Appendix M. Conformity Determination

Appendix M

Channel Deepening Project
Draft General Conformity
Determination

The Port of Los Angeles, California

March 2009

Prepared for:

US Army Corps of Engineers Los Angeles District P.O. Box 532711 Los Angeles, California 90053-2325

Contents

Section 1	Introd			
	1.1	Trans	portation Conformity Requirements	
	1.2		al Conformity Requirements	
Section 2	Descr	iption of	f the Project Subject Federal Action	2-1
	2.1	LAHI	D: Berth 97-109 Construction Project	2-1
	2.2	Relation	onship to Other Environmental Analyses	2-7
Section 3	Regul		ocedures	
	3.1	Use of	f Latest Planning Assumptions	3-1
	3.2	Use of	f Latest Emission EstimationTechniques	3-1
	3.3	Emiss	ion Scenarios	3-2
Section 4	Appli	cability	Analysis	4-1
	4.1	Attain	ment Status of South Coast Air Basin	4-1
	4.2	Exem	ptions from General Conformity Requirements	4-2
	4.3		nimis Emission Rates	
	4.4	Region	nal Significance	4-4
	4.5	Appli	cability for Federal Action	4-4
		4.5.1	Methodology	4-5
		4.5.2	Estimated Emissions and Comparison to De Minimis	
		4.5.3	Regional Significance	4-6
		4.5.4	Applicability Determination	4-7
Section 5	Gener	ral Confo	ormity Evaluation	5-1
	5.1	Design	nation of Applicable SIP	5-1
		5.1.1	SIP Process in the South Coast Air Basin	5-1
		5.1.2	Status of Applicable SIP and Emissions Budgets	
			by Pollutant	5-2
	5.2	Comp	arison to SIP Emissions Inventories	5 - 3
		5.2.1	NO _x Emissions from Construction Sources Under the	
			Federal Action	5-3
		5.2.2	NO _x Emissions from Other Sources at POLA	5-7
	5.3	Consi	stency with Requirements and Milestones in	
		Appli	cable SIP	5-7
		5.3.1	Applicable Requirements from EPA	5-7
		5.3.2	Applicable Requirements from CARB	5-7
		5.3.3	Applicable Requirements from SCAQMD	5-8
		5.3.4	Consistency with Applicable Requirements	5-8
Section 6	Mitig	ation		6-1
Section 7	Repor	rting		7-1
	7.1^{-}	Draft	General Conformity Determination	7-1
	7.2	Final (General Conformity Determination	7-1
	7.3		ency of General Conformity	
Section 8	Findi		Conclusions	
Section 9		0		

Attachments

Attachment A	Port of Los Angeles Channel Deepening Federal Actions General
	Conformity Calculation Methodology and Results
Attachment B	. USACE Guidance Concerning Implementation of EPA's Clean Air Act
	General Conformity Rule

List of Tables

Table 2-1	List of Construction Activities in the Federal Action2-2
Table 3-1	Emission Scenario Years for General Conformity Evaluation
	based on 1997/99 SIP
Table 3-2	Emission Scenario Years for General Conformity Evaluation
	based on 2007 AQMP
Table 4-1	De Minimis Emission Rates for Determining Applicability of
	General Conformity Requirements to the Federal Action 4-4
Table 4-2	Federal Action Emission Rates and Comparison to De Minimis
	Emission Rates
Table 4-3	Federal Action Annual NO _x Emission Rates and Comparison to
	De Minimis Emission Rates4-7
Table 4-4	Comparison of Federal Action Emissions for Regional Significance 4-7
Table 5-1	Relationship of Federal Action Source Categories and AQMP Source
	Types 5-3
Table 5-2	Comparison of Alternative 1 NO _x Emissions for Construction
	to Approved SIP Emission Budgets for Construction-Related
	Source Types5-5
Table 5-3	Comparison of Alternative 2 NO _x Emissions for Construction
	to Approved SIP Emission Budgets for Construction-Related
	Source Types 5-5
Table 5-4	Comparison of Alternative 1 NO _x Emissions for Construction
	to 2007 AQMP Emission Budgets for Construction-Related
	Source Types5-6
Table 5-5	Comparison of Alternative 2 NO _x Emissions for Construction
	to 2007 AQMP Emission Budgets for Construction-Related
	Source Types

Section 1 Introduction

Section 176 (c) of the Clean Air Act (42 U.S.C. § 7506(c)) requires any entity of the Federal government that engages in, supports, or in any way provides financial support for, licenses or permits, or approves any activity to demonstrate that the action conforms to the applicable State Implementation Plan (SIP) required under Section 110 (a) of the Clean Air Act (42 U.S.C. § 7410(a)) before the action is otherwise approved. In this context, conformity means that such Federal actions must be consistent with a SIP's purpose of eliminating or reducing the severity and number of violations of national ambient air quality standards (NAAQS) and achieving expeditious attainment of those standards. Each Federal agency (including the U.S. Army Corps of Engineers [USACE]) must determine that any action that is proposed by the agency and that is subject to the regulations implementing the conformity requirements will, in fact, conform to the applicable SIP before the action is taken.

At issue for the Port of Los Angeles Channel Deepening Project (hereinafter the Project) is the issuance of a USACE permit, pursuant to Section 404 of the Clean Water Act, Section 10 of the River and Harbor Act, and Section 103 of the Marine Protection, Research, and Sanctuaries Act, for completion of the Project as authorized by Congress in Water Resources Development Act (WRDA) 2000. This action includes the construction/demolition of in-water structures and the disposal of up to three million cubic yards (mcy) of remaining dredge material associated with the Project into inner and outer harbor areas and into ocean waters at ocean disposal sites LA-2 and LA-3. This draft general conformity determination documents the evaluation of the Federal action with Section 176 (c) requirements of the Clean Air Act. The remainder of Section 1 discusses the background of the regulatory requirements. Section 2 discusses the USACE's Federal action. Section 3 discusses the regulatory procedures for the conformity evaluation. Section 4 describes how applicability of the conformity requirements to the Federal action was analyzed. Section 5 presents the methods and criteria that were used to evaluate the conformity of the Federal action. Section 6 discusses the concepts of mitigation required under conformity regulations. Section 7 presents the reporting process to be followed to formalize the conformity determination. Section 8 offers the USACE's findings and conclusions. Section 9 provides references for the evaluation. Attachment A provides a discussion and results of the emission calculation methods applied in the general conformity evaluation. Attachment B presents the USACE general conformity guidance document.

The 3.0 mcy of remaining dredge material that requires disposal includes material within the Main Channel and berths that has not yet been dredged, as well as approximately 0.815 mcy of material that was previously dredged and now exists as surcharge on the Southwest Slip at Berth 100 (Table 2-1).

1.1 General Conformity Requirements

On November 30, 1993, the U.S. Environmental Protection Agency (EPA) promulgated final general conformity regulations at 40 C.F.R. Part 93 Subpart B for all Federal activities except those covered under transportation conformity. On September 14, 1994, South Coast Air Quality Management District (SCAQMD) adopted these regulations by reference as part of Rule 1901. The general conformity regulations apply to a Federal action in a nonattainment or maintenance area if the total of direct and indirect emissions of the relevant criteria pollutants and precursor pollutants caused by the Federal action equal or exceed certain de minimis rates, thus requiring the Federal agency to make a determination of general conformity. Even if the total direct and indirect emissions of any pollutant from a Federal action does not equal or exceed the de minimis rates, but represents ten percent or more of a nonattainment or maintenance area's total emissions of that pollutant, the action is considered regionally significant and the Federal agency must make a determination of general conformity. By requiring an analysis of direct and indirect emissions, EPA intended the regulating Federal agency to make sure that only those emissions that are reasonably foreseeable and that the Federal agency can practicably control subject to that agency's continuing program responsibility will be addressed.

The general conformity regulations incorporate a stepwise process, beginning with an applicability analysis. According to EPA guidance (EPA 1994), before any approval is given for a Federal action to go forward, the regulating Federal agency must apply the applicability requirements found at 40 C.F.R. § 93.153(b) to the Federal action and/or determine the regional significance of the Federal action to evaluate whether, on a pollutant-by-pollutant basis, a determination of general conformity is required. The guidance states that the applicability analysis can be (but is not required to be) completed concurrently with any analysis required under the National Environmental Policy Act (NEPA). If the regulating Federal agency determines that the general conformity regulations do not apply to the Federal action, no further analysis or documentation is required. If the general conformity regulations do apply to the Federal action, the regulating Federal agency must next conduct a conformity evaluation in accord with the criteria and procedures in the implementing regulations, publish a draft determination of general conformity for public review, and then publish the final determination of general conformity.

Section 2 Description of the Federal Action

In accordance with applicable general conformity regulations and guidance, including USACE guidance dated April 20, 1994 (see Attachment B), when a general conformity determination is necessary, the USACE is only required to conduct a general conformity evaluation for a specific Federal action associated with the selected alternative for a project or program (EPA 1994), and the USACE must issue a positive conformity determination before the Federal action is approved. Each Federal agency is responsible for determining conformity of those proposed actions over which it has jurisdiction. This draft general conformity determination is related only to those activities included in the USACE's Federal action pertaining to the Project, which is more fully described in Section 2.1.

The general conformity requirements only apply to Federal actions proposed in nonattainment areas (i.e., areas where one or more NAAQS are not being achieved at the time of the proposed action and requiring SIP provisions to demonstrate how attainment will be achieved) and in maintenance areas (i.e., areas recently reclassified from nonattainment to attainment and requiring SIP provisions pursuant to Section 175A of the Clean Air Act to demonstrate how attainment will be maintained). The attainment status in the vicinity of POLA is discussed in Section 4.1.

2.1 Channel Deepening Project

To complete the Project, additional capacity for disposal of dredged material is needed. The Final SEIS/SEIR is a supplement to the 2000 SEIS/SEIR that was prepared for the Project, which was a supplement to the 1998 Project EIR and the 1992 Deep Draft Navigation Improvements Project EIS/EIR. This SEIS/SEIR addresses impacts related to the modifications required to complete disposal of dredged material from the authorized Project (proposed action).

The purpose of the proposed action is to complete the Project by providing approximately 3.0 million cubic yards (mcy) of additional disposal capacity and optimizing beneficial use of the dredged material within the Port of Los Angeles. Additional disposal sites are needed because disposal sites developed for dredge material identified in the 2000 SEIS/SEIR have been found to be inadequate for the total volume of sediments that require removal from the Main Channel and adjacent berth areas to complete the Project (see details in Chapter 2 of the Final SEIS/SEIR).

The USACE and LAHD are undertaking the proposed action to provide disposal capacity to complete the Project. The proposed action includes two action alternatives: (1) Alternative 1, Port Development and Environmental Enhancement and (2) Alternative 2, Environmental Enhancement and Ocean Disposal. Alternative 1 has been preliminarily identified as the environmentally superior/preferred alternative and the Least Environmentally Damaging and Practicable Alternative (LEDPA) by the USACE.

Since the LEDPA determination in the Project Final SEIS/SEIR is preliminary and it will be finalized in the ROD, the USACE provides the following conformity determinations for both alternatives.

The alternatives are comprised of different combinations of the dredge material disposal options. Table 2-1 summarizes the disposal site locations and associated proposed dredge material disposal volumes for each alternative. It is expected that implementation of either alternative would begin in October 2009 and activities would be completed by 2012. Further details of the proposed dredge and disposal activities are provided in Section 2.0 of the Project Final SEIS/SEIR.

The Federal action includes construction/demolition of in-water structures and the disposal of dredge material at various disposal sites within the inner and outer harbors as well as the open ocean. As part of the environmental review of the proposed action, the USACE, in coordination with the LAHD, has prepared this draft general conformity determination to demonstrate compliance with the general conformity requirements in support of the USACE's Federal action associated with the Project.

Table 2-1. Disposal Sites/Volumes - Proposed Action Alternatives (mcy)

Disposal sites	Alternative 1 Port Development and Environmental Enhancement (mcy)	Alternative 2 Environmental Enhancement and Ocean Disposal (mcy)	
Berths 243-245 (a)	0.368 (b)	NA	
Northwest Slip	0.128 (b)	NA	
CSWH Expansion (c)	1.700 (b)	1.700 (b)	
ARSSS (d)	NA	0.080	
Ocean Disposal Site LA-2	0. 804	0. 804	
Ocean Disposal Site LA-3	NA	0.416	
Total Volume	3.000	3.000	

CSWH: Cabrillo Shallow Water Habitat

ARSSS: Anchorage Road Soil Storage Site. This site would be used for material unsuitable for open water disposal.

The LAHD has prepared an extensive list of mitigation measures that it proposes to implement as part of the proposed action to satisfy requirements of the California Environmental Quality Act (CEQA), and for the general conformity evaluation, the construction measures are considered part of project construction as designed. These mitigation measures were developed from reviews of mitigation measures and plans used at other seaports, extensions of ongoing LAHD environmental policies (including implementation of the Sustainable Construction Guidelines (POLA 2007)), and public

 ⁽a) Site would be used for material unsuitable for open water disposal.
 (b) Additional dredging of 0.090 mcy for Berths 243-245, 0.050 mcy for Northwest Slip, and 0.040 mcy for CSWH is required for trenching dike foundations and is not included in the volumes presented in this table. These volumes of material would be disposed in their respective disposal sites, thereby decreasing the amount of Channel Deepening Project material able to be accommodated by each disposal site. Therefore, a total of approximately 0.18 mcy would be available to be placed as surcharge on Berths 243-245.

comments received on the Draft SEIS/SEIR. The mitigation measures related to construction include the following general approaches to reduce air quality impacts:

MM AQ-2.1: Construction Equipment Standards.

- 1. Idling shall be restricted to a maximum of 5 minutes when not in use.
- 2. The following emission standards shall be met:

Prior to and including December 31, 2011: All on-site mobile diesel-powered construction equipment greater than 50 Hp, except derrick barges and marine vessels shall meet the Tier 2 emission standards as defined in the USEPA Nonroad Diesel Engine Rule. In addition, all construction equipment greater than 50 Hp shall be retrofitted with a CARB-certified Level 3 diesel emissions control device.

From January 1, 2012 through December 31, 2014: All off-road diesel-powered construction equipment greater than 50 Hp shall meet Tier-3 emission nonroad emission standards, at a minimum and shall be retrofitted with a CARB-certified Level 3 diesel emissions control device.

This mitigation measure shall be met, unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:

- A piece of specialized equipment is unavailable in a controlled form within the State of California, including through a leasing agreement.
- A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
- A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.

MM AQ-2.2: Fleet Modernization for On-Road Trucks.

Prior to and including December 31, 2011: All on -road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on-site or to transport materials to and from the site shall comply with USEPA 2004 on road emission standards for PM₁₀ and NO_x (0.10 g/bhp-hr PM₁₀ and 2.0 g/bhp-hr NO_x)

From January 1, 2012 on: All on-road heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used at the Port of Los Angeles shall comply with EPA 2007 on-road emission standards for PM₁₀ and NO_x (0.01 g/bhp-hr and 0.20 g/bhp-hr).

All years: Trucks hauling materials such as debris or fill shall be fully covered while in operation off Port property.

In addition, all on-road heavy heavy-duty trucks with a GVWR of 19,500 pounds or greater used at the Port of Los Angeles shall be equipped with a CARB verified Level 3 device.

This mitigation measure shall be met unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:

- A piece of specialized equipment is unavailable in a controlled form, within the State of California, including through a leasing agreement.
- A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the application process is not yet approved, or the application has been approved, but funds are not yet available.
- A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.

MM AQ-2.3: Electrify Dredge Equipment. All dredging equipment shall be electric where available.

MM AQ-2.4: Engine Standards for Harbor Craft Used In Construction.

Prior to December 31, 2010, all harbor craft with category 1 or 2 (C1 or C2) marine engines shall achieve a minimum emission reduction equivalent to a USEPA Tier-2 2004 level nonroad marine engine. Subsequent to January 1, 2011, all harbor craft with C1 or C2 marine engines shall utilize USEPA Tier 3 or cleaner engines.

This mitigation measure shall be met unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:

- A piece of specialized equipment is unavailable in a controlled form, or within the required Tier level, within the state of California, including through a leasing agreement.
- A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the project, but the

- application process is not yet approved, or the application has been approved, but funds are not yet available.
- A contractor has ordered a control device for a piece of equipment planned for use on the project, or the contractor has ordered a new piece of controlled equipment to replace the uncontrolled equipment, but that order has not been completed by the manufacturer or dealer. In addition, for this exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the project has the controlled equipment available for lease.
- MM AQ-2.5: Additional Fugitive Dust Control. The construction contractor shall further reduce fugitive dust emissions to 90 percent from uncontrolled levels. The proposed action construction contractor shall specify dust-control methods that will achieve this control level in a SCAQMD Rule 403 dust control plan. Their duties shall include holiday and weekend periods when work may not be in progress. Measures to reduce fugitive dust include, but are not limited to, the following:
 - Active grading sites shall be watered one additional time per day beyond that required by Rule 403
 - Contractors shall apply approved non-toxic chemical soil stabilizers
 according to manufacturer's specifications to all inactive construction areas or
 replace groundcover in disturbed areas (previously graded areas) inactive for
 ten days or more.
 - Construction contractors shall provide temporary wind fencing around sites being graded or cleared.
 - Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard in accordance with Section 23114 of the California Vehicle Code. ("Spilling Loads on Highways").
 - Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads, or wash off tires of vehicles and any equipment leaving the construction site.
 - Pave road and road shoulders.
 - Require the use of clean-fueled sweepers pursuant to SCAQMD Rule 1186 and Rule 1186.1 certified street sweepers. Sweep streets at the end of each day if visible soil is carried onto paved roads on-site or roads adjacent to the site to reduce fugitive dust emissions.
 - Appoint a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to PM₁₀ generation.
 - Traffic speeds on all unpaved roads shall be reduced to 15 mph or less.
 - Provide temporary traffic controls such as a flag person, during all phases of construction to maintain smooth traffic flow.

- Schedule construction activities that affect traffic flow on the arterial system to off-peak hours to the extent practicable.
- Require the use of electrified truck spaces for all truck parking or queuing areas if feasible. Alternatively, trucks could be required to turn off if parked or stopped in idle for more than 15 minutes.

The grading contractor shall suspend all soil disturbance activities when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction is delayed.

- MM AQ-2.6: Additional Best Management Practices (BMPs). The following types of measures are required on construction equipment (including on-road trucks), where feasible:
 - 1. Use of diesel oxidation catalysts and catalyzed diesel particulate traps.
 - 2. Maintain equipment according to manufacturers' specifications.
 - 3. Restrict idling of construction equipment and on-road heavy-duty trucks to a maximum of 5 minutes when not in use.
 - 4. Install high-pressure fuel injectors on construction equipment vehicles.
 - 5. Maintain a minimum buffer zone of 300 meters between truck traffic and sensitive receptors
 - 6. Improve traffic flow by signal synchronization
 - 7. Enforce truck parking restrictions
 - 8. Provide on-site services to minimize truck traffic in or near residential areas, including, but not limited to, the following services: meal or cafeteria services, automated teller machines, etc.
 - 9. Re-route construction trucks away from congested streets or sensitive receptor areas.
 - 10. Provide dedicated turn lanes for movement of construction trucks and equipment on- and off-site.
 - 11. Use electric power in favor of diesel power where available.

LAHD shall coordinate with USACE to implement a process by which to select additional BMPs to further reduce air emissions during construction. The LAHD, in coordination with USACE, shall determine the BMPs once the contractor identifies and secures a final equipment list. The final BMPs shall be implemented by including mitigation measures in the Plan and Specifications and in the project stormwater pollution prevention plan (SWPPP). All BMPs shall be incorporated into the plan and specifications that the construction contractor will follow will be monitored by USACE's Environmental Resources Branch to ensure that mitigation measures are

implemented during construction. The final construction equipment list can be determined after selection of the construction contractor. This mitigation is not quantified in this study. The final BMPs shall be monitored by Environmental Resources Branch and implemented through USACE's Engineering Division in the construction contract.

All of the mitigation measures that the USACE has relied upon in this draft general conformity determination will become construction specifications via modifications to the Plan and Specifications. These provisions ensure that the measures will be properly implemented through incorporating mitigation measures into all construction specifications for the proposed action .

2.2 Relationship to Other Environmental Analyses

A joint Draft SEIS/SEIR was published for public review and comment in August 2008 (USACE/LAHD 2008) providing an analysis of two proposed alternatives (Alternatives 1 and 2). The USACE is the lead agency for the NEPA analysis documented in the Supplemental Environmental Impact Statement (SEIS). The LAHD is the lead agency for the CEQA analysis documented in the Supplemental Environmental Impact Report (SEIR).

Both NEPA and CEQA require that the air quality impacts of the proposed action implementation be analyzed and disclosed. Regulatory guidance implementing these statutes requires that the air quality impacts from the project and its alternatives be determined by identifying the associated project incremental emissions and air pollutant concentrations and comparing them respectively to emissions thresholds and state and national ambient air quality standards. For CEQA purposes, the air quality impacts of the proposed action alternatives were compared to the impacts of the environmental baseline to determine environmental significance and develop appropriate mitigation measures. The air quality impacts of the two action alternatives were also compared to the NEPA Baseline for NEPA purposes. This draft general conformity determination is being published with the Final SEIS/SEIR.

Section 3 Regulatory Procedures

The general conformity regulations establish certain procedural requirements that must be followed when preparing a general conformity evaluation. This section addresses the major procedural issues and specifies how these requirements are met for the evaluation of the Federal action. The procedures required for the general conformity evaluation are similar but not identical to those for conducting an air quality impact analysis under NEPA regulations.

3.1 Use of Latest Planning Assumptions

The general conformity regulations require the use of the latest planning assumptions for the area encompassing the Federal action, derived from the estimates of population, employment, travel, and congestion most recently approved by the MPO (40 C.F.R. § 93.159(a)). It should be noted that the latest planning assumptions available from the MPO at the time of this evaluation may differ from the planning assumptions used in establishing the applicable SIP emissions budgets. The approved 1997/1999 AQMP was developed with data similar to that used in the 1998 Regional Transportation Plan (RTP), which was contemporaneous with the 1997/1999 AQMP. See TraPac final conformity determination for more information. The approved 2008 RTP, which supersedes earlier RTPs, predicts an increase of goods movement in the SCAG region out to at least 2035, which partly reflects activities at POLA.

As noted previously, SCAG is the MPO for the region encompassing POLA. The SCAG region covers an area of over 38,000 square miles and includes the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura. SCAG adopted the 2008 RTP on May 8, 2008 (SCAG 2008). On June 5, 2008, the Federal Highway Administration issued a finding that the 2008 RTP conforms to the applicable state implementation plan (i.e., transportation conformity determination). The growth forecast for the 2008 RTP estimated a region-wide population growth of approximately 30 percent between 2005 and 2035 and a nearly equivalent region-wide employment growth for the same period. The growth rates for population and employment in Los Angeles County are among the lowest for counties in the SCAG region.

The 2008 RTP indicates that container volume processed by the San Pedro Bay ports (Port of Los Angeles and Port of Long Beach) grew by almost 60 percent between 2000 and 2006, and it is expected to nearly triple by 2035. While the 2008 RTP focuses on the land transport aspects of goods movement (e.g., freight rail, high-speed regional transport, and highway), it recognizes the huge contribution and potential to goods movement from maritime transport and other marine activities in the ports.

3.2 Use of Latest Emission Estimation Techniques

The general conformity regulations require the use of the latest and most accurate emission estimation techniques available, unless such techniques are inappropriate (40

C.F.R. § 93.159(b)). Prior written approval from SCAQMD or EPA is required to modify or substitute emission estimation techniques. It should be noted that the latest and most accurate emission estimation techniques available at the time of this evaluation may differ from the emission estimation techniques used in establishing the applicable SIP emissions budgets. The details of emissions estimating are described in Attachment A. The emission estimation techniques used in this evaluation are consistent with those used in preparing the Final SEIS/SEIR (USACE/LAHD 2009).

3.3 Emission Scenarios

The general conformity regulations require that the evaluation must reflect certain emission scenarios (40 C.F.R. §93.159(d)). Specifically, these scenarios must include emissions from the Federal action for the following years: (1) for nonattainment areas, the year mandated in the Clean Air Act for attainment and for maintenance areas, the farthest year for which emissions are projected in the approved maintenance plan; (2) the year during which the total of direct and indirect emissions for the Federal action are projected to be the greatest on an annual basis; and (3) any year for which the applicable SIP specifies an emissions budget. These emission scenarios will be described in more detail in Section 5. **Table 3-1** specifies the years for which the general conformity evaluation was performed for comparison to the approved SIP. **Table 3-2** specifies the years for which the general conformity evaluation was performed for comparison to the proposed SIP revisions.

Table 3-1
Emission Scenario Years for General Conformity Evaluation based on 1997/99 SIP

Pollutant	Attainment/	Greatest	Emissions
	Maintenance	Emission Year	Budget Years
Ozone (VOC or NO _x)	2010	2010	2002 ^{a.} ,,2003 ^{a.} ,,2005 ^{a.} ,2006 ^{a.} ,2007 a., 2008 ^{a.} ,2010,2020 ^{b.}

Source: Camp Dresser & McKee Inc., 2008.

Table 3-2
Emission Scenario Years for General Conformity Evaluation based on 2007 AQMP

Pollutant	Attainment/	Greatest	Emissions
	Maintenance	Emission Year	Budget Years
Ozone (VOC or NO _X)	2023 ^{a,b}	2010	2002 °, 2005 °, 2008°, 2010,2011, 2014 ^a , 2017 ^a , 2020 ^a , 2023 ^a , 2030 ^a .

Source: Camp Dresser & McKee Inc., 2008.

a. No project construction estimated to occur in 2002, 2003, 2005, 2006, 2007 or 2008; therefore, no comparisons to budgets for these years are necessary.

b. Federal action construction does not extend to 2020; therefore, no comparisons to 2020 budgets are included.

a Federal action construction does not extend beyond 2011; therefore, no comparisons to budgets for years beyond 2011 are included.

b. The current designation of the region is Severe-17, which indicates an attainment year of 2021. However, the 2007 AQMP requests a re-designation to Extreme non-attainment, which has an attainment date in June 2024. Since the ozone season extends into the Autumn, attainment must be demonstrated by the end of the ozone season in 2023.

c. No project construction estimated to occur in 2002, 2005 or 2008; therefore, no comparisons to budgets for these years are necessary.

Section 4 Applicability Analysis

As stated previously, the first step in a general conformity evaluation is an analysis of whether the requirements apply to a Federal action proposed to be taken in a nonattainment or a maintenance area. Unless exempted by the regulations or otherwise presumed to conform, a Federal action requires a general conformity determination for each pollutant where the total of direct and indirect emissions caused by the Federal action would equal or exceed an annual de minimis emission rate. Notwithstanding the de minimis emission rate, if a Federal action is identified to be regionally significant, the Federal agency must make a general conformity determination.

4.1 Attainment Status of South Coast Air Basin

POLA is located within Los Angeles County in the SCAB of southern California. The regulatory agencies with primary responsibility for air quality management in the SCAB include SCAQMD and CARB, with oversight by EPA. Pursuant to the Clean Air Act, EPA established primary NAAQS to protect the public health with an adequate margin of safety and secondary NAAQS to protect the public welfare for seven air pollutants. These pollutants are known as criteria pollutants: particulate matter with an equivalent aerodynamic diameter less than or equal to ten micrometers (μ m) in diameter (PM₁₀), particulate matter with an equivalent aerodynamic diameter less than or equal to 2.5 μ m in diameter (PM_{2.5}), sulfur dioxide (SO₂), carbon monoxide (CO), ozone (O₃), nitrogen dioxide (NO₂), and lead (Pb). EPA has delegated authority to SCAQMD to implement and enforce the NAAQS in the SCAB.

That portion of the SCAB encompassing POLA is in an area that is designated as being in nonattainment of the NAAQS for O_3 (eight-hour average), PM_{10} , and $PM_{2.5}$. In addition, the severity of the nonattainment status for this area has been classified as "severe" for O_3 and "serious" for PM_{10} and it is unclassified for $PM_{2.5}$. On July 24, 1998, this area was re-designated from nonattainment to attainment/maintenance status for NO_2 by EPA (63 FR 39747). More recently, the area was re-designated by EPA from nonattainment to attainment/maintenance for CO (72 FR 26718), effective June 11, 2007. The area is in attainment of the NAAQS for SO_2 and Pb. Thus, for purposes of the general conformity requirements, this evaluation addresses NO_2 , O_3 (eight-hour average), CO, PM_{10} , and $PM_{2.5}$.

4.2 Exemptions from General Conformity Requirements

As noted previously, the general conformity requirements apply to a Federal action if the net project emissions equal or exceed certain de minimis emission rates. The only exceptions to this applicability criterion are the topical exemptions summarized below. However, the emissions caused by the Federal action do not meet any of these exempt categories (except maintenance dredging and associated debris disposal pursuant to 40 CFR 93.153(c)(2)(ix)).

- Actions which would result in no emissions increase or an increase in emissions that
 is clearly below the de minimis levels (40 C.F.R. § 93.153(c)(2)). Examples include
 administrative actions and routine maintenance and repair.
- Actions where the emissions are not reasonably foreseeable (40 C.F.R. § 93.153(c)(3)).
- Actions which implement a decision to conduct or carry out a conforming program (40 C.F.R. § 93.153 (c)(4)).
- Actions which include major new or modified sources requiring a permit under the New Source Review (NSR) program (40 C.F.R. § 93.153(d)(1)).
- Actions in response to emergencies or natural disasters (40 C.F.R. § 93.153(d)(2)).
- Actions which include air quality research not harming the environment (40 C.F.R. § 93.153(d)(3)).
- Actions which include modifications to existing sources to enable compliance with applicable environmental requirements (40 C.F.R. § 93.153(d)(4)).
- Actions which include emissions from remedial measures carried out under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) that comply with other applicable requirements (40 C.F.R. § 93.153(d)(5)).

In addition to these topical exemptions, the general conformity regulations allow each Federal agency to establish a list of activities that are presumed to conform (40 C.F.R. § 93.153(f)). The USACE has not established a presumed-to-conform list of activities at the time of this evaluation.

4.3 De Minimis Emission Rates

The general conformity requirements will apply to a Federal action for each pollutant for which the total of direct and indirect emissions caused by the Federal action equal or exceed the de minimis emission rates shown in **Table 4-1**. These emission rates are expressed in units of tons per year (tpy) and are compared to the total of direct and indirect emissions caused by Federal action for the calendar year during which the net emissions are expected to be the greatest. It should be noted that, because O_3 is a secondary pollutant (i.e., it is not emitted directly into the atmosphere but is formed in

the atmosphere from the photochemical reactions of volatile organic compounds, VOC, and oxides of nitrogen, NO_x , in the presence of sunlight), its de minimis emission rate is based on primary emissions of its precursor pollutants - VOC and NO_x . If the net emissions of either VOC or NO_x exceed the de minimis emission rate for O_3 (EPA 1994), then the Federal action is subject to a general conformity evaluation for O_3 .

The region in which the project is located has been designated as a "severe" non-attainment area for the 8-hour O_3 NAAQS, which carries a 25 tpy de minimis emission rate for NO_x and VOC. However, the currently approved SIP (1997 AQMP, as amended in 1999) was developed to demonstrate attainment of the revoked 1-hour O_3 NAAQS by 2010. At that time the region had been designated as an "extreme" nonattainment area for O_3 , which carries a 10 tpy de minimis emission rate for NO_x and VOC. In addition, SCAQMD has requested re-designation (bump up) to "extreme" nonattainment for the 8-hour O_3 NAAQS in the 2007 AQMP. Therefore, the applicability analysis will use 10 tpy as the most stringent de minimis emission rate that might be applied to the Federal action for NO_x and VOC emissions.

Further, the pollutant PM_{2.5} consists of primary particulate matter (directly emitted) and secondary particulate matter (formed in the atmosphere from precursor compounds) and may ultimately be composed of many separate chemical compounds. Generally, the main precursors of secondary PM_{2.5} include oxides of nitrogen (NO_x), oxides of sulfur (SO_x), and ammonia, although organic carbon compounds (VOC) also contribute to the formation of PM_{2.5}. Dynamic reactions between these precursor compounds emitted into the atmosphere by the sources of interest will affect the amount of PM_{2.5} attributable to the Federal action. Based on studies conducted by SCAQMD in the SCAB, in general, the total mass of PM_{2.5} is more associated with combustion-related sources and secondary particles formed there from, and primary particles represent a relative small proportion of total PM_{2.5} mass. In fact, ammonium nitrates and ammonium sulfates represent a dominant fraction of PM_{2.5} components in the SCAB. If the net emissions of any of these precursor compounds exceed the de minimis emission rate for PM_{2.5}, then the Federal action is subject to a general conformity evaluation for PM_{2.5}.

Table 4-1

De Minimis Emission Rates for Determining Applicability of General Conformity Requirements to the Federal Action

Pollutant	SCAB Attainment Status Designations	De Minimis Emission Rate (tpy)
Nitrogen Dioxide	Attainment/Maintenance	100
Ozone (VOC or NO _x)	Nonattainment/Extreme ^a	10 ^a
Carbon Monoxide	Attainment/Maintenance	100
Particulate Matter PM ₁₀	Nonattainment/Serious	70
Particulate Matter PM _{2.5} (and each precursor) ^b	Nonattainment	100

Source: Camp Dresser & McKee Inc., 2008.

4.4 Regional Significance

Even if a Federal action is less than the applicable de minimis emission rate for a given pollutant, the general conformity requirements state that a regionally significant action must undergo a conformity evaluation. A regionally significant action is one for which the total of direct and indirect emissions represent ten percent or more of the nonattainment or maintenance area's emissions inventories for all sources (as identified in the applicable SIP for stationary point, mobile, and area sources) for that pollutant. EPA guidance also indicates that any milestone emissions inventory in the applicable SIP should also be considered when evaluating regional significance (EPA 1994).

4.5 Applicability for Federal Action

The applicability of the general conformity requirements to the Federal action was evaluated by comparing the total of direct and indirect emissions (calculated as presented in Attachment A) for the calendar year of greatest emissions to the de minimis emission rates specified in Table 4-1. Where the total of direct and indirect emissions attributable to the Federal action were found to be excluded from the general conformity requirements because they are below the de minimis emission rates for a pollutant, the total of direct and indirect emissions for that pollutant were compared to the nonattainment or maintenance area's emission inventory for that pollutant to determine whether it is regionally significant. Those pollutants that could not be excluded from applicability by both of these mechanisms underwent a complete general conformity evaluation consistent with the procedures in Section 3 above using the methods in Attachment A and the criteria in Section 5 below.

a. The region in which POLA resides has been designated as a "severe" nonattainment area for the 8-hour O₃ NAAQS, which carries a 25 tpy de minimis emission rate for NO_x and VOC. However, the currently approved SIP (1997 AQMP, as amended in 1999) was developed to demonstrate attainment of the revoked 1-hour O₃ NAAQS by 2010. At that time the region had been designated as an "extreme" nonattainment area for O₃, which carries a 10 tpy de minimis emission rate for NO_x and VOC. In addition, SCAQMD has requested re-designation to "extreme" nonattainment for the 8-hour O₃ NAAQS in the 2007 AQMP. Therefore, the applicability analysis will use 10 tpy as the de minimis emission rate for Federal action NO_x and VOC emissions.

b. The PM_{2.5} precursors in the region include SO_x, NO_x, VOC, and ammonia.

4.5.1 Methodology

Attachment A presents the calculations used to estimate emissions associated with the proposed Federal actions. Equipment parameters and construction activities have been described in the Final SEIS/SEIR (USACE/LAHD2009). This information has been incorporated into the emission calculations presented in Attachment A, and summarized below.

4.5.2 Estimated Emissions and Comparison to De Minimis

Emissions were calculated for VOC, CO, NO_x, PM₁₀, and PM_{2.5} (including precursors) for construction activities associated with the Federal action. For purposes of this evaluation, emissions of NO₂ are assumed to equal emissions of NO_x. These emissions are associated with mobile and area sources expected to be used for on-site construction-related purposes. Off-site construction-related emission sources (e.g., construction worker commute trips, material delivery hauling trips, debris/spoils disposal hauling trips) are assumed to be accounted for in the conforming 2008 RTP, and they are therefore excluded from consideration of general conformity herein (40 C.F.R. § 93.158(a)(5)(ii))..

The emissions associated with each Federal action are summarized in **Table 4-2** for each year of construction. These data show that annual emissions from Alternatives 1 and 2 would exceed the conformity de minimis emission rates for NOx during each year of construction. The Federal action emissions of CO, SO_x, VOC, PM₁₀, or PM_{2.5} are compared to the regional emissions in Section 4.5.3 to verify that project emissions do not represent ten percent or more of the regional budgets.

Alternative 1 would produce peak annual NO_x emissions of 76.4 tons in 2010. Alternative 2 would produce peak annual NO_x emissions of 49.1 tons in 2010. Therefore, a general conformity determination is required for proposed NO_x emissions from Alternatives 1 and 2.

Table 4-2
Federal Action Emission Rates and Comparison to
De Minimis Emission Rates

	Emission Rates (Tons)					
Alternative/Construction Year	VOC	СО	NO _x	SO _x	PM ₁₀	PM _{2.5}
Alternative 1						
2009	1.0	6.6	20.8		0.4	0.4
2010	3.2	26.2	76.4		2.0	1.8
2011	1.5	7.4	30.7		0.3	0.3
General Conformity de minimis emission rate (tpy)	10	100	10	100	70	100
Are de minimis emission rates exceeded?	No	No	Yes	No	No	No
Alternative 2						
2009	0.7	6.2	17.7		0.5	0.4
2010	2.0	17.2	49.1		1.3	1.2
2011	1.2	4.6	23.1		0.1	0.1
General Conformity de minimis emission rate (tpy)	10	100	10	100	70	100
Are de minimis emission rates exceeded?	No	No	Yes	No	No	No

4.5.3 Regional Significance

The peak annual direct and indirect emissions of VOC, CO, SO_x, PM₁₀, and PM_{2.5} for each Federal action are compared to the regional emissions inventories of these pollutants prepared by SCAQMD for the SCAB. Two comparisons are presented, using data taken from the 1997 Air Quality Management Plan (AQMP) (SCAQMD 1996), which contains the currently approved SIP budgets, and from the 2007 AQMP (SCAQMD 2007). The lowest annual emissions from each of these documents between 2002 and 2011 are used for this calculation. The results of this comparison are summarized in **Table 4-3**. As one can see, the peak annual emissions from Alternatives 1 and 2 are much less than ten percent of the SCAB annual emissions inventories. Therefore, the Federal action is not regionally significant for emissions of VOC, CO, SO_x, PM₁₀, or PM_{2.5}.

Table 4-3
Comparison of Federal Actions Emissions for Regional Significance

Pollutant	Peak Annual Federal Action Emissions (tons) ^{a.}	Approved SIP Emissions (tpy) ^{b.}	Percent of Approved SIP	2007 AQMP Emissions (tpy) ^{c.}	Percent of 2007 AQMP
Alternative 1					
VOC	3.2	150,955	0.002%	153,300	0.002%
СО	26.2	885,301	0.003%	744,235	0.004%
SO _x	0.1	25,769	0.0004%	6,935	0.001%
PM ₁₀	2.0	120,687	0.002%	d.	d.
PM _{2.5}	1.8	d.	d.	31,755	0.006%
Alternative 2					
VOC	2.0	150,955	0.001%	153,300	0.001%
СО	17.2	885,301	0.002%	744,235	0.002%
SO _x	49.1	25,769	0.19%	6,935	0.71%
PM ₁₀	1.3	120,687	0.001%	d.	d.
PM _{2.5}	1.2	d.	d.	31,755	0.004%

Source: Camp Dresser & McKee Inc., 2008.

4.5.4 Applicability Determination

The total of direct and indirect emissions of VOC, CO, SO_x , PM_{10} , and $PM_{2.5}$ from Alternatives 1 and 2 are less than the general conformity de minimis threshold emission rates and the Federal actions are not regionally significant for any of these pollutants. Therefore, the general conformity requirements do not apply to these pollutants, and there will be no further evaluation of these pollutants herein.

Because the total of direct and indirect emissions of NO_x from Alternatives 1 and 2 exceeds the "extreme" O_3 non-attainment area conformity de minimis emission rate, the general conformity requirements apply to NO_x emissions from each action. Subsequent sections of this document will address the general conformity evaluation of NO_x as applicable to the Federal action.

a. Peak annual emissions from each Federal action. Therefore, the Federal action emissions are the most conservative (high) that could be used for this comparison.

b. Based on data in 1997 AQMP Appendix V (controlled inventories in 2010).

c. Based on data in 2007 AQMP Appendix V (carrying capacities in 2015 for PM_{2.5} and SO_x, and in 2023 for VOC and CO).

d. No budgets were developed in the currently approved SIP for PM_{2.5} or in the 2007 AQMP for controlled PM₁₀.

Section 5 General Conformity Evaluation

For Federal actions subject to a general conformity evaluation, the regulations delineate several criteria that can be used to demonstrate conformity (40 C.F.R. § 93.158). In fact, a combination of these criteria may be used to support a positive general conformity determination (EPA 1994). The approach to be taken to evaluate the Federal action relies on a combination of these available criteria, and the remainder of this section summarizes the findings to make the draft determination.

5.1 Designation of Applicable SIP

Section 110(a) of the Clean Air Act (42 U.S.C. § 7410(a)) requires each state to adopt and submit to EPA a plan which provides for the implementation, maintenance, and enforcement of each NAAQS. This plan is known as the SIP. Over time, states have made and continue to make many such submittals to EPA to address issues as they arise related to the various NAAQS. As EPA reviews these submittals, it can either approve or disapprove them in whole or in part. The compilation of a state's approved submittals constitutes that state's applicable SIP. In California, the state agency responsible for preparing and maintaining the SIP is CARB.

5.1.1 SIP Process in the South Coast Air Basin

CARB designates both air quality management districts and air pollution control districts within California for the purpose of implementing and enforcing ambient air quality standards on a regional or air shed basis. These district agencies must prepare regional plans (Air Quality Management Plans [AQMPs]) to support the broader SIP, as well as to meet the goals of the California Clean Air Act.

Every three years, SCAQMD must prepare and submit to CARB an AQMP to demonstrate how the SCAB will attain and maintain the NAAQS and the California ambient air quality standards. The AQMP contains extensive emissions inventories of all emission sources in the SCAB as well as various control measures applicable to most of these sources. Once CARB approves the AQMP, it is submitted to EPA for approval into the SIP. The approved SIP for the SCAB is based on the AQMP which SCAQMD submitted to CARB in 1997 (SCAQMD 1996) and supplemental information as discussed in Section 5.1.2. In August 2003, SCAQMD submitted to CARB the final 2003 AQMP (SCAQMD 2003), and this formed the basis of a proposed SIP revision submitted by CARB to EPA on January 9, 2004; EPA has acted on that proposed SIP revision, however it is not yet applicable. In June 2007, SCAQMD submitted to CARB the final 2007 AQMP (SCAQMD 2007), and this formed the basis of a proposed SIP revision submitted by CARB to EPA on November 16, 2007; EPA has not yet acted on that proposed SIP revision.

5.1.2 Status of Applicable SIP and Emissions Budgets by Pollutant

The Clean Air Act requires attainment of the NAAQS as expeditiously as practicable, but no later than the statutory dates for those criteria pollutants for which the SCAB is designated nonattainment and for which a finding of general conformity must be determined for the Federal actions. Upon re-designation of an area from nonattainment to attainment for each standard, the area will be considered to be a maintenance area for that standard (pursuant to Section 175A of the Clean Air Act), and as such, must meet all applicable requirements to maintain the standard.

To support the general conformity determination, the USACE demonstrates herein that the emissions of NO_x (as an O_3 precursor) caused by the Federal actions either will result in a level of emissions which, together with all other emissions in the nonattainment area, will not exceed the emissions budgets specified in the approved SIP (criterion at 40 C.F.R. § 93.158(a)(5)(i)(A)) or, in the alternative, will not exceed the emissions budgets specified in the 2007 AQMP, see Section 5.2 below. The currently approved SIPs for the SCAB are summarized below.

- O₃: SIP approved by EPA on April 10, 2000 (65 FR 18903), based on the 1997 AQMP and a 1999 amendment to the 1997 AQMP.
- CO: SIP approved by EPA on May 11, 2007 (72 FR 26718), based on 2005 redesignation request and maintenance plan. In this SIP approval, EPA also redesignated the SCAB from nonattainment to attainment/maintenance for CO.
- PM₁₀: SIP approved by EPA on April 18, 2003 (68 FR 19315), based on the 1997 AQMP, amendments to the 1997 AQMP submitted in 1998 and 1999, and further modifications to the 1997 AQMP submitted in a status report to EPA in 2002.
- PM_{2.5}: No EPA-approved SIP.
- NO₂: SIP approved by EPA on July 24, 1998 (63 FR 39747), based on the 1997 AQMP. In this SIP approval, EPA also re-designated the SCAB from nonattainment to attainment/maintenance for NO₂.

SCAQMD released the Final 2007 AQMP on June 1, 2007, and as noted above that AQMP formed the basis of a proposed SIP revision submitted to EPA. This evaluation will make comparisons both to applicable emissions inventories in the current EPA-approved SIP and to applicable emissions inventories contained in the 2007 AQMP. For purposes of the general conformity determination, the applicable SIP will be the most recent EPA-approved SIP at the time of the release of the final general conformity determination.

5.2 Comparison to SIP Emissions Inventories

As noted in the preceding section, the most recent EPA-approved SIP at the time of the release of the final general conformity determination must be used for emission budget analyses. The 1997 AQMP together with supplemental information form the basis for the current, EPA-approved O₃ SIP. However, the EPA may approve all or part of the 2007 AQMP for O₃ (or other pollutants) before the final general conformity determination is published. Therefore, to avoid revisions to and/or recirculation of the draft and final general conformity determination, emissions for the Federal actions presented in this section are compared to both the currently approved SIP emissions budgets and to the 2007 AQMP emissions budgets.

The emissions inventories developed by SCAQMD and fully documented in the AQMPs are delineated by source types. **Table 5-1** provides a concordance between the emission source categories that characterize the Federal actions and the emission source types in the AQMPs. In the following discussion, the term "NO_x" should be understood to represent both NO_x and NO₂ (see discussion in Section 4.3).

