>
</table>

Lanes: four eastbound, five westbound, three southbound, and four northbound (total lanes = 16)

Note: AM/PM volumes were calculated by summing all volumes associated with the quadrant (e.g., the sum of all lanes in the eastbound quadrant, including left-turn, through, and right-turn lanes). The total volume was then divided by the total number of lanes for the quadrant and rounded to the nearest whole number.

Source: Iteris 2009a; 2011.

As shown above in Tables 2-46 and 2-47, for both the opening (2014) and design (2035) years, eastbound, westbound, and northbound approach-lane
traffic volumes during the AM and PM peak hours under the proposed project would be lower than the volumes at intersections where attainment has been demonstrated. The proposed project’s southbound approach-lane volumes in 2014 and 2035 for the AM peak hour would be lower than the volumes at the Sunset/Highland and La Cienega/Century intersections but higher than the volumes at the Wilshire/Veteran and Long Beach/Imperial intersections. During the PM peak hour, southbound lane volumes in 2014 and 2035 would be lower than the volumes at intersections where attainment has been demonstrated.

In summary, the proposed project’s approach-lane traffic volumes would be lower than all approach-lane volumes for the intersections where attainment has been demonstrated, except for the AM peak-hour approach-lane volumes at the Wilshire/Veteran and Long Beach/Imperial intersections.

e. **Percentage of vehicles operating in cold-start mode at the location under study is the same or lower than the percentage at the location where attainment has been demonstrated.**

The proposed project would not increase the percentage of vehicles operating in cold-start mode in the project area because no parking structures would be constructed as part of the proposed project.

f. **Percentage of heavy-duty gas trucks at the location under study is the same or lower than the percentage at the location where attainment has been demonstrated.**

Because the intersections where attainment has been demonstrated (Table 2-45) are located along urban arterial roadways (that contain a similar mix of urban land uses) within the SCAB, and the intersection in the project area (Table 2-46) is a main access point to the port, the percentage of heavy-duty gas trucks is anticipated to be higher than the percentage at the location where attainment has been demonstrated.

Although the percentage of heavy-duty gas trucks is anticipated to be higher, as shown in Tables 2-48 and 2-49, the percentage of heavy-duty trucks on the cross-streets and the mainline is not anticipated to change with implementation of the proposed project.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-48. Cross-street Truck Percentages

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>2009(^a)</th>
<th>2014(^a)</th>
<th>2035(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Street East of Figueroa Street</td>
<td>n/a</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Figueroa Street North of I-110 Ramps</td>
<td>n/a</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>John S. Gibson Blvd. South of I-110 Ramps</td>
<td>n/a</td>
<td>28%</td>
<td>29%</td>
</tr>
<tr>
<td>Harry Bridges Blvd. East of Figueroa Street/John S. Gibson Blvd.</td>
<td>n/a</td>
<td>33%</td>
<td>31%</td>
</tr>
</tbody>
</table>

\(^a\) The truck percentages for the build and no-build conditions were reported to be the same.

Source: Iteris 2009b.

Table 2-49. Mainline Truck Percentages

<table>
<thead>
<tr>
<th>Segment</th>
<th>2009(^a)</th>
<th>2014(^a)</th>
<th>2035(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C Street Off-Ramp</td>
<td>11%</td>
<td>17%</td>
<td>17%</td>
</tr>
<tr>
<td>I-110 Off-ramp to C Street</td>
<td>4%</td>
<td>13%</td>
<td>10%</td>
</tr>
<tr>
<td>I-110 between C Street Off- and On-Ramps</td>
<td>11%</td>
<td>17%</td>
<td>18%</td>
</tr>
<tr>
<td>I-110 On-ramp from C Street</td>
<td>31%</td>
<td>34%</td>
<td>35%</td>
</tr>
<tr>
<td>I-110 between C Street On-ramp and Anaheim Off-Ramp</td>
<td>14%</td>
<td>20%</td>
<td>19%</td>
</tr>
</tbody>
</table>

Note:
Truck percentages for southbound traffic were assumed to be the same as truck percentages for northbound traffic.

\(^a\) Truck percentages are the same for the build and no-build conditions.

Source: Iteris 2009b.

g. For projects involving intersections, average delay and queue length for each approach is the same or smaller for the intersection under study compared to those found in the intersection where attainment has been demonstrated.

As shown above in Tables 2-46 and 2-47, opening-year (2014) and design-year (2035) approach-lane traffic volumes during AM and PM peak hours for eastbound, westbound, and northbound traffic under the proposed project would be lower than the volumes at all intersection locations where attainment has been demonstrated. The proposed project’s southbound lane volumes for the AM peak hour would be lower than the volumes at the Sunset/Highland and La Cienega/Century intersections but higher than the volumes at the Wilshire/Veteran and Long Beach/Imperial intersections. During the PM peak hour, southbound lane volumes for the proposed project would be lower than the volumes at all intersections where attainment has been demonstrated.

Therefore, it is assumed that average delay and queue length for each approach would be the same or smaller at the proposed project’s intersection compared with the intersections where attainment has been demonstrated.
Background concentration at the location under study is the same or lower than the background concentration at the location where attainment has been demonstrated.

As shown earlier in Table 2-41, background CO concentrations in the project area have ranged from 2.49 ppm to 3.36 ppm during the past few years for the 8-hour averaging period. This compares with the 8-hour average maximum background concentrations, which range from 14.5 ppm in 1997 to 7.7 ppm in 2005 at the Long Beach/Imperial intersection, 2.3 ppm in 1997 to 1.3 ppm in 2005 at the Wilshire/Veteran intersection, 3.3 ppm in 1997 to 1.8 ppm in 2005 at the Sunset/Highland intersection, and 8.0 ppm in 1997 to 3.8 ppm in 2005 in the 2003 AQMP attainment demonstration.

On the basis of the screening criteria from Section 4.7.2 of the CO Protocol, under the proposed project, the intersection of Figueroa Street/John S. Gibson Boulevard and Harry Bridges Boulevard/I-110 ramps is not anticipated to cause project area CO concentrations to exceed levels that existed in the region at the time of attainment demonstration. Also, the intersections in the project area would operate at LOS B under existing with-project conditions and LOS C under interim (2014) and design-year (2035) with-project conditions. Therefore, no violations of the CAAQS or the NAAQS pertaining to CO are anticipated to occur with implementation of the proposed project. There would be no adverse effects (NEPA) or significant impacts (CEQA).

Project-level Conformity—Particulate Matter

The proposed project is located in a serious nonattainment area for the federal PM10 standard and a nonattainment area for the federal PM2.5 standard (Table 2-40). The effects of localized particulate matter were evaluated using Transportation Conformity Guidance for Qualitative Hot-spot Analyses in PM2.5 and PM10 Nonattainment and Maintenance Areas, a guidance manual from EPA and FHWA (Federal Highway Administration and U.S. Environmental Protection Agency 2011). This guidance provides a qualitative screening procedure to identify projects of air quality concern (POAQC). Please refer to the AQSR (ICF International 2011) for an expanded discussion of this process.

Potential Violations of PM2.5 and PM10 CAAQS or NAAQS. EPA’s transportation conformity rules stipulate that transportation projects that are considered a POAQC or any other project that is identified by the PM2.5 SIP as a localized air quality concern must undergo hot-spot analysis in PM2.5 nonattainment and maintenance areas. For areas without approved conformity SIPs, a PM10 hot-spot analysis is to be performed only for a POAQC. For areas with an approved conformity SIP, the 2006 Particulate Matter Conformity Final Rule does not apply, and an analysis must be performed that meets the requirements in the approved PM10 SIP until the SIP is updated and subsequently approved by EPA.

The CFR indicates that a conformity SIP for particulate matter has not been approved for the Basin by EPA (40 CFR 52.223). Consequently, if the project is a POAQC, it must undergo PM10 (and PM2.5) hot-spot conformity determinations (O’Connor pers. comm.). Because the proposed project is located in a serious nonattainment area with respect to the federal PM10 standard and a
nonattainment area with respect to the federal PM2.5 standard (see Table 2-40) and violations of the NAAQS currently exist, a hot-spot analysis must be performed for PM10 and PM2.5.

As shown in Table 2-50, ADT on I-110 is anticipated to exceed the FHWA and EPA POAQC ADT criterion of 10,000 diesel trucks (diesel truck traffic of 8 percent or more for roadways with ADT of 125,000 or more). However, Table 2-47 also indicates that implementation of the proposed project would not affect diesel truck volumes or percentages under no-build or build conditions. Consequently, the Build Alternative is not considered a POAQC for PM10 and PM2.5 because it would not have an effect on roadway diesel truck volumes or percentages (i.e., the difference in truck percentages would be below 5 percent between the No-Build Alternative and the Build Alternative).

Table 2-50: Mainline ADT and Truck ADT on I-110

<table>
<thead>
<tr>
<th>Segment</th>
<th>2009(^a) Trucks</th>
<th>2009(^a)</th>
<th>2014(^a) Trucks</th>
<th>2014(^a)</th>
<th>2035(^a) Trucks</th>
<th>2035(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C Street Off-Ramp</td>
<td>79,066</td>
<td>8,697</td>
<td>90,775</td>
<td>15,432</td>
<td>113,975</td>
<td>19,376</td>
</tr>
<tr>
<td>I-110 Off-Ramp to C Street</td>
<td>6,086</td>
<td>243</td>
<td>8,240</td>
<td>1,071</td>
<td>9,446</td>
<td>945</td>
</tr>
<tr>
<td>I-110 between C Street Off- and On-Ramps</td>
<td>76,197</td>
<td>8,382</td>
<td>86,178</td>
<td>14,650</td>
<td>109,139</td>
<td>19,645</td>
</tr>
<tr>
<td>I-110 On-Ramp from C Street</td>
<td>8,094</td>
<td>2,509</td>
<td>8,811</td>
<td>2,996</td>
<td>8,791</td>
<td>3,077</td>
</tr>
<tr>
<td>I-110 between C Street On-Ramp and Anaheim Off-Ramp</td>
<td>82,609</td>
<td>11,565</td>
<td>92,967</td>
<td>18,593</td>
<td>114,552</td>
<td>21,765</td>
</tr>
</tbody>
</table>

Notes:
\(^a\) Mainline annual average daily traffic (AADT) was calculated by summing southbound and northbound AADT for each segment. According to the project traffic engineers, AADT volumes are the same for the build and no-build conditions.
\(^b\) Truck ADT was obtained by multiplying mainline ADT by the truck percentages in Table 2-45.

Adapted from Iteris 2009b; California Department of Transportation 2009.

Because the proposed project is not considered a POAQC, the Clean Air Act and 40 CFR 93.116 requirements were met without a hot-spot analysis. The Build Alternative has been found to not be of air quality concern under 40 CFR 93.123(b)(1); therefore, implementation of the proposed project is not anticipated to contribute to additional exceedances of the NAAQS or the CAAQS. In addition, Table 2-51, which provides a summary of daily operational emissions associated with the proposed project, indicates there would be a decrease in PM10 and PM2.5 emissions with implementation of the proposed project compared with the no-build condition. Under the 2014 build scenario, PM10 emissions would decrease by 1.336 pounds per day, and PM2.5 emissions would decrease by 0.666 pound per day compared with the no-build condition. Under the 2035 build scenario, PM10 emissions would decrease by 1.063 pounds per day, and PM2.5 emissions would decrease by 0.377 pounds per day compared with the no-build condition. In addition, the proposed project has also undergone the required interagency consultation (IAC) process (40 CFR 93.105). The IAC confirmed on January 26, 2010, that the proposed project is not a POAQC. Documentation from the IAC meeting is included in Appendix H2, IAC Documentation. Therefore, there would be no adverse effect (NEPA) and no significant impact (CEQA).
Table 2-51: Summary of Daily Operational Emissions

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT</th>
<th>ROG(^a)</th>
<th>NO(_X)</th>
<th>CO</th>
<th>PM10(^b)</th>
<th>PM2.5(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>21,217</td>
<td>11.625</td>
<td>67.395</td>
<td>165.837</td>
<td>8.351</td>
<td>1.947</td>
</tr>
<tr>
<td>2014 No Build</td>
<td>27,230</td>
<td>15.681</td>
<td>114.268</td>
<td>169.257</td>
<td>10.808</td>
<td>2.582</td>
</tr>
<tr>
<td>2014 Build</td>
<td>25,152</td>
<td>9.127</td>
<td>56.551</td>
<td>127.619</td>
<td>42.660</td>
<td>1.916</td>
</tr>
<tr>
<td>2035 No Build</td>
<td>34,756</td>
<td>12.134</td>
<td>107.207</td>
<td>110.645</td>
<td>12.296</td>
<td>1.909</td>
</tr>
<tr>
<td>2035 Build</td>
<td>32,528</td>
<td>4.871</td>
<td>26.467</td>
<td>64.235</td>
<td>11.233</td>
<td>1.532</td>
</tr>
</tbody>
</table>

Alternative Differences

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT</th>
<th>ROG(^a)</th>
<th>NO(_X)</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Build – 2014 No Build</td>
<td>-2,078</td>
<td>-6.555</td>
<td>-57.717</td>
<td>-41.638</td>
<td>-1.336</td>
<td>-0.666</td>
</tr>
<tr>
<td>2035 Build – 2035 No Build</td>
<td>-2,228</td>
<td>-7.263</td>
<td>-80.740</td>
<td>-46.409</td>
<td>-1.063</td>
<td>-0.377</td>
</tr>
</tbody>
</table>

\(^a\) CT-EMFAC does not calculate ROG, only TOG. Therefore, emissions of ROG were calculated from CT-EMFAC-estimated TOG emissions by multiplying the TOG emissions by the ratio of ROG to TOG obtained from EMFAC 2007.

\(^b\) Calculations of entrained dust are included and were performed according to the emissions factor equation found in EPA's Compilation of Air Pollutant Emission Factors, AP-42 Section 13.2.1:

\[
\text{Road Emissions (pounds/day)} = \text{Daily VMT} \times \text{Emission Factor (E)}
\]

EPA Emission Factor Formula: \(E = [k(sL/2)^{0.91} \times (W)^{1.02}] \times (1-P/4N)\), where \(E = \text{particulate emissions factor (having units matching the units of k)}\), \(k = \text{particle size multiplier for particle size range and units of interest, sL = roadway silt loading (g/m}\^2\))\), \(W = \text{average weight of vehicles traveling the road (tons)}\), \(P = \text{number of wet days with at least 0.254mm (0.01 inch) of precipitation, and N = number of days in the averaging period.}\)

\(k\) for PM10 = 0.0022 pound/VMT, \(k\) for PM2.5 = 0.00054 pound/VM, sL for Los Angeles County = 0.037 g/m\(^2\), \(W\) for Los Angeles County = 2.7 tons, \(C = 40\) days/year, \(N = 365\) days

According to Table 3 of CARB's methodology, sL for major roads in Los Angeles County = 0.037 g/m\(^2\), sL for freeways in Los Angeles County = 0.020 g/m\(^2\), and \(W\) for Los Angeles County = 2.7 tons. As indicated in Table 3-6, the VMT provided by the traffic engineers includes both freeway links and major links, according to CARB standards. Because the VMT by 5 mph speed bin breakdown provided by the traffic engineers does not indicate which links the VMT is associated with, the sL for major roads was used as a worst-case-scenario.

According to EPA's AP-42 Section 13.2.1 document, there may be situations where low silt loading and/or low average vehicle weight will yield calculated negative emissions from EPA's Emission Factor Formula equation, above. If this occurs, the emissions calculated from the equation should be set to zero. Calculated PM2.5 emissions were negative; therefore, PM2.5 emissions were set to zero.

Sources: California Air Resources Board 1997; U.S. Environmental Protection Agency 2011; Iteris 2011.

Naturally Occurring Asbestos

NOA is a fibrous material found in certain types of rock formations. It is the result of natural geologic processes and commonly found near earthquake faults in California. Some rock types known to produce asbestos fibers are varieties of chrysotile, crocidolite, amosite, anthophyllite, tremolite, and actinolite.
Asbestos is harmless when it is left undisturbed under the soil, but if it becomes airborne, it can cause serious health problems. Human disturbance, or natural weathering, can break down asbestos into microscopic fibers that are easily inhaled. Inhalation of asbestos fibers can cause lung cancer, mesothelioma (a rare form of cancer found in the lining of internal organs), and asbestosis (a progressive, non-cancer disease of the lungs involving a buildup of scar tissue, which inhibits breathing) (U.S. Environmental Protection Agency 2008a, 2008b).

Both EPA and CARB have issued guidance for reducing exposure to NOA. EPA’s suggested measures include leaving NOA material undisturbed, covering or capping NOA material, limiting dust-generating activities, and excavating and disposing of NOA material (U.S. Environmental Protection Agency 2008c). CARB has adopted Airborne Toxic Control Measures (ATCMs), which are required for road construction and maintenance projects unless a project is found to be exempt. These ATCMs include stabilizing unpaved surfaces subject to vehicle traffic, reducing vehicle speeds, wetting or chemically stabilizing storage piles, and eliminating track-out material from equipment (California Air Resources Board 2008).

Potential Release of Asbestos during Construction and Maintenance Activities. While NOA is common in certain counties of California, it is not likely to be found in Los Angeles County (California Department of Conservation 2000). Therefore, there would be no adverse effect (NEPA) or significant impact (CEQA).

Mobile-Source Air Toxics

MSAT emissions were evaluated using a combination of FHWA’s *Interim Guidance Update on Mobile-Source Air Toxic Analysis in NEPA Documents* (Federal Highway Administration 2009a) and preliminary California-specific guidance from Caltrans. The California-specific guidance is identical to FHWA’s guidance except for the California-specific criteria for performing qualitative and quantitative analysis (Brady pers. comm.). The California-specific criteria are found in CARB’s *Air Quality and Land Use Handbook: A Community Health Perspective* (Brady pers. comm.; California Air Resources Board 2005). FHWA’s interim guidance uses a tiered approach to determine how MSAT issues should be addressed in NEPA documents for highway projects (Federal Highway Administration 2009a). Please refer to the AQS (ICF International 2011) for additional detail.

Potential Generation of Significant Levels of MSAT Emissions. With implementation of the proposed project, the amount of MSATs emitted would be proportional to VMT, assuming that other variables, such as fleet mix, are the same for each alternative. As indicated in Tables 2-48 and 2-49, truck percentages are not anticipated to increase with implementation of the proposed project; therefore, a qualitative analysis of MSATs based on VMT is provided. Estimated VMT for the Build Alternative is slightly lower than VMT under the No-Build Alternative (see Table 2-51). Because estimated VMT under the Build Alternative in the open-to-traffic year (2014) and future year (2035) would vary by less than 10 percent, no appreciable difference in overall MSAT emissions is expected with implementation of the Build Alternative. In addition, as shown in Table 2-45, above, intersection delay would be drastically reduced with implementation of the Build Alternative, which would likely reduce MSAT emissions as well.
By the design year, emissions will likely be lower than present levels as a result of EPA’s national control programs, which are projected to reduce annual MSAT emissions by 72 percent between 1999 and 2050. Local conditions may differ from these national projections in terms of fleet mix and turnover, VMT growth rates, and local control measures. However, the magnitude of the EPA-projected reductions is so great (even after accounting for VMT growth) that future MSAT emissions in the study area are likely to be lower at virtually all locations.

Under the Build Alternative, there may be localized areas where VMT would increase and other areas where VMT would decrease. Therefore, it is possible that localized increases and decreases in MSAT emissions may occur. The localized increases in MSAT emissions would likely be most pronounced along the Harry Bridges Boulevard section of the new interchange. However, even if these increases do occur, they too will be substantially reduced in the future with implementation of EPA’s vehicle and fuel regulations.

In sum, under the Build Alternative in the design year, it is expected that there would be reduced MSAT emissions in the immediate project area relative to the No-Build Alternative because of reduced VMT from more direct routing and EPA’s MSAT reduction programs. Therefore, there would be no adverse effects (NEPA) or significant impacts (CEQA).

Compliance with 40 CFR 1502.22 (b). To comply with Council on Environmental Quality regulations (40 CFR 1502.22[b]) pertaining to incomplete or unavailable information, a discussion regarding air toxics analysis and a summary of current studies regarding the health effects of MSATs is provided below. The text is taken from FHWA’s Interim Guidance Update on Mobile-Source Air Toxic Analysis in NEPA Documents (Federal Highway Administration 2009a).

In FHWA’s view, if information is incomplete or unavailable to predict project-specific health impacts due to changes in MSAT emissions associated with a proposed set of highway alternatives, the outcome of an assessment, adverse or not, would be influenced more by the uncertainty introduced into the process through assumption and speculation rather than any genuine insight into the actual health impacts directly attributable to MSAT exposure associated with a proposed action.

EPA is responsible for protecting the public health and welfare from any known or anticipated effect of an air pollutant. It is the lead authority for administering the Clean Air Act and its amendments and has specific statutory obligations with respect to hazardous air pollutants and MSATs. EPA is continuously assessing human health effects, exposures, and the risks posed by air pollutants. It maintains the Integrated Risk Information System (IRIS), which is “a compilation of electronic reports on specific substances found in the environment and their potential to cause human health effects” (EPA 2010b). Each report contains assessments regarding non-cancerous and cancerous effects for individual compounds and quantitative estimates of risk levels from lifetime oral and inhalation exposures.

Another organization that is also actively researching and analyzing the human health effects of MSATs is the Health Effects Institute (HEI). Two HEI studies are summarized in Appendix D of FHWA’s Interim Guidance Update on Mobile-Source Air Toxic Analysis in NEPA Documents. Among the adverse health effects linked to MSAT compounds at high exposure levels are cancer
in humans in occupational settings, cancer in animals, and irritation to the respiratory tract, including an exacerbation of asthma. Less obvious is the adverse human health effects of MSAT compounds at current environmental concentrations (HEI 2007) or in the future as vehicle emissions substantially decrease (HEI 2009).

The methodologies for forecasting health impacts include emissions modeling, dispersion modeling, and exposure modeling. After modeling, the final determination of the health impacts is made, with each step in the process building on the model predictions obtained in the previous step. However, all methodologies are encumbered by technical shortcomings or uncertain science that prevents a more complete differentiation of the MSAT health impacts among a set of project alternatives. These difficulties are magnified for lifetime (i.e., 70-year) assessments because unsupported assumptions have to be made regarding changes in travel patterns and vehicle technology over that time frame because such information is unavailable. The assumptions affect emissions rates, and the results produced by EPA’s MOBILE6.2 and DraftMOVES2009 models and California EPA’s EMFAC2007 model are highly inconsistent when forecasting MSAT emissions. Indications from the development of the MOVES model are that MOBILE6.2 significantly underestimates diesel particulate matter emissions and significantly overestimates benzene emissions.

Regarding air dispersion modeling, EPA’s guideline CAL3QHC model was evaluated in a National Cooperative Highway Research Program study (EPA 2010c) that documented poor model performance at 10 sites across the country (three sites where intensive monitoring occurred plus an additional seven with less intensive monitoring). The study indicates that the CAL3QHC model overestimates concentrations near highly congested intersections and underestimates concentrations near intersections that are not congested. The consequence of this is a tendency to overstate the air quality benefits of mitigating congestion at intersections.

Forecasting individual exposure over an entire lifetime is difficult, especially given that some information needed for estimating a 70-year lifetime exposure is unavailable. However, such poor model performance is less difficult to manage when demonstrating compliance with the NAAQS for relatively short time frames. Finally, it is particularly difficult to forecast MSAT exposure reliably near roadways and determine the portion of time that people are actually exposed at a specific location.

Considerable uncertainties are associated with the existing estimates of toxicity for the various MSATs because of factors such as low-dose extrapolation and the translation of occupational exposure data to the general population, a concern expressed by HEI (HEI 2007). As a result, there is no national consensus regarding the air dose-response values assumed to protect the public health and welfare from MSAT compounds and, in particular, diesel particulate matter. EPA (EPA 2010d) and HEI (HEI 2007) have not established a basis for quantitative risk assessment of diesel particulate matter in ambient settings.

There is also the lack of a national consensus regarding an acceptable level of risk. The current context is the process used by EPA, as provided by the Clean Air Act, to determine whether more stringent controls are required to provide an ample margin of safety to protect public health or prevent an adverse environmental effect from industrial sources, which are subject to the
maximum achievable control technology standards, such as the standards pertaining to benzene emissions from refineries. The decision framework is a two-step process. The first step requires EPA to determine a “safe” or “acceptable” level of risk due to emissions from a source, which is generally no greater than approximately 100 in a million. Additional factors are considered in the second step, the goal of which is to maximize the number of people with a level of risk of less than 1 in a million. The results of this statutory two-step process do not guarantee that cancer risks from exposure to air toxics will be less than 1 in a million; in some cases, the residual risk determination could result in maximum individual cancer risks that are as high as approximately 100 in a million. In a June 2008 decision, the U.S. Court of Appeals for the District of Columbia Circuit upheld EPA’s approach to addressing risk in its two-step decision framework. Information is incomplete or unavailable to establish if even the largest of highway projects would result in levels of risk that would be unsafe or unacceptable.

Because of the limitations associated with the methodologies for forecasting health impacts, any predicted differences between alternatives are likely to be less significant than the uncertainties associated with predicting the impacts. Consequently, the results of such assessments would not be useful to decision makers, who would need to weigh this information against project benefits, such as reduced traffic congestion, fewer accidents and fatalities, and improved access for emergency response personnel, areas that are better suited for quantitative analysis.

Operational Emissions

Long-term air quality effects are associated with motor vehicles operating on the roadway network, predominantly those operating in the project vicinity. Emissions of TOG, NOx, CO, PM10, PM2.5, and CO2 for existing (2008), open-to-traffic (2014), and design-year (2035) conditions along project roadway segments were evaluated through modeling using Caltrans’ CT-EMFAC model and traffic data provided by the project traffic engineer, Iteris (Iteris 2011). Idling emissions from medium- and heavy-duty trucks were quantified using the EMFAC 2007 emissions model and estimates of vehicle delay at study area intersections (Iteris 2011). In addition, regional emissions reductions resulting from project implementation, based on the Synchro modeling analyses prepared by the port and contained in the port’s funding applications, are also presented, but not included in the emissions calculations. However, POLA’s required CEQA emissions analysis is included in Appendix H3 does include the emissions reductions associated with the POLA’s Synchro modeling. Entrained paved road dust attributable to the project was calculated using EPA’s *Compilation of Air Pollutant Emission Factors*, AP-42, Section 13.2.1 (U.S. Environmental Protection Agency 2011), and CARB’s methodology to calculate county-specific emissions inventories, *Entrained Paved Road Dust, Paved Road Travel*, Section 7.9 (California Air Resources Board 1997). The traffic conditions modeled in the analysis included vehicle activity for affected roadways in the immediate project region. Please refer to the AQSRSR (ICF International 2011) for additional information.

Potential Generation of Adverse Operational Emissions of Ozone Precursors, Carbon Monoxide, and Particulate Matter. Table 2-51, above, summarizes the modeled daily emissions. Based on the results of the analysis, implementation of the proposed project is anticipated to result in a net reduction in all criteria pollutants. These reductions would be attributable to reduced vehicle delay and congestion as well as overall reductions in regional VMT. It should
also be noted that vehicular emission rates, in general, are anticipated to lessen in future years because of continuing improvements in engine technology and the retirement of older, higher emitting vehicles. No adverse effects (NEPA) or significant impacts (CEQA) would occur.

Avoidance, Minimization, and/or Mitigation Measures

The construction contractor will be required to comply with and adhere to all applicable rules and regulations, such as SCAQMD Rule 401 for visible emissions control, Rule 402 for nuisance, Rule 403 for fugitive dust control, Rule 1113 for control of VOC emissions from asphalt operations, Rule 1403 for limiting asbestos emissions, and other pertinent requirements concerning the operation of construction equipment and dust control. Implementation of these control measures would reduce the fugitive dust emissions by approximately 50 percent. In addition, the construction contractor will also be required to follow the Sustainable Construction Guidelines for reducing air emissions from all LAHD-sponsored construction projects, as presented in mitigation measures LAHD AQ-1 through LAHD AQ-8 of Appendix H.3 of this document.

AQ-1 As required by the LAHD, the construction contractor shall adhere to the current LAHD Sustainable Construction Guidelines for Reducing Air Emissions during project construction phase. The LAHD shall determine the applicable BMP’s once the contractor identifies and secures a final equipment list and project scope. Implementation of all applicable rules and regulations and mitigation measure AQ-1 would ensure that the project does not result in adverse effects on air quality during construction. For project operations, the design concept and scope of the proposed project is consistent with the project description in the RTIP document and the assumptions in SCAG’s regional analysis. A project-level conformity determination was also conducted. Implementation of the proposed project would not adversely affect air quality of the region. No mitigation is required.

Climate Change

Climate change is analyzed in Section 2.5, Climate Change (CEQA). Neither EPA nor FHWA has promulgated explicit guidance or methodology for conducting project-level greenhouse gas (GHG) analysis. As stated on FHWA’s climate change web site (http://www.fhwa.dot.gov/hep/climate/index.htm), climate change considerations should be integrated throughout the transportation decision-making process, from planning through project development and delivery. Addressing climate change mitigation and adaptation up front in the planning process will facilitate decision making and improve efficiency at the program level and inform the analysis and stewardship needs of project-level decision making. Climate change considerations can be easily integrated into many planning factors, such as supporting economic vitality and global efficiency, increasing safety and mobility, enhancing the environment, promoting energy conservation, and improving the quality of life.

Because additional requirements pertaining to climate change have been set forth in California legislation and executive orders, the issue is addressed in this environmental document and may be used to inform the NEPA decision. The four strategies set forth by FHWA to lessen climate change impacts correlate with efforts that the state has undertaken and is undertaking to deal
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

2.10-46 June 2012

with transportation and climate change; the strategies are related to improved transportation system efficiency, cleaner fuels, cleaner vehicles, and a reduction in the growth of VMT.

2.2.7 Noise

Regulatory Setting

NEPA and CEQA provide the broad basis for analyzing and abating highway traffic noise effects. The intent of these laws is to promote the general welfare and to foster a healthy environment. The requirements for noise analysis and consideration of noise abatement and/or mitigation, however, differ between NEPA and CEQA.

California Environmental Quality Act

CEQA requires a strictly baseline versus build analysis to assess whether a proposed project will have a noise impact. If a proposed project is determined to have a significant noise impact under CEQA, then CEQA dictates that mitigation measures must be incorporated into the project unless such measures are not feasible.

National Environmental Policy Act and 23 CFR 772

For highway transportation projects with FHWA (and Caltrans, as assigned) involvement, the federal-Aid Highway Act of 1970 and the associated implementing regulations (23 CFR 772) govern the analysis and abatement of traffic noise impacts. The regulations require that potential noise impacts in areas of frequent human use be identified during the planning and design of a highway project. The regulations contain noise abatement criteria (NAC) that are used to determine when a noise impact would occur. The NAC differ depending on the type of land use under analysis. For example, the NAC for residences (67 A-weighted decibels [dBA]) is lower than the NAC for commercial areas (72 dBA). Table 2-52 lists the noise abatement criteria for use in the NEPA-23 CFR 772 analysis.

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>NAC, dBA</th>
<th>Description of Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57</td>
<td>Exterior Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose</td>
</tr>
<tr>
<td>B</td>
<td>67</td>
<td>Exterior Picnic areas, recreation areas, playgrounds, active sport areas, parks, residences, motels, hotels, schools, churches, libraries, and hospitals.</td>
</tr>
<tr>
<td>C</td>
<td>72</td>
<td>Exterior Developed lands, properties, or activities not included in Categories A or B above</td>
</tr>
<tr>
<td>D</td>
<td>–</td>
<td>Undeveloped lands.</td>
</tr>
<tr>
<td>E</td>
<td>52</td>
<td>Interior Residence, motels, hotels, public meeting rooms, schools, churches, libraries, hospitals, and auditoriums</td>
</tr>
</tbody>
</table>

Note:

$L_{eq}(h) = \text{equivalent noise level.}$

Figure 2-11 lists the noise levels of common activities to enable readers to compare the actual and predicted highway noise-levels discussed in this section with common activities.

In accordance with Caltrans’ *Traffic Noise Analysis Protocol for New Highway Construction and Reconstruction Projects* (2006a), a noise impact occurs when the future noise level with the project results in a substantial increase in noise level (defined as a 12 dBA or more increase) or when the future noise level with the project approaches or exceeds the NAC. Approaching the NAC is defined as coming within 1 dBA of the NAC.

If it is determined that the project will have noise impacts, then potential abatement measures must be considered. Noise abatement measures that are determined to be reasonable and feasible at the time of final design are incorporated into the project plans and specifications. This document discusses noise abatement measures that would likely be incorporated in the project.

Caltrans’ Traffic Noise Analysis Protocol sets forth the criteria for determining when an abatement measure is reasonable and feasible. Feasibility of noise abatement is basically an engineering concern. A minimum 5 dBA reduction in the future noise level must be achieved for an abatement measure to be considered feasible. Other considerations include topography, access requirements, other noise sources and safety considerations. The reasonableness determination is basically a cost-benefit analysis. Factors used in determining whether a proposed noise abatement measure is reasonable include: residents acceptance, the absolute noise level, build versus existing noise, environmental impacts of abatement, public and local agencies input, newly constructed development versus development pre-dating 1978 and the cost per benefited residence.

Affected Environment

Unless otherwise noted, the information from this section was synthesized from the *Noise Impact Analysis* prepared for the proposed project (ICF International 2010d).

Sound is mechanical energy transmitted by pressure waves in a compressible medium such as air. Noise is generally defined as unwanted or annoying sound that is typically associated with human activity and that interferes with normal activities. Sound levels are measured and expressed in decibels (dB). The human ear does not respond uniformly to sounds at all frequencies, being less sensitive to low and high frequencies than to medium frequencies, which correspond with human speech. In response, the A-weighted noise level (or scale) has been developed. This A-weighted sound level is called the “noise level,” which is referenced in units of dBA. The human ear does not typically notice changes in noise levels of less than three dBA. The equivalent noise level (L_{eq}) is the average A-weighted sound level measured over a given time interval. L_{eq} can be measured over any time period, but is typically measured for 1-hour periods and is expressed as $L_{eq}(h)$.

The land uses in the project area consist primarily of port-related industrial uses; noise-sensitive uses in the area are located north of C Street and east of Figueroa Street and consist of single-family residences, multi-family residences, a child care facility and a church. I-110 is generally elevated relative to the nearby land uses.
Figure 2-11: Noise Levels of Common Activities

<table>
<thead>
<tr>
<th>Common Outdoor Activities</th>
<th>Noise Level (dBA)</th>
<th>Common Indoor Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Fly-over at 300m (1000 ft)</td>
<td>110</td>
<td>Rock Band</td>
</tr>
<tr>
<td>Gas Lawn Mower at 1 m (3 ft)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Diesel Truck at 15 m (50 ft), at 80 km (50 mph)</td>
<td>90</td>
<td>Food Blender at 1 m (3 ft)</td>
</tr>
<tr>
<td>Noisy Urban Area, Daytime</td>
<td>80</td>
<td>Garbage Disposal at 1 m (3 ft)</td>
</tr>
<tr>
<td>Gas Lawn Mower, 30 m (100 ft)</td>
<td>70</td>
<td>Vacuum Cleaner at 3 m (10 ft)</td>
</tr>
<tr>
<td>Commercial Area</td>
<td></td>
<td>Normal Speech at 1 m (3 ft)</td>
</tr>
<tr>
<td>Heavy Traffic at 90 m (300 ft)</td>
<td>60</td>
<td>Large Business Office</td>
</tr>
<tr>
<td>Quiet Urban Daytime</td>
<td>50</td>
<td>Dishwasher Next Room</td>
</tr>
<tr>
<td>Quiet Urban Nighttime</td>
<td>40</td>
<td>Theater, Large Conference Room (Background)</td>
</tr>
<tr>
<td>Quiet Suburban Nighttime</td>
<td>40</td>
<td>Library</td>
</tr>
<tr>
<td>Quiet Rural Nighttime</td>
<td>30</td>
<td>Bedroom at Night, Concert Hall (Background)</td>
</tr>
<tr>
<td>Lowest Threshold of Human Hearing</td>
<td>0</td>
<td>Broadcast/Recording Studio</td>
</tr>
</tbody>
</table>

A field noise study was conducted in accordance with the recommended procedures in Caltrans’ *Technical Noise Supplement* (TeNS). The following is a summary of the procedures used to collect short-term and long term sound level data.

Short-Term Measurements

Short-term monitoring was conducted at three locations between May 13, 2009, and May 14, 2009, using a Larson Davis Type 1 (Precision grade) sound level meter (serial number 0432). A minimum of two consecutive but separate measurements, each 10 minutes in duration, were taken at each site. Short-term monitoring was conducted at Activity Category B land uses. Table 2-53 provides a summary of short-term receptor sites. The short-term measurement locations are identified in Figure 2-12.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Address</th>
<th>Land Uses/Activity Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1a</td>
<td>328 Figueroa Avenue</td>
<td>Recreation Day Care Center/Activity Category B</td>
</tr>
<tr>
<td>ST-1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-2a</td>
<td>Planned Park Site</td>
<td>Recreation/Activity Category B</td>
</tr>
<tr>
<td>ST-2b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-3</td>
<td>316 Figueroa Street</td>
<td>Residential/Activity Category B</td>
</tr>
</tbody>
</table>

Source: ICF International 2010d.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-12: Noise Measurement Sites
Long-Term Measurements

Long-term monitoring was conducted at one location (LT-1) (see Figure 2-10) using a Rion Model NL-21 sound level meter. The purpose of this measurement was to identify the traffic noise patterns throughout the typical day/night cycle. The long-term sound level data was collected over time periods of 24 hours or more, beginning May 13, 2009, and ending May 14, 2009.

Long-term monitoring site LT-1 was located at the single-family residence at 316 Figueroa Street on the east side of Figueroa Street. The loudest-hour noise level measured was 66 dBA $L_{eq}(h)$ during the 4 p.m. and 9 a.m. hours.

A formal calibration procedure was not used for this project, because the roadway geometry would be dramatically altered with construction of the project. This is consistent with Caltrans guidance (California Department of Transportation 1998). Although no calibration procedure was used, the noise levels as measured at short-term receptor locations were compared with the modeled, existing peak-hour noise levels, to assure that the modeled results were reasonable. Measured noise levels were 1.2 to 1.6 dBA higher than the modeled peak-noise-hour levels (see Table 2-54).

Table 2-54: Comparison of Measured and Modeled Sound Levels (dB) in the TNM Model

<table>
<thead>
<tr>
<th>Receiver #</th>
<th>Measured L_{eq}</th>
<th>Modeled L_{eq}</th>
<th>Delta (Measured – Modeled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-3</td>
<td>65.6</td>
<td>64.2</td>
<td>1.4</td>
</tr>
<tr>
<td>R-2</td>
<td>n/a</td>
<td>64.4</td>
<td>n/a</td>
</tr>
<tr>
<td>R-1</td>
<td>n/a</td>
<td>63.6</td>
<td>n/a</td>
</tr>
<tr>
<td>ST-1</td>
<td>65.3</td>
<td>63.7</td>
<td>1.6</td>
</tr>
<tr>
<td>ST-2</td>
<td>n/a</td>
<td>61.7</td>
<td>n/a</td>
</tr>
<tr>
<td>R-3</td>
<td>65.4</td>
<td>64.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Source: ICF International 2010d.

Existing Noise Environment

Existing modeled peak-noise-hour traffic noise levels ranged from 61 dBA $L_{eq}(h)$ at receiver R-4 to 64 dBA $L_{eq}(h)$ at receivers ST-1, ST-2, ST-3, R-1 and R-2. FHWA/Caltrans NAC are not exceeded at the modeled receptors under the existing modeled conditions.
Environmental Consequences

Construction Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, noise levels would not be affected.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

During construction of the project, noise from construction activities may intermittently dominate the noise environment in the immediate area of construction. Construction noise is regulated by Caltrans Standard Specifications, Section 7-1.01I, “Sound Control Requirements,” which states that noise levels generated during construction will comply with applicable local, state, and federal regulations, and that all equipment will be fitted with adequate mufflers according to the manufacturers’ specifications.

Table 2-55 summarizes noise levels produced by construction equipment that is commonly used on roadway construction projects. Construction equipment is expected to generate noise levels ranging from 70 to 90 dB at a distance of 50 feet, and noise produced by construction equipment would be reduced over distance at a rate of about 6 dB per doubling of distance.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Maximum Noise Level (dBA at 50 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrapers</td>
<td>89</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>85</td>
</tr>
<tr>
<td>Heavy Trucks</td>
<td>88</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Pump</td>
<td>82</td>
</tr>
</tbody>
</table>

No adverse noise impacts from construction under NEPA are anticipated because construction would be conducted in accordance with Caltrans Standard Specifications, Section 7-1.01I, and applicable local noise standards. Construction noise would be short-term, intermittent, and overshadowed by local traffic noise and would be less-than-significant under CEQA. However, mitigation measures would be implemented to ensure that there are no substantial adverse effects under NEPA or significant impacts under CEQA.
Operational Impacts

The project site was divided into two evaluation areas for noise analysis. Table 2-56 summarizes the modeled traffic noise levels for existing (2008) and design-year (2035) conditions under build and no-build scenarios. Figure 2-13 shows the evaluation areas.
Table 2-56: Traffic Noise Levels for Existing without-Project, Existing with-Project, Future without-Project, and Future with-Project Scenarios

<table>
<thead>
<tr>
<th>Receiver I.D.</th>
<th>Area</th>
<th>Land Use/Activity Category (NAC)</th>
<th>Number of Dwelling Units</th>
<th>Modeled Existing-Year Traffic Noise Level (Leq(h), dBA)</th>
<th>Modeled Existing-Year with-Project Noise Level (Leq(h), dBA)</th>
<th>Modeled Existing-Year minus Existing-Year Traffic Noise Level (dBA)</th>
<th>Design-Year Traffic Noise Level without Project (Leq(h), dBA)</th>
<th>Design-Year Traffic Noise Level with Project (Leq(h), dBA)</th>
<th>Design-Year Traffic Noise Level with Project minus Design-Year Traffic Noise Level without Project Conditions (dBA)</th>
<th>Design-Year Traffic Noise Level with Project minus Existing Conditions (dBA)</th>
<th>Impact Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-3</td>
<td>A: Adjacent to Figueroa St. (D St. to C St.)</td>
<td>Recreation/B (67)</td>
<td>1</td>
<td>64</td>
<td>65</td>
<td>1</td>
<td>67</td>
<td>68</td>
<td>1</td>
<td>4</td>
<td>A/E</td>
</tr>
<tr>
<td>R-2</td>
<td>Residential/B (67)</td>
<td>1</td>
<td>64</td>
<td>65</td>
<td>1</td>
<td>67</td>
<td>68</td>
<td>1</td>
<td>4</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td>R-1</td>
<td>Residential/B (67)</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>0</td>
<td>66</td>
<td>67</td>
<td>1</td>
<td>3</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td>ST-1</td>
<td>Residential/B (67)</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>0</td>
<td>66</td>
<td>68</td>
<td>2</td>
<td>4</td>
<td>A/E</td>
<td></td>
</tr>
<tr>
<td>R-3</td>
<td>B: Adjacent to Harry Bridges Blvd. (Hawaiian Ave. to Figueroa St.)</td>
<td>Recreation/B (67)</td>
<td>4</td>
<td>62</td>
<td>59</td>
<td>-3</td>
<td>65</td>
<td>62</td>
<td>-3</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>ST-2</td>
<td>Vacant</td>
<td>n/a</td>
<td>64</td>
<td>n/a</td>
<td>n/a</td>
<td>66</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>R-4</td>
<td>Recreation/B (67)</td>
<td>4</td>
<td>61</td>
<td>59</td>
<td>-2</td>
<td>63</td>
<td>62</td>
<td>-1</td>
<td>1</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Note: A/E= future noise conditions approach or exceed the NAC.

n/a: this location would become part of the landscaped buffer/berm area.
Figure 2-13: Noise Evaluation Areas
Alternative 1: No-Build Alternative

Under the future No-Build Alternative, peak-noise-hour traffic noise levels are predicted to range from approximately 63 dBA Leq(h) (at receptor R-3) to 67 dBA Leq(h) (at receptors ST-3 and R-2) in the design year. Traffic noise levels would increase two to three dB (rounded to whole decibels) compared with existing conditions; thus, there would be no substantial (12 dBA or greater) noise increases. Under this alternative, traffic noise levels would not exceed the Activity Category B NAC at any of the seven modeled representative receptor sites. Thus, impacts would not be adverse under NEPA or significant under CEQA.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Under the 2008 scenario, as a result of the proposed project, a 1-decibel increase in noise is predicted to occur at two of the seven modeled receivers (ST-3 and R-2). The other modeled receivers would either experience no change or up to a 3-decibel decrease in the noise level. Modeled existing with-project noise levels would not approach or exceed the NAC of 67 dBA Leq(h), nor would they cause a significant increase under CEQA.

The traffic noise modeling results indicate that traffic noise levels at the residences in Area A would range from 67 to 68 dBA Leq(h) in the design year (2035) with the project. The results also indicate that increases in noise levels would be 3 to 4 dB compared with the existing condition and 1 to 2 dB compared with the future no-build scenario. The traffic noise level in the design year is predicted to exceed the NAC of 67 dBA Leq(h) in Area A without the project. However, none of the modeled receptors would experience a substantial (12 dB or greater) increase in noise compared with the existing condition.

Various abatement options were considered in the Noise Impact Analysis. However, because of the configuration and location of the project, abatement in the form of noise barriers was the only abatement that was considered feasible. Traffic noise abatement measures in the form of noise walls were considered for the noise-sensitive land use areas predicted to exceed the NAC. FHWA’s Traffic Noise Model (TNM®) was used to predict noise wall performance (insertion loss or noise reduction). Construction of soundwalls along the east (northbound) side of Figueroa Street was considered, but was determined to not be feasible because of the presence of driveways for the residences and daycare center in the area. Construction of an acoustically effective soundwall would not be possible because of the breaks in the wall that would be necessary to allow for access to the properties. Because the minimum insertion loss of 5 decibels or more would not be achieved, both the barriers considered would not be feasible to construct. Also, based on LAHD’s public outreach for Berth 136-147 Terminal (TraPac) project, the community is against the construction of sound walls in the project area.

The traffic noise modeling results indicated that traffic noise levels at planned, designed and programmed future recreational land uses in Area B are predicted to be 62 dBA Leq(h) in the design year with the project, and that the increase in noise compared to the existing condition would be zero to one dB in the design year. Because the traffic noise level in the design year is not predicted to approach or exceed the NAC of 67 dBA Leq(h) or result in a substantial increase in noise, noise abatement does not need to be considered in this area. Thus, noise impacts would not be adverse under NEPA or significant under CEQA.

Avoidance, Minimization, and/or Mitigation Measures

NOI-1 All equipment shall have sound-control devices that are no less effective than those provided on the original equipment. No equipment shall have an unmuffled exhaust.

NOI-2 As directed by LAHD, the contractor shall implement appropriate additional noise mitigation measures, including changing the location of stationary construction equipment, turning off idling equipment, rescheduling construction activity, notifying adjacent residents in advance of construction work, and installing acoustic barriers around stationary construction noise sources.

NOI-3 Noise control shall conform to the provisions in Section 14-8.02, “Noise Control,” of the Standard Specifications and these special provisions. The noise level from the contractor’s operations, between the hours of 7:00 a.m. and 7:00 p.m., shall not exceed 86 dBA at a distance of 50 feet. Construction equipment shall not be operated, nor shall the engines of this equipment be allowed to run, between the hours of 7:00 p.m. and 7:00 a.m. or on Sundays, except that within the limits of the project and subject to control of the engineer, equipment may be operated during the restricted hours to:

- Service traffic control facilities;
- Service construction equipment;
- Perform work that the contract specifies be done during restricted hours; and
- Saw transverse weakened plane joints in concrete pavement.

Minor deviations from this section concerning hours of work that do not significantly change the cost of the work may be permitted upon written request of the contractor if, in the opinion of the engineer, the work will be expedited and will not cause adverse public reaction.

The requirements in this section shall not relieve the contractor from responsibility for complying with local ordinances regulating noise levels outside the limits of the state right-of-way.

The noise level requirement specified herein shall apply to equipment on the job or related to the job, including trucks, transit mixers, or transient equipment that may or may not be owned by the contractor. The use of loud sound signals shall be avoided in favor of light warnings, except those required by safety laws for the protection of personnel.
2.3 Biological Environment

2.3.1 Natural Communities

This section of the document discusses natural communities of concern. The information presented in this section is based on the November 2009 Natural Environment Study (Minimal Impacts) report prepared for the proposed project (ICF International 2009). The focus of this section is on biological communities, not individual plant or animal species. This section also includes information on wildlife corridors and habitat fragmentation. Wildlife corridors are areas of habitat used by wildlife for seasonal or daily migration. Habitat fragmentation involves the potential for dividing sensitive habitat and thereby lessening its biological value. Wetlands and other waters are discussed in Section 2.3.2, below.

Regulatory Setting

There is no specific regulatory setting for natural communities apart from what is required by NEPA and CEQA.

Affected Environment

A query of the California Natural Diversity Database (CNDDB) (California Department of Fish and Game 2009) for the Torrance USGS 7.5-minute quadrangle identified three sensitive natural vegetation communities that historically occurred within the region. These communities are southern coastal bluff scrub, southern coastal salt marsh, and southern dune scrub. None of these sensitive natural vegetation communities were observed within the Biological Study Area (BSA). Figure 2-14 shows the BSA for the proposed project.

Within the BSA, there are a few vacant lots that consist of bare ground that supports a mix of nonnative grasses and ruderal (weedy) annual herbaceous plants. In addition, ornamental plantings occur throughout the area. The vegetation found within the BSA is common to a built environment in an urban setting. Open water can be found on the southern end of the BSA; this occurs within a shipping terminal for the port. The remainder of the BSA is entirely developed. No sensitive natural communities occur within the BSA.

Because the BSA is predominately developed with patches of ornamental or ruderal vegetation, there is no potential for a wildlife corridor or linkage to be present.

The West Basin provides Essential Fish Habitat (EFH) for Pacific Coast groundfish and coastal pelagic species.
Figure 2-14: Biological Study Area
Environmental Consequences

Construction Impacts/Operational Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would result in no construction or changes to existing conditions within the BSA. Therefore, the No-Build Alternative would not result in any adverse effects under NEPA or significant impacts under CEQA on natural communities.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

No natural communities are present within the BSA. The Build Alternative would alter the existing roadway configuration and result in operational changes from the existing conditions. Construction of the roadway would not have an adverse effect under NEPA or significant impact under CEQA on natural communities.

Because a portion of the West Basin is found within the BSA, runoff from construction activities may have an indirect effect/impact on EFH areas. However, given that the limits of disturbance are separated from the West Basin by an active industrial area and roadways, any potential effects/impacts would be minimal. There would be no adverse effect under NEPA or significant impact under CEQA on natural communities. Implementation of the BMPs listed below would ensure that no effects/impacts occur related to EFH areas.

Avoidance, Minimization, and/or Mitigation Measures

To prevent runoff into the West Basin area during construction, standard BMPs shall be implemented. These include:

- Water pollution and erosion control plans shall be developed and implemented in accordance with RWQCB requirements;
- Equipment storage, fueling, and staging areas shall be located on upland sites with minimal risks of direct drainage into sensitive habitats (i.e., EFH) and in such a manner as to prevent any runoff from entering sensitive habitat. Necessary precautions shall be taken to prevent the release of cement or other toxic substances into surface waters. Project-related spills of hazardous materials shall be reported to appropriate entities, including applicable jurisdictional city, U.S. Fish and Wildlife Service (USFWS), and California Department of Fish and Game (CDFG), and RWQCB agencies. The spills shall be cleaned up immediately and contaminated soils removed to approved disposal areas; and
- Construction employees shall strictly limit activities, vehicles, equipment, and construction materials at the proposed project footprint and designated staging areas and routes of travel. The construction area(s) shall be the minimal area necessary to complete the project and shall be specified in the construction plans. Employees shall be instructed that their activities are restricted to the construction areas.
Additionally, standard BMPs for water quality and stormwater runoff mention in section 2.2.2, along with BMPs listed above, would ensure that impacts from runoff from the project would be minimized.

2.3.2 Wetlands and Other Waters

Regulatory Setting

Wetlands and other waters are protected under a number of laws and regulations. At the federal level, the CWA (33 USC 1344) is the primary law regulating wetlands and other waters. The CWA regulates the discharge of dredged or fill material into waters of the United States, including wetlands. Waters of the United States include navigable waters, interstate waters, territorial seas, and other waters that may be used in interstate or foreign commerce. To classify wetlands for the purposes of the CWA, a three-parameter approach is used that looks at hydrophytic (water-loving) vegetation, wetland hydrology, and hydric soils (soils subject to saturation/inundation). All three parameters must be present under normal circumstances for an area to be designated as a jurisdictional wetland under the CWA.

Section 404 of the CWA establishes a regulatory program that provides that the discharge of dredged or fill material cannot be permitted if a practicable alternative exists that is less damaging to the aquatic environment or if the nation’s waters would be significantly degraded. The Section 404 permit program is run by USACE, with oversight from EPA.

The Executive Order for the Protection of Wetlands (EO 11990) regulates activities of federal agencies with regard to wetlands. Essentially, this executive order states that a federal agency, such as FHWA, cannot undertake or provide assistance for new construction located in wetlands unless the head of the agency finds that 1) there is no practicable alternative to the construction and 2) the proposed project includes all practicable measures to minimize harm.

At the state level, wetlands and waters are regulated primarily by CDFG and the RWQCBs. In certain circumstances, the Coastal Commission (or Bay Conservation and Development Commission) may also be involved. Sections 1600–1607 of the Fish and Game Code require any agency that proposes a project that will substantially divert or obstruct the natural flow of or substantially change the bed or bank of a river, stream, or lake to notify CDFG before beginning construction. If CDFG determines that the project may substantially and adversely affect fish or wildlife resources, a Lake or Streambed Alteration Agreement will be required. CDFG jurisdictional limits are usually defined by the tops of the stream or lake banks or the outer edge of riparian vegetation, whichever is wider. Wetlands under jurisdiction of USACE may or may not be included in the area covered by a Streambed Alteration Agreement obtained from CDFG.

The RWQCBs were established under the Porter-Cologne Water Quality Control Act to oversee water quality. The RWQCBs also issues water quality certifications in compliance with Section 401 of the CWA. Please see the Water Quality section for additional details.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Section 404 of the federal CWA, which is administered by the USACE, regulates the discharge of dredged or fill material into waters of the United States. USACE has established a series of nationwide permits that authorize certain activities in waters of the United States, provided that a proposed activity can demonstrate compliance with standard permit conditions. Normally, the USACE requires an individual permit for activities affecting an area equal to or in excess of 0.5 acre of waters of the United States. Projects affecting less than 0.5 acre of waters of the United States can normally be conducted pursuant to one of the nationwide permits, if consistent with standard permit conditions.

Stormwater discharges associated with construction activities, including clearing, grading, excavation, reconstruction, and dredge or fill activities resulting in the disturbance of 1 acre or more, are required to demonstrate compliance with the General Construction Activity Stormwater Permit pursuant to the NPDES permit regulated by the RWQCB and Section 402 of the federal CWA. Construction activities associated with the proposed project must be consistent with the requirements of the General Construction Activity Stormwater Permit.

Affected Environment

A delineation for jurisdictional waters and wetlands was not performed for this project because no natural water features occur within the limits of disturbance. A small portion of the West Basin of the port is located at the edge of the BSA. The West Basin is separated from the limits of disturbance by a road, a railroad track, and an industrial area. The West Basin is located more than 250 feet from the limits of disturbance, and the area is heavily used as a shipping terminal at the port.

No jurisdictional drainage water features are present within the limits of disturbance.

Environmental Consequences

Construction Impacts/Operational Impacts

Alternative 1: No-Build Alternative

Because there would be no construction activities and no changes to existing conditions under the No-Build Alternative, there would be no adverse effects under NEPA or significant impacts under CEQA on jurisdictional waters or wetlands.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

As described above, the only jurisdictional feature (West Basin) occurring within the BSA is within the port shipping terminal. Because of the distance of this feature from the project site (more than 250 feet from the limits of disturbance) and the existing activities within the shipping terminal, construction activities and operation of the proposed project are not expected to have a direct or indirect adverse effect under NEPA or significant impact under CEQA on this jurisdictional feature.
Avoidance, Minimization, and/or Mitigation Measures

Avoidance and minimization measures described above under Section 2.3.1, Natural Communities would further reduce impacts to wetlands and other waters.