Table 5-1
Relationship of Federal Actions Source Categories and AQMP Source Types

Federal Action Source Category	1997 AQMP Source Type	2007 AQMP Source Type
Construction	Heavy Duty Diesel Trucks	Heavy-Heavy Duty Diesel Truck
	Mobile Equipment	Off-Road Equipment
	Commercial Boats/Ships	Ships and Commercial Boats

Source: Camp Dresser & McKee Inc., 2008.

The source type "Commercial Boats/Ships" in the 1997 AQMP represents two separate subcategories of off-road equipment in the inventory, whereas the source type "Ships and Commercial Boats" in the 2007 AQMP represents a single combined sub-category of off-road equipment in the inventory. "Ships" are considered ocean-going marine vessels (e.g., container ships), and "commercial boats" are considered commercial harbor craft (e.g., tugboats).

5.2.1 NO_x Emissions from Construction Sources Under the Federal Action

At the time that SCAQMD prepared the 1997 AQMP, LAHD had not yet announced its intention to undertake the Federal action . For this reason, it is evident that the 1997 AQMP does not contain specific estimates of emissions for construction activities under Alternatives 1 or 2. The USACE had issued a Supplemental Notice of Intent to prepare the SEIS in October 2005. Therefore, the SCAQMD would have been aware of the Federal action when preparing the 2007 AQMP. For those reasons, as well as the rapid growth in goods movement - particularly at the ports — in the SCAB, it would be reasonable to assume that SCAQMD allowed for an accommodation for such a major construction program within the 2007 AQMP.

The general conformity regulations require evaluating the total of direct and indirect emissions for the Federal action for the mandated attainment year (2021), the year of maximum emissions (2010), and any years for which the SIP identifies an emissions budget (40 C.F.R. § 93.159(d)). Because the construction would finish well before 2021, there is no analysis of emissions for that year in this evaluation. For the years of construction planned under the Federal action, the applicable emissions budgets in the (1) approved SIP includes 2010 and (2) 2007 AQMP includes 2010 and 2011. For the year requiring a quantitative evaluation but for which an emissions budget does not exist in the approved SIP (2011), the budget chosen for the analysis was year 2010.

Tables 5-2 through **Table 5-5** summarize a comparison of estimated NO_x emissions from construction activities under Alternatives 1 and 2 to the applicable source types under both the approved SIP and the 2007 AQMP, for the years noted in Tables 3-1 and 3-2 above. It should be noted that the emissions for those source types taken from the approved SIP and the 2007 AQMP may represent more than construction-related emissions since these source types are not exclusive to construction equipment and activities. Because the SIP for the SCAB has to accommodate many planned and some unplanned construction projects, the construction-related emissions inventories included in the AQMPs are very substantial. Despite the fact that the Federal action would require a substantial program of construction, one can note that their emissions would be very small compared to the emissions inventories in the AQMPs (i.e., less than 0.35% relative contributions). For that reason, it is reasonable to assume that the emissions from construction activities under the Federal action can be accommodated in future emissions growth from the construction sector within the approved SIP or alternatively within the 2007 AQMP. Therefore, it can be inferred that the construction NO_x emissions for the Federal action, taken together with NO_x emissions for all other construction sources in the SCAB, would not exceed the NO_x emissions budgets for construction-related source types specified in the approved SIP, or alternatively in the 2007 AQMP (SCAQMD 2007).

Table 5-2 Comparison of Alternative 1 NO_x Emissions for Construction to Approved SIP Emission Budgets for Construction-Related Source Types

Year and Source Type	Alternative 1 NOx Emissions (tpy)	Approved SIP NOx Emissions (tpy)	Relative Contribution to NOx SIP Budgets
2010			
Heavy-Duty Diesel Trucks	0.05	55,874	0.0001%
Mobile Equipment	11.08	43,493	0.03%
Commercial Boats/Ships	65.30	19,002	0.34%
2011			
Heavy-Duty Diesel Trucks	3.91	55,874	0.01%
Mobile Equipment	19.10	43,493	0.04%
Commercial Boats/Ships	7.74	19,002	0.04%

Sources: Camp Dresser & McKee Inc., 2008, SCAQMD 1996.

Table 5-3
Comparison of Alternative 2 NO_x Emissions for Construction to Approved SIP Emission Budgets for Construction-Related Source Types

Year and Source Type	Alternative 2 NOx Emissions (tpy)	Approved SIP NOx Emissions (tpy)	Relative Contribution to NOx SIP Budgets
2010	_	_	
Heavy-Duty Diesel Trucks	0.16	55,874	0.0003%
Mobile Equipment	4.45	43,493	0.01%
Commercial Boats/Ships	44.55	19,002	0.23%
2011			
Heavy-Duty Diesel Trucks	3.91	55,874	0.01%
Mobile Equipment	18.83	43,493	0.04%
Commercial Boats/Ships	0.42	19,002	0.002%

Sources: Camp Dresser & McKee Inc., 2008, SCAQMD 1996.

Table 5-4
Comparison of Alternative 1 NO_x Emissions for Construction to 2007 AQMP Emission Budgets for Construction-Related Source Types

Year and Source Type	Alternative 1 NOx Emissions (tpy)	2007 AQMP Emissions (tpy)	Relative Contribution to 2007 AQMP Budgets	
2010 ⁻				
Heavy-Heavy Duty Diesel Trucks	0.05	49,381	0.0001%	
Off-Road Equipment	11.08	62,736	0.02%	
Ships and Commercial Boats	65.30	29,536	0.22%	
2011				
Heavy-Heavy Duty Diesel Trucks	3.91	46,381	0.01%	
Off-Road Equipment	19.10	59,641	0.03%	
Ships and Commercial Boats	7.74	30,029	0.03%	

Source: Camp Dresser & McKee Inc., 2008; SCAQMD 2007.

Table 5-5
Comparison of Alternative 2 NO_x Emissions for Construction to 2007 AQMP Emission Budgets for Construction-Related Source Types

Year and Source Type	Alternative 2 NOx Emissions (tpy)	2007 AQMP Emissions (tpy)	Relative Contribution to 2007 AQMP Budgets
2010 [.]	-	_	-
Heavy-Heavy Duty Diesel Trucks	0.16	49,381	0.0003
Off-Road Equipment	4.45	62,736	0.01%
Ships and Commercial Boats	44.55	29,536	0.15%
2011			
Heavy-Heavy Duty Diesel Trucks	3.91	46,381	0.01%
Off-Road Equipment	18.83	59,641	0.03%
Ships and Commercial Boats	0.42	30,029	0.0001%

Source: Camp Dresser & McKee Inc., 2008; SCAQMD 2007.

5.2.2 NO_x Emissions from Other Sources at POLA

It is the determination of the USACE that any change in future emissions at POLA following the implementation of the Federal action are not subject to the continuing program responsibility of the USACE and therefore are not required to be addressed in this evaluation. However, these future emissions will remain subject to the continuing program responsibility of LAHD, as the local agency with development control over projects in the Port of Los Angeles, and all CEQA-related mitigation measures, will have to be implemented, maintained, and monitored pursuant to an MMRP for a certified Final EIR for these actions.

5.3 Consistency with Requirements and Milestones in Applicable SIP

The general conformity regulations state that notwithstanding the other requirements of the rule, a Federal action may not be determined to conform unless the total of direct and indirect emissions from the Federal action is in compliance or consistent with all relevant requirements and milestones in the applicable SIP (40 C.F.R. § 93.158(c)). This includes but is not limited to such issues as reasonable further progress schedules, assumptions specified in the attainment or maintenance demonstration, prohibitions, numerical emission limits, and work practice standards. This section briefly addresses how the Federal action was assessed for SIP consistency for this evaluation.

5.3.1 Applicable Requirements from EPA

EPA has already promulgated, and will continue to promulgate, numerous requirements to support the goals of the Clean Air Act with respect to the NAAQS. Typically, these requirements take the form of rules regulating emissions from significant new sources, including emission standards for major stationary point sources and classes of mobile sources as well as permitting requirements for new major stationary point sources. Since states have the primary responsibility for implementation and enforcement of requirements under the Clean Air Act and can impose stricter limitations than EPA, the EPA requirements often serve as guidance to the states in formulating their air quality management strategies.

5.3.2 Applicable Requirements from CARB

In California, to support the attainment and maintenance of the NAAQS, CARB is primarily responsible for regulating emissions from mobile sources. In fact, EPA has delegated authority to CARB to establish emission standards for on-road and some non-road vehicles separate from the EPA vehicle emission standards, although CARB is preempted by the Clean Air Act from regulating emissions from many non-road mobile sources, including marine craft. Emission standards for preempted equipment can only be set by EPA.

5.3.3 Applicable Requirements from SCAQMD

To support the attainment and maintenance of the NAAQS in the SCAB, SCAQMD is primarily responsible for regulating emissions from stationary sources. As noted above, SCAQMD develops and updates its AQMP regularly to support the California SIP. While the AQMP contains rules and regulations geared to attain and maintain the NAAQS, these rules and regulations also have the much more difficult goal of attaining and maintaining the California ambient air quality standards.

5.3.4 Consistency with Applicable Requirements

In operating POLA, LAHD already complies with, and will continue to comply with, a myriad of rules and regulations implemented and enforced by Federal, state, regional, and local agencies to protect and enhance ambient air quality in the SCAB. In particular, due to the long persistence of challenges to attain the ambient air quality standards in the SCAB, the rules and regulations promulgated by CARB and SCAQMD are among the most stringent in the U.S. LAHD will continue to comply with all existing applicable air quality regulatory requirements for activities over which it has direct control and will meet in a timely manner all regulatory requirements that become applicable in the future. Likewise, LAHD actively encourages all tenants and users of its facilities to comply with applicable air quality requirements.

The nature and extent of the requirements with which LAHD complies and will continue to comply include, but are not limited to, the following.

- EPA Rule 40 C.F.R. Part 89, Control of Emissions from New and In-Use Non-road Compression-Ignition Engines: requires stringent emission standards for mobile non-road diesel engines of almost all types using a tiered phase in of standards.
- CARB Rule 13 C.C.R. § 1956.8, California Exhaust Emission Standards and Test Procedures for 1985 and Subsequent Model Heavy-Duty Diesel Engines and Vehicles: requires significant reductions in emissions of NO_x, particulate matter, and non-methane organic compounds using exhaust treatment on heavy-duty diesel engines manufactured in model year 2007 and later years.
- SCAQMD Rule 403, Fugitive Dust: identifies the minimum particulate controls for construction-related fugitive dust. For example, Rule 403 requires twice daily watering of all active grading or construction sites. Haul trucks leaving the facility must be covered and maintain at least two feet of freeboard (C.V.C. § 23114). Low emission street sweepers must be used at the end of each construction day if visible soil is carried onto adjacent public paved roads, as required by SCAQMD Rule 1186.1, Less-Polluting-Sweepers. Wheel washers must be used to clean off the trucks, particularly the tires, prior to them entering the public roadways.
- SCAQMD Rule 431.2, Sulfur Content of Liquid Fuels: requires that, after January 1, 2005, only low sulfur diesel fuel (containing 15 parts per million by weight sulfur) will be permitted for sale in the SCAB for any stationary- or mobile-source application.

- SCAQMD Rule 2202, On-Road Motor Vehicle Mitigation Options: requires employers in the SCAB with more than 250 employees to implement an approved rideshare program and attain an average vehicle ridership of at least 1.5.
- City Council directive on diesel engine particulate traps, approved by the Mayor on December 2, 2002: requires that all existing City-owned and City-contracted dieselfueled vehicles be retrofitted with particulate traps, which engines would henceforth be required to use ultra low sulfur diesel fuel (15 parts per million by weight or less); some exceptions include emergency vehicles and off-road vehicles.

Section 6 Mitigation

As part of a conformity evaluation, it may be necessary for the Federal agency to identify mitigation measures and mechanisms for their implementation and enforcement. For example, if a Federal action does not initially conform to the applicable SIP, mitigation measures could be pursued. If mitigation measures are used to support a positive conformity determination, the Federal agency must obtain a written commitment from the entity required to implement these measures and the Federal agency must include the mitigation measures as conditions in any permit or license granted for the Federal action (40 C.F.R. § 93.160). Mitigation measures may be used in combination with other criteria to demonstrate conformity. The Federal action, as evaluated herein, assume various air quality mitigation measures as described in the Final SEIS/SEIR (USACE/LAHD 2009) to meet CEQA/NEPA requirements are part of the proposed action. Based on NEPA/CEQA provisions that mitigation measures be required in, or incorporated into, the project (14 C.C.R. § 15091(a)(1)), the LAHD will implement, maintain, monitor, and enforce these CEQA-related air quality mitigation measures pursuant to the mitigation monitoring plan which will be included in the certified Final SEIS/SEIR for the proposed action; see Section 2.1 for more information on the NEPA/CEQA-related mitigation measures. Construction measures will become part of USACE construction contracts through contract modification and will be included in the final Plans and Specifications. LAHD, will implement, maintain, monitor, and enforce numerous mitigation measures, including many focused on limiting air emissions, as required by a certified Final SEIR.

Section 7 Reporting

To support a decision concerning the Federal action, the USACE is issuing this draft general conformity determination for public review and comment. The USACE will also make public its final general conformity determination for the proposed action.

7.1 Draft General Conformity Determination

At a minimum, the USACE is providing copies of this draft general conformity determination to the appropriate regional offices of EPA, any affected Federal land manager, as well as to CARB, SCAQMD, and SCAG, providing opportunity for a 30-day review. The USACE is also placing a notice in a daily newspaper of general circulation in the SCAB announcing the availability of this draft general conformity determination and requesting written public comments for a 30-day period. For any member of the public requesting a copy of this draft general conformity determination, the USACE will provide such party a copy.

7.2 Final General Conformity Determination

At a minimum, the USACE will provide copies of its final general conformity determination to the appropriate regional offices of EPA, any affected Federal land manager, as well as to CARB, SCAQMD, and SCAG, within 30 days of its promulgation. The USACE will also place a notice in a daily newspaper of general circulation in the SCAB announcing the availability of its final general conformity determination within 30 days of its promulgation. As part of the general conformity evaluation, the USACE will document its responses to all comments received on the draft general conformity determination and will make both the comments and responses available upon request by any person within 30 days of the promulgation of the final general conformity determination.

7.3 Frequency of General Conformity Determinations

The general conformity regulations state that the status of a specific conformity determination lapses five years after the date of public notification for the final general conformity determination, unless the action has been completed or a continuous program has been commenced to implement the action (40 C.F.R. § 93.157(a)). Because development of the Federal action would not extend beyond five years, the final general conformity determination will lapse upon completion of the action.

Section 8 Findings and Conclusions

As part of the environmental review of the Federal action, the USACE conducted a general conformity evaluation pursuant to 40 C.F.R. Part 93 Subpart B. The general conformity regulations apply at this time to any action at POLA requiring USACE approval because the SCAB where POLA is situated is a nonattainment area for O₃, PM_{10} , and $PM_{2.5}$; and a maintenance area for NO_2 and CO. The USACE conducted the general conformity evaluation following all regulatory criteria and procedures and in coordination with EPA. In addition, the EPA, ARB, and SCAQMD conducted a similar conformity review for another POLA project and concluded that (1) those construction emissions were included in the approved SIP, (2) the approved SIP used higher construction activity growth than more recent estimates, and (3) Port project construction emissions were within the estimated construction budget for the South Coast Air Basin (USACE 2009). The Channel Deepening Federal action emissions are slightly less than, but in the same order of magnitude as the emissions reviewed by the regulators. In addition, the USACE coordinated with the EPA, ARB, and SCAQMD to develop general conformity determinations and will continue to work with the agencies on this draft analysis. The USACE proposes that the Federal action as designed will conform to the approved SIP, based on the findings below:

- The Federal action is not subject to a general conformity determination for CO, VOC (as an O₃ and PM_{2.5} precursor), PM₁₀, PM_{2.5}, or SO_x (as a PM_{2.5} precursor) because the net emissions associated with the Federal action are less than the general conformity de minimis thresholds and they are not regionally significant.
- The Federal action conforms to the SIP for NO_x (as an O₃ precursor) because the net emissions associated with the Federal action, taken together with all other NO_x emissions in the SCAB, would not exceed the emissions budgets in the approved SIP for the years subject to the general conformity evaluation.

Therefore, USACE herewith concludes that the Federal action as designed conform to the purpose of the approved SIP and it is consistent with all applicable requirements.

Section 9 References

40 C.F.R. Part 93 Subpart A. Conformity to State or Federal Implementation Plans of Transportation Plans, Programs, and Projects Developed, Funded or Approved Under Title 23 U.S.C. or the Federal Transit Laws.

40 C.F.R. Part 93 Subpart B. Determining Conformity of General Federal Actions to State or Federal Implementation Plans.

63 FR 39747. Approval and Promulgation of State Implementation Plans and Redesignation of the South Coast Air Basin in California to Attainment for Nitrogen Dioxide. July 24.

65 FR 18903. Approval and Promulgation of State Implementation Plans; California – South Coast. April 10.

68 FR 19315. Approval and Promulgation of State Implementation Plans; California – South Coast. April 18.

72 FR 26718. Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality Planning Purposes: California. May 11.

Port of Los Angeles. (POLA). 2007. Sustainable Construction Guidelines.

South Coast Air Quality Management District (SCAQMD). 2007. Final 2007 Air Quality Management Plan. June. Website: http://www.aqmd.gov/aqmp/07aqmp/index.html.

South Coast Air Quality Management District (SCAQMD). 1996. Final 1997 Air Quality Management Plan. November. Web site: http://www.aqmd.gov/aqmp/97aqmp/index.html.

Southern California Association of Governments (SCAG). 2008. 2008 Regional Transportation Plan. Web site:

http://www.scag.ca.gov/rtp2008/pdfs/finalrtp/f2008RTP Complete.pdf.

Southern California Association of Governments (SCAG). 2008. Letter from SCAG (L. Jones) to POLA (R. Appy), re: *SCAG Clearinghouse No. I 20080261 Berth 97-109 Container Terminal Project (Recirculated EIS/EIR)*. May 16.

Southern California Association of Governments (SCAG). 2007b. Letter from SCAG (J. Nadler) to USACE (S. MacNeil), re: *EIS for Berths 136-147 [TraPacl Container Terminal Project*. November 5.

U.S. Army Corps of Engineers/Los Angeles Harbor Department (USACE/LAHD). 2008. Draft Supplemental Environmental Impact Statement/Environmental Impact Report (SEIS/SEIR) for the Port of Los Angeles Channel Deepening Project. July.

- U.S. Army Corps of Engineers (USACE). 2009. *Berth 136-147 [TraPac] Container Terminal Project Final General Conformity Determination*. March 12.
- U.S. Army Corps of Engineers (USACE). 1994. Memorandum For All Major Subordinate Commanders, and District Commanders, Subject: EPA's Clean Air Act (CAA) General Conformity Rule, from Lester Edelman, Chief Counsel, USACE (CECC-E). April 20.
- U.S. Environmental Protection Agency (EPA). 2002. General Conformity Guidance for Airports: Questions and Answers. September 25. Web site: http://www.epa.gov/ttn/oarpg/conform/airport_qa.pdf.
- U.S. Environmental Protection Agency (EPA). 1994. General Conformity Guidance: Questions and Answers. July 13. Web site: http://www.epa.gov/ttn/oarpg/conform/gcgqa_71394.pdf.

Attachment A Port of Los Angeles Channel Deepening Federal Actions General Conformity Calculation Methodology and Results

Port of Los Angeles Channel Deepening Project General Conformity Calculation Methodology

The Federal action associated with the Port of Los Angeles (POLA) Channel Deepening Project requires a general conformity determination to comply with the requirements of the Clean Air Act general conformity regulations and to obtain a permit from the U.S. Army Corps of Engineers (USACE). This memo documents the methods and results used to calculate pollutant emissions from the Federal action for use in this general conformity determination. The draft determination will be published with the Final Supplemental Environmental Impact Statement/Supplemental Environmental Impact Report (SEIS/SEIR). The analysis builds upon information presented in the Channel Deepening Project Final SEIS/SEIR, dated April 2009.

General Conformity Evaluation

The first step in the general conformity evaluation is to determine if emissions of the pollutants of concern are above the de minimis emission rates defined in the general conformity regulations (40 CFR 93.153(b)). This step is referred to as the applicability analysis. The pollutants of concern in the South Coast Air Basin (SCAB) are ozone (O₃) and its precursors, nitrogen dioxide (NO₂) and its precursor, carbon monoxide (CO), particulate matter with an equivalent aerodynamic diameter of 10 micrometers (PM₁₀), and particulate matter with an equivalent aerodynamic diameter of 2.5 micrometers (PM_{2.5}) and its precursors. The precursors of O₃ include oxides of nitrogen (NO₃) and volatile organic compounds (VOC); the precursor of NO₂ is NO₃; and the precursors of PM_{2.5} include NO₃, oxides of sulfur (SO₃), VOC, and ammonia. Due to the severity of the O₃ nonattainment designation, the de minimis emission rates for NO₃ and VOC as O₃precursors (10 tons per year, tpy) are much more stringent than the de minimis emission rates for NO₃ and VOC as PM_{2.5} precursors (100 tpy) or for NO₃ as a NO₂ precursor (100 tpy). Therefore, the de minimis emission rates for NO₃ and VOC will be set at 10 tpy of each as O₃ precursors for this evaluation.

Calculation Method

Analysis began with information presented in the Supplemental Final SEIS/SEIR. Appendix F of the Final SEIS/SEIR includes detailed equipment lists for each construction phase and activity included in the Federal action. In addition, Appendix C includes daily emissions for each piece of equipment used during construction. The total of direct and indirect emissions for the Federal action were calculated using the total work days per piece of equipment in the equipment lists in Appendix F to determine for which pollutants the de minimis emission rates for general conformity were exceeded. It was found that NOx was the only pollutant that exceeded this threshold when considering total emissions for the entire Federal action. Therefore, using the construction start years listed for each piece of equipment, NOx emissions were calculated for each year of the Federal action.

Table C-102. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Demolition

				Tons			
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver - Wharf							
Main Hoist - Clamshell Dredge	0.06	0.24	1.27	0.00	0.00	0.00	0.00
Main Generator - Clamshell Dredge	0.05	0.18	0.96	0.00	0.00	0.00	0.00
Deck Generator - Clamshell Dredge	0.00	0.02	0.10	0.00	0.00	0.00	0.00
Backhoe	0.03	0.17	0.29	0.00	0.00	0.00	0.00
Front End Loader	0.03	0.15	0.26	0.00	0.00	0.00	0.00
Haul Truck (1)	0.00	0.02	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.01	0.13	0.35	0.00	0.01	0.01	0.01
Subtotal	0.19	0.90	3.28	0.00	0.02	0.02	0.02
Berths 243-245							
Main Hoist - Clamshell Dredge							
Main Generator - Clamshell Dredge							
Deck Generator - Clamshell Dredge							
Backhoe							
Front End Loader							
Haul Truck (1)		·	·	·			
Tug Boat		·	·	·			
Subtotal		·	·	·			·

Table C-103. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Quarry Run Placement

Construction Quarry Run Placement	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Barge Equipment	0.08	0.31	1.69	0.00	0.01	0.01	0.01
Derrick Barge Crane	0.04	0.14	0.78	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.07	0.65	1.76	0.00	0.05	0.05	0.05
Tugboat - Transport Quarry Run to Site (1)	0.77	7.12	19.37	0.02	0.57	0.57	0.53
Subtotal	0.96	8.22	23.61	0.02	0.63	0.63	0.59
Berths 243-245							
Barge Equipment	0.06	0.24	1.31	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.03	0.11	0.60	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.05	0.50	1.36	0.00	0.04	0.04	0.04
Tugboat - Transport Quarry Run to Site (1)	0.54	5.04	13.70	0.01	0.40	0.40	0.38
Subtotal	0.69	5.89	16.97	0.02	0.45	0.45	0.42
Cabrillo SWH							
Barge Equipment	0.08	0.30	1.64	0.00	0.01	0.01	0.01
Derrick Barge Crane	0.04	0.14	0.76	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.07	0.63	1.71	0.00	0.05	0.05	0.05
Tugboat - Transport Quarry Run to Site (1)	0.65	6.04	16.43	0.01	0.48	0.48	0.45
Subtotal	0.84	7.11	20.53	0.02	0.54	0.54	0.51
Eelgrass Restoration							
Barge Equipment							
Derrick Barge Crane							
Tugboat - Derrick Barge Crane							
Tugboat - Transport Quarry Run to Site (1)							
Subtotal							

Table C-104. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Armor Stone Placement

				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Barge Equipment	0.01	0.03	0.16	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.01	0.07	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.01	0.06	0.17	0.00	0.00	0.00	0.00
Tugboat - Transport Armor Stone to Site (1)	0.07	0.68	1.85	0.00	0.05	0.05	0.05
Subtotal	0.09	0.78	2.25	0.00	0.06	0.06	0.06
Berths 243-245							
Barge Equipment	0.01	0.02	0.13	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.01	0.06	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.01	0.05	0.13	0.00	0.00	0.00	0.00
Tugboat - Transport Armor Stone to Site (1)	0.05	0.50	1.35	0.00	0.04	0.04	0.04
Subtotal	0.07	0.58	1.68	0.00	0.04	0.04	0.04
Eelgrass							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-105. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Trench Excavation

				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Subtotal	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Berths 243-245							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.02	0.05	0.00	0.00	0.00	0.00
Subtotal	0.00	0.03	0.10	0.00	0.00	0.00	0.00
CSWH							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge							
Tug Boat							
Subtotal							•

Table C-106. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Surcharge Removal

Surcharge Removal	Tons							
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
SW Slip A#1 Surcharge Removal - Loading	NOU -		IVOX	301	1 1/1	TIVITO	I IVIZ.J	
Scraper		I	T					
Backhoe	 	 	+		+			
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Dozer Olamsheir Breage								
Off-Road Truck								
Water Truck								
Grader								
Subtotal								
SW Slip A#1 Surcharge Removal - Transport								
Scows			1					
Tug Boat								
Subtotal								
SW Slip A#1 Surcharge Removal - Unload NW Slip								
Main Hoist - Clamshell Dredge (Electric)		I	T					
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Electric Conveyor								
Dozer								
Subtotal								
SW Slip A#1 Surcharge Removal - Unload CSWH		•	•					
Main Hoist - Clamshell Dredge								
Main Generator - Clamshell Dredge								
Deck Generator - Clamshell Dredge								
Scows								
Subtotal								
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2								
Main Hoist - Clamshell Dredge								
Main Generator - Clamshell Dredge								
Deck Generator - Clamshell Dredge								
Electric Conveyor								
Dozer								
Tug Boat								
Subtotal				-				

Table C-107. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Contaminated Material.

Broaging or contaminated material.							
<u> </u>				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Contaminated Dredge							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.07	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.04	0.11	0.00	0.00	0.00	0.00
Electric Pump							
Skiff	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Subtotal	0.01	0.05	0.19	0.00	0.00	0.00	0.00

Table C-108. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material

Dreaging of Fine Grain Material				Tons			
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Fine Grain Material CSWH							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Pump							
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydraulic Dredging - Fine Grain Material CSWH							
Main Engine - Electric							
Derrick Hoist	0.01	0.03	0.16	0.00	0.00	0.00	0.00
Derrick Winch	0.00	0.01	0.02	0.00	0.00	0.00	0.00
Anchor Barge Winch	0.01	0.02	0.12	0.00	0.00	0.00	0.00
Generator	0.01	0.04	0.20	0.00	0.00	0.00	0.00
Survey Boat	0.00	0.02	0.09	0.01	0.00	0.00	0.00
Crew Boat	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.07	0.69	1.87	0.00	0.06	0.06	0.05
Electric Pump							
Subtotal	0.10	0.81	2.51	0.01	0.06	0.06	0.06
Hydraulic Dredging - Fine Grain Material to LA-2							
Main Engine - Electric							
Derrick Hoist	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anchor Barge Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Pump							
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Clamshell Dredging - Fine Grain Material to LA 2							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.01	0.03	0.19	0.00	0.00	0.00	0.00
Tug Boat (1)	0.18	1.66	4.52	0.00	0.13	0.13	0.12
Subtotal	0.19	1.70	4.71	0.00	0.13	0.13	0.13

Table C-109. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material.

Dreaging or course crain material.				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Coarse Grain Material Berth 243/245							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.01	0.02	0.12	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.01	0.06	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.01	0.08	0.22	0.00	0.01	0.01	0.01
Electric Pump							
Subtotal	0.02	0.12	0.43	0.01	0.01	0.01	0.01
Clamshell Dredging - Coarse Grain Material NW Slip							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.04	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.02	0.07	0.00	0.00	0.00	0.00
Electric Pump							
Subtotal	0.01	0.04	0.13	0.00	0.00	0.00	0.00

Table C-110. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project

	Tons							
Location/Activity	ROG	CO	NOx	SOx	PM	PM10	PM2.5	
Demolition								
NW Slip Sliver	0.19	0.90	3.28	0.00	0.02	0.02	0.0	
Berths 243-245	-	-	-	-	-	-	-	
Dike Const. Quarry Run Placement								
NW Slip Sliver	0.96	8.22	23.61	0.02	0.63	0.63	0.5	
Berths 243-245	0.69	5.89	16.97	0.02	0.45	0.45	0.42	
Cabrillo SWH	0.84	7.11	20.53	0.02	0.54	0.54	0.5	
Dike Construction Armor Stone Placement								
NW Slip Sliver	0.09	0.78	2.25	0.00	0.06	0.06	0.00	
Berths 243-245	0.07	0.58	1.68	0.00	0.04	0.04	0.04	
Trench Excavation								
NW Slip Sliver	0.00	0.01	0.05	0.00	0.00	0.00	0.00	
Berths 243-245	0.00	0.03	0.10	0.00	0.00	0.00	0.00	
Cabrillo SWH	-	-	-	-	-	-	-	
Surcharge Removal								
Loading	-	-	-	-	-	-	-	
Transport	-	-	-	-	-	-	-	
Unload Cabrillo SWH	-	-	-	-	-	-	-	
Dredging of Contaminated Material								
Contaminated Dredge	0.01	0.05	0.19	0.00	0.00	0.00	0.00	
Dredging of Fine Material								
Hydraulic - Cabrillo SWH	0.10	0.81	2.51	0.01	0.06	0.06	0.06	
Clamshell - To LA 2	0.19	1.70	4.71	0.00	0.13	0.13	0.13	
Dredging of Coarse Material	0.19	1.70	4./1	0.00	0.13	0.13	0.13	
Clamshell - Berths 243-245	0.02	0.12	0.43	0.01	0.01	0.01	0.01	
Clamshell - NW Slip Sliver	0.02	0.12	0.43	0.01	0.00	0.01	0.00	
•							1.84	
Total Mitigated Emissions	3.15	26.24	76.42	0.09	1.97	1.97	1.8	

Table C-102. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Demolition

		Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
NW Slip Sliver - Wharf								
Main Hoist - Clamshell Dredge								
Main Generator - Clamshell Dredge								
Deck Generator - Clamshell Dredge								
Backhoe								
Front End Loader								
Haul Truck (1)								
Tug Boat								
Subtotal								
Berths 243-245								
Main Hoist - Clamshell Dredge								
Main Generator - Clamshell Dredge								
Deck Generator - Clamshell Dredge								
Backhoe								
Front End Loader								
Haul Truck (1)								
Tug Boat								
Subtotal								

Table C-103. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Quarry Run Placement

Construction Quarry Run Placement				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver			•		•		
Barge Equipment							
Derrick Barge Crane							
Tugboat - Derrick Barge Crane							
Tugboat - Transport Quarry Run to Site (1)							
Subtotal							
Berths 243-245							
Barge Equipment							
Derrick Barge Crane							
Tugboat - Derrick Barge Crane							
Tugboat - Transport Quarry Run to Site (1)							
Subtotal							
Cabrillo SWH							
Barge Equipment							
Derrick Barge Crane							
Tugboat - Derrick Barge Crane							
Tugboat - Transport Quarry Run to Site (1)							
Subtotal							
Eelgrass Restoration							
Barge Equipment							
Derrick Barge Crane							
Tugboat - Derrick Barge Crane		•					
Tugboat - Transport Quarry Run to Site (1)		•					
Subtotal		•					

Table C-104. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Armor Stone Placement

Construction Armor Stone Flacement	Tons								
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5		
NW Slip Sliver			•	•	•				
Barge Equipment									
Derrick Barge Crane									
Tugboat - Derrick Barge Crane									
Tugboat - Transport Armor Stone to Site (1)									
Subtotal									
Berths 243-245			•	•	•				
Barge Equipment									
Derrick Barge Crane									
Tugboat - Derrick Barge Crane									
Tugboat - Transport Armor Stone to Site (1)									
Subtotal									
Eelgrass									
Barge Equipment									
Derrick Barge Crane									
Tugboat - Derrick Barge Crane									
Tugboat - Transport Armor Stone to Site (1)									
Subtotal									

Table C-105. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Trench Excavation

	Tons							
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
NW Slip Sliver								
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Tug Boat								
Subtotal								
Berths 243-245								
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Tug Boat								
Subtotal								
CSWH								
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Tug Boat								
Subtotal								

Table C-106. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Surcharge Removal

Surcharge Removal	Tons							
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5	
SW Slip A#1 Surcharge Removal - Loading	NOO	00	NOX	30%	7 101	110110	1 11/2.5	
Scraper	0.17	0.64	3.47	0.00	0.01	0.01	0.01	
Backhoe	0.07	0.40	0.70	0.00	0.01	0.01	0.01	
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00	
Dozer	0.12	0.47	2.56	0.00	0.01	0.01	0.01	
Off-Road Truck	0.13	0.50	2.67	0.00	0.01	0.01	0.01	
Water Truck	0.06	0.23	1.24	0.00	0.00	0.00	0.00	
Grader	0.02	0.09	0.46	0.00	0.00	0.00	0.00	
Subtotal	0.60	2.41	11.55	0.01	0.05	0.05	0.04	
SW Slip A#1 Surcharge Removal - Transport								
Scows								
Tug Boat	0.02	0.15	0.42	0.00	0.01	0.01	0.01	
Subtotal	0.02	0.15	0.42	0.00	0.01	0.01	0.01	
SW Slip A#1 Surcharge Removal - Unload NW Slip								
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Electric Conveyor								
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SW Slip A#1 Surcharge Removal - Unload CSWH								
Main Hoist - Clamshell Dredge	0.30	1.13	6.10	0.01	0.02	0.02	0.02	
Main Generator - Clamshell Dredge	0.22	0.85	4.58	0.00	0.02	0.02	0.02	
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00	
Scows								
Subtotal	0.54	2.07	11.14	0.01	0.04	0.04	0.04	
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2								
Main Hoist - Clamshell Dredge								
Main Generator - Clamshell Dredge								
Deck Generator - Clamshell Dredge								
Electric Conveyor								
Dozer Tur Post		-						
Tug Boat		-						
Subtotal								

Table C-107. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Contaminated Material.

	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Contaminated Dredge							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge							
Scows							
Tug Boat							
Electric Pump							
Skiff							
Subtotal							

Table C-108. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material

Dredging of Fine Grain Material	Tons							
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
Clamshell Dredging - Fine Grain Material CSWH	7,00	00	NOA	30/	7 777	TIVITO	I IVIZ.U	
Main Hoist - Clamshell Dredge (Electric)	T	T						
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Reel Barge								
Survey Boat								
Crew Boat								
Scows								
Tug Boat								
Electric Pump								
Subtotal								
Hydraulic Dredging - Fine Grain Material CSWH								
Main Engine - Electric		T						
Derrick Hoist								
Derrick Winch								
Anchor Barge Winch								
Generator								
Survey Boat								
Crew Boat								
Tug Boat								
Electric Pump								
Subtotal								
Hydraulic Dredging - Fine Grain Material to LA-2								
Main Engine - Electric								
Derrick Hoist								
Derrick Winch								
Anchor Barge Winch								
Generator								
Survey Boat								
Crew Boat								
Tug Boat								
Electric Pump								
Tug Boat								
Subtotal								
Clamshell Dredging - Fine Grain Material to LA 2								
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge	0.01	0.06	0.31	0.00	0.00	0.00	0.00	
Tug Boat (1)	0.29	2.68	7.29	0.01	0.21	0.21	0.20	
Subtotal	0.30	2.74	7.60	0.01	0.22	0.22	0.20	

Table C-109. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material.

breaging or obarse orain material.				Tons			
Lacation/Favinesent Tune	DOC	CO.	MOv		DM	D1/10	DM2 F
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Coarse Grain Material Berth 243/245							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge							
Reel Barge							
Survey Boat							
Crew Boat							
Scows							
Tug Boat							
Electric Pump							
Subtotal							
Clamshell Dredging - Coarse Grain Material NW Slip							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.01	0.02	0.00	0.00	0.00	0.00
Electric Pump							
Subtotal	0.00	0.01	0.04	0.00	0.00	0.00	0.00

Table C-110. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project

	Tons								
Location/Activity	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
Demolition					•				
NW Slip Sliver	-	-	-	-	-	-	-		
Berths 243-245	-	-	-	-	-	-	-		
Dike Const. Quarry Run Placement			<u> </u>						
NW Slip Sliver	-	-	-	-	-	-	-		
Berths 243-245	-	-	-	-	-	-	-		
Cabrillo SWH	-	-	-	-	-	-	-		
Dike Construction Armor Stone Placement									
NW Slip Sliver	-	-	-	-	-	-	-		
Berths 243-245	-	-	-	-	-	-	-		
Trench Excavation									
NW Slip Sliver	-	-	-	-	-	-	-		
Berths 243-245	-	-	-	-	-	-	-		
Cabrillo SWH	-	-	-	-	-	-	-		
Surcharge Removal			•			•			
Loading	0.60	2.41	11.55	0.01	0.05	0.05	0.04		
Transport	0.02	0.15	0.42	0.00	0.01	0.01	0.01		
Unload Cabrillo SWH	0.54	2.07	11.14	0.01	0.04	0.04	0.04		
Dredging of Contaminated Material									
Contaminated Dredge	-	-	-	-	-	-	_		
Dredging of Fine Material									
Hydraulic - Cabrillo SWH	-	-	-	-	-	-	-		
Clamshell - To LA 2	0.30	2.74	7.60	0.01	0.22	0.22	0.20		
Dredging of Coarse Material									
Clamshell - Berths 243-245	- 1	-	-	-	- 1	- 1	-		
Clamshell - NW Slip Sliver	0.00	0.01	0.04	0.00	0.00	0.00	0.00		
Total Mitigated Emissions	1.46	7.38	30.75	0.03	0.32	0.32	0.29		

Table C-111. Yearly Mitigated Emissions for the POLA Channel Deepening Proposed Project

		Ī	Tons (1)			
ROG	CO	NOx	SOx	PM	PM10	PM2.5
-	-	-	-	-	-	-
(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
0.1	1.1	2.9	0.0	0.1	0.1	0.1
(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
(6.5)	(31.4)	(113.8)	(5.6)	(3.7)	(3.7)	(3.4)
1.3	6.3	27.8	0.0	0.2	0.2	0.2
(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
(5.3)	(26.1)	(88.9)	(5.6)	(3.5)	(3.5)	(3.2)
10	100	10	NA	NA	70	100
	ROG (6.6) (6.6) (6.5) (6.5) (6.6) (6.5) (5.3)	ROG CO (6.6) (32.4) (6.6) (32.4) 0.1 1.1 (6.6) (32.4) (6.5) (31.4) 1.3 6.3 (6.6) (32.4) (5.3) (26.1)	ROG CO NOx - - - (6.6) (32.4) (116.7) (6.6) (32.4) (116.7) 0.1 1.1 2.9 (6.6) (32.4) (116.7) (6.5) (31.4) (113.8) 1.3 6.3 27.8 (6.6) (32.4) (116.7) (5.3) (26.1) (88.9)	ROG CO NOx SOx - - - - (6.6) (32.4) (116.7) (5.6) (6.6) (32.4) (116.7) (5.6) 0.1 1.1 2.9 0.0 (6.6) (32.4) (116.7) (5.6) (6.5) (31.4) (113.8) (5.6) 1.3 6.3 27.8 0.0 (6.6) (32.4) (116.7) (5.6) (5.3) (26.1) (88.9) (5.6)	ROG CO NOx SOx PM - - - - - - (6.6) (32.4) (116.7) (5.6) (3.7) (6.6) (32.4) (116.7) (5.6) (3.7) 0.1 1.1 2.9 0.0 0.1 (6.6) (32.4) (116.7) (5.6) (3.7) (6.5) (31.4) (113.8) (5.6) (3.7) 1.3 6.3 27.8 0.0 0.2 (6.6) (32.4) (116.7) (5.6) (3.7) (5.3) (26.1) (88.9) (5.6) (3.5)	Tons (1) ROG CO NOx SOx PM PM10 - - - - - - (6.6) (32.4) (116.7) (5.6) (3.7) (3.7) 0.1 1.1 2.9 0.0 0.1 0.1 (6.6) (32.4) (116.7) (5.6) (3.7) (3.7) (6.5) (31.4) (113.8) (5.6) (3.7) (3.7) 1.3 6.3 27.8 0.0 0.2 0.2 (6.6) (32.4) (116.7) (5.6) (3.7) (3.7) (5.3) (26.1) (88.9) (5.6) (3.5) (3.5)

Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.

1997 SIP	150,955	885,301	25,769	120,687
Project peak year % of SIP emissions	0.0001	0.0001	0.0000	0.0001
2007 AQMP	153,300	744,235	6,935	31,755
Project peak year % of AQMP emissions	0.0001	0.0001	0.0000	0.0002

2011 Source Group Emissions

Heavy-Duty Diesel Trucks	0.19	0.73	3.91	0.00	0.01	0.01	0.01
Mobile Equipment	0.96	3.81	19.10	0.02	0.07	0.07	0.07
Commercial Boats/Ships	0.31	2.84	7.74	0.01	0.23	0.23	0.21

Table C-168. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Quarry Run Placement

Tons Location/Equipment Type Cabrillo SWH ROG СО NOx PM PM10 PM2.5 SOx Barge Equipment 0.08 0.30 1.64 0.00 0.01 0.01 0.01 0.04 0.14 0.00 Derrick Barge Crane 0.76 0.00 0.00 0.00 Tugboat - Derrick Barge Crane 0.07 1.71 0.00 0.05 0.05 0.63 0.05 Tugboat - Transport Quarry Run to Site (1) 0.65 6.04 16.43 0.01 0.48 0.48 0.45 7.11 0.54 0.84 20.53 0.02 0.54 0.51 Subtotal **Eelgrass Restoration** Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal

Table C-169. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Armor Stone Placement

Construction Armor Stone Flacement		Tons								
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5			
Eelgrass										
Barge Equipment										
Derrick Barge Crane										
Tugboat - Derrick Barge Crane										
Tugboat - Transport Armor Stone to Site (1)										
Subtotal										

Table C-170. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 -

Surcharge Removal							
				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
SW Slip A#1 Surcharge Removal - Loading							
Scraper							
Backhoe							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge							
Dozer							
Off-Road Truck							
Water Truck							
Grader							
Subtotal							
SW Slip A#1 Surcharge Removal - Transport							
Scows							
Tug Boat							
Subtotal							
SW Slip A#1 Surcharge Removal - Unload CSWH							
Main Hoist - Clamshell Dredge							
Main Generator - Clamshell Dredge							
Deck Generator - Clamshell Dredge							
Scows							
Subtotal							
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2							•
Main Hoist - Clamshell Dredge							
Main Generator - Clamshell Dredge							
Deck Generator - Clamshell Dredge							
Electric Conveyor							
Dozer							
Tug Boat							
Subtotal							

Table C-171. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material.

	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Contaminated Material							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.07	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.04	0.11	0.00	0.00	0.00	0.00
Electric Pump							
Skiff	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Dozer	0.02	0.08	0.44	0.00	0.00	0.00	0.00
Grader	0.01	0.04	0.24	0.00	0.00	0.00	0.00
Compactor	0.01	0.04	0.22	0.00	0.00	0.00	0.00
Water Truck	0.01	0.03	0.16	0.00	0.00	0.00	0.00
Subtotal	0.06	0.25	1.23	0.00	0.01	0.01	0.01

Table C-172. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material

Dreaging and Disposal of Dreaging Material	T								
				Tons					
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
Hydraulic Dredging - Fine Grain Material CSWH									
Main Engine - Electric									
Derrick Hoist	0.01	0.03	0.16	0.00	0.00	0.00	0.00		
Derrick Winch	0.00	0.01	0.02	0.00	0.00	0.00	0.00		
Anchor Barge Winch	0.01	0.02	0.12	0.00	0.00	0.00	0.00		
Generator	0.01	0.04	0.20	0.00	0.00	0.00	0.00		
Survey Boat	0.00	0.02	0.09	0.01	0.00	0.00	0.00		
Crew Boat	0.00	0.01	0.05	0.00	0.00	0.00	0.00		
Tug Boat	0.07	0.69	1.87	0.00	0.06	0.06	0.05		
Electric Pump									
Subtotal	0.10	0.81	2.51	0.01	0.06	0.06	0.06		
Clamshell Dredging - Fine Grain Material to LA 2									
Main Hoist - Clamshell Dredge (Electric)									
Main Generator - Clamshell Dredge (Electric)									
Deck Generator - Clamshell Dredge	0.01	0.05	0.30	0.00	0.00	0.00	0.00		
Tug Boat	0.28	2.61	7.09	0.01	0.21	0.21	0.20		
Subtotal	0.30	2.66	7.38	0.01	0.21	0.21	0.20		
Clamshell Dredging - Fine/Coarse Grain Material to LA-3									
Main Hoist - Clamshell Dredge									
Main Generator - Clamshell Dredge									
Deck Generator - Clamshell Dredge	0.01	0.05	0.26	0.00	0.00	0.00	0.00		
Tug Boat	0.68	6.32	17.20	0.01	0.51	0.51	0.47		
Subtotal	0.70	6.37	17.46	0.02	0.51	0.51	0.47		

Table C-173. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2

Table C-173. Total Mitigated Effilssions for the POLA Ch	Tons									
Location/Activity	ROG	СО	NOx	SOx	PM	PM10	PM2.5			
Dike Const. Quarry Run Placement						•				
Cabrillo SWH	0.84	7.11	20.53	0.02	0.54	0.54	0.51			
Dike Construction Armor Stone Placement				I	1	T				
Trench Excavation										
Cabrillo SWH	0.00	0.01	0.04	0.00	0.00	0.00	0.00			
Surcharge Removal	0.00	0.01	0.04	0.00	0.00	0.00	0.00			
Loading	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Transport	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Unload Cabrillo SWH	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Dredging of Contaminated Material										
Clamshell - Contaminated Material	0.06	0.25	1.23	0.00	0.01	0.01	0.01			
Dredging and Disposal of Dredging Material										
Hydraulic - Cabrillo SWH	0.10	0.81	2.51	0.01	0.06	0.06	0.06			
Clamshell - LA-2	0.30	2.66	7.38	0.01	0.21	0.21	0.20			
Clamshell - LA-3	0.70	6.37	17.46	0.02	0.51	0.51	0.47			
Total Mitigated Emissions (1)	1.99	17.21	49.16	0.05	1.33	1.33	1.25			

Table C-168. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Quarry Run Placement

Tons Location/Equipment Type Cabrillo SWH ROG СО NOx PM PM10 PM2.5 SOx Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal **Eelgrass Restoration** Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal

Table C-169. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Armor Stone Placement

	Tons								
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
Eelgrass									
Barge Equipment									
Derrick Barge Crane									
Tugboat - Derrick Barge Crane									
Tugboat - Transport Armor Stone to Site (1)									
Subtotal									

Table C-170. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 -

Surcharge Removal	Torre								
				Tons					
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
SW Slip A#1 Surcharge Removal - Loading									
Scraper	0.17	0.64	3.47	0.00	0.01	0.01	0.01		
Backhoe	0.07	0.40	0.70	0.00	0.01	0.01	0.01		
Main Hoist - Clamshell Dredge (Electric)									
Main Generator - Clamshell Dredge (Electric)									
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00		
Dozer	0.12	0.47	2.56	0.00	0.01	0.01	0.01		
Off-Road Truck	0.13	0.50	2.67	0.00	0.01	0.01	0.01		
Water Truck	0.06	0.23	1.24	0.00	0.00	0.00	0.00		
Grader	0.02	0.09	0.46	0.00	0.00	0.00	0.00		
Subtotal	0.60	2.41	11.55	0.01	0.05	0.05	0.04		
SW Slip A#1 Surcharge Removal - Transport									
Scows									
Tug Boat	0.02	0.15	0.42	0.00	0.01	0.01	0.01		
Subtotal	0.02	0.15	0.42	0.00	0.01	0.01	0.01		
SW Slip A#1 Surcharge Removal - Unload CSWH									
Main Hoist - Clamshell Dredge	0.30	1.13	6.10	0.01	0.02	0.02	0.02		
Main Generator - Clamshell Dredge	0.22	0.85	4.58	0.00	0.02	0.02	0.02		
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00		
Scows									
Subtotal	0.54	2.07	11.14	0.01	0.04	0.04	0.04		
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2									
Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Electric Conveyor									
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Table C-171. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material.

	Tons							
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
Clamshell Dredging - Contaminated Material								
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge								
Scows								
Tug Boat								
Electric Pump								
Skiff								
Dozer								
Grader								
Compactor								
Water Truck								
Subtotal								

Table C-172. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material

Dredging and Disposal of Dredging Material									
	Tons ROG CO NOX SOX PM PM10								
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5		
Hydraulic Dredging - Fine Grain Material CSWH									
Main Engine - Electric									
Derrick Hoist									
Derrick Winch									
Anchor Barge Winch									
Generator									
Survey Boat									
Crew Boat									
Tug Boat									
Electric Pump									
Subtotal									
Clamshell Dredging - Fine Grain Material to LA 2									
Main Hoist - Clamshell Dredge (Electric)									
Main Generator - Clamshell Dredge (Electric)									
Deck Generator - Clamshell Dredge									
Tug Boat									
Subtotal									
Clamshell Dredging - Fine/Coarse Grain Material to LA-3									
Main Hoist - Clamshell Dredge									
Main Generator - Clamshell Dredge									
Deck Generator - Clamshell Dredge									
Tug Boat									
Subtotal									

Table C-173. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2

Table C-173. Total Mitigated Emissions for the POLA CI	Tons									
Location/Activity	ROG	CO	NOx	SOx	PM	PM10	PM2.5			
Dike Const. Quarry Run Placement										
Cabrillo SWH	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Dike Construction Armor Stone Placement										
Trench Excavation										
Cabrillo SWH	0.00	0.01	0.04	0.00	0.00	0.00	0.00			
Surcharge Removal										
Loading	0.60	2.41	11.55	0.01	0.05	0.05	0.04			
Transport	0.02	0.15	0.42	0.00	0.01	0.01	0.01			
Unload Cabrillo SWH	0.54	2.07	11.14	0.01	0.04	0.04	0.04			
Dredging of Contaminated Material										
Clamshell - Contaminated Material	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Dredging and Disposal of Dredging Material										
Hydraulic - Cabrillo SWH	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Clamshell - LA-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Clamshell - LA-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Total Mitigated Emissions (1)	1.15	4.64	23.15	0.02	0.10	0.10	0.09			

Table C-174. Yearly Mitigated Emissions for the POLA Channel Deepening Project Alternative 2

	•			Tons (1)			
Yearly Scenario	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Alternative 1 - 2009	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Net Annual Mitigated Emissions - 2009	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Alternative 1 - 2010	-	-	-	-	-	-	-
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Net Annual Mitigated Emissions - 2010	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Alternative 1 - 2011	1.2	4.6	23.1	0.0	0.1	0.1	0.1
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Net Annual Mitigated Emissions - 2011	(5.5)	(27.8)	(93.6)	(5.6)	(3.6)	(3.6)	(3.4)
Conformity de minimis Thresholds	10	100	10	NA	NA	70	100

Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.

1007 CID	150.055	005 201	1	25.770	1	100 / 07	
1997 SIP	150,955	885,301		25,769	J	120,687	
Project peak year % of SIP emissions	-	_		-		-	='
2007 AQMP	153,300	744,235		6,935			31,755
Project peak year % of AQMP emissions	-	-		-			-
Total Source Group Emissions							
Heavy-Duty Diesel Trucks	0.19	0.73	3.91	0.00	0.01	0.01	0.01
Mobile Equipment	0.95	3.76	18.83	0.02	0.07	0.07	0.07
Commercial Boats/Ships	0.02	0.15	0.42	0.00	0.01	0.01	0.01

Table C-1. POLA Channel Deepening Project Construction Activities - Year 2004 - Pipeline Removal

, , ,	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Remove 36" Oil Pipeline (No.3)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	35.2	168,960
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	35.2	126,720
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	35.2	15,206
Tug Boat	800	0.20	1	160	8	1,280	35.2	45,056
Remove 20" Water Pipeline (No.7)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	66.0	316,800
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	66.0	237,600
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	66.0	28,512
Tug Boat	800	0.20	1	160	8	1,280	66.0	84,480
Remove 20" Sewer Pipelines (No.8)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	8.8	42,240
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	8.8	31,680
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	8.8	3,802
Tug Boat	800	0.20	1	160	8	1,280	8.8	11,264
Remove 10" &16" Oil Pipelines (No.2)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	17.6	84,480
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	17.6	63,360
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	17.6	7,603
Tug Boat	800	0.20	1	160	8	1,280	17.6	22,528
Remove 30" Sewer Pipeline (No.9)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	11.0	52,800
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	11.0	39,600
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	11.0	4,752
Tug Boat	800	0.20	1	160	8	1,280	11.0	14,080
Remove Power Cables (No.11)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	4.4	21,120
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	4.4	15,840
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	4.4	1,901
Tug Boat	800	0.20	1	160	8	1,280	4.4	5,632
Remove 10" & 24" Oil Pipelines								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	17.6	84,480
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	17.6	63,360
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	17.6	7,603
Tug Boat	800	0.20	1	160	8	1,280	17.6	22,528
Remove 24" Water Pipeline (No.6)								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	8	4,800	66.0	316,800
Main Generator - Clamshell Dredge	900	0.50	1	450	8	3,600	66.0	237,600
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	66.0	28,512
Tug Boat	800	0.20	1	160	8	1,280	66.0	84,480

Table C-2. POLA Channel Deepening Project Construction Activities - Year 2004 - Dredging/Material Disposal

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Dredge Element D202 to Pier 400 SMSS								
Main Engine - Electric	N/A	N/A	1	N/A	24	N/A	13.9	N/A
Derrick Hoist - Hydraulic Dredge	240	0.70	1	168	4	672	13.9	9,365
Derrick Winch - Hydraulic Dredge	87	0.70	1	61	1	61	13.9	849
Anchor Barge Winch - Hydraulic Dredge	180	0.70	1	126	4	504	13.9	7,024
Generator - Hydraulic Dredge	350	0.60	1	210	4	840	13.9	11,706
Tug Boat - Hydraulic Dredge	850	0.33	1	281	18	5,049	13.9	70,363
Tug Boat - Hydraulic Dredge	700	0.33	1	231	18	4,158	13.9	57,946
Dredge Element 203/203A to Pier 300								
Main Engine - Electric	N/A	N/A	1	N/A	24	N/A	73.5	N/A
Derrick Hoist - Hydraulic Dredge	240	0.70	1	168	18	3,024	73.5	222,135
Derrick Winch - Hydraulic Dredge	87	0.70	1	61	18	1,096	73.5	80,524
Anchor Barge Winch - Hydraulic Dredge	180	0.70	1	126	18	2,268	73.5	166,601
Generator - Hydraulic Dredge	350	0.60	1	210	18	3,780	73.5	277,669
Tug Boat - Hydraulic Dredge	850	0.33	1	281	18	5,049	73.5	370,886
Tug Boat - Hydraulic Dredge	700	0.33	1	231	18	4,158	73.5	305,436
Dozer	335	0.50	2	335	18	6,030	73.5	442,948
Excavator	290	0.57	1	165	18	2,975	73.5	218,565
Water Truck	240	0.25	1	60	18	1,080	73.5	79,334
Pump Dredge Element 204 into D203A Pit								
Main Engine - Electric	N/A	N/A	1	N/A	24	N/A	5.2	N/A
Derrick Hoist - Hydraulic Dredge	240	0.70	1	168	18	3,024	5.2	15,756
Derrick Winch - Hydraulic Dredge	87	0.70	1	61	18	1,096	5.2	5,711
Anchor Barge Winch - Hydraulic Dredge	180	0.70	1	126	18	2,268	5.2	11,817
Generator - Hydraulic Dredge	350	0.60	1	210	18	3,780	5.2	19,694
Tug Boat - Hydraulic Dredge	850	0.33	1	281	18	5,049	5.2	26,306
Tug Boat - Hydraulic Dredge	700	0.33	1	231	18	4,158	5.2	21,664
Clamshell Dredging/Disposal to Pier 400 SMSS								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	10.0	72,000
Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	10.0	54,000
Deck Generator - Clamshell Dredge	240	0.60	1	144	4	576	10.0	5,760
Tug Boat	800	0.20	1	160	12	1,920	10.0	19,200
Tugboat - Transport Sediment	2,200	0.60	3	3,960	2	7,920	10.0	79,200

Note: Hydraulic dredge production rate = 32,000 cubic yards per day. Assumes hydraulic dredge is electrified and produces no emissions.

Table C-3. POLA Channel Deepening Project Construction Activities - Year 2004 - Wick Drain Installation

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Under Surcharge - 13.5M Feet								
Wick Drain Rig - Excavator Mounted	290	0.30	4	348	8	2,784	132.0	367,488

Table C-4. POLA Channel Deepening Project Construction Activities - Year 2004 - Move Surcharge from Area 2 to Area 1

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Move Surcharge								
Dozer	335	0.50	2	335	12	4,020	26.4	106,128
Excavator	290	0.57	2	331	12	3,967	26.4	104,734
Scraper	525	0.50	2	525	12	6,300	26.4	166,320
Water Truck	240	0.25	1	60	12	720	26.4	19,008

Table C-5. POLA Channel Deepening Project Construction Activities - Year 2004 - Install Surcharge Gravel Drainage Blanket

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Install Gravel								
Barge Equipment	195	0.50	2	195	12	2,340	23.9	55,982
Derrick Barge Crane	180	0.50	1	90	12	1,080	23.9	25,838
Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	23.9	57,417
Tugboat - Transport Gravel to Site	2,200	0.60	2	2,640	12	31,680	23.9	757,904
Dozer	335	0.50	2	335	12	4,020	88.0	353,760
Excavator	290	0.57	2	331	12	3,967	88.0	349,114
Scraper	525	0.50	2	525	12	6,300	88.0	554,400
Water Truck	240	0.25	1	60	12	720	88.0	63,360

Table C-6. POLA Channel Deepening Project Construction Activities - Year 2004 - Dike Construction Rock Placement

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Place Quarry Run								
Barge Equipment	195	0.50	2	195	12	2,340	27.9	65,199
Derrick Barge Crane	180	0.50	1	90	12	1,080	27.9	30,092
Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	27.9	66,871
Tugboat - Transport Quarry Run to Site	2,200	0.60	2	2,640	12	31,680	27.9	882,692
Place A-250								
Barge Equipment	195	0.50	2	195	12	2,340	3.2	7,570
Derrick Barge Crane	180	0.50	1	90	12	1,080	3.2	3,494
Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	3.2	7,765
Tugboat - Transport Rock to Site	2,200	0.60	2	2,640	12	31,680	3.2	102,493
Place A-500								
Barge Equipment	195	0.50	2	195	12	2,340	9.0	21,022
Derrick Barge Crane	180	0.50	1	90	12	1,080	9.0	9,702
Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	9.0	21,561
Tugboat - Transport Rock to Site	2,200	0.60	2	2,640	12	31,680	9.0	284,605

Table C-7. POLA Channel Deepening Project Construction Activities - Year 2004 - Demolition Activities

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Demo Dry Docks								
Main Hoist - Clamshell Dredge	1,200	0.50	2	1,200	12	14,400	88.0	1,267,200
Main Generator - Clamshell Dredge	900	0.50	2	900	12	10,800	88.0	950,400
Deck Generator - Clamshell Dredge	240	0.60	2	288	4	1,152	88.0	101,376
Tug Boat	800	0.20	1	160	12	1,920	88.0	168,960
Excavator	290	0.57	2	331	12	3,967	88.0	349,114
Demo Berth 240-Y								
Dump Truck - 16 CY	300	0.30	1	90	8	720	22.0	15,840
Excavator	290	0.57	2	331	8	2,645	22.0	58,186
Water Truck	240	0.25	1	60	8	480	22.0	10,560
Remove Vessel Stephanie Ann								
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	11.0	79,200
Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	11.0	59,400
Deck Generator - Clamshell Dredge	240	0.60	1	144	4	576	11.0	6,336
Tug Boat	800	0.20	1	160	12	1,920	11.0	21,120

Table C-8. POLA Channel Deepening Project Construction Activities - Year 2004 - Road Work

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
GATX Access Road								
Dozer	335	0.50	1	168	8	1,340	11.0	14,740
Excavator	140	0.57	1	80	8	638	11.0	7,022
Paving Machine	200	0.50	1	100	8	800	11.0	8,800
Roller	165	0.50	1	83	8	660	11.0	7,260
CMB Road								
Dozer	335	0.50	1	168	8	1,340	22.0	29,480
Excavator	140	0.57	1	80	8	638	22.0	14,045
Roller	165	0.50	1	83	8	660	22.0	14,520

Table C-9. POLA Channel Deepening Project Construction Activities - Year 2004 - Cap Area 1

1 9 7								
	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Install Cap								
Dozer	335	0.50	5	838	10	8,375	176.0	1,474,000
Dump Truck - 16 CY	300	0.30	4	360	10	3,600	176.0	633,600
Excavator	290	0.57	2	331	10	3,306	176.0	581,856
Loader - 938G	160	0.50	2	160	10	1,600	176.0	281,600
Water Truck	240	0.25	1	60	10	600	176.0	105,600

Table C-10. Air Emission Factors for the Channel Deepening Project Alternatives Construction Activities - Year 2004.

	Fuel	Emission Factors (Grams/Horsepower-Hour)							
Project Year/Source Type	Туре	ROG	СО	NOx	SOx	PM	PM10	PM2.5	References
Year 2004									
Off-Road Equipment - 25-50 Hp	D	2.06	5.92	5.94	0.18	0.70	0.70	0.64	(1)
Off-Road Equipment - 51-120 Hp	D	1.11	3.77	7.56	0.18	0.77	0.77	0.71	(1)
Off-Road Equipment - 121-175 Hp	D	0.71	3.04	6.94	0.18	0.42	0.42	0.38	(1)
Off-Road Equipment - 176-250 Hp	D	0.46	1.48	6.66	0.18	0.23	0.23	0.21	(1)
Off-Road Equipment - 251-500 Hp	D	0.37	1.73	5.51	0.18	0.20	0.20	0.18	(1)
Off-Road Equipment - 501-750 Hp	D	0.46	1.99	6.66	0.18	0.24	0.24	0.22	(1)
Off-Road Equipment - >750 Hp	D	0.47	2.02	6.48	0.18	0.20	0.20	0.18	(1)
On-road Truck - Idle (Gms/Hr)	D	10.73	46.68	69.84	0.36	1.76	1.76	1.38	(2)
On-road Truck - 5 mph (Gms/Mi)	D	8.48	38.80	30.63	0.19	2.33	2.33	1.90	(2)
On-road Truck - 25 mph (Gms/Mi)	D	1.29	12.03	14.43	0.12	0.71	0.71	0.55	(2)
On-road Truck - 55 mph (Gms/Mi)	D	0.70	7.49	15.79	0.11	0.50	0.50	0.42	(2)
Dredge Materials Haul Truck - Composite (Gms/Mi)	D	2.01	14.71	16.05	0.13	0.87	0.87	0.68	(3)
Other On-Road Trucks - Composite (Gms/Mi)	D	1.21	9.96	16.26	0.12	0.64	0.64	0.52	(4)
All Years									
Tugboat (Gm/Hp-Hr)	D	0.20	1.87	8.94	0.81	0.22	0.22	0.21	(5)
Fugitive Dust (Lbs/acre-day)						27.50	13.45	2.81	(6)
Building Demolition (Lbs/1000 cf)						0.84	0.41	0.09	(7)
Small Harbor Craft	D	0.16	1.27	7.46	0.47	0.30	0.30	0.28	(8)

Notes: (1) Composite emission factors developed from ARB OFFROAD emissions model (1999) and based on average Statewide equipment fleet age distributions for year 2005. Factors developed by averaging hourly emissions for different diesel construction equipment types within the same Hp category.

- (2) Heavy duty diesel truck running emission factors developed from EMFAC2007 (ARB 2006). Units in grams/mile for project year 2004. Based on annual average conditions at 60 degrees and 50% humidity with the average fleet found in the South Coast Air Basin. PM emission factors include combustive and tire/brake wear contributions.
- (3) Composite factors based on a round trip of 90% at 25 mph and 10% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (4) For on-road trucks other then dredge material haul trucks, composite factor based on a round trip of 75% at 55 mph, 20% at 25 mph, and 5% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (5) Composite EFs for category 1/2 diesel engines for year 2004 (Starcrest 2006).
- (6) Units in lbs/acre-day from section 11.2.3 of AP-42 (EPA 1995). Emissions reduced by 75% from uncontrolled levels to represent compliance with SCAQMD Rule 403 Fugitive Dust.
- (7) CEQA Air Quality Handbook, Table C-A9-9-H (SCAQMD 1993). Units in lbs/1000 cubic feet (cf) of demolished building.
- (8) EPA (2006)

Table C-11. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Pipeline Removal

	Pounds per Day								
Activity/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
Remove 36" Oil Pipeline (No.3)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove 20" Water Pipeline (No.7)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove 20" Sewer Pipelines (No.8)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove 10" &16" Oil Pipelines (No.2)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove 30" Sewer Pipeline (No.9)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove Power Cables (No.11)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove 10" & 24" Oil Pipelines									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		
Remove 24" Water Pipeline (No.6)									
Main Hoist - Clamshell Dredge	5.02	21.42	68.56	1.90	2.08	2.08	1.91		
Main Generator - Clamshell Dredge	3.76	16.06	51.42	1.43	1.56	1.56	1.43		
Deck Generator - Clamshell Dredge	0.43	1.41	6.34	0.17	0.22	0.22	0.20		
Tug Boat	0.57	5.26	25.22	2.29	0.63	0.63	0.59		
Subtotal	9.78	44.16	151.55	5.79	4.49	4.49	4.14		

Table C-12. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Dredging/Material Disposal

Table C-12. Daily Ethissions for the POLA Charmer Deep				ounds per Da			
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Dredge Element D202 to Pier 400 SMSS							
Main Engine - Electric	-	-	-	-	-	-	-
Derrick Hoist - Hydraulic Dredge	0.68	2.20	9.87	0.27	0.35	0.35	0.32
Derrick Winch - Hydraulic Dredge	0.15	0.51	1.01	0.02	0.10	0.10	0.10
Anchor Barge Winch - Hydraulic Dredge	0.51	1.65	7.40	0.20	0.26	0.26	0.24
Generator - Hydraulic Dredge	0.69	3.20	10.21	0.33	0.37	0.37	0.34
Tug Boat - Hydraulic Dredge	2.24	20.77	99.47	9.02	2.49	2.49	2.34
Tug Boat - Hydraulic Dredge	1.85	17.10	81.92	7.43	2.05	2.05	1.92
Subtotal	6.11	45.43	209.88	17.27	5.62	5.62	5.25
Dredge Element 203/203A to Pier 300							
Main Engine - Electric	-	-	-	-	-	-	-
Derrick Hoist - Hydraulic Dredge	3.04	9.90	44.41	1.20	1.55	1.55	1.43
Derrick Winch - Hydraulic Dredge	2.69	9.11	18.27	0.44	1.86	1.86	1.71
Anchor Barge Winch - Hydraulic Dredge	2.28	7.42	33.31	0.90	1.16	1.16	1.07
Generator - Hydraulic Dredge	3.10	14.42	45.92	1.50	1.66	1.66	1.52
Tug Boat - Hydraulic Dredge	2.24	20.77	99.47	9.02	2.49	2.49	2.34
Tug Boat - Hydraulic Dredge	1.85	17.10	81.92	7.43	2.05	2.05	1.92
Dozer	4.94	23.00	73.26	2.39	2.64	2.64	2.43
Excavator	2.44	11.35	36.15	1.18	1.30	1.30	1.20
Water Truck	1.09	3.54	15.86	0.43	0.55	0.55	0.51
Subtotal	23.67	116.61	448.57	24.48	15.28	15.28	14.14
Pump Dredge Element 204 into D203A Pit							
Main Engine - Electric	-	-	-		-	-	-
Derrick Hoist - Hydraulic Dredge	3.04	9.90	44.41	1.20	1.55	1.55	1.43
Derrick Winch - Hydraulic Dredge	2.69	9.11	18.27	0.44	1.86	1.86	1.71
Anchor Barge Winch - Hydraulic Dredge	2.28	7.42	33.31	0.90	1.16	1.16	1.07
Generator - Hydraulic Dredge	3.10	14.42	45.92	1.50	1.66	1.66	1.52
Tug Boat - Hydraulic Dredge	2.24	20.77	99.47	9.02	2.49	2.49	2.34
Tug Boat - Hydraulic Dredge	1.85	17.10	81.92	7.43	2.05	2.05	1.92
Subtotal	15.20	78.72	323.30	20.48	10.78	10.78	10.00
Clamshell Dredging/Disposal to Pier 400 SMSS							
Main Hoist - Clamshell Dredge	7.53	32.13	102.84	2.86	3.12	3.12	2.87
Main Generator - Clamshell Dredge	5.64	24.10	77.13	2.14	2.34	2.34	2.15
Deck Generator - Clamshell Dredge	0.58	1.89	8.46	0.23	0.30	0.30	0.27
Tug Boat	0.85	7.90	37.83	3.43	0.95	0.95	0.89
Tugboat - Transport Sediment	3.52	32.58	156.04	14.14	3.91	3.91	3.66
Subtotal	18.12	98.58	382.30	22.80	10.61	10.61	9.84

Table C-13. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Wick Drain Installation

able 6 13. Bully Emissions for the Folly Granific Beepering Froject Constitution Fear View Brain installation									
Pounds per Day									
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5		
Under Surcharge - 13.5M Feet									
Wick Drain Rig - Excavator Mounted	2.28	10.62	33.82	1.10	1.22	1.22	1.12		
Subtotal	2.28	10.62	33.82	1.10	1.22	1.22	1.12		

Table C-14. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Move Surcharge from Area 2 to Are

Pi	ounds per Da	ny .					
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Move Surcharge							
Dozer	3.29	15.33	48.84	1.60	1.76	1.76	1.62
Excavator	3.25	15.13	48.20	1.57	1.74	1.74	1.60
Scraper	6.40	27.58	92.47	2.50	3.37	3.37	3.10
Water Truck	0.72	2.36	10.57	0.29	0.37	0.37	0.34
Subtotal	13.67	60.40	200.08	5.96	7.24	7.24	6.66

Table C-15 - Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Install Surcharge Gravel Drainage I

Table 6 15 Bally Ellissions for the FOER of	,		71171011711103	1001 2001	motun our	onargo orar	or Brainage
	Pounds per Da	'y					
Activity/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
Install Gravel							
Barge Equipment	2.36	7.66	34.37	0.93	1.20	1.20	1.11
Derrick Barge Crane	1.09	3.54	15.86	0.43	0.55	0.55	0.51
Tugboat - Derrick Barge Crane	1.07	9.87	47.28	4.29	1.18	1.18	1.11
Tugboat - Transport Gravel to Site	14.07	130.30	624.14	56.57	15.64	15.64	14.65
Dozer	3.29	15.33	48.84	1.60	1.76	1.76	1.62
Excavator	3.25	15.13	48.20	1.57	1.74	1.74	1.60
Scraper	6.40	27.58	92.47	2.50	3.37	3.37	3.10
Water Truck	0.72	2.36	10.57	0.29	0.37	0.37	0.34
Subtotal	32.25	211.77	921.74	68.17	25.82	25.82	24.04

Table C-16. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Dike Construction Rock Placement

F	Pounds per Da	ıy					
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Place Quarry Run							
Barge Equipment	2.36	7.66	34.37	0.93	1.20	1.20	1.11
Derrick Barge Crane	1.09	3.54	15.86	0.43	0.55	0.55	0.51
Tugboat - Derrick Barge Crane	1.07	9.87	47.28	4.29	1.18	1.18	1.11
Tugboat - Transport Gravel to Site	14.07	130.30	624.14	56.57	15.64	15.64	14.65
Subtotal	18.58	151.37	721.65	62.21	18.58	18.58	17.38
Place A-250							
Barge Equipment	2.36	7.66	34.37	0.93	1.20	1.20	1.11
Derrick Barge Crane	1.09	3.54	15.86	0.43	0.55	0.55	0.51
Tugboat - Derrick Barge Crane	1.07	9.87	47.28	4.29	1.18	1.18	1.11
Tugboat - Transport Gravel to Site	14.07	130.30	624.14	56.57	15.64	15.64	14.65
Subtotal	18.58	151.37	721.65	62.21	18.58	18.58	17.38
Place A-500							
Barge Equipment	2.36	7.66	34.37	0.93	1.20	1.20	1.11
Derrick Barge Crane	1.09	3.54	15.86	0.43	0.55	0.55	0.51
Tugboat - Derrick Barge Crane	1.07	9.87	47.28	4.29	1.18	1.18	1.11
Tugboat - Transport Gravel to Site	14.07	130.30	624.14	56.57	15.64	15.64	14.65
Subtotal	18.58	151.37	721.65	62.21	18.58	18.58	17.38

Table C-17. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Demolition Activities

	Pounds per Da	ıy					
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Demo Dry Docks							
Main Hoist - Clamshell Dredge	15.05	64.26	205.69	5.71	6.24	6.24	5.74
Main Generator - Clamshell Dredge	11.29	48.19	154.26	4.29	4.68	4.68	4.30
Deck Generator - Clamshell Dredge	1.16	3.77	16.92	0.46	0.59	0.59	0.54
Tug Boat	0.85	7.90	37.83	3.43	0.95	0.95	0.89
Excavator	3.25	15.13	48.20	1.57	1.74	1.74	1.60
Subtotal	31.60	139.25	462.89	15.46	14.19	14.19	13.07
Demo Berth 240-Y							
Dump Truck - 16 CY	0.59	2.75	8.75	0.29	0.32	0.32	0.29
Excavator	2.17	10.09	32.13	1.05	1.16	1.16	1.07
Water Truck	0.48	1.57	7.05	0.19	0.25	0.25	0.23
Subtotal	3.24	14.41	47.93	1.53	1.72	1.72	1.58
Remove Vessel Stephanie Ann							
Main Hoist - Clamshell Dredge	7.53	32.13	102.84	2.86	3.12	3.12	2.87
Main Generator - Clamshell Dredge	5.64	24.10	77.13	2.14	2.34	2.34	2.15
Deck Generator - Clamshell Dredge	0.58	1.89	8.46	0.23	0.30	0.30	0.27
Tug Boat	0.85	7.90	37.83	3.43	0.95	0.95	0.89
Subtotal	14.60	66.01	226.26	8.66	6.70	6.70	6.18

Table C-18. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Road Work

P	ounds per Da	iy					
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
GATX Access Road							
Dozer	1.10	5.11	16.28	0.53	0.59	0.59	0.54
Excavator	1.00	4.28	9.76	0.25	0.58	0.58	0.54
Paving Machine	0.81	2.62	11.75	0.32	0.41	0.41	0.38
Roller	1.03	4.42	10.09	0.26	0.60	0.60	0.56
Subtotal	3.94	16.43	47.89	1.36	2.19	2.19	2.01
CMB Road							
Dozer	1.10	5.11	16.28	0.53	0.59	0.59	0.54
Excavator	1.00	4.28	9.76	0.25	0.58	0.58	0.54
Roller	1.03	4.42	10.09	0.26	0.60	0.60	0.56
Subtotal	3.13	13.81	36.14	1.05	1.78	1.78	1.63

Table C-19 - Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Cap Area 1

P	Pounds per Da	y					
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Install Cap							
Dozer	6.86	31.95	101.75	3.32	3.67	3.67	3.38
Dump Truck - 16 CY	2.95	13.73	43.74	1.43	1.58	1.58	1.45
Excavator	2.71	12.61	40.16	1.31	1.45	1.45	1.33
Loader - 938G	2.51	10.72	24.47	0.63	1.46	1.46	1.35
Water Truck	0.60	1.96	8.81	0.24	0.31	0.31	0.28
Subtotal	15.63	70.98	218.93	6.94	8.47	8.47	7.79

Table C-20. Daily Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004

	Pounds per Da	ıy					
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Pipeline Removal							
Remove 36" Oil Pipeline (No.3)	10	44	152	6	4	4	4
Remove 20" Water Pipeline (No.7)	10	44	152	6	4	4	4
Remove 20" Sewer Pipelines (No.8)	10	44	152	6	4	4	4
Remove 10" &16" Oil Pipelines (No.2)	10	44	152	6	4	4	4
Remove 30" Sewer Pipeline (No.9)	10	44	152	6	4	4	4
Remove Power Cables (No.11)	10	44	152	6	4	4	4
Remove 10" & 24" Oil Pipelines	10	44	152	6	4	4	4
Remove 24" Water Pipeline (No.6)	10	44	152	6	4	4	4
Dredging/Material Disposal							
Dredge Element D202 to Pier 400 SMSS	6	45	210	17	6	6	5
Dredge Element 203/203A to Pier 300	24	117	449	24	15	15	14
Pump Dredge Element 204 into D203A Pit	15	79	323	20	11	11	10
Clamshell Dredging/Disposal to Pier 400 SMSS	18	99	382	23	11	11	10
Wick Drain Installation							
Under Surcharge - 13.5M Feet	2	11	34	1	1	1	1
Move Surcharge from Area 2 to Area 1							
Move Surcharge	14	60	200	6	7	7	7
Install Surcharge Gravel Drainage Blanket							
Install Gravel	32	212	922	68	26	26	24
Dike Construction Rock Placement							
Place Quarry Run	19	151	722	62	19	19	17
Place A-250	19	151	722	62	19	19	17
Place A-500	19	151	722	62	19	19	17
Demolition Activities							
Demo Dry Docks	32	139	463	15	14	14	13
Demo Berth 240-Y	3	14	48	2	2	2	2
Remove Vessel Stephanie Ann	15	66	226	9	7	7	6
Road Work							
GATX Access Road	4	16	48	1	2	2	2
CMB Road	3	14	36	1	2	2	2
Cap Area 1							
Install Cap	16	71	219	7	8	8	8
Total Daily Emissions	317	1,750	6,937	428	203	203	189
Peak Daily Emissions (1)	68	383	1,556	100	47	47	43
Notes: (1) Deak daily emissions would assur from the following of	the character and the	oc: (a) Domov	- 00II W-1 D		(b) Day day Ele		

Notes: (1) Peak daily emissions would occur from the follwing simultaneous activities: (a) Remove 20" Water Pipeline (No.7), (b) Dredge Element 203/203A to Pier 300, (c) Wick Drain Installation, and (d) Install Gravel.

Table C-21. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Pipeline Removal

Table C-21. Total Efficiency for the FOLA Challie	- Doopoiling Froject (Tons								
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5			
Remove 36" Oil Pipeline (No.3)										
Main Hoist - Clamshell Dredge	0.09	0.38	1.21	0.03	0.04	0.04	0.03			
Main Generator - Clamshell Dredge	0.07	0.28	0.91	0.03	0.03	0.03	0.03			
Deck Generator - Clamshell Dredge	0.01	0.02	0.11	0.00	0.00	0.00	0.00			
Tug Boat	0.01	0.09	0.44	0.04	0.01	0.01	0.01			
Subtotal	0.17	0.78	2.67	0.10	0.08	0.08	0.07			
Remove 20" Water Pipeline (No.7)				I						
Main Hoist - Clamshell Dredge	0.17	0.71	2.26	0.06	0.07	0.07	0.06			
Main Generator - Clamshell Dredge	0.12	0.53	1.70	0.05	0.05	0.05	0.05			
Deck Generator - Clamshell Dredge	0.01	0.05	0.21	0.01	0.01	0.01	0.01			
Tug Boat	0.02	0.17	0.83	0.08	0.02	0.02	0.02			
Subtotal	0.32	1.46	5.00	0.19	0.15	0.15	0.14			
Remove 20" Sewer Pipelines (No.8)										
Main Hoist - Clamshell Dredge	0.02	0.09	0.30	0.01	0.01	0.01	0.01			
Main Generator - Clamshell Dredge	0.02	0.07	0.23	0.01	0.01	0.01	0.01			
Deck Generator - Clamshell Dredge	0.00	0.01	0.03	0.00	0.00	0.00	0.00			
Tug Boat	0.00	0.02	0.11	0.01	0.00	0.00	0.00			
Subtotal	0.04	0.19	0.67	0.03	0.02	0.02	0.02			
Remove 10" &16" Oil Pipelines (No.2)										
Main Hoist - Clamshell Dredge	0.04	0.19	0.60	0.02	0.02	0.02	0.02			
Main Generator - Clamshell Dredge	0.03	0.14	0.45	0.01	0.01	0.01	0.01			
Deck Generator - Clamshell Dredge	0.00	0.01	0.06	0.00	0.00	0.00	0.00			
Tug Boat	0.01	0.05	0.22	0.02	0.01	0.01	0.01			
Subtotal	0.09	0.39	1.33	0.05	0.04	0.04	0.04			
Remove 30" Sewer Pipeline (No.9)										
Main Hoist - Clamshell Dredge	0.03	0.12	0.38	0.01	0.01	0.01	0.01			
Main Generator - Clamshell Dredge	0.02	0.09	0.28	0.01	0.01	0.01	0.01			
Deck Generator - Clamshell Dredge	0.00	0.01	0.03	0.00	0.00	0.00	0.00			
Tug Boat	0.00	0.03	0.14	0.01	0.00	0.00	0.00			
Subtotal	0.05	0.24	0.83	0.03	0.02	0.02	0.02			
Remove Power Cables (No.11)										
Main Hoist - Clamshell Dredge	0.01	0.05	0.15	0.00	0.00	0.00	0.00			
Main Generator - Clamshell Dredge	0.01	0.04	0.11	0.00	0.00	0.00	0.00			
Deck Generator - Clamshell Dredge	0.00	0.00	0.01	0.00	0.00	0.00	0.00			
Tug Boat	0.00	0.01	0.06	0.01	0.00	0.00	0.00			
Subtotal	0.02	0.10	0.33	0.01	0.01	0.01	0.01			
Remove 10" & 24" Oil Pipelines										
Main Hoist - Clamshell Dredge	0.04	0.19	0.60	0.02	0.02	0.02	0.02			
Main Generator - Clamshell Dredge	0.03	0.14	0.45	0.01	0.01	0.01	0.01			
Deck Generator - Clamshell Dredge	0.00	0.01	0.06	0.00	0.00	0.00	0.00			
Tug Boat	0.01	0.05	0.22	0.02	0.01	0.01	0.01			
Subtotal	0.09	0.39	1.33	0.05	0.04	0.04	0.04			
Remove 24" Water Pipeline (No.6)										
Main Hoist - Clamshell Dredge	0.17	0.71	2.26	0.06	0.07	0.07	0.06			
Main Generator - Clamshell Dredge	0.12	0.53	1.70	0.05	0.05	0.05	0.05			
Deck Generator - Clamshell Dredge	0.01	0.05	0.21	0.01	0.01	0.01	0.01			
Tug Boat	0.02	0.17	0.83	0.08	0.02	0.02	0.02			
Subtotal	0.32	1.46	5.00	0.19	0.15	0.15	0.14			

Table C-22. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Dredging/Material Disposal

Table C-22. Total Emissions for the FOLA Chamiler Deep				Tons			
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Dredge Element D202 to Pier 400 SMSS							
Main Engine - Electric	-	-	-	-	-	-	-
Derrick Hoist - Hydraulic Dredge	0.00	0.02	0.07	0.00	0.00	0.00	0.00
Derrick Winch - Hydraulic Dredge	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Anchor Barge Winch - Hydraulic Dredge	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Generator - Hydraulic Dredge	0.00	0.02	0.07	0.00	0.00	0.00	0.00
Tug Boat - Hydraulic Dredge	0.02	0.14	0.69	0.06	0.02	0.02	0.02
Tug Boat - Hydraulic Dredge	0.01	0.12	0.57	0.05	0.01	0.01	0.01
Subtotal	0.04	0.32	1.46	0.12	0.04	0.04	0.04
Dredge Element 203/203A to Pier 300							
Main Engine - Electric	-	-	-	-	-	-	-
Derrick Hoist - Hydraulic Dredge	0.11	0.36	1.63	0.04	0.06	0.06	0.05
Derrick Winch - Hydraulic Dredge	0.10	0.33	0.67	0.02	0.07	0.07	0.06
Anchor Barge Winch - Hydraulic Dredge	0.08	0.27	1.22	0.03	0.04	0.04	0.04
Generator - Hydraulic Dredge	0.11	0.53	1.69	0.06	0.06	0.06	0.06
Tug Boat - Hydraulic Dredge	0.08	0.76	3.65	0.33	0.09	0.09	0.09
Tug Boat - Hydraulic Dredge	0.07	0.63	3.01	0.27	0.08	0.08	0.07
Dozer	0.18	0.84	2.69	0.09	0.10	0.10	0.09
Excavator	0.09	0.42	1.33	0.04	0.05	0.05	0.04
Water Truck	0.04	0.13	0.58	0.02	0.02	0.02	0.02
Subtotal	0.87	4.28	16.48	0.90	0.56	0.56	0.52
Pump Dredge Element 204 into D203A Pit							
Main Engine - Electric	-	-	-	-	-	-	-
Derrick Hoist - Hydraulic Dredge	0.01	0.03	0.12	0.00	0.00	0.00	0.00
Derrick Winch - Hydraulic Dredge	0.01	0.02	0.05	0.00	0.00	0.00	0.00
Anchor Barge Winch - Hydraulic Dredge	0.01	0.02	0.09	0.00	0.00	0.00	0.00
Generator - Hydraulic Dredge	0.01	0.04	0.12	0.00	0.00	0.00	0.00
Tug Boat - Hydraulic Dredge	0.01	0.05	0.26	0.02	0.01	0.01	0.01
Tug Boat - Hydraulic Dredge	0.00	0.04	0.21	0.02	0.01	0.01	0.01
Subtotal	0.04	0.21	0.84	0.05	0.03	0.03	0.03
Clamshell Dredging/Disposal to Pier 400 SMSS							
Main Hoist - Clamshell Dredge	0.04	0.16	0.51	0.01	0.02	0.02	0.01
Main Generator - Clamshell Dredge	0.03	0.12	0.39	0.01	0.01	0.01	0.01
Deck Generator - Clamshell Dredge	0.00	0.01	0.04	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.04	0.19	0.02	0.00	0.00	0.00
Tugboat - Transport Sediment	0.02	0.16	0.78	0.07	0.02	0.02	0.02
Subtotal	0.09	0.49	1.91	0.11	0.05	0.05	0.05

Table C-23. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Wick Drain Installation

Tuble 0.23. Total Emissions for the LOCA Shame Deeper	illing i roject	OUII3H GCHO	II /ICII VIIIC3	1 Cui 2004	WICK DIGIT	motunation	
	Tons						
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Under Surcharge - 13.5M Feet							
Wick Drain Rig - Excavator Mounted	0.15	0.70	2.23	0.07	0.08	0.08	0.07
Subtotal	0.15	0.70	2.23	0.07	0.08	0.08	0.07

Table C-24. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Move Surcharge from Area 2 to Area

	Tons						
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Move Surcharge							
Dozer	0.04	0.20	0.64	0.02	0.02	0.02	0.02
Excavator	0.04	0.20	0.64	0.02	0.02	0.02	0.02
Scraper	0.08	0.36	1.22	0.03	0.04	0.04	0.04
Water Truck	0.01	0.03	0.14	0.00	0.00	0.00	0.00
Subtotal	0.18	0.80	2.64	0.08	0.10	0.10	0.09

Table C-25 - Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Install Surcharge Gravel Drainage B

	<u> </u>					3	
	Tons						
Activity/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Install Gravel							
Barge Equipment	0.03	0.09	0.41	0.01	0.01	0.01	0.01
Derrick Barge Crane	0.01	0.04	0.19	0.01	0.01	0.01	0.01
Tugboat - Derrick Barge Crane	0.01	0.12	0.57	0.05	0.01	0.01	0.01
Tugboat - Transport Gravel to Site	0.17	1.56	7.47	0.68	0.19	0.19	0.18
Dozer	0.14	0.67	2.15	0.07	0.08	0.08	0.07
Excavator	0.14	0.67	2.12	0.07	0.08	0.08	0.07
Scraper	0.28	1.21	4.07	0.11	0.15	0.15	0.14
Water Truck	0.03	0.10	0.47	0.01	0.02	0.02	0.01
Subtotal	0.82	4.47	17.44	1.01	0.54	0.54	0.50

Table C-26. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Dike Construction Rock Placement

	Tons						
Activity/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
Place Quarry Run							
Barge Equipment	0.03	0.11	0.48	0.01	0.02	0.02	0.02
Derrick Barge Crane	0.02	0.05	0.22	0.01	0.01	0.01	0.01
Tugboat - Derrick Barge Crane	0.01	0.14	0.66	0.06	0.02	0.02	0.02
Tugboat - Transport Gravel to Site	0.20	1.82	8.70	0.79	0.22	0.22	0.20
Subtotal	0.26	2.11	10.05	0.87	0.26	0.26	0.24
Place A-250							
Barge Equipment	0.00	0.01	0.06	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.02	0.08	0.01	0.00	0.00	0.00
Tugboat - Transport Gravel to Site	0.02	0.21	1.01	0.09	0.03	0.03	0.02
Subtotal	0.03	0.24	1.17	0.10	0.03	0.03	0.03
Place A-500							
Barge Equipment	0.01	0.03	0.15	0.00	0.01	0.01	0.00
Derrick Barge Crane	0.00	0.02	0.07	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.04	0.21	0.02	0.01	0.01	0.00
Tugboat - Transport Gravel to Site	0.06	0.59	2.80	0.25	0.07	0.07	0.07
Subtotal	0.08	0.68	3.24	0.28	0.08	0.08	0.08

Table C-27. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Demolition Activities

	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Demo Dry Docks							
Main Hoist - Clamshell Dredge	0.66	2.83	9.05	0.25	0.27	0.27	0.25
Main Generator - Clamshell Dredge	0.50	2.12	6.79	0.19	0.21	0.21	0.19
Deck Generator - Clamshell Dredge	0.05	0.17	0.74	0.02	0.03	0.03	0.02
Tug Boat	0.04	0.35	1.66	0.15	0.04	0.04	0.04
Excavator	0.14	0.67	2.12	0.07	0.08	0.08	0.07
Subtotal	1.39	6.13	20.37	0.68	0.62	0.62	0.58
Demo Berth 240-Y							
Dump Truck - 16 CY	0.01	0.03	0.10	0.00	0.00	0.00	0.00
Excavator	0.02	0.11	0.35	0.01	0.01	0.01	0.01
Water Truck	0.01	0.02	0.08	0.00	0.00	0.00	0.00
Subtotal	0.04	0.16	0.53	0.02	0.02	0.02	0.02
Remove Vessel Stephanie Ann							
Main Hoist - Clamshell Dredge	0.04	0.18	0.57	0.02	0.02	0.02	0.02
Main Generator - Clamshell Dredge	0.03	0.13	0.42	0.01	0.01	0.01	0.01
Deck Generator - Clamshell Dredge	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.04	0.21	0.02	0.01	0.01	0.00
Subtotal	0.08	0.36	1.24	0.05	0.04	0.04	0.03

Table C-28. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Road Work

	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
GATX Access Road							
Dozer	0.01	0.03	0.09	0.00	0.00	0.00	0.00
Excavator	0.01	0.02	0.05	0.00	0.00	0.00	0.00
Paving Machine	0.00	0.01	0.06	0.00	0.00	0.00	0.00
Roller	0.01	0.02	0.06	0.00	0.00	0.00	0.00
Subtotal	0.02	0.09	0.26	0.01	0.01	0.01	0.01
CMB Road							
Dozer	0.01	0.06	0.18	0.01	0.01	0.01	0.01
Excavator	0.01	0.05	0.11	0.00	0.01	0.01	0.01
Roller	0.01	0.05	0.11	0.00	0.01	0.01	0.01
Subtotal	0.03	0.15	0.40	0.01	0.02	0.02	0.02