2.3.3 Plant Species

Regulatory Setting

USFWS and CDFG share regulatory responsibility for the protection of special-status plant species. Special-status species are selected for protection because they are rare and/or subject to population and habitat declines. Special-status is a general term for species that are afforded varying levels of regulatory protection. The highest level of protection is given to threatened and endangered species; these are species that are formally listed or proposed for listing as endangered or threatened under the federal Endangered Species Act (FESA) and/or the California Endangered Species Act (CESA). Please see the Threatened and Endangered Species section (Section 2.3.5) in this document for detailed information regarding these species.

This section of the document discusses all the other special-status plant species, including CDFG fully protected species and species of special concern, USFWS candidate species, and non-listed California Native Plant Society (CNPS) rare and endangered plants.

The regulatory requirements for FESA can be found at 16 USC Section 1531, et seq. (see also 50 CFR Part 402). The regulatory requirements for CESA can be found at California Fish and Game Code Section 2050, et seq. Caltrans projects are also subject to the Native Plant Protection Act, found at California Fish and Game Code Sections 1900–1913, and CEQA, Public Resources Code Sections 2100–21177.

The City of Los Angeles has tree removal policies and ordinances requiring all removed trees to be replaced, whether they are native or not.

Affected Environment

Prior to any fieldwork, a query of the CNDDB and CNPS databases was performed to identify special-status plant species within the vicinity of the BSA. Species that are endangered or threatened under FESA and CESA are discussed in Section 2.3.5.

No special-status plants were observed during the site visit in January 2009. No potentially suitable conditions for special-status plants are present within the BSA. This conclusion is based on the species' requirements, which pertain to one or more of the following: soils, hydrology, habitat, elevation range, and/or disturbance tolerance.
Environmental Consequences

Construction Impact/Operational Impacts

Alternative 1: No-Build Alternative

Because there would be no construction activities or change in existing conditions under the No-Build Alternative, there would be no adverse effects under NEPA or significant impacts under CEQA on special-status plant species.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Because there is no potential for special-status plants to occur within the BSA, no adverse effects under NEPA or significant impacts under CEQA would occur from construction activities or operation of the proposed project.

Avoidance, Minimization, and/or Mitigation Measures

No avoidance, minimization, and/or mitigation measures are required.

2.3.4 Animal Species

Regulatory Setting

Many state and federal laws regulate impacts on wildlife. The National Oceanic and Atmospheric Administration (NOAA) Fisheries, USFWS, and CDFG are responsible for implementing these laws. This section discusses potential impacts and permit requirements associated with wildlife not listed or proposed for listing under the state or federal Endangered Species Act. Species listed or proposed for listing as threatened or endangered are discussed in Section 2.3.5, below. All other special-status animal species are discussed here, including CDFG fully protected species and species of special concern, USFWS or NOAA Fisheries candidate species, and species tracked by CNDDB.

Federal laws and regulations pertaining to wildlife include the following:

- National Environmental Policy Act,
- Migratory Bird Treaty Act (MBTA), and
- Fish and Wildlife Coordination Act.

State laws and regulations pertaining to wildlife include the following:

- California Environmental Quality Act,
- Sections 1600–1603 of the California Fish and Game Code, and
- Sections 4150 and 4152 of the California Fish and Game Code.
Affected Environment

A total of 16 vertebrate species were detected during the site visit. Detected wildlife consisted of one reptile species, 14 birds, and one mammal. All of the animal species detected are fairly common in urban settings and tolerant of human development. The common species detected were western fence lizard (*Sceloporus occidentalis*), black phoebe (*Sayornis nigricans*), European starling (*Sturnus vulgaris*), house finch (*Carpodacus mexicanus*), and Botta’s pocket gopher (*Thomomys bottae*).

No special-status animals were detected within the BSA during the site visit. A number of state species of special concern (listed) and species tracked by CNDDB (non-listed) have been recorded within the vicinity of the BSA. The following bird species are tracked by CNDDB and have the potential to forage within the harbor portion of the BSA: double-crested cormorant (*Phalacrocorax auritus*), California gull (*Larus californicus*), and elegant tern (*Thalasseus elegans*). Black skimmer (*Rynchops niger*) is a state species of special concern and also has the potential to forage within the harbor portion of the BSA. Foraging potential for these species ranges from low to moderate. None of these species would nest within the BSA.

The CNDDDB query did not identify any marine mammals within the vicinity of the BSA. No suitable habitat for any other species with special status occurs within the BSA.

Numerous trees and shrubs within the BSA provide suitable nesting and roosting habitat for native bird species, including raptors, protected under the MBTA. Furthermore, most of these bird species are also covered under similar protective statutes found in the California Fish and Game Code.

Environmental Consequences

Construction Impacts/Operational Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not result in any construction activities or changes to the existing environment; thus, no adverse effects under NEPA or significant impacts under CEQA would occur.

Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Of the special-status species that could forage within the BSA, foraging activities would occur primarily outside of the project footprint, within the harbor portion of the BSA. Thus, no adverse effects under NEPA or significant impacts under CEQA would occur related to special-status species. Because the BSA consists of an urbanized setting, any potential indirect effects of construction activities and operations would be no greater than existing conditions. Thus, no adverse effects under NEPA or significant impacts under CEQA would occur.
Chapter 2. Affected Environment, Environmental Consequences, and
Avoidance, Minimization, and/or Mitigation Measures

The Build Alternative would remove potential nesting trees for non-listed breeding birds.
Removal of active nests during the bird breeding season (February 15 through September 1)
could result in adverse effects under NEPA or significant impacts under CEQA. Implementation
of BIO-1 would ensure that effects on native birds and/or raptors would not be adverse under
NEPA or significant under CEQA.

Avoidance, Minimization, and/or Mitigation Measures

BIO-1 To avoid impacts on non-listed birds protected under the federal MBTA and
similar state statutes, one of the following shall be implemented:

- No ground disturbance, site clearing, or removal of any potential nesting
 habitat shall be conducted within the typical breeding/nesting season for birds
 (February 15 to September 1) or;

- If construction shall occur during the bird breeding season, prior to any
 ground disturbing activities, a qualified biologist shall conduct surveys for
 nesting birds (including raptors). The surveys shall occur a minimum of 3
days prior to clearing, removal, or trimming of any vegetation. Surveys shall
include areas within 200 feet of the edge of the project boundary (as legally
accessible) and the entire project site. If active nests are found, a 100-foot
(minimum) temporary fence barrier shall be erected around the nest site. For
raptor nests that are found, a 250-foot buffer from construction activities shall
be required. No habitat removal or any other work shall be allowed to occur
within the fenced nest zone until a qualified biologist confirms that the nest is
not longer active and/or the young have fledged.

2.3.5 Threatened and Endangered Species

Regulatory Setting

The primary federal law protecting threatened and endangered species is FESA (16 USC
Section 1531, et seq. [see also 50 CFR Part 402]). This act and subsequent amendments provide
for the conservation of endangered and threatened species and the ecosystems upon which they
depend. Under Section 7 of this act, federal agencies such as FHWA are required to consult with
USFWS and NOAA Fisheries to ensure that they are not undertaking, funding, permitting, or
authorizing actions likely to jeopardize the continued existence of listed species or destroy or
adversely modify designated critical habitat. Critical habitat is defined as geographic locations
critical to the existence of a threatened or endangered species. The outcome of consultation
under Section 7 is a Biological Opinion or an Incidental Take statement. Section 3 of FESA
defines take as “harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect or any
attempt at such conduct.”

California has enacted a similar law at the state level, CESA, California Fish and Game Code
Section 2050, et seq. CESA emphasizes early consultation to avoid potential impacts on rare,
deranged, and threatened species and develop appropriate planning to offset project-caused
losses of listed species and their essential habitats. CDFG is the agency responsible for
implementing CESA. Section 2081 of the California Fish and Game Code prohibits take of any species determined to be an endangered species or a threatened species. Take is defined in Section 86 of the Fish and Game Code as “hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill.” CESA allows for take incidental to otherwise lawful development projects; for these actions, an incidental take permit is issued by CDFG. For projects requiring a Biological Opinion under Section 7 of FESA, CDFG may also authorize impacts on CESA species by issuing a Consistency Determination under Section 2080.1 of the California Fish and Game Code.

Affected Environment

Eight state and/or federally listed plant species and one federal candidate plant species were evaluated to determine whether the BSA provides suitable habitat. These species are Ventura marsh milk-vetch (*Astragalus pycnostachys* var. *lanosissimus*), coastal dunes milk-vetch (*Astragalus tener* var. *titi*), San Fernando spineflower (*Chorizanthe parryi* var. *fernandina*), salt marsh bird’s-beak (*Cordylanthus martimus* ssp. *maritimus*), beach spectacledpod (*Dithyrea maritima*), spreading navaretta (*Navaretta fossalis*), California orcutt grass (*Orcuttia californica*), Lyon’s pentachaeta (*Pentachaeta lyonii*), and Brand’s star phacelia (*Phacelia stellaris*). None of these species were detected within the BSA, and no suitable habitat is found within the area.

The state and/or federally listed animals evaluated for potential to occur within the BSA are Palos Verdes blue butterfly (*Glaucopsyche lygdamus palosverdesensis*), El Segundo blue butterfly (*Euphilotes battoides allyni*), Mohave tui chub (*Gila bicolor mohavensis*), California brown pelican (*Pelecanus occidentalis californicus*), American peregrine falcon (*Falco peregrinus anatum*), western snowy plover (*Charadrius alexandrius nivosus*), California least tern (*Sternula antillarum browni*), California black rail (*Laterallus jamaicensis coturniculus*), coastal California gnatcatcher (*Polioptila californica californica*), southwestern willow flycatcher (*Empidonax traillii extimus*), least Bell’s vireo (*Vireo bellii pusillus*), Belding’s savannah sparrow (*Passerculus sandwichensis beldingi*), and Pacific pocket mouse (*Perognathus longimembris pacificus*). The species with potential to occur within the BSA as a forager are California brown pelican, American peregrine falcon, and California least tern. The remaining species have no potential to occur because there is no suitable habitat present.

Environmental Consequences

Construction Impacts/Operational Impacts

Alternative 1: No-Build Alternative

The No-Build Alternative would not result in any construction activities or changes in the existing setting; thus, no adverse effects under NEPA or significant impacts under CEQA would occur.
Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Informal consultations with USFWS and the National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NMFS) were initiated, and concurrence with the finding of Not Likely to Adversely Affect is anticipated (see Section 3.2.1 and the Natural Environment Study [MI]). No potentially suitable conditions for listed plant species occur within the BSA. Therefore, no effect/take under Section 7 of the FESA or the CESA would occur under the Build Alternative.

Of the listed animal species that could forage within the BSA, foraging activity is expected to occur outside of the project footprint, within the harbor portion of the BSA. However, because the BSA consists of an urbanized setting with no potentially suitable resources, none of these special-status species are expected to nest or roost within the BSA. Under the Build Alternative, direct impacts are not anticipated because of the lack of suitable habitat. Because the BSA consists of an urbanized setting, any potential indirect effects/impacts of construction would be no greater than they would be under existing conditions. No effect/take under Section 7 of the FESA or the CESA would occur under the Build Alternative.

No adverse effects under NEPA or significant impacts under CEQA would occur.

Avoidance, Minimization, and/or Mitigation Measures

No avoidance, minimization, and/or mitigation measures are required.

2.3.6 Invasive Species

Regulatory Setting

On February 3, 1999, President Clinton signed Executive Order 13112, requiring federal agencies to combat the introduction or spread of invasive species in the United States. The order defines invasive species as “any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem whose introduction does or is likely to cause economic or environmental harm or harm to human health.” FHWA guidance issued on August 10, 1999, directs the use of the state’s noxious weed list to define the invasive plants that must be considered as part of the NEPA analysis for a proposed project.

Affected Environment

Numerous noxious weeds were observed within the BSA. Noxious weed species include those designated as federal noxious weeds by the U.S. Department of Agriculture, species listed by the California Department of Food and Agriculture (CDFA), and other exotic pest plants designated by the California Invasive Plant Council (Cal-IPC). Table 2-57 identifies the noxious weed species found within the BSA.
Table 2-57: Noxious Weed Species Observed within the Biological Study Area

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>California Department of Food and Agriculture Code*</th>
<th>California Invasive Plant Council**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avena barbata</td>
<td>Slender wild oat</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bromus diandrus</td>
<td>Ripgut grass</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bromus madritensis</td>
<td>Spanish brome</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cenchrus longispinus</td>
<td>Southern sandbur</td>
<td>C List</td>
<td>None</td>
</tr>
<tr>
<td>Cortaderia selloana</td>
<td>Selloa pampas grass</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Bermuda grass</td>
<td>C List</td>
<td>Moderate</td>
</tr>
<tr>
<td>Erodium cicutarium</td>
<td>Red-stem filaree</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Eucalyptus globules</td>
<td>Tasmanian blue gum</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hirschfeldia incana</td>
<td>Short-pod mustard</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hordeum murinum</td>
<td>Glaucous barley</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Lolium multiflorum</td>
<td>Italian ryegrass</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Medicago polymorpha</td>
<td>California burclover</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Nicotiana glauca</td>
<td>Tree tobacco</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Pennisetum setaceum</td>
<td>Fountain grass</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Picris echioides</td>
<td>Bristly ox-tongue</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Piptatherum miliaceum</td>
<td>Smilo grass</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Raphanus sativus</td>
<td>Wild raddish</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Ricinus communis</td>
<td>Castor-bean</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Salsola tragus</td>
<td>Tumbleweed</td>
<td>C List</td>
<td>Limited</td>
</tr>
<tr>
<td>Schismus barbatus</td>
<td>Mediterranean schismus</td>
<td>None</td>
<td>Limited</td>
</tr>
<tr>
<td>Sisymbrium irio</td>
<td>London rocket</td>
<td>None</td>
<td>Moderate</td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Puncture vine</td>
<td>C List</td>
<td>None</td>
</tr>
<tr>
<td>Washingtonia robusta</td>
<td>Mexican fan palm</td>
<td>None</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

*Codes (California Department of Food and Agriculture 2006).

**Codes (California Invasive Plant Council 2006).

Environmental Consequences

Construction Impacts/Operational Impacts

Alternative 1: No-Build Alternative

Under the No-Build Alternative, no construction activities or any change from the existing environment would occur. Thus, no adverse effects under NEPA or significant impacts under CEQA would occur related to invasive species.
Alternative 2: Build Alternative (Northbound Off-Ramp to Harry Bridges Boulevard)

Construction and operational activities related to implementation of the Build Alternative have the potential to result in the introduction and spread of noxious weeds. This could result in adverse effects under NEPA or significant impacts under CEQA. To ensure the project does not promote the introduction or spread of invasive species, mitigation measures BIO-2 through BIO-5 would apply. With implementation of mitigation measures, the impacts would be less than significant under CEQA, and no substantial adverse effects would occur under NEPA.

Avoidance, Minimization, and/or Mitigation Measures

BIO-2 Construction equipment shall be cleaned of mud or other debris that may contain invasive plants and/or seeds. Equipment shall also be inspected before arriving to the site and before leaving the site during the course of construction to reduce the potential of spreading noxious weeds.

BIO-3 All targeted vegetative material shall be immediately removed from the project area. This includes small cuttings, leaves, branches, seeds, and vegetative litter.

BIO-4 Trucks with loads carrying vegetation shall be covered and vegetation materials removed from the site shall be disposed of in accordance with applicable laws and regulations.

BIO-5 Any areas within the limits of disturbance that remain unvegetated after construction has been completed shall be hydroseeded with a seed mix restricted to local natives to promote recolonization of native vegetation. In addition, any landscaping within the BSA associated with this project shall use native plant species. This measure would reduce the risk of providing optimal conditions for invasive species to colonize the area.
2.4 Cumulative Impacts

2.4.1 Regulatory Setting

Cumulative impacts are those that result from past, present, and reasonably foreseeable future actions combined with the potential impacts of this project. A cumulative effect assessment looks at the collective impacts posed by individual land use plans and projects. Cumulative impacts can result from individually minor but collectively substantial impacts taking place over a period of time.

Cumulative impacts on resources in the project area may result from residential, commercial, industrial, and highway development as well as agricultural development and the conversion to more intensive types of agricultural cultivation. These land use activities can degrade habitat and species diversity through consequences such as displacement and fragmentation of habitats and populations, alteration of hydrology, contamination, erosion, sedimentation, disruption of migration corridors, changes in water quality, and the introduction or promotion of predators. They can also contribute to potential community impacts identified for the project, such as changes in community character, traffic patterns, housing availability, and employment.

State CEQA Guidelines Section 15130 describes when a cumulative impact analysis is warranted and what elements are necessary for an adequate discussion of cumulative impacts. The definition of cumulative impacts, under CEQA, can be found in Section 15355 of the State CEQA Guidelines. A definition of cumulative impacts under NEPA can be found in 40 CFR Section 1508.7 of the CEQ regulations.

The proposed project would have no effect on agricultural resources, population and housing, parks and recreation, or mineral resources, and no businesses or residences would be acquired. Therefore, the project would not contribute either directly or indirectly to a cumulatively considerable impact in these resource areas. Therefore, the potential for the proposed project to result in cumulatively impacts that would be considered significant under CEQA or adverse under NEPA in the aforementioned areas is low, and the proposed project does not have the potential to result in a cumulative impact that would affect the health or sustainability of any of these resources.

The proposed project would have project-level direct or indirect effects on aesthetics, air quality, biological resources, archaeological resources, paleontological resources, geology and soils, hydrology and water quality, noise, public services, utilities, transportation, and hazardous materials. The potential for cumulatively considerable impacts in these resource areas is discussed below.

The cumulative impact analyses included in this section considered projects that are currently proposed, approved, or under construction within the Port of Los Angeles and the communities of Wilmington and San Pedro in City of Los Angeles as of August 2009. A list of projects included in the analysis is presented in Table 2-1. Figures 2-15a through 2-15c show the Resource Study Area (RSA) for cumulative impacts of various resources.
Figure 2-15a: Resource Study Area for Cumulative Impacts
Figure 2-15b: Resource Study Area for Cumulative Impacts
Figure 2-15c: Resource Study Area for Cumulative Impacts
2.4.2 Land Use/Community Impacts

Affected Environment

Resource Study Area: As shown in Figure 2-15a, the geographic RSA boundary used in the assessment of cumulative impacts involving land use and/or community resources is defined at various levels from regional to local. For land use and planning, the appropriate RSA is the geographical extent of the City of Los Angeles’ Wilmington community. For community impacts, the appropriate RSA is identified as the area located within 0.5 mile of the project (shown in Figure 2-15a).

Existing Conditions within RSA: The I-110/C Street interchange improvements would occur within Wilmington community in the City of Los Angeles, which is fully urbanized. Land uses in the vicinity of the I-110/C Street interchange consist of both industrial and residential uses. The port facilities directly south of the project site and the industrial warehouse facilities east of the northbound on-ramp make up the industrial land uses within the project vicinity. The area near the D Street/Figueroa Street intersection, east of the project site, is for residential use. Finally, the area between C Street and Harry Bridges Boulevard, east of Figueroa Street and the northbound off-ramp, has been developed as a green-space buffer between port facilities and the residential community. It is owned by the City of Los Angeles.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: The proposed project would not result in any change in land use or zoning and would comply with the pertinent general plan policies. The planned improvements would require no additional right-of-way acquisition. All land required for improvement is publicly owned. There would be a transfer of property among the City of Los Angeles, Los Angeles Harbor Department, and Caltrans for the proposed project due to the realignment of roadways. No displacements would occur, and relocations would not be necessary. The proposed improvements (project number LA0F030) are consistent with the project description in the 2008 RTIP and the 2008 RTP. The proposed project would not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the proposed project (including a general plan, specific plan, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, the project is consistent with local plans and policies and would not result in any adverse impacts, either individually or cumulatively, on land use and planning.

The proposed project would result in temporary construction-period impacts that would affect the community; however, these would be minimized through the preparation and implementation of a TMP. Access to businesses and residences would be maintained during construction.
Current and Reasonably Foreseeable Projects within RSA: Table 2-1 provides a list of the 36 related projects within the Port of Los Angeles, Wilmington, and San Pedro. Most of the projects listed in Table 2-1 are port-related projects. The Harry Bridges Boulevard buffer, the only contiguous project, has recently been constructed. Thus, the related projects would not result in adverse effects on the community.

Cumulative Impact Potential: The potential for impacts on land use and planning and the community at large as a result of the proposed project is low. In addition, the other approved local projects (related projects) do not include major capital improvements or projects that would result in changes in land use. The related projects are expected to comply with environmental regulations and other local plans and policies and would likely be consistent with any land use plans. The TMP prepared for each project (as discussed under mitigation measures LU-1, C-1, and TR-1) would take into account cumulative projects within its vicinity. Based on the low potential for impacts as a result of the proposed project and the small scale of the related projects, the proposed project would not result in any cumulatively considerable land use and planning or community impacts.

Avoidance, Minimization, and/or Mitigation Measures

The TMP prepared according to mitigation measures LU-1, C-1, and TR-1 would minimize any construction impacts on land use and the community. No adverse cumulative impacts related to land use and planning or the community are anticipated as a result of the project, and no additional avoidance, minimization, and/or mitigation measures are proposed.

2.4.3 Growth

Affected Environment

Resource Study Area: The geographic RSA boundary used in the assessment of cumulative impacts involving growth is defined as the extent of regional plans, such as the RTIP and RTP (shown in Figure 2-15b). SCAG is the MPO in the region for the counties of Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial and is responsible for forecasting population trends and growth scenarios in the region. The area covered by the related projects identified in Table 2-1 and shown in Figure 2-3 is included within the regional plan area identified as the RSA for growth.

Existing Conditions within RSA: The SCAG region is the second most populous metropolitan region in the nation. The U.S. census reported the 2000 population of the SCAG region as 16,516,006. More than 6 percent of the nation’s population lives in the SCAG region, and for more than half a century the region has been home to half the population of California (SCAG 2008a). The SCAG region gained almost 1.9 million people between 1990 and 2000, and the California Department of Finance estimates that the region has added yet another 2.2 million since 2000.
Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: The proposed project would improve an existing transportation facility. I-110, C Street, and Harry Bridges Boulevard are existing roadways, and the right-of-way has been reserved for the future interchange. The proposed improvements (project number LA0F030) are consistent with the project description in the current 2008 RTIP and the 2008 RTP. The project and cumulative development are accounted for and forecast in the regional plans. The proposed project would not have a significant impact with respect to growth inducement. Therefore, the proposed project is neither intended nor expected to induce any substantial change in the location, distribution, or rate of population and housing growth. The proposed project would not result in any substantial direct or indirect impacts on growth.

Current and Reasonably Foreseeable Projects within RSA: In the current RTP and RTIP, there are many roadway improvement projects proposed in the region that would decrease travel times and reduce congestion on existing roadways. However, this would result in a beneficial impact on air quality if congestion is reduced. The regional plans have analyzed the cumulative impacts of all projects and have identified feasible avoidance, minimization, and mitigation measures. SCAG has forecast foreseeable growth in the region until 2035 and analyzed impacts of population increases.

Cumulative Impact Potential: The potential for impacts related to growth inducement as a result of the proposed project is low. In addition, the other approved local projects include only one new residential project, which is an infill project in an already built-up area. This would not result in a substantial shift in population growth or distribution or make areas previously inaccessible to growth accessible. As stated in the program EIR for the 2008 RTP, in specific areas of the region, the 2008 RTP would likely induce growth by providing new and improved access; however, overall, the 2008 RTP would accommodate and facilitate growth in the region (SCAG 2008a). Therefore, it is expected that regional plans have accounted for growth in the region and have strategies in place to accommodate growth. Moreover, the proposed project would not link two independent communities or introduce new linkages. As such, the project would not contribute to adverse cumulative growth impacts in the region.

Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts involving growth as a result of the project are anticipated, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.4 Utilities/Emergency Services

Affected Environment

Resource Study Area: The RSA for utilities/emergency services is the area covered by the project and the related projects (shown in Figure 2-3). Within the project area, if construction activities occur concurrently, there is the potential for detours that affect emergency services and disruptions to utility services.
Existing Conditions within RSA: The RSA is highly urbanized and well served by utilities and emergency services. All areas of the RSA are equally served by emergency service providers such as fire and police. The service ratios for police and fire services are acceptable. No issues related to lack of utilities or emergency services are known.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: During construction of the project, there would be potential for direct and indirect impacts on emergency services. Although I-110 would remain open throughout construction, construction activities could result in lane closures along I-110 for short periods of time. This may affect emergency response times to some parts of the study area. Avoidance and minimization measures are proposed, including the preparation of a TMP and notifying local emergency services of proposed construction activities. This would ensure that emergency services have adequate information to plan detour routes. The project in the long term would benefit emergency services by reducing congestion and improving travel time.

With respect to utilities, construction activities, such as the relocation of utility lines along Figueroa Street and Harry Bridges Boulevard, may result in service disruptions within the RSA. However, construction activities would be coordinated with utility providers, and those in the area to be affected by service disruptions would be notified in advance. Such effects would be minor and temporary. In the long term, the proposed project would not result in any adverse effects pertaining to utilities.

Current and Reasonably Foreseeable Projects within RSA: Table 2-1 provides a list of the approved related projects at the Port of Los Angeles and in the communities of Wilmington and San Pedro. Of the 36 projects, five are interchange and roadway improvements, one is a port-wide transportation master plan project, 21 are port-related development projects, and the rest are other development projects in San Pedro, Wilmington, Lomita, and Torrance. Except for the Wilmington grade separation project, the I-110/SR-47 Connectors Improvement Program, the I-110/John S. Gibson Boulevard interchange improvement project, and TraPac terminal project, none of the projects is located close to the project site or along I-110.

Cumulative Impact Potential: Construction activities for one or more of the related projects in the area could result in temporary, localized, site-specific disruptions, including partial and/or complete street and lane closures and detours. If the activities occur at the same time, this could cumulatively increase response times for emergency vehicles during construction. Potential disruptions to utilities and emergency services could be avoided through implementation of mitigation measures LU-1, C-1, TR-1, U&ES-1, and U&ES-2. The preparation of a TMP (under mitigation measures LU-1, C-1, TR-1, and U&ES-2) would take into consideration other projects in the area. The TMP would include provisions to notify the local fire station and any potentially affected residents at least 2 weeks in advance of any planned partial or complete street closures or traffic diversions. Similarly, simultaneous construction activities for the proposed project and other related projects could result in temporary utility disruptions. However, efforts would be made to coordinate with affected utility providers and notify affected residents 2 weeks in advance of any service disruption. Therefore, the cumulative effects of construction, should they occur, would be minor and temporary.
Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts on utilities/emergency services are anticipated as a result of the project, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.5 Traffic and Transportation/Pedestrian and Bicycle Facilities

Affected Environment

Resource Study Area: The SCAG region covered under the RTP and RTIP, as shown in Figure 2-13b, is the appropriate RSA for evaluating cumulative impacts at a regional level. For localized effects, area covered by the 36 related projects listed in Table 2-1 is considered the RSA (shown in Figure 2-3).

Existing Conditions within RSA: At the regional level, the regional transportation system is currently operating at capacity during peak periods. The highway system shows substantial freeway congestion in the morning and evening peak periods, with random episodes of incident-related (i.e. accident) congestion throughout the day. At the local level, port growth and other local and regional growth, has added daily and peak hour trips to the roadway system. Even with this growth, most local study intersections operate at acceptable LOS.\(^{31}\) Traffic estimated under the no-build scenario reflects trips generated by other planned regional development.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: Once constructed, the project would result in a beneficial impact on regional and local traffic conditions and access. The project would not result in deterioration of levels of service at any intersections or roadway segments.

Current and Reasonably Foreseeable Projects within RSA: The long-term operation of the proposed Project, in combination with other current and reasonably foreseeable future projects shown in Table 2-1, would result in significant cumulative impacts on the road transportation network by degrading LOS at one of the analyzed intersections to unacceptable levels. To analyze the cumulative impacts, transportation modeling was used to predict the future LOS at key intersections based on the proposed Project along with other projected future port growth and all other cumulative projects in Table 2-1 as well as other sources of local and regional growth. Based on this, the growth rate and the forecasted traffic volumes for 2014 (the year of construction completion) and 2035 (the design year for this project) were calculated.

Cumulative Impact Potential: At the regional level, the proposed project is included in 2008 RTP and RTIP. Thus the cumulative impacts from the proposed project at the regional level have been accounted for under the program Environmental Impact Report of the RTP and the proposed project would not result in cumulative impacts at the regional level.

\(^{31}\) Port of Los Angeles. 2007. *Berths 136-147 Terminal Final EIS/EIR.*
At the local level, the existing I-110 Ramps/C Street & Figueroa Street and the John S. Gibson Boulevard/Harry Bridges Boulevard & Figueroa Street intersections would be reconfigured to form a single intersection in the future with the northbound I-110 off-ramp directly diverging to Harry Bridges Boulevard under the proposed project. This would improve the operational efficiency and safety of the intersection by correcting the short merge distance of the two intersections. Thus, the build conditions would provide an improvement in LOS conditions at intersections analyzed versus the no-build conditions. The freeway ramps, mainline and weaving segments would continue to operate at acceptable levels under both the build and no build scenarios. Because the proposed project would have a beneficial impact on traffic, adverse cumulative impacts are not anticipated once the project is operational. However, construction activities for one or more of the related projects in the area could result in temporary, localized, site-specific disruptions, including partial and/or complete street and lane closures and detours. If the activities occur at the same time, this could cumulatively increase response times for emergency vehicles during construction. Potential disruptions affecting utilities and emergency services could be avoided through implementation of mitigation measures LU-1, C-1, TR-1, and U&ES-2. The preparation of a TMP (under mitigation measures LU-1, C-1, TR-1 and U&ES-2) would take into consideration other projects in the area.

Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts are anticipated involving traffic and transportation/pedestrian and bicycle facilities as a result of the project during operations, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.6 Visual/Aesthetics

Affected Environment

Resource Study Area: The RSA for visual resources is identified as the area within a 1.5-mile radius of the project site from which elevated structures constructed under the proposed project might be visible. The RSA is shown in Figure 2-15a.

Existing Conditions within RSA: The topography of the project area is flat, with no mature trees or landscape vegetation existing within the project vicinity. No pertinent visual resources appear within the project viewshed except for the Vincent Thomas Bridge, which is located approximately 1.5 miles southeast of the project site. The landmark bridge is eligible for listing in National Register of Historic Places. Views from the closest residential neighborhood to the project site are primarily of port-related facilities and transportation infrastructure. No views of high quality were identified within the RSA. The sensitive viewer groups for the proposed project include residents of single-family housing along Figueroa Street, users of recreational uses between C Street and Harry Bridges Boulevard, and motorists on I-110.
Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: Since the existing views for the sensitive viewer groups are dominated by transportation infrastructure, light industry and warehouses, and port-related uses, the construction of new, elevated structures would not result in substantial adverse effects. Views of the Vincent Thomas Bridge would remain unchanged for motorists on I-110 or first-row residents along the north side of C Street east of Figueroa Street.

Current and Reasonably Foreseeable Projects within RSA: Some related projects identified in Table 2-1 fall within the RSA, and some could be visible to sensitive viewer groups. During the construction phase, the presence of construction equipment, workers, and trucks could result in adverse effects; however, these impacts would be temporary in nature and of short duration. During the operational phase, most projects would not result in substantial adverse changes and would blend in with existing industrial and port-related uses.

Cumulative Impact Potential: The Build Alternative would not introduce new structural elements that would block existing views of high visual quality. Improvements would be limited largely to replacement and expansion of existing transportation facilities and port-related development. Any changes in the views in this area would be generally consistent with existing views of developed areas surrounding the project site. Implementation of minimization measures VIS-1 through VIS-4 would ensure that impacts from the proposed project are not adverse. Furthermore, the proposed project would not result in changes in views for those traveling along a designated scenic highway. Therefore, the potential for the proposed project to contribute to cumulative adverse impacts related to visual resources is considered low.

Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts on visual resources are anticipated as a result of the project, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.7 Cultural Resources

Affected Environment

Resource Study Area: The RSA for cultural resources is the APE identified for the proposed project. The APE incorporates the maximum existing or proposed right-of-way and any area where ground may be disturbed by construction activities. Additionally, the APE incorporates parcels that may have potential visual and audible effects resulting from the proposed project. APE is shown in Figures 2-6a and 2-6b.

Existing Conditions within RSA: Cultural resources field surveys of all properties within the proposed APE were undertaken. None of the properties appears eligible for listing in the National Register of Historic Places. Four properties that were surveyed for the *Historical Property Survey Report* were determined to be not eligible for the National Register of Historic Places as a result of the study. There is one resource for which further study is needed: Air Raid Siren #82, located on the northwest corner of Harry Bridges Boulevard and South Figueroa Street. This resource is not
individually significant but may contribute to a district of similar air raid sirens located in the City and County. However, it will not be affected by the proposed project.

No new surficial prehistoric or historical archaeological resources were observed within the proposed project’s archaeological APE. The majority of the APE is a dense urban area that is developed with existing roads, railroad alignments, soundwalls, residential neighborhoods, commercial and industrial complexes, and landscape vegetation.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: The proposed project would not result in substantial adverse effects or significant impacts on historic or archaeological resources.

Current and Reasonably Foreseeable Projects within RSA: The area within the APE is heavily disturbed, and consequently, there is a low potential for finding archaeological resources. Only the Harry Bridges Boulevard buffer area project constructed under the TraPac terminal improvements, falls within the APE. However, no archaeological resource was identified within the APE that could be affected by any related project.

Cumulative Impact Potential: The proposed project would not result in an adverse impact on cultural resources within the APE because the area is heavily disturbed. Therefore, the potential for a cumulatively considerable impact is low. However, construction activities associated with the proposed project and related projects could unearth unanticipated cultural resources and result in an adverse cumulative impact. Additionally, implementation of minimization measures CR-1 and CR-2 would ensure that any cumulative impacts, should they occur, are minimized. Related projects would implement similar mitigation measures to minimize impacts on cultural resources. Thus, cumulative impacts from the proposed project would not be substantially adverse.

Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts on cultural resources are anticipated as a result of the project, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.8 Hydrology, Floodplain, Water Quality and Stormwater Runoff

Affected Environment

Resource Study Area: The proposed project is located within the Los Angeles Harbor Watershed, which drains directly into Los Angeles and Long Beach Harbors and includes portions of Los Angeles, Long Beach, Rancho Palos Verdes, and Rolling Hills. An appropriate RSA for hydrology, floodplains, and water quality and stormwater runoff has been identified as the portion of the watershed that encompasses the project limits from the northern I-110 right-of-way to the farthest extent of any downstream flows. The hydrology RSA is shown in Figure 2-15c.

Existing Conditions within RSA: The contaminants in the most recent 2006 CWA Section 303(d) list of water-quality-limited segments for the Los Angeles RWQCB, which was
adopted by EPA in 2007 (Los Angeles RWQCB 2006), are listed in Table 2-11 of Section 2.2.2, Water Quality and Stormwater Runoff.

On July 1, 2004, the Los Angeles Harbor bacteria TMDL (Inner Cabrillo Beach and Main Ship Channel) was adopted by the Los Angeles RWQCB (effective March 10, 2005). The reason for the TMDL was because elevated bacterial indicator densities were causing impairments associated with water contact recreation (REC-1) and beneficial uses at Inner Cabrillo Beach and potential REC-1 uses at the Main Ship Channel in the Los Angeles Harbor.

The West Coast Basin is adjudicated and has a surface area of 91,300 acres. There are several aquifers present in the subbasin. The storage capacity of the primary water-producing aquifer, the Silverado aquifer, is estimated to be 6,500,000 acre-feet (Department of Water Resources 2004). Seawater intrusion occurs in some aquifers that are exposed to the ocean offshore. Injection wells located near Wilmington form a protective mound at the Dominguez Gap Injection Barrier. The regional water quality objectives for groundwater contained in the Basin Plan pertain to bacteria, chemical constituents and radioactivity, mineral quality, nitrogen (nitrate, nitrite), and taste and odor.

According to FEMA’s FIRM and the City’s flood zone mapping, the project is not located within the 100-year floodplain. However, portions of the site are identified as being within the 500-year floodplain.

Environmental Consequences

| Potential Direct and/or Indirect Impacts within RSA: | The proposed project has the potential to result in increases in vehicular-generated contaminants on road surfaces. Excessive stream and channel erosion may occur if runoff volumes and rates increase as a result of construction activities. Standard Caltrans BMPs, as listed in the Statewide Stormwater Quality Practice Guidelines (California Department of Transportation 2003) and mitigation measure WQ-1 through WQ-4, would be included to reduce and avoid water quality impacts. In addition, the project may result in moderate alterations to the surrounding surface drainage conditions. The proposed project would reduce the amount of impervious surface in the area, thereby having a beneficial impact with respect to the total amount of runoff. The BMPs required under the SWPPP would be implemented to prevent soil erosion and the discharge of other construction-related pollutants that could contaminate nearby water resources. |
| Current and Reasonably Foreseeable Projects within RSA: | The Los Angeles RWQCB has adopted a water quality control plan. The regional inland surface water quality objectives contained in the Basin Plan pertain to ammonia; bacteria; coliform; bioaccumulation; biochemical oxygen demand; biostimulatory substances; chemical constituents; chlorine; total residuals; color; exotic vegetation; floating material; methylene blue activated substances; mineral quality; nitrogen (nitrate, nitrite); oil and grease; dissolved oxygen; pesticides; pH; |
polychlorinated biphenyls; radioactive substances; solid, suspended, or settleable materials; taste and odor; temperature; toxicity; and turbidity.

Basin plans provide the technical basis for determining waste discharge requirements (WDRs), taking enforcement actions, and evaluating clean water grant proposals. Basin plans are updated and reviewed every 3 years in accordance with Article 3 of the Porter-Cologne Act and CWA Section 303(c). NPDES permits issued under CWA Section 402 to control pollution must implement requirements of the applicable regional basin plans. It is assumed that all construction projects within the basin will comply with necessary permits and appropriate measures and thereby not result in adverse impacts or significant impacts.

Cumulative Impact Potential: The proposed project and other related projects would comply with BMPs and accepted engineering practices; therefore, the potential for the project to contribute to any cumulatively considerable impacts would be low.

Avoidance, Minimization, and/or Mitigation Measures

No cumulative impacts are anticipated, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.9 Geology/Soils/Seismicity/Topography

Affected Environment

Resource Study Area: The RSA for geology and soils includes the greater Los Angeles area. Although, for seismicity, the entire fault zone is the RSA (shown in Figure 2-15a).

Existing Conditions within RSA: The project site is located within the southern coastal margin of the Los Angeles Coastal Plain. The site is located within the southwestern block of the Los Angeles Basin on the San Pedro Bay portion of the southward-sloping continental shelf. The project site is relatively flat, gently sloping toward the southeast. The ground surface at the project site ranges from 10 feet above MSL in the southern part of the alignment to 20 feet above MSL in the northern part of the site. The Los Angles Coastal Plain is underlain by 9,000 to 11,000 feet of Tertiary and Quaternary sediments that have filled the presently subsiding basin since Miocene time. According to the State Seismic Hazard map, most of the site is mapped as older Quaternary alluvial and fan deposits, consisting mainly of sand, silt, clay, and gravel. In addition, an isolated area that is underlain by Pleistocene to Holocene nonmarine terrace deposits is present near I-110 and John S. Gibson Boulevard. These nonmarine terrace deposits consist of calcareous sands, shell fragments, and scattered gravels and cobbles. Manmade fill materials are also reported to be present east of I-110 and south of C Street. Based on barrier location and site physiography, shallow groundwater is expected to be within a zone of 0 to 5 feet (or 3 to 8 feet MLLW), generally flowing southerly but subject to minor tidal fluctuations near the water’s edge.
No active, potentially active, or major inactive faults cross the project site. The major controlling Holocene fault for the project site is the Palos Verdes fault, located about 0.7 mile from the site. The alternate San Pedro fault is present at about 0.1 mile from the inferred branch and about 0.4 mile from the construction area. Neither the alternate nor the inferred traces have been located in this area, though the evidence of the fault is very strong.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: The proposed project would not result in an adverse impact on geology, soils, seismicity, or topography. The proposed project would not involve substantial cut-and-fill work, nor would it change drainage patterns or create temporary slopes that would expose people or structures to the risk of loss, injury, or death. The project would be designed per Caltrans seismic design criteria and other applicable guidelines.

Current and Reasonably Foreseeable Projects within RSA: All related projects would be required by law to comply with the Uniform Building Code and local regulations. Therefore, it is expected that related projects would be constructed to the applicable Uniform Building Code and would not expose people or structures to an increased risk of loss, injury, or death.

Cumulative Impact Potential: As a result of compliance with building and structural codes, the proposed project and related projects would not result in an adverse impact related to geology, soils, seismicity, or topography and would not contribute to any cumulative impacts in these areas.

Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts involving geology, soils, seismicity, and/or topography are anticipated as a result of the project, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.10 Paleontology

Affected Environment

Resource Study Area: The RSA for paleontology is the area encompassing a number of identified fossil sites in upland geological deposits, roughly falling within a 0.5-mile radius of the project site (shown in Figure 2-15a).

Existing Conditions within RSA: The central and southern portions of the project area contain a Late Pleistocene geological formation that is considered to have high sensitivity for paleontological resources due to the presence of a diverse array of vertebrate fossils that were encountered previously within that deposit. This area of potential sensitivity is located at the western end of Harry Bridges Boulevard and C Street between Figueroa Street and I-110. However, no field survey of the project site was conducted because the site is covered by extensive development and artificial fill.
Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: Excavation into undisturbed geologic deposits underlying the project area, which include Quaternary alluvium, older Quaternary alluvium, and Miocene-age marine deposits of Malaga Mudstone, could affect fossil resources. However, implementation of mitigation measure PAL-1 would ensure that no substantial adverse effects would occur.

Current and Reasonably Foreseeable Projects within RSA: Although other projects proposed within the RSA may have the potential to affect paleontological resources, it is expected that they would undergo environmental review and also follow local regulations to minimize effects on paleontological resources.

Cumulative Impact Potential: Construction activities associated with the proposed project could contribute to a progressive loss of paleontological resources and result in an adverse cumulative impact. However, implementation of measure PAL-1 would ensure that any cumulative impacts, if they should occur, would be minimized. Other projects within a 0.5-mile radius would implement similar mitigation measures to minimize impacts on paleontological resources.

Avoidance, Minimization, and/or Mitigation Measures

Substantial adverse cumulative impacts on paleontological resources would not occur. Furthermore, measure PAL-1 would minimize the potential for impacts on paleontological resources.

2.4.11 Hazardous Waste/Materials

Affected Environment

Resource Study Area: The RSA for hazardous waste and materials is the “subject property” area, as defined in the ISA and Phase II study prepared for the project. The subject property includes parcels that may require partial or full right-of-way acquisitions and some that may require temporary construction easements in addition to the right-of-way within the project extents.

Existing Conditions within RSA: Numerous sites were found in the environmental information database that lie within the project’s 1-mile radius, and six sites are located within the project site. In addition to the sites from the database, an oil refinery is located on the west side of the subject property alignment adjacent to southbound I-110. Three sites located outside of the subject property’s improvement area were identified in the LUST and Cortese database search. Leaking underground storage tanks at or near the site and releases from the nearby refinery have likely affected groundwater conditions in the area of the proposed improvements. Due to the age of the I-110 facility, lead-containing materials, aerially deposited lead, and other heavy metals may occur within the RSA. There is the potential for deeper subsurface soils at some locations to have been affected by petroleum hydrocarbons.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: With implementation of a soil mitigation plan, an aerially deposited lead survey, and an inspection of properties to be acquired per Department of Toxic Substances Control requirements, any potential impacts would be minimized.

Current and Reasonably Foreseeable Projects within RSA: The nearest related project is the planned Harry Bridges Boulevard buffer area, which is part of the TraPac project, which abuts the project site. The related projects listed in Table 2-1 would adhere to their specific migration measures to minimize adverse effects from exposure to hazardous materials. Thus, the potential for related projects to create hazards or discharge hazardous wastes within the subject area is low, and cumulative impacts would not occur.

Cumulative Impact Potential: The project would comply with all applicable local and Caltrans regulations related to hazardous wastes. Prior to the start of construction, all necessary investigations would be conducted, and remediation would be undertaken if contaminated soil or material is found. Consequently, cumulative impacts are not anticipated.

Avoidance, Minimization, and/or Mitigation Measures

The proposed project would not result in an adverse impact related to hazardous waste or materials, and cumulative impacts are not anticipated.

2.4.12 Air Quality

Affected Environment

Resource Study Area: The proposed project is located in the South Coast Air Basin (Basin). The Basin is the appropriate RSA for evaluating cumulative impacts at a regional level (shown in Figure 2-15b). For localized construction effects, an area within a 1,000-foot radius of the project site is considered the RSA (shown in Figure 2-15a).

Existing Conditions within RSA: The proposed project alignment is located in an area with relatively poor air quality due to its location downwind of the densely urbanized City and County of Los Angeles and because meteorological conditions in the project vicinity contribute to air quality problems. The State of California has designated the southeastern portion of the Basin as being a nonattainment area for ozone, particulate matter smaller than or equal to 2.5 microns in diameter (PM2.5), and particulate matter smaller than or equal to 10 microns in diameter (PM10). The federal EPA has designated this area as being a nonattainment area (extreme) for ozone (8-hour standard) and a nonattainment area (serious) for PM10.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: During construction, the proposed project would be subject to SCAQMD Rule 403 (Fugitive Dust), which requires best available fugitive dust control measures to be incorporated into construction practices.
Construction impacts of the proposed project were found to be less than significant. In addition, exhaust emissions from diesel-powered construction equipment were found to pose a less-than-significant health risk. The proposed project would not result in adverse operational emissions impacts when compared with the future no-build conditions. Rather, implementation of the proposed project would reduce pollution levels and result in a regional air quality benefit.

Current and Reasonably Foreseeable Projects within RSA: The only project within 1,000 feet of the project site is the Harry Bridges Boulevard buffer area component of the TraPac project. However, the construction activities for the buffer area have been completed prior to construction of the proposed project. With respect to the construction- and operations-period air quality emissions from projects within the Basin, SCAQMD has developed strategies to reduce criteria pollutant emissions, as outlined in the AQMP, pursuant to federal Clean Air Act mandates. As such, the projects within the basin, including all the related projects, would comply with SCAQMD Rule 403 requirements, among other SCAQMD requirements. In addition, the projects would comply with adopted AQMP emissions control measures. Per SCAQMD rules and mandates as well as the CEQA requirement that significant impacts be mitigated to the extent feasible, these same requirements (i.e., Rule 403 compliance, the implementation of all feasible mitigation measures, compliance with LAHD’s Sustainable Construction Guidelines, and compliance with adopted AQMP emissions control measures) would also be imposed on construction projects Basin-wide, which would include each of the related projects mentioned in Table 2-1.

Cumulative Impact Potential: Since none of the related projects within the 1,000-foot buffer of the project site would be constructed at the same time as the proposed project, there would be no localized cumulative construction impacts. Additionally, for region-wide emissions, SCAQMD strategies and compliance with SCAQMD rules would mitigate the cumulative air quality impacts of the proposed project and other related projects and development in the Basin. The proposed project would not result in substantially adverse cumulative air quality impacts.

Avoidance, Minimization, and/or Mitigation Measures

Adverse cumulative impacts affecting local or regional air quality are not anticipated, and no additional avoidance, minimization, and/or mitigation measures are proposed.

2.4.13 Noise

Affected Environment

Resource Study Area: The RSA for noise is defined as the project area of the Noise Study Report, which includes surrounding properties along the alignment that may be affected by noise during construction and operation of the project (shown in Figure 2-13).
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Existing Conditions within RSA: The modeled noise levels were found to range from 61 dBA L_{eq}(h) to 64 dBA L_{eq}(h) for residential land uses and users of green space in the buffer area. Noise-sensitive uses are located on the east side of Figueroa Street, between West C Street and West D Street. The area flat, with I-110 elevated above the local terrain; however, a warehouse blocks direct line of sight between I-110 and the residences. Front porches, walkways, and side yards face the roadway. North of the residences, at the corner of Figueroa Street and West D Street, a day care center exists, with a recreation area facing the two streets. Primary access to the day care center is from Figueroa Street. These uses were taken into account when selecting receptor locations for noise modeling.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: The proposed project would not result in significant noise impacts or adverse effects. Construction would be conducted in accordance with Caltrans’ Standard Specifications, Section 7-1.01I, and applicable local noise standards.

Current and Reasonably Foreseeable Projects within RSA: The Noise Study Report took into account future traffic growth due to related growth and development, including the related projects in Table 2-1 and calculated future noise conditions. The Noise Study Report did not identify adverse noise impacts under the future build conditions.

Cumulative Impact Potential: Noise levels under the future build condition would result in an increase beyond existing noise levels, but this increase would be less than 12 dB and would not be substantially adverse. The increased noise levels under the future with-project conditions when compared with the future no-project conditions would be minimal for the identified sensitive receptors. Construction activities for the proposed project and related projects would be carried out in accordance with municipal codes and Caltrans guidelines, where applicable, thereby ensuring that noise impacts from construction activities would not be significant. Thus, there would not be a substantially adverse or significant cumulative impact.

Avoidance, Minimization, and/or Mitigation Measures

No adverse cumulative impacts involving noise are anticipated, and no avoidance, minimization, and/or mitigation measures are proposed.

2.4.14 Biological Environment

Affected Environment

Resource Study Area: The RSA for plant and wildlife resources is defined as the BSA identified for the proposed project. The BSA for the proposed project includes the proposed construction limits plus a 500-foot buffer. The RSA was confined to this area due to the low quality of the biological resources that would be disturbed by the proposed project and their lack of contribution to the health and viability of other resources in the region. Also, project impacts associated with biological resources would be localized. The RSA is shown in Figure 2-14.
A delineation for jurisdictional waters and wetlands was not performed for this project because no natural water features occur within the limits of disturbance.

Existing Conditions within RSA: The BSA is predominately developed with patches of ornamental or ruderal vegetation; there is no potential for a wildlife corridor or linkage to be present. No jurisdictional drainage water features are present within the limits of disturbance. No sensitive natural vegetation communities were observed within BSA, and no special-status species were observed during the site visit. There are a number of trees within the BSA, with the majority being invasive species (such as Tasmanian blue gum [*Eucalyptus globulus*] and Mexican fan palm [*Washingtonia robusta*]). The listed species with potential to occur within the BSA as forager species are California brown pelican, American peregrine falcon, and California least tern. The remaining species have no potential to occur because there is no suitable habitat present. The BSA supports habitat suitable for nesting birds protected by the federal Migratory Bird Treaty Act and California Fish and Game Code.

Environmental Consequences

Potential Direct and/or Indirect Impacts within RSA: Areas that would be affected support very sparse, primarily nonnative vegetation; therefore, the proposed project would not result in permanent impacts on any native vegetation community or affect any wildlife resources. Because a portion of the West Basin is found within the BSA, runoff from vehicular traffic may have an indirect impact on EFH areas. However, given that the limit of disturbance is separated from the West Basin by an active industrial area and roadways, any potential impacts would be minimal. Construction activities for the proposed project would result in the removal of trees (native and nonnative) protected under City of Los Angeles tree policies and ordinances. Of the listed species that could forage within the BSA, foraging activity would occur primarily outside of the project footprint, within the harbor portion of the BSA. Thus, no direct impacts on listed animals would occur. With implementation of the avoidance measure, the project would not result in direct impacts on nesting birds or trees protected under a City of Los Angeles ordinance. Direct impacts related to runoff would also not occur.

Current and Reasonably Foreseeable Projects within RSA: The related projects are located generally in an area of low biological quality. With respect to impacts on waters of the United States, it is expected that related projects would comply with the pertinent regulations and avoid, minimize, or mitigate impacts at a watershed level. Similarly, the related projects would implement mitigation measures to minimize impacts on non-listed birds protected under the federal MBTA and similar state statutes.

Cumulative Impact Potential: The potential for cumulative impacts on biological resources is low due to the urbanized and degraded nature of the resources. The proposed project would not directly or indirectly affect plant and wildlife resources, waters of the United States, or state jurisdictional waters/streambeds. With the implementation of mitigation measures, no adverse effects on trees, nesting birds, or surface water runoff would occur from the proposed project. Therefore, the proposed project would not contribute to a cumulatively considerable impact.
Avoidance, Minimization, and/or Mitigation Measures

No cumulative impacts on biological resources are anticipated, and no avoidance, minimization, and/or mitigation measures are proposed.

2.5 Climate Change (CEQA)

Climate change refers to long-term changes in temperature, precipitation, wind patterns, and other elements of the earth's climate system. An ever-increasing body of scientific research attributes these climatological changes to greenhouse gases (GHGs), particularly those generated from the production and use of fossil fuels.

2.5.1 Regulatory Setting

While climate change has been a concern for several decades, the establishment of the Intergovernmental Panel on Climate Change (IPCC) by the United Nations and World Meteorological Organization’s in 1988, has led to increased efforts devoted to greenhouse gas (GHG) emissions reduction and climate change research and policy. These efforts are primarily concerned with the emissions of GHGs related to human activity that include carbon dioxide (CO2), methane, nitrous oxide, tetrafluoromethane, hexafluoroethane, sulfur hexafluoride, HFC-23 (fluoroform), HFC-134a (1, 1, 1, 2 –tetrafluoroethane), and HFC-152a (difluoroethane).

There are typically two terms used when discussing the impacts of climate change. "Greenhouse Gas (GHG) Mitigation" is a term for reducing GHG emissions in order to reduce or "mitigate" the impacts of climate change. “Adaptation,” refers to the effort of planning for and adapting to impacts due to climate change (such as adjusting transportation design standards to withstand more intense storms and higher sea levels).

Transportation sources (passenger cars, light duty trucks, other trucks, buses and motorcycles) in the state of California make up the largest source (second to electricity generation) of greenhouse gas emitting sources. Conversely, the main source of GHG emissions in the United States (U.S.) is electricity generation followed by transportation. The dominant GHG emitted is CO2, mostly from fossil fuel combustion.

There are four primary strategies for reducing GHG emissions from transportation sources: 1) improve system and operation efficiencies, 2) reduce growth of vehicle miles traveled (VMT) 3) transition to lower GHG fuels and 4) improve vehicle technologies. To be most effective all four should be pursued collectively. The following regulatory setting section outlines state and federal efforts to comprehensively reduce GHG emissions from transportation sources

State

With the passage of several pieces of legislation including State Senate and Assembly Bills and Executive Orders, California launched an innovative and pro-active approach to dealing with greenhouse gas emissions and climate change at the state level.
Assembly Bill 1493 (AB 1493), Pavley. Vehicular Emissions: Greenhouse Gases (AB 1493), 2002: requires the California Air Resources Board (ARB) to develop and implement regulations to reduce automobile and light truck greenhouse gas emissions. These stricter emissions standards were designed to apply to automobiles and light trucks beginning with the 2009-model year. In June 2009, the U.S. Environmental Protection Agency (U.S. EPA) Administrator granted a Clean Air Act waiver of preemption to California. This waiver allowed California to implement its own GHG emission standards for motor vehicles beginning with model year 2009. California agencies will be working with Federal agencies to conduct joint rulemaking to reduce GHG emissions for passenger cars model years 2017-2025.

Executive Order S-3-05: (signed on June 1, 2005, by Governor Arnold Schwarzenegger) the goal of this Executive Order is to reduce California’s GHG emissions to: 1) 2000 levels by 2010, 2) 1990 levels by the 2020 and 3) 80 percent below the 1990 levels by the year 2050. In 2006, this goal was further reinforced with the passage of Assembly Bill 32.

AB32 (AB 32), the Global Warming Solutions Act of 2006: AB 32 sets the same overall GHG emissions reduction goals as outlined in Executive Order S-3-05, while further mandating that CARB create a plan, which includes market mechanisms, and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.” Executive Order S-20-06 further directs state agencies to begin implementing AB 32, including the recommendations made by the State’s Climate Action Team.