Table C-29 - Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004 - Cap Area 1

•	3 -,						
	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Install Cap							
Dozer	0.60	2.81	8.95	0.29	0.32	0.32	0.30
Dump Truck - 16 CY	0.26	1.21	3.85	0.13	0.14	0.14	0.13
Excavator	0.24	1.11	3.53	0.12	0.13	0.13	0.12
Loader - 938G	0.22	0.94	2.15	0.06	0.13	0.13	0.12
Water Truck	0.05	0.17	0.78	0.02	0.03	0.03	0.02
Subtotal	1.38	6.25	19.27	0.61	0.75	0.75	0.69

Table C-30. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004

	Tons							
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
Pipeline Removal								
Remove 36" Oil Pipeline (No.3)	0.17	0.78	2.67	0.10	0.08	0.08	0.07	
Remove 20" Water Pipeline (No.7)	0.32	1.46	5.00	0.19	0.15	0.15	0.14	
Remove 20" Sewer Pipelines (No.8)	0.04	0.19	0.67	0.03	0.02	0.02	0.02	
Remove 10" &16" Oil Pipelines (No.2)	0.09	0.39	1.33	0.05	0.04	0.04	0.04	
Remove 30" Sewer Pipeline (No.9)	0.05	0.24	0.83	0.03	0.02	0.02	0.02	
Remove Power Cables (No.11)	0.02	0.10	0.33	0.01	0.01	0.01	0.01	
Remove 10" & 24" Oil Pipelines	0.09	0.39	1.33	0.05	0.04	0.04	0.04	
Remove 24" Water Pipeline (No.6)	0.32	1.46	5.00	0.19	0.15	0.15	0.14	
Dredging/Material Disposal								
Dredge Element D202 to Pier 400 SMSS	0.04	0.32	1.46	0.12	0.04	0.04	0.04	
Dredge Element 203/203A to Pier 300	0.87	4.28	16.48	0.90	0.56	0.56	0.52	
Pump Dredge Element 204 into D203A Pit	0.04	0.21	0.84	0.05	0.03	0.03	0.03	
Clamshell Dredging/Disposal to Pier 400 SMSS	0.09	0.49	1.91	0.11	0.05	0.05	0.05	
Wick Drain Installation								
Under Surcharge - 13.5M Feet	0.15	0.70	2.23	0.07	0.08	0.08	0.07	
Move Surcharge from Area 2 to Area 1								
Move Surcharge	0.18	0.80	2.64	0.08	0.10	0.10	0.09	
Install Surcharge Gravel Drainage Blanket								
Install Gravel	0.82	4.47	17.44	1.01	0.54	0.54	0.50	
Dike Construction Rock Placement								
Place Quarry Run	0.26	2.11	10.05	0.87	0.26	0.26	0.24	
Place A-250	0.03	0.24	1.17	0.10	0.03	0.03	0.03	
Place A-500	0.08	0.68	3.24	0.28	0.08	0.08	0.08	
Demolition Activities								
Demo Dry Docks	1.39	6.13	20.37	0.68	0.62	0.62	0.58	
Demo Berth 240-Y	0.04	0.16	0.53	0.02	0.02	0.02	0.02	
Remove Vessel Stephanie Ann	0.08	0.36	1.24	0.05	0.04	0.04	0.03	
Road Work								
GATX Access Road	0.02	0.09	0.26	0.01	0.01	0.01	0.01	
CMB Road	0.03	0.15	0.40	0.01	0.02	0.02	0.02	
Cap Area 1								
Install Cap	1.38	6.25	19.27	0.61	0.75	0.75	0.69	
Total Emissions	6.62	32.44	116.70	5.62	3.74	3.74	3.45	
Annual Average Daily Pounds per Day	36.25	177.74	639.45	30.80	20.48	20.48	18.92	

Table C-31. Total Emissions for the POLA Channel Deepening Project Construction Activities - Year 2004

	Tons						
Project Year/Activity	ROG	СО	NOx	SOx	PM	PM10	PM2.5
2004							
Pipeline Removal	1.11	5.00	17.17	0.66	0.51	0.51	0.47
Dredging/Material Disposal	1.04	5.30	20.69	1.19	0.68	0.68	0.63
Wick Drain Installation	0.15	0.70	2.23	0.07	0.08	0.08	0.07
Move Surcharge from Area 2 to Area 1	0.18	0.80	2.64	0.08	0.10	0.10	0.09
Install Surcharge Gravel Drainage Blanket	0.82	4.47	17.44	1.01	0.54	0.54	0.50
Dike Construction Rock Placement	0.37	3.03	14.46	1.25	0.37	0.37	0.35
Demolition Activities	1.51	6.65	22.14	0.74	0.68	0.68	0.63
Road Work	0.06	0.24	0.66	0.02	0.03	0.03	0.03
Cap Area 1	1.38	6.25	19.27	0.61	0.75	0.75	0.69
Total Emissions	6.62	32.44	116.70	5.62	3.74	3.74	3.45

Table C-32. GHG Emission Factors for the Channel Deepening Project - Year 2004

	Fuel	Emission Fa			
Project Year/Source Type	Туре	CO2	CH4	N2O	References
Year 2004					
Off-Road Equipment - 25-50 Hp	D	568	0.11	0.01	(1)
Off-Road Equipment - 51-120 Hp	D	568	0.10	0.01	(1)
Off-Road Equipment - 121-175 Hp	D	568	0.09	0.01	(1)
Off-Road Equipment - 176-250 Hp	D	568	0.09	0.01	(1)
Off-Road Equipment - 251-500 Hp	D	568	0.08	0.01	(1)
Off-Road Equipment - 501-750 Hp	D	568	0.08	0.01	(1)
Off-Road Equipment - >750 Hp	D	568	0.08	0.01	(1)
On-road Truck - Idle (Gms/Hr)	D	4,808	0.50	0.25	(2)
On-road Truck - 5 mph (Gms/Mi)	D	2,704	0.10	0.05	(2)
On-road Truck - 25 mph (Gms/Mi)	D	1,574	0.10	0.05	(2)
On-road Truck - 55 mph (Gms/Mi)	D	1,376	0.10	0.05	(2)
Dredge Materials Haul Truck - Composite (Gms/Mi)	D	1,687	0.10	0.05	(3)
Other On-Road Trucks - Composite (Gms/Mi)	D	1,482	0.10	0.05	(4)
All Years					
Tugboat (Gm/Hp-Hr)	D	481.34	0.07	0.005	(5)
Small Harbor Craft	D	481.34	0.07	0.00	(5)

Notes: (1) OFFROAD 2007 Emissions Model for CO2 factors (ARB 2006). CH4 and N2O factors calculated from the California Climate Action Registry (CCAR) General Reporting Protocol, Tables C.4 and C.5 (CCAR 2008).

- (2) EMFAC2007 for CO2 factor for project year 2004 (ARB 2006). CH4 and N2O factors obtained from the CCAR General Reporting Protocol, Table C.5 (CCAR 2008). The highest emission factor from all model year categories was conservatively selected.
- (3) Composite factors based on a round trip of 90% at 25 mph and 10% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (4) For on-road trucks other then dredge material haul trucks, composite factor based on a round trip of 75% at 55 mph, 20% at 25 mph, and 5% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (5) CO2 factor from Quantification of Ship Emissions, Table 2.8 (Entec 2002). CH4 and N2O factors calculated from the General Reporting Protocol, Table C.5 (CCAR 2008).

Table C-33. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Pipeline Removal

Tone				
CO2		N2O	CO2e	
002	C/14	1020	0026	
105.84	0.02	0.00	106.51	
			79.89	
			9.59	
			24.05	
			220.04	
210.00	0.00	0.00	220101	
198 45	0.03	0.00	199.71	
-		-	149.78	
			17.99	
+			45.09	
+ +			412.58	
400.00	0.00	0.00	412.00	
26.46	0.00	0.00	26.63	
-			19.97	
-			2.40	
-			6.01	
	-		55.01	
04.00	0.01	0.00	00.01	
52 92	0.01	0.00	53.26	
			39.94	
+ +			4.80	
			12.02	
			110.02	
100.00				
33.08	0.00	0.00	33.29	
	-		24.96	
-			3.00	
-			7.52	
+ +		-	68.76	
13.23	0.00	0.00	13.31	
9.92	0.00	0.00	9.99	
1.19	0.00	0.00	1.20	
	0.00	0.00	3.01	
27.33	0.00	0.00	27.51	
52.92	0.01	0.00	53.26	
39.69	0.01	0.00	39.94	
4.76	0.00	0.00	4.80	
11.95	0.00	0.00	12.02	
109.33	0.02	0.00	110.02	
198.45	0.03	0.00	199.71	
148.84	0.02	0.00	149.78	
17.86	0.00	0.00	17.99	
44.82	0.01	0.00	45.09	
	9.92 1.19 2.99 27.33 52.92 39.69 4.76 11.95 109.33	105.84 0.02 79.38 0.01 9.53 0.00 23.91 0.00 218.66 0.03 198.45 0.03 148.84 0.02 17.86 0.00 44.82 0.01 409.98 0.06 26.46 0.00 19.85 0.00 2.38 0.00 54.66 0.01 52.92 0.01 39.69 0.01 4.76 0.00 11.95 0.00 7.47 0.00 68.33 0.01 13.23 0.00 2.98 0.00 2.98 0.00 7.47 0.00 68.33 0.01 13.23 0.00 9.92 0.00 1.19 0.00 2.99 0.00 2.7.33 0.00 27.33 0.00 27.33 0.00 19.92 0.00 11.95 0.00 11.98.45 0.03 148.84 0.02 17.86 0.00	CO2	

Table C-34. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Dredging/Material Disposal

Table C-34. Total Grid Emissions for the FOLA Gridmen	Tons					
Activity/Equipment Type	CO2	CH4	N2O	CO2e		
Dredge Element D202 to Pier 400 SMSS						
Main Engine - Electric	-	-	-	-		
Derrick Hoist - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Derrick Winch - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Anchor Barge Winch - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Generator - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Tug Boat - Hydraulic Dredge	37.33	0.01	0.00	37.56		
Tug Boat - Hydraulic Dredge	30.75	0.00	0.00	30.93		
Subtotal	68.08	0.01	0.00	68.48		
Dredge Element 203/203A to Pier 300						
Main Engine - Electric	-	-	-	-		
Derrick Hoist - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Derrick Winch - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Anchor Barge Winch - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Generator - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Tug Boat - Hydraulic Dredge	196.79	0.03	0.00	197.96		
Tug Boat - Hydraulic Dredge	162.06	0.02	0.00	163.02		
Dozer	277.48	0.04	0.00	279.20		
Excavator	136.92	0.02	0.00	137.76		
Water Truck	49.70	0.01	0.00	50.05		
Subtotal	822.93	0.12	0.01	827.99		
Pump Dredge Element 204 into D203A Pit		•	•			
Main Engine - Electric	-	-	-	-		
Derrick Hoist - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Derrick Winch - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Anchor Barge Winch - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Generator - Hydraulic Dredge	0.00	0.00	0.00	0.00		
Tug Boat - Hydraulic Dredge	13.96	0.00	0.00	14.04		
Tug Boat - Hydraulic Dredge	11.49	0.00	0.00	11.56		
Subtotal	25.45	0.00	0.00	25.60		
Clamshell Dredging/Disposal to Pier 400 SMSS						
Main Hoist - Clamshell Dredge	45.10	0.01	0.00	45.39		
Main Generator - Clamshell Dredge	33.83	0.00	0.00	34.04		
Deck Generator - Clamshell Dredge	3.61	0.00	0.00	3.63		
Tug Boat	10.19	0.00	0.00	10.25		
Tugboat - Transport Sediment	42.02	0.01	0.00	42.27		
Subtotal	134.75	0.02	0.00	135.59		

Table C-35. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Wick Drain Installation

	Tons						
Activity/Equipment Type	CO2	CH4	N2O	CO2e			
Under Surcharge - 13.5M Feet							
Wick Drain Rig - Excavator Mounted	230.21	0.03	0.00	231.63			
Subtotal	230.21	0.03	0.00	231.63			

Table C-36. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Move Surcharge from Area 2 to Area 1

	Tons					
Activity/Equipment Type	CO2 CH4 N2O CC					
Move Surcharge						
Dozer	66.48	0.01	0.00	0.00		
Excavator	65.61	0.01	0.00	66.89		
Scraper	104.19	0.02	0.00	66.02		
Water Truck	11.91	0.00	0.00	104.85		
Subtotal	248.19	0.04	0.00	237.76		

Table C-37. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Install Surcharge Gravel Drainage Blanket

	Tons			
Activity/Equipment Type	CO2	CH4	N2O	CO2e
Install Gravel				
Barge Equipment	35.07	0.01	0.00	35.32
Derrick Barge Crane	16.19	0.00	0.00	16.30
Tugboat - Derrick Barge Crane	30.46	0.00	0.00	30.65
Tugboat - Transport Gravel to Site	402.13	0.06	0.00	404.52
Dozer	221.61	0.03	0.00	222.98
Excavator	218.70	0.03	0.00	220.05
Scraper	347.29	0.05	0.00	349.50
Water Truck	39.69	0.01	0.00	39.97
Subtotal	1,311.14	0.19	0.01	1,319.29

Table C-38. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Dike Construction Rock Placement

		Tons			
Activity/Equipment Type	CO2	CH4	N2O	CO2e	
Place Quarry Run					
Barge Equipment	40.84	0.01	0.00	41.13	
Derrick Barge Crane	18.85	0.00	0.00	18.98	
Tugboat - Derrick Barge Crane	35.48	0.00	0.00	35.69	
Tugboat - Transport Gravel to Site	468.34	0.06	0.00	471.13	
Subtotal	563.51	0.08	0.01	566.94	
Place A-250					
Barge Equipment	4.74	0.00	0.00	4.78	
Derrick Barge Crane	2.19	0.00	0.00	2.20	
Tugboat - Derrick Barge Crane	4.12	0.00	0.00	4.14	
Tugboat - Transport Gravel to Site	54.38	0.01	0.00	54.70	
Subtotal	65.43	0.01	0.00	65.83	
Place A-500					
Barge Equipment	13.17	0.00	0.00	13.26	
Derrick Barge Crane	6.08	0.00	0.00	6.12	
Tugboat - Derrick Barge Crane	11.44	0.00	0.00	11.51	
Tugboat - Transport Gravel to Site	151.01	0.02	0.00	151.91	
Subtotal	181.69	0.03	0.00	182.80	

Table C-39. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Demolition Activities

		Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Demo Dry Docks					
Main Hoist - Clamshell Dredge	793.82	0.12	0.01	798.85	
Main Generator - Clamshell Dredge	595.36	0.09	0.01	599.14	
Deck Generator - Clamshell Dredge	63.51	0.01	0.00	63.96	
Tug Boat	89.65	0.01	0.00	90.18	
Excavator	218.70	0.03	0.00	220.05	
Subtotal	1,761.03	0.26	0.02	1,772.18	
Demo Berth 240-Y					
Dump Truck - 16 CY	9.92	0.00	0.00	9.98	
Excavator	36.45	0.01	0.00	36.68	
Water Truck	6.62	0.00	0.00	6.66	
Subtotal	52.99	0.01	0.00	53.32	
Remove Vessel Stephanie Ann					
Main Hoist - Clamshell Dredge	49.61	0.01	0.00	49.93	
Main Generator - Clamshell Dredge	37.21	0.01	0.00	37.45	
Deck Generator - Clamshell Dredge	3.97	0.00	0.00	4.00	
Tug Boat	11.21	0.00	0.00	11.27	
Subtotal	102.00	0.01	0.00	102.64	

Table C-40. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Road Work

	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
GATX Access Road					
Dozer	9.23	0.00	0.00	9.29	
Excavator	4.40	0.00	0.00	4.43	
Paving Machine	5.51	0.00	0.00	5.55	
Roller	4.55	0.00	0.00	4.58	
Subtotal	23.69	0.00	0.00	23.85	
CMB Road					
Dozer	18.47	0.00	0.00	18.58	
Excavator	8.80	0.00	0.00	8.86	
Roller	9.10	0.00	0.00	9.16	
Subtotal	36.36	0.01	0.00	36.60	

Table C-41. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Cap Area 1

	Tons					
Location/Equipment Type	CO2	CH4	N2O	CO2e		
Install Cap						
Dozer	923.36	0.13	0.01	929.08		
Dump Truck - 16 CY	396.91	0.06	0.00	399.37		
Excavator	364.49	0.05	0.00	366.75		
Loader - 938G	176.40	0.03	0.00	177.66		
Water Truck	66.15	0.01	0.00	66.62		
Subtotal	1,927.32	0.28	0.02	1,939.47		

Table C-42. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004

	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
Pipeline Removal				
Remove 36" Oil Pipeline (No.3)	219	0.03	0.00	220
Remove 20" Water Pipeline (No.7)	410	0.06	0.00	413
Remove 20" Sewer Pipelines (No.8)	55	0.01	0.00	55
Remove 10" &16" Oil Pipelines (No.2)	109	0.02	0.00	110
Remove 30" Sewer Pipeline (No.9)	68	0.01	0.00	69
Remove Power Cables (No.11)	27	0.00	0.00	28
Remove 10" & 24" Oil Pipelines	109	0.02	0.00	110
Remove 24" Water Pipeline (No.6)	410	0.06	0.00	413
Dredging/Material Disposal		•	*	
Dredge Element D202 to Pier 400 SMSS	68	0.01	0.00	68
Dredge Element 203/203A to Pier 300	823	0.12	0.01	828
Pump Dredge Element 204 into D203A Pit	25	0.00	0.00	26
Clamshell Dredging/Disposal to Pier 400 SMSS	135	0.02	0.00	136
Wick Drain Installation				
Under Surcharge - 13.5M Feet	230	0.03	0.00	232
Move Surcharge from Area 2 to Area 1	·			
Move Surcharge	248	0.04	0.00	238
Install Surcharge Gravel Drainage Blanket				
Install Gravel	1,311	0.19	0.01	1,319
Dike Construction Rock Placement				
Place Quarry Run	564	0.08	0.01	567
Place A-250	65	0.01	0.00	66
Place A-500	182	0.03	0.00	183
Demolition Activities				
Demo Dry Docks	1,761	0.26	0.02	1,772
Demo Berth 240-Y	53	0.01	0.00	53
Remove Vessel Stephanie Ann	102	0.01	0.00	103
Road Work	·			
GATX Access Road	24	0.00	0.00	24
CMB Road	36	0.01	0.00	37
Cap Area 1				
Install Cap	1,927	0.28	0.02	1,939
Total GHG Emissions	8,962	1.30	0.09	9,006

Table C-43. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004

	Metric Tons				
Project Year/Activity	CO2	CH4	N2O	CO2e	
2004					
Pipeline Removal	1,280	0.19	0.01	1,288	
Dredging/Material Disposal	956	0.14	0.01	962	
Wick Drain Installation	209	0.03	0.00	211	
Move Surcharge from Area 2 to Area 1	226	0.03	0.00	216	
Install Surcharge Gravel Drainage Blanket	1,192	0.17	0.01	1,199	
Dike Construction Rock Placement	737	0.10	0.01	741	
Demolition Activities	1,742	0.26	0.02	1,753	
Road Work	55	0.01	0.00	55	
Cap Area 1	1,752	0.26	0.02	1,763	
Hydraulic Dredging - Electrical Generation	5,631	0.04	0.02	5,639	
Total GHG Emissions	13,778	1.23	0.11	13,827	

Table 43a - POLA Channel Deepening Project Construction Activities - Year 2004 - Electrical Demand

Electrical Demark								
	Power	Load	#	Hourly	Hours	Daily	Work	Total
Activity/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Dredge Element D202 to Pier 400 SMSS								
Electric - Hydraulic Dredge Main Engine	17,000	0.50	1	8,500	24	204,000	13.9	2,842,970
Derrick Hoist - Hydraulic Dredge	240	0.70	1	168	18	3,024		-
Derrick Winch - Hydraulic Dredge	87	0.70	1	61	18	1,096		-
Anchor Barge Winch - Hydraulic Dredge	180	0.70	1	126	18	2,268		-
Generator - Hydraulic Dredge	350	0.60	1	210	18	3,780		-
Tug Boat - Hydraulic Dredge	850	0.33	1	281	18	5,049		-
Tug Boat - Hydraulic Dredge	700	0.33	1	231	18	4,158		-
Dredge Element 203/203A to Pier 300								
Electric - Hydraulic Dredge Main Engine	17,000	0.50	1	8,500	24	204,000	73.5	14,985,298
Derrick Hoist - Hydraulic Dredge	240	0.70	1	168	18	3,024		-
Derrick Winch - Hydraulic Dredge	87	0.70	1	61	18	1,096		-
Anchor Barge Winch - Hydraulic Dredge	180	0.70	1	126	18	2,268		-
Generator - Hydraulic Dredge	350	0.60	1	210	18	3,780		-
Tug Boat - Hydraulic Dredge	850	0.33	1	281	18	5,049		-
Tug Boat - Hydraulic Dredge	700	0.33	1	231	18	4,158		-
Dozer	335	0.50	2	335	18	6,030		-
Excavator	290	0.57	1	165	18	2,975		-
Water Truck	240	0.25	1	60	18	1,080		-
Pump Dredge Element 204 into D203A Pit								
Electric - Hydraulic Dredge Main Engine	17,000	0.50	1	8,500	24	204,000	5.2	1,062,872
Derrick Hoist - Hydraulic Dredge	240	0.70	1	168	18	3,024		-
Derrick Winch - Hydraulic Dredge	87	0.70	1	61	18	1,096		-
Anchor Barge Winch - Hydraulic Dredge	180	0.70	1	126	18	2,268		-
Generator - Hydraulic Dredge	350	0.60	1	210	18	3,780		-
Tug Boat - Hydraulic Dredge	850	0.33	1	281	18	5,049		-
Tug Boat - Hydraulic Dredge	700	0.33	1	231	18	4,158		

Table C-43b. GHG Emission Factors for the Channel Deepening Project - Year 2004

	Fuel	Emission Fa			
Project Year/Source Type	Туре	CO2	CH4	N2O	References
Electrical Consumption - Electric Dredges		878.7	0.0067	0.0037	(9)

Notes: (9) CCAR General Reporting Protoco, Tables C.2 and C.3 (CCAR 2008).

Table C-43c. Total GHG Emissions for the POLA Channel Deepening Project - Year 2004 - Dredging/Material Disposal - Electrical Generation

	Tons			
Activity/Equipment Type	CO2	CH4	N2O	CO2e
Dredge Element D202 to Pier 400 SMSS				
Electric - Hydraulic Dredge Main Engine	932	0.01	0.00	933
Derrick Hoist - Hydraulic Dredge				
Derrick Winch - Hydraulic Dredge				
Anchor Barge Winch - Hydraulic Dredge				
Generator - Hydraulic Dredge				
Tug Boat - Hydraulic Dredge				
Tug Boat - Hydraulic Dredge				
Subtotal	932.13	0.01	0.00	933
Dredge Element 203/203A to Pier 300				
Electric - Hydraulic Dredge Main Engine	4,913	0.04	0.02	4,920
Derrick Hoist - Hydraulic Dredge				
Derrick Winch - Hydraulic Dredge				
Anchor Barge Winch - Hydraulic Dredge				
Generator - Hydraulic Dredge				
Tug Boat - Hydraulic Dredge				
Tug Boat - Hydraulic Dredge				
Dozer				
Excavator				
Water Truck				
Subtotal	4,913	0.04	0.02	4,920
Pump Dredge Element 204 into D203A Pit				
Electric - Hydraulic Dredge Main Engine	348	0.00	0.00	349
Derrick Hoist - Hydraulic Dredge				
Derrick Winch - Hydraulic Dredge				
Anchor Barge Winch - Hydraulic Dredge				
Generator - Hydraulic Dredge				
Tug Boat - Hydraulic Dredge				
Tug Boat - Hydraulic Dredge				
Subtotal	348	0.00	0.00	349

Table C-43d. Total GHG Emissions for the POLA Channel Deepening Project Year 2004 - Electrical Generation

Year 2004 - Electrical Generation		Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Pipeline Removal			<u> </u>		
Remove 36" Oil Pipeline (No.3)					
Remove 20" Water Pipeline (No.7)					
Remove 20" Sewer Pipelines (No.8)					
Remove 10" &16" Oil Pipelines (No.2)					
Remove 30" Sewer Pipeline (No.9)					
Remove Power Cables (No.11)					
Remove 10" & 24" Oil Pipelines					
Remove 24" Water Pipeline (No.6)					
Dredging/Material Disposal					
Dredge Element D202 to Pier 400 SMSS	932	0.01	0.00	933	
Dredge Element 203/203A to Pier 300	4,913	0.04	0.02	4,920	
Pump Dredge Element 204 into D203A Pit	348	0.00	0.00	349	
Clamshell Dredging/Disposal to Pier 400 SMSS					
Wick Drain Installation					
Under Surcharge - 13.5M Feet					
Move Surcharge from Area 2 to Area 1					
Move Surcharge					
Install Surcharge Gravel Drainage Blanket					
Install Gravel					
Dike Construction Rock Placement			·		
Place Quarry Run					
Place A-250					
Place A-500					
Demolition Activities					
Demo Dry Docks					
Demo Berth 240-Y					
Remove Vessel Stephanie Ann					
Road Work					
GATX Access Road					
CMB Road					
Cap Area 1					
Install Cap					
Total GHG Emissions	6,194	0.05	0.03	6,203	

ALTERNATIVE 1 UNMITIGATED EMISSIONS DATA

- Table C-44. Construction Activities for the POLA Channel Deepening Proposed Project Demolition
- Table C-45. Construction Activities for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-46. Construction Activities for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-47. Construction Activities for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-48. Construction Activities for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-49. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-50. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-51. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-52. Unmitigated Air Emission Factors for the Channel Deepening Project Alternatives Construction Activities.
- Table C-53. Daily Unmitigated Emissions for the POLA Channel Deepening Proposed Project Demolition
- Table C-54. Daily Unmitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-55. Daily Unmitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-56. Daily Unmitigated Emissions for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-57. Daily Unmitigated Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-58. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-59. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-60. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-61. Peak Daily Unmitigated Emissions for the POLA Channel Deepening Proposed Project
- Table C-62. Total Unmitigated Emissions for the POLA Channel Deepening Proposed Project Demolition
- Table C-63. Total Unmitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-64. Total Unmitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-65. Total Unmitigated Emissions for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-66. Total Unmitigated Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-67. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-68. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-69. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-70. Total Unmitigated Emissions for the POLA Channel Deepening Proposed Project
- Table C-71. Yearly Unmitigated Emissions for the POLA Channel Deepening Proposed Project
- Table C-72. Total GHG Emissions for the POLA Channel Deepening Proposed Project Demolition
- Table C-73. Total GHG Emissions for the POLA Channel Deepening Proposed Project Dike

- Construction Quarry Run Placement
- Table C-74. Total GHG Emissions for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-75. Total GHG Emissions for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-76. Total GHG Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-77. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-78. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-79. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-80. Total Direct GHG Emissions for the POLA Channel Deepening Proposed Project
- Table C-81. Yearly GHG Emissions for the POLA Channel Deepening Proposed Project Alternative 1.
- Table 82. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material Electrical Demand
- Table 83. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material GHG Emissions from Electrical Generation
- Table 84. Total GHG Emissions for the POLA Channel Deepening Proposed Project Due to Electrical Generation
- Table 85. POLA Channel Deepening Proposed Project Annual GHG Emissions due to Electrical Generation
- Table C-86. Construction Activities for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-87. Construction Activities for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-88. Construction Activities for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-89. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-90. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-91. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.

	A	В	С	D	E	F	G	Н	ı
1	Table C-44. Construction Activities for the POLA								
2		Power	Load	#	Hourly	Hours	Daily	Work	Total
	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
	NW Slip Sliver - Wharf	, , , , , , , , , , , , , , , , , , ,				,			
5	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	35.0	252,000
6	Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	35.0	189,000
7	Deck Generator - Clamshell Dredge	240	0.60	1	144	4	576	35.0	20,160
8	Backhoe	80	0.50	3	120	12	1,440	35.0	50,400
9	Front End Loader	80	0.50	2	80	16	1,280	35.0	44,800
10	Haul Truck (1)	NA	NA	12	NA	10	120	35.0	4,200
11	Tug Boat	800	0.20	1	160	12	1,920	35.0	67,200
12	Berths 243-245		J.					1	*
13	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	77.0	554,400
14	Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	77.0	415,800
15	Deck Generator - Clamshell Dredge	240	0.60	1	144	4	576	77.0	44,352
16	Backhoe	80	0.50	3	120	12	1,440	77.0	110,880
17	Front End Loader	80	0.50	2	80	16	1,280	77.0	98,560
18	Haul Truck (1)	NA	NA	12	NA	5	60	77.0	4,620
		000	0.20	- 1	160	12	1,920	77.0	147,840
21	Tug Boat Notes: (1) Number Active = miles/roundtrip, Hours/Day = c	800 daily truck trips, Da	0.20 aily Hp-Hrs	1 = daily mile				77.0	147,040
20 21 22 23 24	Notes: (1) Number Active = miles/roundtrip, Hours/Day = of Table C-45. Construction Activities for the POLA	daily truck trips, Da	aily Hp-Hrs	= daily mile	es, and Total F			77.0	147,040
20 21 22 23 24 25	Notes: (1) Number Active = miles/roundtrip, Hours/Day = o	daily truck trips, Da	ening Prop	e daily mile	es, and Total F	Hp-Hrs = total	miles.	•	·
20 21 22 23 24 25 26	Notes: (1) Number Active = miles/roundtrip, Hours/Day = of Table C-45. Construction Activities for the POLA Construction Quarry Run Placement	daily truck trips, Da Channel Deepe	ening Prop	= daily mile	es, and Total F Dject - Dike	Hp-Hrs = total Hours	miles.	Work	Total
20 21 22 23 24 25 26 27	Notes: (1) Number Active = miles/roundtrip, Hours/Day = of Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type	daily truck trips, Da	ening Prop	e daily mile	es, and Total F	Hp-Hrs = total	miles.	•	·
20 21 22 23 24 25 26 27 28	Notes: (1) Number Active = miles/roundtrip, Hours/Day = of Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver	daily truck trips, Da Channel Deeper Power Rating (Hp)	ening Prop Load Factor	e daily mile	es, and Total F oject - Dike Hourly Hp-Hrs	Hp-Hrs = total Hours Per Day	Daily Hp-Hrs	Work Days	Total Hp-Hrs
20 21 22 23 24 25 26 27 28 29	Notes: (1) Number Active = miles/roundtrip, Hours/Day = of Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment	Channel Deeper Power Rating (Hp) 195	ening Prop Load Factor	e daily mile	es, and Total F oject - Dike Hourly Hp-Hrs	Hp-Hrs = total Hours Per Day	Daily Hp-Hrs	Work Days	Total Hp-Hrs 306,972
20 21 22 23 24 25 26 27 28 29 30	Notes: (1) Number Active = miles/roundtrip, Hours/Day = of Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane	Channel Deeper Power Rating (Hp) 195	ening Prop Load Factor	e daily mile posed Pro # Active	oject - Dike Hourly Hp-Hrs 195 90	Hours Per Day	Daily Hp-Hrs	Work Days 131.2 131.2	Total Hp-Hrs 306,972 141,679
20 21 22 23 24 25 26 27 28 29 30 31	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane	Channel Deeper Power Rating (Hp) 195 180 800	ening Prop Load Factor 0.50 0.50 0.25	e daily mile posed Pro # Active 2 1 1	oject - Dike Hourly Hp-Hrs 195 90 200	Hours Per Day	Daily Hp-Hrs 2,340 1,080 2,400	Work Days 131.2 131.2 131.2	Total Hp-Hrs 306,972 141,679 314,843
20 21 22 23 24 25 26 27 28 29 30 31 32	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site	Channel Deeper Power Rating (Hp) 195	ening Prop Load Factor	e daily mile posed Pro # Active	oject - Dike Hourly Hp-Hrs 195 90	Hours Per Day	Daily Hp-Hrs	Work Days 131.2 131.2	Total Hp-Hrs 306,972 141,679
20 21 22 23 24 25 26 27 28 29 30 31 32 33	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site Berths 243-245	Channel Deeper Power Rating (Hp) 195 180 800 2,200	Load Factor 0.50 0.50 0.25 0.50	e daily mile coosed Pro # Active 2 1 1 2	pject - Dike Hourly Hp-Hrs 195 90 200 2,200	Hours Per Day	Daily Hp-Hrs 2,340 1,080 2,400 26,400	Work Days 131.2 131.2 131.2 131.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Darrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site Berths 243-245 Barge Equipment	Channel Deepe Power Rating (Hp) 195 180 800 2,200	Load Factor 0.50 0.50 0.50 0.50	## Active	pject - Dike Hourly Hp-Hrs 195 90 200 2,200	Hours Per Day 12 12 12 12 12	Daily Hp-Hrs 2,340 1,080 2,400 26,400	Work Days 131.2 131.2 131.2 131.2 101.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site Berths 243-245 Barge Equipment Derrick Barge Crane	Channel Deeper Power Rating (Hp) 195 180 800 2,200 195 180	Load Factor 0.50 0.50 0.50 0.50 0.50	a daily mile possed Pro # Active 2 1 1 2 2 1	Dject - Dike Hourly Hp-Hrs 195 90 2,200 195 90	Hours Per Day 12 12 12 12 12 12 12 12	Daily Hp-Hrs 2,340 1,080 2,400 26,400 2,340 1,080	Work Days 131.2 131.2 131.2 131.2 101.2 101.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807 109,295
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA	Channel Deepe Power Rating (Hp) 195 180 800 2,200	Load Factor 0.50 0.50 0.50 0.50	## Active	Dject - Dike Hourly Hp-Hrs 195 90 200 2,200 195 90 200	Hours Per Day 12 12 12 12 12	Daily Hp-Hrs 2,340 1,080 2,400 26,400 2,340 1,080 2,400	Work Days 131.2 131.2 131.2 131.2 101.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807 109,295 242,879
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site Berths 243-245 Barge Equipment Derrick Barge Crane	Channel Deepe Power Rating (Hp) 195 180 800 195 180 800	Load Factor 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	a daily mile coosed Pro # Active 2 1 1 2 2 1 1 1 1	Dject - Dike Hourly Hp-Hrs 195 90 2,200 195 90	Hours Per Day 12 12 12 12 12 12 12 12 12 12	Daily Hp-Hrs 2,340 1,080 2,400 26,400 2,340 1,080	Work Days 131.2 131.2 131.2 131.2 101.2 101.2 101.2 101.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807 109,295
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA	Channel Deepe Power Rating (Hp) 195 180 800 195 180 800	Load Factor 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	a daily mile coosed Pro # Active 2 1 1 2 1 1 2	Dject - Dike Hourly Hp-Hrs 195 90 200 2,200 195 90 200 2,200	Hours Per Day 12 12 12 12 12 12 12 12 12 12	Daily Hp-Hrs 2,340 1,080 2,400 26,400 2,340 1,080 2,400 24,200	Work Days 131.2 131.2 131.2 131.2 131.2 101.2 101.2 101.2 101.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807 109,295 242,879 2,449,025
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site Cabrillo SWH Barge Equipment	Channel Deeper Power Rating (Hp) 195 180 800 2,200 195 180 800 2,200	Load Factor 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	a daily mile coosed Pro # Active 2 1 1 2 2 1 1 1 1	Dject - Dike Hourly Hp-Hrs 195 90 200 2,200 195 90 200	Hours Per Day 12 12 12 12 12 12 12 11	Daily Hp-Hrs 2,340 1,080 2,400 26,400 2,340 1,080 2,400	Work Days 131.2 131.2 131.2 131.2 101.2 101.2 101.2 101.2	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807 109,295 242,879
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Notes: (1) Number Active = miles/roundtrip, Hours/Day = c Table C-45. Construction Activities for the POLA	Channel Deeper Power Rating (Hp) 195 180 800 2,200 195 180 800 2,200	Load Factor 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	a daily mile coosed Pro # Active 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2	Dject - Dike Hourly Hp-Hrs 195 90 200 2,200 195 90 2,200 195 195	Hours Per Day 12 12 12 12 12 12 12 12 12 12 12 12 12	Daily Hp-Hrs 2,340 1,080 2,400 26,400 2,340 1,080 2,400 24,200	Work Days 131.2 131.2 131.2 131.2 131.2 101.2 101.2 101.2 101.2 206.1	Total Hp-Hrs 306,972 141,679 314,843 3,463,268 236,807 109,295 242,879 2,449,025

A	В	С	D	Е	F	G	Н	
51 Table C-46. Construction Activities for the PC		ening Pro	posed Pro	oject - Dike				
52 Construction Armor Stone Placem								
53	Power	Load	#	Hourly	Hours	Daily	Work	Total
54 Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
55 NW Slip Sliver								
56 Barge Equipment	195	0.50	2	195	12	2,340	12.5	29,250
57 Derrick Barge Crane	180	0.50	1	90	12	1,080	12.5	13,500
58 Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	12.5	30,000
59 Tugboat - Transport Armor Stone to Site	2,200	0.50	2	2,200	12	26,400	12.5	330,000
60 Berths 243-245								
61 Barge Equipment	195	0.50	2	195	12	2,340	10.0	23,400
62 Derrick Barge Crane	180	0.50	1	90	12	1,080	10.0	10,800
63 Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	10.0	24,000
64 Tugboat - Transport Armor Stone to Site	2,200	0.50	2	2,200	11	24,200	10.0	242,000
65 Eelgrass						•		
66 Barge Equipment	195	0.50			12			-
67 Derrick Barge Crane	180	0.50			12			-
Of Domor parke crane		0.00			12			-
68 Tugboat - Derrick Barge Crane	800	0.25			12	-		
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71	800 2,200	0.25			10.5	-		-
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the PC	2,200	0.50	posed Pro	oject -				-
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Po	2,200	0.50	posed Pro			-	Work	- Total
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Ports 75 76 Trench Excavation	2,200 OLA Channel Deep	0.50 ening Pro		Hourly	10.5 Hours	- Daily	-	Total
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the PO 75 76 Location/Equipment Type	2,200 OLA Channel Deep	0.50	#		10.5	-	Work Days	
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Ports 75 Trench Excavation 76 Location/Equipment Type 77 NW Slip Sliver	2,200 OLA Channel Deep	0.50 ening Pro	#	Hourly	10.5 Hours	- Daily	-	Total Hp-Hrs
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge	2,200 OLA Channel Deep Power Rating (Hp)	0.50 ening Pro Load Factor	# Active	Hourly Hp-Hrs	Hours Per Day	Daily Hp-Hrs	Days	Total
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge	2,200 OLA Channel Deep Power Rating (Hp) 1,200	0.50 ening Pro Load Factor	# Active	Hourly Hp-Hrs	Hours Per Day	Daily Hp-Hrs	<i>Days</i> 7.1	<i>Total Hp-Hrs</i> 102,857
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 79 Main Generator - Clamshell Dredge 80 Deck Generator - Clamshell Dredge	2,200 OLA Channel Deep Power Rating (Hp) 1,200 900	0.50 ening Pro Load Factor 0.50 0.50	# Active 1	Hourly Hp-Hrs	Hours Per Day	Daily Hp-Hrs 14,400 10,800	7.1 7.1	Total Hp-Hrs 102,857 77,143 5,143
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Ports 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 79 Main Generator - Clamshell Dredge	2,200 OLA Channel Deep Power Rating (Hp) 1,200 900 240	0.50 ening Pro Load Factor 0.50 0.50 0.60	# Active 1 1 1	Hourly Hp-Hrs 600 450 144	Hours Per Day 24 24 5	Daily Hp-Hrs 14,400 10,800 720	7.1 7.1 7.1	Total Hp-Hrs 102,857 77,143
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 79 Main Generator - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245	2,200 OLA Channel Deep Power Rating (Hp) 1,200 900 240	0.50 ening Pro Load Factor 0.50 0.50 0.60	# Active 1 1 1	Hourly Hp-Hrs 600 450 144	Hours Per Day 24 24 5	Daily Hp-Hrs 14,400 10,800 720	7.1 7.1 7.1	Total Hp-Hrs 102,857 77,143 5,143
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 6 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 79 Main Generator - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245	2,200 OLA Channel Deep Power Rating (Hp) 1,200 900 240 800	0.50 Load Factor 0.50 0.50 0.60 0.20	# Active 1 1 1 1	Hourly Hp-Hrs 600 450 144 160	Hours Per Day 24 24 5 4	Daily Hp-Hrs 14,400 10,800 720 640	7.1 7.1 7.1 7.1 7.1	Total Hp-Hrs 102,857 77,143 5,143 4,571
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 6 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245 83 Main Hoist - Clamshell Dredge	2,200 OLA Channel Deeper Rating (Hp) 1,200 900 240 800 1,200	0.50 Load Factor 0.50 0.50 0.60 0.20	# Active 1 1 1 1 1 1	Hourly Hp-Hrs 600 450 144 160	10.5 Hours Per Day 24 24 5 4	Daily Hp-Hrs 14,400 10,800 720 640	7.1 7.1 7.1 7.1 7.1	Total Hp-Hrs 102,857 77,143 5,143 4,571 185,143
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245 83 Main Hoist - Clamshell Dredge 84 Main Generator - Clamshell Dredge	2,200 DLA Channel Deeper	0.50 Load Factor 0.50 0.50 0.60 0.20 0.50 0.50	# Active 1 1 1 1 1 1 1	Hourly Hp-Hrs 600 450 144 160 600 450	10.5 Hours Per Day 24 24 5 4	Daily Hp-Hrs 14,400 10,800 720 640 14,400 10,800	7.1 7.1 7.1 7.1 7.1 12.9 12.9	Total Hp-Hrs 102,857 77,143 5,143 4,571 185,143 138,857
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 6 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 79 Main Generator - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245 83 Main Hoist - Clamshell Dredge 84 Main Generator - Clamshell Dredge 85 Deck Generator - Clamshell Dredge	2,200 DLA Channel Deeper Power Rating (Hp) 1,200 900 240 800 1,200 900 240 240	0.50 ening Pro Load Factor 0.50 0.50 0.60 0.20 0.50 0.60 0.60	# Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hourly Hp-Hrs 600 450 144 160 600 450 144	10.5 Hours Per Day 24 24 5 4 24 24 5 5	Daily Hp-Hrs 14,400 10,800 720 640 14,400 10,800 720	7.1 7.1 7.1 7.1 7.1 12.9 12.9	Total Hp-Hrs 102,857 77,143 5,143 4,571 185,143 138,857 9,257
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 6 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245 83 Main Hoist - Clamshell Dredge 84 Main Generator - Clamshell Dredge 85 Deck Generator - Clamshell Dredge 86 Tug Boat	2,200 DLA Channel Deeper Power Rating (Hp) 1,200 900 240 800 1,200 900 240 240	0.50 ening Pro Load Factor 0.50 0.50 0.60 0.20 0.50 0.60 0.60	# Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hourly Hp-Hrs 600 450 144 160 600 450 144	10.5 Hours Per Day 24 24 5 4 24 24 5 5	Daily Hp-Hrs 14,400 10,800 720 640 14,400 10,800 720	7.1 7.1 7.1 7.1 7.1 12.9 12.9	Total Hp-Hrs 102,857 77,143 5,143 4,571 185,143 138,857 9,257
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Portage 75 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245 83 Main Hoist - Clamshell Dredge 84 Main Generator - Clamshell Dredge 85 Deck Generator - Clamshell Dredge 86 Tug Boat 87 Cabrillo SWH	2,200 Power Rating (Hp) 1,200 900 240 800 1,200 900 240 800	0.50 Load Factor 0.50 0.50 0.60 0.20 0.50 0.50 0.50 0.50 0.50	# Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hourly Hp-Hrs 600 450 144 160 600 450 144 160	10.5 Hours Per Day 24 24 5 4 24 24 5 4	Daily Hp-Hrs 14,400 10,800 720 640 14,400 10,800 720 640	7.1 7.1 7.1 7.1 7.1 7.1 12.9 12.9 12.9 12.9	Total Hp-Hrs 102,857 77,143 5,143 4,571 185,143 138,857 9,257 8,229
68 Tugboat - Derrick Barge Crane 69 Tugboat - Transport Armor Stone to Site 70 71 72 73 Table C-47. Construction Activities for the Port Trench Excavation 75 76 Location/Equipment Type 77 NW Slip Sliver 78 Main Hoist - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Berths 243-245 83 Main Hoist - Clamshell Dredge 84 Main Generator - Clamshell Dredge 85 Deck Generator - Clamshell Dredge 86 Main Generator - Clamshell Dredge 87 Main Generator - Clamshell Dredge 88 Deck Generator - Clamshell Dredge 89 Deck Generator - Clamshell Dredge 80 Deck Generator - Clamshell Dredge 81 Tug Boat 82 Gabrillo SWH 83 Main Hoist - Clamshell Dredge	2,200 DLA Channel Deeper Power Rating (Hp) 1,200 900 240 800 1,200 900 240 800 1,200	0.50 Load Factor 0.50 0.50 0.60 0.20 0.50 0.50 0.50 0.50 0.50 0.50 0.	# Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hourly Hp-Hrs 600 450 144 160 600 450 144 160 600 600	10.5 Hours Per Day 24 24 5 4 24 24 5 4 24 24 24 24 24 24 24 24 24 24 24 24 2	Daily Hp-Hrs 14,400 10,800 720 640 14,400 10,800 720 640	7.1 7.1 7.1 7.1 7.1 12.9 12.9 12.9 12.9 12.9	Total Hp-Hrs 102,857 77,143 5,143 4,571 185,143 138,857 9,257 8,229

	A	В	С	D	Е	F	G	Н	I
95	Table C-48. Construction Activities for the POLA	Channel Deepe	ening Pro	posed Pro	oject -				
96	Surcharge Removal	•							
97		Power	Load	#	Hourly	Hours	Daily	Work	Total
98	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
99	SW Slip A#1 Surcharge Removal - Loading		•						
100	Scraper	225	0.40	5	450	12	5,400	116.5	629,100
101	Backhoe	80	0.50	2	80	12	960	116.5	111,840
102	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	116.5	838,800
103	Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	116.5	629,100
104	Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720	116.5	83,880
105	Dozer	335	0.50	2	335	12	4,020	116.5	468,330
106	Off-Road Truck	350	0.25	4	350	12	4,200	116.5	489,300
107	Water Truck	325	0.50	1	163	12	1,950	116.5	227,175
108	Grader	180	0.50	1	90	8	720	116.5	83,880
109	SW Slip A#1 Surcharge Removal - Transport								
110	Scows	N/A	N/A	2	N/A	12	N/A	116.5	N/A
	Tug Boat	800	0.20	1	160	4	640	116.5	74,560
112	SW Slip A#1 Surcharge Removal - Unload NW Slip								
	Main Hoist - Clamshell Dredge	1,200	0.50	1		16			-
114	Main Generator - Clamshell Dredge	900	0.50	1		16			-
	Deck Generator - Clamshell Dredge	240	0.60	1		5	-		-
116	Electric Conveyor	N/A	N/A	1		16	N/A		N/A
	Dozer	335	0.50	1		16	-		-
	SW Slip A#1 Surcharge Removal - Unload CSWH								
	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	16	9,600	116.5	1,118,400
	Main Generator - Clamshell Dredge	900	0.50	1	450	16	7,200	116.5	838,800
	Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720	116.5	83,880
	Scows	N/A	N/A	2	N/A	12	N/A	116.5	N/A
	SW Slip A#1 Surcharge Removal - Transport/Unlo								
	Main Hoist - Clamshell Dredge	1,200	0.50			16	-		-
125	Main Generator - Clamshell Dredge	900	0.50			16	-		-
126	Deck Generator - Clamshell Dredge	240	0.60			5	-		-
	Electric Conveyor	N/A	N/A			16	N/A		N/A
	Dozer	335	0.5			16	-		-
	Tug Boat (1)	2,200	0.6			4.0	-		-
	Notes: (1) = 7,000/525,000 daily/total cy dry. Barge capacit	y = 2,333 cy. 1-w	ay distance	= 10 nm, s	speed = 5 knot	ts, each round	d trip would tak	e 4 hours.	
131									
	Table C-49. Construction Activities for the POLA	Channel Deepe	ening Pro	posed Pro	oject -				
133	Dredging of Contaminated Material.								
134		Power	Load	#	Hourly	Hours	Daily	Work	Total
	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
	Contaminated Dredge								
137	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	29.8	214,211
138	Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	29.8	160,658
139	Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432	29.8	12,853
140	Scows	N/A	N/A	1	N/A	12	N/A	29.8	N/A
	Tug Boat	800	0.20	1	160	4	640	29.8	19,041
141	3								
141 142 143	Electric Pump Skiff	N/A 125	N/A 0.20	1	N/A 25	12 2	N/A 50	29.8 29.8	N/A 1,488

147 148	A	В	С	D	Е	F	G	Н	
	Table C-50. Construction Activities for the POLA								
1140	Dredging of Fine Grain Material		5		•				
149	3 3	Power	Load	#	Hourly	Hours	Daily	Work	Total
	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
	Clamshell Dredging - Fine Grain Material CSWH	· · · · · · · · · · · · · · · · · · ·				/		/-	
	Main Hoist - Clamshell Dredge	1,200	0.50	1		24	-	45.3	-
153	Ÿ	900	0.50	1		24	-	45.3	-
	Deck Generator - Clamshell Dredge	240	0.6	1		5	-	45.3	-
	Reel Barge	N/A	N/A	N/A		N/A	N/A	45.3	N/A
	Survey Boat	250	0.2	1		5	-	45.3	-
	Crew Boat	125	0.2	1		5	_	45.3	-
	Scows	N/A	N/A	2		24	N/A	45.3	N/A
	Tug Boat	800	0.2	1		8	-	45.3	-
	Electric Pump	N/A	N/A	1		24	N/A	45.3	N/A
	Hydraulic Dredging - Fine Grain Material CSWH	14// (14/71			21	14// (10.0	14// (
	Main Engine - Electric	N/A	N/A	1	N/A	24	N/A	43.8	N/A
	Derrick Hoist	240	0.7	1	168	4	672	43.8	29,443
	Derrick Winch	87	0.7	1	61	1	61	43.8	2,668
	Anchor Barge Winch	180	0.7	1	126	4	504	43.8	22,082
	Generator	350	0.7	1	210	4	840	43.8	36,804
	Survey Boat	250	0.0	1	50	5	250	43.8	10,954
160	Crew Boat	125	0.2	1	25	5	125	43.8	5,477
	Tug Boat	850	0.2	1	425	18	7,650	43.8	335,178
	Electric Pump	N/A	N/A	1	N/A	24	7,630 N/A	43.8	333,176 N/A
	Hydraulic Dredging - Fine Grain Material to LA-2	IN/A	IV/A		IV/A	24	IW/A	43.8	IV/A
	Main Engine - Electric	N/A	N/A	1		24	N/A	1	N/A
	Derrick Hoist	N/A 240	0.7			4	IV/A		N/A
	Derrick Winch	87	0.7			1	-		-
	Anchor Barge Winch	180	0.7			4	-		-
	Generator	350	0.6			4	-		-
	Survey Boat	250	0.2			5	-		-
	Crew Boat	125	0.2			5	-		-
	Tug Boat	850	0.5			18	-		-
180	Electric Pump	N/A	N/A			24	N/A		N/A
	Tug Boat ()	2,200	0.6			10	-		-
	Clamshell Dredging - Fine/Coarse Grain Material t								
	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	15	8,964	200	1,792,717
184		900		1 1	150	10	6 7 7 2		
			0.50	1	450	15	6,723	200	1,344,538
185	Deck Generator - Clamshell Dredge	240	0.6	1	144	3	448	200	89,636
185 186	Tug Boat (1)	240 2,200	0.6	1 2	144 2,640				
185 186 187		240 2,200	0.6	1 2	144 2,640	3	448	200	89,636
185 186 187 188	Tug Boat (1)	240 2,200	0.6	1 2	144 2,640	3	448	200	89,636
185 186 187 188 189	Tug Boat (1)	240 2,200	0.6	1 2	144 2,640	3	448	200	89,636
185 186 187 188 189 190	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4.	240 2,200 ,000 cy and a bar	0.6 0.6 ge capacity	1 2 of 2,000 cy	144 2,640	3	448	200	89,636
185 186 187 188 189 190 191	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA	240 2,200 ,000 cy and a bar	0.6 0.6 ge capacity	1 2 of 2,000 cy	144 2,640	3	448	200	89,636
185 186 187 188 189 190 191	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material.	240 2,200 000 cy and a barg Channel Deepe	0.6 0.6 ge capacity	of 2,000 cy	144 2,640	4.0	448 10,560	200	89,636 2,112,000
185 186 187 188 189 190 191 192 193	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material.	240 2,200 000 cy and a barg Channel Deeper	0.6 0.6 ge capacity ening Pro	1 2 of 2,000 cy	144 2,640 2. 5. 6. 7. 7. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	3 4.0 Hours	448 10,560 Daily	200 200 Work	89,636 2,112,000
185 186 187 188 189 190 191 192 193	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type	240 2,200 000 cy and a barg Channel Deeper Power Rating (Hp)	0.6 0.6 ge capacity	of 2,000 cy	144 2,640	4.0	448 10,560	200	89,636 2,112,000
185 186 187 188 189 190 191 192 193 194 195	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth	240 2,200 000 cy and a barg Channel Deeper Power Rating (Hp) 243/245	0.6 0.6 ge capacity ening Pro Load Factor	of 2,000 cy	144 2,640 Dject - Hourly Hp-Hrs	3 4.0 Hours Per Day	448 10,560 Daily Hp-Hrs	200 200 Work Days	89,636 2,112,000 Total Hp-Hrs
185 186 187 188 189 190 191 192 193 194 195 196	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge	240 2,200 000 cy and a bard Channel Deeper Power Rating (Hp) 243/245 1,200	0.6 0.6 ge capacity ening Pro Load Factor	1 2 of 2,000 cy	144 2,640 bject - Hourly Hp-Hrs	3 4.0 Hours Per Day	448 10,560 Daily Hp-Hrs	200 200 200 Work Days	89,636 2,112,000 <i>Total</i> <i>Hp-Hrs</i>
185 186 187 188 189 190 191 192 193 194 195 196 197	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	240 2,200 000 cy and a bard Channel Deeper Power Rating (Hp) 243/245 1,200 900	0.6 0.6 ge capacity ening Prol Load Factor 0.50 0.50	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs	3 4.0 Hours Per Day	448 10,560 Daily Hp-Hrs 14,400 10,800	200 200 200 Work Days 30.0 30.0	89,636 2,112,000 <i>Total</i> <i>Hp-Hrs</i> 432,493 324,370
185 186 187 188 189 190 191 192 193 194 195 196 197	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	240 2,200 000 cy and a bard Channel Deeper Power Rating (Hp) 243/245 1,200 900 240	0.6 0.6 ge capacity ening Prol Load Factor 0.50 0.50	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144	3 4.0 Hours Per Day	### 448 10,560 Daily Hp-Hrs 14,400 10,800 720	200 200 200 Work Days 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625
185 186 187 188 189 190 191 192 193 194 195 196 197 198	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge	240 2,200 000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A	0.6 0.6 0.6 ge capacity Prol Load Factor 0.50 0.50 0.6 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A	3 4.0 Hours Per Day 24 24 5 N/A	Daily Hp-Hrs 14,400 10,800 720 N/A	200 200 200 Work Days 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat	240 2,200 000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50	3 4.0 Hours Per Day 24 24 5 N/A 5	Daily Hp-Hrs 14,400 10,800 720 N/A 250	200 200 200 Work Days 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat	240 2,200 000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125	0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25	3 4.0 Hours Per Day	Daily Hp-Hrs 14,400 10,800 720 N/A 250 125	200 200 200 200 Work Days 30.0 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows	240 2,200 000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250	0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50	3 4.0 Hours Per Day 24 24 5 N/A 5	Daily Hp-Hrs 14,400 10,800 720 N/A 250 125 N/A	200 200 200 200 Work Days 30.0 30.0 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat	240 2,200 000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8	Daily Hp-Hrs 14,400 10,800 720 N/A 250 125	200 200 200 200 Work Days 30.0 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump	240 2,200 .000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A	0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A	3 4.0 Hours Per Day	Daily Hp-Hrs 14,400 10,800 720 N/A 250 125 N/A	200 200 200 200 Work Days 30.0 30.0 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Beel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S	240 2,200 .000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8	10,560 Daily Hp-Hrs 14,400 10,800 720 N/A 250 125 N/A 1,280	200 200 200 200 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump	240 2,200 .000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8	10,560 Daily Hp-Hrs 14,400 10,800 720 N/A 250 125 N/A 1,280	200 200 200 200 30.0 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Beel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S	240 2,200 000 cy and a bard Channel Deepe Power Rating (Hp) 243/245 1,200 900 2440 N/A 250 125 N/A 800 N/A	0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A	1 2 of 2,000 cy	144 2,640 7. Poject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 24 8 24	14,400 10,800 720 N/A 250 N/A 1,280 N/A	200 200 200 200 200 30.0 30.0 30.0 30.0	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge	240 2,200 .000 cy and a bare Channel Deeper Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A lip 1,200	0.6 0.6 0.6 0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A 0.2 N/A 0.50	1 2 of 2,000 cy posed Pro # Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144 2,640 7. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 24 8 24	14,400 10,560 Daily Hp-Hrs 14,400 10,800 720 N/A 250 N/A 1,280 N/A	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	240 2,200 000 cy and a bard Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A 800 N/A lip 1,200 900	0.6 0.6 0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A 0.2 N/A 0.50 0.50 0.50 0.60	1 2 of 2,000 cy	144 2,640 2. bject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 24 8 24 24 24 5	14,400 10,800 720 N/A 250 1,280 N/A 1,400 10,800 720	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A 174,790 131,092 8,739
185 186 187 188 190 191 192 193 194 195 196 197 200 201 202 203 204 205 207 207 208 207 208 209 209 209 209 209 209 209 209 209 209	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge	240 2,200 000 cy and a bard Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A lip 1,200 900 240	0.6 0.6 0.6 0.6 ge capacity Load Factor 0.50 0.50 0.6 N/A 0.2 0.2 N/A 0.2 N/A 0.50 0.50 0.50 0.6 N/A	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160 N/A 600 450 144 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 24 8 24 24 24 5 N/A	14,400 10,800 720 N/A 14,400 10,800 720 N/A 1,280 N/A 14,400 10,800 720 N/A	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A 174,790 131,092 8,739 N/A
185 186 187 188 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 208 209 209 201 209 201 200 201 201 202 203 204 205 206 207 208 208 209 209 209 209 209 209 209 209 209 209	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat	240 2,200 000 cy and a bard Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A lip 1,200 900 240 N/A 250	0.6 0.6 0.6 ge capacity Prol Load Factor 0.50 0.6 N/A 0.2 N/A 0.2 N/A 0.50 0.50 0.6 N/A 0.2 N/A 0.2 N/A 0.2 N/A 0.2 0.50	1 2 of 2,000 cy	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160 N/A 600 450 144 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8 24 24 24 5 N/A 5 N/A 5 5 N/A 5 5 N/A 5	14,400 10,800 720 N/A 250 1,280 N/A 1,280 N/A 14,400 10,800 720 N/A 250	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A 174,790 131,092 8,739 N/A 3,035
185 186 187 188 190 191 192 193 194 195 196 197 200 201 202 203 204 205 206 207 207 207 208 209 210 211	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Crew Boat	240 2,200 000 cy and a bard Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A lip 1,200 900 240 N/A 1,200 900 240 N/A 1,200 900 1,200 1,200 900 1,200 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.6 N/A 0.2 N/A 0.2 N/A 0.50 0.50 0.6 N/A 0.2 N/A 0.2 0.50 0.50 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	1 2 of 2,000 cy posed Pro # Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 800 450 144 N/A 50 450 144 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8 24 24 24 5 N/A 5 5 N/A 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14,400 10,800 720 N/A 250 125 N/A 1,280 N/A 10,800 720 N/A 250 10,800 720 N/A	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A 174,790 131,092 8,739 N/A 3,035 1,517
185 186 187 188 190 191 192 193 194 195 196 200 201 202 203 204 205 206 207 207 208 209 210 211 212	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows	240 2,200 000 cy and a bard Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A lip 1,200 900 240 N/A 1,200 900 240 N/A 1,200	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.6 N/A 0.2 N/A 0.2 N/A 0.50 0.50 0.6 N/A 0.2 N/A 0.2 N/A 0.2 N/A 0.2 N/A	1 2 of 2,000 cy posed Pro # Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 25 N/A 160 N/A 50 25 N/A 50 450 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8 24 24 24 5 N/A 5 5 24 24 24 24 25 N/A 5 24 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	14,400 10,800 720 N/A 250 125 N/A 1,280 N/A 10,800 720 N/A 250 10,800 720 N/A 10,800 10,800 10,800 10,800 10,800 10,800 10,800	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A 174,790 131,092 8,739 N/A 3,035 1,517 N/A
185 186 187 188 190 191 192 193 194 195 196 197 200 201 202 203 204 205 206 207 207 208 209 210 211 212 213	Tug Boat (1) Notes: (1) Based upon a daily disposal volume to LA-2 of 4. Table C-51. Construction Activities for the POLA Dredging of Coarse Grain Material. Location/Equipment Type Clamshell Dredging - Coarse Grain Material Berth Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Scows Tug Boat Electric Pump Clamshell Dredging - Coarse Grain Material NW S Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Reel Barge Survey Boat Crew Boat Crew Boat	240 2,200 000 cy and a bard Power Rating (Hp) 243/245 1,200 900 240 N/A 250 125 N/A 800 N/A lip 1,200 900 240 N/A 1,200 900 240 N/A 1,200 900 1,200 1,200 900 1,200 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250	0.6 0.6 0.6 ge capacity Load Factor 0.50 0.6 N/A 0.2 N/A 0.2 N/A 0.50 0.50 0.6 N/A 0.2 N/A 0.2 0.50 0.50 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	1 2 of 2,000 cy posed Pro # Active 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144 2,640 2. Dject - Hourly Hp-Hrs 600 450 144 N/A 50 800 450 144 N/A 50 450 144 N/A	3 4.0 Hours Per Day 24 24 5 N/A 5 5 24 8 24 24 24 5 N/A 5 5 N/A 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14,400 10,800 720 N/A 250 125 N/A 1,280 N/A 10,800 720 N/A 250 10,800 720 N/A	200 200 200 200 200 200 200 30.0 30.0 30	89,636 2,112,000 Total Hp-Hrs 432,493 324,370 21,625 N/A 7,509 3,754 N/A 38,444 N/A 174,790 131,092 8,739 N/A 3,035 1,517

	K	L	M	N	0	Р	Q	R	S	T
1	Table C-52. Unmitigated Air Emission Factors for the	Channel De	epening Proje	ct Alternat	ives Const	ruction Act	ivities.			
2		Fuel		Emiss	sion Factors	(Grams/Ho	rsepower-H	our)		
3	Project Year/Source Type	Туре	ROG	СО	NOx	SOx	PM	PM10	PM2.5	References
4	Year 2007									
5	Off-Road Equipment - 25-50 Hp	D	2.99	7.23	6.31	0.008	0.71	0.71	0.66	(1)
6	Off-Road Equipment - 51-120 Hp	D	1.26	3.85	7.39	0.006	0.66	0.66	0.61	(1)
7	Off-Road Equipment - 121-175 Hp	D	0.92	3.36	7.17	0.006	0.40	0.40	0.37	(1)
8	Off-Road Equipment - 176-250 Hp	D	0.70	1.93	7.07	0.006	0.27	0.27	0.25	(1)
	Off-Road Equipment - 251-500 Hp	D	0.57	2.25	5.70	0.005	0.22	0.22	0.20	(1)
10	Off-Road Equipment - 501-750 Hp	D	0.66	2.69	6.63	0.006	0.25	0.25	0.23	(1)
11	Off-Road Equipment - >750 Hp	D	0.56	2.09	6.27	0.005	0.19	0.19	0.18	(1)
12	On-road Truck - Idle (Gms/Hr)	D	10.06	45.12	76.69	0.048	1.50	1.50	1.38	(2)
13	On-road Truck - 5 mph (Gms/Mi)	D	8.30	29.67	29.82	0.027	2.10	2.10	1.90	(2)
14	On-road Truck - 25 mph (Gms/Mi)	D	1.15	9.25	13.52	0.016	0.63	0.63	0.55	(2)
15	On-road Truck - 55 mph (Gms/Mi)	D	0.65	5.59	14.21	0.014	0.48	0.48	0.42	(2)
16	Dredge Materials Haul Truck - Composite (Gms/Mi)	D	1.87	11.29	15.15	0.017	0.77	0.77	0.68	(3)
17	Other On-Road Trucks - Composite (Gms/Mi)	D	1.13	7.53	14.85	0.015	0.59	0.59	0.52	(4)
	All Years									
19	Tugboat (Gm/Hp-Hr)	D	0.20	1.87	8.11	0.004	0.21	0.21	0.20	(5)
20	Fugitive Dust (Lbs/acre-day)						27.50	13.45	2.81	(6)
21	Building Demolition (Lbs/1000 cf)						0.84	0.41	0.09	(7)
22	Small Harbor Craft	D	0.16	1.27	7.46	0.47	0.30	0.30	0.28	(8)

Notes: (1) Composite emission factors developed from ARBs OFFROAD2007 emissions model (2006) and based on average South Coast Air
 Basin equipment fleet age distributions for project year 2007. Factors developed by averaging hourly emissions for different diesel construction equipment types within the same Hp category.

26

27

28

29

30

31

32

33

34

35

36

37

- (2) Heavy duty diesel truck running emission factors developed from EMFAC2007 (ARB 2006). Units in grams/mile for project year 2007. Based on annual average conditions at 60 degrees and 50% humidity with the average fleet found in the South Coast Air Basin. PM emission factors include combustive and tire/brake wear contributions.
- (3) Composite factors based on a round trip of 90% at 25 mph and 10% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (4) For on-road trucks other then dredge material haul trucks, composite factor based on a round trip of 75% at 55 mph, 20% at 25 mph, and 5% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (5) Interpolated category 1 diesel engine factors for POLA fleet year 2009 (Starcrest 2006). Average sulfur (S) content = 15 ppm in year 2007+.
- (6) Units in Ibs/acre-day from section 11.2.3 of AP-42 (EPA 1995). Emissions reduced by 75% from uncontrolled levels to represent compliance with SCAQMD Rule 403 - Fugitive Dust.
- (7) CEQA Air Quality Handbook, Table A9-9-H (SCAQMD 1993). Units in lbs/1000 cubic feet (cf) of demolished building. (8) EPA (2006)

	V	W	Χ	Υ	Z	AA	AB	AC
1	Table C-53. Daily Unmitigated Emissions for the POLA Channel D	eepening Prop	osed Projec	t - Demolition	•	•		
2			<u>-</u>		ds per Day	/		
3	Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
4	NW Slip Sliver - Wharf							
5	Main Hoist - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
6	Main Generator - Clamshell Dredge	6.65	24.84	74.61	0.06	2.30	2.30	2.11
7	Deck Generator - Clamshell Dredge	0.89	2.46	8.97	0.01	0.34	0.34	0.31
8	Backhoe	3.99	12.21	23.45	0.02	2.10	2.10	1.93
9	Front End Loader	3.55	10.86	20.85	0.02	1.87	1.87	1.72
10	Haul Truck (1)	0.32	2.07	4.07	0.00	0.16	0.16	0.14
11	Tug Boat	0.85	7.90	34.34	0.02	0.90	0.90	0.85
12	Subtotal	25.12	93.45	265.78	0.20	10.73	10.73	9.88
	Berths 243-245							
14	Main Hoist - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
15	Main Generator - Clamshell Dredge	6.65	24.84	74.61	0.06	2.30	2.30	2.11
16	Deck Generator - Clamshell Dredge	0.89	2.46	8.97	0.01	0.34	0.34	0.31
17	Backhoe	3.99	12.21	23.45	0.02	2.10	2.10	1.93
18	Front End Loader	3.55	10.86	20.85	0.02	1.87	1.87	1.72
19	Haul Truck (1)	0.16	1.04	2.03	0.00	0.08	0.08	0.07
20	Tug Boat	0.85	7.90	34.34	0.02	0.90	0.90	0.85
21	Subtotal	24.96	92.42	263.74	0.20	10.65	10.65	9.81
22	Notes: (1) Includes 5 minutes of idling time per round trip.	•	-		•			
23								
24								
25								
26	Table C-54. Daily Unmitigated Emissions for the POLA Channel D	eepening Prop	osed Projec	t - Dike				
27	Construction Quarry Run Placement		_					
28	-			Poun	ds per Day	/		
29	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
30	NW Slip Sliver							
31	Barge Equipment	3.60	9.98	36.45	0.03	1.38	1.38	1.27
32	Derrick Barge Crane	1.66	4.60	16.82	0.01	0.64	0.64	0.59
33	Tugboat - Derrick Barge Crane	1.07	9.87	42.93	0.02	1.13	1.13	1.06
34	Tugboat - Transport Quarry Run to Site (1)	11.73	108.58	472.21	0.26	12.42	12.42	11.64
35	Subtotal	18.05	133.03	568.42	0.33	15.57	15.57	14.55
36	Berths 243-245							
37	Barge Equipment	3.60	9.98	36.45	0.03	1.38	1.38	1.27
38	Derrick Barge Crane	1.66	4.60	16.82	0.01	0.64	0.64	0.59
39	Tugboat - Derrick Barge Crane	1.07	9.87	42.93	0.02	1.13	1.13	1.06
40	Tugboat - Transport Quarry Run to Site (1)	10.75	99.54	432.86	0.23	11.39	11.39	10.67
41								10.07
	Subtotal	17.08	123.99	529.07	0.31	14.53	14.53	13.58
	Subtotal Cabrillo SWH	17.08	123.99	529.07	0.31	14.53	14.53	

3.60

1.66

1.07

10.26

16.59

9.98

4.60

9.87

95.01

119.46

36.45

16.82

42.93

413.18

509.39

0.03

0.01

0.02

0.22

0.29

1.38

0.64

1.13

10.87

14.02

1.38

0.64

1.13

10.87

14.02

1.27

0.59

1.06

13.10

43 Barge Equipment44 Derrick Barge Crane

47 Subtotal

45 Tugboat - Derrick Barge Crane 46 Tugboat - Transport Quarry Run to Site (1)

57	V	W	X	Υ	Z	AA	AB	AC
	Table C-55. Daily Unmitigated Emissions for the POLA	Channel Deepening Prop	osed Projec	t - Dike	· ·	· L		
58	Construction Armor Stone Placement		•					
59				Pour	nds per Da	/		
60	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
61	NW Slip Sliver							
62	Barge Equipment	3.60	9.98	36.45	0.03	1.38	1.38	1.27
63	Derrick Barge Crane	1.66	4.60	16.82	0.01	0.64	0.64	0.59
64	Tugboat - Derrick Barge Crane	1.07	9.87	42.93	0.02	1.13	1.13	1.06
65	Tugboat - Transport Armor Stone to Site (1)	11.73	108.58	472.21	0.26	12.42	12.42	11.64
66	Subtotal	18.05	133.03	568.42	0.33	15.57	15.57	14.55
67	Berths 243-245						·	
68	Barge Equipment	3.60	9.98	36.45	0.03	1.38	1.38	1.27
69	Derrick Barge Crane	1.66	4.60	16.82	0.01	0.64	0.64	0.59
70	Tugboat - Derrick Barge Crane	1.07	9.87	42.93	0.02	1.13	1.13	1.06
71	Tugboat - Transport Armor Stone to Site	10.75	99.54	432.86	0.23	11.39	11.39	10.67
72	Subtotal	17.08	123.99	529.07	0.31	14.53	14.53	13.58
73	Eelgrass							
74	Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
75	Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76	Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
77	Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
78	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
81 82 83	Table C-56. Daily Unmitigated Emissions for the POLA	Channel Deenening Pror						
84	Trench Excavation	The state of the s	oosed Projec					
				Pour	nds per Day			
85	Location/Equipment Type	ROG	cosed Projec		nds per Day SOx	V PM	PM10	PM2.5
86	Location/Equipment Type NW Slip Sliver	ROG	СО	Pour NOx	SOx	PM		
86 87	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge	ROG	<i>CO</i> 66.24	Pour NOx 198.96	SOx 0.15	<i>PM</i> 6.13	6.13	5.64
86 87 88	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	ROG 17.74 13.30	CO 66.24 49.68	Pour NOx 198.96 149.22	SOx 0.15 0.11	6.13 4.60	6.13 4.60	5.64 4.23
86 87 88 89	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	ROG 17.74 13.30 1.11	66.24 49.68 3.07	Pour. NOx 198.96 149.22 11.22	0.15 0.11 0.01	6.13 4.60 0.42	6.13 4.60 0.42	5.64 4.23 0.39
86 87 88 89 90	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat	77.74 13.30 1.11 0.28	66.24 49.68 3.07 2.63	Pour. NOx 198.96 149.22 11.22 11.45	0.15 0.11 0.01 0.01	6.13 4.60 0.42 0.30	6.13 4.60 0.42 0.30	5.64 4.23 0.39 0.28
86 87 88 89 90	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal	ROG 17.74 13.30 1.11	66.24 49.68 3.07	Pour. NOx 198.96 149.22 11.22	0.15 0.11 0.01	6.13 4.60 0.42	6.13 4.60 0.42	5.64 4.23 0.39
86 87 88 89 90 91	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245	ROG 17.74 13.30 1.11 0.28 32.44	66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.22 11.45 370.84	0.15 0.11 0.01 0.01 0.28	6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54
86 87 88 89 90 91 92	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge	ROG 17.74 13.30 1.11 0.28 32.44	66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.25 11.45 370.84	SOx 0.15 0.11 0.01 0.01 0.28	6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54
86 87 88 89 90 91 92 93	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	ROG 17.74 13.30 1.11 0.28 32.44 17.74 13.30	66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.25 11.45 370.84 198.96 149.22	0.15 0.11 0.01 0.01 0.28	6.13 4.60 0.42 0.30 11.45 6.13 4.60	6.13 4.60 0.42 0.30 11.45 6.13 4.60	5.64 4.23 0.39 0.28 10.54 5.64 4.23
86 87 88 89 90 91 92 93 94	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	ROG 17.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.22	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39
86 87 88 89 90 91 92 93 94 95	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat	ROG 17.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11 0.28	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07 2.63	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.22 11.45	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39 0.28
86 87 88 89 90 91 92 93 94 95 96	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal	ROG 17.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.22	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39
86 87 88 89 90 91 92 93 94 95 96 97	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH	ROG 17.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11 0.28 32.44	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.22 11.45 370.84	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01 0.01 0.01	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39 0.28 10.54
86 87 88 89 90 91 92 93 94 95 96 97 98	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge	ROG 17.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11 0.28 32.44	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.22 11.45 370.84	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01 0.01 0.28	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39 0.28 10.54
86 87 88 89 90 91 92 93 94 95 96 97 98 99	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	77.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11 0.28 32.44 17.74 13.30	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.45 370.84	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01 0.28	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39 0.28 10.54
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	77.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.45 370.84 198.96 149.22 11.22 11.22 11.22	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01 0.28	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39 0.28 10.54
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	77.74 13.30 1.11 0.28 32.44 17.74 13.30 1.11 0.28 32.44 17.74 13.30	66.24 49.68 3.07 2.63 121.62 66.24 49.68 3.07 2.63 121.62	Pour. NOx 198.96 149.22 11.22 11.45 370.84 198.96 149.22 11.45 370.84	0.15 0.11 0.01 0.01 0.28 0.15 0.11 0.01 0.28	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	6.13 4.60 0.42 0.30 11.45 6.13 4.60 0.42 0.30 11.45	5.64 4.23 0.39 0.28 10.54 5.64 4.23 0.39 0.28 10.54

V	I w I	Х	Υ	Z	AA	AB	AC
107 Table C-57. Daily Unmitigated Emissions for the POLA Channel							
108 Surcharge Removal		•					
109			Pour	nds per Day	/		
110 Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
111 SW Slip A#1 Surcharge Removal - Loading							
112 Scraper	8.31	23.02	84.12	0.07	3.18	3.18	2.93
113 Backhoe	2.66	8.14	15.64	0.01	1.40	1.40	1.29
114 Main Hoist - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
115 Main Generator - Clamshell Dredge	6.65	24.84	74.61	0.06	2.30	2.30	2.11
116 Deck Generator - Clamshell Dredge	1.11	3.07	11.22	0.01	0.42	0.42	0.39
117 Dozer	5.01	19.98	50.48	0.05	1.91	1.91	1.76
118 Off-Road Truck	5.23	20.87	52.74	0.05	2.00	2.00	1.84
119 Water Truck	2.43	9.69	24.49	0.02	0.93	0.93	0.85
120 Grader	1.11	3.07	11.22	0.01	0.42	0.42	0.39
121 Subtotal	41.38	145.80	423.98	0.36	15.64	15.64	14.39
122 SW Slip A#1 Surcharge Removal - Transport							
123 Scows							
124 Tug Boat	0.28	2.63	11.45	0.01	0.30	0.30	0.28
125 Subtotal	0.28	2.63	11.45	0.01	0.30	0.30	0.28
126 SW Slip A#1 Surcharge Removal - Unload NW Slip				1	1		
127 Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
128 Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
129 Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130 Electric Conveyor							
131 Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
132 Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
133 SW Slip A#1 Surcharge Removal - Unload CSWH	11.02	44.17	122 (4	0.10	4.00	4.00	2.7/
134 Main Hoist - Clamshell Dredge	11.83	44.16 33.12	132.64	0.10	4.09 3.06	4.09	3.76
135 Main Generator - Clamshell Dredge	8.87 1.11	33.12	99.48 11.22	0.08	0.42	3.06 0.42	2.82 0.39
136 Deck Generator - Clamshell Dredge 137 Scows		3.07					0.39
138 Subtotal	21.80	80.35	243.34	0.19	7.58	7.58	6.97
139 SW Slip A#1 Surcharge Removal - Transport/Unload LA-2	21.00	00.33	243.34	0.19	7.30	7.30	0.77
140 Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
141 Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
142 Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
143 Electric Conveyor							
144 Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
145 Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
146 Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
147	5.55	0.00	5.55	3.00	0.00	5.55	0.00
148							
149 Table C-58. Construction Activities for the POLA Channel Deepe	ening Proposed	Project -					
150 Dredging of Contaminated Material.	5 1	•					
151			Pour	nds per Day	/		
152 Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
153 Contaminated Dredge					-		
154 Main Hoist - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
155 Main Generator - Clamshell Dredge	6.65	24.84	74.61	0.06	2.30	2.30	2.11
156 Deck Generator - Clamshell Dredge	0.66	1.84	6.73	0.01	0.25	0.25	0.23
157 Scows							
158 Tug Boat	0.28	2.63	11.45	0.01	0.30	0.30	0.28
159 Electric Pump							
160 Skiff	0.02	0.14	0.82	0.05	0.03	0.03	0.03
161 Subtotal	16.49	62.57	193.09	0.20	5.95	5.95	5.48

	V	W	Х	Y	Z	AA	AB	AC
165	Table C-59. Construction Activities for the POLA Channel Deepe	ning Propose	d Project -					
166	Dredging of Fine Grain Material							
167				Poul	nds per Da	у		
168	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
	Clamshell Dredging - Fine Grain Material CSWH							
	Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
171	Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
172	Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
173	Reel Barge							
	Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
175	Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Scows							
177		0.00	0.00	0.00	0.00	0.00	0.00	0.00
178	Electric Pump							
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
180	Hydraulic Dredging - Fine Grain Material CSWH							
181	Electric - Hydraulic Dredge							
182	Derrick Hoist	1.03	2.86	10.47	0.01	0.40	0.40	0.36
183	Derrick Winch	0.17	0.52	0.99	0.00	0.09	0.09	0.08
184	Anchor Barge Winch	0.78	2.15	7.85	0.01	0.30	0.30	0.27
185	Generator	1.05	4.17	10.55	0.01	0.40	0.40	0.37
186	Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15
187	Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08
188	Tug Boat	3.40	31.46	136.83	0.07	3.60	3.60	3.37
189	Electric Pump							
	Subtotal	6.56	42.22	172.86	0.49	5.03	5.03	4.69
	Hydraulic Dredging - Fine Grain Material to LA-2							
192	Electric - Hydraulic Dredge							
193	Derrick Hoist	0.00	0.00	0.00	0.00	0.00	0.00	0.00
194	Derrick Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
195	Anchor Barge Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
198	Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
199	Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Electric Pump							
201	Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
202	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Clamshell Dredging - Fine Grain Material to LA 2							
204	Main Hoist - Clamshell Dredge	11.04	41.23	123.85	0.10	3.82	3.82	3.51
	Main Generator - Clamshell Dredge	8.28	30.92	92.89	0.07	2.86	2.86	2.63
206	Deck Generator - Clamshell Dredge	0.69	1.91	6.98	0.01	0.26	0.26	0.24
207	Tug Boat (1)	4.69	43.43	188.88	0.10	4.97	4.97	4.66
208	Subtotal	24.70	117.50	412.60	0.27	11.91	11.91	11.04

	V	W	Х	Υ	Z	AA	AB	AC
212	Table C-60. Construction Activities for the POLA Channel Deepe	ning Proposed	Project -					
213	Dredging of Coarse Grain Material.							
214				Pour	nds per Da	у		
215	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
216	Clamshell Dredging - Coarse Grain Material Berth 243/245							
217	Main Hoist - Clamshell Dredge	17.74	66.24	198.96	0.15	6.13	6.13	5.64
	Main Generator - Clamshell Dredge	13.30	49.68	149.22	0.11	4.60	4.60	4.23
219	Deck Generator - Clamshell Dredge	1.11	3.07	11.22	0.01	0.42	0.42	0.39
220	Reel Barge							
221	Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15
222	Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08
223	Scows							
224	Tug Boat	0.57	5.26	22.90	0.01	0.60	0.60	0.56
	Electric Pump							
226	Subtotal	32.85	125.30	388.46	0.68	12.00	12.00	11.06
	Clamshell Dredging - Coarse Grain Material NW Slip							
228	Main Hoist - Clamshell Dredge	17.74	66.24	198.96	0.15	6.13	6.13	5.64
	Main Generator - Clamshell Dredge	13.30	49.68	149.22	0.11	4.60	4.60	4.23
230	Deck Generator - Clamshell Dredge	1.11	3.07	11.22	0.01	0.42	0.42	0.39
231	Reel Barge							
	Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15
233	Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08
234	Scows							
235	Tug Boat	0.57	5.26	22.90	0.01	0.60	0.60	0.56
	Electric Pump							
237	Subtotal	32.85	125.30	388.46	0.68	12.00	12.00	11.06

	V	W	Х	Υ	Z	AA	AB	AC
240	Table C-61. Peak Daily Unmitigated Emissions for the POLA Cha					701	/\D	710
24		1	gropood		nds per Da	/		
242	,	ROG	СО	NOx	SOx	PM	PM10	PM2.5
243	Demolition							
244	NW Slip Sliver	25	93	266	0	11	11	10
24	Berths 243-245	25	92	264	0	11	11	10
246	Dike Const. Quarry Run Placement							
	NW Slip Sliver	18	133	568	0	16	16	15
	Berths 243-245	17	124	529	0	15	15	14
249	Cabrillo SWH	17	119	509	0	14	14	13
250								
25	Dike Construction Armor Stone Placement							
252	NW Slip Sliver	18	133	568	0	16	16	15
253	Berths 243-245	17	124	529	0	15	15	14
254								
25	Trench Excavation							
256	NW Slip Sliver	32	122	371	0	11	11	11
25	Berths 243-245	32	122	371	0	11	11	11
258	Cabrillo SWH	32	122	371	0	11	11	11
259	Surcharge Removal							
260	Loading	41	146	424	0	16	16	14
26	Transport	0	3	11	0	0	0	0
262								
263	Unload Cabrillo SWH	22	80	243	0	8	8	7
264								
	Dredging of Contaminated Material							
	Contaminated Dredge	16	63	193	0	6	6	5
	Dredging of Fine Material							
268								
	Hydraulic - Cabrillo SWH	7	42	173	0	5	5	5
270								
	Clamshell - To LA 2	25	117	413	0	12	12	11
	Dredging of Coarse Material							
	Clamshell - Berths 243-245	33	125	388	1	12	12	11
	Clamshell - NW Slip Sliver	33	125	388	1	12	12	11
	Peak Daily Unmitigated Emissions	66	365	1,409	1	40	40	37
	2004 CEQA Baseline - Peak Daily Emissions	(68)	(383)	(1,556)	(100)	(47)	(47)	(43)
	Net Peak Daily Unmitigated Emissions	(2)	(18)	(146)	(99)	(7)	(7)	(6)
	SCAQMD Daily Significance Thresholds	75	550	100	150	NA	150	55
279	Notes: (1) Peak daily unmitigated emissions would occur from the simultaneou		` '	1 2		at		

the CSWH, (2) dike construction quarry run placement at Berths 243-245, and (3) trench excavation at the NW Slip Sliver. 280

	AE	AF	AG	АН	Al	AJ	AK	AL
1	Table C-62. Total Unmitigated Emissions for the POLA	A Channel Deepen	ing Proposed	l Project - D	emolition			
2					Tons			
3	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
4	NW Slip Sliver - Wharf							
5	Main Hoist - Clamshell Dredge	0.16	0.58	1.74	0.00	0.05	0.05	0.05
6	Main Generator - Clamshell Dredge	0.12	0.43	1.31	0.00	0.04	0.04	0.04
7	Deck Generator - Clamshell Dredge	0.02	0.04	0.16	0.00	0.01	0.01	0.01
8	Backhoe	0.07	0.21	0.41	0.00	0.04	0.04	0.03
9	Front End Loader	0.06	0.19	0.36	0.00	0.03	0.03	0.03
10	Haul Truck (1)	0.01	0.04	0.07	0.00	0.00	0.00	0.00
11	Tug Boat	0.01	0.14	0.60	0.00	0.02	0.02	0.01
	Subtotal	0.44	1.64	4.65	0.00	0.19	0.19	0.17
13	Berths 243-245							
14	Main Hoist - Clamshell Dredge	0.34	1.28	3.83	0.00	0.12	0.12	0.11
15	Main Generator - Clamshell Dredge	0.26	0.96	2.87	0.00	0.09	0.09	0.08
16	Deck Generator - Clamshell Dredge	0.03	0.09	0.35	0.00	0.01	0.01	0.01
17	Backhoe	0.15	0.47	0.90	0.00	0.08	0.08	0.07
	Front End Loader	0.14	0.42	0.80	0.00	0.07	0.07	0.07
19	Haul Truck (1)	0.01	0.04	0.08	0.00	0.00	0.00	0.00
20	Tug Boat	0.03	0.30	1.32	0.00	0.03	0.03	0.03
21	Subtotal	0.96	3.56	10.15	0.01	0.41	0.41	0.38
22								
24								
25 26 27	Table C-63. Total Unmitigated Emissions for the POLA Construction Quarry Run Placement	A Channel Deepen	ing Proposed					
25 26 27 28	Construction Quarry Run Placement			-	Tons			
25 26 27 28 29	Construction Quarry Run Placement Location/Equipment Type	A Channel Deepen	ing Proposed			PM	PM10	PM2.5
25 26 27 28 29 30	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver	ROG	СО	NOx	Tons SOx			
25 26 27 28 29 30 31	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment	ROG 0.24	CO 0.65	NOx 2.39	SOx 0.00	0.09	0.09	0.08
25 26 27 28 29 30 31 32	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane	ROG 0.24 0.11	CO 0.65 0.30	NOx 2.39 1.10	SOx 0.00 0.00	0.09	0.09	0.08
25 26 27 28 29 30 31 32 33	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane	0.24 0.11 0.07	0.65 0.30 0.65	NOx 2.39 1.10 2.82	SOx	0.09 0.04 0.07	0.09 0.04 0.07	0.08 0.04 0.07
25 26 27 28 29 30 31 32 33 34	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1)	0.24 0.11 0.07 0.77	0.65 0.30 0.65 7.12	2.39 1.10 2.82 30.97	0.00 0.00 0.00 0.00	0.09 0.04 0.07 0.81	0.09 0.04 0.07 0.81	0.08 0.04 0.07 0.76
25 26 27 28 29 30 31 32 33 34 35	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal	0.24 0.11 0.07	0.65 0.30 0.65	NOx 2.39 1.10 2.82	SOx	0.09 0.04 0.07	0.09 0.04 0.07	0.08 0.04 0.07
25 26 27 28 29 30 31 32 33 34 35 36	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245	ROG 0.24 0.11 0.07 0.77 1.18	0.65 0.30 0.65 7.12 8.73	2.39 1.10 2.82 30.97 37.28	0.00 0.00 0.00 0.00 0.00 0.02 0.02	0.09 0.04 0.07 0.81 1.02	0.09 0.04 0.07 0.81 1.02	0.08 0.04 0.07 0.76 0.95
25 26 27 28 29 30 31 32 33 34 35 36 37	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment	ROG 0.24 0.11 0.07 0.77 1.18 0.18	0.65 0.30 0.65 7.12 8.73	2.39 1.10 2.82 30.97 37.28	0.00 0.00 0.00 0.00 0.02 0.02	0.09 0.04 0.07 0.81 1.02	0.09 0.04 0.07 0.81 1.02	0.08 0.04 0.07 0.76 0.95
25 26 27 28 29 30 31 32 33 34 35 36 37 38	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08	CO 0.65 0.30 0.65 7.12 8.73 0.50 0.23	NOx 2.39 1.10 2.82 30.97 37.28	0.00 0.00 0.00 0.00 0.02 0.02 0.02	0.09 0.04 0.07 0.81 1.02 0.07 0.03	0.09 0.04 0.07 0.81 1.02 0.07 0.03	0.08 0.04 0.07 0.76 0.95
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05	CO 0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17	SOx 0.00 0.00 0.00 0.02 0.02 0.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1)	0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05 0.54	0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50 5.04	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17 21.90	SOx 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05 0.54
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05	CO 0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17	SOx 0.00 0.00 0.00 0.02 0.02 0.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Cabrillo SWH	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05 0.54 0.86	0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50 5.04 6.27	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17 21.90 26.77	0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.00 0.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05 0.54
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Cabrillo SWH Barge Equipment	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05 0.54 0.86 0.37 0.37 0.37 0.24 0.24 0.25 0.37 0.37 0.24 0.25 0.2	0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50 5.04 6.27	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17 21.90 26.77	O.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05 0.54 0.69
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Cabrillo SWH Barge Equipment Derrick Barge Crane	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05 0.54 0.86 0.37 0.17	0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50 5.04 6.27	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17 21.90 26.77	O.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05 0.69
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Cabrillo SWH Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Cabrillo SWH Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane	0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05 0.54 0.86	0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50 5.04 6.27	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17 21.90 26.77	O.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05 0.54 0.69
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Construction Quarry Run Placement Location/Equipment Type NW Slip Sliver Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Berths 243-245 Barge Equipment Derrick Barge Crane Tugboat - Derrick Barge Crane Tugboat - Transport Quarry Run to Site (1) Subtotal Cabrillo SWH Barge Equipment Derrick Barge Crane	ROG 0.24 0.11 0.07 0.77 1.18 0.18 0.08 0.05 0.54 0.86 0.37 0.17	0.65 0.30 0.65 7.12 8.73 0.50 0.23 0.50 5.04 6.27	2.39 1.10 2.82 30.97 37.28 1.84 0.85 2.17 21.90 26.77	O.00	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.09 0.04 0.07 0.81 1.02 0.07 0.03 0.06 0.58 0.74	0.08 0.04 0.07 0.76 0.95 0.06 0.03 0.05 0.69