Executive Order S-01-07: Governor Schwarzenegger set forth the low carbon fuel standard for California. Under this Executive Order, the carbon intensity of California’s transportation fuels is to be reduced by at least ten percent by 2020.

Senate Bill 97 (Chapter 185, 2007): required the Governor's Office of Planning and Research (OPR) to develop recommended amendments to the State CEQA Guidelines for addressing greenhouse gas emissions. The Amendments became effective on March 18, 2010.

Federal

Although climate change and GHG reduction is a concern at the federal level; currently there are, no regulations or legislation that have been enacted specifically addressing GHG emissions reductions and climate change at the project level. Neither the United States Environmental Protection Agency (U.S. EPA) nor Federal Highway Administration (FHWA) has promulgated explicit guidance or methodology to conduct project-level greenhouse gas analysis. As stated on FHWA’s climate change website (http://www.fhwa.dot.gov/hep/climate/index.htm), climate change considerations should be integrated throughout the transportation decision-making process—from planning through project development and delivery. Addressing climate change mitigation and adaptation up front in the planning process will facilitate decision-making and improve efficiency at the program level, and will inform the analysis and stewardship needs of project level decision-making. Climate change considerations can easily be integrated into many planning factors, such as supporting economic vitality and global efficiency, increasing safety and mobility, enhancing the environment, promoting energy conservation, and improving the quality of life.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

The four strategies set forth by FHWA to lessen climate change impacts do correlate with efforts that the State has undertaken and is undertaking to deal with transportation and climate change; the strategies include improved transportation system efficiency, cleaner fuels, cleaner vehicles, and reduction in the growth of vehicle hours travelled.

Climate change and its associated effects are also being addressed through various efforts at the federal level to improve fuel economy and energy efficiency, such as the “National Clean Car Program” and Executive Order 13514- Federal Leadership in Environmental, Energy and Economic Performance.

Executive Order 13514 is focused on reducing greenhouse gases internally in federal agency missions, programs and operations, but also direct federal agencies to participate in the interagency Climate Change Adaptation Task Force, which is engaged in developing a U.S. strategy for adaptation to climate change.

On April 2, 2007, in Massachusetts v. EPA, 549 U.S. 497 (2007), the Supreme Court found that greenhouse gases are air pollutants covered by the Clean Air Act and that the U.S. EPA has the authority to regulate GHG. The Court held that the U.S. EPA Administrator must determine whether or not emissions of greenhouse gases from new motor vehicles cause or contribute to air pollution which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision.

On December 7, 2009, the U.S. EPA Administrator signed two distinct findings regarding greenhouse gases under section 202(a) of the Clean Air Act:

- **Endangerment Finding:** The Administrator found that the current and projected concentrations of the six key well-mixed greenhouse gases--carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (N$_2$O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF$_6$)--in the atmosphere threaten the public health and welfare of current and future generations.

- **Cause or Contribute Finding:** The Administrator found that the combined emissions of these well-mixed greenhouse gases from new motor vehicles and new motor vehicle engines contribute to the greenhouse gas pollution which threatens public health and welfare.

Although these findings did not themselves impose any requirements on industry or other entities, this action was a prerequisite to finalizing the U.S. EPA’s Proposed Greenhouse Gas Emission Standards for Light-Duty Vehicles, which was published on September 15, 2009. On May 7, 2010 the final Light-Duty Vehicle Greenhouse Gas Emissions Standards and Corporate Average Fuel Economy Standards was published in the Federal Register.

U.S. EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles with reduced GHG emissions and improved fuel efficiency from on-road vehicles and engines. These next steps include developing the first-ever GHG regulations for heavy-duty engines and vehicles, as

32 http://www.epa.gov/climatechange/endangerment.html
well as additional light-duty vehicle GHG regulations. These steps were outlined by President Obama in a memorandum on May 21, 2010.33

The final combined U.S. EPA and NHTSA standards that make up the first phase of this national program apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016. The standards require these vehicles to meet an estimated combined average emissions level of 250 grams of carbon dioxide per mile, equivalent to 35.5 miles per gallon (MPG) if the automobile industry were to meet this carbon dioxide level solely through fuel economy improvements. Together, these standards will cut GHG emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012-2016).

On January 24, 2011, the U.S. EPA along with the U.S. Department of Transportation and the State of California announced a single timeframe for proposing fuel economy and greenhouse gas standards for model years 2017-2025 cars and light-trucks. Proposing the new standards in the same timeframe (September 1, 2011) signals continued collaboration that could lead to an extension of the current National Clean Car Program.

Caltrans and its parent agency, the Business, Transportation, and Housing Agency (BT&H), have taken an active role in addressing GHG emissions and climate change. Recognizing that 98 percent of California’s GHG emissions are from the burning of fossil fuels and 40 percent of all human-made GHG emissions are from transportation, Caltrans has created and is implementing its Climate Action Program at Caltrans that was published in December 2006, see Climate Action Program at Caltrans (California Department of Transportation 2006a).

2.5.2 Climate Change Effects

This section summarizes methodology; conclusions of the climate change analysis; potential climate change impacts that could result from implementation of the proposed project; and avoidance, minimization and/or mitigation measures to reduce these impacts.

2.5.2.1 Assessment Methodology

An individual project does not generate enough GHG emissions to significantly influence global climate change. Rather, global climate change is a cumulative impact. This means that a project may participate in a potential impact through its incremental contribution combined with the contributions of all other sources of GHG. In assessing cumulative impacts, it must be determined if a project’s incremental effect is “cumulatively considerable.” See California Environmental Quality Act (CEQA) Guidelines sections 15064(h)(1) and 15130. To make this determination the incremental impacts of the project must be compared with the effects of past, current, and probable future projects. To gather sufficient information on a global scale of all past, current, and future projects in order to make this determination is a difficult if not impossible task.

33 http://epa.gov/otaq/climate/regulations.htm
The AB 32 Scoping Plan contains the main strategies California will use to reduce GHG. As part of its supporting documentation for the Draft Scoping Plan, ARB released the GHG inventory for California (Forecast last updated: 28 October 2010). The forecast, summarized in Figure 2-16, is an estimate of the emissions expected to occur in the year 2020 if none of the foreseeable measures included in the Scoping Plan were implemented. The base year used for forecasting emissions is the average of statewide emissions in the GHG inventory for 2006, 2007, and 2008.

Figure 2-16. California Greenhouse Gas Forecast

![Image of California Greenhouse Gas Forecast]

Source: http://www.arb.ca.gov/cc/inventory/data/forecast.htm

Construction

Greenhouse gas emissions for transportation projects can be divided into those produced during construction and those produced during operations. Construction GHG emissions include emissions produced as a result of material processing, emissions produced by onsite construction equipment, and emissions arising from traffic delays due to construction. These emissions will be produced at different levels throughout the construction phase; their frequency and occurrence can be reduced through innovations in plans and specifications and by implementing better traffic management during construction phases.

In addition, with innovations such as longer pavement lives, improved traffic management plans, and changes in materials, the GHG emissions produced during construction can be mitigated to some degree by longer intervals between maintenance and rehabilitation events. However, LAHD, as the local sponsor and the responsible agency for the proposed project, requires a quantitative analysis for quantitative analysis of construction-related GHG emissions for all of its projects. Therefore, a quantitative construction impact analysis is provided in Appendix H3, Impact Analyses Required for LAHD as the Responsible Agency.
Operation

Because automobiles are a major source of GHG emissions and the quantity of GHG emissions from automobiles correlates directly with VMT, the quantification of CO₂ emissions was made using Caltrans’ CT-EMFAC emissions model, which was described previously, and traffic data provided by the project traffic engineers, Iteris (Iteris 2011). Likewise, GHG emissions from medium- and heavy-duty idling were calculated using EMFAC 2007. EMFAC2007 estimates only CO₂ and CH₄ emissions. N₂O emissions were therefore calculated using the ratio of diesel fuel consumed per kilogram of CO₂ emitted, as reported by the Climate Action Registry (2011). Gallons of diesel fuel consumed were converted to N₂O emissions, assuming 0.082 gram of N₂O is emitted per liter of diesel (based on the default factor for uncontrolled trucks in the Canadian vehicle fleet [U.S. estimates unavailable]). Please refer to Appendix D, Operational Emissions Analysis Data, for the calculations used to estimate operational GHG emissions. Operational GHG emissions are analyzed below.

2.5.2.2 Operational Greenhouse Gas Emissions Analysis

Daily emissions of CO₂ associated with implementation of the proposed project were calculated using CT-EMFAC and EMFAC. Table 2-58 summarizes the estimated operational GHG emissions anticipated to result from the proposed project.

Table 2-58: Estimated Operational GHG Emissions (metric tons/year)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008 No Build</td>
<td>21,217</td>
<td>3,636.835</td>
<td>0.001</td>
<td>0.000</td>
<td>3,637.017</td>
</tr>
<tr>
<td>2008 Build</td>
<td>20,807</td>
<td>3,572.150</td>
<td>0.003</td>
<td>0.001</td>
<td>3,572.485</td>
</tr>
<tr>
<td>2014 No Build</td>
<td>27,230</td>
<td>5,252.741</td>
<td>0.024</td>
<td>0.009</td>
<td>5,256.185</td>
</tr>
<tr>
<td>2014 Build</td>
<td>25,152</td>
<td>4,621.888</td>
<td>0.005</td>
<td>0.002</td>
<td>4,622.574</td>
</tr>
<tr>
<td>2035 No Build</td>
<td>34,756</td>
<td>6,855.015</td>
<td>0.029</td>
<td>0.013</td>
<td>6,859.775</td>
</tr>
<tr>
<td>2035 Build</td>
<td>32,528</td>
<td>6,080.912</td>
<td>0.005</td>
<td>0.002</td>
<td>6,081.792</td>
</tr>
</tbody>
</table>

Alternative Differences

<table>
<thead>
<tr>
<th>Scenario Differences</th>
<th>Daily VMT</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008 Build - 2008 No Build</td>
<td>-410</td>
<td>-65</td>
<td>0.001</td>
<td>0.000</td>
<td>-65</td>
</tr>
<tr>
<td>2014 Build - 2014 No Build</td>
<td>-2,078</td>
<td>-630.853</td>
<td>-0.019</td>
<td>-0.008</td>
<td>-633.611</td>
</tr>
<tr>
<td>2035 Build - 2035 No Build</td>
<td>-2,228</td>
<td>-774.104</td>
<td>-0.023</td>
<td>-0.011</td>
<td>-777.983</td>
</tr>
</tbody>
</table>

*Current emissions models do not include emission factors for CH₄ and N₂O from running exhaust and evaporative loss. Emissions presented in the table are a result of medium and heavy-duty truck idling only.

As shown in Table 2-58, implementation of the proposed project is anticipated to result in a reduction of CO₂e emissions. Reductions are attributable to reduced vehicle delay and congestion at study area intersections as well as overall reductions in regional VMT. Please refer to Chapter 1 for additional details on project improvements.

2.5.2.3 Minimization Measures

Implementation of the measures outlined below would minimize climate change effects from construction and operation of the proposed project.
Construction

The frequency and occurrence of construction-related GHG emissions can be reduced through innovations in plans and specifications and by implementing better traffic management during construction phases. In addition, with innovations such as pavement with a longer life, improved traffic management plans, and changes in materials, the GHG emissions produced during construction can be mitigated to some degree by longer intervals between maintenance and rehabilitation events.

Operation

One of the main strategies in Caltrans’ Climate Action Program to reduce GHG emissions is to make California’s transportation system more efficient. The highest levels of CO₂ from mobile sources, such as automobiles, occur at stop-and-go speeds (0–25 mph) and speeds over 55 mph; the most severe emissions occur between 0 and 25 mph (see Figure 2-17). To the extent that a project relieves congestion by enhancing operations and improving travel times in high-congestion travel corridors, GHG emissions, particularly CO₂, may be reduced. As indicated in Table 2-44 in Section 2.6.2, Air Quality, the proposed project would reduce average delay at project intersections as well as overall regional VMT. These project benefits are expected to result in a reduction in CO₂e emissions.

The 2008 RTP includes strategies to reduce VMT and associated per capita energy consumption from the transportation sector. It also includes mitigation measures related to energy to reduce consumption and increase the use and availability of renewable sources of energy in the region (Southern California Association of Governments 2008c). Potential mitigation measures identified in the 2008 RTP include increasing automobile efficiency and constructing the infrastructure necessary to accommodate increased use of alternative-fuel motor vehicles while...
coordinating transportation, land use, and air quality planning to reduce VMT, energy use, and GHG emissions (Southern California Association of Governments 2008c).

The EIR for the 2008 RTP performed a consistency analysis for the GHG emissions-reduction strategy to evaluate effects associated with the 2008 RTP related to climate change. This consistency analysis considered CARB, EPA, BT&H, Public Utilities Commission, and State and Consumer Services Agency GHG emissions-reduction strategies and found that effects related to climate change are significant, even with implementation of mitigation measures. To help mitigate effects associated with the 2008 RTP, SCAG identified measures to mitigate the effects of growing transportation energy demand (Southern California Association of Governments 2008c).

2.5.2.4 AB 32 Compliance

The Department continues to be actively involved on the Governor’s Climate Action Team as ARB works to implement the Executive Orders S-3-05 and S-01-07 and help achieve the targets set forth in AB 32. Many of the strategies Caltrans is using to help meet the targets in AB 32 come from the California Strategic Growth Plan, which is updated each year. Former Governor Arnold Schwarzenegger’s Strategic Growth Plan calls for a $222 billion infrastructure improvement program to fortify the state’s transportation system, education, housing, and waterways, including $100.7 billion in transportation funding during the next decade. The Strategic Growth Plan targets a significant decrease in traffic congestion below today’s level and a corresponding reduction in GHG emissions. The Strategic Growth Plan proposes to do this while accommodating growth in population and the economy. A suite of investment options has been created that combined together are expected to reduce congestion. The Strategic Growth Plan relies on a complete systems approach to attain CO₂ reduction goals: system monitoring and evaluation, maintenance and preservation, smart land use and demand management, and operational improvements as depicted in Figure 2-18.

Figure 2-18. Mobility Pyramid
The Department is supporting efforts to reduce vehicle miles traveled by planning and implementing smart land use strategies: job/housing proximity, developing transit-oriented communities, and high density housing along transit corridors. The Department is working closely with local jurisdictions on planning activities; however, the Department does not have local land use planning authority. The Department is also supporting efforts to improve the energy efficiency of the transportation sector by increasing vehicle fuel economy in new cars, light and heavy-duty trucks; the Department is doing this by supporting on-going research efforts at universities, by supporting legislative efforts to increase fuel economy, and by its participation on the Climate Action Team. It is important to note, however, that the control of the fuel economy standards is held by U.S. EPA and ARB. Lastly, the use of alternative fuels is also being considered; the Department is participating in funding for alternative fuel research at the UC Davis.

Table 2-59 summarizes Caltrans’ and statewide efforts that the Department is implementing in order to reduce GHG emissions. More detailed information about each strategy is included in the Climate Action Program at Caltrans (California Department of Transportation 2006b).

To the extent that it is applicable or feasible for the project and through coordination with the project development team, the following measures will also be included in the project to reduce the GHG emissions and potential climate change impacts from the project.

- The Department and the California Highway Patrol are working with regional agencies to implement ITS to help manage the efficiency of the existing highway system. ITS is commonly referred to as electronics, communications, or information processing used singly or in combination to improve the efficiency or safety of a surface transportation system.

- Landscaping reduces surface warming and, through photosynthesis, decreases CO₂. The project will include planting on the intersection slopes, drainage channels, and seeding in areas adjacent to roads. A variety of different-sized plant material and scattered skyline trees of different sizes, where appropriate but not to obstruct scenic views, will be planted where appropriate. Based on a formula from the Canadian Tree Foundation, it is anticipated that 40 planted trees will offset between 7-10 tons of CO₂ per year.

- The project will incorporate energy-efficient lighting, such as LED traffic signals. LED bulbs cost $60 to $70 apiece but last 5 to 6 years, compared with the 1-year average lifespan of the incandescent bulbs that were previously used. The LED balls themselves consume 10 percent of the electricity of traditional lights, a reduction that will reduce the project’s CO₂ emissions.

- According to Caltrans’ Standard Specifications, the contractor must comply with SCAQMD’s rules, ordinances, and regulations pertaining to air quality. SCAQMD’s idling regulations restrict idling to no more than 5 minutes at any one location.

In addition to Caltrans’ standard GHG reduction measures, the transportation control measures and green construction and operational measures listed below would be included as part of the Build Alternative (Leathers pers. comm.).

34 Canadian Tree Foundation at http://www.tcf-fca.ca/publications/pdf/english_reduceco2.pdf. For rural areas the formula is: # of trees/360 x survival rate = tones of carbon/year removed for each of 80 years.
Table 2-59: Caltrans’ Climate Change Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Program</th>
<th>Partnership</th>
<th>Method/Process</th>
<th>Estimated CO₂ Savings (MMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Smart Land Use</td>
<td>Intergovernmental Review (IGR)</td>
<td>Caltrans</td>
<td>Local Governments</td>
<td>Not Estimated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning Grants</td>
<td></td>
<td>Caltrans</td>
<td>Local and regional agencies and other</td>
<td>Not Estimated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stakeholders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Plans and Blueprint</td>
<td></td>
<td>Regional Agencies</td>
<td>Caltrans</td>
<td>0.975</td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational Improvements</td>
<td>Strategic Growth Plan</td>
<td>Caltrans</td>
<td>Regions</td>
<td>0.007</td>
</tr>
<tr>
<td>and Intelligent Transportation</td>
<td></td>
<td></td>
<td></td>
<td>2.17</td>
</tr>
<tr>
<td>Systems (ITS) Deployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainstream Energy and GHG</td>
<td>Office of Policy Analysis and Research; Division of Environmental</td>
<td>Interdepartmental effort</td>
<td>Policy establishment, guidelines, technical</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>into Plans and Projects</td>
<td>Analysis</td>
<td></td>
<td>assistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational and Information</td>
<td>Office of Policy Analysis and Research</td>
<td>Interdepartmental,</td>
<td>Analytical report, data collection,</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Program</td>
<td></td>
<td>Cal/EPA, CARB, CEC</td>
<td>publication, workshops, outreach</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet Greening and Fuel</td>
<td>Division of Equipment</td>
<td>Department of General</td>
<td>Fleet replacement</td>
<td>0.0045</td>
</tr>
<tr>
<td>Diversification</td>
<td></td>
<td>Services</td>
<td>B20</td>
<td>0.0065</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B100</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0225</td>
</tr>
<tr>
<td>Non-vehicular Conservation</td>
<td>Energy Conservation Program</td>
<td>Green Action Team</td>
<td>Energy conservation opportunities</td>
<td>0.117</td>
</tr>
<tr>
<td>Measures</td>
<td></td>
<td></td>
<td></td>
<td>.34</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>Office of Rigid Pavement</td>
<td>Cement and Construction</td>
<td>2.5 % limestone cement mix</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industries</td>
<td>25% fly ash cement mix</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 50% fly ash/slag mix</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Estimated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.67</td>
</tr>
</tbody>
</table>

Source: Climate Change Report, 2006b.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Transportation Control Measures

- John S. Gibson Boulevard provides Class II bike lanes, and Figueroa Street provides Class III bike lanes. The proposed improvements would accommodate the existing bike lane classifications.

Green Construction and Operational Measures

- Use of PVC irrigation pipe with recycled content;
- Use of non-chlorinated high-density polyethylene irrigation crossover conduit;
- Use of compost and soil amendments derived from sewage sludge and green waste materials;
- Use of fiber produced from recycled pulp, such as newspaper, chipboard, cardboard;
- Use of wood mulch made from green waste and/or clean manufactured wood or natural wood;
- Use of native and drought-tolerant seeds and plant species;
- Use of irrigation controllers that include water conservation features;
- Restricted use of pesticides and implementation of pesticide reduction goals;
- Use of reclaimed water where feasible and available;
- Use of demolished concrete rubble for storm drain outlet scour protection where feasible; and
- Recycling of miscellaneous metals (inlet frame and grates, sign panels, fencing, etc.) when appropriate.

2.5.2.5 Adaptation Strategies

“Adaptation strategies” refer to how the Department and others can plan for the effects of climate change on the state’s transportation infrastructure and strengthen or protect the facilities from damage. Climate change is expected to produce increased variability in precipitation, rising temperatures, rising sea levels, storm surges and intensity, and the frequency and intensity of wildfires. These changes may affect the transportation infrastructure in various ways, such as damaging roadbeds by longer periods of intense heat; increasing storm damage from flooding and erosion; and inundation from rising sea levels. These effects will vary by location and may, in the most extreme cases, require that a facility be relocated or redesigned. There may also be economic and strategic ramifications as a result of these types of impacts to the transportation infrastructure.

At the Federal level, the Climate Change Adaptation Task Force, co-chaired by the White House Council on Environmental Quality (CEQ), the Office of Science and Technology Policy (OSTP), and the National Oceanic and Atmospheric Administration (NOAA), released its interagency report October 14, 2010 outlining recommendations to President Obama for how Federal Agency policies and programs can better prepare the United States (U.S.) to respond to the impacts of climate change. The Progress Report of the Interagency Climate Change
Adaptation Task Force recommends that the Federal Government implement actions to expand and strengthen the Nation’s capacity to better understand, prepare for, and respond to climate change.

Climate change adaptation must also involve the natural environment as well. Efforts are underway on a statewide-level to develop strategies to cope with impacts to habitat and biodiversity through planning and conservation. The results of these efforts will help California agencies plan and implement mitigation strategies for programs and projects.

On November 14, 2008, Governor Schwarzenegger signed Executive Order S-13-08 which directed a number of state agencies to address California’s vulnerability to sea level rise caused by climate change. This Executive Order set in motion several agencies and actions to address the concern of sea level rise.

The California Natural Resources Agency (Resources Agency) was directed to coordinate with local, regional, state and federal public and private entities to develop. The California Climate Adaptation Strategy (Dec 2009)\(^{35}\), which summarizes the best known science on climate change impacts to California, assesses California's vulnerability to the identified impacts, and then outlines solutions that can be implemented within and across state agencies to promote resiliency.

The strategy outline is in direct response to Executive Order S-13-08 that specifically asked the Resources Agency to identify how state agencies can respond to rising temperatures, changing precipitation patterns, sea level rise, and extreme natural events. Numerous other state agencies were involved in the creation of the Adaptation Strategy document, including Environmental Protection; Business, Transportation and Housing; Health and Human Services; and the Department of Agriculture. The document is broken down into strategies for different sectors that include: Public Health; Biodiversity and Habitat; Ocean and Coastal Resources; Water Management; Agriculture; Forestry; and Transportation and Energy Infrastructure. As data continues to be developed and collected, the state's adaptation strategy will be updated to reflect current findings.

Resources Agency was also directed to request the National Academy of Science to prepare a Sea Level Rise Assessment Report by December 2010\(^{36}\) to advise how California should plan for future sea level rise. The report is to include:

- relative sea level rise projections for California, Oregon and Washington taking into account coastal erosion rates, tidal impacts, El Niño and La Niña events, storm surge and land subsidence rates;
- the range of uncertainty in selected sea level rise projections;

\(^{36}\) The Sea Level Rise Assessment report is currently due to be completed in 2012 and will include information for Oregon and Washington State as well as California.
Chapter 2. Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

- a synthesis of existing information on projected sea level rise impacts to state infrastructure (such as roads, public facilities and beaches), natural areas, and coastal and marine ecosystems;
- a discussion of future research needs regarding sea level rise

Prior to the release of the final Sea Level Rise Assessment Report, all state agencies that are planning to construct projects in areas vulnerable to future sea level rise were directed to consider a range of sea level rise scenarios for the years 2050 and 2100 in order to assess project vulnerability and, to the extent feasible, reduce expected risks and increase resiliency to sea level rise. Sea level rise estimates should also be used in conjunction with information regarding local uplift and subsidence, coastal erosion rates, predicted higher high water levels, storm surge and storm wave data.

Until the final report from the National Academy of Sciences is released, interim guidance has been released by The Coastal Ocean Climate Action Team (CO-CAT) as well as the Department as a method to initiate action and discussion of potential risks to the states infrastructure due to projected sea level rise.

All projects that have filed a Notice of Preparation, and/or are programmed for construction funding from 2008 through 2013, or are routine maintenance projects as of the date of Executive Order S 13 08 may, but are not required to, consider these planning guidelines.

Furthermore Executive Order S-13-08 directed the Business, Transportation, and Housing Agency to prepare a report to assess vulnerability of transportation systems to sea level affecting safety, maintenance and operational improvements of the system and economy of the state. The Department continues to work on assessing the transportation system vulnerability to climate change, including the effect of sea level rise.

Currently, the Department is working to assess which transportation facilities are at greatest risk from climate change effects. However, without statewide planning scenarios for relative sea level rise and other climate change impacts, the Department has not been able to determine what change, if any, may be made to its design standards for its transportation facilities. Once statewide planning scenarios become available, the Department will be able review its current design standards to determine what changes, if any, may be warranted in order to protect the transportation system from sea level rise.

Climate change adaptation for transportation infrastructure involves long-term planning and risk management to address vulnerabilities in the transportation system from increased precipitation and flooding; the increased frequency and intensity of storms and wildfires; rising temperatures; and rising sea levels. The Department is an active participant in the efforts being conducted in response to Executive Order S-13-08 and is mobilizing to be able to respond to the National Academy of Science report on Sea Level Rise Assessment which is due to be released in 2012.
Chapter 3 Comments and Coordination

Early and continuing coordination with the general public and appropriate public agencies is an essential part of the environmental process to determine the scope of environmental documentation, the level of analysis, potential impacts and mitigation measures, and related environmental requirements. Agency consultation and public participation for this project have been accomplished through a variety of formal and informal methods, including project development team meetings, interagency coordination meetings, scoping meetings, and coordination with resource agencies and Native American individuals and organizations. This chapter summarizes the results of the Caltrans’ efforts to fully identify, address, and resolve project-related issues through early and continuing coordination.

3.1 Scoping Process

A Notice of Initiation of Studies (NOIS) was circulated in January of 2009 announcing an open house to discuss two transportation projects (the proposed project, and the John S. Gibson Boulevard/I-110 Access Ramps Improvements & SR-47/I-110 Northbound Connector Widening Project). The meeting was held on January 7, 2009 and served as the scoping meeting for the proposed project. During the open house, updated design concepts for the project were presented to the public. Input regarding environmental issues related to the proposed project was gathered from concerned parties. Details on the open house are provided below in Section 3.3, Public Participation.

3.2 Consultation and Coordination with Public Agencies

Consultation with several public agencies, elected officials, and other concerned parties was requested in conjunction with the preparation of the project technical reports and this initial study/environmental assessment. Consultations are identified in the various technical reports and include responses from the following agencies and other concerned parties:

- U.S. Fish and Wildlife Service (USFWS);
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NMFS);
- Native American Heritage Commission (NAHC); and
- Councilwoman Janice Hahn, Los Angeles City Council, 15th District.

Correspondence pertaining to development of the proposed project is summarized in the sections that follow.

3.2.1 Biological Resources

A list of species that could occur within the Biological Study Area (BSA) and are listed as threatened, endangered, or proposed under the Federal Endangered Species Act (FESA) was obtained from USFWS (July 9, 2009 letter from Karen Goebel, USFWS). Per Section 7 of
FESA, informal consultation via telephone and email correspondence with biologists from USFWS and NMFS has been initiated by Caltrans. Concurrence with the finding of “Not Likely to Adversely Affect” (see Natural Environment Study [MI]) is anticipated but pending at this time.

3.2.2 Cultural Resources

A letter was sent to the NAHC on January 23, 2009, requesting a review of the sacred lands file as well as a list of Native American representatives who could be contacted for information regarding sacred sites within the project area (see Attachment H of the Archaeological Survey Report).

According to the NAHC response dated January 26, 2009, no known sacred sites are located within the project area. The NAHC provided a list of seven local Native Americans who can be contacted for information (see Attachment C of the Archaeological Survey Report). This information was forwarded to Caltrans staff for review.

In addition, on January 7, 2009, a letter and map set were sent to consulting and interested parties who may have knowledge of or concerns regarding historic properties in the area. The letter requested information pertaining to historic buildings, districts, sites, objects, or archeological sites of significance and was sent to the following recipients:

- City of Los Angeles, Board of Harbor Commissioners Office;
- Councilwoman Janice Hahn;
- Filipino American National Historical Society, Los Angeles Chapter;
- Filipino Community, Harbor Area, Wilmington;
- Getty Conservation Institute;
- Historic Landmarks and Records Commission of Los Angeles County;
- Historical Society of Southern California;
- Los Angeles City Historical Society;
- Los Angeles Conservancy;
- Los Angeles Maritime Museum;
- Office of Historic Resources;
- San Pedro Bay Historical Society; and
- Wilmington Historical Society.

On February 2, 2009, Councilwoman Janice Hahn’s deputy corresponded with John Heller, an architect at ICF International, stating that Councilwoman Hahn had no objection to the project. To date, no other correspondence addressing the proposed project has been received.
3.3 Public Participation

3.3.1 Public Information Meetings

A Notice of Initiation of Studies (NOIS) was released on September 15, 2008, to encourage participation from the public and concerned parties through public comment as well as attendance at the open house held on January 7, 2009. During the open house, Caltrans staff, with input from LAHD staff, presented updated design concepts for the proposed project. Staff members were made available to respond to any concerns or comments voiced by the public. Approximately 82 people attended the open house, including representatives of the San Pedro Skatepark Association (SPSA), the Coalition for a Safe Environment, the Maritime Association, and local labor unions, among others. In addition, a total of nine written comments were received during the open house. Copies of the letters and comments, along with the NOIS and a copy of the sign-in sheet for the open house are provided in Appendix E. Letters/emails and/or comments were received from the following:

- Guillermo Jaimes, Communities for a Better Environment, Huntington Park, California;
- Maria Garibay, Wilmington, California;
- Robert Yamasaki, SPSA, Long Beach, California;
- Kerri Cacciata, SPSA, Long Beach, California;
- Jesse Marquez, Coalition for a Safe Environment, Wilmington, California;
- Ana Govorcin, San Pedro, California (two comments);
- Michael Richards, SPSA, Long Beach, California;
- Gregor Blackburn, CFM, Branch Chief, Floodplain Management and Insurance Branch of the Federal Emergency Management Agency (letter); and
- Charlotte Waters, President, Black Hill Neighborhood Watch Committee

3.3.2 Public Circulation

The public circulation period for the Draft IS/EA took place for a span of 33 days between October 13 and November 14, 2011. During this time, various outreach efforts were made to alert the public about the availability of the document. A notice of Notice of Intent to Adopt (NOIA), which noted the availability of the Draft IS/EA for public review, was mailed to agency and elected officials, residents, homeowners, and community organizations in the vicinity of the project (see Chapter 5, Distribution List) at the beginning of the public review period. The NOIA was printed in both English and Spanish. Copies of the NOIA, the Notice of Availability (NOA) of the Environmental Assessment, the Notice of Public Hearing and Availability of Studies, and the Draft IS/EA were provided to a total of 24 agencies in hard copy, electronic format, or both.
Figure 3-1. Notice of Intent to Adopt

October 13, 2011

SUBJECT: NOTICE OF INTENT TO ADOPT AN INITIAL STUDY/MITIGATED NEGATIVE DECLARATION FOR THE I-110/C STREET INTERCHANGE PROJECT

The Port of Los Angeles (Port) in cooperation with the California Department of Transportation (Caltrans) has prepared a joint Initial Study/Mitigated Negative Declaration (IS/MND) and Environmental Assessment/Finding of No Significant Impact (EA/FONSI) to address the environmental effects of the I-110/C Street Interchange Project (hereafter “proposed project”). The project site is located at the I-110/C Street interchange to the east of I-110 surrounding the intersection of C Street and Figueroa Street in the Wilmington community of the City of Los Angeles (see attached map).

The proposed project involves constructing a northbound off-ramp for direct access to Harry Bridges Boulevard, modification of the northbound on-ramp from C Street, realignment of Harry Bridges Boulevard, and combining the I-110 ramp terminal/C Street/Figueroa Street intersection with the John S. Gibson Boulevard/Harry Bridges Boulevard intersection. Concrete sidewalks are proposed along the local roadways to provide a clear and unobstructed path for pedestrian travel within the project limits. Curb ramps would be constructed at intersection and street crossings and existing bicycle routes will be maintained. Pedestrian signals and cross walk pavement delineation would also be provided.

The IS/MND has been prepared in accordance with the California Environmental Quality Act (CEQA), Public Resources Code Section 21000 et. seq. and the State CEQA Guidelines, California Code of Regulations (CCR) Section 15000 et. seq. This IS/MND includes a discussion of the proposed project’s effects on the existing environment, including the identification of mitigation measures to reduce potential impacts. No significant effects that could not be mitigated to a less than significant level were identified. In accordance with the CEQA statutes and Guidelines, the IS/MND is being circulated for a period of 30 days for public review and comment. The public has an opportunity to provide written comments on the information contained within the IS/MND.

The 30-day review period will start on Thursday, October 13, 2011 and end on Monday, November 14, 2011. A copy of the document is available for public review on the Port of Los Angeles’ website at: http://www.portoflosangeles.org; the Caltrans website at http://www.dot.ca.gov/disppr7/resources/envdocs/; Los Angeles Harbor Department Engineering Division at 426 S. Palos Verdes Street, San Pedro, CA 90731; Caltrans District 7 Building (100 South Main St, Los Angeles CA 90012), Division of Environmental
Chapter 3. Comments and Coordination

NOTICE OF INTENT TO ADOPT INITIAL STUDY/MITIGATED NEGATIVE DECLARATION I-110/C STREET INTERCHANGE PROJECT

Planning; Los Angeles City Library, San Pedro Branch at 931 S. Gaffey Street, San Pedro, CA 90731; and Los Angeles City Library, Wilmington Branch at 1300 North Avalon, Wilmington, CA 90744.

Comments on the IS/MND should be submitted in writing prior to the end of the 30-day public review period and must be postmarked by November 14, 2011. Please submit written comments to:

Christopher Cannon
Director of Environmental Management
Port of Los Angeles
425 S. Palos Verdes Street
San Pedro, CA 90731

Written comments may also be sent via email to cegacommens@portla.org. Comments sent via email should include the project title in the subject line and a valid mailing address in the email.

Questions regarding this notice or the proposed project should be directed to Laura Masterson of the Port’s CEQA group at (310) 732-3679

Sincerely,

[Signature]

CHRISTOPHER CANNON
Director of Environmental Management

CC: LM/yo
ADP No.: 081210-136
FILE: G:_PROJECT FILES\081210-136-I-110_C Street_Improvements\C Street NOI.docx
Figure 3-2. Notice of Public Hearing and Availability of Studies

NOTICE OF PUBLIC HEARING AND AVAILABILITY OF STUDIES
I-110/C Street Interchange Project

WHAT'S BEING PLANNED?
The California Department of Transportation, District 7 (Caltrans), in cooperation with the Port of Los Angeles (Port), proposes to improve the existing Interstate 110 (I-110)/C Street interchange. The proposed project would include a northbound off-ramp for direct access to Harry Bridges Boulevard, modification of the northbound on-ramp from C Street, realignment of Harry Bridges Boulevard, and combining the I-110 ramp terminus/C Street/Figueroa Street intersection with the John S. Gibson Boulevard/Harry Bridges Boulevard intersection. Concrete sidewalks are proposed along the local roadways to provide a clear and unobstructed path for pedestrian travel within the project limits. Curb ramps would be constructed at intersection and street crossings and existing bicycle routes will be maintained. Pedestrian signals and cross walk pavement delineation would also be provided.

WHY THIS NOTICE?
The Port and Caltrans have completed the Draft Initial Study/Environmental Assessment (IS/EA), which evaluates the potential impacts of the No Build and Build Alternatives. This notice is to inform of the availability of the Draft IS/EA for the public’s review and comment, and notification of public hearing about this study to be held on Tuesday, November 1, 2011.

WHAT'S AVAILABLE?
A copy of the Draft IS/EA is available at the Port of Los Angeles, Engineering Division (425 South Palos Verdes Street, San Pedro, CA 90731); Caltrans District 7 Building (100 South Main St, Los Angeles CA 90012), Division of Environmental Planning; and local public libraries (San Pedro Branch and Wilmington Branch). The report can also be accessed through the Port Website at http://www.portoflosangeles.org/ and Caltrans website at http://www.dot.ca.gov/dist07/resources/envdocs/.

WHERE YOU COME IN!
Public participation and input are important for the Port and Caltrans to move forward with the proposed project. We encourage you to review and comment on the Draft IS/EA. You may submit written comments to Eric Dienbach, Environmental Planner, Caltrans District 7, 100 South Main Street, Los Angeles, CA 90012 or to Christopher Cannon, Environmental Management Division, Port of Los Angeles, 425 South Palos Verdes Street, San Pedro, CA 90731. Written comments may also be sent via email to portcomments@portla.org. Comments must be postmarked no later than November 9, 2011.

WHEN AND WHERE?
The Public Hearing will be held on Tuesday, November 1 from 6:00 p.m. to 8:00 p.m. at the John Manlove Youth Center, 707 W. C Street, Wilmington CA, 90744. A brief formal presentation will be made at 6:00 p.m. Public comments will be heard thereafter until 8:00 p.m. Interpreter services will be available at the meeting.

CONTACT:
For more information about this study or any other transportation matter involving Port of Los Angeles and its surrounding area, contact Ms. Mimi Gutierrez, Engineering Division, Port of Los Angeles, at (310) 732-3339 (email: MGutierrez2@portla.org).
In addition, the Notice of Public Hearing and Availability of Studies was published in the following newspapers:

- Torrance Daily Breeze – Tuesday, October 25, 2011
- La Opinion – Tuesday, October 25, 2011

Proof of publication of this notice in the above newspapers is provided in Appendix K.

The Draft IS/EA was circulated for public and agency review for a period of 33 days from October 13 to November 14, 2011 and was available for review at the following locations:

- Caltrans 7 Offices
 100 S. Main Street
 Los Angeles, CA 90012

- Los Angeles Harbor Department,
 Engineering Division
 425 S. Palos Verdes Street
 San Pedro, CA 90731

- Los Angeles City Library,
 San Pedro Branch
 931 S. Gaffey Street
 San Pedro, CA 90731

- Los Angeles City Library,
 Wilmington Branch
 1300 N. Avalon
 Wilmington, CA 90744

- Port of Los Angeles Website:
 http://www.portoflosangeles.org

- Caltrans Website:
 http://www.dot.ca.gov/dist07/resources/envdocs/

During the 33-day public review period, a public hearing was held on the Draft IS/EA on November 1, 2011, at the John Mendez Youth Center in the Wilmington community. The format of the hearing included a formal power point presentation by representatives from the Project Development Team, followed by a formal hearing of public comments recorded by a court reporter. A total of eight members of the public provided publicly recorded comments at the meeting. Transcripts of the public hearing are provided below. In addition, a total of nine additional comments were received via mail or email from members of the public, as well as two public agencies, the South Coast Air Quality Management District (SCAQMD) and the Department of Toxic Substances Control (DTSC). Each comment and its corresponding responses are provided below:
Wilmington, California, Tuesday, November 1st, 2011
(6:19 p.m.)

MS. LAURA: Okay. So let’s get started with our first speaker. We have -- Lydia Gutierrez is going to be first.

MS. GUTIERREZ: Thank you for not saying, "Lidia," but "Lydia." My name is Lydia Gutierrez. I am from the neighborhood counsel, and I am a board member. And one thing that I’d like to put into play -- I thank you so much for the project, and I see it’s going to be very functionable, but we have a concern on our side of town that on Harbor Boulevard, we have many trucks exiting and going onto that are from the shipping side, the port side, and we have a new -- some new projects coming. We have the USS Iowa and we also have two new cruise ships coming in, and that’s going to take many more trucks just to service those cruise ships and to service the USS Iowa.

With that traffic, I would like to see happen that the trucks come off of C Street and travel on Gibson to their -- that they have any business that is part of the shipping side, that they would use that facility instead of using Harbor Boulevard exit. So I think that
would be more profitable and more conscientious of the traffic. Thank you so much.

MS. LAURA: Okay. Thank you very much for your comment. Next we have Jose Bernal.

MR. BERNAL: We live on Monte Vista, 322 Monte Vista Avenue. And since this project and fixing roads here and everything and piping and everything, we have gotten a lot of traffic going through D Street, and I measured it, I always look at it, 30 yards. And since now they finished, they shut off -- I mean, they shut off C Street. So there's people coming, the traffic at 7:30 in the morning, horrific traffic coming through there, and I guess it might be the factories or whatever it is. And then at 4:30 they come again, and it's crowded. Now it gets so crowded.

And there's an apartment house there -- I don't know how many -- 100 residents or 75 people living in the motel or whatever it is. And -- I mean, apartments. And if I say -- if there is an accident there and probably have so much trouble getting the fireman to take care of somebody. Okay.

It's great that they're going to make it on E Street go to the right. I don't know if the trucks are going -- I don't know whether the people are going to make a left on E Street, too, but we need -- either we're
Commenter A1: Lydia Gutierrez, Public Hearing Attendee

Response to Commenter A1

Response to Comment #A1-1:

The proposed project is intended to improve traffic circulation at the C Street/Figueroa Street intersection. By combining the intersection with John S. Gibson/Harry Bridges Boulevard, Port related traffic would be encouraged to utilize John S. Gibson Boulevard and Harry Bridges Boulevard, as it would provide a more direct connection with northbound I-110.
Commenter A2

would be more profitable and more conscientious of the traffic. Thank you so much.

MS. LAURA: Okay. Thank you very much for your comment. Next we have Jose Bernal.

MR. BERNAL: We live on Monte Vista, 322 Monte Vista Avenue. And since this project and fixing roads here and everything and piping and everything, we have gotten a lot of traffic going through D Street, and I measured it, I always look at it, 30 yards. And since now they finished, they shut off -- I mean, they shut off C Street. So there's people coming, the traffic at 7:30 in the morning, horrific traffic coming through there, and I guess it might be the factories or whatever it is. And then at 4:30 they come again, and it's crowded. Now it gets so crowded.

And there's an apartment house there -- I don't know how many -- 100 residents or 75 people living in the motel or whatever it is. And -- I mean, apartments. And if I say -- if there is an accident there and probably have so much trouble getting the fireman to take care of somebody. Okay.

It's great that they're going to make it on E Street go to the right. I don't know if the trucks are going -- I don't know whether the people are going to make a left on E Street, too, but we need -- either we're
going to need some lights there and, like I say, you're closing off C. I don't understand why. I just -- I don't understand why they didn't make C part of the freeway, that way, the trucks or the people could go either north or south, San Pedro or Los Angeles.

That's -- it really gets real crowded, and there's a lot of people going through there in the morning, right now, and in the afternoon. And good thing there's -- some of the kids moved away from there. They always used to play in the street. They shouldn't do it, but, anyway, that's the problem. I'm wondering -- and if we can't go further down, we get down to Anaheim, you can't -- you got to go right, because the traffic is terrific. That's the only thing I see. Everything looks pretty good.

I went down here where the trucks are making the street wider and so that they can get in. I don't know what they do when the train comes, but maybe they're going to go over the track or the bridge or something.

But --

MS. LAURA: 30 seconds.

MR. BERNAL: Yeah. Okay.

MS. LAURA: No, you have 30 seconds. Oh, you're done. Okay. Thank you for that comment.

Okay. Next we have Glenda Sands.
Commenter A2: Jose Bernal, Public Hearing Attendee

Response to Commenter A2

Response to Comment #A2-1:

During construction of the proposed project, traffic circulation along D Street would remain unaffected.

Response to Comment #A2-2:

Emergency access along D Street, and within the immediate vicinity of the proposed project would remain unaffected.

Response to Comment #A2-3:

No traffic lights at E Street are proposed as part of the project. Access to southbound I-110 would remain unaffected by the proposed project while access to northbound I-110 would be improved through the provision of a more direct on-ramp from Harry Bridges Boulevard and John S. Gibson Boulevard. Motorists seeking access to northbound I-110 from E Street can make a left onto Figueroa Street, or access the northbound I-110 on-ramp north of Anaheim Street.

Response to Comment #A2-4:

Comment noted. See the responses to comments A2-1 through A2-3.
Commenter A3

1. MS. SANDS: Can I do it over here? I talk loud.
2. MS. LAURA: Sure.
3. MS. SANDS: One of my questions was --
4. MS. LAURA: We'll get you a microphone.
5. MS. SANDS: Okay. One of the comments I had on this project was the return of trucks from where the police station is, that they should come out and go this way and not go on the freeway and decide to go to Harry Bridges. You really should put some kind of a dedicated right lane so they can go from Harry Bridges -- I mean from Gibson to Harry Bridges, rather than coming to the full intersection to try and make that right turn. It seems like you just kind of miss that flow of traffic there.

I understand that there's height problems and stuff, but you should really think about not bringing them all the way to the intersection, if they're going to be going north and then east because it doesn't -- it just shows them coming all the way down here and trying to get this way. I realize I live off Figueroa Street. There's a lot of -- a lot of truck traffic. I'm hoping that this will take that truck traffic out of my neighborhood area. It seems to be a good sign.

I hope it is beautified. I almost laughed when they said, "Caltrans esthetics," because I live near the freeway; there are no plants, no trees, just weeds on
Chapter 3. Comments and Coordination

every on-ramp in Wilmington. We don't have a beautified on-ramp. So if this is nice and beautified, I hope that Caltrans will be kind enough to do it on some of the other off-ramps, as well. And that's my comment. Thank you.

MS. LAURA: Thank you so much. Okay. Next up we have Candice Graham.

MS. GRAHAM: Where is the money coming from? That's one thing that I wanted to try to figure out for this plan. I know that most of my friends, we sit back here in Wilmington and San Pedro, and when they come up with five-year plans that take 20 and 15 years down the ways, we're always wondering where is the money coming from. That's very important to me, that it's not going to end up turning on us.

If the Port of Los Angeles -- and this is a comment -- if the Port of Los Angeles is going to pay for this -- and I love the Port of Los Angeles -- but in the interim, I'd like for them to stand by this and not for this to turn into a city-incentive plan or something else. So I'd like to see for this expeditiously done.

The terminal entrance at Freeze -- well, there is also something that I'm just going to stipulate which a lot of people have spoken to me about. C Street was not guaranteed in our original plan to be blocked off.
Commenter A3: Glenda Sands, Public Hearing Attendee

Response to Commenter A3

Response to Comment #A3-1:

The project includes a dedicated right-turn pocket from northbound John S. Gibson to eastbound Harry Bridges Boulevard. The right-turn movements will be controlled by a new traffic signal. The traffic analysis includes this right-turn pocket and has determined that the intersection will operate at an acceptable Level of Service (LOS) of C by 2035.

Response to Comment #A3-2

The project would be constructed and maintained in accordance with Caltrans standard landscape guidelines and specifications. Other ramp improvements are not contemplated as part of the proposed project.
every on-ramp in Wilmington. We don't have a beautified on-ramp. So if this is nice and beautified, I hope that Caltrans will be kind enough to do it on some of the other off-ramps, as well. And that's my comment. Thank you.

MS. LAURA: Thank you so much. Okay. Next up we have Candice Graham.

MS. GRAHAM: Where is the money coming from? That's one thing that I wanted to try to figure out for this plan. I know that most of my friends, we sit back here in Wilmington and San Pedro, and when they come up with five-year plans that take 20 and 15 years down the ways, we're always wondering where is the money coming from. That's very important to me, that it's not going to end up turning on us.

If the Port of Los Angeles -- and this is a comment -- if the Port of Los Angeles is going to pay for this -- and I love the Port of Los Angeles -- but in the interim, I'd like for them to stand by this and not for this to turn into a city-incentive plan or something else. So I'd like to see for this expeditiously done.

The terminal entrance at Freeze -- well, there is also something that I'm just going to stipulate which a lot of people have spoken to me about. C Street was not guaranteed in our original plan to be blocked off.
Okay. We don't have any emergency access here, and we just have one. If you guys get sick, if there's a paramedic, God forbid, a house on fire, we don't have that option. C Street has to be open, and I'm just saying that. So you need to incorporate that in your plan, somehow. It's ridiculous for that street to be closed.

Okay. Terminal, Freeze, how much is this going to cost, new street going to be impacted. Okay. Let me go. I'm not a public speaker. I'm just a public doer. So this is me. Okay. Let me see. I think I said it for now. I think you got my card a little bit later, and I'll come back up and speak. Thank you.

MS. LAURA: Okay. Thank you.

Next we have Joel Firewatcher.

MR. THURWALKER: Good evening. My name is Joel Thurwalker. I'm a business representative for (inaudible) Engineers Local Club. And working out here, I represent the members that live and work in Wilmington, and this project's long overdue, and we're in full support of it. And I'd also like to know if the project is going to be under (inaudible) appeal license, joint venture with Caltrans and the Port of Los Angeles because the PLA will guarantee that there's local hire for the residents of Wilmington like you did with Banning Park.
Commenter A4: Candice Graham, Public Hearing Attendee

Response to Commenter A4

Response to Comment #A4-1:

As described in Section 1.1, Introduction, on page 1-1 of the Draft IS/EA, the total estimated cost of the project is $36 million. Funding for the project will come from the following sources: $8.3 million from the Trade Corridor Improvement Fund (TCIF), $6.6 million from Metro Prop C funds, and the remaining $21.1 million from port revenue funds.

Response to Comment #A4-2:

This project is budgeted in the Port’s 5-year Capital Improvement Program (CIP) and scheduled to begin construction in May 2013.

Response to Comment #A4-3:

Under current conditions, access to C Street is already blocked from the eastbound direction. Therefore, emergency access to C Street would remain unaffected by the proposed project. Maintaining the existing right turn out at C Street onto Figueroa Street north was considered, but will not be incorporated into the final design due to safety concerns resulting from the close proximity of the new signalized intersection. The minimum standard distance between intersections is 400 feet. The distance between the new intersection and C Street is only 190 feet. However, the proposed cul-de-sac has been designed with a mountable curb to allow fire and police vehicles to access C Street. Currently, emergency respondents to the residences along C Street utilize D Street. This would not change under the proposed project.
Commenter A5

1 Okay. We don’t have any emergency access here, and we
2 just have one. If you guys get sick, if there’s a
3 paramedic, God forbid, a house on fire, we don’t have
4 that option. C Street has to be open, and I’m just
5 saying that. So you need to incorporate that in your
6 plan, somehow. It’s ridiculous for that street to be
7 closed.

8 Okay. Terminal, Freeze, how much is this going
9 to cost, new street going to be impacted. Okay, Let me
10 go. I’m not a public speaker. I’m just a public doer.
11 So this is me. Okay. Let me see. I think I said it for
12 now. I think you got my card a little bit later, and
13 I’ll come back up and speak. Thank you.
14
15 MS. LAURA: Okay. Thank you.
16
17 Next we have Joel Firewatcher.
18
19 MR. THURWALKER: Good evening. My name is
20 Joel Thurwalker. I’m a business representative for
21 (inaudible) Engineers Local Club. And working out here,
22 I represent the members that live and work in Wilmington,
23 and this project’s long overdue, and we’re in full
24 support of it. And I’d also like to know if the project
25 is going to be under (inaudible) appeal license, joint
26 venture with Caltrans and the Port of Los Angeles because
27 the PLA will guarantee that there’s local hire for the
28 residents of Wilmington like you did with Banning Park.
Commenter A5: Joel Thurwalker, Public Hearing Attendee

Response to Commenter A5

Response to Comment #A5-1:

The Los Angeles Harbor Department has entered into a 5-year Port-wide Project Labor Agreement (Port-wide PLA) with the Los Angeles/Orange Counties Building and Construction Trades Council. The I-110/C Street Interchange Project would be subject to the requirements of the Port-wide PLA and in compliance with grant funding requirements regarding labor.
Chapter 3. Comments and Coordination

Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and Finding of No Significant Impact

Commenter A6

1 Thank you.
2 MS. LAURA: Thank you so much. Okay. Our next
3 speaker is Maria Duenas, Maria Duenas. Duenas?
4 MS. DUENAS: Hello. My name is Maria, and I live on
5 Mar Vista. And I would like to have an --
6 (foreign language) because it's very -- a lot of traffic
7 in the morning, afternoon, and I like peace if it is
8 possible, as much as possible, to start the construction.
9 Thank you very much.
10 MS. LAURA: Thank you. Okay. Next we have -- last
11 name, Hernandez, Arthur Hernandez. Thank you.
12 MR. HERNANDEZ: My name is Arthur Hernandez. I'm a
13 board member of the Wilmington Neighborhood Council, and
14 a member of the Wilmington Park, the newly formed
15 Wilmington Waterfront Park. I'm one of the originators.
16 What I have to say is important for Wilmington.
17 Wilmington has a lot of needs. Harry Bridges to the 110
18 or overpass, as you have it on the second map over there,
19 that is a very unique design. I like it. The only thing
20 is that I think I need you to mention that they have a
21 problem with the wall over there. Well, I think I
22 submitted plans for that, and I measured that. You have
23 to have 1500 feet for an off-ramp on the 110. So if you
24 go back a little further and measure it, you can bring it
25 in.
Commenter A6: Maria Duenas, Public Hearing Attendee

Response to Commenter A6

Response to Comment #A6-1:

Comment noted.
Commenter A7

1 Thank you.
2
3 MS. LAURA: Thank you so much. Okay. Our next
4 speaker is Maria Duenas, Maria Duenas. Duenas?
5
6 MS. DURNAS: Hello. My name is Maria, and I live on
7 Mar Vista. And I would like to have an --
8 (foreign language) because it's very -- a lot of traffic
9 in the morning, afternoon, and I like peace if it is
10 possible, as much as possible, to start the construction.
11 Thank you very much.
12
13 MS. LAURA: Thank you. Okay. Next we have -- last
14 name, Hernandez, Arthur Hernandez. Thank you.
15
16 MR. HERNANDEZ: My name is Arthur Hernandez. I'm a
17 board member of the Wilmington Neighborhood Council, and
18 a member of the Wilmington Park, the newly formed
19 Wilmington Waterfront Park. I'm one of the originators.
20
21 What I have to say is important for Wilmington.
22 Wilmington has a lot of needs. Harry Bridges to the 110
23 or overpass, as you have it on the second map over there,
24 that is a very unique design. I like it. The only thing
25 is that I think I need you to mention that they have a
26 problem with the wall over there. Well, I think I
27 submitted plans for that, and I measured that. You have
28 to have 1500 feet for an off-ramp on the 110. So if you
29 go back a little further and measure it, you can bring it
30 in.
But, the trucks are going to come faster.
They're going to come down that 110 Freeway down to
Harry Bridges Road, and they might come a little too
fast. That's the danger. The other way is the on-ramp
to the 110 from the Harry Bridges, that is not easily
done from right there where C Street is and Figueroa.
And if they can put those lanes over and connect it to go
to L.A. To the 110, that -- on the 110 to L.A., that
would be great.

C Street originally was a two-lane road, there.
That was blocked off, and then we had trouble with that.
So they put an exit there, which helped a little bit.
That might -- that -- but we want to keep that C Street
open. We don't want to keep it -- close it because once
you close streets, you never use them again the right
way. But if we have an exit going through there, that
might help. The whole development is that -- from the
tray pack, if they have to put an off-ramp from back and,
maybe, 500 feet more, 1,000 feet more, and come down, put
an engineered wall down and go down into that
Gibson Road, that might help to slow down the trucks and
then bring them on into Harry Bridges Road.

These truck drivers will drive a little bit
fast. Some of them are very good drivers, but that's a
danger there. And when they come off the freeway
that's -- what? -- 50-feet tall. They'll come down, and
the momentum of the truck can be a danger.

MS. LAURA: Ten seconds.

MR. HERNANDEZ: Also, I see that now they're trying
to widen Figueroa. That was a long-time plan of mine
with the marina down by Figueroa. That, they didn't want
to go and do any development on that, so they filled it
all in. But maybe they can go forward and develop that so
that they can have a Figueroa to the 110 Freeway on-ramp
instead of going down there and past Anaheim.

MS. LAURA: Okay. Thank you. Your three minutes
are up. So thank you very much.

Okay. Next we have Adolfo Permin.

MR. PERMIN: Hello. I'm a business owner, and I
don't have a business here, but I live here,
C and Mar Vista.