	AE	AF	AG	AH	Al	AJ	AK	AL
57	Table C-64. Total Unmitigated Emissions for the POLA Ch	annel Deepeni	ng Proposed	Project - D	ike			
58	Construction Armor Stone Placement	•	•	•				
59					Tons			
60	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
61	NW Slip Sliver							
62	Barge Equipment	0.02	0.06	0.23	0.00	0.01	0.01	0.01
63	Derrick Barge Crane	0.01	0.03	0.11	0.00	0.00	0.00	0.00
64	Tugboat - Derrick Barge Crane	0.01	0.06	0.27	0.00	0.01	0.01	0.01
65	Tugboat - Transport Armor Stone to Site (1)	0.07	0.68	2.95	0.00	0.08	0.08	0.07
66	Subtotal	0.11	0.83	3.55	0.00	0.10	0.10	0.09
67	Berths 243-245							
68	Barge Equipment	0.02	0.05	0.18	0.00	0.01	0.01	0.01
69	Derrick Barge Crane	0.01	0.02	0.08	0.00	0.00	0.00	0.00
70	Tugboat - Derrick Barge Crane	0.01	0.05	0.21	0.00	0.01	0.01	0.01
71	Tugboat - Transport Armor Stone to Site	0.05	0.50	2.16	0.00	0.06	0.06	0.05
72	Subtotal	0.09	0.62	2.65	0.00	0.07	0.07	0.07
73	Eelgrass							
74	Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
75	Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76	Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
77	Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
78	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79 80								
	Table C-65. Total Unmitigated Emissions for the POLA Ch Trench Excavation	annel Deepeni	ng Proposed	Project -				
80 81 82	Trench Excavation				Tons			
80 81 82 83	Trench Excavation Location/Equipment Type	annel Deepeni	ng Proposed		Tons SOx	PM	PM10	PM2.5
80 81 82 83 84	Trench Excavation Location/Equipment Type NW Slip Sliver					РМ	PM10	PM2.5
80 81 82 83 84 85	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge	<i>ROG</i> 0.06	<i>CO</i> 0.24	NOx 0.71	<i>SOx</i> 0.00	0.02	0.02	<i>PM2.5</i>
80 81 82 83 84 85 86	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	ROG 0.06 0.05	CO 0.24 0.18	NOx 0.71 0.53	0.00 0.00	0.02	0.02	
80 81 82 83 84 85 86 87 88	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	ROG 0.06 0.05 0.00	CO 0.24 0.18 0.01	NOx 0.71 0.53 0.04	0.00 0.00 0.00	0.02 0.02 0.00	0.02 0.02 0.00	0.02 0.02 0.00
80 81 82 83 84 85 86 87 88 89	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat	ROG 0.06 0.05 0.00 0.00	0.24 0.18 0.01 0.01	0.71 0.53 0.04 0.04	0.00 0.00 0.00 0.00 0.00	0.02 0.02 0.00 0.00	0.02 0.02 0.00 0.00	0.02 0.02 0.00 0.00
80 81 82 83 84 85 86 87 88 89 90	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal	ROG 0.06 0.05 0.00	CO 0.24 0.18 0.01	NOx 0.71 0.53 0.04	0.00 0.00 0.00	0.02 0.02 0.00	0.02 0.02 0.00	0.02 0.02 0.00
80 81 82 83 84 85 86 87 88 89 90 91	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245	ROG 0.06 0.05 0.00 0.00 0.12	0.24 0.18 0.01 0.01 0.43	0.71 0.53 0.04 0.04 1.32	SOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.02 0.00 0.00 0.00	0.02 0.02 0.00 0.00 0.00	0.02 0.02 0.00 0.00 0.00
80 81 82 83 84 85 86 87 88 89 90	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11	0.24 0.18 0.01 0.01 0.01 0.43	NOx 0.71 0.53 0.04 0.04 1.32	SOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.02 0.00 0.00 0.04	0.02 0.02 0.00 0.00 0.04	0.02 0.02 0.00 0.00 0.04
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09	0.24 0.18 0.01 0.01 0.43 0.43	0.71 0.53 0.04 0.04 1.32	SOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.02 0.00 0.00 0.04 0.04	0.02 0.02 0.00 0.00 0.04 0.04	0.02 0.02 0.00 0.00 0.04 0.04
80 81 82 83 84 85 86 87 88 89 90 91 92 93	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07	SOχ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01 0.00	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02 0.02	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07 0.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00
80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07	SOχ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01 0.00 0.21	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02 0.02 0.78	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07 0.07 2.38	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.00
80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01 0.00 0.21	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02 0.02 0.78	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07 0.07 2.38	SOx 0.00 0.	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.00
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01 0.00 0.21 0.05 0.04	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02 0.02 0.78	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07 0.07 2.38 0.57 0.43	SOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01 0.00 0.21 0.05 0.04 0.00	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02 0.02 0.78 0.19 0.14 0.01	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07 0.07 2.38 0.57 0.43 0.03	SOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07
80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 102	Trench Excavation Location/Equipment Type NW Slip Sliver Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Berths 243-245 Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge Tug Boat Subtotal Cabrillo SWH Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	ROG 0.06 0.05 0.00 0.00 0.12 0.11 0.09 0.01 0.00 0.21 0.05 0.04	0.24 0.18 0.01 0.01 0.43 0.43 0.32 0.02 0.02 0.78	NOx 0.71 0.53 0.04 0.04 1.32 1.28 0.96 0.07 0.07 2.38 0.57 0.43	SOx 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.07	0.02 0.02 0.00 0.00 0.04 0.03 0.00 0.00 0.07

	AE	AF	AG	AH	AI	AJ	AK	AL
107	Table C-66. Total Unmitigated Emissions for the POLA Char				AI	AJ	AIX	AL
107	Surcharge Removal	iliei beepeli	ing Froposec	i Froject -				
109	Surcharge Kemovar			-	Tons			
	Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
110	SW Slip A#1 Surcharge Removal - Loading	NOG	CO	IVUX	JUX	T IVI	FIVITO	T IVIZ.J
		0.40	1 24	4.00	0.00	0.19	0.19	0.17
	Scraper Backhoe	0.48	1.34 0.47	4.90		0.19	0.19	0.17
113		0.16 0.52	1.93	0.91	0.00	0.08	0.08	0.08
114	Main Hoist - Clamshell Dredge Main Generator - Clamshell Dredge			5.79				
		0.39	1.45	4.35	0.00	0.13	0.13	0.12
	Deck Generator - Clamshell Dredge	0.06	0.18	0.65	0.00	0.02	0.02	0.02
117	Dozer Off Book Trush	0.29	1.16	2.94	0.00	0.11	0.11	0.10
	Off-Road Truck	0.30	1.22	3.07	0.00	0.12	0.12	0.11
119		0.14	0.56	1.43	0.00	0.05	0.05	0.05
120		0.06	0.18	0.65	0.00	0.02	0.02	0.02
	Subtotal	2.41	8.49	24.70	0.02	0.91	0.91	0.84
	SW Slip A#1 Surcharge Removal - Transport							
	Scows							
	Tug Boat	0.02	0.15	0.67	0.00	0.02	0.02	0.02
	Subtotal	0.02	0.15	0.67	0.00	0.02	0.02	0.02
126	SW Slip A#1 Surcharge Removal - Unload NW Slip							
127	Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Electric Conveyor							
	Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
133	SW Slip A#1 Surcharge Removal - Unload CSWH							
134	Main Hoist - Clamshell Dredge	0.69	2.57	7.73	0.01	0.24	0.24	0.22
135	Main Generator - Clamshell Dredge	0.52	1.93	5.79	0.00	0.18	0.18	0.16
136	Deck Generator - Clamshell Dredge	0.06	0.18	0.65	0.00	0.02	0.02	0.02
137	Scows							
138	Subtotal	1.27	4.68	14.17	0.01	0.44	0.44	0.41
139	SW Slip A#1 Surcharge Removal - Transport/Unload LA-2		•		•			
140	Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
141	Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Electric Conveyor							
144	Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
147								
148								
	Table C-67. Construction Activities for the POLA Channel De	eepenina Pr	oposed Proie	ect -				
150	Dredging of Contaminated Material.		,					
151					Tons			
	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
	Contaminated Dredge	7.00		7107	00/		. 11110	. 1112.0
	Main Hoist - Clamshell Dredge	0.13	0.49	1.48	0.00	0.05	0.05	0.04
	Main Generator - Clamshell Dredge	0.10	0.37	1.11	0.00	0.03	0.03	0.03
	Deck Generator - Clamshell Dredge	0.10	0.03	0.10	0.00	0.00	0.00	0.00
	Scows							
	Tug Boat	0.00	0.04	0.17	0.00	0.00	0.00	0.00
	Electric Pump							
	Skiff	0.00	0.00	0.01	0.00	0.00	0.00	0.00
	Subtotal		0.00		0.00	0.00	0.00	
101	วนมเบเลเ	0.25	0.93	2.87	0.00	0.09	0.09	0.08

	AE	AF	AG	AH	Al	AJ	AK	AL
165	Table C-68. Construction Activities for the POLA Channel De	epening P	roposed Proje	ect -				
166	Dredging of Fine Grain Material							
167					Tons			
168	Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
169	Clamshell Dredging - Fine Grain Material CSWH							
	Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
173	Reel Barge							
	Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
176	Scows							
	Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
178	Electric Pump							
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Hydraulic Dredging - Fine Grain Material CSWH							
	Electric - Hydraulic Dredge							
	Derrick Hoist	0.02	0.06	0.23	0.00	0.01	0.01	0.01
	Derrick Winch	0.00	0.01	0.02	0.00	0.00	0.00	0.00
184	Anchor Barge Winch	0.02	0.05	0.17	0.00	0.01	0.01	0.01
	Generator	0.02	0.09	0.23	0.00	0.01	0.01	0.01
	Survey Boat	0.00	0.02	0.09	0.01	0.00	0.00	0.00
187	Crew Boat	0.00	0.01	0.05	0.00	0.00	0.00	0.00
188	Tug Boat	0.07	0.69	3.00	0.00	0.08	0.08	0.07
189	Electric Pump							
	Subtotal	0.14	0.92	3.79	0.01	0.11	0.11	0.10
	Hydraulic Dredging - Fine Grain Material to LA-2							
	Electric - Hydraulic Dredge							
	Derrick Hoist	0.00	0.00	0.00	0.00	0.00	0.00	0.00
194	Derrick Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
195	Anchor Barge Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
200	Electric Pump							
201	Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Clamshell Dredging - Fine Grain Material to LA 2							
	Main Hoist - Clamshell Dredge	1.10	4.12	12.38	0.01	0.38	0.38	0.35
205	Main Generator - Clamshell Dredge	0.83	3.09	9.29	0.01	0.29	0.29	0.26
206	Deck Generator - Clamshell Dredge	0.07	0.19	0.70	0.00	0.03	0.03	0.02
207	Tug Boat (1)	0.47	4.34	18.89	0.01	0.50	0.50	0.47
	Subtotal	2.47	11.75	41.26	0.03	1.19	1.19	1.10

AE	AF	AG	AH	Al	AJ	AK	AL
212 Table C-69. Construction Activities for the POLA Channel D	eepening P	roposed Proj	ect -				
213 Dredging of Coarse Grain Material.							
214				Tons			
215 Location/Equipment Type	ROG	СО	NOx	SOx	РM	PM10	PM2.5
216 Clamshell Dredging - Coarse Grain Material Berth 243/245							
217 Main Hoist - Clamshell Dredge	0.27	0.99	2.99	0.00	0.09	0.09	0.08
218 Main Generator - Clamshell Dredge	0.20	0.75	2.24	0.00	0.07	0.07	0.06
219 Deck Generator - Clamshell Dredge	0.02	0.05	0.17	0.00	0.01	0.01	0.01
220 Reel Barge							
221 Survey Boat	0.00	0.01	0.06	0.00	0.00	0.00	0.00
222 Crew Boat	0.00	0.01	0.03	0.00	0.00	0.00	0.00
223 Scows							
224 Tug Boat	0.01	0.08	0.34	0.00	0.01	0.01	0.01
225 Electric Pump							
226 Subtotal	0.49	1.88	5.83	0.01	0.18	0.18	0.17
227 Clamshell Dredging - Coarse Grain Material NW Slip							
228 Main Hoist - Clamshell Dredge	0.11	0.40	1.21	0.00	0.04	0.04	0.03
229 Main Generator - Clamshell Dredge	0.08	0.30	0.91	0.00	0.03	0.03	0.03
230 Deck Generator - Clamshell Dredge	0.01	0.02	0.07	0.00	0.00	0.00	0.00
231 Reel Barge							
232 Survey Boat	0.00	0.00	0.02	0.00	0.00	0.00	0.00
233 Crew Boat	0.00	0.00	0.01	0.00	0.00	0.00	0.00
234 Scows							
235 Tug Boat	0.00	0.03	0.14	0.00	0.00	0.00	0.00
236 Electric Pump							
237 Subtotal	0.20	0.76	2.36	0.00	0.07	0.07	0.07

	AE	AF	AG	AH	Al	AJ	AK	AL
240	Table C-70. Total Unmitigated Emissions for the POLA Char					7.0	7	
241		1	9		Tons			
242	Location/Activity	ROG	СО	NOx	SOx	PM	PM10	PM2.5
	Demolition							
	NW Slip Sliver	0.44	1.64	4.65	0.00	0.19	0.19	0.17
	Berths 243-245	0.96	3.56	10.15	0.01	0.41	0.41	0.38
	Dike Const. Quarry Run Placement	411.4				****	****	
247	NW Slip Sliver	1.18	8.73	37.28	0.02	1.02	1.02	0.95
	Berths 243-245	0.86	6.27	26.77	0.02	0.74	0.74	0.69
	Cabrillo SWH	1.71	12.31	52.50	0.03	1.44	1.44	1.35
250			_					
	Dike Construction Armor Stone Placement							
	NW Slip Sliver	0.11	0.83	3.55	0.00	0.10	0.10	0.09
	Berths 243-245	0.09	0.62	2.65	0.00	0.07	0.07	0.07
254								
	Trench Excavation							
	NW Slip Sliver	0.12	0.43	1.32	0.00	0.04	0.04	0.04
	Berths 243-245	0.21	0.78	2.38	0.00	0.07	0.07	0.07
	Cabrillo SWH	0.09	0.35	1.06	0.00	0.03	0.03	0.03
	Surcharge Removal							
	Loading	2.41	8.49	24.70	0.02	0.91	0.91	0.84
	Transport	0.02	0.15	0.67	0.00	0.02	0.02	0.02
262								
	Unload Cabrillo SWH	1.27	4.68	14.17	0.01	0.44	0.44	0.41
264		1						*****
	Dredging of Contaminated Material							
	Contaminated Dredge	0.25	0.93	2.87	0.00	0.09	0.09	0.08
	Dredging of Fine Material							
268								
	Hydraulic - Cabrillo SWH	0.14	0.92	3.79	0.01	0.11	0.11	0.10
270								
	Clamshell - To LA 2	2.47	11.75	41.26	0.03	1.19	1.19	1.10
	Dredging of Coarse Material							
	Clamshell - Berths 243-245	0.49	1.88	5.83	0.01	0.18	0.18	0.17
274	Clamshell - NW Slip Sliver	0.20	0.76	2.36	0.00	0.07	0.07	0.07
	Total Unmitigated Emissions	13.02	65.09	237.98	0.17	7.13	7.13	6.62
276	Total Olimingatou Elimonolio	10.02	00.07	201170	0	71.10		0.02
277								
278								
	Table C-71. Yearly Unmitigated Emissions for the POLA Cha	annel Deepe	enina Propos	ed Project				
280	yg				ons (1)			
281	Project Scenario	ROG	СО	NOx	SOx	PM	PM10	PM2.5
	Alternative 1 - 2009	1.7	8.7	31.7	0.0	1.0	1.0	0.9
	CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
	Alternative 1 Net Annual Unmitigated Emissions - 2009	(4.9)	(23.7)	(85.0)	(5.6)	(2.7)	(2.7)	(2.5)
	Alternative 1 - 2010	6.0	35.6	140.7	0.1	4.0	4.0	3.7
	CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
	Alternative 1 Net Annual Unmitigated Emissions - 2010	(0.6)	3.2	24.0	(5.5)	0.3	0.3	0.3
	Alternative 1 - 2011	5.3	20.8	65.6	0.0	2.1	2.1	2.0
	CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
	Alternative 1 Net Annual Unmitigated Emissions - 2011	(1.3)	(11.7)	(51.1)	(5.6)	(1.6)	(1.6)	(1.5)
	Conformity de minimis Thresholds	10	100	10	NA	NA	70	100
	Notes: (1) Emissions distributed into each calendar year according to pr				IVA	IVA	70	100
232	140.00. (1) Emissions distributed into each calcillar year according to pr	oposca coristi	raction scriedult					

Table C-72. Total GHG Emissions for the POLA Channel Deepening Proposed Project - Demolition

	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
NW Slip Sliver - Wharf					
Main Hoist - Clamshell Dredge	158	0.02	0.00	159	
Main Generator - Clamshell Dredge	118	0.02	0.00	119	
Deck Generator - Clamshell Dredge	13	0.00	0.00	13	
Backhoe	32	0.01	0.00	32	
Front End Loader	28	0.00	0.00	28	
Haul Truck (1)	9	0.00	0.00	9	
Tug Boat	36	0.00	0.00	36	
Subtotal	393	0.06	0.00	396	
Berths 243-245					
Main Hoist - Clamshell Dredge	347	0.05	0.00	349	
Main Generator - Clamshell Dredge	260	0.04	0.00	262	
Deck Generator - Clamshell Dredge	28	0.00	0.00	28	
Backhoe	69	0.01	0.00	70	
Front End Loader	62	0.01	0.00	62	
Haul Truck (1)	10	0.00	0.00	10	
Tug Boat	78	0.01	0.00	79	
Subtotal	855	0.13	0.01	860	

Table C-73. Total GHG Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Quarry Run Placement

	Tons					
Location/Equipment Type	CO2	СН4	N2O	CO2e		
NW Slip Sliver						
Barge Equipment	192	0.03	0.00	194		
Derrick Barge Crane	89	0.01	0.00	89		
Tugboat - Derrick Barge Crane	167	0.02	0.00	168		
Tugboat - Transport Quarry Run to Site (1)	1,838	0.25	0.02	1,848		
Subtotal	2,286	0.32	0.02	2,300		
Berths 243-245						
Barge Equipment	148	0.02	0.00	149		
Derrick Barge Crane	68	0.01	0.00	69		
Tugboat - Derrick Barge Crane	129	0.02	0.00	130		
Tugboat - Transport Quarry Run to Site (1)	1,299	0.18	0.01	1,307		
Subtotal	1,645	0.23	0.02	1,655		
Cabrillo SWH						
Barge Equipment	302	0.05	0.00	304		
Derrick Barge Crane	139	0.02	0.00	140		
Tugboat - Derrick Barge Crane	263	0.04	0.00	264		
Tugboat - Transport Quarry Run to Site (1)	2,527	0.35	0.02	2,542		
Subtotal	3,231	0.46	0.03	3,251		
Eelgrass Restoration						
Barge Equipment	0	0.00	0.00	0		
Derrick Barge Crane	0	0.00	0.00	0		
Tugboat - Derrick Barge Crane	0	0.00	0.00	0		
Tugboat - Transport Quarry Run to Site (1)	0	0.00	0.00	0		
Subtotal	0	0.00	0.00	0		

Table C-74. Total GHG Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Armor Stone Placement

	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
NW Slip Sliver					
Barge Equipment	18	0.00	0.00	18	
Derrick Barge Crane	8	0.00	0.00	9	
Tugboat - Derrick Barge Crane	16	0.00	0.00	16	
Tugboat - Transport Armor Stone to Site (1)	175	0.02	0.00	176	
Subtotal	218	0.03	0.00	219	
Berths 243-245					
Barge Equipment	15	0.00	0.00	15	
Derrick Barge Crane	7	0.00	0.00	7	
Tugboat - Derrick Barge Crane	13	0.00	0.00	13	
Tugboat - Transport Armor Stone to Site (1)	128	0.02	0.00	129	
Subtotal	163	0.02	0.00	164	
Eelgrass					
Barge Equipment	0	0.00	0.00	0	
Derrick Barge Crane	0	0.00	0.00	0	
Tugboat - Derrick Barge Crane	0	0.00	0.00	0	
Tugboat - Transport Armor Stone to Site (1)	0	0.00	0.00	0	
Subtotal	0	0.00	0.00	0	

Table C-75. Total GHG Emissions for the POLA Channel Deepening Proposed Project - Trench Excavation

		Tons					
Location/Equipment Type	CO2	CH4	N2O	CO2e			
NW Slip Sliver							
Main Hoist - Clamshell Dredge	64	0.01	0.00	65			
Main Generator - Clamshell Dredge	48	0.01	0.00	49			
Deck Generator - Clamshell Dredge	3	0.00	0.00	3			
Tug Boat	2	0.00	0.00	2			
Subtotal	118	0.02	0.00	119			
Berths 243-245							
Main Hoist - Clamshell Dredge	116	0.02	0.00	117			
Main Generator - Clamshell Dredge	87	0.01	0.00	88			
Deck Generator - Clamshell Dredge	6	0.00	0.00	6			
Tug Boat	4	0.00	0.00	4			
Subtotal	213	0.03	0.00	214.64			
CSWH							
Main Hoist - Clamshell Dredge	52	0.01	0.00	52			
Main Generator - Clamshell Dredge	39	0.01	0.00	39			
Deck Generator - Clamshell Dredge	3	0.00	0.00	3			
Tug Boat	2	0.00	0.00	2			
Subtotal	95	0.02	0.00	95.39			

Table C-76. Total GHG Emissions for the POLA Channel Deepening Proposed Project - Surcharge Removal

Surcharge Removal				
			ons	
Location/Equipment Type	CO2	CH4	N2O	CO2e
SW Slip A#1 Surcharge Removal - Loading				
Scraper	394	0.06	0.00	397
Backhoe	70	0.01	0.00	71
Main Hoist - Clamshell Dredge	525	0.09	0.01	529
Main Generator - Clamshell Dredge	394	0.07	0.00	397
Deck Generator - Clamshell Dredge	53	0.01	0.00	53
Dozer	293	0.04	0.00	295
Off-Road Truck	307	0.04	0.00	308
Water Truck	142	0.02	0.00	143
Grader	53	0.01	0.00	53
Subtotal	2,231	0.36	0.03	2,246
SW Slip A#1 Surcharge Removal - Transport				
Scows				
Tug Boat	40	0.01	0.00	40
Subtotal	40	0.01	0.00	40
SW Slip A#1 Surcharge Removal - Unload NW Slip				
Main Hoist - Clamshell Dredge	0	0.00	0.00	0
Main Generator - Clamshell Dredge	0	0.00	0.00	0
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Electric Conveyor				
Dozer	0	0.00	0.00	0
Subtotal	0	0.00	0.00	0
SW Slip A#1 Surcharge Removal - Unload CSWH				
Main Hoist - Clamshell Dredge	701	0.10	0.01	705
Main Generator - Clamshell Dredge	525	0.08	0.01	529
Deck Generator - Clamshell Dredge	53	0.01	0.00	53
Scows				
Subtotal	1,279	0.19	0.01	1,287
SW Slip A#1 Surcharge Removal - Transport/Unload LA	\-2			
Main Hoist - Clamshell Dredge	0	0.00	0.00	0
Main Generator - Clamshell Dredge	0	0.00	0.00	0
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Electric Conveyor				
Dozer	0	0.00	0.00	0
Tug Boat	0	0	0	0
Subtotal	0	0	0	0

Table C-77. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Contaminated Material.

	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
Contaminated Dredge				
Main Hoist - Clamshell Dredge	134	0.02	0.00	135
Main Generator - Clamshell Dredge	101	0.02	0.00	101
Deck Generator - Clamshell Dredge	8	0.00	0.00	8
Scows				
Tug Boat	10	0.00	0.00	10
Electric Pump				
Skiff	1	0.00	0.00	1
Subtotal	254	0.04	0.00	256

Table C-78. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material

Dreaging of Fine Grant Material		7	Tons	
Location/Equipment Type	CO2	CH4	N2O	CO2e
Clamshell Dredging - Fine Grain Material CSWH				
Main Hoist - Clamshell Dredge	0	0.00	0.00	0
Main Generator - Clamshell Dredge	0	0.00	0.00	0
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Reel Barge				
Survey Boat	0	0.00	0.00	0
Crew Boat	0	0.00	0.00	0
Scows				
Tug Boat	0	0.00	0.00	0
Electric Pump				
Subtotal	0	0.00	0.00	0
Hydraulic Dredging - Fine Grain Material CSWH				
Electric - Hydraulic Dredge				
Derrick Hoist	18	0.00	0.00	19
Derrick Winch	2	0.00	0.00	2
Anchor Barge Winch	14	0.00	0.00	14
Generator	23	0.00	0.00	23
Survey Boat	6	0.00	0.00	6
Crew Boat	3	0.00	0.00	3
Tug Boat	178	0.02	0.00	179
Electric Pump				
Subtotal	244	0.03	0.00	245
Hydraulic Dredging - Fine Grain Material to LA-2				
Electric - Hydraulic Dredge				
Derrick Hoist	0	0.00	0.00	0
Derrick Winch	0	0.00	0.00	0
Anchor Barge Winch	0	0.00	0.00	0
Generator	0	0.00	0.00	0
Survey Boat	0	0.00	0.00	0
Crew Boat	0	0.00	0.00	0
Tug Boat	0	0.00	0.00	0
Electric Pump				
Tug Boat	0	-	-	0
Subtotal	0	-	-	0
Clamshell Dredging - Fine Grain Material to LA 2				
Main Hoist - Clamshell Dredge	1,123	0.18	0.01	1,131
Main Generator - Clamshell Dredge	842	0.14	0.01	848
Deck Generator - Clamshell Dredge	56	0.01	0.00	57
Tug Boat (1)	1,121	0.15	0.01	1,127
Subtotal	3,142	0.49	0.03	3,163

Table C-79. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material.

		Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Clamshell Dredging - Coarse Grain Material Berth 24	3/245				
Main Hoist - Clamshell Dredge	271	0.04	0.00	273	
Main Generator - Clamshell Dredge	203	0.03	0.00	205	
Deck Generator - Clamshell Dredge	14	0.00	0.00	14	
Reel Barge					
Survey Boat	4	0.00	0.00	4	
Crew Boat	2	0.00	0.00	2	
Scows					
Tug Boat	20	0.00	0.00	21	
Electric Pump					
Subtotal	514	0.08	0.01	518	
Clamshell Dredging - Coarse Grain Material Berth 24	3/245				
Main Hoist - Clamshell Dredge	109	0.02	0.00	110	
Main Generator - Clamshell Dredge	82	0.01	0.00	83	
Deck Generator - Clamshell Dredge	5	0.00	0.00	6	
Reel Barge					
Survey Boat	2	0.00	0.00	2	
Crew Boat	1	0.00	0.00	1	
Scows					
Tug Boat	8	0.00	0.00	8	
Electric Pump					
Subtotal	208	0.03	0.00	209	

Table C-80. Total Direct GHG Emissions for the POLA Channel Deepening Proposed Project

Location/Activity Demolition IW Slip Sliver Berths 243-245 Dike Const. Quarry Run Placement IW Slip Sliver Berths 243-245 Cabrillo SWH Dike Construction Armor Stone Placement IW Slip Sliver Berths 243-245 Dike Construction Armor Stone Placement IW Slip Sliver Berths 243-245	CO2	CH4	1/00	
W Slip Sliver Berths 243-245 Dike Const. Quarry Run Placement JW Slip Sliver Berths 243-245 Cabrillo SWH Dike Construction Armor Stone Placement JW Slip Sliver			N2O	CO2e
Berths 243-245 Dike Const. Quarry Run Placement JW Slip Sliver Berths 243-245 Cabrillo SWH Dike Construction Armor Stone Placement JW Slip Sliver				
Dike Const. Quarry Run Placement JW Slip Sliver Berths 243-245 Cabrillo SWH Dike Construction Armor Stone Placement JW Slip Sliver	393	0.06	0.00	396
W Slip Sliver Berths 243-245 Cabrillo SWH Dike Construction Armor Stone Placement W Slip Sliver	855	0.13	0.01	860
Berths 243-245 Cabrillo SWH Dike Construction Armor Stone Placement JW Slip Sliver				
Cabrillo SWH Dike Construction Armor Stone Placement JW Slip Sliver	2,286	0.32	0.02	2,300
Dike Construction Armor Stone Placement JW Slip Sliver	1,645	0.23	0.02	1,655
IW Slip Sliver	3,231	0.46	0.03	3,251
IW Slip Sliver				
Serths 243-245	218	0.03	0.00	219
	163	0.02	0.00	164
rench Excavation				
IW Slip Sliver	118	0.02	0.00	119
Berths 243-245	213	0.02	0.00	215
Cabrillo SWH	95	0.03	0.00	95
Surcharge Removal	70	0.02	0.00	,,,
oading	2,231	0.36	0.03	2,246
ransport	40	0.01	0.00	40
Inload NW Slip	0	-	-	0
Inload Cabrillo SWH	1,279	0.19	0.01	1,287
ransport/Unload LA-2	0	-	-	0
Predging of Contaminated Material				
Contaminated Dredge	254	0.04	0.00	256
Oredging of Fine Material				
Clamshell - Cabrillo SWH	0	-	-	0
lydraulic - Cabrillo SWH	244	0.03	0.00	245
lydraulic - To LA-2	0	-	-	0
Clamshell - Fine Grain Material to LA 2	3,142	0.49	0.03	3,163
Oredging of Coarse Material				
Clamshell - Berths 243-245	514	0.08	0.01	518
Clamshell - NW Slip Sliver	208	0.03	0.00	209
otal GHG Emissions	17,126	2.56	0.18	17,237

Table C-81. Yearly GHG Emissions for the POLA Channel Deepening Proposed Project - Alternative 1.

_	Metric Tons (1)			
Project Scenario	CO2	CH4	N2O	CO2e
Alternative 1 Direct Sources - 2009	2,015	0.29	0.02	2,028
Alternative 1 Electrical Generation - 2009	-	-	-	-
Alternative 1 Total Unmitigated Emissions - 2009	2,015	0.29	0.02	2,028
Alternative 1 Direct Sources - 2010	8,520	1.25	0.09	8,574
Alternative 1 Electrical Generation - 2010	2,664	0.02	0.01	2,668
Alternative 1 Total Unmitigated Emissions - 2010	11,185	1.27	0.10	11,242
Alternative 1 Direct Sources - 2011	5,034	0.78	0.06	5,067
Alternative 1 Electrical Generation - 2011	-	-	-	-
Alternative 1 Total Unmitigated Emissions - 2011	5,034	0.78	0.06	5,067

Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.

Table 82. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material - Electrical Demand

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Clamshell Dredging - Fine Grain Material CSWH					-	•		
Main Hoist - Clamshell Dredge	1,200	0.50	1	600	24	14,400		-
Main Generator - Clamshell Dredge	900	0.50	1	450	24	10,800		-
Deck Generator - Clamshell Dredge	240	0.6	1	144	5	720		
Reel Barge	N/A	N/A	N/A	N/A	N/A	N/A		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Scows	N/A	N/A	2	N/A	24	N/A		
Tug Boat	800	0.2	1	160	8	1,280		
Electric Pump	N/A	N/A	1	N/A	24	N/A		
Hydraulic Dredging - Fine Grain Material CSWH								
Electric - Hydraulic Dredge	17,000	1	1	8,500	24	204,000	43.8	8,938,090
Derrick Hoist	240	0.7	1	168	4	672		
Derrick Winch	87	0.7	1	61	1	61		
Anchor Barge Winch	180	0.7	1	126	4	504		
Generator	350	0.6	1	210	4	840		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Tug Boat	850	0.5	1	425	18	7,650		
Electric Pump	N/A	N/A	1	N/A	24	N/A	_	

Table 83. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material - GHG Emissions from Electrical Generation

270aging or 1 mio Gram material 2110 21111	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
Clamshell Dredging - Fine Grain Material CSWH				
Main Hoist - Clamshell Dredge	-	-	-	0
Main Generator - Clamshell Dredge	-	-	-	0
Deck Generator - Clamshell Dredge				
Reel Barge				
Survey Boat				
Crew Boat				
Scows				
Tug Boat				
Electric Pump				
Subtotal	0	0.00	0.00	0
Hydraulic Dredging - Fine Grain Material CSWH				
Electric - Hydraulic Dredge	2,930.56	0.02	0.01	2,935
Derrick Hoist				
Derrick Winch				
Anchor Barge Winch				
Generator				
Survey Boat				
Crew Boat				
Tug Boat				
Electric Pump				
Subtotal	2,931	0.02	0.01	2,935

Table 84. Total GHG Emissions for the POLA Channel Deepening Proposed Project Due to Electrical Generation

Due to Electrical Generation	Tons			
Location/Activity	CO2	CH4	N2O	CO2e
Demolition		•	•	
NW Slip Sliver				
Berths 243-245				
Dike Const. Quarry Run Placement				
NW Slip Sliver				
Berths 243-245				
Cabrillo SWH				
Eelgrass Restoration				
Dike Construction Armor Stone Placement				
NW Slip Sliver				
Eelgrass Restoration				
Trench Excavation				
NW Slip Sliver				
Berths 243-245				
Surcharge Removal				
Loading				
Transport				
Unload NW Slip				
Unload Cabrillo SWH				
Unload Eelgrass				
Dredging of Contaminated Material				
Contaminated Dredge				
Dredging of Fine Material				
Clamshell - Cabrillo SWH				
Hydraulic - Cabrillo SWH	2,931	0.02	0.01	2,935
Hydraulic - Eelgrass				
Clamshell - Fine Grain Material to LA 2				
Dredging of Coarse Material				
Clamshell - Berths 243-245				
Clamshell - NW Slip Sliver				
Total Emissions	2,931	0.02	0.01	2,935

Table 85. POLA Channel Deepening Proposed Project Annual GHG Emissions due to Electrical Generation

	Metric Tons (1)			
Year	CO2	CH4	N2O	CO2e
2009	0	0	0	0
2010	2,664	0	0	2,668
2011	0	0	0	0

Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.

	A	I в I	С	D
1	Table C-86. Construction Activities for the POLA Channel Deepe	_		
2	Construction Quarry Run Placement	3 1	.,	
3	•	Total	Tons/	Total
4	Location/Equipment Type	Tons	Barge	Tug Trips
5	NW Slip Sliver			
6	Tugboat - Transport Quarry Run to Site	350,000	1,334	262
7	Berths 243-245			
8	Tugboat - Transport Quarry Run to Site	270,000	1,334	202
9	Cabrillo SWH			
10	Tugboat - Transport Quarry Run to Site	550,000	1,334	412
11				
12	Table C 07 Construction Activities for the DOLA Channel Deepe	ning Droposed F	Project Dike	
13 14	Table C-87. Construction Activities for the POLA Channel Deepe Construction Armor Stone Placement	ening Proposed P	Toject - Dike	
15	Construction Armor Stone Placement	Total	Tons/	Total
16	Location/Equipment Type	Tons	Barge	Tug Trips
17	NW Slip Sliver	10113	Darge	rug mps
18	Tugboat - Transport Armor Stone to Site	25,000	1,334	19
19	Berths 243-245	23,000	1,004	17
20	Tugboat - Transport Armor Stone to Site	20,000	1,334	15
21	ragional transport rames etc. in the exte	20,000	.,00.	
22				
23	Table C-88. Construction Activities for the POLA Channel Deepe	ening Proposed P	Project -	
24	Surcharge Removal	5 1	•	
25	•	Total	CY/	Total
26	Location/Equipment Type	CY	Barge	Tug Trips
27	SW Slip A#1 Surcharge Removal - Unload CSWH			
28	Scows	815,000	2,000	408
29				
30				
31	Table C-89. Construction Activities for the POLA Channel Deepe	ening Proposed P	Project -	
32	Dredging of Contaminated Material.			
33		Total	CY/	Total
34	Location/Equipment Type	CY	Barge	Tug Trips
35	Contaminated Dredge	05.000	2.000	42
	Scows	85,000	2,000	43
37 38				
39	Table C-90. Construction Activities for the POLA Channel Deepe	aning Proposed P	Project -	
40	Dredging of Fine Grain Material	ining i roposeu i	roject -	
41	broaging or rine ordin material	Total	CY/	Total
42	Location/Equipment Type	CY	Barge	Tug Trips
43	Clamshell Dredging - Fine/Coarse Grain Material to LA 2		: g ·	g
44	Tug Boat (2)	800,000	2,000	400
45	· · · · · · · · · · · · · · · · · · ·	,	,	
46				
47	Table C-91. Construction Activities for the POLA Channel Deepe	ening Proposed P	Project -	
48	Dredging of Coarse Grain Material.		<u> </u>	
49		Total	CY/	Total
50	Location/Equipment Type	CY	Barge	Tug Trips
51	Clamshell Dredging - Coarse Grain Material Berth 243/245			
52	Scows	193,000	2,000	97
53	Clamshell Dredging - Coarse Grain Material NW Slip			
54	Scows	78,000	2,000	39
55				
56				
	Total Barge Trips			1,896

- Table C-92. Mitigated Air Emission Factors for the Channel Deepening Project Alternatives Construction Activiti
- Table C-93. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project Demolition
- Table C-94. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project Dike
- Table C-95. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-96. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-97. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-98. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-99. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-100. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-101. Peak Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project
- Table C-102. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project Demolition
- Table C-103. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-104. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-105. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-106. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-107. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-108. Construction Activities for the POLA Channel Deepening Proposed Project 0
- Table C-109. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-110. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project
- Table C-111. Yearly Mitigated Emissions for the POLA Channel Deepening Proposed Project
- Table C-112. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Demolition
- Table C-113. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-114. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Dike Construction Armor Stone Placement
- Table C-115. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Trench Excavation
- Table C-116. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-117. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-118. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material
- Table C-119. Total Direct Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table C-120. Total Direct Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project
- Table C-121. Yearly Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project
- Table 122 Construction Activities for the POLA Channel Deepening Proposed Project -

- Trench Excavation Electrical Demand
- Table 123 Construction Activities for the POLA Channel Deepening Proposed Project -Surcharge Removal - Electrical Demand
- Table 124 Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material - Electrical Demand
- Table 125 Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material - Electrical Demand
- Table 126 Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material.
- Table 127 Total Emissions for the POLA Channel Deepening Proposed Project Trench Excavation Mitigated GHG Emissions from Electrical Generation
- Table 128. Total Emissions for the POLA Channel Deepening Proposed Project Surcharge Removal Mitigated GHG Emissions from Electrical Generation
- Table 129. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material Mitigated GHG Emissions from Electrical Generation
- Table 130. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Fine Grain Material Mitigated GHG Emissions from Electrical Generation
- Table 131. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Coarse Grain Material Mitigated GHG Emissions from Electrical Generation
- Table 132. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Due to Electrical Generation
- Table 133. POLA Channel Deepening Proposed Project Annual Mitigated GHG Emissions due to Electrical Generation

Table C-92. Mitigated Air Emission Factors for the Channel Deepening Project Alternatives Construction Activities.

Table 6 721 mmgateu 7 m 2 mmc 3 m 7 m 3 m 3 m	Fuel					rsepower-H	lour)		
Project Year/Source Type	Туре	ROG	СО	NOx	SOx	PM	PM10	PM2.5	References
Year 2009/2010									
Off-Road Equipment - 25-50 Hp	D	0.56	2.34	4.57	0.004	0.06	0.06	0.05	(1)
Off-Road Equipment - 51-120 Hp	D	0.58	3.23	5.64	0.006	0.06	0.06	0.05	(1)
Off-Road Equipment - 121-175 Hp	D	0.42	2.70	5.26	0.006	0.04	0.04	0.03	(1)
Off-Road Equipment - 176-250 Hp	D	0.24	0.92	5.00	0.006	0.02	0.02	0.02	(1)
Off-Road Equipment - 251-500 Hp	D	0.24	0.92	4.95	0.005	0.02	0.02	0.02	(1)
Off-Road Equipment - 501-750 Hp	D	0.24	0.92	4.95	0.006	0.02	0.02	0.02	(1)
Off-Road Equipment - >750 Hp	D	0.24	0.92	4.95	0.005	0.02	0.02	0.02	(1)
On-road Truck - Idle (Gms/Hr)	D	6.88	41.18	92.19	0.051	0.13	0.13	0.12	(2)
On-road Truck - 5 mph (Gms/Mi)	D	4.22	16.28	23.77	0.028	0.14	0.14	0.13	(2)
On-road Truck - 25 mph (Gms/Mi)	D	0.66	4.17	10.84	0.016	0.11	0.11	0.10	(2)
On-road Truck - 55 mph (Gms/Mi)	D	0.32	3.55	9.24	0.014	0.13	0.13	0.12	(2)
Dredge Materials Haul Truck - Composite (Gms/Mi)	D	1.02	5.38	12.13	0.017	0.11	0.11	0.10	(3)
Other On-Road Trucks - Composite (Gms/Mi)	D	0.58	4.31	10.29	0.015	0.13	0.13	0.12	(4)
All Years									
Tugboat (Gm/Hp-Hr)	D	0.20	1.87	5.07	0.004	0.15	0.15	0.14	(5)
Fugitive Dust (Lbs/acre-day)						27.50	13.45	2.81	(6)
Building Demolition (Lbs/1000 cf)						0.84	0.41	0.09	(7)
Small Harbor Craft	D	0.16	1.27	7.46	0.47	0.30	0.30	0.28	(8)

Notes: (1) From ARB OFFROAD2007 emissions model (2006) for each Hp category Tier 2 implementation year. Assuming ROG = THC*1.27.

PM emissions also reduced by 85% to simulate use of an ARB Level 3 PM control device.

- (2) Heavy duty diesel truck running emission factors developed from EMFAC2007 (ARB 2006). Units in grams/mile for project year 2007. Assume entire fleet complies with 2004 EPA standards and based on annual average conditions at 60 degrees and 50% humidity. PM running emission factors include combustive and tire/brake wear contributions. PM combustive emissions also reduced by 85% to simulate use of an ARB level 3 PM control device.
- (3) Composite factors based on a round trip of 90% at 25 mph and 10% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (4) For on-road trucks other then dredge material haul trucks, composite factor based on a round trip of 75% at 55 mph, 20% at 25 mph, and 5% at 5 mph. Units in grams/mile. Although not shown in these calculations, emissions from 5 minutes of idling mode included for each truck round trip.
- (5) = Tier 2 Marine diesel engine standards (Starcrest 2006). Average sulfur (S) content = 15 ppm in year 2007+.
- (6) Units in lbs/acre-day from section 11.2.3 of AP-42 (EPA 1995). Emissions reduced by 75% from uncontrolled levels to represent compliance with SCAQMD Rule 403 Fugitive Dust.
- (7) CEQA Air Quality Handbook, Table A9-9-H (SCAQMD 1993). Units in lbs/1000 cubic feet (cf) of demolished building.
- (8) EPA (2006)

Table C-93. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project - Demolition

			Pou	nds per Da	ıy		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver - Wharf							
Main Hoist - Clamshell Dredge	3.81	14.60	78.57	0.08	0.29	0.29	0.26
Main Generator - Clamshell Dredge	2.86	10.95	58.93	0.06	0.21	0.21	0.20
Deck Generator - Clamshell Dredge	0.30	1.17	6.35	0.01	0.02	0.02	0.02
Backhoe	1.84	10.25	17.90	0.02	0.19	0.19	0.17
Front End Loader	1.64	9.11	15.92	0.02	0.17	0.17	0.15
Haul Truck (1)	0.17	1.22	2.89	0.00	0.03	0.03	0.03
Tug Boat	0.85	7.90	21.48	0.02	0.63	0.63	0.59
Subtotal	11.47	55.21	202.04	0.20	1.54	1.54	1.43
Berths 243-245							
Main Hoist - Clamshell Dredge	3.81	14.60	78.57	0.08	0.29	0.29	0.26
Main Generator - Clamshell Dredge	2.86	10.95	58.93	0.06	0.21	0.21	0.20
Deck Generator - Clamshell Dredge	0.30	1.17	6.35	0.01	0.02	0.02	0.02
Backhoe	1.84	10.25	17.90	0.02	0.19	0.19	0.17
Front End Loader	1.64	9.11	15.92	0.02	0.17	0.17	0.15
Haul Truck (1)	0.08	0.61	1.45	0.00	0.02	0.02	0.02
Tug Boat	0.85	7.90	21.48	0.02	0.63	0.63	0.59
Subtotal	11.39	54.60	200.59	0.20	1.52	1.52	1.41

Notes: (1) Includes 5 minutes of idling time per round trip.

Table C-94. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Quarry Run Placement

			Pou	ınds per Da	ny .		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Barge Equipment	1.24	4.75	25.79	0.03	0.09	0.09	0.09
Derrick Barge Crane	0.57	2.19	11.90	0.01	0.04	0.04	0.04
Tugboat - Derrick Barge Crane	1.07	9.87	26.85	0.02	0.79	0.79	0.74
Tugboat - Transport Quarry Run to Site (1)	11.73	108.58	295.35	0.26	8.69	8.69	8.14
Subtotal	14.60	125.39	359.90	0.33	9.61	9.61	9.00
Berths 243-245							
Barge Equipment	1.24	4.75	25.79	0.03	0.09	0.09	0.09
Derrick Barge Crane	0.57	2.19	11.90	0.01	0.04	0.04	0.04
Tugboat - Derrick Barge Crane	1.07	9.87	26.85	0.02	0.79	0.79	0.74
Tugboat - Transport Quarry Run to Site (1)	10.75	99.54	270.74	0.23	7.96	7.96	7.46
Subtotal	13.63	116.34	335.28	0.31	8.89	8.89	8.33
Cabrillo SWH							
Barge Equipment	1.24	4.75	25.79	0.03	0.09	0.09	0.09
Derrick Barge Crane	0.57	2.19	11.90	0.01	0.04	0.04	0.04
Tugboat - Derrick Barge Crane	1.07	9.87	26.85	0.02	0.79	0.79	0.74
Tugboat - Transport Quarry Run to Site (1)	10.26	95.01	258.43	0.22	7.60	7.60	7.12
Subtotal	13.14	111.82	322.98	0.29	8.53	8.53	7.99
Eelgrass Restoration							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Quarry Run to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-95. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Armor Stone Placement

			Pou	nds per Da	y		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Barge Equipment	1.24	4.75	25.79	0.03	0.09	0.09	0.09
Derrick Barge Crane	0.57	2.19	11.90	0.01	0.04	0.04	0.04
Tugboat - Derrick Barge Crane	1.07	9.87	26.85	0.02	0.79	0.79	0.74
Tugboat - Transport Armor Stone to Site (1)	11.73	108.58	295.35	0.26	8.69	8.69	8.14
Subtotal	14.60	125.39	359.90	0.33	9.61	9.61	9.00
Berths 243-245							
Barge Equipment	1.24	4.75	25.79	0.03	0.09	0.09	0.09
Derrick Barge Crane	0.57	2.19	11.90	0.01	0.04	0.04	0.04
Tugboat - Derrick Barge Crane	1.07	9.87	26.85	0.02	0.79	0.79	0.74
Tugboat - Transport Armor Stone to Site (1)	10.75	99.54	270.74	0.23	7.96	7.96	7.46
Subtotal	13.63	116.34	335.28	0.31	8.89	8.89	8.33
Eelgrass							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-96. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project - Trench Excavation

THEIICH EXCAVATION							
			Pou	nds per Da	ay		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20
Subtotal	0.67	4.09	15.10	0.02	0.24	0.24	0.22
Berths 243-245							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20
Subtotal	0.67	4.09	15.10	0.02	0.24	0.24	0.22
CSWH							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20
Subtotal	0.67	4.09	15.10	0.02	0.24	0.24	0.22

Table C-97. Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project - Surcharge Removal

Surcharge Removal	Pounds per Day									
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5			
SW Slip A#1 Surcharge Removal - Loading	7.00		7.07.	00%			7 777270			
Scraper	2.86	10.95	59.52	0.07	0.21	0.21	0.20			
Backhoe	1.23	6.84	11.94	0.01	0.12	0.12	0.11			
Main Hoist - Clamshell Dredge (Electric)										
Main Generator - Clamshell Dredge (Electric)										
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03			
Dozer	2.13	8.15	43.87	0.05	0.16	0.16	0.15			
Off-Road Truck	2.22	8.52	45.83	0.05	0.17	0.17	0.15			
Water Truck	1.03	3.96	21.28	0.02	0.08	0.08	0.07			
Grader	0.38	1.46	7.94	0.01	0.03	0.03	0.03			
Subtotal	10.23	41.34	198.32	0.22	0.80	0.80	0.73			
SW Slip A#1 Surcharge Removal - Transport				•						
Scows										
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20			
Subtotal	0.28	2.63	7.16	0.01	0.21	0.21	0.20			
SW Slip A#1 Surcharge Removal - Unload NW Slip			•							
Main Hoist - Clamshell Dredge (Electric)										
Main Generator - Clamshell Dredge (Electric)										
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Electric Conveyor										
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
SW Slip A#1 Surcharge Removal - Unload CSWH										
Main Hoist - Clamshell Dredge	5.08	19.47	104.76	0.10	0.38	0.38	0.35			
Main Generator - Clamshell Dredge	3.81	14.60	78.57	0.08	0.29	0.29	0.26			
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03			
Scows										
Subtotal	9.27	35.53	191.27	0.19	0.70	0.70	0.64			
SW Slip A#1 Surcharge Removal - Transport/Unloa										
Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Electric Conveyor										
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Table C-98. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Contaminated Material.

Dreuging of Contaminated Material.							
			Pou	ınds per Da	ау		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Contaminated Dredge							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.23	0.88	4.76	0.01	0.02	0.02	0.02
Scows							
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20
Electric Pump							
Skiff	0.02	0.14	0.82	0.05	0.03	0.03	0.03
Subtotal	0.53	3.65	12.74	0.06	0.26	0.26	0.24

Table C-99. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material

Dreaging of Fine Grain Material			Pou	nds per Da	ıy		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Fine Grain Material CSWH	,						
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Pump							
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydraulic Dredging - Fine Grain Material CSWH							
Main Engine - Electric							
Derrick Hoist	0.36	1.36	7.41	0.01	0.03	0.03	0.02
Derrick Winch	0.08	0.43	0.76	0.00	0.01	0.01	0.01
Anchor Barge Winch	0.27	1.02	5.56	0.01	0.02	0.02	0.02
Generator	0.44	1.70	9.17	0.01	0.03	0.03	0.03
Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15
Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08
Tug Boat	3.40	31.46	85.58	0.07	2.52	2.52	2.36
Electric Pump							
Subtotal	4.67	37.04	114.64	0.49	2.85	2.85	2.67
Hydraulic Dredging - Fine Grain Material to LA-2							
Main Engine - Electric							
Derrick Hoist	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anchor Barge Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Pump							
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Clamshell Dredging - Fine Grain Material to LA 2							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.24	0.91	4.94	0.01	0.02	0.02	0.02
Tug Boat (1)	4.69	43.43	118.14	0.10	3.47	3.47	3.26
Subtotal	4.93	44.34	123.08	0.11	3.49	3.49	3.27

Table C-100. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material.

Dreuging of Coarse Grain Material.	Pounds per Day											
			Pou	nds per Da	iy .							
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5					
Clamshell Dredging - Coarse Grain Material Berth	243/245											
Main Hoist - Clamshell Dredge (Electric)												
Main Generator - Clamshell Dredge (Electric)												
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03					
Reel Barge												
Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15					
Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08					
Scows												
Tug Boat	0.57	5.26	14.32	0.01	0.42	0.42	0.39					
Electric Pump												
Subtotal	1.08	7.77	28.42	0.41	0.70	0.70	0.65					
Clamshell Dredging - Coarse Grain Material NW SI	ip											
Main Hoist - Clamshell Dredge (Electric)												
Main Generator - Clamshell Dredge (Electric)												
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03					
Reel Barge												
Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15					
Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08					
Scows												
Tug Boat	0.57	5.26	14.32	0.01	0.42	0.42	0.39					
Electric Pump												
Subtotal	1.08	7.77	28.42	0.41	0.70	0.70	0.65					

Table C-101. Peak Daily Mitigated Emissions for the POLA Channel Deepening Proposed Project

Location/Activity				po. Du	Day						
	ROG	СО	NOx	SOx	PM	PM10	PM2.5				
Demolition											
NW Slip Sliver	11	55	202	0	2	2	1				
Berths 243-245	11	55	201	0	2	2	1				
Dike Const. Quarry Run Placement											
NW Slip Sliver	15	125	360	0	10	10	9				
Berths 243-245	14	116	335	0	9	9	8				
Cabrillo SWH	13	112	323	0	9	9	8				
Dike Construction Armor Stone Placement											
NW Slip Sliver	15	125	360	0	10	10	9				
Berths 243-245	14	116	335	0	9	9	8				
Trench Excavation											
NW Slip Sliver	1	4	15	0	0	0	0				
Berths 243-245	1	4	15	0	0	0	0				
Cabrillo SWH	1	4	15	0	0	0	0				
Surcharge Removal	•										
Loading	10	41	198	0	1	1	1				
Transport	0	3	7	0	0	0	0				
Unload Cabrillo SWH	9	36	191	0	1	1	1				
Dredging of Contaminated Material											
Contaminated Dredge	1	4	13	0	0	0	0				
Dredging of Fine Material				1							
Hydraulic - Cabrillo SWH	5	37	115	0	3	3	3				
Clamshell - To LA 2	5	44	123	0	3	3	3				
Dredging of Coarse Material					-						
Clamshell - Berths 243-245	1	8	28	0	1	1	1				
Clamshell - NW Slip Sliver	1	8	28	0	1	1	1				
Peak Daily Mitigated Emissions	33	279	810	1	21	21	20				
2004 CEQA Baseline - Peak Daily Emissions	(68)	(383)	(1,556)	(100)	(47)	(47)	(43)				
Net Peak Daily Mitigated Emissions	(35)	(104)	(746)	(98)	(25)	(25)	(23)				
SCAQMD Daily Significance Thresholds	75	550	100	150	NA	150	55				

Notes: (1) Peak daily unmitigated emissions would occur from the simultaneous occurrence of (1) dike construction quarry run placement at the (1) NW Slip, (2) dike construction quarry run placement at Berths 243-245 landfill, and (3) disposal of hydraulic sediments at the CSWH.

Table C-102. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Demolition

Ţ.				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver - Wharf							
Main Hoist - Clamshell Dredge	0.07	0.26	1.38	0.00	0.01	0.01	0.00
Main Generator - Clamshell Dredge	0.05	0.19	1.03	0.00	0.00	0.00	0.00
Deck Generator - Clamshell Dredge	0.01	0.02	0.11	0.00	0.00	0.00	0.00
Backhoe	0.03	0.18	0.31	0.00	0.00	0.00	0.00
Front End Loader	0.03	0.16	0.28	0.00	0.00	0.00	0.00
Haul Truck (1)	0.00	0.02	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.01	0.14	0.38	0.00	0.01	0.01	0.01
Subtotal	0.20	0.97	3.54	0.00	0.03	0.03	0.02
Berths 243-245							
Main Hoist - Clamshell Dredge	0.15	0.56	3.03	0.00	0.01	0.01	0.01
Main Generator - Clamshell Dredge	0.11	0.42	2.27	0.00	0.01	0.01	0.01
Deck Generator - Clamshell Dredge	0.01	0.04	0.24	0.00	0.00	0.00	0.00
Backhoe	0.07	0.39	0.69	0.00	0.01	0.01	0.01
Front End Loader	0.06	0.35	0.61	0.00	0.01	0.01	0.01
Haul Truck (1)	0.00	0.02	0.06	0.00	0.00	0.00	0.00
Tug Boat	0.03	0.30	0.83	0.00	0.02	0.02	0.02
Subtotal	0.44	2.10	7.72	0.01	0.06	0.06	0.05

Table C-103. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Quarry Run Placement

				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
NW Slip Sliver							
Barge Equipment	0.08	0.31	1.69	0.00	0.01	0.01	0.01
Derrick Barge Crane	0.04	0.14	0.78	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.07	0.65	1.76	0.00	0.05	0.05	0.05
Tugboat - Transport Quarry Run to Site (1)	0.77	7.12	19.37	0.02	0.57	0.57	0.53
Subtotal	0.96	8.22	23.61	0.02	0.63	0.63	0.59
Berths 243-245							
Barge Equipment	0.06	0.24	1.31	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.03	0.11	0.60	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.05	0.50	1.36	0.00	0.04	0.04	0.04
Tugboat - Transport Quarry Run to Site (1)	0.54	5.04	13.70	0.01	0.40	0.40	0.38
Subtotal	0.69	5.89	16.97	0.02	0.45	0.45	0.42
Cabrillo SWH							
Barge Equipment	0.13	0.49	2.66	0.00	0.01	0.01	0.01
Derrick Barge Crane	0.06	0.23	1.23	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.11	1.02	2.77	0.00	0.08	0.08	0.08
Tugboat - Transport Quarry Run to Site (1)	1.06	9.79	26.64	0.02	0.78	0.78	0.73
Subtotal	1.35	11.53	33.29	0.03	0.88	0.88	0.82
Eelgrass Restoration							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Quarry Run to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-104. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Armor Stone Placement

	Tons								
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
NW Slip Sliver									
Barge Equipment	0.01	0.03	0.16	0.00	0.00	0.00	0.00		
Derrick Barge Crane	0.00	0.01	0.07	0.00	0.00	0.00	0.00		
Tugboat - Derrick Barge Crane	0.01	0.06	0.17	0.00	0.00	0.00	0.00		
Tugboat - Transport Armor Stone to Site (1)	0.07	0.68	1.85	0.00	0.05	0.05	0.05		
Subtotal	0.09	0.78	2.25	0.00	0.06	0.06	0.06		
Berths 243-245									
Barge Equipment	0.01	0.02	0.13	0.00	0.00	0.00	0.00		
Derrick Barge Crane	0.00	0.01	0.06	0.00	0.00	0.00	0.00		
Tugboat - Derrick Barge Crane	0.01	0.05	0.13	0.00	0.00	0.00	0.00		
Tugboat - Transport Armor Stone to Site (1)	0.05	0.50	1.35	0.00	0.04	0.04	0.04		
Subtotal	0.07	0.58	1.68	0.00	0.04	0.04	0.04		
Eelgrass									
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Table C-105. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Trench Excavation

	Tons						
ROG	СО	NOx	SOx	PM	PM10	PM2.5	
0.00	0.01	0.03	0.00	0.00	0.00	0.00	
0.00	0.01	0.03	0.00	0.00	0.00	0.00	
0.00	0.01	0.05	0.00	0.00	0.00	0.00	
0.00	0.01	0.05	0.00	0.00	0.00	0.00	
0.00	0.02	0.05	0.00	0.00	0.00	0.00	
0.00	0.03	0.10	0.00	0.00	0.00	0.00	
0.00	0.00	0.02	0.00	0.00	0.00	0.00	
0.00	0.01	0.02	0.00	0.00	0.00	0.00	
0.00	0.01	0.04	0.00	0.00	0.00	0.00	
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03	ROG CO NOx 0.00 0.01 0.03 0.00 0.01 0.03 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.02 0.05 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.01 0.02	ROG CO NOx SOx 0.00 0.01 0.03 0.00 0.00 0.01 0.03 0.00 0.00 0.01 0.05 0.00 0.00 0.01 0.05 0.00 0.00 0.01 0.05 0.00 0.00 0.02 0.05 0.00 0.00 0.03 0.10 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.02 0.00	ROG CO NOx SOx PM	ROG CO NOx SOx PM PM10 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

Table C-106. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project - Surcharge Removal

Surcharge Removal	1			-			-
	Tons						51.10.5
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
SW Slip A#1 Surcharge Removal - Loading	0.1-	1	T	1			
Scraper	0.17	0.64	3.47	0.00	0.01	0.01	0.01
Backhoe	0.07	0.40	0.70	0.00	0.01	0.01	0.01
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00
Dozer	0.12	0.47	2.56	0.00	0.01	0.01	0.01
Off-Road Truck	0.13	0.50	2.67	0.00	0.01	0.01	0.01
Water Truck	0.06	0.23	1.24	0.00	0.00	0.00	0.00
Grader	0.02	0.09	0.46	0.00	0.00	0.00	0.00
Subtotal	0.60	2.41	11.55	0.01	0.05	0.05	0.04
SW Slip A#1 Surcharge Removal - Transport							
Scows							
Tug Boat	0.02	0.15	0.42	0.00	0.01	0.01	0.01
Subtotal	0.02	0.15	0.42	0.00	0.01	0.01	0.01
SW Slip A#1 Surcharge Removal - Unload NW Slip							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Conveyor							
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SW Slip A#1 Surcharge Removal - Unload CSWH							
Main Hoist - Clamshell Dredge	0.30	1.13	6.10	0.01	0.02	0.02	0.02
Main Generator - Clamshell Dredge	0.22	0.85	4.58	0.00	0.02	0.02	0.02
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00
Scows							
Subtotal	0.54	2.07	11.14	0.01	0.04	0.04	0.04
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2							
Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Conveyor							
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-107. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Contaminated Material.

	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Contaminated Dredge							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.07	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.04	0.11	0.00	0.00	0.00	0.00
Electric Pump							
Skiff	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Subtotal	0.01	0.05	0.19	0.00	0.00	0.00	0.00

Table C-108. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material

Dreuging of Fine Grain Material	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Fine Grain Material CSWH							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Pump							
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydraulic Dredging - Fine Grain Material CSWH							
Main Engine - Electric							
Derrick Hoist	0.01	0.03	0.16	0.00	0.00	0.00	0.00
Derrick Winch	0.00	0.01	0.02	0.00	0.00	0.00	0.00
Anchor Barge Winch	0.01	0.02	0.12	0.00	0.00	0.00	0.00
Generator	0.01	0.04	0.20	0.00	0.00	0.00	0.00
Survey Boat	0.00	0.02	0.09	0.01	0.00	0.00	0.00
Crew Boat	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.07	0.69	1.87	0.00	0.06	0.06	0.05
Electric Pump							
Subtotal	0.10	0.81	2.51	0.01	0.06	0.06	0.06
Hydraulic Dredging - Fine Grain Material to LA-2							
Main Engine - Electric							
Derrick Hoist	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Anchor Barge Winch	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Generator	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Survey Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Pump							
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Clamshell Dredging - Fine Grain Material to LA 2							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.02	0.09	0.49	0.00	0.00	0.00	0.00
Tug Boat (1)	0.47	4.34	11.81	0.01	0.35	0.35	0.33
Subtotal	0.49	4.43	12.31	0.01	0.35	0.35	0.33

Table C-109. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material.

Dreuging of Coarse Grain Material.							
	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Coarse Grain Material Berth 243/245							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.01	0.02	0.12	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.01	0.06	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.01	0.03	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.01	0.08	0.22	0.00	0.01	0.01	0.01
Electric Pump							
Subtotal	0.02	0.12	0.43	0.01	0.01	0.01	0.01
Clamshell Dredging - Coarse Grain Material NW Slip							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Reel Barge							
Survey Boat	0.00	0.00	0.02	0.00	0.00	0.00	0.00
Crew Boat	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.03	0.09	0.00	0.00	0.00	0.00
Electric Pump							
Subtotal	0.01	0.05	0.17	0.00	0.00	0.00	0.00

Table C-110. Total Mitigated Emissions for the POLA Channel Deepening Proposed Project

	Tons						
Location/Activity	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Demolition							
NW Slip Sliver	0.20	0.97	3.54	0.00	0.03	0.03	0.02
Berths 243-245	0.44	2.10	7.72	0.01	0.06	0.06	0.05
Dike Const. Quarry Run Placement							
NW Slip Sliver	0.96	8.22	23.61	0.02	0.63	0.63	0.59
Berths 243-245	0.69	5.89	16.97	0.02	0.45	0.45	0.42
Cabrillo SWH	1.35	11.53	33.29	0.03	0.88	0.88	0.82
Dike Construction Armor Stone Placement							
NW Slip Sliver	0.09	0.78	2.25	0.00	0.06	0.06	0.06
Berths 243-245	0.07	0.58	1.68	0.00	0.04	0.04	0.04
Trench Excavation							
NW Slip Sliver	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Berths 243-245	0.00	0.03	0.10	0.00	0.00	0.00	0.00
Cabrillo SWH	0.00	0.01	0.04	0.00	0.00	0.00	0.00
Surcharge Removal							
Loading	0.60	2.41	11.55	0.01	0.05	0.05	0.04
Transport	0.02	0.15	0.42	0.00	0.01	0.01	0.01
Unload Cabrillo SWH	0.54	2.07	11.14	0.01	0.04	0.04	0.04
Dredging of Contaminated Material							
Contaminated Dredge	0.01	0.05	0.19	0.00	0.00	0.00	0.00
Dredging of Fine Material							
Hydraulic - Cabrillo SWH	0.10	0.81	2.51	0.01	0.06	0.06	0.06
Clamshell - To LA 2	0.49	4.43	12.31	0.01	0.35	0.35	0.33
Dredging of Coarse Material							
Clamshell - Berths 243-245	0.02	0.12	0.43	0.01	0.01	0.01	0.01
Clamshell - NW Slip Sliver	0.01	0.05	0.17	0.00	0.00	0.00	0.00
Total Mitigated Emissions	5.59	40.22	127.96	0.14	2.68	2.68	2.51

Table C-111. Yearly Mitigated Emissions for the POLA Channel Deepening Proposed Project

Table C-111. Tearly wildigated Emissions for the FOLA Chamiler Deepering Proposed Project							
	Tons (1)						
Project Scenario	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Alternative 1 - 2009	1.0	6.6	20.8	0.0	0.4	0.4	0.4
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Alternative 1 Net Annual Unmitigated Emissions - 2009	(5.6)	(25.8)	(95.9)	(5.6)	(3.3)	(3.3)	(3.1)
Alternative 1 - 2010	3.2	26.2	76.4	0.1	2.0	2.0	1.8
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Alternative 1 Net Annual Unmitigated Emissions - 2010	(3.5)	(6.2)	(40.3)	(5.5)	(1.8)	(1.8)	(1.6)
Alternative 1 - 2011	1.5	7.4	30.7	0.0	0.3	0.3	0.3
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Alternative 1 Net Annual Unmitigated Emissions - 2011	(5.2)	(25.1)	(85.9)	(5.6)	(3.4)	(3.4)	(3.2)
Conformity de minimis Thresholds	10	100	10	NA	NA	70	100

Table C-112. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Dem

	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
NW Slip Sliver - Wharf				
Main Hoist - Clamshell Dredge	158	0.02	0.00	159
Main Generator - Clamshell Dredge	118	0.02	0.00	119
Deck Generator - Clamshell Dredge	13	0.00	0.00	13
Backhoe	32	0.01	0.00	32
Front End Loader	28	0.00	0.00	28
Haul Truck (1)	9	0.00	0.00	9
Tug Boat	36	0.00	0.00	36
Subtotal	393	0.06	0.00	396
Berths 243-245				
Main Hoist - Clamshell Dredge	347	0.05	0.00	349
Main Generator - Clamshell Dredge	260	0.04	0.00	262
Deck Generator - Clamshell Dredge	28	0.00	0.00	28
Backhoe	69	0.01	0.00	70
Front End Loader	62	0.01	0.00	62
Haul Truck (1)	10	0.00	0.00	10
Tug Boat	78	0.01	0.00	79
Subtotal	855	0.13	0.01	860

Table C-113. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Dike Construction Quarry Run Placement

Ţ.	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
NW Slip Sliver		·		
Barge Equipment	192	0.03	0.00	194
Derrick Barge Crane	89	0.01	0.00	89
Tugboat - Derrick Barge Crane	167	0.02	0.00	168
Tugboat - Transport Quarry Run to Site (1)	1,838	0.25	0.02	1,848
Subtotal	2,286	0.32	0.02	2,300
Berths 243-245		<u>.</u>		
Barge Equipment	148	0.02	0.00	149
Derrick Barge Crane	68	0.01	0.00	69
Tugboat - Derrick Barge Crane	129	0.02	0.00	130
Tugboat - Transport Quarry Run to Site (1)	1,299	0.18	0.01	1,307
Subtotal	1,645	0.23	0.02	1,655
Cabrillo SWH				
Barge Equipment	302	0.05	0.00	304
Derrick Barge Crane	139	0.02	0.00	140
Tugboat - Derrick Barge Crane	263	0.04	0.00	264
Tugboat - Transport Quarry Run to Site (1)	2,527	0.35	0.02	2,542
Subtotal	3,231	0.46	0.03	3,251
Eelgrass Restoration				
Barge Equipment				
Derrick Barge Crane				
Tugboat - Derrick Barge Crane				
Tugboat - Transport Quarry Run to Site (1)				_
Subtotal	0	0.00	0.00	0

Table C-114. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Dik Construction Armor Stone Placement

Construction Armor Stone Flacement					
		Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e	
NW Slip Sliver					
Barge Equipment	18	0.00	0.00	18	
Derrick Barge Crane	8	0.00	0.00	9	
Tugboat - Derrick Barge Crane	16	0.00	0.00	16	
Tugboat - Transport Armor Stone to Site (1)	175	0.02	0.00	176	
Subtotal	218	0.03	0.00	219	
Berths 243-245					
Barge Equipment	15	0.00	0.00	15	
Derrick Barge Crane	7	0.00	0.00	7	
Tugboat - Derrick Barge Crane	13	0.00	0.00	13	
Tugboat - Transport Armor Stone to Site (1)	128	0.02	0.00	129	
Subtotal	163	0.02	0.00	164	
Eelgrass					
Barge Equipment					
Derrick Barge Crane					
Tugboat - Derrick Barge Crane					
Tugboat - Transport Armor Stone to Site (1)					
Subtotal	0	0.00	0.00	0	

Table C-115. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Trench Excavation

	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
NW Slip Sliver				
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	3	0.00	0.00	3
Tug Boat	2	0.00	0.00	2
Subtotal	6	0.00	0.00	6
Berths 243-245				
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	6	0.00	0.00	6
Tug Boat	4	0.00	0.00	4
Subtotal	10	0.00	0.00	10.23
CSWH				
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	3	0.00	0.00	3
Tug Boat	2	0.00	0.00	2
Subtotal	5	0.00	0.00	4.55

Table C-116. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Surcharge Removal

Surcharge Removal				
	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
SW Slip A#1 Surcharge Removal - Loading	·	·		
Scraper	394	0.06	0.00	397
Backhoe	70	0.01	0.00	71
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	53	0.01	0.00	53
Dozer	293	0.04	0.00	295
Off-Road Truck	307	0.04	0.00	308
Water Truck	142	0.02	0.00	143
Grader	53	0.01	0.00	53
Subtotal	1,311	0.20	0.01	1,320
SW Slip A#1 Surcharge Removal - Transport		<u>.</u>		
Scows				
Tug Boat	40	0.01	0.00	40
Subtotal	40	0.01	0.00	40
SW Slip A#1 Surcharge Removal - Unload NW Slip		<u>.</u>		
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Electric Conveyor				
Dozer	0	0.00	0.00	0
Subtotal	0	0.00	0.00	0
SW Slip A#1 Surcharge Removal - Unload CSWH				
Main Hoist - Clamshell Dredge	701	0.10	0.01	705
Main Generator - Clamshell Dredge	525	0.08	0.01	529
Deck Generator - Clamshell Dredge	53	0.01	0.00	53
Scows				
Subtotal	1,279	0.19	0.01	1,287
SW Slip A#1 Surcharge Removal - Transport/Unload LA	\-2	·		
Main Hoist - Clamshell Dredge	0	0.00	0.00	0
Main Generator - Clamshell Dredge	0	0.00	0.00	0
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Electric Conveyor				
Dozer	0	0.00	0.00	0
Tug Boat				
Subtotal	0	0.00	0.00	0

Table C-117. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Dredging of Contaminated Material.

breaging or containinated material.						
		Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e		
Contaminated Dredge						
Main Hoist - Clamshell Dredge (Electric)						
Main Generator - Clamshell Dredge (Electric)						
Deck Generator - Clamshell Dredge	8	0.00	0.00	8		
Scows						
Tug Boat	10	0.00	0.00	10		
Electric Pump						
Skiff	1	0.00	0.00	1		
Subtotal	19	0.00	0.00	19		

Table C-118. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material

Dreuging of Fine Grain Material	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
Clamshell Dredging - Fine Grain Material CSWH	552	J		3320
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Reel Barge				
Survey Boat	0	0.00	0.00	0
Crew Boat	0	0.00	0.00	0
Scows				
Tug Boat	0	0.00	0.00	0
Electric Pump				
Subtotal	0	0.00	0.00	0
Hydraulic Dredging - Fine Grain Material CSWH		_		
Main Engine - Electric				
Derrick Hoist	18	0.00	0.00	19
Derrick Winch	2	0.00	0.00	2
Anchor Barge Winch	14	0.00	0.00	14
Generator	23	0.00	0.00	23
Survey Boat	6	0.00	0.00	6
Crew Boat	3	0.00	0.00	3
Tug Boat	178	0.02	0.00	179
Electric Pump				
Subtotal	244	0.03	0.00	245
Hydraulic Dredging - Fine Grain Material Eelgrass				
Main Engine - Electric				
Derrick Hoist				
Derrick Winch				
Anchor Barge Winch				
Generator				
Survey Boat				
Crew Boat				
Tug Boat				
Electric Pump				
Tug Boat				
Subtotal				
Clamshell Dredging - Fine Grain Material to LA 2				
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	56	0.01	0.00	57
Tug Boat (1)	1,121	0.15	0.01	1,127
Subtotal	1,177	0.16	0.01	1,184

Table C-119. Total Direct Mitigated GHG Emissions for the POLA Channel Deepening Proposed Projec Dredging of Coarse Grain Material.

Droughing or occurse Grain material.	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
Clamshell Dredging - Coarse Grain Material Berth 243/2	245			
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	14	0.00	0.00	14
Reel Barge				
Survey Boat	4	0.00	0.00	4
Crew Boat	2	0.00	0.00	2
Scows				
Tug Boat	20	0.00	0.00	21
Electric Pump				
Subtotal	40	0.01	0.00	40
Clamshell Dredging - Coarse Grain Material Berth 243/2	245			
Main Hoist - Clamshell Dredge (Electric)				
Main Generator - Clamshell Dredge (Electric)				
Deck Generator - Clamshell Dredge	5	0.00	0.00	6
Reel Barge				
Survey Boat	2	0.00	0.00	2
Crew Boat	1	0.00	0.00	1
Scows				
Tug Boat	8	0.00	0.00	8
Electric Pump				
Subtotal	16	0.00	0.00	16

Table C-120. Total Direct Mitigated GHG Emissions for the POLA Channel Deepening Proposed Projec

Table C-120. Total bliect witigated GRG Emissions for the POLA Charmer beepering P				
Location/Activity	CO2	CH4	N2O	CO2e
Demolition				
NW Slip Sliver	393	0.06	0.00	396
Berths 243-245	855	0.13	0.01	860
Dike Const. Quarry Run Placement				
NW Slip Sliver	2,286	0.32	0.02	2,300
Berths 243-245	1,645	0.23	0.02	1,655
Cabrillo SWH	3,231	0.46	0.03	3,251
Dike Construction Armor Stone Placement				
NW Slip Sliver	218	0.03	0.00	219
Berths 243-245	163	0.02	0.00	164
Trench Excavation				
NW Slip Sliver	6	0.00	0.00	6
Berths 243-245	10	0.00	0.00	10
Cabrillo SWH	5	0.00	0.00	5
Surcharge Removal		3.22		
Loading	1,311	0.20	0.01	1,320
Transport	40	0.01	0.00	40
Unload Cabrillo SWH	1,279	0.19	0.01	1,287
Dredging of Contaminated Material				
Contaminated Dredge	19	0.00	0.00	19
Dredging of Fine Material				
Hydraulic - Cabrillo SWH	244	0.03	0.00	245
Clamshell - Fine Grain Material to LA 2	1,177	0.16	0.01	1,184
Dredging of Coarse Material				
Clamshell - Berths 243-245	40	0.01	0.00	40
Clamshell - NW Slip Sliver	16	0.00	0.00	16
Total Emissions	12,935	1.86	0.13	13,015

Table C-121. Yearly Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project

			<u> </u>		
		Metric Tons (1)			
Year/Source Category	CO2	CH4	N2O	CO2e	
Alternative 1 Direct Sources - 2009	1,933	0.28	0.02	1,945	
Alternative 1 Electrical Generation - 2009	43	0.00	0.00	43	
Alternative 1 Total Mitigated Emissions - 2009	1,976	0.28	0.02	1,988	
Alternative 1 Direct Sources - 2010	6,771	0.96	0.07	6,813	
Alternative 1 Electrical Generation - 2010	3,580	0.03	0.02	3,585	
Alternative 1 Total Mitigated Emissions - 2010	10,351	0.99	0.08	10,398	
Alternative 1 Direct Sources - 2011	3,054	0.45	0.03	3,074	
Alternative 1 Electrical Generation - 2011	1,036	0.01	0.00	1,037	
Alternative 1 Total Mitigated Emissions - 2011	4,090	0.46	0.04	4,111	
Nation (4) Englished distributed into a shared and accompany	Programme and a second				

Table 122 - Construction Activities for the POLA Channel Deepening Proposed Project - Trench Excavation - Electrical Demand

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	<i>Active</i>	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
NW Slip Sliver								
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400	7.1	102,857
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800	7.1	77,143
Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720		
Tug Boat	800	0.20	1	160	4	640		
Berths 243-245								
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400	12.9	185,143
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800	12.9	138,857
Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720		
Tug Boat	800	0.20	1	160	4	640		
CSWH						•		
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400	5.7	82,286
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800	5.7	61,714
Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720		·
Tug Boat	800	0.20	1	160	4	640		

Table 123 - Construction Activities for the POLA Channel Deepening Proposed Project - Surcharge Removal - Electrical Demand

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
SW Slip A#1 Surcharge Removal - Loading								
Scraper	225	0.40	5	450	12	5,400		
Backhoe	80	0.50	2	80	12	960		
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	12	7,200	116.5	838,800
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	12	5,400	116.5	629,100
Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720		
Dozer	335	0.50	2	335	12	4,020		
Off-Road Truck			4					
Water Truck	325	0.50	1	163	12	1,950		
Grader	180	0.50	1	90	8	720		
SW Slip A#1 Surcharge Removal - Transport								
Scows	N/A	N/A	2	N/A	12	N/A		
Tug Boat	800	0.20	1	160	4	640		
SW Slip A#1 Surcharge Removal - Unload NW Slip	•						•	
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400		
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800		
Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720		
Electric Conveyor	N/A	N/A	1	N/A	16	N/A		
Dozer	335	0.50	1	168	16	2,680		

Table 124 - Construction Activities for the POLA Channel Deepening Proposed Project -

Dredging of Contaminated Material - Electrical Demand

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Contaminated Dredge								
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	12	7,200	29.8	214,211
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	12	5,400	29.8	160,658
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432		
Scows	N/A	N/A	1	N/A	12	N/A		
Tug Boat	800	0.20	1	160	4	640		
Electric Pump	N/A	N/A	1	N/A	12	N/A		
Skiff	125	0.20	1	25	2	50		

Table 125 - Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Fine Grain Material - Electrical Demand

Dredging of Fine Grain Material - Electr								
	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Clamshell Dredging - Fine Grain Material CSWH			. 1		1			
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400	0.0	
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800	0.0	
Deck Generator - Clamshell Dredge	240	0.6	1	144	5	720		
Reel Barge	N/A	N/A	N/A	N/A	N/A	N/A		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Scows	N/A	N/A	2	N/A	24	N/A		
Tug Boat	800	0.2	1	160	8	1,280		
Electric Pump	N/A	N/A	1	N/A	24	N/A		
Hydraulic Dredging - Fine Grain Material CSWH								
Main Engine - Electric	17,000	1	1	8,500	24	204,000	43.8	8,938,090
Derrick Hoist	240	0.7	1	168	4	672		
Derrick Winch	87	0.7	1	61	1	61		
Anchor Barge Winch	180	0.7	1	126	4	504		
Generator	350	0.6	1	210	4	840		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Tug Boat	850	0.5	1	425	18	7,650		
Electric Pump	N/A	N/A	1	N/A	24	N/A		
Hydraulic Dredging - Fine Grain Material Eelgrass					Į.		<u> </u>	
Main Engine - Electric	17,000	1	1	8,500	24	204,000	0.0	
Derrick Hoist	240	0.7	1	168	4	672		
Derrick Winch	87	0.7	1	61	1	61		
Anchor Barge Winch	180	0.7	1	126	4	504		
Generator	350	0.6	1	210	4	840		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Tug Boat	850	0.5	1	425	18	7,650		
Electric Pump	N/A	N/A	1	N/A	24	N/A		
Tug Boat								
Clamshell Dredging - Fine Grain Material to LA 2								
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	15	8,964	200.0	1,792,717
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	15	6,723	200.0	1,344,538
Deck Generator - Clamshell Dredge	240	0.6	1	144	3	448		, , ,
Tug Boat (1)	2,200	0.6	3	3,960	4.0	15,840		
N-t (1) D				-,.50				

Notes: (1) Dredge slurry assumed to be 40% water, resulting in a daily water bulked disposal volume to LA-2 of 6,700 cy. At a barge capacity of 2,000 cy, this requires aproximately 3 total barge trips. At a distance of 25 nm and a speed of 5 knots, each round trip would take 10 hours.

Table 126 - Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material.

Dredging of Coarse Grain Material.	Dawar	Lood	.//	I I a combo	110,000	Dalle	11/04/	Tatal
	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Clamshell Dredging - Coarse Grain Material Berth	243/245							
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400	30.0	432,493
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800	30.0	324,370
Deck Generator - Clamshell Dredge	240	0.6	1	144	5	720		
Reel Barge	N/A	N/A	N/A	N/A	N/A	N/A		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Scows	N/A	N/A	2	N/A	24	N/A		
Tug Boat	800	0.2	1	160	8	1,280		
Electric Pump	N/A	N/A	1	N/A	24	N/A		
Clamshell Dredging - Coarse Grain Material NW SI	ip							
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	24	14,400	12.1	174,790
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	24	10,800	12.1	131,092
Deck Generator - Clamshell Dredge	240	0.6	1	144	5	720		
Reel Barge	N/A	N/A	N/A	N/A	N/A	N/A		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Scows	N/A	N/A	2	N/A	24	N/A		·
Tug Boat	800	0.2	1	160	8	1,280		·
Electric Pump	N/A	N/A	1	N/A	24	N/A		

Table 127 - Total Emissions for the POLA Channel Deepening Proposed Project -Trench Excavation - Mitigated GHG Emissions from Electrical Generation

		Tons	6	
Location/Equipment Type	CO2	CH4	N2O	CO2e
NW Slip Sliver				
Main Hoist - Clamshell Dredge (Electric)	33.72	0.00	0.00	34
Main Generator - Clamshell Dredge (Electric)	25.29	0.00	0.00	25
Deck Generator - Clamshell Dredge				
Tug Boat				
Subtotal	59	0.00	0.00	59
Berths 243-245				
Main Hoist - Clamshell Dredge (Electric)	60.70	0.00	0.00	61
Main Generator - Clamshell Dredge (Electric)	45.53	0.00	0.00	46
Deck Generator - Clamshell Dredge				
Tug Boat				
Subtotal	106	0.00	0.00	106
CSWH				
Main Hoist - Clamshell Dredge (Electric)	26.98	0.00	0.00	27
Main Generator - Clamshell Dredge (Electric)	20.23	0.00	0.00	20
Deck Generator - Clamshell Dredge				
Tug Boat				
Subtotal	47	0.00	0.00	47

Table 128. Total Emissions for the POLA Channel Deepening Proposed Project -Surcharge Removal - Mitigated GHG Emissions from Electrical Generation

Suicharge Removal - Willigated Grid Emissi					
		Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e	
SW Slip A#1 Surcharge Removal - Loading					
Scraper					
Backhoe					
Main Hoist - Clamshell Dredge (Electric)	275.02	0.00	0.00	275	
Main Generator - Clamshell Dredge (Electric)	206.26	0.00	0.00	207	
Deck Generator - Clamshell Dredge					
Dozer					
Off-Road Truck					
Water Truck					
Grader					
Subtotal	481	0.00	0.00	482	
SW Slip A#1 Surcharge Removal - Transport					
Scows					
Tug Boat					
Subtotal					
SW Slip A#1 Surcharge Removal - Unload NW Slip					
Main Hoist - Clamshell Dredge (Electric)					
Main Generator - Clamshell Dredge (Electric)					
Deck Generator - Clamshell Dredge					
Electric Conveyor					
Dozer			·		
Subtotal					

Table 129. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material - Mitigated GHG Emissions from Electrical Generation

Broaging of contaminated material mitt	gatoa ono Emissio	115 ITOTTI E1000	noar Conoratio	<u> </u>			
	Tons						
Location/Equipment Type	CO2	CH4	N2O	CO2e			
Contaminated Dredge							
Main Hoist - Clamshell Dredge (Electric)	70.23	0.00	0.00	70			
Main Generator - Clamshell Dredge (Electric)	52.68	0.00	0.00	53			
Deck Generator - Clamshell Dredge							
Scows							
Tug Boat							
Electric Pump							
Skiff							
Subtotal	123	0.00	0.00	123			

Table 130. Construction Activities for the POLA Channel Deepening Proposed Project -

Dredging of Fine Grain Material - Mitigated GHG Emissions from Electrical Generation					
		Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Clamshell Dredging - Fine Grain Material CSWH					
Main Hoist - Clamshell Dredge (Electric)					
Main Generator - Clamshell Dredge (Electric)					
Deck Generator - Clamshell Dredge					
Reel Barge					
Survey Boat					
Crew Boat					
Scows					
Tug Boat					
Electric Pump					
Subtotal					
Hydraulic Dredging - Fine Grain Material CSWH					
Main Engine - Electric	2,930.56	0.02	0.01	2,935	
Derrick Hoist					
Derrick Winch					
Anchor Barge Winch					
Generator					
Survey Boat					
Crew Boat					
Tug Boat					
Electric Pump					
Subtotal	2,931	0.02	0.01	2,935	
Hydraulic Dredging - Fine Grain Material Eelgrass					
Main Engine - Electric					
Derrick Hoist					
Derrick Winch					
Anchor Barge Winch					
Generator					
Survey Boat					
Crew Boat					
Tug Boat					
Electric Pump					
Tug Boat					
Subtotal					
Clamshell Dredging - Fine Grain Material to LA 2					
Main Hoist - Clamshell Dredge (Electric)	587.78	0.00	0.00	589	
Main Generator - Clamshell Dredge (Electric)	440.84	0.00	0.00	441	
Deck Generator - Clamshell Dredge					
Tug Boat (1)					
Subtotal	1,029	0.01	0.00	1,030	
	.,,	0.01	0.00	.,000	

Table 131. Construction Activities for the POLA Channel Deepening Proposed Project - Dredging of Coarse Grain Material - Mitigated GHG Emissions from Electrical Generation

Dreuging of coarse Grain Material - Mittig	Jacob Cirio Elilissioni	Tons					
Location/Equipment Type	CO2	CH4	, N2O	CO2e			
Clamshell Dredging - Coarse Grain Material Berth 2		C/14	1V2.U	0020			
Main Hoist - Clamshell Dredge (Electric)	141.80	0.00	0.00	142			
	106.35	0.00	0.00	107			
Main Generator - Clamshell Dredge (Electric)	100.33	0.00	0.00	107			
Deck Generator - Clamshell Dredge							
Reel Barge							
Survey Boat							
Crew Boat							
Scows							
Tug Boat							
Electric Pump							
Subtotal	248	0.00	0.00	249			
Clamshell Dredging - Coarse Grain Material Berth 24	43/245						
Main Hoist - Clamshell Dredge (Electric)	57.31	0.00	0.00	57			
Main Generator - Clamshell Dredge (Electric)	42.98	0.00	0.00	43			
Deck Generator - Clamshell Dredge							
Reel Barge							
Survey Boat							
Crew Boat							
Scows							
Tug Boat							
Electric Pump							
Subtotal	100	0.00	0.00	100			

Table 132. Total Mitigated GHG Emissions for the POLA Channel Deepening Proposed Project Due to Electrical Generation

Due to Electrical Generation	_					
		Tons				
Location/Activity	CO2	CH4	N2O	CO2e		
Demolition						
NW Slip Sliver						
Berths 243-245						
Dike Const. Quarry Run Placement						
NW Slip Sliver						
Berths 243-245						
Cabrillo SWH						
Dike Construction Armor Stone Placement						
NW Slip Sliver						
Berths 243-245						
Trench Excavation						
NW Slip Sliver	59	0.00	0.00	59		
Berths 243-245	106	0.00	0.00	106		
Cabrillo SWH	47	0.00	0.00	47		
Surcharge Removal	7/	0.00	0.00	77		
Loading	481	0.00	0.00	482		
Transport	101	0.00	0.00	102		
Haland Calmilla CMIII						
Unload Cabrillo SWH						
Dredging of Contaminated Material						
Contaminated Dredge	123	0.00	0.00	123		
Dredging of Fine Material						
Hydraulic - Cabrillo SWH	2,931	0.02	0.01	2,935		
Clamshell - Fine Grain Material to LA 2	1,029	0.01	0.00	1,030		
Dredging of Coarse Material						
Clamshell - Berths 243-245	248	0.00	0.00	249		
Clamshell - NW Slip Sliver	100	0.00	0.00	100		
Total Emissions	5,124	0.04	0.02	5,132		

Table 133. POLA Channel Deepening Proposed Project Annual Mitigated GHG Emissions due to Electrical Generation

and to Electrical Contraction					
	Metric Tons (1)				
Year	CO2	CH4	N2O	CO2e	
2009	43	0.00	0.00	43	
2010	3,580	0.03	0.02	3,585	
2011	1,036	0.01	0.00	1,037	

ALTERNATIVE 2 UNMITIGATED EMISSIONS DATA

- Table C-134. Construction Activities for the POLA Channel Deepening Project Alternative 2 Dike Construction Quarry Run Placement
- Table C-135. Construction Activities for the POLA Channel Deepening Project Alternative 2 Surcharge Removal
- Table C-136. Construction Activities for the POLA Channel Deepening Project Alternative 2 Dredging of Contaminated Material.
- Table C-137. Construction Activities for the POLA Channel Deepening Project Alternative 2 Dredging and Disposal of Dredging Material
- Table C-138. Daily Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Dike Construction Quarry Run Placement
- Table C-139. Daily Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Surcharge Removal
- Table C-140. Daily Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Dredging of Contaminated Material.
- Table C-141. Daily Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Dredging and Disposal of Dredging Material
- Table C-142. Peak Daily Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2
- Table C-143. Total Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Dike Construction Quarry Run Placement
- Table C-144. Total Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Surcharge Removal
- Table C-145. Total Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Dredging of Contaminated Material.
- Table C-146. Total Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2 Dredging of Fine Grain Material
- Table C-147. Total Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2
- Table C-148. Yearly Unmitigated Emissions for the POLA Channel Deepening Project Alternative 2
- Table C-149. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 Dike Construction Quarry Run Placement
- Table C-150. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 Surcharge Removal
- Table C-151. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 Dredging of Contaminated Material.
- Table C-152. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 Dredging and Disposal of Dredging Material
- Table C-153. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2
- Table C-154. Yearly Unmitigated GHG Emissions for the POLA Channel Deepening Proposed Project Alternative 2.
- Table C-155. Construction Activities for the POLA Channel Deepening Project Alternative 2 Dredging and Disposal of Dredging Material Electrical Demand
- Table C-156. Total Emissions for the POLA Channel Deepening Project Alternative 2 Dredging and Disposal of Dredging Material GHG Emissions from Electrical Generation
- Table C-157. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2

 Due to Electrical Generation
- Table C-158. Construction Activities for the POLA Channel Deepening Proposed Project Dike Construction Quarry Run Placement
- Table C-159. Construction Activities for the POLA Channel Deepening Proposed Project Surcharge Removal
- Table C-160. Construction Activities for the POLA Channel Deepening Proposed Project Dredging of Contaminated Material.
- Table C-161. Construction Activities for the POLA Channel Deepening Proposed Project Ocean Disiposal of Dredging Material

	A	В	С	D	П	F	G	Н	1
1	Table C-134. Construction Activities for the POLA Char	nel Deepening	Project A	Alternativ	e 2 - Dike				
2	Construction Quarry Run Placement								
3		Power	Load	#	Hourly	Hours	Daily	Work	Total
4	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
5	Cabrillo SWH								
6	Barge Equipment	195	0.50	2	195	12	2,340	206.1	482,384
7	Derrick Barge Crane	180	0.50	1	90	12	1,080	206.1	222,639
8	Tugboat - Derrick Barge Crane	800	0.25	1	200	12	2,400	206.1	494,753
9	Tugboat - Transport Quarry Run to Site	2,200	0.50	2	2,200	10.5	23,100	206.1	4,761,994