My five questions are: Will the project be
in -- concerning intersections, pedestrian friendly,
bicycle friendly, jogging path, and wheelchair
accessible? And then, second, will there be through
traffic to San Pedro, still, during the construction, and
will there be a connection to San Pedro via tram to
Wilmington, and, also, what method will you use to
containing dust particles during construction? Five,
will you put traffic lights between D and F Street during
Commenter A7: Arthur Hernandez, Public Hearing Attendee

Response to Commenter A7

Response to Comment #A7-1:

Comment noted. The geometric design is based on current Caltrans standards and is constrained by the outer separation between I-110 and existing John S. Gibson Boulevard to the south.

Response to Comment #A7-2:

Comment noted. The geometric design of the off-ramp is based on the design speed of Harry Bridges Boulevard and the Caltrans Highway Design Manual for the design of ramps. There is no data indicating that there will be an increased propensity for motorists to violate the posted speed limit as a result of this project.

A redundant on-ramp from C Street onto northbound I-110 is not warranted based on the traffic analyses. In addition, this non-standard geometric configuration would likely create unsafe conditions on I-110 where the two ramps merge with the mixed flow lanes and also promote additional traffic on C Street from westbound commuters looking to avoid the signalized intersection.

Response to Comment #A7-3:

Comment noted. Maintaining the existing right turn out at C Street onto Figueroa Street north was considered, but will not be incorporated into the final design due to safety concerns resulting from the close proximity of the new signalized intersection. The minimum standard distance between intersections is 400 feet. The distance between the new intersection and C Street is only 190 feet. However, the proposed cul-de-sac has been designed with a mountable curb to allow emergency vehicle access.

Response to Comment #A7-4:

The project limit on Figueroa Street is from the Harry Bridges Boulevard/John S. Gibson Boulevard/ Figueroa Street intersection to the C Street/I-110 on- and off-ramps/Figueroa Street intersection.
Commenter A8

that's -- what? -- 50-feet tall. They'll come down, and
the momentum of the truck can be a danger.

MS. LAURA: Ten seconds.

MR. HERNANDEZ: Also, I see that now they're trying
to widen Figueroa. That was a long-time plan of mine
with the marina down by Figueroa. That, they didn't want
to go and do any development on that, so they filled it
all in. But maybe they can go forward and develop that so
that they can have a Figueroa to the 110 Freeway on-ramp
instead of going down there and past Anaheim.

MS. LAURA: Okay. Thank you. Your three minutes
are up. So thank you very much.

Okay. Next we have Adolfo Permin.

MR. PERMIN: Hello. I'm a business owner, and I
don't have a business here, but I live here,
C and Mar Vista.

My five questions are: Will the project be
in -- concerning intersections, pedestrian friendly,
bicycle friendly, jogging path, and wheelchair
accessible? And then, second, will there be through
traffic to San Pedro, still, during the construction, and
will there be a connection to San Pedro via tram to
Wilmington, and, also, what method will you use to
containing dust particles during construction? Five,
will you put traffic lights between D and F Street during
traffic -- I mean, during the construction and after
because there will be more traffic? Right now there is
some traffic truck flow going through there. And that's
it.

MS. LAURA: Okay. Thank you so much. That was our
last speaker, so that concludes the comment period.
We're going to end the public hearing, the official
proceedings of the public hearing. We will have some
people stick around, as we said before, to provide
clarifications and to give you some time to look at the
boards if you'd like to do that.

I would like to thank you so much for coming.
I'm going to put back up the locations where you can
access the full document if you'd like to look at that.
And please feel free to provide comments at a later time
up until November 14th. Thank you so much for being here
tonight. We appreciate your input.

(Meeting was concluded at 7:11 p.m.)
Commenter A8: Adolfo Fermin, Public Hearing Attendee

Response to Commenter A8

Response to Comment #A8-1:

The proposed project would include pedestrian crossings at the newly constructed intersection and all sidewalks will be wheelchair accessible and Americans with Disabilities Act (ADA) compliant. No jogging path is proposed as part of the project; however, the proposed project would improve bicycle facilities along Figueroa Street and John S. Gibson as it would provide the specified width and striping along these roadways, which are currently not in compliance with existing bicycle designations.

Response to Comment #A8-2:

Access for vehicular traffic will be maintained throughout the project construction period.

Response to Comment #A8-3:

The proposed project does not include any changes to public transit service in the project area.

Response to Comment #A8-4

During construction, dust emissions will be controlled through a variety of standard Caltrans practices and specifications which are required of the construction contractor. Pursuant to Caltrans’ Standard Specifications, Section 14-9.01, the construction contractor will be required to comply with and adhere to all applicable rules and regulations, such as SCAQMD Rule 401 for visible emissions control, Rule 402 for nuisance, Rule 403 for fugitive dust control, Rule 1113 for control of VOC emissions from asphalt operations, Rule 1403 for limiting asbestos emissions, and other pertinent requirements concerning the operation of construction equipment and dust control. Such control measures may include pre-watering of site, use of vacuum systems, sweeping a water spray, and other stabilization methods as described in Section 2.2.6 Air Quality. Table 2-42 of this section summarizes the applicable measures required by Rule 403. Implementation of these control measures would reduce uncontrolled fugitive dust emissions by approximately 50 percent. In addition, as described under mitigation measure AQ-1, the LAHD requires the construction contractor to adhere to the current LAHD Sustainable Construction Guidelines for Reducing Air Emissions during project construction phase. Finally, these impacts would be temporary, and would occur only during the construction period.
Response to Comment #A8-5:

Comment noted. The project does not include installation of traffic signals at intersections along D and F Streets.
Letter B

I-110/C STREET INTERCHANGE PROJECT
Tuesday, November 1, 2011

I-110/C STREET INTERCHANGE PROJECT

PLEASE PRINT
Name: FERNANDO
Address: 224 More Vista Ave
City, State, Zip: LA, CA 90744
Email: fernando.fern@sbco.losangeles.net

Please provide us with your comments

1. Will this project be pedestrian friendly?
 Bicycle friendly?
 Jogging path friendly?
 Wheel chair accessible?

2. Will there be thru traffic from C St. to San Pedro?

3. Will Wilma be connected to San Pedro via a
 4. What methods will you use containing dust

5. Will you put a traffic light between "D" St. and "F" St. for
 some track traffic flow thru "C" St. to More Vista
 and "D" St.

Hand in today or mail to: Christopher Cannon, Director, Environmental Management Division, Port of Los Angeles
425 S. Palos Verdes St • San Pedro, CA 90731 • Mail comments must be postmarked by November 14, 2011

Chapter 3. Comments and Coordination
Comment Letter B: Adolfo Fermin, Public Hearing Attendee

Response to Comment Letter B

Response to Comment #B-1:
Comment noted. Please see the response to Comment A8-1.

Response to Comment #B-2:
Comment noted. Please see the response to Comment A8-2.

Response to Comment #B-3:
Comment noted. Please see the response to Comment A8-3.

Response to Comment #B-4:
Comment noted. Please see the response to Comment A8-4.

Response to Comment #B-5:
Comment noted. Please see the response to Comment A8-5.
PROYECTO DEL CRUCERO I-110/C STREET
Martes 1º. de noviembre de 2011
TARJETA PARA COMENTARIOS

FAVOR DE USAR LETRA DE MOLDE
Nombre: ALVAREZ M. GUADALUPE
Domicilio: 625 BROAD AVE
Ciudad, Estado, C.P.: WILMINGTON, CA 90744
E-mail

FAVOR DE DARNOS SU OPINION O COMENTARIO

ESToy DE ACUERDO EN EL PROYECTO QUE SE VA
HACER
ESToy DE ACUERDO QUE SEA PARA
MEJORAR EL TRAFICO COMO DISEN
MAS AGúI EN WILMINGTON EN ESTA CALLE
DE LA C. TODAS ESTAS CALLES QUE SEA
PARA VIVIR DE LA COMUNIDAD DE WILMINGTON

Entregarlo hoy o enviarlo a: Christopher Cannon, Director, Environmental Management Division,
Port of Los Angeles 425 S. Palos Verdes St. San Pedro, CA 90731
Los comentarios enviados por correo deben llevar sello de correo de noviembre 14 de 2011 o antes.
Comment Letter C: Alvarez M. Guadalupe, Public Hearing Attendee

Response to Comment Letter C

Response to Comment #C-1:

Comment noted. The proposed project is intended to improve traffic operations at the C Street/I-110 interchange, associated on-ramps, and along John S. Gibson Boulevard. This will improve general traffic circulation throughout the Wilmington community by redirecting port related truck traffic from local roadways.
Letter D

I-110/C STREET INTERCHANGE PROJECT
Tuesday, November 1, 2011
COMMENT CARD

PLEASE PRINT
Name: Lydia Gutierrez
Address: 4482 W. 39th St.
City, State, Zip: San Pedro, CA 90731
Email: Lydia_for_Education@gmail.com

Please provide us with your comments

1. Figueroa St at C Street
 Make street a way

2. C Street off ramp is for large trucks
 Harbor Blvd

Concern:
At present, many trucks exit off of Harbor Blvd exit.

More traffic will be added when
US 101 West comes in and the new Disney Cruise ships come in for San Pedro.

Is it possible for the shipping trucks to get off on C Street then travel on Gibson Street West?
Comment Letter D: Lydia Gutierrez, Public Hearing Attendee

Response to Comment Letter D

Response to Comment #D-1:

Comment noted. Southbound I-110 traffic can exit at C Street and travel south on John S. Gibson Boulevard. However, northbound I-110 traffic exiting C Street will not have direct access to John S. Gibson Boulevard south.
Letter E

I-110/C STREET INTERCHANGE PROJECT
Tuesday, November 1, 2011
COMMENT CARD

PLEASE PRINT

Name: Maria Bernal
Address: 322 Mar Vista Ave
City, State, Zip: Wilmington, CA 90744
Email:

Please provide us with your comments:

Signal at Mar Vista and C Street

Hand in today or mail to: Christopher Cannon, Director, Environmental Management Division, Port of Los Angeles
426 S. Palos Verdes St. • San Pedro, CA 90731 • Mail comments must be postmarked by November 14, 2011
Comment Letter E: Maria Bernal, Public Hearing Attendee

Response to Comment Letter E

Response to Comment #E-1:

Comment noted. This project does not include a traffic signal at Mar Vista and C Streets.
Letter F

December 8, 2012
300 N. 4th St., Suite 5
Los Angeles, CA 90012

Dear Mr. Hamilton:

I hope this letter finds you well. I am writing to request your attendance at the upcoming public hearing regarding the proposed Interstate 110/C Street interchange project. The hearing is scheduled for next week and I wanted to ensure that you are aware of the details.

I understand that you have been actively involved in the planning and execution of similar projects in the area. I believe your insights and expertise would contribute significantly to the success of this project.

Please let me know if you are available to attend the hearing. If there are any specific questions or concerns you have about the project, I would be happy to address them.

Thank you for your time and consideration.

Sincerely,

LA Dept.

Hi, I got the dates of the Public Hearing meeting at the Bobo Building on 4th St. I thought to mark it on my calendar and I went from memory thinking Nov 7 instead of the 17th.

I wanted to attend because I wanted to make sure the "C St. Interchange Project" would not impact the Route 405 Route adversely over here in the area of Avalon. Be the way the Avalon Bridge project did by knocking out the Metro service to use the area here on Avalon Blvd between C St. and Avalon.

I was interested in knowing if Metro was invited to these hearings for the purpose of getting feedback from riders and residents regarding changes to the route(s) due to these projects. So I'll raise the question now with you re: meeting. Will the C St. Harbor.
Interstate 110/C Street Interchange Project
Mitigated Negative Declaration and
Finding of No Significant Impact
Response to Comment Letter F

Response to Comment #F-1:

Metro can be contacted at the following numbers for the latest time and route changes:

Customer Relations: 213.922.6235
8:00 a.m. – 4:15 p.m. (Monday – Friday)

Bus and Rail Transit Information: 323.GO.METRO (323.466.3876)
6:30 a.m. – 7 p.m. (Monday – Friday)
8:00 a.m. – 4:30 p.m. (Saturday/Sunday)

Response to Comment #F-2:

The Port has sent the Notice of Preparation and an electronic copy of the Draft IS/EA to the Metropolitan Transportation Authority (see Chapter 5, Distribution List) and has received no comments.

One lane of traffic, in each direction will be provided during the entire duration of construction. The I-110 northbound on-ramp will be closed for 10 days; traffic will be rerouted to the Anaheim on-ramp. However, the Port does not foresee any changes to the 246 bus route.
Mr. Christopher Cannon
Director of Environmental Management
Port of Los Angeles
425 S. Palos Verdes Street
San Pedro, CA 90731

RE: I-110/C Street Interchange Project

Dear Mr. Cannon:

I attended the November 1, 2011 public hearing on the Draft Initial Study/Environmental Assessment on this project and I left with the feeling that all had been decided beforehand. In my brief review of the document I find the same, that the decision regarding the project is final.

Further, how did Caltrans determine that the proposed project would not have a significant effect on the environment? Also, five purpose were shown at the meeting, but unfortunately I could not find the same in the document.

The following are some comments/questions that I’d like further information or explanation:

> For public safety, I suggest that the planned C Street cul de sac not be installed, but rather keep it open for northbound egress and that further north a southbound turn-around be placed.
> For public convenience and access that a northbound ground level road from John Gibson to Harry Bridges be made available or kept as it is now.
> The signaled four way intersection at C and Figueroa will not solve all the present traffic problems, including the on-going backups from the southbound freeway off ramp.
> No clear description was presented to insure the saving of historical Native American and other possible important finds.
> No assurance was presented for the use and preservation of the vacant land that will result.

Will it be grass, dirt, wetlands, or containers?

> There is no evidence that Caltrans can maintain the landscaping at this site since it presently and in the past years has never been able to keep clean and green the freeway area from Pacific Coast Highway south, either on east or west sides... What a disgrace! Homeowners, commuters, and college students and staff must endure such terrible neglect, including the Park and Ride lot which has often been leased to carnivals without regard to maintenance.
> Will this project set up avenues for local hiring and training programs?
> Will another public meeting/hearing be held to inform the public of final decisions?
> What assurances do the residents of Wilmington have, especially the highly populated area NE of the project, that the mitigation measures will be adhered to because it will have significant effects on the area, not as the document claims?

Sincerely,

Olivia Cuevas-Fernandez
1557 Marine Avenue
Wilmington, CA 90744

(310) 549-3456
ocfema@att.net
Comment Letter G: Olivia Cueva-Fernandez, Member of the Public

Response to Comment Letter G

Response to Comment #G-1:

The Draft IS/EA discloses several potentially significant impacts, including the effects of construction on hazardous materials, hydrology and water quality, traffic, archaeological or paleontological resources, utilities, noise, and biological effects related to nesting birds and the introduction of invasive species. However, based on the analysis presented in the Draft IS/EA, these impacts can be mitigated to a less than significant level under CEQA, and a not substantially adverse level under NEPA. Mitigation measures intended to address these environmental concerns are described under each of the above listed resource areas within Chapter 2 of the Draft IS/EA and in Appendix F.

Response to Comment #G-2:

Comment noted. The five project purposes described in the public meeting held on November 1 were as follows: 1) direct Port traffic away from the Wilmington Community, 2) reduce queuing of trucks on Figueroa Street, 3) eliminate cut-through traffic on C Street, 4) improve safety for all roadway users, and 5) reduce existing and anticipated future traffic congestion. For the purposes of the environmental analysis provided in the Draft IS/EA, the two purposes of the project were described as follows; A) improve traffic operations at the C Street/Figueroa Street intersection and reduce vehicular delays, and B) meet Caltrans’ goal of maximizing the performance and accessibility of transportation systems. The purpose and need statement in the Draft IS/EA, described under Section 1.2, outlines the various deficiencies and challenges associated with the C Street/I-110 interchange and its surrounding streets; namely current level of service (LOS) deficiencies caused by Port related truck traffic (1, 2, and 3), roadway deficiencies related to non-standard features (4), and the projected increase in traffic in the project area due to economic demands and planned development (5). Accordingly, project purpose A in the Draft IS/EA would satisfies purposes 1, 2, and 3 described in the November 1 public meeting, and project purpose B in the Draft IS/EA satisfies purposes 4 and 5 described in the November 1 public meeting.

Response to Comment #G-3:

Maintaining the existing right turn out at C Street onto Figueroa Street north was considered, but will not be incorporated into the final design due to safety concerns resulting from the close proximity of the new signalized intersection. The minimum standard distance between intersections is 400 feet. The distance between the new intersection and C Street is only 190 feet. However, the proposed cul-de-sac has been designed with a mountable curb to allow emergency vehicle access.
Response to Comment #G-4:

Comment noted. An at-grade roadway connector between John S. Gibson and Harry Bridges Boulevard would create a safety hazard as a result of poor sight distance when merging with the northbound off-ramp traffic and Harry Bridges Boulevard. In order to mitigate the safety issue, an entirely new roadway south of existing Harry Bridges Boulevard would need to be constructed. This roadway would require relocation of the existing railroad and a right-of-way from the TraPac terminal. The terminus of the connector roadway would need to be moved substantially to the east to allow the northbound off-ramp traffic to safely merge with eastbound Harry Bridges Boulevard traffic before introducing the merging of connector roadway traffic.

Response to Comment #G-5:

Comment noted. The results of the traffic analyses indicate that the intersection and adjoining roadway segments will operate at an acceptable Level of Service (LOS).

Response to Comment #G-6:

Comment noted. As described under section 2.17 of the Draft IS/EA, a Phase I archaeological reconnaissance survey was conducted on January 30, 2008, which found no evidence of any archaeological sites or resources within the project archaeological area of potential effect (APE). As described above under Section 3.2.2, correspondence with the Native American Heritage Commission (NAHC) was conducted in January 2009. According to the response from the NAHC, dated January 26, 2009, no known sacred sites are located within the project area. Furthermore, mitigation measures CR-1 and CR-2, described on page 2-71 of the Draft IS/EA, would ensure the preservation of any potential unknown buried cultural resources discovered during construction of the proposed project.

Response to Comment #G-7:

The undeveloped portions of vacant parcels within the project limits will be vegetated.

Response to Comment #G-8:

Standard maintenance conducted by Caltrans will occur as needed. Requests for maintenance of Caltrans facilities can be made on the Caltrans website at: http://www.dot.ca.gov/hq/maint/msrsubmit/

Response to Comment #G-9:

The Harbor Department has entered into a 5-year Port-wide PLA with the Los Angeles/Orange Counties Building and Construction Trades Council. The
I-110/C Street Interchange project will be subject to the requirements of the Port-wide PLA.

Response to Comment #G-10:

A Notice of Determination (NOD) will be filed with the State Office of Planning and Research (OPR) and the Los Angeles County Clerk upon approval of the final document by the Board of Harbor Commissioners and Caltrans. The final document will be posted on the Port and Caltrans websites and be available for review at the Port and Caltrans District 7 offices.

Response to Comment #G-11:

Appendix F of the Draft IS/EA provides a list of the proposed mitigation measures, the party responsible for carrying out these mitigation measures, the means of record keeping and verification of adherence, and the timeframe for implementation. The construction contractor, Caltrans staff, and LAHD staff will be responsible for maintaining the record of environmental commitments throughout implementation of the proposed project.
Chapter 3. Comments and Coordination

Letter H

From: Janet Esposito [Janet.Esposito@statefish.com]
Sent: Monday, November 14, 2011 4:36 PM
To: Ceqacommments
Subject: Fwd: I 110/C st interchange project
Attachments: Comments on Harry Bridges – C Street MND.docx; AT00001.htm

Sent from my iPad

Begin forwarded message:

From: Janet Esposito <Janet.Esposito@statefish.com>
Date: November 14, 2011 4:31:54 PM PST
To: "ceqacommments@portla.org" <ceqacommments@portla.org>
Subject: I 110/C st interchange project

Sent from my iPad

Begin forwarded message:

From: Janet Esposito <Janet.Esposito@statefish.com>
Date: November 14, 2011 4:01:20 PM PST
To: Janet Esposito <Janet.Esposito@statefish.com>
Subject: Fwd: C Street and Bridges

Please see the attached comments from State Fish Company regarding the I-110/C street interchange project. Please keep me posted at this email address or by phone 310-567-4270. The mailing address of our corporate office is: 2194 signal place, San Pedro, Calif. However, our plants are located in Wilmington: 1130 C (corner of C and Hawaiian) and 505 Harry Bridges blvd. If you have questions re my comments in the attachments, please speak to Chris Brown, who shares the concerns I have expressed in my letter. Thanks, Janet Esposito, VP State Fish Co.
Comments on the Harry Bridges – C Street MND

State Fish Co. operates a fish packing and processing plant at the corner of C Street and Hawaiian. We receive and dispatch our products on large trucks.

1. Please open C Street at Figueroa for westbound on C, northbound on Figueroa. We need the route open for our plant traffic from our plant at C and Hawaiian.

2. It will not be possible to exit eastbound onto Harry Bridges from King Street with our large trucks unless a metered stoplight is installed at the intersection. Please include a stoplight at that intersection.
Comment Letter H: Janet Esposito, State Fish Co.

Response to Comment Letter H

Response to Comment #H-1:

Maintaining the existing right turn out at C Street onto Figueroa Street north was considered, but will not be incorporated into the final design due to safety concerns resulting from the close proximity of the new signalized intersection. The minimum standard distance between intersections is 400 feet. The distance between the new intersection and C Street is only 190 feet. However, the proposed cul-de-sac has been designed with a mountable curb to allow emergency vehicle access.

Response to Comment #H-2:

The Harry Bridges Boulevard/King Street intersection is located outside of the project limits.
Letter 1

South Coast
Air Quality Management District
21865 Copley Drive, Diamond Bar, CA 91765-4178
(909) 396-2000 • www.aqmd.gov

E-MAILED: NOVEMBER 15, 2011

November 15, 2011

Mr. Eric Dietrich, Environmental Planner, EricDietrich@DOT.ca.gov
Caltrans District 7
100 South Main Street
Los Angeles, CA 90012

Mr. Christopher Cannon, cceqacommunity@portla.org
Director of Environmental Management
Port of Los Angeles
425 S. Palos Verdes Street
San Pedro, CA 90731

Draft Environmental Assessment/Initial Study/Mitigated Negative Declaration with
Proposed Finding of No Significant Impact (Draft EA/IS/MND/FONSI) for the
Proposed I-110/C Street Interchange Project

The South Coast Air Quality Management District (AQMD) appreciates the opportunity
to comment on the above-mentioned document, including with an extended review
period. The following comments are meant as guidance for the Lead Agency and should
be incorporated into the Final CEQA document. In the project description, the lead agency
proposes to include a northbound off-ramp for direct access to Harry Bridges Boulevard,
modification of the northbound on-ramp from C Street, realignment of Harry Bridges
Boulevard, and combining the I-110 ramp terminal/C Street/Figueroa Street intersection with
the John S. Gibson Boulevard/Harry Bridges Boulevard Intersection.

Project analysis does not follow AQMD guidance
AQMD staff is concerned that Caltrans has chosen to ignore AQMD guidance¹ and not
conduct a localized impact analysis, both during construction and during operations. The
level of analysis conducted for this project is surprising given the level of analysis that was
conducted for the John S Gibson Blvd project in June 2011, located approximately one mile
away on the same freeway. In the Gibson project, the lead agency had adequate information
to determine the potential impact of projects by utilizing AQMD recommended thresholds
and evaluation methodologies. However in this project, the lead agency did not conduct as
thorough a review on a similar project, so it is not clear that there is adequate information
available to the public or decision makers about the potential significance of this project.
AQMD staff strongly recommends that Caltrans follow AQMD guidance for this and all
future projects that are located within our jurisdiction.

¹ http://www.aqmd.gov/ceqa/handbook/lsi/ST/LST.html
Mr. Eric Dierdock, Environmental Planner

Mr. Christopher Cannon, Director Environmental Management

November 15, 2011

As an example, in Appendix H, on the road construction model worksheet, the lead agency states that approximately 0.5 acres per day will be graded during construction. Table 2 from Appendix H states that more than 2M10 emissions from this activity are at least 4.63 pounds per day, above the AQMD recommended Localized Significant Threshold of 4 pounds per day for sensitive receptors within 25 m of the project site. These potential impacts should be fully disclosed in the Final CEQA document, and mitigation measures should be implemented to reduce these impacts to a less than significant level.2

Traffic forecast unclear

In its discussion of traffic growth starting on page 2-49, the lead agency explains its methodology to forecast traffic growth based on data from the Southern California Association of Government (SCAG) Regional Travel Demand Forecasting Model and from the Port Travel Demand Model developed for the Ports of Long Beach and Los Angeles Transportation Study in 2001. The Port Travel Demand Model included local projects including container and non-container terminal traffic growth, which were not included in the SCAG regional model. Future trip generation was estimated at the Ports of Los Angeles and Long Beach using information input into the Los Angeles Harbor Department’s QuickTrip truck trip generation model. The lead agency then stated on page 2-59, that to estimate "build-conditions (traffic flow), raw 2009, 2014, and 2035 model volumes at the future Figueras Street and John S. Gibson Boulevard/Harry Bridges Boulevard and John S. Gibson Boulevard and I-110 ramps/Yang Ming driveway intersections were manually adjusted to reflect existing and future traffic patterns." This "manual adjustment" was not explained i.e., the actual changes made, the rationale and justification for the adjustments, etc. This information should be included in the Final MND/FONIS as documentation to justify the changes and associated air quality and traffic impacts for the proposed project.

Please provide the AQMD with written responses to all comments contained herein prior to the adoption of the Final MND. The AQMD staff is available to work with the Lead Agency to address these issues and any other air quality questions that may arise. Please contact Gordon Maze, Air Quality Specialist, CEQA Section, at (562) 395-3302, if you have any questions regarding these comments.

Sincerely,

Ian MacMillan
Program Supervisor, Inter-Governmental Review Planning, Rule Development & Area Sources

IM:GM
LAC111012-96
Control Number

2 http://www.aqmd.gov/environmental/monitoring/M10/appr.html
Response to Comment Letter I

Response to Comment #I-1:

Comment noted. The commenter indicated that the emission analysis presented in Appendix H.3 should evaluate impacts related to their localized significance thresholds (LST), identify potential impacts, and mitigation measures to reduce impacts to a less-than-significant level.

Appendix H has been revised to include the LST analysis requested by the SCAQMD. No new mitigation measures would be required as a result of this supplemental analysis.

Response to Comment #I-2:

Comment noted. The commenter has asked for an explanation of manual adjustments made to the modeled future traffic volumes at Figueroa Street, the proposed John S. Gibson Boulevard/Harry Bridges Boulevard, and John S. Gibson Boulevard and I-110 ramps/Yang Ming driveway intersections. Manual (post-model) adjustments were made to refine the future 2035 and 2014 travel demand model forecasts for the proposed I-110/C Street Interchange Project Draft IS/EA Traffic Study. These adjustments are made to the travel demand model future traffic assignments before they are used in the detailed traffic analysis. This standard methodology is applied whenever regional travel demand model results are used for study purposes such as in an environmental study, traffic study or project design level study. There are multiple purposes for the post-model adjustments, described as follows:

- Adjustments are made to ensure consistency with other reports and published forecasts, in this case to ensure reasonable consistency with the traffic forecasts as presented in the Project Study Report.

- To ensure “conservation of flow” of traffic volumes with the adjacent intersection to the south (John S. Gibson Boulevard/I-110 northbound off-ramp/Port entrance intersection). In a network of streets and intersections, the traffic volumes must balance throughout the system and from one adjacent intersection to another. Travel models often do not result in balanced flows and this must be corrected to reflect real world conditions.

- The existing C Street/Figueroa Street and the Harry Bridges Boulevard/Figueroa Street intersections would be combined to form a single intersection as part of the proposed project. The proposed reconfiguration of the intersections into one also resulted into the need for some manual reassignments of traffic volumes to fit the
proposed new lane configurations in the single combined intersection (the directionality of the existing intersection traffic through movements and turning movements will shift because two intersections are to be modified into one intersection).

Travel demand models, including the model used to generate the forecasts for the project’s environmental traffic study, are developed and intended to be used at the macro level of forecasting traffic growth on freeways, major arterials, or roadway segments. While they are very useful for projecting traffic growth patterns into the future, they are not intended to accurately forecast each traffic turning movement at individual intersections. Thus, whenever travel demand model results are used at the intersection specific level of detail, they must be reviewed and modified as appropriate to match other nearby intersection volumes up and down stream, as well as to ensure logical growth patterns for each traffic movement (through versus turn volumes). Thus, the travel demand model “raw” volumes were reviewed and adjusted to better match the Project Study Report volumes as well as to ensure consistency throughout the local roadway system and match adjacent intersection flows.

For the 2035 project analysis, the following specific manual post-model adjustments were made prior to using the data in the traffic study:

- During the AM peak hour, the eastbound left and through movement travel model volume assignments and the westbound left-turn traffic volume assignments were increased as part of the post-model adjustments. The southbound through movement volume was decreased. The net overall adjustment for the entire intersection in the AM peak hour volume was an increase over model volumes by 17 percent. Thus, the final overall intersection volumes that were used in the study exceed the raw model forecasts from the travel model by 17 percent for the AM peak hour analysis.

- During the PM peak hour, the eastbound and westbound through movement travel model volume assignments were increased and the southbound through movement traffic model volumes were decreased, for a net decrease overall of ten percent. Thus, the final overall intersection volumes that were used in the study are less than the raw model forecasts from the travel model by 10 percent for the PM peak hour analysis.

For the 2014 project analysis, the following specific manual post-model adjustments made prior to using the data in the traffic study:

- During the AM peak hour, the southbound through movement travel model traffic volume assignments and the westbound left-turn traffic volume assignments were increased as part of the post-model adjustments. The net overall adjustment for the entire intersection in the AM peak hour volume was an increase over model volumes by 16 percent. Thus, the final overall intersection volumes that were used
in the study exceed the raw model forecasts from the travel model by 16 percent for the AM peak hour analysis.

During the PM peak hour, the southbound through movement traffic model volumes were decreased, for a net decrease overall of ten percent. Thus, the final overall intersection volumes that were used in the study are less than the raw model forecasts from the travel model by 10 percent for the PM peak hour analysis.
November 8, 2011

Mr. Eric Dietrich
California Department of Transportation
Caltrans District 7, 100 South Main Street
Los Angeles, California 90012

DRAFT MITIGATED NEGATIVE DECLARATION (ND) I-110/C STREET INTERCHANGE (SCH# 2011101037)

Dear Mr. Dietrich:

The Department of Toxic Substances Control (DTSC) has received your submitted document for the above-mentioned project. As stated in your document, "The California Department of Transportation (Caltrans) in cooperation with Los Angeles Harbor Department proposes to combine the two existing intersections at (1) C Street and Figueroa Street and (2) John S. Gibson Boulevard, Harry Bridges Boulevard, and Figueroa Street with one new intersection that would realign Harry Bridges Boulevard and John S. Gibson Boulevard, to the C Street interchange. The proposed project would also remove the existing northbound off-ramp and provide a new, direct, off-ramp from northbound I-110 to eastbound Harry Bridges Boulevard. This would involve the widening of the existing Union Oil undercrossing and the construction of a new separation structure over the realigned John S. Gibson Boulevard. Further improvements at the ramps would include a dedicated right-turn lane from the I-110 southbound off-ramp to southbound John S. Gibson Boulevard and a conventional signalized right-turn from northbound John S. Gibson Boulevard to eastbound Harry Bridges Boulevard. The new intersection at Figueroa Street, Harry Bridges Boulevard, and John S. Gibson Boulevard would be widened to accommodate dual left turn pockets from westbound Harry Bridges Boulevard to southbound John S. Gibson Boulevard. The planned improvements will require no additional right of way acquisition. All land required for improvements are owned by Caltrans and Los Angeles Harbor Department.

Based on the review of the submitted document DTSC has the following comments:
1) The document states that the ND would identify any known or potentially contaminated sites within the proposed project area.

2) The ND should identify the mechanism to initiate any required investigation and/or remediation for any site that may be contaminated, and the government agency to provide appropriate regulatory oversight. If hazardous materials or wastes were stored at the site, an environmental assessment should be conducted to determine if a release has occurred. If so, further studies should be carried out to delineate the nature and extent of the contamination, and the potential threat to public health and/or the environment should be evaluated. It may be necessary to determine if an expedited response action is required to reduce existing or potential threats to public health or the environment. If no immediate threat exists, the final remedy should be implemented in compliance with state laws, regulations and policies.

3) The project construction may require soil excavation and soil filling in certain areas. Appropriate sampling is required prior to disposal of the excavated soil. If the soil is contaminated, properly dispose of it rather than placing it in another location. Land Disposal Restrictions (LDRs) may be applicable to these soils. Also, if the project proposes to import soil to backfill the areas excavated, proper sampling should be conducted to make sure that the imported soil is free of contamination.

4) Human health and the environment of sensitive receptors should be protected during the construction or demolition activities. A study of the site overseen by the appropriate government agency might have to be conducted to determine if there are, have been, or will be, any releases of hazardous materials that may pose a risk to human health or the environment.

5) If during construction/demolition of the project, soil and/or groundwater contamination is suspected, construction/demolition in the area should cease and appropriate health and safety procedures should be implemented. If it is determined that contaminated soil and/or groundwater exist, the ND should identify how any required investigation and/or remediation will be conducted, and the appropriate government agency to provide regulatory oversight.

6) If weed abatement occurred, onsite soils may contain herbicide residue. If so, proper investigation and remedial actions, if necessary, should be conducted at the site prior to construction of the project.

7) If it is determined that hazardous wastes are, or will be, generated by the proposed operations, the wastes must be managed in accordance with the California Hazardous Waste Control Law (California Health and Safety
Chapter 3. Comments and Coordination

Mr. Eric Dietrich
November 8, 2011
Page 3

Code, Division 20, Chapter 6.5) and the Hazardous Waste Control Regulations (California Code of Regulations, Title 22, Division 4.5). If it is determined that hazardous wastes will be generated, the facility should also obtain a United States Environmental Protection Agency Identification Number by contacting (800) 618-6942. Certain hazardous waste treatment processes or hazardous materials, handling, storage or uses may require authorization from the local Certified Unified Program Agency (CUPA). Information about the requirement for authorization can be obtained by contacting your local CUPA.

8) If buildings, other structures, or associated uses; asphalt or concrete-paved surface areas are being planned to be demolished, an investigation should be conducted for the presence of other related hazardous chemicals, lead-based paints or products, mercury, and asbestos containing materials (ACMs). If other hazardous chemicals, lead-based paints or products, mercury or ACMs are identified, proper precautions should be taken during demolition activities. Additionally, the contaminants should be remediated in compliance with California environmental regulations and policies.

9) DTSC can provide guidance for cleanup oversight through an Environmental Oversight Agreement (EOA) for government agencies that are not responsible parties, or a Voluntary Cleanup Agreement (VCA) for private parties. For additional information on the EOA or VCA, please see www.dtsc.ca.gov/SiteCleanup/Brownfields, or contact Ms. Maryam Tasnif-Abbasi, DTSC’s Voluntary Cleanup Coordinator, at (714) 484-5489.

If you have any questions regarding this letter, please contact me at ashami@dtsc.ca.gov, or by phone at (714) 484-5472.

Sincerely,

Al Shami
Project Manager
Brownfields and Environmental Restoration Program

cc: Governor’s Office of Planning and Research
State Clearinghouse
P.O. Box 3044
Sacramento, California 95812-3044
state.clearinghouse@opr.ca.gov
Mr. Eric Dietrich
November 8, 2011
Page 4

CEQA Tracking Center
Department of Toxic Substances Control
Office of Environmental Planning and Analysis
P.O. Box 806
Sacramento, California 95812
nritter@dts.ca.gov

CEQA # 3399
Response to Comment Letter J

Response to Comment #J-1

As described on pages 2-101 through 2-108 of the Draft IS/EA, a Phase I Environmental Site Assessment (ESA) and a follow-up Phase II Hazardous Waste Investigation were prepared to investigate the project site for current and historical hazardous material contamination. The environmental database search conducted as part of these studies revealed six sites within the project area listed on one or more hazardous materials databases. Of these six sites, two sites are gasoline stations, which are currently under remediation, posing an environmental concern regarding groundwater contamination. The remaining listed sites have no violations reported. In addition, site investigations were conducted as part of the Phase I and Phase II studies, which found the potential for undisturbed soils to contain hazardous waste, including aerially deposited lead, and subsurface soils affected by petroleum hydrocarbons. Mitigation measures HAZ-1, HAZ-2, HAZ-3, and HAZ-4 would address these potential environmental concerns by requiring the construction contractor to remove potentially contaminated soils, test for concentrations of hazardous materials, and dispose of or remediate the contamination under the oversight of the LAHD.

Response to Comment #J-2

Comment noted. See the response to Comment J-1 above.

Response to Comment #J-3

Comment noted. See response to comment J-1, above. Mitigation measure HAZ-4 would require the construction contractor to prepare a project-specific lead compliance plan to minimize worker exposure to lead while handling material containing aerially deposited lead. The plan will be conducted according to California Department of Industrial Relations, Division of Occupational Safety and Health Administration, requirements and standards.

Response to Comment #J-4

Comment noted. See the response to Comment J-1, above.

Response to Comment #J-5

Comment noted. The Phase I and Phase II investigations found no evidence of herbicide residue. As stated previously in the response to comment J-1 and described
under mitigation measure HAZ-2, excavated soils shall be tested for contamination and disposed of properly.

Response to Comment #J-6

Comment noted. Operation of the proposed project is not anticipated to generate hazardous waste because the proposed project consists of roadway improvements and does not involve the storage of toxic or hazardous materials. Although vehicles using the C Street interchange may contain materials deemed hazardous, the proposed project is not anticipated to increase the potential for vehicles carrying hazardous materials to travel through the project area or increase the potential for accidents to occur. As described on page 2-107 of the Draft IS/EA, the hazards associated with transport of hazardous waste are regulated under existing programs and laws. During construction, excavated soils shall be secured as potential regulated waste pending environmental evaluation and laboratory testing to determine appropriate disposal or reuse, as described under mitigation measure HAZ-2.

Response to Comment #J-7

Comment noted. See response to comment J-1, above.

Response to Comment #J-8

Comment noted.
Chapter 4 List of Preparers

4.1 California Department of Transportation

Ron J. Kosinski, Deputy District Director of Environmental Planning Division
Aziz Elattar, Office Chief of Environmental Planning Division
Karl Price, Branch Chief, Division of Environmental Planning
Sarah Barns, Environmental Planner
Eric Dietrich, Environmental Planner
Gary Iverson, Senior Environmental Planner
Noah Stewart, Associate Environmental Planner
Paul Caron, Senior Environmental Planner
Stephanie White, Associate Environmental Planner
Andrew Yoon, Senior Transportation Engineer: Air Quality
Jin Lee, Senior Transportation Engineer: Noise and Vibration
Steve Chan: Senior Transportation Engineer: Hazardous Waste

4.2 ICF International

Lee Lisecki, Project Director
Shilpa Trisal, Project Manager
Hina Gupta, Environmental Planner
Peter Feldman, Environmental Planner
Mario Anaya, Environmental Planner
Lynze Milne, Environmental Planner
Elizabeth Weaver, Architectural Historian
Marissa Flores, Biologist
Kamber Zielke, Water Quality Specialist
Mark Robinson, Senior Archeologist
Michelle White, Archeologist
Patricia Campbell, Senior Biologist
Richard Starzak, Senior Architectural Historian
Nate Martin, Senior Water Quality Specialist
John Mathias, Editor
Ryan Patterson, Editor
Namrata Belliappa, GIS Specialist
Shannon Hill, Air Quality Specialist
Shannon Hatcher, Senior Air Quality Specialist
Keith Cooper, Senior Air Quality Specialist
Michael Greene, Senior Noise Specialist
Philip Richards, Senior Biologist

4.3 **Iteris**

Vamshi Akkinpally, Transportation Engineer
Dilip Malave, Transportation Engineer
Chapter 5 Distribution List

The IS/EA was distributed to the federal, state, local, and regional agencies and utility providers listed on the following pages. In addition, property owners or community members that are either affected directly by the project or have expressed interest in the project were provided with the document’s notice of preparation and/or a copy of the initial study/environmental assessment.

<table>
<thead>
<tr>
<th>U.S. Senate</th>
<th>County of Los Angeles Department of Regional Planning</th>
<th>U.S. Senate</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Honorable Barbara Boxer</td>
<td>Bruce McClendon, Planning Director</td>
<td>Office of Senator Feinstein</td>
</tr>
<tr>
<td>312 N. Spring Street, Suite 1748</td>
<td>320 West Temple Street</td>
<td>Trevor Daley, Senior Field Representative</td>
</tr>
<tr>
<td>Los Angeles, CA 90012</td>
<td>Los Angeles, CA 90012</td>
<td>11111 Santa Monica Blvd., #915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Angeles, CA 90025</td>
</tr>
</tbody>
</table>

U.S. Environmental Protection Agency Region 9	City of Los Angeles	U.S. Congress District 46
Office of Planning and Public Affairs Environmental Review Section	The Honorable Mayor Antonio Villaraigosa	The Honorable Dana Rohrabacher
75 Hawthorne Street	200 N. Spring Street, Rm. 303	101 Main Street, Suite 380
San Francisco, CA 94105	Los Angeles, CA 90012	Huntington Beach, CA 92648

U.S. Army Corps of Engineers District Engineer	Bandini Street Elementary School	California Air Resources Board
915 Wilshire Blvd.	425 N Bandini St	Peggy Taricco
Los Angeles, CA 90017	San Pedro, CA 90731	1001 1st Street P.O. Box 2815
	Los Angeles, CA 90012	Sacramento, CA 95812

U.S. Environmental Protection Agency Wetlands Regulatory Office	Metropolitan Transportation Authority	Natural Resources Defense Council
75 Hawthorne Street	James Sowell	David Petit
Mail Code WTR-8	1 Gateway Plaza	1314 Second Street
San Francisco, CA 94105-390	Los Angeles, CA 90012	Santa Monica, CA 90401

Coalition for Clean Air	L.A. City Fire Department	South Coast Air Quality Management District
Tim Carmichael	William Bamattre	Steve Smith, Program Supervisor, CEQA Section
811 West 7th Street Suite 1100	200 N. Main Street, Room 1000	21865 E. Copley Drive
Los Angeles, CA 90017	Los Angeles, CA 90012	Diamond Bar, CA 91765-4182

State Historic Preservation Office Office of Historic Preservation	San Pedro and Peninsula Homeowners Association	Office of Environmental Health and Hazards
Milford Wayne Donaldson	Janet Gunter	Melanie Marty
1416 9th Street, Room 1442-7	P.O. Box 749	P.O. Box 4010
Sacramento, Ca 95814	San Pedro, CA 90733	Sacramento, CA 95812-4010

Wilmington Neighborhood Council	L.A. City Planning Department	Northwest San Pedro Neighborhood Council
Jack Babbit	Con Howe	Daniel Dixon
544 N. Avalon Boulevard, Suite 103	200 N. Spring Street, 5th Floor CH	638 S. Beacon Street Box 668
Wilmington, CA 90744	Los Angeles, CA 90012-2601	San Pedro, CA 90731

<p>| L.A. City Library Department, Wilmington Branch | California Region Water Quality Control Board | Long Beach Public Library, Main Branch |
| Head Librarian | Dennis Dickerson | Head Librarian |
| 1300 North Avalon | 230 W. 4th Street, Ste. 200 | 101 Pacific Ave. |
| Wilmington, CA 90744 | Los Angeles, CA 90013 | Long Beach, CA 90802 |</p>
<table>
<thead>
<tr>
<th>L.A. City Library Department</th>
<th>Pacific Maritime Shipping Association</th>
<th>L.A. City Library Department, San Pedro Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Librarian</td>
<td>Michelle Grubbs</td>
<td>Head Librarian</td>
</tr>
<tr>
<td>630 West 5th Street</td>
<td>5000 E. Spring Street, Suite 790</td>
<td>931 South Gaffey Street</td>
</tr>
<tr>
<td>Los Angeles, CA 90071</td>
<td>Long Beach, CA 90815</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Port Community Advisory Committee</td>
<td>Banning Park Neighborhood Associations</td>
<td>Port Community Advisory Committee</td>
</tr>
<tr>
<td>Past EIR Subcommittee</td>
<td>Simie Seaman</td>
<td>Jayme Wilson, President</td>
</tr>
<tr>
<td>John G. Miller</td>
<td>1217 Lakme Avenue</td>
<td>Spirit Cruises</td>
</tr>
<tr>
<td>1479 Paseo Del Mar</td>
<td>Wilmington, CA 90744</td>
<td>Berth 77, Ports of Call Village</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Central San Pedro Neighborhood Council</td>
<td>L.A. City Bureau of Sanitation</td>
<td>Coastal San Pedro Neighborhood Council</td>
</tr>
<tr>
<td>Joe Gatlin</td>
<td>Judith Wilson</td>
<td>June B. Smith</td>
</tr>
<tr>
<td>1849 S. Gaffey Street</td>
<td>1149 S. Broadway</td>
<td>1536 West 25th Street, Suite 223</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>Los Angeles, CA 90015</td>
<td>San Pedro, CA 90732</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>L.A. County Planning Department</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>Steve Healow, Senior Project</td>
<td>James Hartl</td>
<td>Federal Highway Administration Office of Policy and Plans</td>
</tr>
<tr>
<td>Development Engineer</td>
<td>320 West Temple Street</td>
<td>Environmental Review Section</td>
</tr>
<tr>
<td>650 Capital Mall</td>
<td>Los Angeles, CA 90012</td>
<td>400 7th Street, S.W. Washington, D.C. 20590</td>
</tr>
<tr>
<td>Suite 4-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento, CA 95814-4708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. HUD</td>
<td>Port of Long Beach</td>
<td>Native American Tribal Council</td>
</tr>
<tr>
<td>Los Angeles Field Office</td>
<td>Robert Kanter</td>
<td>Mr. Martin Alcala</td>
</tr>
<tr>
<td>William Vasquez, CPD Field Office</td>
<td>P.O. Box 570</td>
<td>P.O. Box 9009</td>
</tr>
<tr>
<td>Director</td>
<td>Long Beach, CA 90801</td>
<td>Marina Del Rey, CA 90292</td>
</tr>
<tr>
<td>611 W. 6th Street, Suite 800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA 90017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Interior</td>
<td>Wilmington Chamber of Commerce President</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>Environmental Review Section</td>
<td>PO Box 90</td>
<td>Environmental Review Section</td>
</tr>
<tr>
<td>1849 C Street, NW</td>
<td>Wilmington, CA 90748</td>
<td>1000 Independence Ave., SW 4G-064</td>
</tr>
<tr>
<td>Main Interior Building Rm. 2340</td>
<td></td>
<td>Washington, DC, 20585</td>
</tr>
<tr>
<td>Washington, D.C., 20240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Commerce</td>
<td>Riverside County Transportation Commission</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>Environmental Review Section</td>
<td>John Standiford</td>
<td>Environmental Review Section</td>
</tr>
<tr>
<td>14th & Constitution NW, Room 6800</td>
<td>P.O. Box 12008</td>
<td>2722 Loker Ave West #D</td>
</tr>
<tr>
<td>Washington, DC, 20230</td>
<td>4080 Lemon Street, 3rd Floor</td>
<td>Carlsbad, CA 92010</td>
</tr>
<tr>
<td>Bryant Chesney</td>
<td>6010 Hidden Valley Road</td>
<td>PCAC</td>
</tr>
<tr>
<td>501 West Ocean Boulevard Suite 4200</td>
<td>Carlsbad, CA 92009</td>
<td>Bert 77, POCV</td>
</tr>
<tr>
<td>Long Beach, CA 90802-4221</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers Planning Division</td>
<td>U.S. Army Corps of Engineers</td>
<td>Sherry Lopez</td>
</tr>
<tr>
<td>915 Wilshire Blvd.</td>
<td>Steve Dwyer</td>
<td>PCAC</td>
</tr>
<tr>
<td>Suite 14P01</td>
<td>915 Wilshire Blvd.</td>
<td>796 W. 9th Street</td>
</tr>
<tr>
<td>Los Angeles, CA 90017</td>
<td>Suite 11P13</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td>Los Angeles, CA 90017</td>
<td>Richard Havenick</td>
</tr>
<tr>
<td>Theresa Kapalan</td>
<td>Captain of the Port, Sector Los Angeles</td>
<td>PCAC</td>
</tr>
<tr>
<td>915 Wilshire Blvd.</td>
<td>1001Seaside Ave, Bldg. 20</td>
<td>3707 Parker St.</td>
</tr>
<tr>
<td>Suite 11P09</td>
<td>San Pedro, CA 90731</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Los Angeles, CA 90017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Coast Guard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richard Havenick</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| U.S. Environmental Protection Agency, Region 9 | California Native American Heritage Commission | Melvin Tabilas
| Paul Amato
| 75 Hawthorne Street
| San Francisco, CA 94105 | Executive Secretary Larry Myers
| 915 Capitol Mall, Room 364
| Sacramento, CA 95814 | PCAC
| 2512 Artesia Blvd., Ste 200
| Redondo Beach, CA 90278 |

| California State Assembly District 28
| The Honorable Jenny Oropeza
| 2512 Artesia Blvd., #200
| Redondo Beach, CA 90278 | California State Senate District 55
| The Honorable Laura Richardson
| 4201 Long Beach Blvd.
| Suite 327
| Long Beach, CA 90807 | Philip Nicolay
| PCAC
| 827 Eastman Place
| San Pedro, CA 90731 |

| Office of the Attorney General
| Attorney General's Office California Department of Justice
| Attn: Public Inquiry Unit
| P.O. Box 944255
| Sacramento, CA 94244-2550 | California Air Resources Board Environmental Review Section
| 1001 "T" Street
| P.O. Box 2815
| Sacramento, CA 95812 | Donna Ethington
| PCAC
| Berth 203#9
| Wilmington, CA 90744 |

| California Native Plant Society Environmental Review Section
| 2707 K Street, Suite 1
| Sacramento, CA 95816 | California Highway Patrol
| Captain Steve Badilla
| 5825 De Soto Avenue
| Woodland Hills, CA91367 | Vicki McIntire
| PCAC
| 565 West 38th Street
| San Pedro, CA 90731 |

| Los Angeles County Board of Supervisors
| Don Knabe, 4th District
| 500 West Temple Street
| Los Angeles, CA 90012 | State of California Resources Agency Environmental Review Section
| 1416 Ninth Street, Suite 1311
| Sacramento, CA 95814 | June B. Smith
| PCAC
| 3915 Carolina Street
| San Pedro, CA 90731 |

| California State Senate District 25
| The Honorable Roderick Wright
| 4647 Long Beach Blvd., Suite A2
| Long Beach, CA 90805 | California Regional Water Quality Control Board-
| Los Angeles Region Environmental Review Unit
| 320 W. 4th Street, Suite 200
| Los Angeles, CA 90013 | Skip Baldwin
| PCAC
| 632 N. Broad Ave.
| Wilmington, CA 90744 |

| California Department of Fish and Game Environmental Review Section
| 1416 9th Street, 12th Floor
| Sacramento, CA 95814 | California Transportation Commission
| Dianne Eidam, Executive Director
| 1120 N Street
| Room 2221 (MS-52)
| Sacramento, CA 95814 | Chuck Hart
| PCAC
| 1027 Statler Street
| San Pedro, CA 90731 |

| California Coastal Commission
| Larry Simon
| 45 Fremond Street Suite 1900-2000
| San Francisco, CA 94105-2219 | Los Angeles Unified School District Office of the Superintendent
| 333 S. Beaudry Ave., 24th Floor
| Los Angeles, CA 90017 | Cathy Beauregard-Covit
| PCAC
| 673 W. 20th St.
| San Pedro, CA 90731 |

| California State Lands Commission
| Paul Thayer
| 100 Howe Avenue, Suite 100-S
| Sacramento, CA 95825-8202 | Los Angeles Councilwoman Janice Hahn
| 15th District, Los Angeles City Council
| 200 N. Spring St., Room 435, Los Angeles, CA 90012 | Erika Velazquez
| PCAC
| 417 North Mar Vista Ave.
| Wilmington, CA 90744 |

| Los Angeles County Board of Supervisors
| Gloria Molina, 1st District
| 856 Kenneth Hahn Hall of Administration
| 500 West Temple Street
| Los Angeles, CA 90012 | Los Angeles County Board of Supervisors
| Mark Ridley-Thomas, 2nd District
| 866 Kenneth Hahn Hall of Administration
| 500 W. Temple Street
| Los Angeles, CA 90012 | Anthony Mistetich
| PCAC
| 19501 S. Santa Fe Avenue
<p>| Rancho Dominguez, CA 90221 |</p>
<table>
<thead>
<tr>
<th>Los Angeles County Board of Supervisors</th>
<th>Harbor Community Police Station</th>
<th>Frank Herrera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zev Yaroslavsky, 3rd District Chairman</td>
<td>2175 John Gibson Blvd.</td>
<td>PCAC</td>
</tr>
<tr>
<td>500 West Temple Street</td>
<td>San Pedro, CA 90731</td>
<td>700 West “G” St.</td>
</tr>
<tr>
<td>Los Angeles, CA 90012</td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Los Angeles County Board of Supervisors</th>
<th>City of Los Angeles Department of Transportation</th>
<th>Eleanor Montano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael D. Antonovich, 5th District</td>
<td>Transportation Planning Department</td>
<td>PCAC</td>
</tr>
<tr>
<td>500 West Temple Street</td>
<td>100. S. Main Street</td>
<td>1107 W. Papeete St.</td>
</tr>
<tr>
<td>Los Angeles, CA 90012</td>
<td>Los Angeles, CA 90012</td>
<td>Wilmington, CA 90744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harbor Community Adult School</th>
<th>Los Angeles Fire Department</th>
<th>Juanita Naranjo</th>
</tr>
</thead>
<tbody>
<tr>
<td>950 W Santa Cruz St</td>
<td>Fire Station 112</td>
<td>PCAC</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>444 South Harbor Boulevard, Berth 86</td>
<td>22926 Mission Drive</td>
</tr>
<tr>
<td></td>
<td>San Pedro CA 90731-3333</td>
<td>Carson, CA 90745</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Los Angeles County Board of Supervisors</th>
<th>County of Los Angeles Department of Public Works</th>
<th>Scott Kurtz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Nissman Policy Deputy</td>
<td>James Noyes, Director</td>
<td>PCAC</td>
</tr>
<tr>
<td>500 W. Temple Street, #821</td>
<td>900 S. Fremont Ave.</td>
<td>475 Goddard, Suite 200</td>
</tr>
<tr>
<td>Los Angeles, CA 90012</td>
<td>Alhambra, CA 91803-1331</td>
<td>Irvine, CA 92618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Southern California Associations of Government Environmental Document Review Section</th>
<th>Sierra Club</th>
<th>Dennis Lord</th>
</tr>
</thead>
<tbody>
<tr>
<td>818 West Seventh Street 12th Floor Los Angeles, CA 90017-3435</td>
<td>Ron Silverman, Director</td>
<td>PCAC</td>
</tr>
<tr>
<td></td>
<td>3435 Wilshire Blvd., Suite 320</td>
<td>529 W. 9th St. #9504</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90010</td>
<td>San Pedro, CA 90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>South Bay Cities Council of Governments</th>
<th>County of Los Angeles Metropolitan Transportation Authority</th>
<th>Stephen Robbins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavern Jones</td>
<td>Chief Planning Officer</td>
<td>PCAC</td>
</tr>
<tr>
<td>818 W. 7th Street, 12th Floor</td>
<td>1 Gateway Plaza Mail Stop: 99-22-1</td>
<td>390 West 7th St.</td>
</tr>
<tr>
<td>Los Angeles, CA 90017</td>
<td>Los Angeles, CA 90012</td>
<td>San Pedro, CA 90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tom Politeo</th>
<th>Barton Hill Elementary School</th>
<th>Patrick Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAC</td>
<td>423 North Pacific Avenue</td>
<td>PCAC</td>
</tr>
<tr>
<td>P.O. Box 1256</td>
<td>San Pedro, CA 90731</td>
<td>2400 E. PCH</td>
</tr>
<tr>
<td>San Pedro, CA 90733</td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Joe Gatlin</th>
<th>City of Los Angeles Planning Department</th>
<th>Gary Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAC</td>
<td>S. Gail Goldberg, Planning Director</td>
<td>PCAC</td>
</tr>
<tr>
<td>225 S. Cabrillo Avenue</td>
<td>200 North Main Street</td>
<td>1916 Marina Dr.</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>Los Angeles, CA 90012</td>
<td>San Pedro, CA 90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scott Lane</th>
<th>Harbor Occupational Center</th>
<th>Dave Arian</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAC</td>
<td>740 N Pacific Ave</td>
<td>PCAC</td>
</tr>
<tr>
<td>1366 W. 26th Place</td>
<td>San Pedro, CA 90731</td>
<td>266 17th St.</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shannon Day</th>
<th>Jesse Marquez</th>
<th>Linda Spink</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAC</td>
<td>P.A.C</td>
<td>PCAC</td>
</tr>
<tr>
<td>1911 N. Gaffey Street, Ste. A</td>
<td>140 W. Lomita Blvd.</td>
<td>111 Figueroa Pl.</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>Wilmington, CA 90744</td>
<td>Wilmington, CA 90744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toni O’Donnel</th>
<th>L.A. City Department of Transportation</th>
<th>Joel Barton</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAC</td>
<td>Jay Kim</td>
<td>PCAC</td>
</tr>
<tr>
<td>3315 S. Denison</td>
<td>100 South Main, 10th floor</td>
<td>8333 Airport Blvd.</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>Los Angeles, CA 90012</td>
<td>L.A, CA 90045</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tony Ringor</th>
<th>Coastal and Harbor Hazards Council</th>
<th>Chad Molnar</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAC</td>
<td>Bea Atwood Hunt</td>
<td>PCAC</td>
</tr>
<tr>
<td>3641 S. Parker Street</td>
<td>1717 Crescent Avenue</td>
<td>544 N. Avalon Blvd. Ste. 307</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>San Pedro, CA 90731</td>
<td>Wilmington, CA 90744</td>
</tr>
<tr>
<td>Name</td>
<td>Organization/Address</td>
<td>Phone/Email</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Richard Pavlick</td>
<td>L.A. City Department of Building and Safety</td>
<td>Mike Molina</td>
</tr>
<tr>
<td>PCAC</td>
<td>Chief of Building Bureau</td>
<td>PCAC</td>
</tr>
<tr>
<td>1757 S. Crescent Ave.</td>
<td>201 N. Figueroa Street Los Angeles, CA 90012</td>
<td>200 N. Spring St., Rm. 435</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td></td>
<td>Los Angeles, CA 90012</td>
</tr>
<tr>
<td>Noah F. Modisett</td>
<td>Heal the Bay</td>
<td>Peter Warren</td>
</tr>
<tr>
<td>PCAC</td>
<td>Mark Gold</td>
<td>PCAC</td>
</tr>
<tr>
<td>1700 Cumbre Dr.</td>
<td>1444 9th Street</td>
<td>619 W. 38th Street</td>
</tr>
<tr>
<td>San Pedro, CA 90732</td>
<td>Santa Monica, CA 90401</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Dominga & Pedro Avila</td>
<td>San Pedro and Peninsula Homeowners Association</td>
<td>Andrew Fox</td>
</tr>
<tr>
<td>802 Bejay Place</td>
<td>Kathleen Woodfield</td>
<td>PCAC</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td>505 S. Bandini Street San Pedro, CA 90731</td>
<td>340 W. Water Street</td>
</tr>
<tr>
<td>Andrew Mardesich</td>
<td>City of Rancho Palos Verdes</td>
<td>David Beeman</td>
</tr>
<tr>
<td>PCAC</td>
<td>Joel Rojas</td>
<td>PCAC</td>
</tr>
<tr>
<td>1931 Bardale Ave.</td>
<td>30940 Hawthorne Blvd. Rancho Palos Verdes, CA 90275</td>
<td>231 W. “C” Street</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
<tr>
<td>Alan Johnson</td>
<td>L.A. County Department of Health Services</td>
<td>Cine Ivery</td>
</tr>
<tr>
<td>PCAC</td>
<td>Frank Gomez</td>
<td>PCAC</td>
</tr>
<tr>
<td>222 W. 6th Street, Ste 1010</td>
<td>313 N. Figueroa Street Los Angeles, CA 90012</td>
<td>115 Pine Ve, Ste 430</td>
</tr>
<tr>
<td>San Pedro, CA 90732</td>
<td></td>
<td>Long Beach, CA 90802</td>
</tr>
<tr>
<td>Cecilia Moreno</td>
<td>City Attorney’s Office, City of Riverside</td>
<td>John Schafer</td>
</tr>
<tr>
<td>PCAC</td>
<td>Gregory Priamos</td>
<td>PCAC</td>
</tr>
<tr>
<td>P.O. Box 817</td>
<td>3900 Main Street</td>
<td>3631 S. Parker St.</td>
</tr>
<tr>
<td>Wilmington, CA 90748</td>
<td>Riverside, CA 92522</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Jody James</td>
<td>San Pedro Chamber of Commerce President</td>
<td>Jose & Graciela Padilla</td>
</tr>
<tr>
<td>PCAC</td>
<td>390 West 7th Street</td>
<td>917 N. Grand Ave.</td>
</tr>
<tr>
<td>1068 Via Cordova</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chris Cha</td>
<td>L.A. City Department of Water and Power</td>
<td>Harry Walker</td>
</tr>
<tr>
<td>PCAC</td>
<td>Jodean Giese</td>
<td>PCAC</td>
</tr>
<tr>
<td>1660 W. Anaheim Street</td>
<td>111 N. Hope Street</td>
<td>602 W. Upland Ave.</td>
</tr>
<tr>
<td>Wilmington, CA 90744</td>
<td>Los Angeles, CA 90012</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Charlie Rico</td>
<td>Best Best & Krieger LLP</td>
<td>Adelina Lamarque & Vianey Perla</td>
</tr>
<tr>
<td>PCAC</td>
<td>Steven DeBaun</td>
<td>589 W. Upland Ave.</td>
</tr>
<tr>
<td>513 West “D” Street</td>
<td>3750 University Avenue, Suite 400</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Wilmington, CA 90744</td>
<td>Riverside, CA 92501</td>
<td></td>
</tr>
<tr>
<td>Gary Kern</td>
<td>Transitions Skakeshop</td>
<td>Michael Johnson</td>
</tr>
<tr>
<td>PCAC</td>
<td>23642 Main Street</td>
<td>570 W. Elberon Ave.</td>
</tr>
<tr>
<td>912 Hawaiian Ave.</td>
<td>Carson, CA 90745</td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Wilmington, CA 90744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward J. Rogan</td>
<td>Agata Gotfryd</td>
<td>Jose Rodriguez</td>
</tr>
<tr>
<td>PCAC</td>
<td>571 W. 17th Street</td>
<td>PCAC</td>
</tr>
<tr>
<td>5000 E. Spring St., Ste 720</td>
<td>San Pedro, CA 90731</td>
<td>318 N. Centre St.</td>
</tr>
<tr>
<td>Long Beach, CA 90815</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Frank O’Brien</td>
<td>Reynaldo & Maria Garibay</td>
<td>Carol & Paul Miller McNeal</td>
</tr>
<tr>
<td>PCAC</td>
<td>1319 W. Robidoux Street</td>
<td>PCAC</td>
</tr>
<tr>
<td>461 W. 6th St. #201</td>
<td>Wilmington, CA 90744</td>
<td>935 N. Grand Ave.</td>
</tr>
<tr>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>Phone/Email</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Tom Teofilo</td>
<td>PCAC 50000 E. Spring St., Ste 790 Long Beach, CA 90815</td>
<td></td>
</tr>
<tr>
<td>Steven Ladagi</td>
<td>862 W. 30th Street San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Veronica Pineda</td>
<td>314 W. Amar St. San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Dennis McCarbery</td>
<td>PCAC 851 W. 2nd Street San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Donna Ethington</td>
<td>Berth 203 Wilmington, CA 90744</td>
<td></td>
</tr>
<tr>
<td>Jose Saenz & Eva E. Coronel</td>
<td>1870 Trudie Dr. Rancho Palos Verdes, CA 90275</td>
<td></td>
</tr>
<tr>
<td>Lanny Nelms</td>
<td>PCAC 950 W. Santa Crus San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>John Hargrave</td>
<td>1021 W. 36th Street San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Mauro Gonzalez & Brenda Cruz</td>
<td>680 W. Upland Ave. San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Louis Hill</td>
<td>PACA 1054 W. 27th St. San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>John Wilson</td>
<td>PCAC 1055 Via la Paz San Pedro, CA 90732</td>
<td></td>
</tr>
<tr>
<td>Mike Gin</td>
<td>PCAC 505 S. Centre St., Rm. 230 San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Olivia Cueva-Fernandez</td>
<td>PCAC 1657 Marine Ave. Wilmington, CA 90744</td>
<td></td>
</tr>
<tr>
<td>Cecilia Mora</td>
<td>613 W. Gulf Avenue Wilmington, CA 90744</td>
<td></td>
</tr>
<tr>
<td>Russell Whittington & Sarah Butterfield</td>
<td>654 W. Elberon Ave. San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Olivia Cueva-Fernandez</td>
<td>PCAC 1657 Marine Ave. Wilmington, CA 90744</td>
<td></td>
</tr>
<tr>
<td>Don McGuire</td>
<td>827 Eastman Place San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Randall Ferguson</td>
<td>958 N. Gaffey Place San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Donald Norton</td>
<td>PHL 340 W. Water Street Wilmington, CA 90744</td>
<td></td>
</tr>
<tr>
<td>Abraham & Josephine Flores/Flores Trust</td>
<td>922 N. Gaffey Place San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Norm Tuck</td>
<td>PCAC 2403 Carolina Street San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Warren</td>
<td>Berth 77, P7A Ports of Call San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Pecolia Blake</td>
<td>912 N. Gaffey Place San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Gordon Teuber</td>
<td>PCAC 683 S. Beacon Street San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Jeanne & Peter Lacombe</td>
<td>2052 Via Galcita Rancho Palos Verdes, CA 90275</td>
<td></td>
</tr>
<tr>
<td>Cherie & Marc Collazo</td>
<td>567 W. Upland Ave. San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Shelley Sabate</td>
<td>PCAC 1001 1st Street P.O. Box 2815 Sacramento, CA 95812</td>
<td></td>
</tr>
<tr>
<td>Ringo R. Rolando</td>
<td>21921 Dolores Street Carson, CA 90745</td>
<td></td>
</tr>
<tr>
<td>Steven J. Skorpanich</td>
<td>P.O. Box 88008 Los Angeles, CA 90009</td>
<td></td>
</tr>
<tr>
<td>Edward Hummel</td>
<td>6903 Hartcrest Drive Rancho Palos Verdes, CA 90275</td>
<td></td>
</tr>
<tr>
<td>Rob O’Connell</td>
<td>707 30th Street Apt #1 San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>William O. Hutchinson</td>
<td>505 W. Elberon Ave. #3 San Pedro, CA 90731</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Kyle Ballard</td>
<td>242 West 231 Street, Carson, CA 90745</td>
<td>Michael Richards</td>
</tr>
<tr>
<td>John & Joann Collins</td>
<td>609 W. MacArthur Ave., San Pedro, CA 90731</td>
<td>Joseph Jakel</td>
</tr>
<tr>
<td>A & R Bojorquez Living Trust</td>
<td>584 W. Upland Ave., San Pedro, CA 90731</td>
<td>Sofia Carrito</td>
</tr>
<tr>
<td>Arthur O Grady</td>
<td>583 W. Upland Ave., San Pedro, CA 90731</td>
<td>Dianne Kelly</td>
</tr>
<tr>
<td>Paul Miller</td>
<td>3639 Midway Dr., #B, San Diego, CA 92110</td>
<td>Alan Hicks</td>
</tr>
<tr>
<td>Ron Prizlow & Rosemarie Hudson</td>
<td>941 N. Grand Ave., San Pedro, CA 90731</td>
<td>Robert Yamason</td>
</tr>
<tr>
<td>Jose & Jamie Aponte</td>
<td>929 N. Grand Ave., San Pedro, CA 90731</td>
<td>Tony Ringor</td>
</tr>
<tr>
<td>Shawn & Veronica McDonald</td>
<td>610 W. MacArthur Ave., San Pedro, CA 90731</td>
<td>Jose Alvarez</td>
</tr>
<tr>
<td>Jose Lopez</td>
<td>683 W. MacArthur Ave., San Pedro, CA 90731</td>
<td>Jose Becena</td>
</tr>
<tr>
<td>Sandra Asou</td>
<td>681 W. Upland Ave., San Pedro, CA 90731</td>
<td>Bryon Ford</td>
</tr>
<tr>
<td>Ruben & Irene Lopez</td>
<td>669 W. Crestwood Ave., San Pedro, CA 90731</td>
<td>John Marar</td>
</tr>
<tr>
<td>Jose Vivanco</td>
<td>P.O. Box 39901, Downey, CA 90239</td>
<td>Alan C. Velasco</td>
</tr>
<tr>
<td>Norma Mata</td>
<td>940 N. Gaffey Place, San Pedro, CA 90731</td>
<td>Frank B. Anderson</td>
</tr>
<tr>
<td>Janice & Richard Davis/Trust</td>
<td>928 N. Gaffey Place, San Pedro, CA 90731</td>
<td>Elvis Segarido</td>
</tr>
<tr>
<td>Nelson & Mary Carrasquillo</td>
<td>916 N. Gaffey Place, San Pedro, CA 90731</td>
<td>Brian Ventic</td>
</tr>
<tr>
<td>Gerald Nyhus</td>
<td>682 W. MacArthur Avenue, San Pedro, CA 90731</td>
<td>Brian Minoshin</td>
</tr>
</tbody>
</table>

Chapter 5. Distribution List
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vickie McDavid</td>
<td>519 W. Elberon Ave.</td>
<td>Sunken City Skate</td>
<td>619 S. Mesa Street</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Joy E. Kitzmiller</td>
<td>505 W. Elberon Ave. #2</td>
<td>Jesse Rimoldi</td>
<td>530 N. Palos Verdes Street</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Max W. Pierce</td>
<td>505 W. Elberon Ave. #4</td>
<td>Allen Glasco</td>
<td>4252 Palermo Boulevard</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>Los Angeles, CA 90008</td>
</tr>
<tr>
<td>Joaquin Samaniego</td>
<td>648 W. Oliver St.</td>
<td>Kirk Jondle</td>
<td>938 Cristobal Avenue</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
<tr>
<td>Theodore & Christina Alvarez</td>
<td>636 W. Oliver St.</td>
<td>Charlie Rico</td>
<td>1080 Via Cordova</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90732</td>
</tr>
<tr>
<td>Anna Zambrano & Teresa Garcia</td>
<td>1159 W. 3rd St. #1</td>
<td>Andy Harris</td>
<td>1041 W. 17th Street</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Jose & Laura Lopez</td>
<td>517 N. Grand Ave.</td>
<td>Debbie Baker</td>
<td>540 N. Marine Avenue</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
<tr>
<td>Ronald L. Johnson</td>
<td>525 N. Grand Ave.</td>
<td>Everett Littlefield</td>
<td>Wilmington Homeowner Association</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>P.O. Box 1947, Wilmington</td>
</tr>
<tr>
<td>Brian Titus</td>
<td>589 Bonita St.</td>
<td>Friends of the Los Angeles River</td>
<td>570 W. Avenue 26, Suite 250</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>Los Angeles, CA 90065</td>
</tr>
<tr>
<td>Jose Bobadilla</td>
<td>576 Bonita St.</td>
<td>Daniel Nunez</td>
<td>364 W. Amar St.</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Claudia Canizalez</td>
<td>566 Bonita St.</td>
<td>George Kordich</td>
<td>340 W. Amar St.</td>
</tr>
<tr>
<td></td>
<td>San Pedro, CA 90731</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td>Salvador Pallares/Pallares Trust</td>
<td>2120 Ronsard Rd.</td>
<td>Scott Minton</td>
<td>370 Wisconsin Unit 306</td>
</tr>
<tr>
<td></td>
<td>Rancho Palos Verdes, CA 90275</td>
<td></td>
<td>Long Beach, CA 90814</td>
</tr>
<tr>
<td>US Bank National Association/Aegis SEC Series 2005</td>
<td>12650 Ingenuity Dr.</td>
<td>Kenneth Keener</td>
<td>1219 W. Alton Street</td>
</tr>
<tr>
<td></td>
<td>Orlando, FL 32826</td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
<tr>
<td>Jose Hernandez</td>
<td>11446 Elizabeth St.</td>
<td>Osgood Sargeant</td>
<td>571 W. 17th Street</td>
</tr>
<tr>
<td></td>
<td>Norwalk, CA 90650</td>
<td></td>
<td>San Pedro, CA 90731</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mark Bialorucki</td>
<td>1203 W. C Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wilmington, CA 90744</td>
</tr>
</tbody>
</table>
References Cited

Printed References

Association of Environmental Professionals. 2007. *Recommendations by the Association of Environmental Professionals on How to Analyze GHG Emissions and Global Climate Change in CEQA Documents*. March 5.

California Department of Fish and Game. 2009. *California Natural Diversity Database*.

Kennedy, G. L. 1975. *Paleontologic Record of Areas adjacent to the Los Angeles and Long Beach Harbors, Los Angeles County, California.* Alan Hancock Foundation, Los Angeles, CA.

Los Angeles County Natural History Museum. n.d. Search of online database.

References Cited

ProQuest. n.d. Digital archives for the *Los Angeles Times*.

———. 2008b. *Regional Transportation Improvement Program*.

———. 2009a. *Ambient Air Quality Monitoring Data*.

References Cited

Personal Communications

Akkinepally, Vamshi. Transportation Engineer. Iteris, Inc., Ontario, CA. December 9, 2009—E-mail transmitting Iteris’ responses to Caltrans’ comments to ICF International.

Brady, Mike. Air quality/conformity coordinator. California Department of Transportation, Sacramento, CA. January 6, 2010—email to Shannon Hill of ICF International about California-specific information applicable to the *Update on Mobile-Source Air Toxic Analysis in NEPA Documents*.

Leathers, Steven R. Section leader, Highways. HDR, Irvine, CA. June 15, 2010—email to Hina Gupta (ICF) describing “green” construction/operation practices to be included as part of the project.

Appendix A CEQA Checklist
This checklist identifies physical, biological, social, and economic factors that might be affected by the proposed project. In many cases, background studies performed in connection with the projects indicate no impacts. A NO IMPACT answer in the last column reflects this determination. Where there is a need for clarifying discussion, the discussion is included either following the applicable section of the checklist or within the body of the environmental document itself. The words “significant” and “significance,” as used throughout the following checklist, are related to CEQA, not NEPA, impacts. The questions in this form are intended to encourage the thoughtful assessment of impacts; they do not represent thresholds of significance.

<table>
<thead>
<tr>
<th>I. AESTHETICS: Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. AGRICULTURE AND FOREST RESOURCES: In determining whether impacts on agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts on forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment Project, and the forest carbon measurement methodology provided in the forest protocols adopted by the California Air Resources Board. Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
</tr>
</tbody>
</table>
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?

☐ Potentially Significant Impact ☐ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☒ No Impact

d) Result in the loss of forest land or conversion of forest land to non-forest use?

☐ Potentially Significant Impact ☐ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☒ No Impact

e) Involve other changes in the existing environment that, because of their location or nature, could result in the conversion of farmland to non-agricultural use or conversion of forest land to non-forest use?

☐ Potentially Significant Impact ☐ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☒ No Impact

III. AIR QUALITY: Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan?

☐ Potentially Significant Impact ☐ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☒ No Impact

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

☐ Potentially Significant Impact ☒ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☐ No Impact

c) Result in a cumulatively considerable net increase in any criteria pollutant for which the project region is in nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?

☐ Potentially Significant Impact ☒ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☐ No Impact

d) Expose sensitive receptors to substantial pollutant concentrations?

☐ Potentially Significant Impact ☒ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☐ No Impact

e) Create objectionable odors affecting a substantial number of people?

☐ Potentially Significant Impact ☒ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☐ No Impact

IV. BIOLOGICAL RESOURCES: Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

☐ Potentially Significant Impact ☒ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☐ No Impact

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

☐ Potentially Significant Impact ☒ Less than Significant with Mitigation ☐ Less-than-Significant Impact ☐ No Impact
<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Potential Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

V. CULTURAL RESOURCES: Would the project:

- a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5? ☐ ☐ ☐ ☒
- b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5? ☐ ☐ ☐ ☒
- c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature? ☐ ☐ ☒ ☐
- d) Disturb any human remains, including those interred outside of formal cemeteries? ☐ ☐ ☒ ☐

VI. GEOLOGY AND SOILS: Would the project:

- a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault (refer to Division of Mines and Geology Special Publication 42)? ☐ ☐ ☒ ☐
 - ii) Strong seismic ground shaking? ☐ ☐ ☒ ☐
 - iii) Seismically related ground failure, including liquefaction? ☐ ☐ ☒ ☐
VII. GREENHOUSE GAS EMISSIONS: Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

b) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

An assessment of the greenhouse gas emissions and climate change is included in the body of the environmental document. While Caltrans has included this good faith effort in order to provide the public and decision-makers as much information as possible about the project, it is Caltrans' determination that in the absence of further regulatory or scientific information related to GHG emissions and CEQA significance, it is too speculative to make a significance determination regarding the project's direct and indirect impact with respect to climate change. Caltrans does remain firmly committed to implementing measures to help reduce the potential effects of the project. These measures are outlined in the body of the environmental document.

VIII. HAZARDS AND HAZARDOUS MATERIALS: Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

c) Emit hazardous emissions or involve handling hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school?
d) Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, create a significant hazard to the public or the environment?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

IX. HYDROLOGY AND WATER QUALITY: Would the project:

a) Violate any water quality standards or waste discharge requirements?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation on- or off-site?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

e) Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

f) Otherwise substantially degrade water quality?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area, as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>Potentially Significant Impact</td>
<td>Less than Significant with Mitigation</td>
<td>Less-than-Significant Impact</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures that would impede or redirect floodflows?</td>
<td>Potentially Significant Impact</td>
<td>Less than Significant with Mitigation</td>
<td>Less-than-Significant Impact</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>Potentially Significant Impact</td>
<td>Less than Significant with Mitigation</td>
<td>Less-than-Significant Impact</td>
</tr>
<tr>
<td>j) Expose people or structures to inundation by seiche, tsunami, or mudflow?</td>
<td>Potentially Significant Impact</td>
<td>Less than Significant with Mitigation</td>
<td>Less-than-Significant Impact</td>
</tr>
</tbody>
</table>

X. LAND USE AND PLANNING: Would the project:

a) Physically divide an established community?	Potentially Significant Impact	Less than Significant with Mitigation	Less-than-Significant Impact	No Impact
b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?	Potentially Significant Impact	Less than Significant with Mitigation	Less-than-Significant Impact	No Impact
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?	Potentially Significant Impact	Less than Significant with Mitigation	Less-than-Significant Impact	No Impact

XI. MINERAL RESOURCES: Would the project:

| a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? | Potentially Significant Impact | Less than Significant with Mitigation | Less-than-Significant Impact | No Impact |
| b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? | Potentially Significant Impact | Less than Significant with Mitigation | Less-than-Significant Impact | No Impact |

XII. NOISE: Would the project result in:

a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance or applicable standards of other agencies?	Potentially Significant Impact	Less than Significant with Mitigation	Less-than-Significant Impact	No Impact
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?	Potentially Significant Impact	Less than Significant with Mitigation	Less-than-Significant Impact	No Impact
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?	Potentially Significant Impact	Less than Significant with Mitigation	Less-than-Significant Impact	No Impact
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

- Potentially Significant Impact: ☐
- Less than Significant with Mitigation: ☒
- Less-than-Significant Impact: ☐
- No Impact: ☐

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

- Potentially Significant Impact: ☐
- Less than Significant with Mitigation: ☐
- Less-than-Significant Impact: ☐
- No Impact: ☒

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

- Potentially Significant Impact: ☐
- Less than Significant with Mitigation: ☒
- Less-than-Significant Impact: ☐
- No Impact: ☒

XIII. POPULATION AND HOUSING: Would the project:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through the extension of roads or other infrastructure)?

- Potentially Significant Impact: ☐
- Less than Significant with Mitigation: ☒
- Less-than-Significant Impact: ☐
- No Impact: ☒

b) Displace substantial numbers of existing housing units, necessitating the construction of replacement housing elsewhere?

- Potentially Significant Impact: ☑
- Less than Significant with Mitigation: ☒
- Less-than-Significant Impact: ☐
- No Impact: ☒

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

- Potentially Significant Impact: ☑
- Less than Significant with Mitigation: ☒
- Less-than-Significant Impact: ☐
- No Impact: ☒

XIV. PUBLIC SERVICES:

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:

- Fire protection?
 - Potentially Significant Impact: ☑
 - Less than Significant with Mitigation: ☒
 - Less-than-Significant Impact: ☐
 - No Impact: ☒

- Police protection?
 - Potentially Significant Impact: ☑
 - Less than Significant with Mitigation: ☒
 - Less-than-Significant Impact: ☐
 - No Impact: ☒

- Schools?
 - Potentially Significant Impact: ☑
 - Less than Significant with Mitigation: ☒
 - Less-than-Significant Impact: ☐
 - No Impact: ☒

- Parks?
 - Potentially Significant Impact: ☑
 - Less than Significant with Mitigation: ☒
 - Less-than-Significant Impact: ☐
 - No Impact: ☒

- Other public facilities?
 - Potentially Significant Impact: ☑
 - Less than Significant with Mitigation: ☒
 - Less-than-Significant Impact: ☐
 - No Impact: ☒
XV. RECREATION:

<table>
<thead>
<tr>
<th>Impact</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

XVI. TRANSPORTATION/TRAFFIC:

Would the project:

<table>
<thead>
<tr>
<th>Impact</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel, and relevant components of the circulation system, including but not limited to, intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable congestion management program, including, but not limited to, level of service standards and travel demand measures or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location, that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Substantially increase hazards because of a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities or otherwise decrease the performance or safety of such facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

XVII. UTILITIES AND SERVICE SYSTEMS:

Would the project:

<table>
<thead>
<tr>
<th>Impact</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable regional water quality control board?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or the expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
c) Require or result in the construction of new stormwater drainage facilities or the expansion of existing facilities, the construction of which could cause significant environmental effects?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or would new or expanded entitlements needed?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

g) Comply with federal, state, and local statutes and regulations related to solid waste?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Does the project have impacts that are individually limited but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation</th>
<th>Less-than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
Appendix B Resources Evaluated Relative to the Requirements of Section 4(f)
Appendix B Resources Evaluated Relative to the Requirements of Section 4(f)

This section of the document discusses parks, recreational facilities, wildlife refuges and historic properties found within or adjacent to the project area that do not trigger Section 4(f) protection either because: 1) they are not publicly owned, 2) they are not open to the public, 3) they are not eligible historic properties, 4) the project does not permanently use the property and does not hinder the preservation of the property, or 5) the proximity impacts do not result in constructive use.

Parks and Recreational Resources

Wilmington Recreation Center

The Wilmington Recreation Center is Section 4(f) protected public recreation facility located approximately 0.5 mile east of the proposed project. Under the Build Alternative, land from the 7.5 acre recreation Center would neither be permanently acquired, nor temporarily acquired through construction easement. Construction activities would be limited to the existing roadway areas and public rights-of-way and would take place at a great distance from the recreation center. Therefore, the Build Alternative would not affect the visual or noise environments, air quality, water quality, vegetation, or any wildlife at the recreation center. Additionally, pedestrian and vehicular access to the center would be maintained during construction of the proposed Build Alternative. Accordingly, the Build Alternative will not cause a constructive use of the Wilmington Recreation Center because the proximity impacts will not substantially impair the protected activities, features, or attributes of the recreation center.

Harry Bridges Buffer Area

The Harry Bridges Boulevard buffer area was constructed in the vacant land area north of Harry Bridges Boulevard. The Harry Bridges Boulevard buffer provides public open space between port operations and adjacent residences and offer a 30-acre open space. Construction activities and staging for the Build Alternative would occur on or near the Harry Bridges Boulevard buffer; however, the construction of the buffer area has been coordinated with the design of the proposed project. Accordingly, any changes to the existing buffer area resulting from construction or operation of the Build Alternative have been planned for and would have no adverse effects on the activities, functions or attributes of the proposed buffer area. The design option to keep the existing C street right-turn would not result in any impacts to the buffer area. The Build Alternative would not require any permanent use of the land that has been developed with the Harry Bridges Boulevard buffer area and soundwalls are not proposed in the vicinity of the green-space buffer. The alternative would not affect access to the buffer zone. Accordingly, the Build Alternative will not cause a constructive use of the buffer area because the proximity impacts will not substantially impair the protected activities, features, or attributes of the recreational green space.
Archeological Resources

A Phase I archaeological reconnaissance survey was conducted on January 30, 2008. The archaeological survey located no surficial archaeological sites. Architectural field surveys of all properties within the proposed APE were undertaken on December 30, 2008, according to standard Caltrans guidelines and procedures. No new surficial prehistoric or historical archaeological resources were observed within the proposed project archaeological APE during the survey. Therefore, the provisions of Section 4(f) are not triggered. While construction activities associated with the Build Alternative have the potential to affect unknown buried cultural resources, if any such unanticipated resources are unearthed during construction. Avoidance or a reduction in the nature of this effect on buried or otherwise unidentified cultural resources would be achieved by implementing mitigation measures CR-1 and CR-2, which are standard practice on all Caltrans projects.

Historic Properties

Four properties were evaluated for the Historical Resources Evaluation Report (HRER) prepared for the proposed project. Five built environment properties were evaluated for the National Register of Historic Places. Of those, four properties; addresses 324, 318, 316, and 312 North Figueroa Street, were evaluated to be ineligible for either the National or the California Registers of Historic Places. Therefore, the provisions of Section 4(f) are not triggered.

The fifth, Air Raid Siren #82, located on the northwest corner of Harry Bridges Boulevard and South Figueroa Street, was found eligible as a contributing element of a geographically discontiguous historic district with roughly 165 sirens (see Historical Property Survey Report, page 4, as well as page 7-2 of the HRER). Physical changes to the parcel that contains Air Raid Siren #82 would be confined to the existing right-of-way in the vicinity of the siren and would not result in adverse effects to the siren itself; therefore, the Build Alternative will not cause a constructive use of Air Raid Siren #82 because the proximity impacts will not substantially impair the protected activities, features, or attributes of the historic air raid siren.
January 14, 2005

TITLE VI
POLICY STATEMENT

The California Department of Transportation under Title VI of the Civil Rights Act of 1964 and related statutes, ensures that no person in the State of California shall, on the grounds of race, color, national origin, sex, disability, and age, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity it administers.

WILL KEMPTON
Director

"Caltrans improves mobility across California"
Appendix D Plans and Cross-Sections for the Proposed Project
IN LOS ANGELES COUNTY
ON ROUTE 110 BETWEEN 0.44 MILES SOUTH OF C STREET
AND 0.23 MILES NORTH OF C STREET
NOTE:
1. FOR COMPLETE RIGHT OF WAY AND ACCURATE ACCESS DATA,
 SEE RIGHT OF WAY RECORD MAPS AT DISTRICT OFFICE.
NOTE:
1. FOR COMPLETE RIGHT OF WAY AND ACCURATE ACCESS DATA, SEE RIGHT OF WAY RECORD MAPS AT DISTRICT OFFICE.
NOTE:
1. FOR COMPLETE RIGHT OF WAY AND ACCURATE ACCESS DATA, SEE RIGHT OF WAY RECORD MAPS AT DISTRICT OFFICE.

CURVE DATA

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>α</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>73°50'44"</td>
<td>450.37'</td>
<td>773.31'</td>
</tr>
</tbody>
</table>

SCALE: 1" = 50'
NOTE:
1. FOR COMPLETE RIGHT OF WAY AND ACCURATE ACCESS DATA,
 SEE RIGHT OF WAY RECORD MAPS AT DISTRICT OFFICE.
NOTE:
1. FOR COMPLETE RIGHT OF WAY AND ACCURATE ACCESS DATA, SEE RIGHT OF WAY RECORD MAPS AT DISTRICT OFFICE.

CITY OF WILMINGTON

SCALE: 1" = 50'

L-4
NOTES:
1. FOR COMPLETE RIGHT OF WAY AND ACCURATE ACCESS DATA,
 SEE SHEET OF WAP RECORD WAP AT DISTRICT OFFICE.
CURVE DATA

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>A</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1000.00'</td>
<td>47° 57' 34"</td>
<td>193.55'</td>
<td>149.87'</td>
</tr>
</tbody>
</table>
DATE: December 15, 2008

TO: Responsible Agencies, Review Agencies, Trustee Agencies, and Individuals interested in the Project

FROM: Port of Los Angeles & California Department of Transportation

SUBJECT: C Street/I-110 Access Ramps Improvements: Los Angeles County, California

Notice of Initiation of Studies and Open House

This Notice of Initiation of Studies is to inform you that the Port of Los Angeles in cooperation with the California Department of Transportation (Caltrans) District 7, proposes to improve the I-110 northbound ramps at C Street and adjacent roadways. The project includes the re-alignment of the I-110 off-ramp to provide direct access onto Harry Bridges Boulevard and consolidate two closely-spaced intersections, C Street/Figueroa Blvd. and Harry Bridges/John S. Gibson, into one and will provide free-flowing right-turn lanes.

The proposed project is a joint project by Caltrans in cooperation with the Port of Los Angeles and the Federal Highway Administration (FHWA) and is subject to state and federal environmental review requirements. A combined Initial Study (IS)/Environmental Assessment (EA) will be prepared for the project, pursuant to the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA). FHWA’s responsibility for environmental review, consultation, and any other action required in accordance with NEPA and other applicable Federal laws for this project is being carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S.C. 327. Caltrans is the lead agency under CEQA and NEPA. Your participation as an interested party is requested in the preparation and review of this document.

This notice is to inform you that the environmental document will analyze factors that include, but are not limited to the following: aesthetics; air quality; biological resources; community impacts; cultural resources; hazardous wastes and materials; hydrology, water quality and floodplain; land use planning; noise; and transportation/traffic.

We welcome your input on this project. Please provide any comments or suggestions that you may have concerning alternatives to be studied or potential social, economic or environmental impacts resulting from the project. To provide you with more information and assist your review of this proposed project, the Port of Los Angeles and Caltrans will be holding an Open House on January 7, 2009, from 6:30 p.m. to 8:00 p.m. at the Banning’s Landing Community Center, located at 100 E. Water Street, Wilmington, CA 90744.

Submit your comments, questions, and contact information by January 15, 2009. Comments may be submitted by mail to Sara Berns, Environmental Planner, Caltrans District 7, or in person at 100 South Main Street, Los Angeles, CA 90012.

If you have any questions, please contact Sara Berns, Environmental Planner, Caltrans District 7, at (213) 897-0707 or Mimi Gutierrez, Port of Los Angeles, at (310) 732-3339.

We look forward to your ongoing participation on this project.
Figure 1: Project Location & Vicinity Map
The Port of Los Angeles together with Caltrans, District 7, welcome you to our Open House for the Transportation Projects

- C Street/I-110 Access Road Improvements

Wednesday, January 7, 2009—Banning’s Landing Community Center
6:30 - 8:00 p.m.

Welcome!
This evening you have an opportunity to see updated concepts that have been developed to improve transportation in and around the I-110 Freeway and its connectors.

Please use this program as a guide to the evening’s activities. We encourage you to use this when you visit the Project Stations.

Thank you for your participation in this process!

El Puerto de Los Angeles, junto con el Distrito 7 de Caltrans te saludo a venir a la Casa Abierta de los Proyectos de Trasportación

Miércoles , 7 de Enero de 2009 —Banning’s Landing Community Center
6:30 - 8:00 p.m.

¡Bienvenidos!
Esta noche usted tiene la oportunidad de ver las ideas que se desarrollaron para mejorar la movilidad en y alrededor de la autopista I-110 y sus conectores.

Por favor use este programa como una guía para las actividades de esta noche. Los animamos que use este programa cuando visiten las estaciones de proyectos.

Gracias por su participación en este proceso!
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City & Zip</th>
<th>Phone</th>
<th>Email</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osgood</td>
<td>571 W. 17th St</td>
<td>San Pedro</td>
<td>562-833-9474</td>
<td>osgoodsgte@gmail.com</td>
<td>San Pedro Skate Park Association (501c3 Non Profit)</td>
</tr>
<tr>
<td>Sargeant</td>
<td>420 W. Gage Rd</td>
<td>SP, CA</td>
<td>310-383-9427</td>
<td>Carrie Scaville @ya.com</td>
<td>Central Park Neighborhood Council</td>
</tr>
<tr>
<td>Carrie Scaville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyler Daily</td>
<td>23612 Main St</td>
<td>Carson</td>
<td>(310) 468-7135</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Transitions</td>
<td>6195 Mesa St</td>
<td>San Pedro</td>
<td>(310) 518-5218</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Skate Shop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunken City</td>
<td>6195 Mesa St</td>
<td>San Pedro</td>
<td>(310) 518-5218</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Geoff Scafield</td>
<td></td>
<td>Orange</td>
<td>(714) 518-5218</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td></td>
<td></td>
<td>County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Agata Goferyd</td>
<td>571 W 17th St.</td>
<td>San Pedro</td>
<td>90731</td>
<td>AGOFERYDQ@GMAIL.COM</td>
<td>San Pedro Skate Park Association</td>
</tr>
<tr>
<td>Jesse Raimondo</td>
<td>530 N. Palos Verdes St</td>
<td>San Pedro</td>
<td>90131</td>
<td></td>
<td>San Pedro Skate Park Association</td>
</tr>
<tr>
<td>Ana Dragin</td>
<td>CD 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynaldo & Maria Garibay</td>
<td>1319 W Robateau St.</td>
<td></td>
<td></td>
<td></td>
<td>San Pedro Skate Park Association</td>
</tr>
<tr>
<td>Allen Glassco</td>
<td>4252 Palos Verdes Blvd</td>
<td>LA CA</td>
<td>90008</td>
<td>allenglass@yahoo.com</td>
<td>San Pedro Skate Park Association</td>
</tr>
<tr>
<td>Tyler Mumba</td>
<td>Dana Point</td>
<td></td>
<td>215-8312</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
</tbody>
</table>
TRANSPORTATION PROJECTS OPEN HOUSE

BANNING'S LANDING COMMUNITY CENTER

Wednesday January 7, 2008

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City & Zip</th>
<th>Phone</th>
<th>Email</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Laddogi</td>
<td>862 w. 30th St</td>
<td>San Pedro</td>
<td>(310) 857-9461</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Kirk Jindle</td>
<td>938 Cristobal</td>
<td>Wilmington</td>
<td>310 930 3842</td>
<td></td>
<td>BLVD Blacksmith & Welding Works Inc</td>
</tr>
<tr>
<td>Donna Eltington</td>
<td>North 203 mp</td>
<td>Wilmington</td>
<td>310 549-8111</td>
<td></td>
<td>Keyport Cottages</td>
</tr>
<tr>
<td>Alexander Wilkerson</td>
<td>1080</td>
<td>San Pedro</td>
<td>310-532-1804</td>
<td></td>
<td>San Pedro SK8 Park Association</td>
</tr>
<tr>
<td>Josh Sandoval</td>
<td>Via Cordova</td>
<td>Fullerton</td>
<td>(714) 227-6308</td>
<td></td>
<td>San Pedro SK8 Park Association</td>
</tr>
<tr>
<td>Vincent Vegas</td>
<td></td>
<td>San Pedro</td>
<td>(310) 918-3179</td>
<td></td>
<td>San Pedro SK8 Park Association</td>
</tr>
</tbody>
</table>
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
& C Street/I-110 Access Ramp Improvements

BANNING'S LANDING COMMUNITY CENTER
Wednesday January 7, 2008

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City & Zip</th>
<th>Phone</th>
<th>Email</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Hargrove</td>
<td>1021 W 36th St</td>
<td>San Pedro</td>
<td>310-567-8677</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Cesar Rimoldi</td>
<td>530 N. Palos Verdes St.</td>
<td>San Pedro</td>
<td>(310) 548-0224</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Derek Lavelagi</td>
<td>862 W. 30th St</td>
<td>San Pedro</td>
<td>(818) 579-7669</td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Ray Zimmerman</td>
<td></td>
<td>Long Beach</td>
<td></td>
<td>MRZ photo @mindspring.com</td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Wallace Hampton</td>
<td></td>
<td>Long Beach</td>
<td></td>
<td>6XRXTC@yahoo.com</td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Matthew Johnson</td>
<td></td>
<td>Long Beach</td>
<td></td>
<td>ujohnson@americanx.net</td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Chris Wilkerson</td>
<td>1080 Via Cordova</td>
<td>San Pedro</td>
<td>310-832-90732</td>
<td>1809</td>
<td>San Pedro SK8park Association</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Cecilia Menk</td>
<td>613 N. Gulf Ave</td>
<td>Wilmington</td>
<td>(310) 489-3197</td>
<td></td>
<td>Coaliton for Safe Environment</td>
</tr>
<tr>
<td>Pat Rome</td>
<td>25307 Pine Creek Lane</td>
<td>Wilmington</td>
<td>(818) 932-0533</td>
<td>patwrone@yahoo.com</td>
<td>Resident</td>
</tr>
<tr>
<td>Michelle Riganti</td>
<td>827 East Main</td>
<td>SP 90731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Josh Wilkerson</td>
<td>571 W 17th St</td>
<td>San Pedro 90731</td>
<td></td>
<td></td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Will Taylor</td>
<td>5610 Pacific Blu 84203</td>
<td>Huntington Park 90256</td>
<td>(323) 826-9774</td>
<td>wz.taylor@gmail.com</td>
<td>San Pedro Skatepark Assoc.</td>
</tr>
<tr>
<td>Guillermo Jaime</td>
<td>5610 Pacific Blvd 84203</td>
<td>Huntington Park 90256</td>
<td>(323) 826-9774</td>
<td>gijaines@oce.ca</td>
<td>Committee for Safe Environment</td>
</tr>
<tr>
<td>Lori Gastelum</td>
<td>1065 Eubank Street</td>
<td>Wilmington 90744</td>
<td>(310) 790-3027</td>
<td>lori.gastelum@yahoo.com</td>
<td>Community Member</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Jesse N. Marquez</td>
<td>P.O. Box 1418</td>
<td>Wilmington</td>
<td>310-834-1128</td>
<td>marinmarquez@gmail.com</td>
<td>Coalition for Safe Environment</td>
</tr>
<tr>
<td>Joel Thurwachter</td>
<td>3311 W. Bandini</td>
<td>Anaheim</td>
<td>714-827-5151</td>
<td></td>
<td>J60E12</td>
</tr>
<tr>
<td>Bianca Villanueva</td>
<td>8711 Long Beach Blvd #801</td>
<td>Long Beach</td>
<td>562/997-0798</td>
<td>bianca.villanueva@asm.ca.gov</td>
<td>Bonnie Lowenthal's Office, Dist 54</td>
</tr>
<tr>
<td>Scott Minton</td>
<td>370 Wisconsin UNIT 306</td>
<td>Long Beach</td>
<td>(213) 688-3666</td>
<td>mintonphoto@gmail.com</td>
<td>San Pedro Skatepark Association</td>
</tr>
<tr>
<td>Tracey Zucchini</td>
<td>425 S. Proteus</td>
<td>San Pedro</td>
<td></td>
<td>t.zucchini@protonmail.com</td>
<td>NUPAC</td>
</tr>
<tr>
<td>Phil Nicolay</td>
<td>827 Eastman Rd</td>
<td>San Pedro</td>
<td></td>
<td>philnicola@gmail.com</td>
<td>NUPAC</td>
</tr>
<tr>
<td>Kenneth Keener</td>
<td>1219 W. Alton St</td>
<td>Wilmington</td>
<td>834-2231</td>
<td>KenKeener@961.com</td>
<td>Resident</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>April Casillas</td>
<td>1020 Laverne Ave.</td>
<td>LB, 90803</td>
<td></td>
<td>april.casillas@yahoo.com</td>
<td>SPSA</td>
</tr>
<tr>
<td>Mark Blaevack</td>
<td>1203 W E St</td>
<td>Wilmington</td>
<td>310-482-1323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabeth Warren</td>
<td>Berth 77, P7A Port O Call</td>
<td>San Pedro</td>
<td>310-482-1323</td>
<td>ewarren@futureports.org</td>
<td>FuturePorts</td>
</tr>
<tr>
<td>Ken Fredrickson</td>
<td>915 Wilshire Blvd</td>
<td>LA, 90017</td>
<td>649-894-7910</td>
<td>ken@fredrickson@urscorp.com</td>
<td>URS</td>
</tr>
<tr>
<td>Jeanne Lacombee</td>
<td>2052 Galena St</td>
<td>RPV, 90275</td>
<td></td>
<td>chateau 4 US Rolling Hills Nihoa @ earthlink.net Hoa</td>
<td></td>
</tr>
<tr>
<td>Gene Lee</td>
<td>4255 S La Brea Ave</td>
<td>9070</td>
<td>310-732-3865</td>
<td>glee@people.com</td>
<td></td>
</tr>
<tr>
<td>Dilip Malave</td>
<td>920 Oceanway AVE, CA 90802</td>
<td>90802</td>
<td></td>
<td>dmalave@iteris.com</td>
<td>ITERIS</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>RINGOR, ROLANDO</td>
<td>853 N 17th St</td>
<td>San Pedro</td>
<td>310-548-8176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonnie Markle</td>
<td>957 S. Village Oaks Drive</td>
<td>Covina</td>
<td>626-967-1510</td>
<td>Bonnie@media.com</td>
<td>MBI Media</td>
</tr>
<tr>
<td>Conny River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rob O'Connell</td>
<td>707 30th St Apt #1</td>
<td>San Pedro</td>
<td>310</td>
<td>JuanRobert2001@Yahoo</td>
<td>S.P.S.A</td>
</tr>
<tr>
<td>Alan C. Velasco</td>
<td>3253 S. Pacific Ave SPCA</td>
<td>S.P.C.A</td>
<td>310</td>
<td>Alan.Velasco@Yahoo</td>
<td>S.P.S.A</td>
</tr>
<tr>
<td>Michael Richards</td>
<td>3916 E 2nd St</td>
<td>Long Beach</td>
<td>562</td>
<td>Richards880@Yahoo.com</td>
<td>S.P.S.A</td>
</tr>
<tr>
<td>Frank R. Anderson</td>
<td>515 North Maple St.</td>
<td>San Pedro</td>
<td>310</td>
<td></td>
<td>Neigh Council</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Kathy Ditorio</td>
<td>106 La Verne</td>
<td>Long Beach</td>
<td>562-454-8984</td>
<td>jakele@coxnets.com</td>
<td>SPSA</td>
</tr>
<tr>
<td>Joseph Jakel</td>
<td>464 El Segundo</td>
<td>Long Beach Box</td>
<td>562-454-8984</td>
<td>jakele@coxnets.com</td>
<td>SPSA</td>
</tr>
<tr>
<td>Elvis Sogadia</td>
<td>528 N. Avalon #105</td>
<td>Culver City</td>
<td>310-493-8995</td>
<td>elvisdesigns@yahoo.com</td>
<td>SPSA</td>
</tr>
<tr>
<td>Sofia Cancilla</td>
<td>528 N. Avalon #105</td>
<td>Culver City</td>
<td>310-493-8995</td>
<td>sophia.zilo@earthlink.net</td>
<td>Coalition for RSM #1</td>
</tr>
<tr>
<td>Brian Ventura</td>
<td>632 Bay View</td>
<td>Wicklund</td>
<td>310-990-2366</td>
<td>bventura@albernet.net</td>
<td>Resident</td>
</tr>
<tr>
<td>Peter Lacombe</td>
<td>2052 Galena #100</td>
<td>Long Beach</td>
<td>310-633-0413</td>
<td>chateau4us@earthlink.net</td>
<td>Rolling Hills Riviera</td>
</tr>
<tr>
<td>Kerri Caccia</td>
<td>370 Wisconsin #306</td>
<td>CA 9084</td>
<td>562-984-3919</td>
<td>kcaccia@earthlink.net</td>
<td>SPSA</td>
</tr>
<tr>
<td>Brian Minnich</td>
<td>4201 Long Beach</td>
<td>Long Beach</td>
<td>562-984-3919</td>
<td>brian.minnich@9sm.ca.gov</td>
<td>IASM Fursten</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Dianne Kelly</td>
<td>425 S. Palos Verdes</td>
<td>San Pedro</td>
<td>310-732-3500</td>
<td>skelly@portla.org</td>
<td>Port Police</td>
</tr>
<tr>
<td>Frank Harris</td>
<td>200 N. Co.</td>
<td>90746</td>
<td>310</td>
<td>351-1992</td>
<td>Lions</td>
</tr>
<tr>
<td>Alan Hicks</td>
<td>5512 W. Haddad</td>
<td>Long Beach</td>
<td>202</td>
<td>510-8771</td>
<td>Maritime Administration</td>
</tr>
<tr>
<td>Leslie Provenzano</td>
<td>700 W. Walnut</td>
<td>Pasadena</td>
<td>626</td>
<td>410-6237</td>
<td></td>
</tr>
<tr>
<td>Gary Young</td>
<td>1916 Marina Dr.</td>
<td>SP. 90732</td>
<td>310</td>
<td>832-3907</td>
<td>FileDivers Union</td>
</tr>
<tr>
<td>Robert Yamashita</td>
<td>3914 E 2nd</td>
<td>LB. 90803</td>
<td>310</td>
<td>863-0162</td>
<td></td>
</tr>
<tr>
<td>Jodi Ford</td>
<td>724 N. Gaffeyi</td>
<td>San Pedro</td>
<td>(310)</td>
<td>767-6587</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City & Zip</td>
<td>Phone</td>
<td>Email</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Bill Orton</td>
<td>State Senator Rod Wright's Office</td>
<td>90275</td>
<td></td>
<td>william.orton@sen.ca.gov</td>
<td></td>
</tr>
<tr>
<td>Tony Ringer</td>
<td>2922 S - ALMA</td>
<td>90731</td>
<td></td>
<td></td>
<td>DS Y ES</td>
</tr>
<tr>
<td>Don Ferrara</td>
<td>6301 VIA CIEGA P.O. V CA 90275</td>
<td>90275</td>
<td>310-545-6505</td>
<td>2646</td>
<td>M-1 Property Owner 317/427 North Figueroa</td>
</tr>
<tr>
<td>Jose Alvarez</td>
<td>425 S. PALOS VERDE SAN PEDRO CA</td>
<td>90731</td>
<td>310-732-2646</td>
<td>Jose@portla.org</td>
<td>LA Port Police Community Relations Officer</td>
</tr>
<tr>
<td>Charlie Rico</td>
<td>502 WEST "D" ST. WILMINGTON CA</td>
<td>90744</td>
<td>(310) 834-3087</td>
<td></td>
<td>WILMINGTON HONS</td>
</tr>
<tr>
<td>Jose Becena</td>
<td>16912 North Fire Ave</td>
<td>90744</td>
<td>(310) 834-4234</td>
<td></td>
<td>Wilmington Resident</td>
</tr>
<tr>
<td>Andy Harris</td>
<td>1041 W 17th St SP CA</td>
<td>90731</td>
<td>310-651-1394</td>
<td></td>
<td>SPSA</td>
</tr>
</tbody>
</table>
TRANSPORTATION PROJECTS OPEN HOUSE

John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
&
C Street/I-110 Access Ramp Improvements

BANNING'S LANDING COMMUNITY CENTER
Wednesday January 7, 2008

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City & Zip</th>
<th>Phone</th>
<th>Email</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josh Brooks</td>
<td>1922 E. 4th St, Long Beach</td>
<td>Long Beach 90802</td>
<td>608-534-9231</td>
<td>jeawing@gmail.com</td>
<td>espn.com</td>
</tr>
<tr>
<td>ÁNA GOVORCIN</td>
<td>623 W. 22ND ST #4, San Pedro, CA 9073</td>
<td></td>
<td>(310) 941-8980</td>
<td>anasmotana@yahoo.com</td>
<td></td>
</tr>
<tr>
<td>Byron Ford</td>
<td>724 N. Shafer Pl, San Pedro, CA 9073</td>
<td></td>
<td>310 832-9643</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debbie Baker</td>
<td>540 N. Marine Ave, Wilmington, CA 90744</td>
<td></td>
<td>631-834-3233</td>
<td>DBaker@LiUNW.org</td>
<td>LiUNW Local 812</td>
</tr>
<tr>
<td>Louis White</td>
<td>8133 Bevon St</td>
<td>Santa Monica 90404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aida Torres</td>
<td>106 W. Enden St, Wilm. CA 90744</td>
<td></td>
<td>310-835-7742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Mavar</td>
<td>820 S. Walker St, WP 90731</td>
<td></td>
<td>310-344-0023</td>
<td>Johnmmavar@AOL.com</td>
<td>Northwest SP NC</td>
</tr>
</tbody>
</table>
January 8, 2009

Sara Burns, Environmental Planner
Caltrans District 7
100 South Main Street
Los Angeles, California 90012

Dear Ms. Burns:

This is in response to your request for comments on the Notice of Initiation of Studies & Open House, City of Los Angeles, Los Angeles County, California for the C Street/I-110 Access Ramps Improvements, Los Angeles County, California.

Please review the current effective Flood Insurance Rate Maps (FIRMs) for the City of Los Angeles (Community Number 060137) and County of Los Angeles (Community Number 065043), Maps revised September 26, 2008. Please note that the City and County of Los Angeles are participants in the National Flood Insurance Program (NFIP). The minimum, basic NFIP floodplain management building requirements are described in Vol. 44 Code of Federal Regulations (44 CFR), Sections 59 through 65.

A summary of these NFIP floodplain management building requirements are as follows:

- All buildings constructed within a riverine floodplain, (i.e., Flood Zones A, AO, AH, AE, and A1 through A30 as delineated on the FIRM), must be elevated so that the lowest floor is at or above the Base Flood Elevation level in accordance with the effective Flood Insurance Rate Map.

- If the area of construction is located within a Regulatory Floodway as delineated on the FIRM, any development must not increase base flood elevation levels. The term development means any man-made change to improved or unimproved real estate, including but not limited to buildings, other structures, mining, dredging, filling, grading, paving, excavation or drilling operations, and storage of equipment or materials. A hydrologic and hydraulic analysis must be performed prior to the start of development, and must demonstrate that the development would not cause any rise in base flood levels. No rise is permitted within regulatory floodways.
Sara Burns, Environmental Planner
Page 2
January 8, 2009

- All buildings constructed within a coastal high hazard area, (any of the “V” Flood Zones as delineated on the FIRM), must be elevated on pilings and columns, so that the lowest horizontal structural member, (excluding the pilings and columns), is elevated to or above the base flood elevation level. In addition, the posts and pilings foundation and the structure attached thereto, is anchored to resist flotation, collapse and lateral movement due to the effects of wind and water loads acting simultaneously on all building components.

- Upon completion of any development that changes existing Special Flood Hazard Areas, the NFIP directs all participating communities to submit the appropriate hydrologic and hydraulic data to FEMA for a FIRM revision. In accordance with 44 CFR, Section 65.3, as soon as practicable, but not later than six months after such data becomes available, a community shall notify FEMA of the changes by submitting technical data for a flood map revision. To obtain copies of FEMA’s Flood Map Revision Application Packages, please refer to the FEMA website at http://www.fema.gov/business/nfip/forms.shtml.

Please Note:

Many NFIP participating communities have adopted floodplain management building requirements which are more restrictive than the minimum federal standards described in 44 CFR. Please contact the local community’s floodplain manager for more information on local floodplain management building requirements. The City of Los Angeles floodplain manager can be reached by calling Mark Pestrella at (626) 458-5100. The County of Los Angeles floodplain manager can be reached by calling George De La O at (626) 458-7155.

If you have any questions or concerns, please do not hesitate to call Cynthia McKenzie, Senior Floodplanner of the Mitigation staff at (510) 627-7190.

Sincerely,

Gregor Blackburn, CFM, Branch Chief
Floodplain Management and Insurance Branch

cc:
Mimi Gutierrez, Port of Los Angeles
Mark Pestrella, Assistant Deputy Director, Department of Public Works, City of Los Angeles
George De La O, Senior Civil Engineer, Los Angeles County, Department of Public Works, Watershed Management Division
Garret Tam Sing/Salomon Miranda, State of California, Department of Water Resources, Southern District
Cynthia McKenzie, Senior Floodplanner, CFM, DHS/FEMA Region IX
Alessandro Amaglio, Environmental Officer, DHS/FEMA Region IX

www.fema.gov
Features
- Extends existing 2-lane NB I-110 onramp 500 feet
- Provides widening of exclusive EB right turn lane at the intersection to accommodate truck turns
- Provides SB and NB dual left lanes at the intersection
- Provides NB exclusive right turn lane into terminal
- Widens and improves terminal driveway to facilitate truck moves to/from freeway ramps
- Traffic signal improvements

Características
- Extiende la rampa de ingreso hacia la autopista I-110 Norte por 500 pies
- Provee ampliar carril exclusivo para doblar hacia mano derecha en la intersección para acomodar movimientos de camiones
- Provee dos carriles para doblar hacia la izquierda en el sur y el norte de la intersección
- Provee un carril exclusivo para tráfico yendo hacia el norte para hacer vueltas a la derecha hacia la terminal
- Ampliación y mejoramiento del la entrada de carros para facilitar movimiento de camiones al entrar y salir de la autopista
- Mejoramiento de semáforos de tráfico

Thank you for attending tonight’s meeting!
Gracias por atender la reunión de esta noche.

For additional information please contact:
Prashant Konareaddy
Civil Engineer Associate III
(310) 732-3362
Or visit the website:
www.portofla.org

Para más información por favor comuníquese:
Prashant Konareaddy
Civil Engineer Associate III
(310) 732-3362
O visite el pagina web:
www.portofla.org
WB SR 47 & NB I-110 Connector

Features
- Widen existing single lane connector to a dual lane connector
- Widens the existing John S. Gibson exit from a single-lane to a dual-lane exit
- Minimizes weaving between Front St on-ramp traffic and bridge traffic from Long Beach

Características
- Ampliar el conector de un carril a un conector de dos carriles
- Ampliar la rampa de salida en John S Gibson de un carril a dos carriles
- Minimiza conflictos entre tráfico utilizando la rampa de ingreso en Front St. y tráfico del Puente desde Long Beach

Thank you for attending tonight's meeting!
Gracias por atender la reunión de esta noche!

For additional information please contact:
Prashant Konareaddy
Civil Engineer Associate III
(310) 732-3362
Or visit the website:
www.portofla.org

Para mas información por favor comuníquese:
Prashant Konareaddy
Civil Engineer Associate III
(310) 732-3362
O visite el pagina web:
www.portofla.org
Features

- Replace two intersections with one:
 - C St and Figueroa St
 - John S Gibson Blvd and Harry Bridges Blvd
- Construct a “free” right turn from the I-110 off-ramps
- Construct a cul-de-sac at “C” St and Figueroa Street
- Construct dual left turn lanes from WB Harry Bridges Blvd to SB John S Gibson Blvd
- Construct a new fly-over from NB I-110 to NB Figueroa St

Características

- Sustituye dos intersecciones con una:
 - C Street y Figueroa Street
 - John S Gibson Blvd y Harry Bridges Blvd
- Construir dos carriles para doblar hacia mano derecha para liberar tráfico para el salida de la autopista I-110
- Construir un callejón sin salida a C Street y Figueroa Street
- Construir dos carriles para doblar hacia mano izquierda desde Harry Bridges Blvd hacia el oeste a John S Gibson Blvd hacia el sur

Thank you for attending tonight’s meeting!
Gracias por atender la reunión de esta noche!

For additional information please contact:
Mimi Gutierrez
Civil Engineer Associate II
(310) 732-3339
Or visit the website:
www.portofla.org

Para mas información por favor comuníquese:
Mimi Gutierrez
Civil Engineer Associate II
(310) 732-3339
O visite el pagina web:
www.portofla.org
January 24, 2009

Ms. Sue L Lai; Sr. Transportation Engineer
425 S. Palos Verdes Street
San Pedro, CA 90731

RE: Community Comments

Dear Ms. Lai,

We are writing in response to the Port’s request for community input on the CalTrans/Port of Los Angeles John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Winding C Street/I-110 Access Ramp Improvements projects.

Inclusion of Other Projects:
There are two other projects associated with this however they are being considered as separate elements and have separate design teams. These are the reconstruction of the Channel Street/John S. Gibson off ramps in San Pedro, and the "C" Street interchange in Wilmington. All three elements are designed to increase the flow of truck traffic to serve the Port. Since they are for the same purpose they should be considered part of the same project. To isolate them as three separate projects as presented would constitute "piecemealing".

SR-47/I-110 Interchange Impacts:
Black Hill was created at the turn of the 20th century from Port dredging. It is highly unstable and erosion is frequent. To cut into it to provide an extra lane for truck traffic would exacerbate this situation and jeopardize the residences above.

Residents on all sides of this interchange are already impacted by the physical vibrations from truck traffic. The vibrations have cracked our homes/pavements continue to wakes us at night. Trucks loudly accelerate and decelerate to/from the Vincent Thomas Bridge (SR-47) and the Harbor freeway (I-110) on/off ramps. They regularly blast their horns at all hours which is very disturbing to our neighborhood.

The Harbor Occupational Center is adjacent to the SR-47 which would be especially impacted by the increase in truck traffic.

Residents on all sides of this interchange are already impacted by the soot and dust created by the traffic on this interchange. We have to continually wash down our homes (inside and out), vehicles, and yards due to these particulates. Many of us suffer respiratory and other ill health effects from the truck exhaust due to this interchange. Trucks often get lost in our neighborhood due to inadequate highway signage and have a difficult time navigating down our maze of narrow streets and cul-de-sacs. The designated bike lanes around our neighborhood are dangerous as they share the road with Port truck traffic.
There are no sound walls and the foliage has been removed which leaves us wholly exposed to the sight, sounds, light, pollution, and lack of privacy from the interchange traffic.

All of the above reflect the current situation. To add to this by increasing truck traffic through our neighborhood would be intolerable.

Mitigation:
It is our recommendation that CalTrans strongly consider the following for the SR-47/I-110 interchange:

- Advise on the steps that are being taken to ensure that our home values do not decrease due to the increased truck traffic
- Advise on the steps that are being taken to reduce/remove the graffiti and dumping in the area
- Install Permanent Air Quality monitoring station at the interchange to ensure air quality
- Install Permanent Noise, including Noise Vibration monitoring stations at the interchange
- Install Permanent Vibration monitoring stations at the interchange
- Install sound walls on all sides of the interchange
- Install a boundary fence (brick preferred) around Leland Park (residential safety issues/concerns)
- Complete brush clearing on the east side of I-110 and throughout the interchange
- Temporary installation of construction mesh on residential fences for privacy and to block dust, etc.
- Community notification mechanism needed – signage, door hangers with a contact phone number, etc.
- Post CalTrans project sign with contact info on fence/gates, especially at irrigation facilities
- Notification needed of herbicidal spraying – when and what chemicals are being used
- Post bilingual directional signs for truck routes
- Post "No Trucks" signs on SR-47 off-ramp at Gaffey Place
- Provide community access to parcel west of Gaffey Street. Work with community to develop a park, community garden, skate park or other public use for this site

We look forward to discussing/working with you on the noted options.

Thank you for your time

Charlotte Waters
President Black Hill Neighborhood Watch Committee

cc: City of Los Angeles
The Honorable Janice Hahn
Councilwoman, 15th District
638 S. Beacon St., Suite 552
San Pedro, CA 90731

gaffeyplaceneighbors@yahoo.com
<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>John E. Davis</td>
<td>1/31/09</td>
<td>(310) 367-4045</td>
</tr>
<tr>
<td>Charlotte B. Waters</td>
<td>1/31/09</td>
<td></td>
</tr>
<tr>
<td>833 N. Gaffey Pl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>Isela Lopez</td>
<td>1/31/09</td>
<td>(310) 381-769</td>
</tr>
<tr>
<td>555 Upland Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>Rodrigo Lopez</td>
<td>1/31/09</td>
<td>(310) 661-9669</td>
</tr>
<tr>
<td>553 Upland Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>Maria Villaneda-Caudillo</td>
<td>1/31/09</td>
<td>(310) 429-0719</td>
</tr>
<tr>
<td>550 W. Upland Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>Adolfo Rodriguez</td>
<td>1/29/09</td>
<td></td>
</tr>
<tr>
<td>584 Upland Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Michael J. Contreras</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael J. Contreras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>823 N. Gaffey Pl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erica Phillips</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica Phillips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>833 N. Gaffey Pl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael A. Contreras</td>
<td>2/9/09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael A. Contreras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>823 N. Gaffey Pl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frances J. Waters</td>
<td>3/4/09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frances J. Waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>833 N. Gaffey Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td>Calif</td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacqueline Moore</td>
<td>Feb 5, 2009</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacqueline Moore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510 W. Elberon Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Scott, Joseph</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>2/3/09</td>
<td>3105486144</td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Raye St. Dennis</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Nanbearn Hananzer (Butty)</td>
<td>2/3-09</td>
<td>310 8316577</td>
</tr>
<tr>
<td>Brittney Ford</td>
<td>2/3/09</td>
<td>3108329009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>603 No. Gaffey Pl</td>
<td>San Pedro</td>
<td>Cal. P</td>
<td>90731</td>
</tr>
<tr>
<td>823 N. Gaffey Pl</td>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>129 N. Gaffey Pl</td>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>681 W. Centennial</td>
<td>S.P.</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>701 N. Gaffey Pl</td>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name (print)</th>
<th>Name</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott, Joseph</td>
<td>Scott, Joseph</td>
<td></td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>Rosemarie Contreras</td>
<td>3105486144</td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>Rosemarie Contreras</td>
<td></td>
</tr>
<tr>
<td>Raye St. Dennis</td>
<td>Raye St. Dennis</td>
<td></td>
</tr>
<tr>
<td>Nanbearn Hananzer (Butty)</td>
<td>Nanbearn Hananzer (Butty)</td>
<td>310 8316577</td>
</tr>
<tr>
<td>Brittney Ford</td>
<td>Brittney Ford</td>
<td>3108329009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott, Joseph</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>2/3/09</td>
<td>3105486144</td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Raye St. Dennis</td>
<td>2/3/09</td>
<td></td>
</tr>
<tr>
<td>Nanbearn Hananzer (Butty)</td>
<td>2/3-09</td>
<td>310 8316577</td>
</tr>
<tr>
<td>Brittney Ford</td>
<td>2/3/09</td>
<td>3108329009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>603 No. Gaffey Pl</td>
<td>San Pedro</td>
<td>Cal. P</td>
<td>90731</td>
</tr>
<tr>
<td>823 N. Gaffey Pl</td>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>129 N. Gaffey Pl</td>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>681 W. Centennial</td>
<td>S.P.</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>701 N. Gaffey Pl</td>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name (print)</th>
<th>Name</th>
<th>Phone (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott, Joseph</td>
<td>Scott, Joseph</td>
<td></td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>Rosemarie Contreras</td>
<td>3105486144</td>
</tr>
<tr>
<td>Rosemarie Contreras</td>
<td>Rosemarie Contreras</td>
<td></td>
</tr>
<tr>
<td>Raye St. Dennis</td>
<td>Raye St. Dennis</td>
<td></td>
</tr>
<tr>
<td>Nanbearn Hananzer (Butty)</td>
<td>Nanbearn Hananzer (Butty)</td>
<td>310 8316577</td>
</tr>
<tr>
<td>Brittney Ford</td>
<td>Brittney Ford</td>
<td>3108329009</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Name (print)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Richard Davis</td>
<td>1/31/09</td>
<td>JANICE E. DAVIS</td>
</tr>
<tr>
<td>NELSON & MARY</td>
<td>1/31/09</td>
<td>NELSON Carrasquillo</td>
</tr>
<tr>
<td>Peculal Blake</td>
<td></td>
<td>Peculal Blake</td>
</tr>
<tr>
<td>DANEEN D. OGRADY</td>
<td>1/31/09</td>
<td>DANEEN D. OGRADY</td>
</tr>
<tr>
<td>Levine John</td>
<td>2/05/09</td>
<td>Maurco Gonzalez</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Guadalupe Ortiz</td>
<td>2/2/09</td>
<td></td>
</tr>
<tr>
<td>Jimmy Sandoval</td>
<td>310 831-3985</td>
<td></td>
</tr>
<tr>
<td>Melissa Coon</td>
<td>2-3009</td>
<td>310-831-0586</td>
</tr>
<tr>
<td>Joe Ivcevic</td>
<td>2/6/09</td>
<td>310-831-4682</td>
</tr>
<tr>
<td>Michael Rodriguez</td>
<td>2/3/09</td>
<td>833-6938</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 N Gaffey Pl</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>602 N Gaffey Pl</td>
<td>CA</td>
<td>90711</td>
</tr>
<tr>
<td>180 W Elberon Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>621 N Gaffey Pl</td>
<td>CA</td>
<td>90731</td>
</tr>
<tr>
<td>627 North Gaffey Pl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Name (print)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Janice L. Davis</td>
<td>1/31/09</td>
<td>JANICE E. DAVIS</td>
</tr>
<tr>
<td>Walter Clemente</td>
<td>1/31/09</td>
<td>WALTER CLEMENTE</td>
</tr>
<tr>
<td>Matilda Clemente</td>
<td>1/31/09</td>
<td>Dorothy Clemente</td>
</tr>
<tr>
<td>Jose Lopez</td>
<td>2-3-09</td>
<td>Jose Lopez</td>
</tr>
<tr>
<td>Barbara & John Ford</td>
<td>2-3-09</td>
<td>Barbara Ford</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Name (print)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>JoAnn Auer - Jorge Hughes</td>
<td>1-31-09</td>
<td>JoAnn Auer - Jorge Hughes</td>
</tr>
<tr>
<td>Betty Ford</td>
<td>2-2-09</td>
<td>Betty Ford</td>
</tr>
<tr>
<td>Emily Smith</td>
<td>02-03-09</td>
<td>Emily Waters</td>
</tr>
<tr>
<td>Marcia Bowie</td>
<td>2-3-09</td>
<td>Marcia Bowie</td>
</tr>
<tr>
<td>Maria L. Samanigo</td>
<td>2/3/09</td>
<td>Maria L. Samanigo</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>IDELL B. BERRY</td>
<td>1-31-09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>583 MACARThUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
<tr>
<td>C. Hamilton</td>
<td>1-31-09</td>
<td>310-831-9161</td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>583 N. MACarthur Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
<tr>
<td>Joyce M. Williams</td>
<td>1-31-09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>826 N. Gaffey Pl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
<tr>
<td>Sellette Walker</td>
<td>1-31-09</td>
<td>310-831-2972</td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>502 brand Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
<tr>
<td>Lupe Cisneros</td>
<td>1-31-07</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>921 N. Gaffey Pl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Pedro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
<td>90731</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Elaine Stockett</td>
<td>1-31-09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>921 N Gaffey Pl</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>San Pedro</td>
<td>State CA Zip 90731</td>
</tr>
<tr>
<td>AL Davis</td>
<td>1-31-09</td>
<td>AL Davis</td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>9417 N Gaffey Pl</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>San Pedro</td>
<td>State CA Zip 90731</td>
</tr>
<tr>
<td>Antonia Biramontes</td>
<td>1-31-09</td>
<td>510-735-3495</td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>963 N Gaffey Plc</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>San Pedro</td>
<td>State CA Zip 90731</td>
</tr>
<tr>
<td>Maria Garcia</td>
<td>1-31-09</td>
<td>310-832-7317</td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>951 N Gaffey Plc</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>San Pedro</td>
<td>State CA Zip 90731</td>
</tr>
<tr>
<td>Amenra Elohim</td>
<td>1-31-09</td>
<td></td>
</tr>
<tr>
<td>Name (print)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>958 N Gaffey Pl</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>San Pedro</td>
<td>State CA Zip 90731</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Donna Mafe</td>
<td>01/31/2009</td>
<td>310 544-9454</td>
</tr>
<tr>
<td>Delia Lea</td>
<td>01/31/09</td>
<td></td>
</tr>
<tr>
<td>JOHN H GARCIA</td>
<td>01-31-09</td>
<td>310 832-2927</td>
</tr>
<tr>
<td>KEVIN M GARcia</td>
<td>01-31-09</td>
<td>310 832-2921</td>
</tr>
<tr>
<td>Shannon Nygma</td>
<td>1-31-09</td>
<td>310 8330109</td>
</tr>
<tr>
<td>Shannon Nygma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>682 McArthur Ave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Mr. Thomas Cooper</td>
<td>2/5/09</td>
<td>805-537-6075</td>
</tr>
<tr>
<td>Elió Sanchez</td>
<td>2/5/09</td>
<td></td>
</tr>
<tr>
<td>D.O. [Signature]</td>
<td>2-05-09</td>
<td></td>
</tr>
<tr>
<td>Donald Boss</td>
<td>2/5/08</td>
<td></td>
</tr>
<tr>
<td>Paul [Signature]</td>
<td>2.05.09</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Name (print)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Jo Anne Collie</td>
<td>2-5-09</td>
<td>J.A.C.</td>
</tr>
<tr>
<td>Angelica Juarez</td>
<td>2-5-09</td>
<td>Angelica Juarez</td>
</tr>
<tr>
<td>Adalfo Rojaver</td>
<td>2-5-09</td>
<td>Adalfo Rojaver</td>
</tr>
<tr>
<td>Regina Santiago</td>
<td>2/5/09</td>
<td>Regina Santiago</td>
</tr>
<tr>
<td>Ivan Adams</td>
<td>2/5/09</td>
<td>Ivan Adams</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Name (print)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Gabriel Zuvina</td>
<td>2/5/09</td>
<td>David Z.</td>
</tr>
<tr>
<td>Cheine Collazo</td>
<td>2/5/09</td>
<td>Chi Collazo</td>
</tr>
<tr>
<td>Jesus Recio</td>
<td>2/5/09</td>
<td>Jesus Recio</td>
</tr>
<tr>
<td>Chantel Uribe</td>
<td>2/5/09</td>
<td>Chantel U.</td>
</tr>
<tr>
<td>Vanessa Rich</td>
<td>2/5/09</td>
<td>Lance & Vanessa R.</td>
</tr>
<tr>
<td>Name</td>
<td>Sandra Asaau</td>
<td>Date:</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>Name (print)</td>
<td>Sandra Asaau</td>
<td>Phone (option)</td>
</tr>
<tr>
<td>Address</td>
<td>681 W. Upland Ave</td>
<td>City</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>NWAQO MURIELLO</th>
<th>Date:</th>
<th>01-31-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (print)</td>
<td></td>
<td>Phone (option)</td>
<td>310-241-0633</td>
</tr>
<tr>
<td>Address</td>
<td>626 W. CRESTWOOD ST</td>
<td>City</td>
<td>San Pedro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>MARY J. FORD</th>
<th>Date:</th>
<th>01-31-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (print)</td>
<td>Mary J. Ford</td>
<td>Phone (option)</td>
<td>310-833-9341</td>
</tr>
<tr>
<td>Address</td>
<td>672 CRESTWOOD ST</td>
<td>City</td>
<td>San Pedro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Irene Lopez</th>
<th>Date:</th>
<th>1/31/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (print)</td>
<td>Irene Lopez</td>
<td>Phone (option)</td>
<td>(310) 548-3505</td>
</tr>
<tr>
<td>Address</td>
<td>669 CRESTWOOD ST</td>
<td>City</td>
<td>San Pedro</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Torres</td>
<td>2-5-2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marc Green St 603</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Pedro</td>
<td>CA</td>
<td>90731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name (print)</th>
<th>Phone (option)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name (print)</th>
<th>Phone (option)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name (print)</th>
<th>Phone (option)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name (print)</th>
<th>Phone (option)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements
COMMENT CARD

PLEASE PRINT:
Name Jennifer Joiner Date 1-7-09
Address 8070 Pacific Blv. # 202
City, State, Zip Huntington Park CA 90255
Email Joiner@C6C.org Phone (323) 806-5771

Please provide us your comments:

Propose alternatives to using existing use of
Alameda Corridor in lieu of proposed
project.
Please provide us your comments:

One of my comments will be you are able to provide more traffic lights, speed limit signs, and lots of green areas & trees for our community. We need it for our children that have to deal with asthma and health problems.
TRANSPORTATION PROJECTS OPEN HOUSE

John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements

COMMENT CARD

PLEASE PRINT
Name: ROBERT YAMASAKI
Address: 3910 E 2ND ST.
City, State, Zip: LONG BEACH, CA 90711
Email: rfyamasaki@yahoo.com Phone: (310) 363-0163

Date: 1-7-09

Please provide us your comments:
THE ADDITION OF THE CHANNEL ST. SKATEPARK TO SAN PEDRO HAS BECOME A VITAL PART OF THE HARBOR AREA COMMUNITY.
IT IS IMPERATIVE THAT THE LOCAL COMMUNITY RETAINS USE OF THIS FACILITY.

THANK YOU
Please provide us your comments:

I appreciate your willingness to work with, and around, the existing skatepark. The park has a great organization and group of people who will be very willing to help, consult, etc. Thanks!
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements
COMMENT CARD

PLEASE PRINT
Name: **JESSE N. MARQUEZ** Date: 1-7-2008
Address: P.O. Box 1768
City, State, Zip: WILMINGTON, CA 90744
Email: **JMARQUEZ@PROVIDAIR.NET** Phone: 910-894-4128

Please provide us your comments:

1. No loss from Wilmington for Port Project
2. No increase on Port Truck Traffic on Harbor Freeway
3. No increase in Environmental Impact
4. No increase in Public Health Impacts
As the project evolves, what is the best way for people of the community to stay informed regarding new developments and continue to voice their concerns in effort to protect the San Pedro Skatepark?
Please provide us your comments:

How can we be assured these projects will be an "improvement"? What data exists to support them?
Please provide us your comments:

As a non-profit organization, our concern is mainly regarding structures that are already in place. Critical to this are placement of any supports for widening. Our hope is that through cooperation, we can achieve a satisfactory solution for all parties involved.
Please provide us your comments:

The SR-47/110 Northbound widening will add lanes along the length of Harbor Boulevard.

This will increase the need for some type of speed humps or barriers. There may be an increase in air pollution and vibrations - I am sure this needs to be monitored.
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements
COMMENTS CARD

PLEASE PRINT
Name: Pat Rome ______________________ Date: 01/07/08
Address: 25327 Pine Creek Lane
City, State, Zip: Wilmington 90744
Email: ajwrome@yahoo.com Phone: (310) 952-0533

Please provide us your comments:

AS THIS PROJECT BEING COORDINATED WITH THE POLARIS PROJECTS IN WILMINGTON WATERFRONT?
WHY NOT FIX THE ENTRANCE TO THE U.S. BURG + EXIT OFF OF I-10 TO HARBOR BLVD.
HOW LONG WILL THIS PROJECT TAKE TO BUILD?

__
__
Gibson I-110/SR-47 connector appears to be a shipping issue more than a traffic issue, although it obviously pertains to traffic issues. There are other vital merge issues (i.e., Sepulveda). Please take these issues into account.
Please provide us your comments:

Are there several different design possibilities regarding the freeway supports that will be built in and around the skatepark? Is there another design or the board other than the one that places a support right in the middle of the park? Any way to avoid this design?
Name: Charlie Rico
Address: 513 West D St.
City, State, Zip: Wilmington CA
Email: Phone: (310) 834-5689
Date: 1-7-09

Please provide us your comments:

I am on the Wilmington Waterfront Development Committee. I am happy with progress the Port has been working on since we first started, the Super Zone will soon begin and the thinking that has been presented here tonight of the C Street No Cues is a hope that at last we have something to look forward to in the future.
Please provide us your comments:

I live in the residential area bounded by the following: North of C Street, East of Figueroa, West of Hampshire, and South of Anaheim. I make frequent trips to San Pedro via the Freeway. I currently exit the 110 at C St and then left to drive North on Figueroa. The new design makes this impossible.
I will have the new choice of going much further east on Nelly Bridges to turn left and back track into my neighborhood.

Exit in Anaheim and make many turns back tracking into my neighborhood.

Why can't there be some way to exit at Nelly Bridges/C Street and proceed north on Figueroa?
Please provide us your comments:

CAN WE GET A WALL TO PROTECT THE PEOPLE AND SKATE PARK FROM TRASH (TRUCK PARTS) THAT MIGHT FALL.
Name: Guillermo Jaime
Address: 5610 Pacific Blvd #207
City, State, Zip: Huntington Park, CA 90255
Email: gjames@yahoo.org
Phone: (323) 820-9771 x114

Please provide us your comments:

I'm concerned with the proximity of the skate park to the project, and there any measures to limit exposure to the project

To potential noise, dust, traffic, buffer to the skate park?
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements

COMMENT CARD

Please provide us your comments:

I'm concerned about the San Pedro Skatepark. If this project goes through, will it effect the skatepark? Will the Skatepark be allowed to expand?
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements
COMMENT CARD

PLEASE PRINT
Name: Joshi Wilkerson
Address: 1050 Via Cordova
City, State, Zip: San Pedro, Ca 90732
Email: xtago@hotmail.com
Phone: 310-832-1809

Date: 1/07/09

Please provide us your comments:
before I knew of the channel st. skatepark I was lost & going
no where fast being a an useless product to our society, since the
1st Day I came to skate here channel st park my life was
saved, I have put all my free time, money, blood, sweat &
love into building & maintaining our skatepark Channel St.
Skatepark gave me a purpose in life & it has inspired me & others.
I pray every day & night that our skatepark will not be
negatively affected by this caltrans improvement plan. More on back-
My channel skatepark has affected my life in an amazing positive way. It also has taught me plenty of useful and good work ethics. I have made hundreds of friends through the skatepark including skaters from across the globe. The channel skatepark has generated a positive effect to all of the surrounding businesses also. Most of the visiting skaters, as well as all of the local skaters, young or old, spend their money eating at dining bars & all the surrounding restaurants, diners, liquor stores, gas stations, & even the automobile businesses.

Our locally skater built skatepark is known as one of the best skateparks in the entire world! Skaters from every country & every aspect of life dream of skating channel skate park. They also travel near & far just to lend their hands & money to help us build & maintain our skatepark.
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements
COMMENTS CARD

NAME: SCOTT MINTON Date: 1/7/09
ADDRESS: 370 WISCONSIN, UNIT 306
CITY, STATE, ZIP: LONG BEACH, CA 90814
EMAIL: MINTONPHOTO @ GMAIL.COM PHONE: (213) 688-3666

Please provide us your comments:

- IS IT POSSIBLE TO PROVIDE LIGHTING, EITHER ON THE NEW STRUCTURE OR THE ENTIRE LOT AT THE CHANNEL STREET SKATEPARK SITE?

- WOULD CALTRANS OR THE PORT OF LOS ANGELES BE INTERESTED IN PARTNERING WITH SPGA TO PROVIDE ALTERNATIVE OR ADDITIONAL SKATEPARK SITES ON UNUSED PROPERTY?
TRANSPORTATION PROJECTS OPEN HOUSE
John S. Gibson Blvd/I-110 Freeway Access Ramp Improvement & SR-47/I-110 Northbound Connector Widening
C Street/I-110 Access Ramp Improvements
COMMENT CARD

PLEASE PRINT
Name: John Hargrave
Date:

Address: 1021 W 36th
City, State, Zip: San Pedro, CA, 90731

Email: Phone: (310) 567-8677

Please provide us your comments:

I've personally been enjoying our awesome skatepark for many years. I have seen small, tiny immature children transform into spectacular people due to the positive forces created by this small piece of land. So please try and avoid it. Thank you.
1. How will Buffer integrate w/ C Street Project?

2. North-bound on I10 -
 By eliminating C-street offramp.
 NB travel is longer. along H.B. Blvd.

3. Wilmington residents do not want the ramp to be north of H.B. Blvd. Please keep project on Port side.

4. This project facilitates Port tenants & Big Box retailers. So public funds should not be used.
District 7 Environmental Commitments Record

(Interstate 110/C Street Interchange Project)

(EA 264800)

(07-LA-110-PM 2.5/3.0)

### Log No.	Commitment Type	Responsible Party	Monitoring Frequency	Implementation/ Monitoring Phase	SSPP/ NSSPP	Env Doc/ Permit/ Special Plans	Estimates	Commitment Measure	Completed Signature Page	Remarks

Mitigation 1.1

Traffic Management Plan

- **LAHD**
- **Weekly/ as required during construction**
- **Prior to and During Construction**
- **ISEA Sections 2.1.1.1, 2.1.3.3, and 2.1.3.4**

The LAHD or its designer shall prepare a TMP to minimize direct and cumulative construction impacts on the community. The TMP shall be developed in consultation with the Los Angeles Department of Transportation and the Public Information. Provide project updates to affected residents and businesses, including the general public, via brochures and mailers, community meetings, and web site information; California Department of Transportation, and it shall be provided with the construction plan to the City of Los Angeles Police Department and the City of Los Angeles Fire Department prior to commencement of construction activities. The TMP shall include, but is not limited to, the following implementation plans:

1. Provision of project updates to affected residents and businesses via brochures and mailers, community meetings, and web site information;
2. Provision of project information using changeable message signs and ground-mounted signs;
3. Implementation of Construction Enhanced Enforcement Program, freeway service patrol, and CHP traffic handling; and
4. Provision of a traffic lane closure chart, detour routes, pedestrian routes, residential and commercial access routes, and temporary traffic signals during construction.

Mitigation 1.2

Community Character and Cohesion

Minimization 2.1

- **Public Outreach**
- **LAHD**
- **Once prior to construction/as needed during construction**
- **Final Design/Pre-Construction/During Construction**
- **ISEA Section 2.1.3.1**

The LAHD would continue the public outreach program to keep residents, businesses, and any service providers within the project area informed, and to inform surrounding communities about the project construction schedule, traffic impacted areas and the TMP, and other relevant project information.

Mitigation 2.2

Public Involvement and Community Outreach

- **LAHD**
- **Weekly/ as required during construction**
- **Prior to and During Construction**
- **ISEA Section 2.1.3.2**

NOTE: The LAHD in collaboration with the project team will continue to provide meaningful opportunities for public participation. This may include additional community meetings, informational mailings, a project web site, and news releases to local media.

Mitigation 8.1

LAHD Sustainable Construction Guidelines for Reducing Air Emissions

- **Construction Contractor**
- **Weekly/ As needed during construction activities**
- **Construction**
- **ISEA Section 2.2.6**

The construction contractor shall adhere to the current LAHD Sustainable Construction Guidelines for Reducing Air Emissions during project construction phases. The LAHD shall determine the applicable BMP’s once the contractor identifies and secures a final equipment list and project scope.

Mitigation 7.1

Aerially Deposited Lead

- **Construction Contractor**
- **Once prior to grading and construction**
- **Prior to Construction**
- **ISEA Section 2.2.5**

To reduce the aerially deposited lead levels in the composite soil that shall remain on site, the upper 2.5 feet of soil adjacent to the existing roadways within a 150-foot radius of boring B-10 shall be removed and disposed of site as hazardous waste. The recommended depths of the excavation shall be determined after the area is dry and the lead levels are surveyed as described in the plan. The recommendations of the area are bound by the existing edge of pavement and the limits of the excavation shown on the plans, as deemed necessary for construction or as directed by the engineer. Upon completion of the recommended removals (within a 150-foot radius of boring B-10), the revised linear regression analysis of the composite of the upper 2.5 feet of soil remaining on site shall have a TRLC of less than 55 mg/kg and STLC of less than 5 mg/L, thereby clearing restrictions on the reuse of the remaining soil within the project limits.
District 7 ENVIRONMENTAL COMMITMENTS RECORD

(Interstate 110/C Street Interchange Project)

(EA 264800)

(07-LA-110-PM 2.5/3.0)

<table>
<thead>
<tr>
<th>Log No.</th>
<th>Commitment Type</th>
<th>Responsible Party</th>
<th>Monitoring Frequency</th>
<th>Implementation Monitoring Phase</th>
<th>SSP# / NSSP#</th>
<th>Env Doc/ Permits/ Specs/ Plans/ Estimates</th>
<th>Reference</th>
<th>Commitment Measure</th>
<th>Completed Signature Page</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mitigation 7.2</td>
<td>Stockpiling of Excavated Soils</td>
<td>Contractor and LAHD</td>
<td>Weekly/As needed during ground-disturbing and construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.5</td>
<td>Soils from deep excavations (greater than approximately 6 feet, particularly for CIDH pile foundation excavations) shall be stockpiled and secured as potential regulated waste pending environmental evaluation and laboratory testing to determine appropriate disposal or reuse of the excavated soils.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation 7.3</td>
<td>Disposal of TTLC Waste</td>
<td>Contractor</td>
<td>As needed during ground-disturbing activities</td>
<td>Prior to demolition or grading activities</td>
<td>IS/EA Section 2.2.5</td>
<td>Waste with TTLC levels greater than 1,000 mg/kg or STLC levels greater than 5 mg/L, are in excess of California hazardous waste criteria and must be disposed of in a Class I hazardous waste landfill. In addition, waste with TTLC levels greater than 5 mg/L are in excess of federal hazardous waste criteria and must be disposed of in a Class I hazardous waste landfill. A remediation specialist should be consulted for options other than disposal off site.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation 7.4</td>
<td>Lead Compliance Plan</td>
<td>Contractor</td>
<td>Once prior to ground disturbance or grading</td>
<td>Prior to demolition or grading activities</td>
<td>IS/EA Section 2.2.5</td>
<td>The contractor shall prepare a project-specific lead compliance plan to prevent or minimize worker exposure to lead while handling material containing ADL. Attention is directed to Title 8, California Code of Regulations, Section 1532.1, "Lead," for specific California Department of Industrial Relations, Division of Occupational Safety and Health Administration (OSHA), requirements when working with lead.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation 9.1</td>
<td>Equipment Sound-Control Devices</td>
<td>Contractor</td>
<td>Weekly/As needed during construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.7</td>
<td>All equipment will have sound-control devices that are no less effective than those provided on the original equipment. No equipment will have an un muffled exhaust.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation 9.2</td>
<td>Noise Reduction Measures</td>
<td>Contractor</td>
<td>Weekly/As needed during construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.7</td>
<td>Noise control shall conform to the provisions in Section 14-8.02, "Noise Control," of the Standard Specifications and these special provisions. The noise level from the contractor’s operations, between the hours of 7:00 a.m. and 7:00 p.m., shall not exceed 85 dBA at a distance of 50 feet. Construction equipment shall not be operated, nor shall the engines of this equipment be allowed to run, between the hours of 7:00 a.m. and 7:00 p.m. or on Sundays, except that within the limits of the project and subject to control of the engineer, equipment may be operated during the restricted hours to: Service traffic control facilities; Service construction equipment; Perform work that the contract specifies be done during restricted hours; and Saw transverse weakened plane joints in concrete pavement. Minor deviations from this section concerning hours of work that do not significantly change the cost of the work may be permitted upon written request of the contractor if, in the opinion of the engineer, the work will be expedited and will not cause adverse public reaction. The requirements in this section shall not relieve the contractor from responsibility for complying with local ordinances regulating noise levels outside the limits of the state right-of-way. The noise level requirement specified herein shall apply to equipment on the job or related to the job, including trucks, transit mixers, or transient equipment that may or may not be owned by the contractor. The use of loud sound signals shall be avoided in favor of light warnings, except those required by safety laws for the protection of personnel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilities and Emergency Services
District 7 ENVIRONMENTAL COMMITMENTS RECORD
(Interstate 110/C Street Interchange Project)
(EA 264800)
(07-LA-110-PM 2.5/3.0)

<table>
<thead>
<tr>
<th>Log No.</th>
<th>Commitment Type</th>
<th>Responsible Party</th>
<th>Monitoring Frequency</th>
<th>Implementation/ Monitoring Phase</th>
<th>SSP# / NSSP#</th>
<th>Env Doc/ Permits/ Special Plans/ Estimates</th>
<th>Commitment Measure</th>
<th>Completed Signature Page</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimization 3.1</td>
<td>Coordination with Service Providers</td>
<td>LAHD</td>
<td>Once prior to construction</td>
<td>Final Design</td>
<td>IS/EA Section 2.1.3.3</td>
<td>LAHD shall work in close coordination with the utility service providers in advance of construction activities to relocate affected utilities and minimize impacts on consumers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual/Aesthetics</td>
<td>Context-Sensitive Solutions</td>
<td>Design Consultant, LAHD</td>
<td>Once prior to construction</td>
<td>Final Design</td>
<td>IS/EA Section 2.1.3.5</td>
<td>Develop Context-Sensitive Solutions for the aesthetic and landscape treatments of the project elements based on the Caltrans Aesthetic and Landscape Master Plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimization 4.2</td>
<td>Drainage and Water Quality Elements</td>
<td>Construction Contractor, LAHD</td>
<td>Throughout construction</td>
<td>Construction</td>
<td>IS/EA Section 2.1.3.5</td>
<td>Utilize drainage and water quality elements, where required, that maximize the allowable landscape. Place any water quality or detention ponds out of clear view of the interchange and the highway.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimization 4.3</td>
<td>Compatible Groundcover and Landscaping</td>
<td>Construction Contractor, LAHD</td>
<td>Throughout construction</td>
<td>Construction</td>
<td>IS/EA Section 2.1.3.5</td>
<td>Use a visually compatible ornamental groundcover in any detention/water quality basins or geoswales that are located within ornamental landscape areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimization 4.4</td>
<td>Landscaping and Revegetation</td>
<td>Construction Contractor, LAHD</td>
<td>Throughout construction</td>
<td>Construction</td>
<td>IS/EA Section 2.1.3.5</td>
<td>Landscape and revegetate disturbed areas to the greatest extent feasible. Landscaping should include appropriate irrigation, establishment, and maintenance to assure ongoing success of the plantings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural Resources</td>
<td>Mitigation 5.1</td>
<td>Discovery of Cultural Remains</td>
<td>LAHD's Resident Engineer and Contractor</td>
<td>Throughout construction</td>
<td>IS/EA Section 2.1.3.6</td>
<td>If cultural remains are discovered during construction, all construction activity within and around the immediate discovery area shall be stopped until a qualified archaeologist can assess the nature and significance of the find.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigation 5.2</td>
<td>Archaeological Data Recovery</td>
<td>LAHD's Resident Engineer and Contractor</td>
<td>Throughout construction</td>
<td>Construction</td>
<td>IS/EA Section 2.1.3.6</td>
<td>If human remains are discovered, State Health and Safety Code Section 7050.5 states that further disturbances and activities shall cease in any area or nearby area suspected to overlie remains, and the county coroner shall be contacted. Pursuant to Public Resources Code Section 5097.98, if the remains are thought to be Native American, the coroner shall notify the Native American Heritage Commission (NAHC), which shall then notify the Most Likely Descendent (MLD). At this time, the person who discovered the remains shall contact Gary Iverson, Branch Chief of District 7, Division of Environmental Planning, so that he may work with the MLD on the respectful treatment and disposition of the remains. Further provisions of Public Resources Code Section 5097.98 are to be followed as applicable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
District 7 ENVIRONMENTAL COMMITMENTS RECORD

(Interstate 110/C Street Interchange Project)

(EA 264800)

(07-LA-110-PM 2.5/3.0)

<table>
<thead>
<tr>
<th>Log No.</th>
<th>Commitment Type</th>
<th>Responsible Party</th>
<th>Monitoring Frequency</th>
<th>Implementation/Monitoring Phase</th>
<th>SSP# / NSSP#</th>
<th>Env Doc/Permit/Specs/Plans/ Estimates Reference</th>
<th>Commitment Measure</th>
<th>Completed Signature Page</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avoidance 5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Raid Siren #82 Protection</td>
<td></td>
<td>Prior to construction/As needed during construction</td>
<td>Construction</td>
<td>N/A</td>
<td>Air Raid Siren #82 is to be preserved in place. Prior to the start of construction temporary fencing, signage and flagging is to be placed around the perimeter of the air raid siren pole to ensure that it is readily identifiable to avoid damage or removal of the siren. Signage is to include at least one laminated sign no smaller than 8.5 x 11 inches noting the historic property will be preserved in place. Fencing, signage and flagging is to be kept in good condition throughout the duration of construction activities. A qualified architectural historian will monitor condition of the historic property and fencing, signage and flagging during construction of the project. The qualified architectural historian shall attend the pre-construction meeting to inform the attendants of the presence of the historic property and that damage or removal of the historic property is to be avoided. The qualified architectural historian will visit the site once a month to monitor the condition of the historic property. The qualified architectural historian will report to the resident engineer and the Caltrans architectural historian any changes to the condition of the historic property and/or fencing, signage and flagging of these items to ensure their integrity is maintained for the duration of the project.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Paleontology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigation 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program to Mitigate Impacts on Nonrenewable Paleontologic Resources</td>
<td>L AHD</td>
<td>Once before commencing Construction</td>
<td>IS/EA Section 2.2.4</td>
<td></td>
<td>Paleontologist consistent with the proposed guidelines of the Society of Vertebrate Paleontology. This shall include the following: 1) An assessment of site-specific excavation plans to determine areas that shall be designated for paleontological monitoring during initial ground disturbance; 2) Development of monitoring protocols for these designated areas. Areas consisting of artificial fill materials shall not require monitoring. Paleontologists who are qualified according to Society of Vertebrate Paleontology standards shall be equipped to salvage fossils as they are unearthed to avoid construction delays and remove samples of sediments that are likely to contain the remains of small fossil invertebrates and vertebrates. Monitors must be empowered to temporarily halt or divert equipment to allow removal of abundant or large specimens. Monitoring may be reduced if some of the potentially fossiliferous units described herein are determined upon exposure and examination by qualified paleontologic personnel to have a low potential to contain fossil resources; 3) Preparation of all recovered specimens to a point of identification and permanent preservation, including washing of sediments to recover small invertebrates and vertebrates. Preparation and stabilization of all recovered fossils are essential to mitigate adverse impacts on the resources fully. 4) Identification and curation of all specimens into an established, accredited museum repository with permanent retrievable paleontologic storage. These procedures are also essential steps in effective paleontologic mitigation and CEQA compliance (Scott and Springer 2003). The paleontologist must have a written repository agreement in hand prior to the initiation of mitigation activities. Mitigation of adverse impacts on significant paleontologic resources is not considered complete until such curation into an established museum repository has been fully completed and documented; and 5) Preparation of a report of findings with an appended itemized inventory of specimens. The report and inventory, when submitted to the appropriate lead agency, is considered mitigation complete.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazardous Waste/Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following presents mitigation measures and available BMPs for the proposed project. The appropriate BMPs will be chosen when the project needs are more specifically defined.
<table>
<thead>
<tr>
<th>Log No.</th>
<th>Commitment Type</th>
<th>Responsible Party</th>
<th>Monitoring Frequency</th>
<th>Implementation/ Monitoring Phase</th>
<th>Env Doc/ Permit/ Special Plans/ Estimates</th>
<th>Reference</th>
<th>Completed</th>
<th>Signature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mitigation 7.1 Aerially Deposited Lead</td>
<td>Construction Contractor</td>
<td>Once prior to grading and construction</td>
<td>Prior to Construction</td>
<td>IS/EA Section 2.2.5</td>
<td>To reduce the aerially deposited lead levels in the composite soil that shall remain on site, the upper 2.5 feet of soil adjacent to the existing roadways within a 150-foot radius of boring B-10 shall be removed and disposed off site as hazardous waste. The recommended depths of removal for the site are displayed graphically in the ISA. The ultimate extent of the excavation shall consist of the area bound by the existing edge of pavement and the limits of the excavation as shown on the plans, as deemed necessary for construction or as directed by the engineer. Upon completion of the recommended removals (within a 150-foot radius of boring B-10), the revised linear regression analysis of the composite of the upper 2.5 feet of soil remaining on site shall have a TTLC of less than 55 mg/kg and STLC of less than 5 mg/L, thereby clearing restrictions on the reuse of the remaining soil within the project limits.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigation 7.2 Stockpiling of Excavated Soils</td>
<td>Construction Contractor and LAHD</td>
<td>Weekly/ As needed during ground-disturbing and construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.5</td>
<td>Soils from deep excavations (greater than approximately 6 feet, particularly for CIDH pile foundation excavations) shall be stockpiled and secured as potential regulated waste pending environmental evaluation and laboratory testing to determine appropriate disposal or reuse of the excavated soils.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigation 7.3 Disposal of TTLC Waste</td>
<td>Construction Contractor</td>
<td>As needed during ground-disturbing activities</td>
<td>Prior to demolition or grading activities</td>
<td>IS/EA Section 2.2.5</td>
<td>Waste with TTLC levels greater than 1,000 mg/kg or STLC levels greater than 5 mg/L are in excess of California hazardous waste criteria and must be disposed of in a Class I hazardous waste landfill. In addition, waste with TTLC levels greater than 5 mg/L are in excess of federal hazardous waste criteria and must be disposed of in a Class I hazardous waste landfill. A remediation specialist should be consulted for options other than disposal off site.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigation 7.4 Lead Compliance Plan</td>
<td>Construction Contractor</td>
<td>Once prior to ground disturbance or grading</td>
<td>Prior to demolition or grading activities</td>
<td>IS/EA Section 2.2.5</td>
<td>The contractor shall prepare a project-specific lead compliance plan to prevent or minimize worker exposure to lead while handling material containing ADL. Attention is directed to Title 8, California Code of Regulations, Section 1532.1, “Lead,” for specific California Department of Industrial Relations, Division of Occupational Safety and Health Administration (OSHA), requirements when working with lead.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Quality</td>
<td>Minimization 8.1 LAHD Sustainable Construction Guidelines for Reducing Air Emissions</td>
<td>Construction Contractor</td>
<td>Weekly/As needed during construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.6</td>
<td>Construction contractor shall adhere to the current LAHD Sustainable Construction Guidelines for Reducing Air Emissions during project construction phase. The LAHD shall determine the applicable BMP’s once the contractor identifies and secures a final equipment list and project scope.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>Mitigation 9.1 Equipment Sound-Control Devices</td>
<td>Construction Contractor</td>
<td>Weekly/As needed during construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.7</td>
<td>As directed by LAHD, the contractor will implement appropriate additional noise mitigation measures, including changing the location of stationary construction equipment, turning off idling equipment, rescheduling construction activity, notifying adjacent residents in advance of construction work, and installing acoustic barriers around stationary construction noise sources.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigation 9.2 Noise Reduction Measures</td>
<td>Construction Contractor</td>
<td>Weekly/As needed during construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.7</td>
<td>As directed by LAHD, the contractor will implement appropriate additional noise mitigation measures, including changing the location of stationary construction equipment, turning off idling equipment, rescheduling construction activity, notifying adjacent residents in advance of construction work, and installing acoustic barriers around stationary construction noise sources.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
District 7 ENVIRONMENTAL COMMITMENTS RECORD

(Interstate 110/C Street Interchange Project)

(EA 264800)

(07-LA-110-PM 2.5/3.0)

<table>
<thead>
<tr>
<th>Log No.</th>
<th>Commitment Type</th>
<th>Responsible Party</th>
<th>Monitoring Frequency</th>
<th>Implementation/ Monitoring Phase</th>
<th>SSP# / NSSP#</th>
<th>Env Doc/ Permit/ Spec/ Plans/ Estimates</th>
<th>REFERENCE</th>
<th>Commitment Measure</th>
<th>Completed Signature Page</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigation 9.3</td>
<td>Noise Control Specifications</td>
<td>Construction Contractor</td>
<td>Weekly/As needed during construction activities</td>
<td>Construction</td>
<td>IS/EA Section 2.2.7</td>
<td>Noise control shall conform to the provisions in Section 14-8.02, “Noise Control”, of the Standard Specifications and these special provisions. The noise level from the contractor’s operations, between the hours of 7:00 a.m. and 7:00 p.m., shall not exceed 85 dBA at a distance of 50 feet. Construction equipment shall not be operated, nor shall the engines of this equipment be allowed to run, between the hours of 7:00 p.m. and 7:00 a.m. or on Sundays, except that within the limits of the project and subject to control of the engineer, equipment may be operated during the restricted hours to: Service traffic control facilities; Service construction equipment; Perform work that the contract specifies be done during restricted hours; and Save transverse weakened plane joints in concrete pavement. Minor deviations from this section concerning hours of work that do not significantly change the cost of the work may be permitted upon written request of the contractor if, in the opinion of the engineer, the work will be expedited and will not cause adverse public reaction. The noise level requirement specified herein shall apply to equipment on the job or related to the job, including trucks, transit mixers, or transient equipment that may or may not be owned by the contractor. The use of loud sound signals shall be avoided in favor of light warnings, except those required by safety laws for the protection of personnel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimization 10.1</td>
<td>Water Pollution and Erosion Control Plans</td>
<td>Construction Contractor and LAHD</td>
<td>Prior to and During Construction</td>
<td>IS/EA Sections 2.3.1 and 2.3.2</td>
<td>Water pollution and erosion control plans shall be developed and implemented in accordance RWQCB requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimization 10.2</td>
<td>Runoff Minimization and Prevention</td>
<td>Construction Contractor</td>
<td>Prior to and During Construction</td>
<td>IS/EA Sections 2.3.1 and 2.3.2</td>
<td>Equipment storage, fueling, and staging areas shall be located on upland sites with minimal risks of direct drainage into sensitive habitats (i.e., EFH) and in such a manner as to prevent any runoff from entering sensitive habitat. Necessary precautions shall be taken to prevent the release of cement or other toxic substances into surface waters. Project-related spills of hazardous materials shall be reported to appropriate entities, including applicable jurisdictional city, U.S. Fish and Wildlife Service (USFWS), and California Department of Fish and Game (CDFG), and RWQCB agencies. The spills shall be cleaned up immediately and contaminated soils removed to approved disposal areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimization 10.3</td>
<td>Footprint Minimization</td>
<td>Construction Contractor</td>
<td>Prior to and During Construction</td>
<td>IS/EA Sections 2.3.1 and 2.3.2</td>
<td>Construction employees shall strictly limit activities, vehicles, equipment, and construction materials at the proposed project footprint and designated staging areas and routes of travel. The construction area(s) shall be the minimal area necessary to complete the project and shall be specified in the construction plans. Employees shall be instructed that their activities are restricted to the construction areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix D_ECR_Revised_04_23_12 6 of 7 5/9/2012
Appendix G: Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/m³</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>AADT</td>
<td>annual average daily traffic</td>
</tr>
<tr>
<td>AB 1493</td>
<td>Assembly Bill 1493</td>
</tr>
<tr>
<td>AB 32</td>
<td>Assembly Bill 32</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
</tr>
<tr>
<td>ACTA</td>
<td>Alameda Corridor Transportation Authority</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>ADL</td>
<td>aerially deposited lead</td>
</tr>
<tr>
<td>ADT</td>
<td>average daily traffic</td>
</tr>
<tr>
<td>AFY</td>
<td>acre-feet per year</td>
</tr>
<tr>
<td>APE</td>
<td>area of potential effects</td>
</tr>
<tr>
<td>AQMP</td>
<td>air quality management plan</td>
</tr>
<tr>
<td>AQSR</td>
<td>Air Quality Study Report</td>
</tr>
<tr>
<td>ATCMs</td>
<td>Airborne Toxic Control Measures</td>
</tr>
<tr>
<td>Basin</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>BMPs</td>
<td>best management practices</td>
</tr>
<tr>
<td>BOD</td>
<td>biochemical oxygen demand</td>
</tr>
<tr>
<td>BSA</td>
<td>Biological Study Area</td>
</tr>
<tr>
<td>BT&H</td>
<td>Business, Transportation, and Housing</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>Cal-IPC</td>
<td>California Invasive Plant Council</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CDFA</td>
<td>California Department of Food and Agriculture</td>
</tr>
<tr>
<td>CDFG</td>
<td>California Department of Fish and Game</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act of 1980</td>
</tr>
<tr>
<td>CERFA</td>
<td>Community Environmental Response Facilitation Act</td>
</tr>
<tr>
<td>CESA</td>
<td>California Endangered Species Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CNDDB</td>
<td>California Natural Diversity Database</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CNPS</td>
<td>California Native Plant Society</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂e</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>CZMA</td>
<td>Coastal Zone Management Act of 1972</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>DO</td>
<td>oxygen, dissolved</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Resources</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habitat</td>
</tr>
<tr>
<td>EIS/EIR</td>
<td>environmental impact statement/environmental impact report</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FESA</td>
<td>Federal Endangered Species Act</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FIFRA</td>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Map</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GSRDs</td>
<td>gross solids removal devices</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HCP</td>
<td>Habitat Conservation Plan</td>
</tr>
<tr>
<td>HEI</td>
<td>Health Effects Institute</td>
</tr>
<tr>
<td>HFCs</td>
<td>hydrofluorocarbons</td>
</tr>
<tr>
<td>I-405</td>
<td>Interstate 405</td>
</tr>
<tr>
<td>IAC</td>
<td>interagency consultation</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IRIS</td>
<td>Integrated Risk Information System</td>
</tr>
<tr>
<td>ISA</td>
<td>Initial Site Assessment</td>
</tr>
<tr>
<td>ITS</td>
<td>intelligent transportation systems</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>LACM</td>
<td>Natural History Museum of Los Angeles County</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LADWP</td>
<td>Los Angeles Department of Water and Power</td>
</tr>
<tr>
<td>LAHD</td>
<td>Los Angeles Harbor Department</td>
</tr>
<tr>
<td>LBP</td>
<td>lead-based paint</td>
</tr>
<tr>
<td>LCP</td>
<td>Local Coastal Program</td>
</tr>
<tr>
<td>Leq</td>
<td>equivalent noise level</td>
</tr>
<tr>
<td>Leq(H)</td>
<td>hourly noise equivalent sound level</td>
</tr>
<tr>
<td>LOS</td>
<td>level of service</td>
</tr>
<tr>
<td>LUST</td>
<td>leaking underground storage tank</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
</tr>
<tr>
<td>MBA</td>
<td>methylene blue activated</td>
</tr>
<tr>
<td>mby</td>
<td>million barrels per year</td>
</tr>
<tr>
<td>MCE</td>
<td>Maximum Credible Earthquake</td>
</tr>
<tr>
<td>mg/kg</td>
<td>milligrams per kilogram</td>
</tr>
<tr>
<td>MLD</td>
<td>Most Likely Descendent</td>
</tr>
<tr>
<td>MLLW</td>
<td>mean lower low water</td>
</tr>
<tr>
<td>MPO</td>
<td>Metropolitan Planning Organization</td>
</tr>
<tr>
<td>MSATs</td>
<td>mobile-source air toxics</td>
</tr>
<tr>
<td>MSHCP</td>
<td>Multiple Species Habitat Conservation Plan</td>
</tr>
<tr>
<td>MSL</td>
<td>mean sea level</td>
</tr>
<tr>
<td>MTBE</td>
<td>methyl tertiary butyl ether</td>
</tr>
<tr>
<td>MW</td>
<td>Moment Magnitude</td>
</tr>
<tr>
<td>N2O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAC</td>
<td>noise abatement criteria</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>NCC</td>
<td>Notice of Construction Completion</td>
</tr>
<tr>
<td>NCCCP</td>
<td>Natural Community Conservation Plan</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NFIP</td>
<td>National Flood Insurance Program</td>
</tr>
<tr>
<td>NHPCA</td>
<td>National Historic Preservation Act of 1966</td>
</tr>
<tr>
<td>NO2</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOA</td>
<td>naturally occurring asbestos</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOC</td>
<td>Notice of Construction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>NTU</td>
<td>nephelometric turbidity units</td>
</tr>
<tr>
<td>O<sub>3</sub></td>
<td>ozone</td>
</tr>
<tr>
<td>Ocean Plan</td>
<td>Water Quality Control Plan for Ocean Waters of California</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PA</td>
<td>Programmatic Agreement</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PAL</td>
<td>project area limits</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>PCBs</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PFCs</td>
<td>perfluorocarbons</td>
</tr>
<tr>
<td>PM10</td>
<td>particulate matter less than or equal to 10 microns in diameter</td>
</tr>
<tr>
<td>PM2.5</td>
<td>particulate matter less than or equal to 2.5 microns in diameter</td>
</tr>
<tr>
<td>PMCLs</td>
<td>Primary Maximum Contaminant Levels</td>
</tr>
<tr>
<td>POAQC</td>
<td>projects of air quality concern</td>
</tr>
<tr>
<td>PPMP</td>
<td>Pollution Prevention and Monitoring Program</td>
</tr>
<tr>
<td>PTMP</td>
<td>Port Transportation Management Plan</td>
</tr>
<tr>
<td>RCP</td>
<td>Regional Comprehensive Plan</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act of 1976</td>
</tr>
<tr>
<td>ROG</td>
<td>reactive organic gas</td>
</tr>
<tr>
<td>RSA</td>
<td>resource study area</td>
</tr>
<tr>
<td>RTIP</td>
<td>Regional Transportation Improvement Program</td>
</tr>
<tr>
<td>RTP</td>
<td>Regional Transportation Plan</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SCAB</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>SCAG</td>
<td>Southern California Association of Governments</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SCIG</td>
<td>Southern California International Gateway</td>
</tr>
<tr>
<td>SF<sub>6</sub></td>
<td>sulfur hexafluoride</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SMCLs</td>
<td>Secondary Maximum Contaminant Levels</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>STLCC</td>
<td>soluble threshold limit concentration</td>
</tr>
<tr>
<td>SWMP</td>
<td>State Stormwater Management Plan</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TACs</td>
<td>toxic air contaminants</td>
</tr>
<tr>
<td>TCLP</td>
<td>toxicity characterization leaching procedure</td>
</tr>
<tr>
<td>TDC</td>
<td>Targeted Design Constituents</td>
</tr>
<tr>
<td>Thermal Plan</td>
<td>Water Quality Control Plan for Control of Temperature in the Coastal and Interstate Waters and Enclosed Bays and Estuaries of California</td>
</tr>
<tr>
<td>TMP</td>
<td>Traffic Management Plan</td>
</tr>
<tr>
<td>TNM®</td>
<td>Traffic Noise Model</td>
</tr>
<tr>
<td>TOG</td>
<td>total organic gas</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>TSM</td>
<td>transportation systems management</td>
</tr>
<tr>
<td>TTLC</td>
<td>total threshold limit concentration</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>UWMP</td>
<td>Urban Water Management Plan</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>RTP ID</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>L</td>
<td>LA0F003</td>
</tr>
<tr>
<td>L</td>
<td>LA0F004</td>
</tr>
<tr>
<td>L</td>
<td>LA0F005</td>
</tr>
<tr>
<td>L</td>
<td>LA0F006</td>
</tr>
<tr>
<td>L</td>
<td>LA0F007</td>
</tr>
<tr>
<td>L</td>
<td>LA0F008</td>
</tr>
<tr>
<td>L</td>
<td>LA0F009</td>
</tr>
<tr>
<td>L</td>
<td>LA0F010</td>
</tr>
<tr>
<td>L</td>
<td>LA0F011</td>
</tr>
<tr>
<td>L</td>
<td>LA0F016</td>
</tr>
<tr>
<td>L</td>
<td>LA0F019</td>
</tr>
<tr>
<td>L</td>
<td>LA0F020</td>
</tr>
<tr>
<td>L</td>
<td>LA0F030</td>
</tr>
<tr>
<td>L</td>
<td>LA0F033</td>
</tr>
<tr>
<td>L</td>
<td>LA0F038</td>
</tr>
</tbody>
</table>
Project Listing

Final 2008 Regional Transportation Improvement Program -- Los Angeles County

<table>
<thead>
<tr>
<th>ProjectID</th>
<th>County</th>
<th>Air Basin</th>
<th>Model</th>
<th>RTP ID</th>
<th>Program</th>
<th>Route</th>
<th>Begin</th>
<th>End</th>
<th>System</th>
<th>Conformity Category</th>
<th>Amend</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA0891</td>
<td>Los Angeles</td>
<td>SCAB</td>
<td></td>
<td>LA0891</td>
<td>NCR31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXEMPT</td>
<td>0</td>
<td>2008</td>
</tr>
</tbody>
</table>

ROSEMEAD BLVD/HWY 19 RENOVATION PROJECT - NON-CAPACITY

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMO-SAFETEA-LU</td>
<td>3.60</td>
<td>3.60</td>
<td>2.688</td>
<td>672</td>
<td>672</td>
<td>3.60</td>
<td>3.60</td>
<td>2.688</td>
<td>672</td>
<td>672</td>
<td>672</td>
<td>3.60</td>
</tr>
<tr>
<td>DEMO - TEA 21</td>
<td>1.25</td>
<td>1.25</td>
<td>1.250</td>
<td>1250</td>
<td>1250</td>
<td>1.25</td>
<td>1.25</td>
<td>1.250</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1.250</td>
</tr>
<tr>
<td>CITY FUNDS</td>
<td>5.426</td>
<td>5.426</td>
<td>1.796</td>
<td>3.003</td>
<td>627</td>
<td>3.003</td>
<td>627</td>
<td>3.003</td>
<td>627</td>
<td>3.003</td>
<td>627</td>
<td>5.426</td>
</tr>
<tr>
<td>TRAFFIC CONGESTION RELIEF</td>
<td>3.113</td>
<td>3.113</td>
<td>2.326</td>
<td>787</td>
<td>787</td>
<td>3.113</td>
<td>3.113</td>
<td>2.326</td>
<td>787</td>
<td>787</td>
<td>787</td>
<td>3.113</td>
</tr>
<tr>
<td>LA996340 Total</td>
<td>1.747</td>
<td>1.747</td>
<td>41.609</td>
<td>42.107</td>
<td>5.249</td>
<td>47.983</td>
<td>47.983</td>
<td>42.107</td>
<td>5.249</td>
<td>47.983</td>
<td>47.983</td>
<td>47.983</td>
</tr>
</tbody>
</table>

MISSION BLVD. GRADE SEPARATION AT SR. 71(FROM UPRR UNDERCROSING TO 9TH ST. MISSION BLVD FROM WESTERN TO CURRAN PLACE (CFP 6340, 8400). PPNO 2232. SAFETEA-LU # 511 (PPNO 2232)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMO-SAFETEA-LU</td>
<td>4.00</td>
</tr>
<tr>
<td>PORT FUNDS</td>
<td>15.332</td>
<td>15.332</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>7.666</td>
<td>7.666</td>
<td>7.666</td>
<td>7.666</td>
<td>7.666</td>
<td>16.332</td>
<td>16.332</td>
</tr>
</tbody>
</table>

THE PROJECT IMPROVES THE INTERSECTION AND I-110 ON/OFF-RAMPS AT JOHN S. GIBSON; AND ENHANCES THE OPERATION AND SAFETY OF THE I-110/SR 47/HARBOR BLVD INTERCHANGE CONNECTOR(SAFETEA-LU HPP # 2885. Addition of left and right turn lanes. Length of project - 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PORT FUNDS</td>
<td>15.151</td>
<td>15.151</td>
<td>5.652</td>
<td>3.944</td>
<td>5.555</td>
<td>15.151</td>
<td>15.151</td>
<td>5.652</td>
<td>3.944</td>
<td>5.555</td>
<td>15.151</td>
<td>15.151</td>
</tr>
</tbody>
</table>

Project will improve flow of traffic from I-110 Fwy on/off-ramps at C Street by consolidating two closely spaced intersections into one.

Print Date: 7/17/2008 8:57:07 AM
Page: 70 of 83
MEETING OF THE
TRANSPORTATION CONFORMITY WORKING GROUP

Tuesday, January 26, 2009
10:00 a.m. – 12:00 p.m.

SCAG Offices
Policy Committee A Conference Room
818 West 7th, 12th Floor
Los Angeles, CA 90017
213.236.1800

Teleconference
Call-in Telephone: (866) 680-0148
Passcode: 357777

If members of the public wish to review the attachments or have any questions on any of the agenda items, please contact:

Jonathan Nadler at 213.236.1884 or nadler@scag.ca.gov
Rongsheng Luo at 213.236.1994 or luo@scag.ca.gov

SCAG, in accordance with the Americans with Disabilities Act (ADA), will accommodate persons who require a modification of accommodation in order to participate in this meeting. If you require such assistance, please contact SCAG at (213) 236-1868 at least 72 hours in advance of the meeting to enable SCAG to make reasonable arrangements. To request documents related to this document in an alternative format, please contact (213) 236-1868.
Transportation Conformity Working Group

AGENDA

1.0 CALL TO ORDER AND SELF-INTRODUCTION Shirley Medina, RCTC

2.0 PUBLIC COMMENT PERIOD
Members of the public desiring to speak on an agenda item or items not on the agenda, but within the purview of the TCWG, must fill out a speaker's card prior to speaking and submit it to the Staff Assistant. A speaker's card must be turned in before the meeting is called to order. Comments will be limited to three minutes. The Chair may limit the total time for comments to twenty (20) minutes.

3.0 CONSENT CALENDAR
 3.1 TCWG Minutes of December 1, 2009 3.1-1
 Attachment

4.0 INFORMATION ITEMS
 4.1 Review of PM Hot Spot Interagency Review Forms TCWG Discussion 4.1-1 30 minutes
 Attachment
 4.2 Review of PM Hot Spot Qualitative Analyses TCWG Discussion 4.2-1 15 minutes
 Attachment
 4.3 TCM Substitution Request Kurt Brotcke & Anup Kulkarni, OCTA 4.3-1 15 minutes
 Attachment
 4.4 RTIP Update John Asuncion, SCAG 5 minutes
 4.5 RTP Update Ryan Kuo, SCAG 5 minutes
 4.6 SB375 Update Jonathan Nadler, SCAG 5 minutes
 4.7 ARB Update Dennis Wade, ARB 5 minutes
 4.8 EPA Update Karina O’Connor, EPA 5 minutes
 4.9 Air Districts Update District Representatives 20 minutes
 Imperial County/Mojave Desert/South Coast/Ventura County

5.0 INFORMATION SHARING 10 minutes

6.0 ADJOURNMENT
The next meeting of the Transportation Conformity Working Group will be on Tuesday, February 23, 2010 at the SCAG office in downtown Los Angeles.
TCWG Project-Level
PM Hot Spot Analysis Project Lists

Review of PM Hot Spot Interagency Review Forms

<table>
<thead>
<tr>
<th>January 2010</th>
<th>Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA0C8086</td>
<td></td>
</tr>
<tr>
<td>LA0C8086 Attachment 1</td>
<td></td>
</tr>
<tr>
<td>LA0C8086 Attachment 2</td>
<td></td>
</tr>
<tr>
<td>LA0C8086 Attachment 3</td>
<td></td>
</tr>
<tr>
<td>LA0D390</td>
<td></td>
</tr>
<tr>
<td>LA0D390 Figures</td>
<td></td>
</tr>
<tr>
<td>LA0F030</td>
<td></td>
</tr>
<tr>
<td>LA0F030 Figures</td>
<td></td>
</tr>
<tr>
<td>ORA030612</td>
<td></td>
</tr>
<tr>
<td>ORA030612 Figures</td>
<td></td>
</tr>
<tr>
<td>ORA030612 References</td>
<td></td>
</tr>
<tr>
<td>ORA2A0803</td>
<td></td>
</tr>
<tr>
<td>ORA2A0803 Figure 1</td>
<td></td>
</tr>
<tr>
<td>SBD200435</td>
<td></td>
</tr>
<tr>
<td>SBD200435 Attachment A</td>
<td></td>
</tr>
</tbody>
</table>
THE FOLLOWING MINUTES ARE A SUMMARY OF THE MEETING OF THE TRANSPORTATION CONFORMITY WORKING GROUP. AN AUDIOCASSETTE TAPE OF THE ACTUAL MEETING IS AVAILABLE FOR LISTENING IN SCAG’S OFFICE.

The Meeting of the Transportation Conformity Working Group was held at the SCAG office in Los Angeles.

In Attendance:
Abrishami, Lori LACMTA
Brotcke, Kurt OCTA
Chyn, Wenn City of Los Angeles
Holguin, Lee URS Corporation
Kulkarni, Anup OCTA
Medina, Shirley Riverside County Transportation Commission
Moore, Linda City of Los Angeles
Smolke, Brian OCTA
Walecka, Carla TCA

SCAG
Asuncion, John
Luo, Rongsheng
Nadler, Jonathan
Sangkapichai, Mana
Sherwood, Arnie

Via Teleconference:
Brady, Kathleen Bon Terra Consulting
Brady, Mike Caltrans Headquarters
Cacatian, Ben VCAPCD
David, Kris City of Los Angeles
Drummonds, Eyvonne SCAQMD
Estrada, Romeo Caltrans, District 12
Fagan, Paul Caltrans, District 8
Gallo, Ilene Caltrans Headquarters
Gardiam, Solush URS Corporation
Hill, Shannon ICF International
Jones, Matt Mestre Greve Associates
Karis, Kutuma URS Corporation
Mahdavi, Sarvy EPA Region 9
Morcis, David RBF consulting
TRANSPORTATION CONFORMITY WORKING GROUP
of the
SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS

January 26, 2010
Minutes

O’Connor, Karina U.S. EPA, Region 9
Odufalu, Olufemi Caltrans, District 8
Tax, Wienke EPA Region 9
Torres, Eddie RBF Consulting
Williams, Leann Caltrans, District 7
Yoon, Andrew Caltrans, District 7

1.0 CALL TO ORDER
Shirley Medina, RCTC, called the meeting to order at 10:12 a.m.

2.0 PUBLIC COMMENT PERIOD
There were no comments.

3.0 CONSENT CALENDAR
3.1 Approval Item
3.1.1 TCWG December 1, 2009 Meeting Minutes
Clarification: Under Item 4.6 Air Districts Update/VCAPCD, only the motor vehicle emissions budgets of the Ventura County 8-hour Early Progress Plan were found adequate for conformity.
The minutes were approved with the above clarification.

4.0 INFORMATION ITEMS
4.1 Review of PM Hot Spot Interagency Review Forms
1) LA0C8086
It was determined that this is not a POAQC.
(FHWA concurrence was received after the meeting).
2) LA0D390
It was determined that this is not a POAQC.
(FHWA concurrence was received after the meeting).
TRANSPORTATION CONFORMITY WORKING GROUP
of the
SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS
January 26, 2010
Minutes

In response to TCWG comments, the project sponsor will provide additional information to: 1) clarify the relationship between this project and LA0F030 and; and 2) show improvements in overall delay and emissions when combining these two projects.

3) LA0F030

It was determined that this is not a POAQC.
(FHWA concurrence was received after the meeting).

In response to TCWG comments, the project sponsor will provide additional information to: 1) clarify the relationship between this project and LA0D390; and 2) show improvements in overall delay and emissions when combining these two projects.

4) ORA030612

In response to TCWG comments, the project sponsor will provide additional information on emissions from additional stops and starts by diesel commuter trains and an analysis of their impact, if any, on the residents living adjacent to the tracks.

5) ORA2A0803

It was determined that this is not a POAQC.
(FHWA concurrence was received after the meeting).

6) SBD200435

It was determined that this is not a POAQC.
(FHWA concurrence was received after the meeting).

4.2 Review of PM Hot Spot Qualitative Analyses

SBD20061201 I-15/I-215 Interchange

The project sponsor will follow up and address the following TCWG comments:

1. Need additional information, either in the report or cover letter, on which alternative is chosen and its emission reduction. Alternative 3a was suggested as a preferred alternative. Alternatives 2 and 3a are acceptable because they show a design decrease from no project for PM.

2. Sponsor letter head would be sufficient for the additional documentation. If EA already done identifying locally prefer alternative, the document could be used.

3. The locally preferred alternative is acceptable from the emission standpoint based on the report. However, some of alternatives in the report do not reduce emissions
TRANSPORTATION CONFORMITY WORKING GROUP
of the
SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS

January 26, 2010
Minutes

compared to no project. Thus, the judgment would not hold if the alternative will be changed in the future to a different alternative that either increases emissions compared to no project or has not been analyzed.

4.3 TCM Substitution Request

Kurt Brotcke, OCTA, presented an overview of OCTA’s request to substitute three TCM projects – the bus rapid transit (BRT) lines on Bristol Street/State College Blvd. (ORA110501), Harbor Blvd. (ORA120531), and Westminster Ave./17th St. (ORA120532) with traffic synchronization projects on the same three corridors. Anup Kulkarni, OCTA, gave a presentation on the methodology and results of the emissions analysis for the proposed TCM substitutions.

In response to comments from TCWG members, OCTA will provide additional information regarding funding and legal authority to implement the substitution TCM projects.

4.4 RTIP Update

John Asuncion, SCAG, reported the following:
• 2011 FTIP submittals were due the week of January 25.
• 2008 RTP Amendment #2/ and 2008 RTIP Amendment #24 were approved on January 22.
• All 2008 RTIP Amendments through #30 have been approved with the only exception of Amendment #28 which was under federal review for approval.
• 2008 RTIP Amendment #31 was also under federal review for approval.
• 2008 RTIP Amendments #32-34 were under analysis by SCAG staff.

4.5 RTP Update

Jonathan Nadler, SCAG, reported the following:
• SCAG received about 300 projects from five County Transportation Commissions (CTCs) for 2008 RTP Amendment #3.
• Staff continued working to get relevant information from CTCs and to perform conformity analyses for the Amendment.
• Staff planned to ask the SCAG Transportation Committee to release the document in February.

4.6 SB 375 Update

Jonathan Nadler, SCAG, reported that SCAG continues its extensive public outreach process.
4.7 ARB UPDATE
No update.

4.8 EPA Update
No update.

4.9 Air Districts Update

SCAQMD
Eyvonne Drummonds, SCAQMD, reported that SCAQMD had submitted to ARB:
1) the PM10 redesignation requests and maintenance plans for South Coast Air Basin (SCAB) and Coachella Valley;
2) revisions to the ozone and PM2.5 motor vehicle emissions budgets for SCAB to reflect mobile source rules recently adopted by ARB through 2008; and
3) revisions to the ozone budgets for Coachella Valley to reflect mobile source rules recently adopted by ARB through 2008.

VCAPCD
No update.

5.0 INFORMATION SHARING

EPA will hold a public hearing for the proposed rule, "Reconsideration of the 2008 National Ambient Air Quality Standards for Ozone." The hearings will be held in Sacramento, California, on Thursday, February 4, 2010.

SCAG welcomed and introduced Mana Sangkapichai as a new air quality and modeling staff member. Mr. Sangkapichai will provide staff support to TCWG as part of his assignments.

6.0 ADJOURNMENT

Shirley Medina adjourned the meeting at 11:10 a.m.

The next Transportation Conformity Working Group meeting will be held on February 23, 2010 at the SCAG office in Los Angeles.
TCWG Project-Level
PM Hot Spot Analysis Project Lists

Review of PM Hot Spot Interagency Review Forms

<table>
<thead>
<tr>
<th>January 2010</th>
<th>Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA0C8086</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>LA0C8086 Attachment 1</td>
<td></td>
</tr>
<tr>
<td>LA0C8086 Attachment 2</td>
<td></td>
</tr>
<tr>
<td>LA0C8086 Attachment 3</td>
<td></td>
</tr>
<tr>
<td>LA0D390</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>LA0D390 Figures</td>
<td></td>
</tr>
<tr>
<td>LA0F030</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>LA0F030 Figures</td>
<td></td>
</tr>
<tr>
<td>ORA030612</td>
<td></td>
</tr>
<tr>
<td>ORA030612 Figures</td>
<td></td>
</tr>
<tr>
<td>ORA030612 References</td>
<td></td>
</tr>
<tr>
<td>ORA2A0803</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>ORA2A0803 Figure 1</td>
<td></td>
</tr>
<tr>
<td>SBD200435</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD200435 Attachment A</td>
<td></td>
</tr>
</tbody>
</table>
MEETING OF THE
TRANSPORTATION CONFORMITY WORKING GROUP

Tuesday, April 27, 2010
10:00 a.m. – 12:00 p.m.

SCAG Offices
Policy Committee A Conference Room
818 West 7th, 12th Floor
Los Angeles, CA 90017
213.236.1800

Teleconference
Call-in Telephone: (866) 680-0148
Passcode: 357777

If members of the public wish to review the attachments or have any questions on any of the agenda items, please contact:

Jonathan Nadler at 213.236.1884 or nadler@scag.ca.gov
Rongsheng Luo at 213.236.1994 or luo@scag.ca.gov

SCAG, in accordance with the Americans with Disabilities Act (ADA), will accommodate persons who require a modification of accommodation in order to participate in this meeting. If you require such assistance, please contact SCAG at (213) 236-1868 at least 72 hours in advance of the meeting to enable SCAG to make reasonable arrangements. To request documents related to this document in an alternative format, please contact (213) 236-1868.
Transportation Conformity Working Group

AGENDA

<table>
<thead>
<tr>
<th>P A G E #</th>
<th>T I M E</th>
</tr>
</thead>
</table>

1.0 CALL TO ORDER AND SELF-INTRODUCTION

Lisa Poe, SANBAG

2.0 PUBLIC COMMENT PERIOD

Members of the public desiring to speak on an agenda item or items not on the agenda, but within the purview of the TCWG, must fill out a speaker's card prior to speaking and submit it to the Staff Assistant. A speaker's card must be turned in before the meeting is called to order. Comments will be limited to three minutes. The Chair may limit the total time for comments to twenty (20) minutes.

3.0 CONSENT CALENDAR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>TCWG Minutes of March 23, 2010</td>
</tr>
<tr>
<td>3.1-1</td>
<td>Attachment (3.1-1)</td>
</tr>
</tbody>
</table>

4.0 INFORMATION ITEMS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Review of PM Hot Spot Interagency Review Forms Attachment (4.1-1) TCWG Discussion 4.1-1 30 minutes</td>
</tr>
<tr>
<td>4.2</td>
<td>Proposed TCM Substitution Attachment (4.2-1) Tony Louka, Caltrans District 8 4.2-1 15 minutes</td>
</tr>
<tr>
<td>4.3</td>
<td>RTIP Update John Asuncion, SCAG 5 minutes</td>
</tr>
<tr>
<td>4.4</td>
<td>RTP Update Ryan Kuo, SCAG 5 minutes</td>
</tr>
<tr>
<td>4.5</td>
<td>Proposed RTP/RTIP Conformity Analysis for the 2006 PM2.5 NAAQS Rongsheng Luo, SCAG 4.5-1 15 minutes</td>
</tr>
<tr>
<td>4.6</td>
<td>SB375 Update Jonathan Nadler, SCAG 5 minutes</td>
</tr>
<tr>
<td>4.7</td>
<td>ARB Update Dennis Wade, ARB 5 minutes</td>
</tr>
<tr>
<td>4.8</td>
<td>EPA Update Karina O’Connor, EPA 5 minutes</td>
</tr>
<tr>
<td>4.9</td>
<td>Air Districts Update District Representatives 15 minutes</td>
</tr>
</tbody>
</table>

5.0 INFORMATION SHARING

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 INFORMATION SHARING</td>
</tr>
<tr>
<td>10 minutes</td>
</tr>
</tbody>
</table>

6.0 ADJOURNMENT

The next meeting of the Transportation Conformity Working Group will be on Tuesday, May 25, 2010 at the SCAG office in downtown Los Angeles.
TCWG Project-Level
PM Hot Spot Analysis Project Lists

Review of PM Hot Spot Interagency Review Forms

<table>
<thead>
<tr>
<th>April 2010</th>
<th>Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>LADF030</td>
<td>Project sponsor provided additional information in response to TCWG comments. (It was determined that this was not a POAQC at the January 26, 2010 TCWG meeting)</td>
</tr>
<tr>
<td>LALS06</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>ORA040602</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>ORA120521</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD20040826 and SBD200619</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD-200622</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD200622 Attachment</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD-200622 Figure 1A</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD-200622 Figure 1B</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD-200622 Figure 2</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
<tr>
<td>SBD-200850</td>
<td>Not a POAQC - Hot Spot analysis not required</td>
</tr>
</tbody>
</table>
Project Description (clearly describe project)

The Build Alternative proposes the following improvements to the C Street interchange. Please refer to the attached figures for project location, project vicinity and the build alternative showing the proposed lane configuration (Figure 1, Figure 2, Figure 3 and Figure 4).

- Replace the two existing intersections (one at C Street/Figueroa Street and the other at John S. Gibson Boulevard/Harry Bridges Boulevard/Figueroa Street) with one new intersection that would align Harry Bridges Boulevard and John S. Gibson Boulevard with the C Street interchange;
- Permanently close access to Figueroa Street from C Street and provide a standard cul-de-sac at the existing intersection;
- Remove the existing northbound I-110 off-ramp and provide a new, more direct off-ramp to eastbound Harry Bridges Boulevard. This would involve widening the Union Oil undercrossing and constructing a new separation structure over John S. Gibson Boulevard;
- Provide a dedicated right-turn lane from the I-110 southbound off-ramp to southbound John S. Gibson Boulevard;
- Provide a dedicated right-turn lane from northbound John S. Gibson Boulevard to eastbound Harry Bridges Boulevard;
- Widen the new intersection to accommodate dual left-turn pockets from westbound Harry Bridges Boulevard to southbound John S. Gibson Boulevard; and
- Use the parcel bounded by I-110, Figueroa Street, and John S. Gibson Boulevard (assessor’s parcel number [APN] 7417-001-900) as a construction staging area.

Type of Project (use Table 1 on instruction sheet)

Reconfigure existing interchange

County
Los Angeles

Narrative Location/Route & Postmiles
The proposed project is located in the community of Wilmington, City of Los Angeles, Los Angeles County, California. The proposed project’s construction limits extend north to C Street, south to the D Street undercrossing of the I-110, west to I-110, and east to approximately King Street (Figure 2).

Caltrans Projects – EA 246800

Lead Agency: California Department of Transportation, District 7
Contact Person: Andrew Yoon
Phone#: 213-897-6117
Fax#: 213-897-1634
Email: andrew.yoon@dot.ca.gov

Hot Spot Pollutant of Concern (check one or both) PM2.5 X PM10 X

Federal Action for which Project-Level PM Conformity is Needed (check appropriate box)

<table>
<thead>
<tr>
<th>Categorical Exclusion (NEPA)</th>
<th>X</th>
<th>EA or Draft EIS</th>
<th>FONSI or Final EIS</th>
<th>PS&E or Construction</th>
<th>Other</th>
</tr>
</thead>
</table>

Scheduled Date of Federal Action:

NEPA Delegation – Project Type (check appropriate box)

Excluded

Section 6004 – NEPA Categorical Exclusions (CEs) X

Section 6005 – All NEPA document types (i.e. CEs, EAs, EIS)

Current Programming Dates (as appropriate)
Project Purpose and Need (Summary): (attach additional sheets as necessary)
The purpose of the proposed project is to accomplish the following objectives:

- To improve traffic operations at the C Street/Figueroa Street intersection and reduce vehicular delays, and
- To meet the Department’s goal of maximizing the performance and accessibility of transportation systems.

The proposed project is needed to improve the existing poor level of service, non-standard weaving distance, and traffic circulation and operations in the area. The project would bring the I-110/C Street intersection up to current roadway standards; provide a direct link between the port and the freeway; replace the temporary raised median, which blocks truck access to C Street from the ramps, with a permanent solution; and improve the efficiency of local intersections.

Surrounding Land Use/Traffic Generators (especially effect on diesel traffic)
The proposed project is primarily surrounded by Port of Los Angeles (POLA) related uses. There are residences located to the east and north of the project area. Refer to Figure 5, which is attached for the project area and surrounding land uses.

Opening Year: Build and No Build LOS, AADT, % and # trucks, truck AADT of proposed facility
The project traffic engineer, Iteris, Inc., provided only northbound ADT along I-110 for all project alternatives and analysis years. According to the project traffic engineers, ADT would not change between the no-build and build alternatives (Iteris 2009a).

Southbound traffic volumes, corresponding to the northbound segments along I-110 analyzed by the project traffic engineers, for existing conditions (2009) were assumed to be the same as 2008 AADT volumes provided by the Caltrans’ Traffic Data Branch. This assumption was based on guidance received at the May 7, 2009 Project Development Team (PDT) meeting from Kirk Patel of Caltrans, District 7. In order to obtain southbound I-110 segment AADT, directional splits data from Caltrans’ Peak Hour Volume Data document was used (California Department of Transportation n.d.). It was assumed that southbound traffic accounted for 41.78 percent of total AADT\(^1\). Southbound ramp volumes were obtained from Caltrans’ Ramp Volumes data (California Department of Transportation n.d.). To obtain southbound AADT for open-to-traffic year (2014) and future design year (2035), growth factors were applied to the extrapolated data. The percentage rate of growth for southbound AADT was assumed to be the same as the percentage rate of growth for the northbound ADT provided by the project traffic engineers. Tables 1 to 6 summarize the growth factors, mainline ADT, on-/off-ramp ADT, mainline truck percentages, on-/off-ramp truck percentages, and LOS for opening-year (2014), respectively.

<table>
<thead>
<tr>
<th>Segment</th>
<th>2008-2014 Growth Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C St Off-Ramp</td>
<td>14.81%</td>
</tr>
<tr>
<td>I-110 Off-Ramp to C St</td>
<td>35.39%</td>
</tr>
<tr>
<td>I-110 Between C St Off & On Ramps</td>
<td>13.10%</td>
</tr>
<tr>
<td>I-110 On-Ramp from C St</td>
<td>8.86%</td>
</tr>
</tbody>
</table>

\(^1\) In the Caltrans’ document *Peak Hour Volume Data*, “Dir” indicates the direction of travel for peak volume and “D” stands for D factor, which is the percentage of traffic in the peak direction during the peak hour. 2008 data for I-110 at Post Mile 2.771 was used to determine directional splits. This data indicates that the direction of travel for peak volume is north. The D factor for the a.m. peak hour is 57.57%, and the D factor for the p.m. peak hour is 58.86%. To determine the percentage of southbound traffic, the average of the two D factors was taken. The average (58.22%) was then subtracted from 100% to determine the percentage of southbound traffic (41.78%).
Table 2. 2014 Mainline ADT on I-110

<table>
<thead>
<tr>
<th>Segment</th>
<th>2014</th>
<th>Truck ADT<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C St Off-Ramp</td>
<td>90,775</td>
<td>15,432</td>
</tr>
<tr>
<td>I-110 Between C St Off & On Ramps</td>
<td>86,178</td>
<td>14,650</td>
</tr>
<tr>
<td>I-110 Between C St On Ramp & Anaheim Off-Ramp</td>
<td>92,967</td>
<td>18,593</td>
</tr>
</tbody>
</table>

Notes:
- Mainline AADT was calculated by summing southbound and northbound AADT for each segment.
- According to the project traffic engineers, Iteris, Inc., AADT volumes are the same for the build and no-build conditions.
- Truck ADT was calculated by multiplying the mainline ADT by the truck percentages in Table 4.

Adapted from: Iteris 2009a; Caltrans 2009n.d.

Table 3. 2014 I-110 On-/Off-Ramp ADT

<table>
<thead>
<tr>
<th>Ramp</th>
<th>2014<sup>a</sup></th>
<th>Truck ADT<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 Off-Ramp to C St</td>
<td>8,240</td>
<td>1,071</td>
</tr>
<tr>
<td>I-110 On-Ramp from C St</td>
<td>8,811</td>
<td>2,996</td>
</tr>
</tbody>
</table>

Notes:
- AADT volumes are the same for the build and no-build conditions.
- Truck ADT was calculated by multiplying the ramp ADT by the truck percentages in Table 5.

Adapted from: Iteris 2009a; Caltrans 2009n.d.

Table 4. 2014 Mainline Truck Percentages

<table>
<thead>
<tr>
<th>Segment</th>
<th>2014<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C St Off-Ramp</td>
<td>17%</td>
</tr>
<tr>
<td>I-110 Between C St Off & On Ramps</td>
<td>17%</td>
</tr>
<tr>
<td>I-110 Between C St On Ramp & Anaheim Off-Ramp</td>
<td>20%</td>
</tr>
</tbody>
</table>

Note:
- Truck percentages for southbound traffic were assumed to be the same as truck percentages for northbound traffic.
- Truck percentages are the same for the build and no-build conditions.

Adapted from: Iteris 2009a

Table 5. 2014 I-110 On-/Off-Ramp Truck Percentages

<table>
<thead>
<tr>
<th>Ramp</th>
<th>2014<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 Off-Ramp to C St</td>
<td>13%</td>
</tr>
<tr>
<td>I-110 On-Ramp from C St</td>
<td>34%</td>
</tr>
</tbody>
</table>

Notes:
- Truck percentages are the same for the build and no-build conditions.

Adapted from: Iteris 2009a
As shown in Table 6, the two no-build alternative intersections (Figueroa St & I-110 Ramps/C St and Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd) are represented as one intersection (Figueroa St/John S. Gibson Blvd & Harry Bridges Blvd/I-110 Ramps) under the build alternative. A comparison of intersection delay between the no-build and build alternatives indicates that implementation of the proposed project would result in a substantial improvement in delay at the Figueroa St & I-110 Ramps/C St intersection (122.5 seconds [LOS F] to 18.5 seconds [LOS B] under the AM peak hour and 243.6 seconds [LOS F] to 20.4 seconds [LOS C] under the PM peak hour). At the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection, implementation of the proposed project would result in a slight degradation in delay (17.9 seconds [LOS B] to 18.5 seconds [LOS B] under the AM peak hour and 19.0 seconds [LOS B] to 20.4 seconds [LOS C] under the PM peak hour). However, the slight degradation in delay at the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection is considered minor when compared to the substantial improvement in delay that would result at the Figueroa St & I-110 Ramps/C St intersection. In addition, when delay is averaged at the two intersections that exist under the no-build alternative and compared to the no-build alternative, the a.m. peak hour delay is reduced from approximately 70.2 seconds to 18.5 seconds, a reduction of 51.7 seconds. Delay for the p.m. peak hour is reduced from approximately 131.3 seconds to 20.4 seconds, a reduction of 110.9 seconds.

Table 7. 2035 I-110 Growth Factors

<table>
<thead>
<tr>
<th>Segment</th>
<th>2008-2035 Growth Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C St Off-Ramp</td>
<td>44.15%</td>
</tr>
<tr>
<td>I-110 Off-Ramp to C St</td>
<td>55.20%</td>
</tr>
<tr>
<td>I-110 Between C St Off & On Ramps</td>
<td>43.23%</td>
</tr>
<tr>
<td>I-110 On-Ramp from C St</td>
<td>8.61%</td>
</tr>
</tbody>
</table>

RTP Horizon Year / Design Year: Build and No Build LOS, AADT, % and # trucks, truck AADT of proposed facility

Please refer to the discussion for opening-year above for data extrapolation methods. Tables 7 through 12 summarize the growth factors, mainline ADT, I-110 On-/Off-Ramp ADT, mainline truck percentages, on-/off-ramp truck percentages, and LOS for design year (2035), respectively.
Table 8. 2035 Mainline ADT on I-110

<table>
<thead>
<tr>
<th>Segment</th>
<th>2035a</th>
<th>Truck ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C St Off-Ramp</td>
<td>113,975</td>
<td>19,376</td>
</tr>
<tr>
<td>I-110 Between C St Off & On Ramps</td>
<td>109,139</td>
<td>19,645</td>
</tr>
<tr>
<td>I-110 Between C St On Ramp & Anaheim Off-Ramp</td>
<td>114,552</td>
<td>21,765</td>
</tr>
</tbody>
</table>

Notes:
Mainline AADT was calculated by summing southbound and northbound AADT for each segment.

a According to the project traffic engineers, AADT volumes are the same for the build and no-build conditions.
b Truck ADT was calculated by multiplying the mainline ADT by the truck percentages in Table 10.

Adapted from: Iteris 2009a; Caltrans 2009n.d.

Table 9. 2035 I-110 On-/Off-Ramp ADT

<table>
<thead>
<tr>
<th>Ramp</th>
<th>2035a</th>
<th>Truck ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 Off-Ramp to C St</td>
<td>9,446</td>
<td>945</td>
</tr>
<tr>
<td>I-110 On-Ramp from C St</td>
<td>8,791</td>
<td>3,077</td>
</tr>
</tbody>
</table>

a AADT volumes are the same for the build and no-build conditions.
b Truck ADT was calculated by multiplying the ramp ADT by the truck percentages in Table 11.
c Adapted from: Iteris 2009a

Table 10. 2035 Mainline Truck Percentages

<table>
<thead>
<tr>
<th>Segment</th>
<th>2035a</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 South of C St Off-Ramp</td>
<td>17%</td>
</tr>
<tr>
<td>I-110 Between C St Off & On Ramps</td>
<td>18%</td>
</tr>
<tr>
<td>I-110 Between C St On Ramp & Anaheim Off-Ramp</td>
<td>19%</td>
</tr>
</tbody>
</table>

Note:
Truck percentages for southbound traffic were assumed to be the same as truck percentages for northbound traffic.
a Truck percentages are the same for the build and no-build conditions.

Adapted from: Iteris 2009a

Table 11. 2035 I-110 On-/Off-Ramp Truck Percentages

<table>
<thead>
<tr>
<th>Ramp</th>
<th>2035a</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-110 Off-Ramp to C St</td>
<td>10%</td>
</tr>
<tr>
<td>I-110 On-Ramp from C St</td>
<td>35%</td>
</tr>
</tbody>
</table>

a Truck percentages are the same for the build and no-build conditions.

Adapted from: Iteris 2009a

Table 12. 2035 LOS for Build and No Build Project Conditions
2035 No Build

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay<sup>a</sup></td>
</tr>
<tr>
<td>Figueroa St & I-110 Ramps/C St</td>
<td>F</td>
<td>165.1</td>
</tr>
<tr>
<td>Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd</td>
<td>B</td>
<td>21.5</td>
</tr>
<tr>
<td>Average Delay<sup>b</sup></td>
<td>NA</td>
<td>93.3</td>
</tr>
</tbody>
</table>

2035 Build

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Delay<sup>a</sup></td>
</tr>
<tr>
<td>Figueroa St/John S. Gibson Blvd & Harry Bridges Blvd/I-110 Ramps</td>
<td>C</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Note: The intersections analyzed for build and no-build conditions are not the same because the proposed project would replace the two existing intersections (one at C Street/Figueroa Street and the other at John S. Gibson Boulevard/Harry Bridges Boulevard/Figueroa Street) with one new intersection that would align Harry Bridges Boulevard and John S. Gibson Boulevard with the C Street interchange.

^a Delay = Average Vehicle Delay in Seconds

^b Averaging the delay associated with the two no-build intersections to compare the delay with the one build intersection was recommended by the project traffic engineer, Iteris, Inc.

Adapted from: Iteris 2009a; Akkinepally pers. comm.

As shown in Table 12, the two no-build alternative intersections (Figueroa St & I-110 Ramps/C St and Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd) are represented as one intersection (Figueroa St/John S. Gibson Blvd & Harry Bridges Blvd/I-110 Ramps) under the build alternative. A comparison of intersection delay between the no-build and build alternatives indicates that implementation of the proposed project would result in a substantial improvement in delay at the Figueroa St & I-110 Ramps/C St intersection (165.1 seconds [LOS F] to 20.5 seconds [LOS C] under the AM peak hour and 280.0 seconds [LOS F] to 24.4 seconds [LOS C] under the PM peak hour). At the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection, implementation of the proposed project would result in a slight degradation in delay (21.5 seconds [LOS B] to 20.5 seconds [LOS C] under the AM peak hour and 22.8 seconds [LOS C] to 24.4 seconds [LOS C] under the PM peak hour). However, the slight degradation in delay at the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection is considered minor when compared to the substantial improvement in delay that would result at the Figueroa St & I-110 Ramps/C St intersection. In addition, when delay is averaged at the two intersections that exist under the no-build alternative and compared to the no-build alternative, the a.m. peak hour, delay is reduced from approximately 93.3 seconds to 20.5 seconds, a reduction of 72.8 seconds. Delay for the p.m. peak hour is reduced from approximately 151.4 seconds to 24.4 seconds, a reduction of 127.0 seconds.

Opening Year: If facility is an interchange(s) or intersection(s), Build and No Build cross-street AADT, % and # trucks, truck AADT

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>AADT<sup>a</sup></th>
<th>% Trucks<sup>b</sup></th>
<th>Truck AADT<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>C St East of Figueroa St</td>
<td>0</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Figueroa St North of I-110 Ramps</td>
<td>9,701</td>
<td>13%</td>
<td>1,261</td>
</tr>
<tr>
<td>John S. Gibson Blvd South of I-110 Ramps</td>
<td>14,177</td>
<td>28%</td>
<td>3,970</td>
</tr>
<tr>
<td>Harry Bridges Blvd East of Fig St/JSG Blvd</td>
<td>20,074</td>
<td>33%</td>
<td>6,624</td>
</tr>
</tbody>
</table>

^a According to the project traffic engineers, AADT volumes are the same for the build and no-build conditions.

^b According to the project traffic engineers, the percentage of trucks is the same for the build and no-build conditions.
Describe potential traffic redistribution effects of congestion relief (impact on other facilities)

The proposed project is part of a group of projects POLA is planning in anticipation of increases in truck traffic at port terminals within the next 25 years in addition to increases in non-commercial traffic due to expected local growth. As a result, freeway interchanges, local roads, and highways near port terminals are expected to reach capacity during peak periods. POLA recognizes that a lack of peak-period capacity is a serious problem and has therefore initiated a number of studies to consider improvements to surrounding facilities. Both SR-47 (Vincent Thomas Bridge) and I-110 and modification on I-110 NB On-Off Ramps Termini at John S. Gibson Blvd (LA0D390) project and C-Street/I-110 interchange improvement project are part of the area wide transportation improvements by POLA and are not dependent upon each other. The future traffic forecasts for the proposed project considered the proposed improvements to SR-47 (Vincent Thomas Bridge) and I-110 and modification on I-110 NB On-Off Ramps Termini at John S. Gibson Blvd for analysis of environmental impacts.

As indicated in Tables 2, 8, 13, and 14, neither mainline nor cross-street AADT is anticipated to change with implementation of the proposed project, as indicated by the project traffic engineers, Iteris, Inc. (Iteris a,b). Although AADT is not anticipated to change, implementation of the proposed project is anticipated to result in a significant reduction in delays at project intersections (Tables 6 and 12). In addition, the proposed project will permanently close access to Figueroa Street from C Street and provide a standard cul-de-sac at the existing intersection. This will prevent trucks from using C Street to access Figueroa Street and I-110 on-ramps; therefore, the proposed project would reduce truck traffic in residential areas.

As indicated in Table 6, implementation of the proposed project would result in a substantial improvement in delay at the Figueroa St & I-110 Ramps/C St intersection (122.5 seconds [LOS F] to 18.5 seconds [LOS B] under the AM peak hour and 243.6 seconds [LOS F] to 20.4 seconds [LOS C] under the PM peak hour). At the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection, implementation of the proposed project would result in a slight degradation in delay (17.9 seconds [LOS B] to 18.5 seconds [LOS B] under the AM peak hour and 19.0 seconds [LOS B] to 20.4 seconds [LOS C] under the PM peak hour). However, the slight degradation in delay at the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection is considered minor when compared to the substantial improvement in delay that would result at the Figueroa St & I-110 Ramps/C St intersection. In addition, when delay is averaged at the two intersections that exist under the no-build alternative and compared to the no-build alternative, delay for the a.m. peak hour in 2014 is reduced from approximately 70.2 seconds to 18.5 seconds with implementation of the proposed project, a reduction of 51.7 seconds. Delay for the p.m. peak hour in 2014 is reduced from approximately 131.3 seconds to 20.4 seconds with implementation of the proposed project, a reduction of 110.9 seconds.
As indicated in Table 12, the two no-build alternative intersections (Figueroa St & I-110 Ramps/C St and Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd) are represented as one intersection (Figueroa St/John S. Gibson Blvd & Harry Bridges Blvd/I-110 Ramps) under the build alternative. A comparison of intersection delay between the no-build and build alternatives indicates that implementation of the proposed project would result in a substantial improvement in delay at the Figueroa St & I-110 Ramps/C St intersection (165.1 seconds [LOS F] to 20.5 seconds [LOS C] under the AM peak hour and 280.0 seconds [LOS F] to 24.4 seconds [LOS C] under the PM peak hour). At the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection, implementation of the proposed project would result in a slight degradation in delay (21.5 seconds [LOS B] to 20.5 seconds [LOS C] under the AM peak hour and 22.8 seconds [LOS C] to 24.4 seconds [LOS C] under the PM peak hour). However, the slight degradation in delay at the Figueroa St/POLA & John S. Gibson Blvd/Harry Bridges Blvd intersection is considered minor when compared to the substantial improvement in delay that would result at the Figueroa St & I-110 Ramps/C St intersection. In addition, when delay is averaged at the two intersections that exist under the no-build alternative and compared to the no-build alternative, delay for the a.m. peak hour in 2035 is reduced from approximately 93.3 seconds to 20.5 seconds with implementation of the proposed project, a reduction of 72.8 seconds. Delay for the p.m. peak hour in 2035 is reduced from approximately 151.4 seconds to 24.4 seconds with implementation of the proposed project, a reduction of 127.0 seconds.

Comments/Explanation/Details (attach additional sheets as necessary)

As shown in Tables 2 and 8, ADT on I-110 is anticipated to exceed the FHWA and EPA’s POAQC threshold of 10,000 diesel truck ADT (diesel truck traffic of 8% or more for roadways with 125,000 ADT or more).

However, Tables 4 and 10, which summarize mainline truck percentages for opening- and design-year conditions, respectively, indicate that implementation of the proposed project would not affect diesel truck traffic volumes or percentages between no build and build conditions. Consequently, the build alternative is not considered a POAQC for PM10 and PM2.5 because it would not have an effect on roadway diesel truck traffic volumes or percentages (i.e., effects to truck percentages are below 5% between the no-build and build alternatives). Because the project is not considered a POAQC, the CAA and 40 CFR 93.116 requirements were met without a hot-spot analysis. The build alternatives have been found to not be of air quality concern under 40 CFR 93.123(b)(1).

References:

Printed References:

Federal Highway Administration and U.S. Environmental Protection Agency. 2006. *Transportation conformity guidance for qualitative hot-spot analyses in PM2.5 and PM10 nonattainment and maintenance areas*. Washington, D.C.

Personal Communications:

Akkinepally, Vamshi. Transportation Engineer. Iteris, Inc., Ontario, CA. December 9, 2009—E-mail transmitting Iteris' responses to Caltrans’ comments to ICF International.
Figure 1 Regional Location
Figure 2 Project Vicinity
Figure 3 Build Alternative
Figure 4 Proposed Lane Configuration

Source: California Department of Transportation
Figure 5 Existing Land Use
Appendix H.3 Impact Analysis Required for POLA as the Responsible Agency

As previously noted in Section 3.1.1, according to the National Environmental Policy Act (NEPA), construction projects lasting less than 5 years are not anticipated to result in any adverse air quality effects. Based on this NEPA determination, the California Department of Transportation (Department) and the Federal Highway Administration (FHWA) do not require quantification of construction emissions for projects lasting less than 5 years. The proposed project is anticipated to start in November 2012 and end in September 2014; therefore, a qualitative analysis of construction emissions was provided in Section 4.2.1.3 to fulfill the Department and FHWA NEPA requirements. However, the Port of Los Angeles (POLA), as the local sponsor and the responsible agency for the proposed project, requires quantitative analysis of construction emissions for all of its projects to meet its California Environmental Quality Act (CEQA) requirements. In addition, the estimated operational emissions summarized in Section 4.2.1.1 are required to be compared against the South Coast Air Quality Management District’s (SCAQMD’s) operational thresholds (Table 1) to meet POLA’s CEQA requirements. Therefore, this appendix addresses POLA’s CEQA requirements that are not also required by the Department.

Methodology and Significance Criteria

Criteria Pollutants

Construction

POLA has adopted the SCAQMD thresholds and analysis methodologies to analyze construction impacts from POLA projects. The Department has not adopted SCAQMD’s thresholds and analysis methodologies; therefore, this appendix has been included at the request of the POLA. SCAQMD’s CEQA Air Quality Handbook (AQ Handbook) (1993) is in the process of being updated. Therefore, a combination of the AQ Handbook; SCAQMD’s on- and off-road emission factors (2008a, 2008b); SCAQMD’s Final Methodology to Calculate PM2.5 and PM2.5 Significance Thresholds (PM Guidance) (2006); the U.S. Environmental Protection Agency’s (EPA’s) AP-42 emission factor equations; the California Air Resources Board’s (CARB’s) methodology to calculate county-specific emissions inventories, Section 7.9, Entrained Paved Road Dust, Paved Road Travel (California Air Resources Board 1997); and construction activity information provided by the project engineer (Shah pers. comm.) (Attachment B1) were used to estimate construction emissions. In addition, SCAQMD has provided updated air quality significance thresholds that became available subsequent to publication of its AQ Handbook. These thresholds will be used to determine significance, according to CEQA, in the environmental document, although no determinations of significance are made in this air quality technical study (AQTS). SCAQMD’s significance thresholds are summarized in Table 1, below.
Table 1. SCAQMD Air Quality Significance Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>100 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>VOC</td>
<td>75 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>PM10</td>
<td>150 lbs/day</td>
<td>150 lbs/day</td>
</tr>
<tr>
<td>PM2.5</td>
<td>55 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>SO\textsubscript{X}</td>
<td>150 lbs/day</td>
<td>150 lbs/day</td>
</tr>
<tr>
<td>CO</td>
<td>550 lbs/day</td>
<td>550 lbs/day</td>
</tr>
<tr>
<td>Pb</td>
<td>3 lbs/day</td>
<td>3 lbs/day</td>
</tr>
</tbody>
</table>

Toxic Air Contaminants (TACs) and Odor Thresholds

<table>
<thead>
<tr>
<th>TACs (including carcinogens and non-carcinogens)</th>
<th>Maximum Incremental Cancer Risk ≥ 10 in 1 million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cancer Burden > 0.5 excess cancer cases (in areas ≥ 1 in 1 million)</td>
</tr>
<tr>
<td></td>
<td>Hazard Index ≥ 1.0 (project increment)</td>
</tr>
<tr>
<td>Odor</td>
<td>Project creates an odor nuisance pursuant to SCAQMD Rule 402</td>
</tr>
</tbody>
</table>

Ambient Air Quality for Criteria Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>1-hour average</th>
<th>8-hour average</th>
<th>Annual average</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{2}</td>
<td>0.18 ppm (state)</td>
<td>0.03 ppm (state)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>10.4 µg/m3 (construction) & 2.5 µg/m3 (operation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 µg/m3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>10.4 µg/m3 (construction) & 2.5 µg/m3 (operation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>1 µg/m3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>20 ppm (state)</td>
<td>9.0 ppm (state/federal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: lbs/day = pounds per day; ppm = parts per million; µg/m3 = micrograms per cubic meter; ≥ greater than or equal to; > greater than

Source: South Coast Air Quality Management District 2009.

Using the aforementioned methodologies, construction emissions were estimated for a worst-case day. The worst-case day represents the maximum daily emissions that can reasonably be expected during any phase of construction. The AQ Handbook was used for general calculation guidance; SCAQMD’s on- and off-road emission factors were multiplied by construction activity data to estimate emissions from various pieces of equipment. The particulate matter less than or equal to 2.5 microns in diameter (PM2.5) fraction of particulate matter less than or equal to 10 microns in diameter (PM10) was obtained from SCAQMD’s PM Guidance, and EPA’s AP-42 emission factor equations and CARB’s methodology to calculate county-specific emissions inventories were used to calculate entrained road dust.
Appendix H. Impact Analysis Required for POLA as the Responsible Agency

Operation

The methodology used to calculate operational emissions of criteria pollutants outlined in Section 3.1.2.3 was also used to assess operational emissions for the port.

Greenhouse Gases

Construction

Construction-related greenhouse gas (GHG) emissions were estimated using a combination of formulas and emission factors provided by SCAQMD (South Coast Air Quality Management District 1993, 2008a, 2008b) and the California Climate Action Registry’s General Reporting Protocol (version 3.1) (California Climate Action Registry 2009). SCAQMD has compiled emission factors for emissions from on- and off-road construction equipment, including emission factors for carbon dioxide (CO₂) and methane (CH₄). Because emission factors for nitrous oxide (N₂O) are not provided by SCAQMD, construction-related emissions of N₂O were calculated by multiplying calculated CO₂ emissions by a ratio of 0.0000256, which is the ratio of N₂O emissions to CO₂ emissions. Total CO₂ equivalent (CO₂e) emissions were calculated by multiplying CH₄ and N₂O by their respective global warming potentials (GWP). GWPs are multiplied by GHG emissions to express GHGs in units of CO₂e. This is the standard unit of measurement for GHGs. Please refer to Attachment B1, Construction Emissions Calculations, for the calculations used to estimate construction-related GHG emissions.

Operation

Operational emissions of GHG’s for the proposed project were analyzed according to the methodology outlined in Section 5.2.1.2. Estimated operational emissions of GHGs are summarized in Section 5.2.2.

Construction Emissions Analysis

Criteria Pollutants

Construction is a source of fugitive dust as well as exhaust emissions, which can have substantial temporary effects on local air quality (i.e., exceed state air quality standards for PM2.5 and PM10). Such emissions would result from earthmoving and the use of heavy equipment as well as land clearing, ground excavation, cut-and-fill operations, and the construction of roadways. Dust emissions can vary substantially from day to day, depending on the level of activity, the specific operations, and the prevailing weather.

Table 2 summarizes estimated peak daily construction emissions associated with the proposed project, and Attachment B1 includes the construction activity data and construction emission calculation sheets.
Table 2. Estimated Peak Daily Construction Emissions (pounds/day)

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>CO</th>
<th>NOx</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>9.56</td>
<td>30.73</td>
<td>79.87</td>
<td>0.10</td>
<td>3.47</td>
<td>0.73</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>13.12</td>
<td>41.82</td>
<td>122.35</td>
<td>0.16</td>
<td>4.63</td>
<td>0.98</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-grade</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Paving</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>On Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>1.52</td>
<td>6.13</td>
<td>18.55</td>
<td>0.02</td>
<td>1.08</td>
<td>0.78</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>0.67</td>
<td>6.43</td>
<td>0.65</td>
<td>0.01</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>Maximum Daily Occurrence</td>
<td>15.31</td>
<td>54.38</td>
<td>141.55</td>
<td>0.19</td>
<td>5.91</td>
<td>1.81</td>
</tr>
<tr>
<td>SCAQMD Mass Emissions Thresholds</td>
<td>75</td>
<td>550</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Exceeds Mass Emissions Threshold?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SCAQMD LSTd Thresholds</td>
<td>NA</td>
<td>585</td>
<td>57</td>
<td>NA</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Exceeds LST Threshold?</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>12.48</td>
<td>40.55</td>
<td>112.66</td>
<td>0.16</td>
<td>4.22</td>
<td>0.90</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>11.83</td>
<td>39.52</td>
<td>102.27</td>
<td>0.16</td>
<td>3.84</td>
<td>0.81</td>
</tr>
<tr>
<td>Drainage/Utilities/Subgrade</td>
<td>6.47</td>
<td>22.16</td>
<td>47.24</td>
<td>0.06</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>Paving</td>
<td>3.99</td>
<td>12.04</td>
<td>31.97</td>
<td>0.05</td>
<td>1.26</td>
<td>0.27</td>
</tr>
<tr>
<td>On Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>1.36</td>
<td>5.59</td>
<td>16.46</td>
<td>0.02</td>
<td>0.98</td>
<td>0.69</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>0.63</td>
<td>5.96</td>
<td>0.60</td>
<td>0.01</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>Maximum Daily Occurrence</td>
<td>14.47</td>
<td>52.09</td>
<td>129.72</td>
<td>0.19</td>
<td>4.65</td>
<td>1.26</td>
</tr>
<tr>
<td>SCAQMD Mass Emissions Thresholds</td>
<td>75</td>
<td>550</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Exceeds Mass Emissions Threshold?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SCAQMD LSTd Thresholds</td>
<td>NA</td>
<td>585</td>
<td>57</td>
<td>NA</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Exceeds LST Threshold?</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>11.83</td>
<td>39.52</td>
<td>102.27</td>
<td>0.16</td>
<td>3.84</td>
<td>0.81</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>11.83</td>
<td>39.52</td>
<td>102.27</td>
<td>0.16</td>
<td>3.84</td>
<td>0.81</td>
</tr>
<tr>
<td>Drainage/Utilities/Subgrade</td>
<td>6.47</td>
<td>22.16</td>
<td>47.24</td>
<td>0.06</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>Paving</td>
<td>3.99</td>
<td>12.04</td>
<td>31.97</td>
<td>0.05</td>
<td>1.26</td>
<td>0.27</td>
</tr>
<tr>
<td>On Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>0.81</td>
<td>3.39</td>
<td>9.67</td>
<td>0.02</td>
<td>0.65</td>
<td>0.40</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>0.59</td>
<td>5.55</td>
<td>0.55</td>
<td>0.01</td>
<td>0.16</td>
<td>0.05</td>
</tr>
<tr>
<td>Maximum Daily Occurrence</td>
<td>13.23</td>
<td>48.45</td>
<td>112.50</td>
<td>0.18</td>
<td>4.65</td>
<td>1.26</td>
</tr>
</tbody>
</table>
SCAQMD Mass Emissions Thresholds

<table>
<thead>
<tr>
<th></th>
<th>75</th>
<th>550</th>
<th>100</th>
<th>150</th>
<th>150</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeds Mass Emissions Threshold?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

SCAQMD LST\(^d\) Thresholds\(^e\)

<table>
<thead>
<tr>
<th></th>
<th>NA</th>
<th>585</th>
<th>57</th>
<th>NA</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeds LST Threshold?(^h)</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

d

\(^e\) threshold:

\(^h\) threshold:
Table 2 Notes:

Please refer to Attachment B1 for construction equipment information and emissions calculations.

a For off-road emissions, the PM2.5 fraction of PM10 was assumed to be 0.212, which is CARB’s fraction for unpaved road fugitive dust. This is a worst-case-scenario, because construction equipment will be operating on paved and unpaved areas. For on-road emissions, the PM2.5 fraction of PM10 was assumed to be 0.169, which is CARB’s fraction for paved road fugitive dust.

b Assumed export and import overlap for the first 9 months; 2012 and 2013 emissions reflect trips associated with both importation and exportations.

c To calculate entrained dust, the following formula was used: road emissions (pounds particulate matter/day) = E * road vehicle miles traveled (VMT). EPA’s AP-42 Empirical Expression: E = k(sL/2)0.65 x (W/3)1.5 - C, where E = particulate emission factor (having units matching the units of k), k = particle size multiplier for particle size range and units of interest, sL = road surface silt loading (grams per square meter) (g/m²), W = average weight (tons) of the vehicles traveling the road, and, C = emission factor for 1980s vehicle fleet exhaust, brake wear, and tire wear

k for PM10 = 0.016, k for PM2.5 = 0.0024
C for PM10 = 0.00047 pound/VMT, and C for PM2.5 = 0.00036 pound/VMT

According to Table 3 of ARB’s methodology, sL for major roads in Los Angeles County = 0.037 g/m²; sL for freeways in Los Angeles County = 0.020 g/m², and; W for Los Angeles County = 2.7 tons.

According to EPA’s AP-42 Section 13.2.1 document for calculating entrained paved road dust, there may be situations where low silt loading and/or low average vehicle weight will yield calculated negative emissions from EPA's Emission Factor Formula equation above. If this occurs, the emissions calculated from the equation should be set to zero.

Calculated PM2.5 emissions were negative; therefore, PM2.5 emissions were set to zero.

d The project site is located in SCAQMD SRA No. 4. These LSTs are based on the site location SRA, distance to nearest sensitive receptor location from the project site (25 meters), and project area that could be under construction on any given day (0.5 acre).

e The LST analysis evaluates emissions associated with the Grading/Excavation phase of construction, as it represents the worst-case (maximum) emissions phase. This analysis assumes emission reductions associated with the Construction Equipment Avoidance/Minimization Measures listed on pages H-12 through H-13, which would achieve a minimum 85% reduction in PM10 and PM2.5 emissions and 40% reduction in NOX emissions, based on ARB data.

f 40% NOX reduction results in 73.41 pounds of NOX per day; 85% PM10 reduction results in 0.69 pounds of PM10 per day.

40% NOX reduction results in 67.60 pounds of NOX per day; 85% PM10 reduction results in 0.63 pounds of PM10 per day data.

40% NOX reduction results in 61.36 pounds of NOX per day; 85% PM10 reduction results in 0.58 pounds of PM10 per day.

ROG = reactive organic gases; CO = carbon monoxide; NOX = oxides of nitrogen; SOX = sulfur oxides.

Sources: California Air Resources Board 1997; South Coast Air Quality Management District 1993, 2006, 2008a, 2008b; U.S. Environmental Protection Agency 2006, California Air Resources Board 2011.

Greenhouse Gases

Construction GHG emissions include emissions produced as a result of material processing, emissions produced by on-site construction equipment, and emissions arising from traffic delays due to construction. These emissions will be produced at different levels throughout the construction phase. Table 3 summarizes estimated construction-related GHG emissions.

Table 3. Estimated Construction-related Emissions of Greenhouse Gases (metric tons/year)

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>95.89</td>
<td>0.01</td>
<td>0.00</td>
<td>96.83</td>
</tr>
</tbody>
</table>
Appendix H. Impact Analysis Required for POLA as the Responsible Agency

Air Quality Study Report

Interstate 110/C Street Interchange Project

December 2011

<table>
<thead>
<tr>
<th>Activity</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading/Excavation</td>
<td>154.49</td>
<td>0.01</td>
<td>0.00</td>
<td>155.96</td>
</tr>
<tr>
<td>Drainage/Utilities/Subgrade</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Paving</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>On Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling*</td>
<td>100.97</td>
<td>0.00</td>
<td>0.00</td>
<td>101.83</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>18.47</td>
<td>0.00</td>
<td>0.00</td>
<td>18.64</td>
</tr>
<tr>
<td>Total</td>
<td>369.81</td>
<td>0.02</td>
<td>0.01</td>
<td>373.26</td>
</tr>
</tbody>
</table>
Toxic Air Contaminants

The greatest potential for toxic air contaminant (TAC) emissions associated with the proposed project would result from diesel particulate emissions associated with heavy equipment. CARB identified diesel exhaust as a TAC in 1998 (California Air Resources Board 2000). According to SCAQMD methodology, health effects from carcinogenic TACs are usually described in terms of individual cancer risk, which is based on a 70-year lifetime exposure to TACs. Because construction is anticipated to last for only 23 months (November 2012 to September 2014), the proposed project would not result in a long-term source of TAC emissions. In addition, as discussed in Section 2.1.1.1, while naturally occurring asbestos (NOA) is common in certain counties of California, it is not likely to be found in Los Angeles County (California Department of Conservation 2000).

Localized significance thresholds (LSTs) were developed by SCAQMD as part of the SCAQMD’s environmental justice initiative (SCAQMD 2008). LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard, and were developed based on:

Note: Please refer to Attachment B1 for construction equipment information and emissions calculations.

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>1,853.82</td>
<td>0.13</td>
<td>0.05</td>
<td>1,871.38</td>
</tr>
<tr>
<td>Drainage/Utilities/Subgrade</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Paving</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>On Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>479.52</td>
<td>0.01</td>
<td>0.01</td>
<td>483.58</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>110.74</td>
<td>0.01</td>
<td>0.00</td>
<td>111.76</td>
</tr>
<tr>
<td>Total</td>
<td>2,444.08</td>
<td>0.15</td>
<td>0.06</td>
<td>2,466.71</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>154.49</td>
<td>0.01</td>
<td>0.00</td>
<td>155.94</td>
</tr>
<tr>
<td>Drainage/Utilities/Subgrade</td>
<td>289.67</td>
<td>0.03</td>
<td>0.01</td>
<td>292.58</td>
</tr>
<tr>
<td>Paving</td>
<td>131.36</td>
<td>0.01</td>
<td>0.00</td>
<td>132.63</td>
</tr>
<tr>
<td>On Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>83.18</td>
<td>0.00</td>
<td>0.00</td>
<td>83.94</td>
</tr>
<tr>
<td>Total</td>
<td>658.69</td>
<td>0.06</td>
<td>0.02</td>
<td>665.09</td>
</tr>
</tbody>
</table>

Note: Please refer to Attachment B1 for construction equipment information and emissions calculations.

a Assumed export and import overlap for the first 9 months; 2012 and 2013 emissions reflect trips associated with both importation and exportation.

Sources: California Climate Action Registry 2009; South Coast Air Quality Management District 2008a, 2008b.
on the ambient concentrations of that pollutant that could be expected for the project site and surrounding area. LSTs, while voluntary, allow for a significance determination in lieu of air dispersion modeling, particularly for proposed projects of 5 acres or less. The LSTs are conservative, providing public agencies with a method of evaluating ambient air pollutant concentrations without having to conduct air dispersion modeling for all projects.

LST thresholds are based on size (acres) of the disturbed project area, the ambient air quality around the facility or construction site, and the distance to offsite human receptor. For purposes of a CEQA analysis, the SCAQMD considers a sensitive receptor to be a receptor such as a residence, hospital, prison, and convalescent facility where it is possible that an individual could remain for 24 hours. Schools are also considered sensitive receptors. Commercial and industrial facilities are not considered sensitive receptors because employees do not typically remain on site for a full 24-hours.

The LST methodology requires that PM10 and PM2.5 emissions be evaluated at sensitive receptors because the averaging period for the state standard is 24 hours and because, per SCAQMD’s definition, an individual could remain at a sensitive receptor location for the full 24 hours. The LST methodology also requires that for pollutants with standards based on shorter averaging periods, such as NO2 and CO, emissions be evaluated at industrial and commercial receptors because it is reasonable to assume that a worker at these sites could be present for periods of 1 to 8 hours. VOC does not have an ambient air quality standard and is, therefore, not addressed in the LST methodology. Offsite mobile emissions are not included in the LST evaluation, per LST methodology.

Consistent with SCAQMD Localized Significance Threshold (LST) methodology guidelines, emissions related to off-site delivery/haul truck activity and employee trips are not considered in the evaluation of localized impacts (SCAQMD 2003). As shown in Table 2, localized emissions for all criteria pollutants would remain below their respective SCAQMD LST. As such, localized impacts that may result from construction-period air pollutant emissions would be less than significant. No additional mitigation measures are necessary.

Odors

Odor impacts are associated with odor-generating facilities as well as sensitive receptors that would be located near existing odor-generating facilities. Some examples of odor-generating facilities are wastewater treatment facilities, landfills, composting facilities, petroleum refineries, dairies, food processing facilities, and the like. Because the proposed project would not be considered an odor-generating facility, nuisance odors are not anticipated to occur.

Operational Emissions

Daily operational emissions of criteria pollutants and CO2 are summarized in Table 4-8 in Section 4.2.1.1. In addition to the operational emissions analysis presented in Section 4.2.1.1, reduced regional emissions due to improvements in vehicular delay from POLA’s Synchro modeling results were incorporated into the 2035 analysis (i.e., subtracted from calculated CT-
EMFAC/VMT and EMFAC2007/idling emissions\(^1\) based on direction from POLA. Table 4-7 in Section 4.2.1.1 presents regional emissions reductions from the POLA’s Synchro modeling results, while Table 4 summarizes total project emissions, including emissions associated with CT-EMFAC/VMT and EMFAC2007/idling, as well as emission reductions from the POLA’s Synchro modeling.

\(^1\) Emissions benefits under existing (2008) and interim (2014) years was unavailable, in addition to PM10, PM2.5, and CO\(_2\).
Appendix H. Impact Analysis Required for POLA as the Responsible Agency

Air Quality Study Report
Interstate 110/C Street Interchange Project

December 2011
H-11

Table 4. Summary of Daily Operational Emissions (pounds/day)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 No Build</td>
<td>27,230</td>
<td>15.681</td>
<td>114.268</td>
<td>169.257</td>
<td>10.808</td>
<td>2.582</td>
</tr>
<tr>
<td>2035 No Build</td>
<td>34,756</td>
<td>12.134</td>
<td>107.207</td>
<td>110.645</td>
<td>12.296</td>
<td>1.909</td>
</tr>
<tr>
<td>2035 Build</td>
<td>32,528</td>
<td>-29.125</td>
<td>-2.127</td>
<td>-82.262</td>
<td>11.233</td>
<td>1.532</td>
</tr>
</tbody>
</table>

Alternative Differences

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Daily VMT</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Build - 2014 No Build</td>
<td>-2,078</td>
<td>-6.555</td>
<td>-57.717</td>
<td>-41.638</td>
<td>-1.336</td>
<td>-0.666</td>
</tr>
<tr>
<td>2035 Build - 2035 No Build</td>
<td>-2,228</td>
<td>-41.258</td>
<td>-109.33</td>
<td>-192.90</td>
<td>-1.06</td>
<td>-0.38</td>
</tr>
</tbody>
</table>

a CT-EMFAC does not calculate ROG, only TOG. Therefore, emissions of ROG were calculated from CT-EMFAC estimated TOG emissions by multiplying these TOG emissions by the ratio of ROG to TOG obtained from EMFAC 2007.
b Calculations of entrained dust are included and were performed according to the emission factor equation found in EPA's Compilation of Air Pollutant Emission Factors, AP-42 Section 13.2.1, was used:

Road Emissions (pounds/day) = Daily VMT * Emission Factor (E)

U.S. EPA Emission Factor Formula: E = [k(sL/2)^0.91 x (W)^1.02] x (1-P/4N), where E = particulate emission factor (having units matching the units of k), k = particle size multiplier for particle size range and units of interest, sL = roadway silt loading (g/m2), W = average weight of vehicles traveling the road (tons), P = number of wet days with at least 0.254mm (0.01 inches) of precipitation, and N = number of days in the averaging period.

k for PM10 = 0.0022 pound/VMT; k for PM2.5 = 0.00054 pound/VMT; sL for Los Angeles County = 0.037 g/m2; W for Los Angeles County = 2.7 tons; C = 40 days/year; N = 365 days.

According to Table 3 of ARB's methodology, sL for major roads in Los Angeles County = 0.037 g/m2; sL for freeways in Los Angeles County = 0.020 g/m2, and; W for Los Angeles County = 2.7 tons. As indicated in Table 3-6 in Chapter 3, the VMT provided by the traffic engineers includes both freeway links and major links according to CARB standards. Since the VMT by 5 mph speed bin breakdown provided by the traffic engineers does not indicate which links the VMT is associated with the sL for major roads was used as a worst-case-scenario.

c Includes emissions savings associated with total reductions in vehicle delay.

Sources: California Air Resources Board 1997; U.S. Environmental Protection Agency 2011; Iteris 2011.

Table 4 indicates that project emissions, when accounting for the emission reductions associated with the POLA’s Synchro modeling, are net negative for ROG, NOx, and CO in 2035, which is the only year which POLA’s Synchro modeling is available. In addition, to PM10, PM2.5, and CO2 emissions are not available from POLA’s Synchro modeling. As shown in Table 4, no SCAQMD operational thresholds (Table 1) would be exceeded with implementation of the Build Alternative; therefore, no minimization measures are required.
Avoidance/Minimization Measures

Compliance with the minimization measures outlined in Section 4.2.1.4 would reduce emissions of criteria pollutants, especially PM10 and PM2.5. In addition, as shown in Table 2, maximum daily construction emissions of NOX would exceed SCAQMD’s threshold by 41.55 pounds per day in 2012, 29.72 pounds per day in 2013, and 12.50 pounds per day in 2014; therefore, additional minimization measures will be required to reduce NOX emissions below the SCAQMD threshold of 100 pounds per day. POLA employs a set of best management practices (BMPs), which are anticipated to reduce construction emissions of NOX below the SCAQMD threshold. These BMPs are listed below.

On-road Trucks

1) Trucks hauling material such as debris or any fill material will be fully covered while operating off port property.
2) Idling will be restricted to a maximum of 5 minutes when not in use.
3) EPA Standards:
 a. On-road Trucks Except for Import Haulers and Earthmovers:
 1) Prior to December 31, 2011: All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used at the Port of Los Angeles will comply with EPA 2004 on-road emission standards for PM10 and NOX (0.10 gram per brake horsepower-hour [g/bhp-hr] and 2.0 g/bhp-hr, respectively).
 2) From January 1, 2012 on: All on-road heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used at the Port of Los Angeles will comply with EPA 2007 on-road emission standards for PM10 and NOX (0.01 g/bhp-hr and at least 1.2 g/bhp-hr, respectively).
 b. For Import Haulers Only:
 1) Prior to December 31, 2011: All on-road heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used to move dirt to and from the construction site via public roadways at the Port of Los Angeles will comply with EPA 1998 on-road emission standards for PM10 and NOX (0.10 g/bhp-hr and 4.0 g/bhp-hr, respectively). In addition, such trucks shall be equipped with a CARB-verified Level 3 device.
 2) From January 1, 2012 on: All on-road heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used to move dirt to and from the construction site via public roadways at the Port of Los Angeles will comply with EPA 2004 on-road emission standards for PM10 and NOX (0.10 g/bhp-hr and 2.0 g/bhp-hr, respectively).
c. For Earthmovers Only:

1) Prior to December 31, 2011: All heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used to move dirt within the construction site at the Port of Los Angeles will comply with EPA 1998 on-road emission standards for PM10 and NOX (0.10 g/bhp-hr and 4.0 g/bhp-hr, respectively).

2) From January 1, 2012 on: All heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used to move dirt within the construction site at the Port of Los Angeles will comply with EPA 2004 on-road emission standards for PM10 and NOX (0.10 g/bhp-hr and 2.0 g/bhp-hr, respectively).

A copy of each unit’s certified EPA rating and each unit’s CARB or SCAQMD operating permit will be provided at the time of mobilization of each applicable unit of equipment.

Construction Equipment (excluding On-road Trucks)

1) Construction equipment will incorporate, where feasible, emissions-savings technology such as hybrid drives and specific fuel economy standards.

2) Idling will be restricted to a maximum of 5 minutes when not in use.

3) Equipment Engine Specifications:

a. Prior to December 31, 2011: All off-road diesel-powered construction equipment greater than 50 horsepower (hp), except marine vessels and harbor craft, will meet Tier 2 off-road emission standards, at a minimum. In addition, all construction equipment greater than 50 hp will be retrofitted with a CARB-verified Level 3 Diesel Emissions Control System (DECS).

b. From January 1, 2012, to December 31, 2014: All off-road diesel-powered construction equipment greater than 50 hp, except marine vessels and harbor craft, will meet Tier 3 off-road emission standards, at a minimum. In addition, all construction equipment greater than 50 hp will be retrofitted with a CARB-verified Level 3 DECS.

c. From January 1, 2015 on: All off-road diesel-powered construction equipment greater than 50 hp, except marine vessels and harbor craft, will meet Tier 4 off-road emission standards, at a minimum.

The above equipment engine specifications shall be met unless one of the following circumstances exists and the contractor provides proof that the circumstance exists:

- A piece of specialized equipment is unavailable as specified in 3(a), 3(b), or 3(c) within 200 miles of the Port of Los Angeles, including through a leasing agreement. If this circumstance exists, the equipment must comply with one of the options contained in the Step Down Schedule, as shown in Table 4, below. At no time shall
equipment meet less than a Tier 1 engine standard with a CARB-verified Level 2 DECS; or

- The availability of construction equipment shall be reassessed in conjunction with the years listed in the above tier specifications (prior to December 31, 2011, from January 1, 2012, and from January 15, 2015) on an annual basis. For example, if a piece of equipment is not available prior to December 31, 2011, the contractor shall reassess this availability on January 1, 2012.

Table 4: Compliance Step Down Schedule

<table>
<thead>
<tr>
<th>Compliance Alternative</th>
<th>Engine Standard</th>
<th>CARB-verified DECS</th>
<th>Particulate Matter Emissions* (g/bhp-hr)</th>
<th>NOₓ Emissions (g/bhp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tier 4</td>
<td>N/A</td>
<td>0.01</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>Tier 3</td>
<td>Level 3</td>
<td>0.02</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>Tier 2</td>
<td>Level 3</td>
<td>0.02</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>Tier 1</td>
<td>Level 3</td>
<td>0.06</td>
<td>6.9</td>
</tr>
<tr>
<td>5</td>
<td>Tier 2</td>
<td>Level 2</td>
<td>0.08</td>
<td>4.7</td>
</tr>
<tr>
<td>6</td>
<td>Tier 2</td>
<td>Level 1</td>
<td>0.11</td>
<td>4.7</td>
</tr>
<tr>
<td>7</td>
<td>Tier 2</td>
<td>Uncontrolled</td>
<td>0.15</td>
<td>4.7</td>
</tr>
<tr>
<td>8</td>
<td>Tier 1</td>
<td>Level 2</td>
<td>0.2</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Equipment less than Tier 1, Level 2 shall not be permitted

*Stated emissions levels are for engine horsepower ratings of 176 bhp and above. Emissions levels for engine bhp ratings below 176 hp are marginally higher (.02–.08 g/bhp-hr depending on hp, tier, and DECS level).

Fugitive Dust Control

SCAQMD Rule 403 requires a fugitive dust control plan to be prepared and approved for construction sites. Construction contractors are required to obtain a 403 Permit from SCAQMD prior to construction.

The measures listed below to reduce dust should be included in the contractor’s fugitive dust control plan, at a minimum.

- Limit site disturbance/grading activities to 0.5 acres/day.

- SCAQMD’s best available control technology (BACT) measures, as outlined in Table 1 of Rule 403, shall be followed on all projects. Large construction projects (on a property with 50 or more disturbed acres) shall also follow Rule 403, Tables 2 and 3.

- Active grading sites shall be watered three times per day.
• Contractors shall apply approved non-toxic chemical soil stabilizers to all inactive construction areas or replace groundcover in disturbed areas.

• Contractors shall provide temporary wind fencing around sites being graded or cleared.

• Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard in accordance with Section 23114 of the California Vehicle Code (Spilling Loads on Highways).

• Construction contractors shall install wheel washers where vehicles travel from unpaved roads onto paved roads or wash off tires of vehicles and any equipment leaving the construction site.

• The grading contractor shall suspend all soil disturbance activities when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction is delayed.

• Open storage piles (greater than 3 feet tall and a total surface area of 150 square feet) shall be covered with a plastic tarp or chemical dust suppressant.

• Materials shall be stabilized while loading, unloading, and transporting to reduce fugitive dust emissions.

• Seals on belly dump trucks shall be checked regularly to remove trapped rocks and prevent possible spillage.

• Compliance with track-out regulations shall be required, and water shall be provided while loading and unloading to reduce visible dust plumes.

• Waste materials shall be hauled off site immediately.

• Roads and road shoulders shall be paved where available.

• Traffic speeds on all unpaved roads shall be reduced to 15 mph or less.

• Temporary traffic controls, such as a flagperson, shall be provided during all phases of construction to maintain smooth traffic flow.

• Construction activities that would affect traffic flow on the arterial system shall be scheduled during off-peak hours to the extent practicable.

• Pursuant to SCAQMD Rule 1186 and Rule 1186.1, certified street sweepers shall be required. Sweep streets at the end of each day if visible soil is carried onto paved roads on site or roads adjacent to the site to reduce fugitive dust emissions.

• A construction relations officer shall be appointed to act as a community liaison concerning on-site construction activity, including resolution of issues related to PM10 generation.

Electricity Use

• Electricity supplied by a public utility shall be used where available on the construction sites in lieu of temporary diesel- or gasoline-powered generators.
Best Management Practices

The following types of measures are required on construction equipment (including on-road trucks):

1) Use diesel oxidation catalysts and catalyzed diesel particulate traps;
2) Maintain equipment according to manufacturers’ specifications;
3) Restrict idling of construction equipment and on-road heavy-duty trucks to a maximum of 5 minutes when not in use;
4) Install high-pressure fuel injectors on construction equipment vehicles;
5) Maintain a minimum buffer zone of 300 meters between truck traffic and sensitive receptors;
6) Improve traffic flow by signal synchronization;
7) Enforce truck parking restrictions;
8) Provide on-site services to minimize truck traffic in or near residential areas, including the following services: meal or cafeteria services, automated teller machines, etc.;
9) Re-route construction trucks away from congested streets or sensitive receptor areas;
10) Provide dedicated turn lanes for the movement of construction trucks and equipment on and off site; and
11) Use electric power in favor of diesel power where available.

The Los Angeles Harbor Department (LAHD) shall implement a process by which to select additional BMPs to reduce air emissions further during construction. LAHD shall determine the BMPs once the contractor identifies and secures a final equipment list.

Special Precautions near Sensitive Sites

For construction activities that occur within 1,000 feet of sensitive receptors (defined as schools, playgrounds, day care centers, and hospitals), LAHD shall notify each site in writing at least 30 days before construction activities begin.

Recycling of Construction Materials

Demolition and/or excess construction materials shall be separated on site for reuse/recycling or proper disposal. During grading and construction, separate bins for recycling of construction materials shall be provided on site.

Materials with Recycled Content

Materials with recycled content shall be used in project construction. Chippers on site during construction shall be used to reduce excess wood further for landscaping cover.
Import haulers are defined as all trucks hauling dirt to and from the construction site via public roadways. Earthmovers are defined as all trucks moving and/or working in dirt within the construction site (i.e., the trucks are confined to the construction site and do not regularly enter or exit public roadways).
Data Needs for Air Quality Modeling (Road Construction Model)

It is assumed that the following phases of construction will occur:

1. Grubbing/land clearing
2. Grading/excavation
3. Drainage/utilities/sub-grade
4. Paving

These four phases correspond to these numbers

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What year will construction start?</td>
<td>2012</td>
</tr>
<tr>
<td>What pieces of equipment will be used for each of the 4 phases above (grubbing, grading, sub-grade, paving), what is the horsepower for each, and how many hours per day will they be used?</td>
<td></td>
</tr>
<tr>
<td>Please fill in the equipment pieces (i.e., grader, scraper, paver, etc.) that will be used for each numbered phases (indicated to the right by numbers 1-4), in addition to average horsepower for each equipment piece and hours per day the equipment will be used. An example has been filled in</td>
<td>Avg. Hp</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
</tr>
<tr>
<td>485</td>
<td>2</td>
</tr>
<tr>
<td>215</td>
<td>1</td>
</tr>
<tr>
<td>450</td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>1500</td>
<td>1</td>
</tr>
<tr>
<td>275</td>
<td>1</td>
</tr>
<tr>
<td>107</td>
<td>1</td>
</tr>
<tr>
<td>121</td>
<td>2</td>
</tr>
<tr>
<td>320</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>

82 | 1 | 2 | 1 | 8 | Compactor |

How many months will it take to construct each of the 4 phases above?

1. Grubbing/land clearing | 23 MONTHS
2. Grading/excavation | 1 MONTH
3. Drainage/utilities/sub-grade | 9 MONTHS + 5 MONTHS FOR STRUCTURES = 14 MONTHS TOTAL
4. Paving | 5 MONTHS
<p>| 3 MONTHS |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many water trucks will be required for the 4 phases above?</td>
<td></td>
</tr>
<tr>
<td>1. Grubbing/land clearing</td>
<td>1</td>
</tr>
<tr>
<td>2. Grading/excavation</td>
<td>2</td>
</tr>
<tr>
<td>3. Drainage/utilities/sub-grade</td>
<td>1</td>
</tr>
<tr>
<td>4. Paving</td>
<td>1</td>
</tr>
<tr>
<td>How many total miles per day will the water trucks travel for each of</td>
<td></td>
</tr>
<tr>
<td>the 4 phases?</td>
<td></td>
</tr>
<tr>
<td>1. Grubbing/land clearing</td>
<td>1/2 MILE</td>
</tr>
<tr>
<td>2. Grading/excavation</td>
<td>5 MILES</td>
</tr>
<tr>
<td>3. Drainage/utilities/sub-grade</td>
<td>1/2 MILE</td>
</tr>
<tr>
<td>4. Paving</td>
<td>1 MILE</td>
</tr>
<tr>
<td>How many acres per day will be disturbed for the 4 phases above?</td>
<td></td>
</tr>
<tr>
<td>1. Grubbing/land clearing</td>
<td>0.20 AC/ DAY</td>
</tr>
<tr>
<td>2. Grading/excavation</td>
<td>0.50 AC/ DAY FOR 9 MONTHS</td>
</tr>
<tr>
<td>3. Drainage/utilities/sub-grade</td>
<td>0.40 AC/ DAY</td>
</tr>
<tr>
<td>4. Paving</td>
<td>0.10 AC/ DAY</td>
</tr>
<tr>
<td>How many 1-way worker commute trips per day?</td>
<td>21</td>
</tr>
<tr>
<td>How many miles is the average 1-way worker commute trip to get to the</td>
<td>20</td>
</tr>
<tr>
<td>work site?</td>
<td></td>
</tr>
<tr>
<td>How many workers will be required for construction of each of the 4</td>
<td></td>
</tr>
<tr>
<td>phases above?</td>
<td></td>
</tr>
<tr>
<td>1. Grubbing/land clearing</td>
<td>3</td>
</tr>
<tr>
<td>2. Grading/excavation</td>
<td>10 * INCLUDES STRUCTURES</td>
</tr>
<tr>
<td>3. Drainage/utilities/sub-grade</td>
<td>3</td>
</tr>
<tr>
<td>4. Paving</td>
<td>5</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Which of the following is the predominant soil type?</td>
<td>6-10 SANDS AND SANDS WITH MINOR AMOUNTS OF SOIL AND GRAVEL, GENERALLY MEDIUM DENSITY, OCCASIONALLY VERY DENSE, CONSISTENTLY</td>
</tr>
<tr>
<td>• Sand gravel</td>
<td></td>
</tr>
<tr>
<td>• Weathered rock/earth</td>
<td></td>
</tr>
<tr>
<td>• Blasted rock</td>
<td></td>
</tr>
<tr>
<td>What is the project length in miles?</td>
<td>< 1.0 MILE</td>
</tr>
<tr>
<td>How many acres is the total project area?</td>
<td>14.6 ACRES</td>
</tr>
<tr>
<td>How many acres will be disturbed per day?</td>
<td>0.10 AC/Day</td>
</tr>
<tr>
<td>How many cubic yards of soil will be imported per day?</td>
<td>410 CY/Day</td>
</tr>
<tr>
<td>• How many miles is the round trip for soil hauling?</td>
<td>40</td>
</tr>
<tr>
<td>• How many soil hauling trips will be taken per day?</td>
<td>40 OVER 9 MONTHS</td>
</tr>
<tr>
<td>How many cubic yards of soil will be exported per day?</td>
<td>120 CY/DAY OVER 14 MO.</td>
</tr>
<tr>
<td>• How many miles is the round trip for soil hauling?</td>
<td>40</td>
</tr>
<tr>
<td>• How many soil hauling trips will be taken per day?</td>
<td>10</td>
</tr>
<tr>
<td>Phase</td>
<td>2012</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>November</td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>X</td>
</tr>
<tr>
<td>Grading/Excavitation</td>
<td>X</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td></td>
</tr>
</tbody>
</table>
Phased/Used Change

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours/Day</th>
<th>Avg HP</th>
<th>Emissions (pounds/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck</td>
<td>1 8 400 500</td>
<td>1.6523</td>
<td>4.9074</td>
</tr>
<tr>
<td>Truck</td>
<td>1 9 235 750</td>
<td>1.7082</td>
<td>4.9164</td>
</tr>
<tr>
<td>Generator</td>
<td>1 2 100</td>
<td>0.2015</td>
<td>0.9713</td>
</tr>
<tr>
<td>Compressor</td>
<td>1 2 40</td>
<td>0.1661</td>
<td>0.4890</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours/Day</th>
<th>Avg HP</th>
<th>Emissions (pounds/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck</td>
<td>1 8 400 500</td>
<td>1.6329</td>
<td>4.9074</td>
</tr>
<tr>
<td>Truck</td>
<td>1 9 235 750</td>
<td>1.7082</td>
<td>4.9164</td>
</tr>
<tr>
<td>Generator</td>
<td>1 2 100</td>
<td>0.2015</td>
<td>0.9713</td>
</tr>
<tr>
<td>Compressor</td>
<td>1 2 40</td>
<td>0.1661</td>
<td>0.4890</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closest to the Actual Value by the Applicant

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours/Day</th>
<th>HP</th>
<th>Emissions (pounds/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Truck</td>
<td>1 8 400 500</td>
<td>1.6523</td>
<td>4.9074</td>
</tr>
<tr>
<td>Loader</td>
<td>1 8 235 750</td>
<td>1.7082</td>
<td>4.9164</td>
</tr>
<tr>
<td>Generator</td>
<td>1 2 100</td>
<td>0.2015</td>
<td>0.9713</td>
</tr>
<tr>
<td>Compressor</td>
<td>1 2 40</td>
<td>0.1661</td>
<td>0.4890</td>
</tr>
</tbody>
</table>

Table Notes:
- **HP** closest to the actual value provided by the applicant was used in the analysis.
- **Phase/Used** as "off highway truck".
- **Compressor** modeled as "scraper".
Diesel Fuel

<table>
<thead>
<tr>
<th></th>
<th>CO2 CH4 N2O</th>
<th>CO2 CH4 N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg CO2/gal diesel</td>
<td>g/gal</td>
</tr>
<tr>
<td></td>
<td>10.15</td>
<td>0.00058</td>
</tr>
</tbody>
</table>

Source: California Climate Action Registry 2009.

Global Warming Potential

| CH4 N2O | 21 310 |

Source: California Climate Action Registry 2009.

Pounds per Day

<table>
<thead>
<tr>
<th>Year</th>
<th>CO2 CH4 N2O</th>
<th>CO2 CH4 N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>9609.372</td>
<td>0.862849</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>15480.99</td>
<td>1.184158</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>15480.98</td>
<td>1.126206</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>15480.98</td>
<td>1.0676</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td>5805.476</td>
<td>0.583884</td>
</tr>
<tr>
<td>Paving</td>
<td>4387.966</td>
<td>0.360313</td>
</tr>
</tbody>
</table>

a Calculated using CCAR ratio

Metric Tons per Year

<table>
<thead>
<tr>
<th>Year</th>
<th>CO2 CH4 N2O</th>
<th>CO2 CH4 N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>95.89224</td>
<td>0.00861</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>154.4853</td>
<td>0.011817</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>250.3775</td>
<td>0.020427</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>1853.823</td>
<td>0.134861</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1853.823</td>
<td>0.134861</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing/Land Clearing</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>154.4852</td>
<td>0.010654</td>
</tr>
<tr>
<td>Drainage/Utilities/Sub-Grade</td>
<td>289.6652</td>
<td>0.029133</td>
</tr>
<tr>
<td>Paving</td>
<td>131.363</td>
<td>0.010787</td>
</tr>
<tr>
<td>Total</td>
<td>575.5134</td>
<td>0.050573</td>
</tr>
</tbody>
</table>

Months/Year

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grubbing</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Grading</td>
<td>22</td>
<td>264</td>
<td>22</td>
</tr>
<tr>
<td>Days of Activity/Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grubbing</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Grading</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Paving</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

Assumes 22 working days per month
<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>CO</th>
<th>NOX</th>
<th>SOX</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>1.516585</td>
<td>6.129117</td>
<td>18.55427</td>
<td>0.024253953</td>
<td>1.077722</td>
<td>0.776127</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>0.668874</td>
<td>6.429987</td>
<td>0.651696</td>
<td>0.009011566</td>
<td>0.204229</td>
<td>0.048296</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>1.357848</td>
<td>5.590739</td>
<td>16.45761</td>
<td>0.024514811</td>
<td>0.982505</td>
<td>0.687777</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>0.62636</td>
<td>5.957518</td>
<td>0.597724</td>
<td>0.009003688</td>
<td>0.204964</td>
<td>0.04901</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Hauling</td>
<td>0.806375</td>
<td>3.385742</td>
<td>9.672195</td>
<td>0.016368727</td>
<td>0.654158</td>
<td>0.402326</td>
</tr>
<tr>
<td>Employee Trips</td>
<td>0.589911</td>
<td>5.546968</td>
<td>0.550068</td>
<td>0.008982011</td>
<td>0.163023</td>
<td>0.049885</td>
</tr>
</tbody>
</table>
Appendix I Supplemental Noise Modeling
Memorandum

Date: June 21, 2011
To: Hina Gupta, ICF International
Cc: Shilpa Trisal, ICF International
From: Mike Greene, Senior Acoustical Engineer, ICF International
Subject: Supplemental Noise Modeling, C Street / I-110 Access Ramps Improvements Project

Purpose

The purpose of this technical memorandum is to document the results of supplemental noise modeling to analyze the potential effects of the Existing + Project (also referred to here as Existing with Project) scenario. The Existing with Project scenario is compared to the Existing (also referred to here as the Existing without Project) scenario, in response to recent guidance regarding the analysis of environmental effects under the California Environmental Quality Act (CEQA).

Methodology

Existing (Year 2008) with Project peak-hour traffic volumes were provided by the project’s traffic engineering consultant in a Technical Memorandum (Iteris, June 8, 2011). Using these volumes and the prior Traffic Noise Model (TNM) version 2.5 files as a basis, a new Existing with Project noise model file was constructed. The new file used the physical geometry of the project area with the proposed project in place and the Existing with Project levels of traffic. The other model results were unchanged, because the only revision to the traffic data provided by Iteris consisted of the addition of the Existing with Project scenario.

Results

Noise modeling results of the analysis are presented in the attached table. The existing year results are presented under the columns titled Modeled Existing Year Noise Levels without Project and Modeled Existing Year Noise Levels with Project. Comparing the differences between the modeled existing year noise levels for the with and without project scenarios, a maximum increase of one decibel in existing ambient noise level is expected in the vicinity of the project area as a result of the
proposed project. Specifically, noise levels at receivers ST-3 and R-2 are each predicted to increase from 64 dBA Leq(h) to 65 dBA Leq(h). Such an increase would be below the Federal Highway Administration (FHWA) / California Department of Transportation Noise Abatement Criteria of 67 dBA Leq(h), and would also be below generally recognized impact criteria for significant noise increase (3 decibels or greater) under CEQA. Conversely, the other modeled receivers would either experience no change in noise levels or would experience a decrease in noise levels (up to a three-decibel decrease at receiver R-3) due primarily to the slight change in roadway vertical profile and horizontal alignment near these receptor locations.
<table>
<thead>
<tr>
<th>Receiver I.D.</th>
<th>Area</th>
<th>Barrier I.D.</th>
<th>Land Use / Activity Category (NAC)</th>
<th>Number of Dwelling Units</th>
<th>Modeled Existing Year without Project Traffic Noise Level Leq(h), dBA</th>
<th>Modeled Existing Year with Project Traffic Noise Level Leq(h), dBA</th>
<th>Modeled Year Traffic Noise Level without Project Leq(h), dBA</th>
<th>Modeled Year Traffic Noise Level with Project Leq(h), dBA</th>
<th>Impact Type</th>
<th>Noise Prediction with Barrier, Barrier Insertion Loss (I.L.), and Number of Benefited Receivers (NBR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-3</td>
<td>n/a</td>
<td>Recreation / B (67)</td>
<td>1 64 65 1 67 68 1 4 A/E</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>8 feet</td>
<td>10 feet</td>
<td>12 feet</td>
<td>14 feet</td>
</tr>
<tr>
<td>R-2</td>
<td>A: Adjacent to Figueroa St., D St. to C St.</td>
<td>n/a</td>
<td>Residential / B (67)</td>
<td>1 64 65 1 67 68 1 4 A/E</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>8 feet</td>
<td>10 feet</td>
<td>12 feet</td>
<td>14 feet</td>
</tr>
<tr>
<td>R-1</td>
<td>n/a</td>
<td>Residential / B (67)</td>
<td>1 64 64 0 66 67 1 3 A/E</td>
<td>66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0</td>
<td>66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0</td>
<td>66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0 66 1 0</td>
<td>8 feet</td>
<td>10 feet</td>
<td>12 feet</td>
<td>14 feet</td>
</tr>
<tr>
<td>ST-1</td>
<td>n/a</td>
<td>Residential / B (67)</td>
<td>1 64 64 0 66 68 2 4 A/E</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0 67 1 0</td>
<td>8 feet</td>
<td>10 feet</td>
<td>12 feet</td>
<td>14 feet</td>
</tr>
</tbody>
</table>
R-3

<table>
<thead>
<tr>
<th>B: Adjacent to Harry Bridges Blvd.; Hawaiian Ave. to Figueroa St.</th>
<th>n/a</th>
<th>Recreation / B (67)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>None</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

ST-2

<table>
<thead>
<tr>
<th>B: Recreation / B (67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
</tr>
<tr>
<td>n/a</td>
</tr>
</tbody>
</table>

R-4

<table>
<thead>
<tr>
<th>ST-2</th>
<th>Rec- creation / B (67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>60</td>
</tr>
</tbody>
</table>

Note:

- A/E= Future noise conditions approach or exceed the Noise Abatement Criteria.
- I.L. = Insertion Loss
- NBR = Number of benefitted residences
- n/a: This location would become part of the landscaped buffer/berm area
Appendix J Supplemental Traffic Analysis – “Existing + Project” Conditions
Memorandum

To: Steven Leathers, HDR
From: Vamshi Akkinepally
Date: June 8, 2011
Job Number: J08-1646/J11-1616
Re: C Street/I-110 Access Ramps Improvements Project – “Existing+Project” Conditions

The purpose of this technical memorandum is to document the results of traffic operations analysis conducted for the “Existing + Project” conditions for the C Street/I-110 Access Ramps Improvements Project. Iteris, Inc. was requested by the Port of Los Angeles (POLA) to evaluate the traffic operations for the existing with proposed project conditions. The analyses were conducted using Highway Capacity Manual (HCM) 2000 operations methodology.

Existing Plus Project Conditions

Traffic volumes for the “Existing + Project” conditions were based on the turning movement counts conducted in January-February of 2009 as part of the original traffic study. These traffic volumes represented the existing conditions for the project. As explained in the traffic study report, the raw turning movement volumes were converted to Passenger Car Equivalents (PCE) using the following conversion factors for various truck classifications.

- Bobtail = 1.1
- Chassis = 2.0
- Container = 2.0
- Other trucks = 2.0

Existing AM and PM peak hour PCE volumes were manually reassigned through the proposed project geometrics to develop the traffic volumes for the Existing + Project conditions. AM and PM peak hour volumes for the Existing + Project scenario are illustrated in Figure 1.
Figure 1

Legend

- Study Intersection
- XXX/YYYY AM/PM Peak Hour Volumes
- F Free Right-Turn

1. Figueroa St and Harry Bridges Blvd

<table>
<thead>
<tr>
<th>Study Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Figueroa St</td>
<td>49/22</td>
<td>70/34</td>
</tr>
<tr>
<td></td>
<td>15/23</td>
<td>448/383</td>
</tr>
<tr>
<td></td>
<td>122/76</td>
<td>149/317</td>
</tr>
<tr>
<td></td>
<td>98/52</td>
<td>595/627</td>
</tr>
</tbody>
</table>

1. Figueroa St and Harry Bridges Blvd
Intersection Level of Service

A level of service analysis was conducted using the HCM2000 operations methodology to evaluate existing plus project conditions. The results of the intersection level of service analysis are summarized in Table 1. The table shows that the proposed intersection is anticipated to operate at satisfactory levels of service during both AM and PM peak hour conditions.

Table 1: Existing + Project Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS Delay (Sec) V/C</td>
<td>LOS Delay (Sec) V/C</td>
</tr>
<tr>
<td>Figueroa St/John S. Gibson Blvd & I-110 Ramps/Harry Bridges Blvd</td>
<td>B 19.5 0.39</td>
<td>B 18.6 0.41</td>
</tr>
</tbody>
</table>

Notes:
HCM 2000 Operations Methodology.
LOS = Level of Service, Delay = Average Vehicle Delay (Seconds), V/C = Volume-to-Capacity Ratio

Intersection Queuing Analysis

A queuing analysis using was conducted at Figueroa Street/John S. Gibson Boulevard & I-110 Ramps/Harry Bridges Boulevard intersection to determine the queue lengths at turn lanes using Synchro 6 software, which accounts for the 95th percentile queue lengths. The results of the queuing analysis are summarized in Table 2.

Table 2: Existing + Project Intersection Queue Lengths

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Movement</th>
<th>AM Peak Hour 95th Percentile Queue Length (ft)</th>
<th>PM Peak Hour 95th Percentile Queue Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figueroa St/John S. Gibson Blvd & I-110 Ramps/Harry Bridges Blvd</td>
<td>SBL</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>NBR</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>NBL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EBR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>EBL</td>
<td>53</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>WBR</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>WBL</td>
<td>178</td>
<td>223</td>
</tr>
</tbody>
</table>
Freeway Ramp Analysis

Peak hour ramp conditions are analyzed using the methodology contained in “Chapter 13 – Freeway Concepts” and “Chapter 25 – Ramps and Ramp Junctions” of the HCM 2000, with calculations performed using the Highway Capacity Software (HCS+, Version 5.21). Freeway ramp levels of service in the Existing + Project scenario during the AM and PM peak hours are summarized in Table 3. As shown in the table, the freeway ramp within the study area will operate at satisfactory levels of service during both the AM and PM peak hours. The northbound I-110 on-ramp from Harry Bridges Boulevard is not considered to be a part of a ramp configuration since it is in a weaving configuration with the adjacent interchange at Anaheim Street and is analyzed as a weaving segment.

Table 3: Existing + Project Freeway Ramp Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
<td>Volume (PCE)</td>
</tr>
<tr>
<td>I-110 NB Off-Ramp to Harry Bridges Boulevard</td>
<td>289</td>
<td>22.9</td>
<td>C</td>
<td>293</td>
</tr>
</tbody>
</table>

Freeway Ramp Analysis

Peak hour conditions along the freeway mainline are analyzed using the methodology contained in “Chapter 13 – Freeway Concepts” and “Chapter 23 – Basic Freeway Segments” of the Highway Capacity Manual, with analysis performed using the Highway Capacity Software (HCS+, Version 5.21). Freeway mainline level of service for the Existing + Project scenario during the AM and PM peak hours are summarized in Table 4. As shown in the table, all freeway segments in the study area will operate at satisfactory levels of service during both the AM and PM peak hours.

Table 4: Existing + Project Freeway Mainline Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
<th>Average Speed (mph)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>I-110 NB South of Harry Bridges Boulevard Off-Ramp</td>
<td>4,544</td>
<td>18.4</td>
<td>C</td>
<td>2,989</td>
<td>12.1</td>
</tr>
<tr>
<td>I-110 NB Between Harry Bridges Boulevard Off and On-Ramps</td>
<td>4,255</td>
<td>17.2</td>
<td>B</td>
<td>2,696</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Notes:
¹ Average passenger-car speed based on HCS output.
Freeway Weave Analysis

Peak hour weaving segments are analyzed using the methodology contained in “Chapter 13 – Freeway Concepts” and “Chapter 24 – Freeway Weaving” of HCM 2000, with analysis performed using HCS (HCS Plus, Version 5.21). This analysis examines the levels of service within the weaving segment. Freeway weaving segment level of service for the Existing + Project scenario during the AM and PM peak hours are summarized in Table 5. As shown in the table, all freeway segments in the study area will operate at satisfactory levels of service during both the AM and PM peak hours.

Table 5: Existing + Project Freeway Weaving Segment Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
<th>Average Speed (mph)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
<td>LOS</td>
<td>Volume (PCE)</td>
<td>Density (pc/mi/ln)</td>
</tr>
<tr>
<td>I-110 NB between Harry Bridges Boulevard On-Ramp & Anaheim Street Off-Ramp</td>
<td>4,388</td>
<td>16.64</td>
<td>B</td>
<td>2,922</td>
<td>10.77</td>
</tr>
</tbody>
</table>

Notes:
1 Average passenger-car speed based on HCS output.

Summary and Conclusions

This memorandum documents the results of the Existing + Project scenario traffic operations analysis conducted for the C Street/I-110 Access Ramps Improvements project. The findings of this analysis are summarized as follows:

- The study intersection is anticipated to operate at LOS B in the AM and PM peak hours.
- The freeway ramp diverge at I-110 NB Off-Ramp to Harry Bridges Boulevard is anticipated to operate at LOS C or better during both the AM and PM peak hours.
- All freeway mainline segments are anticipated to operate at satisfactory levels of service (LOS C or better) during both the AM and PM peak hours.
- The weaving segment in the study area is anticipated to operate at LOS B during both the AM and PM peak hours.
AVISO DE AUDIENCIA PUBLICA Y ESTUDIOS DISPONIBLES
Proyecto para el Crucero 1-110/C Street

¿QUÉ SE PRETENDEN HACER?
El Departamento para la Transportación de California, Distrito 7 (Caltrans), en colaboración con el Puerto de Los Ángeles (El Puerto), propone hacer mejoras al Crucero de la Interestatal 110 (I-110)/C Street. Dicho proyecto incluye la construcción de una rampa vía de salida para conectar directamente con Harry Bridges Boulevard, modificar la rampa de entrada de C Street en dirección norte, reajustar de Harry Bridges Boulevard, y combinar la rampa terminal del crucero I-110/C Street/Figueroa Street con el cruce John S. Gibson Boulevard/Harry Bridges Boulevard. Se ha propuesto también construir aceras o banquetas a lo largo de los caminos para ofrecerle a los peatones vías libres y sin obstáculos dentro de los límites del proyecto. Se construirán rampas de acceso con acotamiento en los cruces de calles y cruces peatonales y se respetarán las rutas existentes para bicicletas. Se colocarán también señalamientos y límites marcados para el cruce de peatones.

¿POR QUÉ ESTE AVISO?
El Puerto y Caltrans han terminado su Estudio Preliminar/Evaluación Ambiental (IS-EA por sus siglas en inglés), el cual evalúan los posibles impactos de la Alternativa No Construir-Construir. Este es un aviso de que hay un estudio preliminar IS-EA a disposición del público para que se analice y comente al respecto en la audiencia pública a celebrarse el martes 1º de noviembre de 2011.

¿QUÉ ESTÁ DISPONIBLE?
Una copia del estudio IS/Ea está disponible en la División de Ingeniería del Puerto de Los Ángeles, en el 425 South Palos Verdes Street, San Pedro, CA 90731; en el edificio de Caltrans Distrito 7 (100 South Main St, Los Angeles CA 90012), División de Planeación Ecológica, y en bibliotecas públicas (Sucursales de San Pedro y Wilmington). También se puede obtener el informe por internet en el sitio web del Puerto en http://www.portoflosangeles.org; y en el Sitio Web de Caltrans en http://www.dot.ca.gov/dist07/resources/envdocs/.

¿POR QUÉ ES IMPORTANTE PARA USTED?
La participación y aportaciones del público son muy importantes para que este proyecto sea llevado a cabo por Caltrans y el Puerto. Lo invitamos a que revise y comente sobre el estudio de IS/Ea. Envíe sus comentarios por escrito a Eric Dietrich, Environmental Planner, Caltrans Distrito 7, 100 South Main Street, Los Angeles, CA 90012; o a Christopher Cannon, Environmental Management Division, Port of Los Angeles, 425 South Palos Verdes Street, San Pedro, CA 90731. También se pueden enviar comentarios por escrito vía internet a ceqacomens@portla.org. Los comentarios deben tener sello de correo o enviarse por internet a más tardar el 14 de noviembre de 2011.

¿CUÁNDO Y EN DÓNDE?
La audiencia pública se llevará a cabo el martes 1º de noviembre de las 6 a las 8 de la noche en John Mendez Youth Center, 707 W. C Street, Wilmington CA, 90744. Se hará una breve presentación formal a las 6 p.m. Y se escucharán los comentarios del público después de ello y hasta las 8 p.m. Habrá servicios de interpretación durante la junta.

CONTACTO:
Para más información acerca de este estudio favor de comunicarse con Laura Masterson, Port of Los Angeles, al (310) 782-3679 (email: LMasterson@portla.org).
NOTICE OF PUBLIC HEARING AND AVAILABILITY OF STUDIES
I-110/C Street Interchange Project

WHAT'S BEING PLANNED?
The California Department of Transportation, District 7 (Caltrans), in cooperation with the Port of Los Angeles (Port), proposes to improve the existing Interstate 110 (I-110)/C Street interchange. The proposed project would include a northbound off-ramp for direct access to Harry Bridges Boulevard, modification of the northbound on-ramp from C Street, realignment of Harry Bridges Boulevard, and the Harry Bridges Boulevard interchange. Concrete sidewalks are proposed along the local roadways to accommodate the I-110 ramp terminal/C Street/Figueroa Street intersection with the John S. Gibson Boulevard, a clear and unobstructed path for pedestrian travel within the project limits. Curb ramps would be constructed at intersections and street crossings and existing bicycle routes will be maintained. Pedestrian signals and crosswalk pavement disconnection would also be provided.

WHY THIS NOTICE?
The Port and Caltrans have completed the Draft Initial Study/Environmental Assessment (IS/EA), which evaluates the potential impacts of the No Build and Build Alternatives. This notice is to inform of the availability of the Draft IS/EA for the public's review and comment, and notification of public hearing about this study to be held on Tuesday, November 1, 2011.

WHAT'S AVAILABLE?
A copy of the Draft IS/EA is available at the Port of Los Angeles, Engineering Division, 425 South Palos Verdes Street, San Pedro, CA 90731; Caltrans District 7 Building, 100 South Main St., Los Angeles, CA 90012; Division of Environmental Planning and Local Public Facilities (San Pedro Branch), 1101 North Gaffey Street, San Pedro, CA 90731. Written comments may also be sent via email to pjeroan@portsb.org. Comments must be postmarked no later than November 14, 2011.

WHERE DO I COME FROM?
Public participation and input are important for the Port and Caltrans to move forward with the proposed project. We encourage you to review and comment on the Draft IS/EA. You may submit written comments to Eric Dismore, Environmental Planner, Caltrans District 7, 100 South Main Street, Los Angeles, CA 90012, or to Christopher Cervantes, Environmental Management Division, Port of Los Angeles, 425 South Palos Verdes Street, San Pedro, CA 90731. Written comments may also be sent via email to pjeroan@portsb.org. Comments must be postmarked no later than November 14, 2011.

WHEN AND WHERE?
The Public Hearing will be held on Tuesday, November 1 from 6:00 p.m. to 8:00 p.m. at the John Mendez Youth Center, 707 W.C Street, Wilmington, CA 90744. A brief formal presentation will be made at 6:00 p.m. Public comments will be heard thereafter until 8:00 p.m. Interpreter services will be available at the meeting.

CONTACT:
For more information about this study contact Laura Masterson of the Port's CEQA group, at (310) 723-2679 (email: LMasterson@portsb.org).

Published: October 25, 2011
Appendix L FHWA Air Quality Conformity Determination
Michael Miles
Director District 7
California Department of Transportation
100 South Main Street, Suite 100
Los Angeles, CA 90012-3606

Attention: Andrew Yoon, Senior Transportation Engineer

Dear Mr. Yoon:

SUBJECT: Project-Level Conformity Determination for the I-110/C Street Interchange Improvement Project

On May 23, 2012 the California Department of Transportation (Caltrans) submitted to the Federal Highway Administration (FHWA) a request for the project-level conformity determination for the I-110/C Street Interchange Improvement Project in Los Angeles County pursuant to 23 U.S.C. 327(a)(2)(B)(ii)(1). The project is in an area that is designated nonattainment or maintenance for 8-hour ozone, carbon monoxide (CO), course particulate matter (PM$_{10}$), fine particulate matter (PM$_{2.5}$), and nitrogen dioxide (NO$_2$).

The project-level conformity analysis submitted by Caltrans indicates that the project-level transportation conformity requirements of 40 C.F.R. Part 93 have been met. The project is included in the Southern California Association of Government’s (SCAG) currently conforming 2012 Regional Transportation Plan (RTP), and the 2011 Federal Transportation Improvement Program (FTIP). The latest conformity determination for the 2012 RTP and for the 2011 FTIP through Amendment #11-24 was approved by FHWA and the Federal Transit Administration (FTA) on June 4, 2012. The design concept and scope of the preferred alternative have not changed significantly from those assumed in the regional emissions analysis.

Based on the information provided, FHWA finds that the project-level conformity determination for the I-110/C Street Interchange Improvement Project, Los Angeles County conforms to the State Implementation Plan (SIP) in accordance with 40 C.F.R. Part 93.
If you have any questions pertaining to this conformity finding, please contact Stew Sonnenberg, FHWA Air Quality Specialist, at (916) 498-5889.

Sincerely,

[Signature]

For
Vincent P. Mammano
Division Administrator
cc: (email)
M. Brady, CT HQ
K. Price, CT D-7
J. Hannon, FHWA

SSonnenberg/mb