	A	В	С	D	Е	F	G	Н	
30	Table C-135. Construction Activities for the POLA Cha	nnel Deepening	Project A	Alternativ	e 2 -		•		
31	Surcharge Removal								
32	9	Power	Load	#	Hourly	Hours	Daily	Work	Total
33	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
34	SW Slip A#1 Surcharge Removal - Loading	3.77						<i>y</i> .	
35	Scraper	225	0.40	5	450	12	5,400	116.5	629,100
36	Backhoe	80	0.50	2	80	12	960	116.5	111,840
37	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	12	7,200	116.5	838,800
38	Main Generator - Clamshell Dredge	900	0.50	1	450	12	5,400	116.5	629,100
39	Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720	116.5	83,880
40	Dozer Contrator Clamshell Breage	335	0.50	2	335	12	4,020	116.5	468,330
41	Off-Road Truck	350	0.25	4	350	12	4,200	116.5	489,300
42	Water Truck	325	0.50	1	163	12	1,950	116.5	227,175
43	Grader	180	0.50	1	90	8	720	116.5	83,880
44	SW Slip A#1 Surcharge Removal - Transport	100	0.50		70	0	720	110.5	03,000
45	Scows	N/A	N/A	2	N/A	12	N/A	116.5	N/A
	Tug Boat	800	0.20	1	160	4	640	116.5	74,560
47	SW Slip A#1 Surcharge Removal - Unload CSWH	333	0.20	<u> </u>	.00		0.0		,000
48	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	16	9,600	116.5	1,118,400
49	Main Generator - Clamshell Dredge	900	0.50	1	450	16	7,200	116.5	838,800
50	Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720	116.5	83,880
51	Scows	N/A	N/A	2	N/A	12	N/A	116.5	N/A
52	SW Slip A#1 Surcharge Removal - Transport/Unload LA	N-2							·
53	Main Hoist - Clamshell Dredge								
54	Main Generator - Clamshell Dredge								
55	Deck Generator - Clamshell Dredge								
56	ÿ								
57	Dozer								
58	Tug Boat (1)								
59	Notes: (1) = 7,000/545,000 daily/total cy dry. Barge capacity = 2,3	333 cy. Distance =	25 nm, spe	eed = 5 kno	ots, each roun	d trip would ta	ike 10 hours.	*	
60		,	•						
61	Table C-136. Construction Activities for the POLA Cha	nnel Deepening	Project A	Alternativ	e 2 -				
62	Dredging of Contaminated Material.								
63		Power	Load	#	Hourly	Hours	Daily	Work	Total
64	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
65	Clamshell Dredging - Contaminated Material			•		-			
66	Main Hoist - Clamshell Dredge w/Environmental Bucket	1,200	0.50	1	600	12	7,200	29.8	214,211
67			0.50	1	450	12	5,400	29.8	160,658
07	Main Generator - Clamshell Dredge	900	0.50						
68	Main Generator - Clamshell Dredge Deck Generator - Clamshell Dredge	900	0.50	1	144	3	432	29.8	12,853
	Deck Generator - Clamshell Dredge Scows							29.8 29.8	12,853 N/A
68	Deck Generator - Clamshell Dredge Scows Tug Boat	240	0.60	1	144 N/A 160	3 12 4	432	29.8 29.8 29.8	12,853
68 69 70 71	Deck Generator - Clamshell Dredge Scows Tug Boat Electric Pump	240 N/A 800 N/A	0.60 N/A 0.20 N/A	1 2	144 N/A 160 N/A	3 12	432 N/A	29.8 29.8 29.8 29.8	12,853 N/A 19,041 N/A
68 69 70	Deck Generator - Clamshell Dredge Scows Tug Boat Electric Pump Skiff	240 N/A 800 N/A 125	0.60 N/A 0.20 N/A 0.20	1 2 1	144 N/A 160 N/A 25	3 12 4	432 N/A 640 N/A 50	29.8 29.8 29.8 29.8 29.8	12,853 N/A 19,041 N/A 1,488
68 69 70 71	Deck Generator - Clamshell Dredge Scows Tug Boat Electric Pump	240 N/A 800 N/A	0.60 N/A 0.20 N/A	1 2 1 1	144 N/A 160 N/A	3 12 4 12	432 N/A 640 N/A	29.8 29.8 29.8 29.8 29.8 29.8	12,853 N/A 19,041 N/A
68 69 70 71 72	Deck Generator - Clamshell Dredge Scows Tug Boat Electric Pump Skiff	240 N/A 800 N/A 125 335 180	0.60 N/A 0.20 N/A 0.20 0.50	1 2 1 1 1 1 2 2	144 N/A 160 N/A 25	3 12 4 12 2 8 8	432 N/A 640 N/A 50	29.8 29.8 29.8 29.8 29.8 29.8 29.8	12,853 N/A 19,041 N/A 1,488 79,734 42,842
68 69 70 71 72 73 74 75	Deck Generator - Clamshell Dredge Scows Tug Boat Electric Pump Skiff Dozer	240 N/A 800 N/A 125 335	0.60 N/A 0.20 N/A 0.20 0.50	1 2 1 1 1 2	144 N/A 160 N/A 25 335	3 12 4 12 2 8	432 N/A 640 N/A 50 2,680	29.8 29.8 29.8 29.8 29.8 29.8	12,853 N/A 19,041 N/A 1,488 79,734

80	A Table C-137. Construction Activities for the POLA Char	B nnel Deenening	C Project <i>I</i>	D Alternativ	E 2.	F	G	Н	ı
81	Dredging and Disposal of Dredging Material	mer beepering	, i roject <i>i</i>	incomunity	C _				
82	and the second s	Power	Load	#	Hourly	Hours	Daily	Work	Total
83	Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Ĥrs	Days	Hp-Hrs
84	Hydraulic Dredging - Fine Grain Material CSWH	V . ,			•		•		•
	Main Engine - Electric	N/A	N/A	1	N/A	24	N/A	43.8	N/A
86	Derrick Hoist	240	0.7	1	168	4	672	43.8	29,443
87	Derrick Winch	87	0.7	1	61	1	61	43.8	2,668
88	Anchor Barge Winch	180	0.7	1	126	4	504	43.8	22,082
89	Generator	350	0.6	1	210	4	840	43.8	36,804
90	Survey Boat	250	0.2	1	50	5	250	43.8	10,954
91	Crew Boat	125	0.2	1	25	5	125	43.8	5,477
92	Tug Boat	850	0.5	1	425	18	7,650	43.8	335,178
93	Electric Pump	N/A	N/A	1	N/A	24	N/A	43.8	N/A
	Clamshell Dredging - Fine/Coarse Grain Material to LA-	2							
95	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	15	8,964	200	1,792,717
96	Main Generator - Clamshell Dredge	900	0.50	1	450	15	6,723	200	1,344,538
97	Deck Generator - Clamshell Dredge	240	0.6	1	144	3	448	200	89,636
	Tug Boat (1)	2,200	0.6	2	2,640	4.0	10,560	200	2,112,000
	Clamshell Dredging - Fine/Coarse Grain Material to LA-	3							
	Main Hoist - Clamshell Dredge	1,200	0.50	1	600	15	8,964	104	932,213
	Main Generator - Clamshell Dredge	900	0.50	1	450	15	6,723	104	699,160
102	Deck Generator - Clamshell Dredge	240	0.6	1	144	3	448	104	46,611
03	Tug Boat (1)	2,200	0.6	2	2,640	11.2	29,568	104	3,075,072
04	Notes: (1) Based upon a daily disposal volume to LA-2 of 4,000 cy	and a barge capa	acity of 2,00	00 су.					

	V	W	Χ	Υ	Z	AA	AB	AC
1	Table C-138. Daily Unmitigated Emissions for the POLA Chann	el Deepen	ing Project	Alternative 2	- Dike			
2	Construction Quarry Run Placement							
3				Pou	nds per Da	y		
4	Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
5	Cabrillo SWH							
6	Barge Equipment	3.60	9.98	36.45	0.03	1.38	1.38	1.27
7	Derrick Barge Crane	1.66	4.60	16.82	0.01	0.64	0.64	0.59
8	Tugboat - Derrick Barge Crane	1.07	9.87	42.93	0.02	1.13	1.13	1.06
9	Tugboat - Transport Quarry Run to Site (1)	10.26	95.01	413.18	0.22	10.87	10.87	10.18
10	Subtotal	16.59	119.46	509.39	0.29	14.02	14.02	13.10
11								
12								
13								
14								
15								
16								

	V	W	Х	Υ	Z	AA	AB	AC
33	Table C-139. Daily Unmitigated Emissions for the POLA Channe	el Deepeni	ng Project	Alternative 2 -	L			
34	Surcharge Removal	•	•					
35	•			Pour	nds per Da	ıy		
36	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
37	SW Slip A#1 Surcharge Removal - Loading							
38	Scraper	8.31	23.02	84.12	0.07	3.18	3.18	2.93
39	Backhoe	2.66	8.14	15.64	0.01	1.40	1.40	1.29
40	Main Hoist - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
41	Main Generator - Clamshell Dredge	6.65	24.84	74.61	0.06	2.30	2.30	2.11
42	Deck Generator - Clamshell Dredge	1.11	3.07	11.22	0.01	0.42	0.42	0.39
43	Dozer	5.01	19.98	50.48	0.05	1.91	1.91	1.76
44	Off-Road Truck	5.23	20.87	52.74	0.05	2.00	2.00	1.84
45	Water Truck	2.43	9.69	24.49	0.02	0.93	0.93	0.85
46	Grader	1.11	3.07	11.22	0.01	0.42	0.42	0.39
	Subtotal	41.38	145.80	423.98	0.36	15.64	15.64	14.39
48	SW Slip A#1 Surcharge Removal - Transport							
	Scows							
50	Tug Boat	0.28	2.63	11.45	0.01	0.30	0.30	0.28
51	Subtotal	0.28	2.63	11.45	0.01	0.30	0.30	0.28
52	SW Slip A#1 Surcharge Removal - Unload CSWH							
53	Main Hoist - Clamshell Dredge	11.83	44.16	132.64	0.10	4.09	4.09	3.76
54	Main Generator - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
55	Deck Generator - Clamshell Dredge	1.11	3.07	11.22	0.01	0.42	0.42	0.39
	Scows							
57	Subtotal	21.80	80.35	243.34	0.19	7.58	7.58	6.97
58		1						
59								
60								
61								
62								
63								
64								
65								
66								
67								
68	Table C-140. Daily Unmitigated Emissions for the POLA Channel	el Deepeni	ng Project	Alternative 2 -				
69	Dredging of Contaminated Material.	T			,			
70	1 ! ! T ! T	D00	20		nds per Da		D1446	D140.5
71	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
	Clamshell Dredging - Contaminated Material	0.07	22.12	00.40	0.00	2.07	2.0/	2.02
73	Main Hoist - Clamshell Dredge	8.87	33.12	99.48	0.08	3.06	3.06	2.82
74	Main Generator - Clamshell Dredge	6.65	24.84	74.61	0.06	2.30	2.30	2.11
75	Deck Generator - Clamshell Dredge	0.66	1.84	6.73	0.01	0.25	0.25	0.23
	Scows Tug Boat	0.28	2.63	11.45	0.01	0.30	0.30	0.28
	9			-				
	Electric Pump	0.02	0.14	 0 02	 O OE	 0.02	0.02	0.02
	Skiff	0.02	0.14	0.82	0.05	0.03	0.03	0.03
	Dozer Crader	3.34 2.22	13.32	33.65	0.03	1.28 0.85	1.28 0.85	1.17
	Grader Compactor	2.22	6.14 5.63	22.43 20.56	0.02	0.85	0.85	0.78 0.72
	Water Truck	1.48	4.09	14.96	0.02	0.78	0.78	0.72
	Subtotal	25.55	91.75	284.69	0.01	9.42	9.42	8.67
04	Junitali	23.33	71.73	204.07	0.20	7.42	7.42	0.07

	V	W	Х	Υ	Z	AA	AB	AC
88		nel Deepen	ing Project	Alternative 2	-			
89	Dredging and Disposal of Dredging Material							
90				Poul	nds per Da	у		
	Location/Equipment Type	ROG	CO	NOx	ŚОх	PM	PM10	PM2.5
92	Hydraulic Dredging - Fine Grain Material CSWH							
93	Main Engine - Electric							
94	Derrick Hoist	1.03	2.86	10.47	0.01	0.40	0.40	0.36
95	Derrick Winch	0.17	0.52	0.99	0.00	0.09	0.09	0.08
96	Anchor Barge Winch	0.78	2.15	7.85	0.01	0.30	0.30	0.27
_	Generator	1.05	4.17	10.55	0.01	0.40	0.40	0.37
	Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15
99	Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08
100	Tug Boat	3.40	31.46	136.83	0.07	3.60	3.60	3.37
101	Electric Pump							
	Subtotal	6.56	42.22	172.86	0.49	5.03	5.03	4.69
103	Clamshell Dredging - Fine/Coarse Grain Material to LA-2							
	Main Hoist - Clamshell Dredge	11.04	41.23	123.85	0.10	3.82	3.82	3.51
	Main Generator - Clamshell Dredge	8.28	30.92	92.89	0.07	2.86	2.86	2.63
106	Deck Generator - Clamshell Dredge	0.69	1.91	6.98	0.01	0.26	0.26	0.24
107	Tug Boat	4.69	43.43	188.88	0.10	4.97	4.97	4.66
	Subtotal	24.70	117.50	412.60	0.27	11.91	11.91	11.04
	Clamshell Dredging - Fine/Coarse Grain Material to LA-3							
	Main Hoist - Clamshell Dredge	11.04	41.23	123.85	0.10	3.82	3.82	3.51
	Main Generator - Clamshell Dredge	8.28	30.92	92.89	0.07	2.86	2.86	2.63
	Deck Generator - Clamshell Dredge	0.69	1.91	6.98	0.01	0.26	0.26	0.24
113	Tug Boat	13.13	121.61	528.88	0.29	13.91	13.91	13.04
114	Subtotal	33.15	195.68	752.59	0.46	20.85	20.85	19.42

	V	W	Х	Υ	Z	AA	AB	AC
117	Table C-142. Peak Daily Unmitigated Emissions for the POLA C	Channel De	epening Pr	oject Alternat	ve 2			
118				Poul	nds per Day	/		
119	Location/Activity	ROG	CO	NOx	SOx	PM	PM10	PM2.5
120	Dike Const. Quarry Run Placement							
121	Cabrillo SWH	17	119	509	0	14	14	13
122								
	Dike Construction Armor Stone Placement							
124								
	Trench Excavation							
_	Cabrillo SWH	32	122	371	0	11	11	11
	Surcharge Removal							
	Loading	41	146	424	0	16	16	14
	Transport	0	3	11	0	0	0	0
	Unload Cabrillo SWH	22	80	243	0	8	8	7
131								
	Dredging of Contaminated Material							
	Clamshell - Contaminated Material	26	92	285	0	9	9	9
134	Dredging and Disposal of Dredging Material							
	Hydraulic - Cabrillo SWH	7	42	173	0	5	5	5
	Clamshell - LA-2	25	117	413	0	12	12	11
	Clamshell - LA-3	33	196	753	0	21	21	19
	Peak Daily Unmitigated Emissions	74	433	1,675	1	47	47	44
139	2004 CEQA Baseline - Peak Daily Emissions	(68)	(383)	(1,556)	(100)	(47)	(47)	(43)
140	Net Peak Daily Unmitigated Emissions	6	49	119	(99)	(0)	(0)	0
141	SCAQMD Daily Significance Thresholds	75	550	100	150	NA	150	55
142	Notes: (1) Peak daily unmitigated emissions would occur from the follwing s	simultaneous	activities: (1)	dike constructio	n quarry run	placement at	CSWH,	
143	(2) clamshell dredging and disposal to LA-2, and (3) clamshell dredg	ing and dispo	sal to LA-3.					

	AE	AF	AG	AH	Al	AJ	AK	AL		
1	Table C-143. Total Unmitigated Emissions for the POLA Chann	el Deepen	ing Project	Alternative 2	- Dike					
2	Construction Quarry Run Placement									
3		Tons								
4	Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
5	Cabrillo SWH									
6	Barge Equipment	0.37	1.03	3.76	0.00	0.14	0.14	0.13		
7	Derrick Barge Crane	0.17	0.47	1.73	0.00	0.07	0.07	0.06		
8	Tugboat - Derrick Barge Crane	0.11	1.02	4.42	0.00	0.12	0.12	0.11		
9	Tugboat - Transport Quarry Run to Site (1)	1.06	9.79	42.59	0.02	1.12	1.12	1.05		
10	Subtotal	1.71	12.31	52.50	0.03	1.44	1.44	1.35		
11										
12										
13										
14										
15										
16										

	AE	AF	AG	АН	Al	AJ	AK	AL
33	Table C-144. Total Unmitigated Emissions for the POLA Chann							
34	Surcharge Removal		3 .,					
35	3				Tons			
	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
37	SW Slip A#1 Surcharge Removal - Loading	·						
38	Scraper	0.48	1.34	4.90	0.00	0.19	0.19	0.17
39	Backhoe	0.16	0.47	0.91	0.00	0.08	0.08	0.08
40	Main Hoist - Clamshell Dredge	0.52	1.93	5.79	0.00	0.18	0.18	0.16
41	Main Generator - Clamshell Dredge	0.39	1.45	4.35	0.00	0.13	0.13	0.12
42	Deck Generator - Clamshell Dredge	0.06	0.18	0.65	0.00	0.02	0.02	0.02
43	Dozer	0.29	1.16	2.94	0.00	0.11	0.11	0.10
44	Off-Road Truck	0.30	1.22	3.07	0.00	0.12	0.12	0.11
45	Water Truck	0.14	0.56	1.43	0.00	0.05	0.05	0.05
46	Grader	0.06	0.18	0.65	0.00	0.02	0.02	0.02
	Subtotal	2.41	8.49	24.70	0.02	0.91	0.91	0.84
	SW Slip A#1 Surcharge Removal - Transport							
	Scows							
	Tug Boat	0.02	0.15	0.67	0.00	0.02	0.02	0.02
	Subtotal	0.02	0.15	0.67	0.00	0.02	0.02	0.02
	SW Slip A#1 Surcharge Removal - Unload CSWH	1			1			
53	Main Hoist - Clamshell Dredge	0.69	2.57	7.73	0.01	0.24	0.24	0.22
	Main Generator - Clamshell Dredge	0.52	1.93	5.79	0.00	0.18	0.18	0.16
55	Deck Generator - Clamshell Dredge	0.06	0.18	0.65	0.00	0.02	0.02	0.02
	Scows							
	Subtotal	1.27	4.68	14.17	0.01	0.44	0.44	0.41
58					I			
59								
60								
61 62								
63								-
64								
65								
66								<u> </u>
67								
	Table C-145. Total Unmitigated Emissions for the POLA Chann	el Deeneni	na Project	Alternative 2	_			
69	Dredging of Contaminated Material.	ст Всерени	ing i roject <i>i</i>	illorriative 2				
70	210aging or containmated material				Tons			
	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
72	Clamshell Dredging - Contaminated Material							
	Main Hoist - Clamshell Dredge	0.13	0.49	1.48	0.00	0.05	0.05	0.04
74	Main Generator - Clamshell Dredge	0.10	0.37	1.11	0.00	0.03	0.03	0.03
75	Deck Generator - Clamshell Dredge	0.01	0.03	0.10	0.00	0.00	0.00	0.00
76	Scows							
77	Tug Boat	0.00	0.04	0.17	0.00	0.00	0.00	0.00
78	Electric Pump							
	Skiff	0.00	0.00	0.01	0.00	0.00	0.00	0.00
	Dozer	0.05	0.20	0.50	0.00	0.02	0.02	0.02
80					0.00	0.01	0.01	0.01
_	Grader	0.03	0.09	0.33	0.00	0.01	0.01	0.01
81 82	Grader Compactor	0.03	0.08	0.31	0.00	0.01	0.01	0.01
81 82 83	Grader							

	AE	AF	AG	АН	Al	AJ	AK	AL
88	Table C-146. Total Unmitigated Emissions for the POLA Chanr	el Deepen	ing Project	Alternative 2	-			
89	Dredging of Fine Grain Material							
90					Tons			
91	Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
92	Hydraulic Dredging - Fine Grain Material CSWH							
	Main Engine - Electric							
-	Derrick Hoist	0.02	0.06	0.23	0.00	0.01	0.01	0.01
	Derrick Winch	0.00	0.01	0.02	0.00	0.00	0.00	0.00
96	Anchor Barge Winch	0.02	0.05	0.17	0.00	0.01	0.01	0.01
	Generator	0.02	0.09	0.23	0.00	0.01	0.01	0.01
98	Survey Boat	0.00	0.02	0.09	0.01	0.00	0.00	0.00
99	Crew Boat	0.00	0.01	0.05	0.00	0.00	0.00	0.00
100	Tug Boat	0.07	0.69	3.00	0.00	0.08	0.08	0.07
	Electric Pump							
	Subtotal	0.14	0.92	3.79	0.01	0.11	0.11	0.10
103	Clamshell Dredging - Fine/Coarse Grain Material to LA-2							
	Main Hoist - Clamshell Dredge	1.10	4.12	12.38	0.01	0.38	0.38	0.35
	Main Generator - Clamshell Dredge	0.83	3.09	9.29	0.01	0.29	0.29	0.26
	Deck Generator - Clamshell Dredge	0.07	0.19	0.70	0.00	0.03	0.03	0.02
107	Tug Boat	0.47	4.34	18.89	0.01	0.50	0.50	0.47
	Subtotal	2.47	11.75	41.26	0.03	1.19	1.19	1.10
109	Clamshell Dredging - Fine/Coarse Grain Material to LA-3							
	Main Hoist - Clamshell Dredge	0.57	2.14	6.44	0.00	0.20	0.20	0.18
	Main Generator - Clamshell Dredge	0.43	1.61	4.83	0.00	0.15	0.15	0.14
112	Deck Generator - Clamshell Dredge	0.04	0.10	0.36	0.00	0.01	0.01	0.01
	Tug Boat	0.68	6.32	27.50	0.01	0.72	0.72	0.68
114	Subtotal	1.72	10.18	39.13	0.02	1.08	1.08	1.01

	AE	AF	AG	AH	Al	AJ	AK	AL		
117	Table C-147. Total Unmitigated Emissions for the POLA Chann				AI	AJ	AN	AL		
118	Table C-147. Total orinitigated Emissions for the FOLA Chami	ei beepeili	ily Froject A	Allemative 2	Tons					
119	Location/Activity	ROG	СО	NOx	SOx	PM	PM10	PM2.5		
	Dike Const. Quarry Run Placement	NOG	CO	NOX	301	FIVI	FIVITO	FIVIZ.3		
120	Cabrillo SWH	1.71	12.31	52.50	0.03	1.44	1.44	1.35		
122	Cabillo SWIT	1.71	12.31	32.30	0.03	1.44	1.44	1.55		
	Dike Construction Armor Stone Placement									
124	DIRE CONSTRUCTION ANNOUS CONC. L'ACCINENT	I			1					
	Trench Excavation									
_	Cabrillo SWH	0.09	0.35	1.06	0.00	0.03	0.03	0.03		
	Surcharge Removal	0.07	0.55	1.00	0.00	0.00	0.03	0.03		
	Loading	2.41	8.49	24.70	0.02	0.91	0.91	0.84		
	Transport	0.02	0.15	0.67	0.02	0.02	0.02	0.02		
	Unload Cabrillo SWH	1.27	4.68	14.17	0.00	0.44	0.44	0.41		
131	Official Captillo SWIT	1.27	1.00	14.17	0.01	0.11	0.11	0.11		
	Dredging of Contaminated Material	I								
	Clamshell Dredge of Contaminated	0.38	1.36	4.24	0.00	0.14	0.14	0.13		
	Dredging and Disposal of Dredging Material									
	Hydraulic - Cabrillo SWH	0.14	0.92	3.79	0.01	0.11	0.11	0.10		
	Clamshell - LA-2	2.47	11.75	41.26	0.03	1.19	1.19	1.10		
137	Clamshell - LA-3	1.72	10.18	39.13	0.02	1.08	1.08	1.01		
138	Total Unmitigated Emissions (1)	10.22	50.20	181.52	0.13	5.37	5.37	4.99		
139	,,	l	II.	l	· ·					
140										
141										
142	Table C-148. Yearly Unmitigated Emissions for the POLA	Channel D	eepening	Project Alte	rnative 2					
143	J				ons (1)					
144	Yearly Scenario	ROG	СО	NOx	SOx	PM	PM10	PM2.5		
145	Alternative 1 - 2009	1.7	9.8	37.7	0.0	1.1	1.1	1.0		
146	CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)		
147	Net Annual Unmitigated Emissions - 2009	(4.9)	(22.7)	(79.0)	(5.6)	(2.7)	(2.7)	(2.5)		
	Alternative 1 - 2010	4.8	27.1	104.3	0.1	2.9	2.9	2.7		
149	CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)		
150	Net Annual Unmitigated Emissions - 2010	(1.8)	(5.3)	(12.4)	(5.5)	(0.8)	(0.8)	(0.7)		
151	Alternative 1 - 2011	3.7	13.3	39.5	0.0	1.4	1.4	1.3		
	CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)		
153	Net Annual Unmitigated Emissions - 2011	(2.9)	(19.1)	(77.2)	(5.6)	(2.4)	(2.4)	(2.2)		
154	Conformity de minimis Thresholds	10	100	10	NA	NA	70	100		
	55 Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.									

Table C-149. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Quarry Run Placement

	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Cabrillo SWH					
Barge Equipment	302.18	0.05	0.00	304	
Derrick Barge Crane	139.47	0.02	0.00	140	
Tugboat - Derrick Barge Crane	262.51	0.04	0.00	264	
Tugboat - Transport Quarry Run to Site (1)	2,526.62	0.35	0.02	2,542	
Subtotal	3,230.78	0.46	0.03	3,250.52	

Table C-150. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Surcharge Removal

Surcharge Removal	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
SW Slip A#1 Surcharge Removal - Loading					
Scraper	394.09	0.06	0.00	397	
Backhoe	70.06	0.01	0.00	71	
Main Hoist - Clamshell Dredge (Electric)	525.45	0.09	0.01	529	
Main Generator - Clamshell Dredge (Electric)	394.09	0.07	0.00	397	
Deck Generator - Clamshell Dredge	52.55	0.01	0.00	53	
Dozer	293.38	0.04	0.00	295	
Off-Road Truck	306.51	0.04	0.00	308	
Water Truck	142.31	0.02	0.00	143	
Grader	52.55	0.01	0.00	53	
Subtotal	2,230.98	0.36	0.03	2,246.45	
SW Slip A#1 Surcharge Removal - Transport					
Scows					
Tug Boat	39.56	0.01	0.00	40	
Subtotal	39.56	0.01	0.00	39.80	
SW Slip A#1 Surcharge Removal - Unload CSWH					
Main Hoist - Clamshell Dredge	700.60	0.10	0.01	705	
Main Generator - Clamshell Dredge	525.45	0.08	0.01	529	
Deck Generator - Clamshell Dredge	52.55	0.01	0.00	53	
Scows					
Subtotal	1,278.60	0.19	0.01	1,286.75	

Table C-151. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material.

Dieuging of Contaminated Waterial.							
		Tons					
Location/Equipment Type	CO2	CH4	N2O	CO2e			
Clamshell Dredging - Contaminated Material							
Main Hoist - Clamshell Dredge (Electric)	134.19	0.02	0.00	135			
Main Generator - Clamshell Dredge (Electric)	100.64	0.02	0.00	101			
Deck Generator - Clamshell Dredge	8.05	0.00	0.00	8			
Scows							
Tug Boat	10.10	0.00	0.00	10			
Electric Pump							
Skiff	0.79	0.00	0.00	1			
Dozer	49.95	0.01	0.00	50			
Grader	26.84	0.00	0.00	27			
Compactor	24.60	0.00	0.00	25			
Water Truck	17.89	0.00	0.00	18			
Subtotal	373.05	0.06	0.00	375.64			

Table C-152. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material

Broaging and Bioposar or Broaging material	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Hydraulic Dredging - Fine Grain Material CSWH					
Main Engine - Electric					
Derrick Hoist	18.44	0.00	0.00	19	
Derrick Winch	1.67	0.00	0.00	2	
Anchor Barge Winch	13.83	0.00	0.00	14	
Generator	23.06	0.00	0.00	23	
Survey Boat	5.81	0.00	0.00	6	
Crew Boat	2.91	0.00	0.00	3	
Tug Boat	177.84	0.02	0.00	179	
Electric Pump					
Subtotal	243.56	0.03	0.00	245.06	
Clamshell Dredging - Fine Grain Material to LA 2					
Main Hoist - Clamshell Dredge	1,123.02	0.18	0.01	1,131	
Main Generator - Clamshell Dredge	842.26	0.14	0.01	848	
Deck Generator - Clamshell Dredge	56.15	0.01	0.00	57	
Tug Boat	1,120.59	0.15	0.01	1,127	
Subtotal	3,142.02	0.49	0.03	3,163.04	
Clamshell Dredging - Fine/Coarse Grain Material to LA-3					
Main Hoist - Clamshell Dredge	583.97	0.10	0.01	0.00	
Main Generator - Clamshell Dredge	437.98	0.07	0.01	0.00	
Deck Generator - Clamshell Dredge	29.20	0.00	0.00	0.00	
Tug Boat	1,631.58	0.23	0.02	0.00	
Subtotal	2,682.72	0.40	0.03	0.00	

Table C-153. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2

Table 6-133. Total Grid Emissions for the FOEA Gridinier Dec	Tons				
Location/Activity	CO2	CH4	N2O	CO2e	
Dike Const. Quarry Run Placement					
Cabrillo SWH	3,231	0.46	0.03	3,251	
Dike Construction Armor Stone Placement					
Trench Excavation					
Cabrillo SWH	95	0.02	0.00	95	
Surcharge Removal					
Loading	2,231	0.36	0.03	2,246	
Transport	40	0.01	0.00	40	
Unload Cabrillo SWH	1,279	0.19	0.01	1,287	
Dredging of Contaminated Material					
Clamshell Dredge of Contaminated	373	0.06	0.00	376	
Dredging and Disposal of Dredging Material					
Hydraulic - Cabrillo SWH	243.56	0.03	0.00	245.06	
Clamshell - LA-2	3,142.02	0.49	0.03	3,163.04	
Clamshell - LA-3	2,682.72	0.40	0.03	0.00	
Total GHG Emissions	13,316.00	2.01	0.14	10,702.65	

Table C-154. Yearly Unmitigated GHG Emissions for the POLA Channel Deepening Proposed Project - Alternative

	Metric Tons (1)			
Project Scenario	CO2	CH4	N2O	CO2e
Alternative 1 Direct Sources - 2009	2,354.5	0.35	0.03	2,369.7
Alternative 1 Electrical Generation - 2009	-	-	-	-
Alternative 1 Total Unmitigated Emissions - 2009	2,355	0.35	0.03	2,370
Alternative 1 Direct Sources - 2010	6,524.4	0.97	0.07	4,111.8
Alternative 1 Electrical Generation - 2010	2,664	0.02	0.01	2,668
Alternative 1 Total Unmitigated Emissions - 2010	9,189	0.99	0.08	6,780
Alternative 1 Direct Sources - 2011	3,226.5	0.50	0.04	3,248.2
Alternative 1 Electrical Generation - 2011	-	-	-	-
Alternative 1 Total Unmitigated Emissions - 2011	3,226	0.50	0.04	3,248

Table C-155. Construction Activities for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material - Electrical Demand

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Hydraulic Dredging - Fine Grain Material CSWH								
Main Engine - Electric	17,000	1	1	8,500	24	204,000	43.8	8,938,090
Derrick Hoist	240	0.7	1	168	4	672		
Derrick Winch	87	0.7	1	61	1	61		
Anchor Barge Winch	180	0.7	1	126	4	504		
Generator	350	0.6	1	210	4	840		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Tug Boat	850	0.5	1	425	18	7,650		
Electric Pump	N/A	N/A	1	N/A	24	N/A		

Table C-156. Total Emissions for the POLA Channel Deepening Project Alternative 2 Dredging and Disposal of Dredging Material - GHG Emissions from Electrical Generation

	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Hydraulic Dredging - Fine Grain Material CSWH					
Main Engine - Electric	2,931	0.02	0.01	2,935	
Derrick Hoist	0	0.00	0.00	0	
Derrick Winch	0	0.00	0.00	0	
Anchor Barge Winch	0	0.00	0.00	0	
Generator	0	0.00	0.00	0	
Survey Boat	0	0.00	0.00	0	
Crew Boat	0	0.00	0.00	0	
Tug Boat	0	0.00	0.00	0	
Electric Pump					
Subtotal	2,931	0.02	0.01	2,935	

Table C-157. Total GHG Emissions for the POLA Channel Deepening Project Alternative 2 Due to Electrical Generation

	Tons			
Location/Activity	CO2	CH4	N2O	CO2e
Dike Const. Quarry Run Placement				
Cabrillo SWH	0	0.00	0.00	0
Eelgrass Restoration	0	0.00	0.00	0
Dike Construction Armor Stone Placement				
Eelgrass Restoration	0	0.00	0.00	0
Surcharge Removal				
Loading	0	0.00	0.00	0
Transport	0	0.00	0.00	0
Unload Cabrillo SWH	0	0.00	0.00	0
Unload Eelgrass	0	0.00	0.00	0
Dredging of Contaminated Material				
Clamshell Dredge of Contaminated	0	0.00	0.00	0
Dredging and Disposal of Dredging Material				
Hydraulic - Cabrillo SWH	2,931	0.02	0.01	2,935
Clamshell - LA-2	0	0.00	0.00	0
Clamshell - LA-3	0	0.00	0.00	0
Total Emissions (1)	2,931	0.02	0.01	2,935

Notes: (1) All activites would occur in one year

	А	В	С	D					
1	Table C-158. Construction Activities for the POLA Char	nnel Deepening	Proposed Proj	ect - Dike					
2	Construction Quarry Run Placement								
3		Total	Vol/Tons	Total					
4	Location/Equipment Type	Vol/Tons	/Barge	Tug Trips					
5	Cabrillo SWH								
6	Tugboat - Transport Quarry Run to Site	550,000	1,334	412					
7									
8	$\overline{\mathbb{S}}$								
9	Table C-159. Construction Activities for the POLA Char	nnel Deepening	g Proposed Proj	ect -					
10	Surcharge Removal								
11		Total	Vol/Tons	Total					
12	Location/Equipment Type	Vol/Tons	/Barge	Tug Trips					
	SW Slip A#1 Surcharge Removal - Unload CSWH								
14	Scows	815,000	2,000	408					
15									
16									
17	Table C-160. Construction Activities for the POLA Char	nnel Deepening	g Proposed Proj	ect -					
18	Dredging of Contaminated Material.			=					
19		Total	Vol/Tons	Total					
	Location/Equipment Type	Vol/Tons	/Barge	Tug Trips					
21	Contaminated Dredge								
22	Scows	85,000	2,000	43					
23									
24	T. I. O. 1/4 O		D 10 1						
25	Table C-161. Construction Activities for the POLA Char	nnei Deepening	j Proposea Proj	ect -					
26	Ocean Disiposal of Dredging Material	Tatal	1/01/7	Total					
27	Location/Faujament Tune	Total Val/Tana	Vol/Tons	Total Tug Tring					
	Location/Equipment Type	Vol/Tons	/Barge	Tug Trips					
29	Clamshell Dredging - Fine Grain Material to LA-2	000 000	2.000	400					
	Tug Boat	800,000	2,000	400					
31	Clamshell Dredging - Fine Grain Material to LA-3	417,000	2.000	200					
	Tug Boat	416,000	2,000	208					
33									
35	Total Pargo Trins			1,470					
აე	Total Barge Trips			1,470					

Table C-162. Daily Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Quarry Run Placement

Construction Quarry Kurr racement			Pou	nds per Da	ıy		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Cabrillo SWH							
Barge Equipment	1.24	4.75	25.79	0.03	0.09	0.09	0.09
Derrick Barge Crane	0.57	2.19	11.90	0.01	0.04	0.04	0.04
Tugboat - Derrick Barge Crane	1.07	9.87	26.85	0.02	0.79	0.79	0.74
Tugboat - Transport Quarry Run to Site (1)	10.26	95.01	258.43	0.22	7.60	7.60	7.12
Subtotal	13.14	111.82	322.98	0.29	8.53	8.53	7.99
Eelgrass Restoration							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Quarry Run to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-163. Daily Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Armor Stone Placement

	Pounds per Day							
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5	
Eelgrass								
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Table C-164. Daily Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Surcharge Removal

Suicharge Kemovai			Pou	nds per Da	ıy		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
SW Slip A#1 Surcharge Removal - Loading							
Scraper	2.86	10.95	59.52	0.07	0.21	0.21	0.20
Backhoe	1.23	6.84	11.94	0.01	0.12	0.12	0.11
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03
Dozer	2.13	8.15	43.87	0.05	0.16	0.16	0.15
Off-Road Truck	2.22	8.52	45.83	0.05	0.17	0.17	0.15
Water Truck	1.03	3.96	21.28	0.02	0.08	0.08	0.07
Grader	0.38	1.46	7.94	0.01	0.03	0.03	0.03
Subtotal	10.23	41.34	198.32	0.22	0.80	0.80	0.73
SW Slip A#1 Surcharge Removal - Transport							
Scows							
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20
Subtotal	0.28	2.63	7.16	0.01	0.21	0.21	0.20
SW Slip A#1 Surcharge Removal - Unload CSWH							
Main Hoist - Clamshell Dredge	5.08	19.47	104.76	0.10	0.38	0.38	0.35
Main Generator - Clamshell Dredge	3.81	14.60	78.57	0.08	0.29	0.29	0.26
Deck Generator - Clamshell Dredge	0.38	1.46	7.94	0.01	0.03	0.03	0.03
Scows							
Subtotal	9.27	35.53	191.27	0.19	0.70	0.70	0.64
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2		•					
Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Conveyor							
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-165. Daily Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material.

Dreaging of Contaminated Waterial.			Pou	nds per Da	iy		
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Contaminated Material							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.23	0.88	4.76	0.01	0.02	0.02	0.02
Scows							
Tug Boat	0.28	2.63	7.16	0.01	0.21	0.21	0.20
Electric Pump							
Skiff	0.02	0.14	0.82	0.05	0.03	0.03	0.03
Dozer	1.42	5.44	29.25	0.03	0.11	0.11	0.10
Grader	0.76	2.92	15.87	0.02	0.06	0.06	0.05
Compactor	0.70	2.68	14.55	0.02	0.05	0.05	0.05
Water Truck	0.51	1.95	10.58	0.01	0.04	0.04	0.04
Subtotal	3.92	16.63	83.00	0.15	0.51	0.51	0.48

Table C-166. Daily Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material

Drouging and Dioposal of Drouging material			Poul	nds per Da	ny		
Location/Equipment Type	ROG	CO	NOx	SOx	PM	PM10	PM2.5
Hydraulic Dredging - Fine Grain Material CSWH							
Main Engine - Electric							
Derrick Hoist	0.36	1.36	7.41	0.01	0.03	0.03	0.02
Derrick Winch	0.08	0.43	0.76	0.00	0.01	0.01	0.01
Anchor Barge Winch	0.27	1.02	5.56	0.01	0.02	0.02	0.02
Generator	0.44	1.70	9.17	0.01	0.03	0.03	0.03
Survey Boat	0.09	0.70	4.11	0.26	0.17	0.17	0.15
Crew Boat	0.04	0.35	2.06	0.13	0.08	0.08	0.08
Tug Boat	3.40	31.46	85.58	0.07	2.52	2.52	2.36
Electric Pump							
Subtotal	4.67	37.04	114.64	0.49	2.85	2.85	2.67
Clamshell Dredging - Fine Grain Material to LA 2							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.24	0.91	4.94	0.01	0.02	0.02	0.02
Tug Boat	4.69	43.43	118.14	0.10	3.47	3.47	3.26
Subtotal	4.93	44.34	123.08	0.11	3.49	3.49	3.27
Clamshell Dredging - Fine/Coarse Grain Material to LA-3							
Main Hoist - Clamshell Dredge							
Main Generator - Clamshell Dredge							
Deck Generator - Clamshell Dredge	0.24	0.91	4.94	0.01	0.02	0.02	0.02
Tug Boat	13.13	121.61	330.79	0.29	9.73	9.73	9.12
Subtotal	13.37	122.52	335.73	0.29	9.75	9.75	9.13

Table C-167. Peak Daily Mitigated Emissions for the POLA Channel Deepening Project Alternative 2

Table C-167. Peak Daily Mitigated Emissions for the PC	JLA Channel Deep	ening Proj	ect Aitemative	2						
Location/Activity			Pou	nds per Da	y					
	ROG	СО	NOx	SOx	РM	PM10	PM2.5			
Dike Const. Quarry Run Placement										
Cabrillo SWH	13	112	323	0	9	9	8			
Dike Construction Armor Stone Placement										
Trench Excavation										
Cabrillo SWH	1	4	15	0	0	0	0			
Surcharge Removal										
Loading	10	41	198	0	1	1	1			
Transport	0	3	7	0	0	0	0			
Unload Cabrillo SWH	9	36	191	0	1	1	1			
Dredging of Contaminated Material										
Clamshell - Contaminated Material	4	17	83	0	1	1	0			
Dredging and Disposal of Dredging Material										
Hydraulic - Cabrillo SWH	5	37	115	0	3	3	3			
Clamshell - LA-2	5	44	123	0	3	3	3			
Clamshell - LA-3	13	123	336	0	10	10	9			
Peak Daily Mitigated Emissions (1)	31	279	782	1	22	22	20			
2004 CEQA Baseline - Peak Daily Emissions	(68)	(383)	(1,556)	(100)	(47)	(47)	(43)			
Net Daily Mitigated Emissions	(37)	(104)	(774)	(99)	(25)	(25)	(23)			
SCAQMD Daily Significance Thresholds	75	550	100	150	NA	150	55			

Notes: (1) Peak daily unmitigated emissions would occur from the follwing simultaneous activities: (1) dike construction quarry run placement at CSWH,

⁽²⁾ clamshell dredging and disposal to LA-2, and (3) clamshell dredging and disposal to LA-3.

Table C-168. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Quarry Run Placement

				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Cabrillo SWH							
Barge Equipment	0.13	0.49	2.66	0.00	0.01	0.01	0.01
Derrick Barge Crane	0.06	0.23	1.23	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.11	1.02	2.77	0.00	0.08	0.08	0.08
Tugboat - Transport Quarry Run to Site (1)	1.06	9.79	26.64	0.02	0.78	0.78	0.73
Subtotal	1.35	11.53	33.29	0.03	0.88	0.88	0.82
Eelgrass Restoration							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Quarry Run to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-169. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Armor Stone Placement

	Tons						
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Eelgrass							
Barge Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Derrick Barge Crane	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tugboat - Transport Armor Stone to Site (1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-170. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Surcharge Removal

Suicharge Removal				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
SW Slip A#1 Surcharge Removal - Loading	7100	00	7107	OON	7 777	1 11110	7 1112.0
Scraper	0.17	0.64	3.47	0.00	0.01	0.01	0.01
Backhoe	0.07	0.40	0.70	0.00	0.01	0.01	0.01
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00
Dozer	0.12	0.47	2.56	0.00	0.01	0.01	0.01
Off-Road Truck	0.13	0.50	2.67	0.00	0.01	0.01	0.01
Water Truck	0.06	0.23	1.24	0.00	0.00	0.00	0.00
Grader	0.02	0.09	0.46	0.00	0.00	0.00	0.00
Subtotal	0.60	2.41	11.55	0.01	0.05	0.05	0.04
SW Slip A#1 Surcharge Removal - Transport							
Scows							
Tug Boat	0.02	0.15	0.42	0.00	0.01	0.01	0.01
Subtotal	0.02	0.15	0.42	0.00	0.01	0.01	0.01
SW Slip A#1 Surcharge Removal - Unload CSWH							
Main Hoist - Clamshell Dredge	0.30	1.13	6.10	0.01	0.02	0.02	0.02
Main Generator - Clamshell Dredge	0.22	0.85	4.58	0.00	0.02	0.02	0.02
Deck Generator - Clamshell Dredge	0.02	0.09	0.46	0.00	0.00	0.00	0.00
Scows							
Subtotal	0.54	2.07	11.14	0.01	0.04	0.04	0.04
SW Slip A#1 Surcharge Removal - Transport/Unload LA-2							
Main Hoist - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Main Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electric Conveyor							
Dozer	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tug Boat	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table C-171. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material.

				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Clamshell Dredging - Contaminated Material							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.00	0.01	0.07	0.00	0.00	0.00	0.00
Scows							
Tug Boat	0.00	0.04	0.11	0.00	0.00	0.00	0.00
Electric Pump							
Skiff	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Dozer	0.02	0.08	0.44	0.00	0.00	0.00	0.00
Grader	0.01	0.04	0.24	0.00	0.00	0.00	0.00
Compactor	0.01	0.04	0.22	0.00	0.00	0.00	0.00
Water Truck	0.01	0.03	0.16	0.00	0.00	0.00	0.00
Subtotal	0.06	0.25	1.23	0.00	0.01	0.01	0.01

Table C-172. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material

Dreaging and Disposar of Dreaging Material				Tons			
Location/Equipment Type	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Hydraulic Dredging - Fine Grain Material CSWH							
Main Engine - Electric							
Derrick Hoist	0.01	0.03	0.16	0.00	0.00	0.00	0.00
Derrick Winch	0.00	0.01	0.02	0.00	0.00	0.00	0.00
Anchor Barge Winch	0.01	0.02	0.12	0.00	0.00	0.00	0.00
Generator	0.01	0.04	0.20	0.00	0.00	0.00	0.00
Survey Boat	0.00	0.02	0.09	0.01	0.00	0.00	0.00
Crew Boat	0.00	0.01	0.05	0.00	0.00	0.00	0.00
Tug Boat	0.07	0.69	1.87	0.00	0.06	0.06	0.05
Electric Pump							
Subtotal	0.10	0.81	2.51	0.01	0.06	0.06	0.06
Clamshell Dredging - Fine Grain Material to LA 2							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	0.02	0.09	0.49	0.00	0.00	0.00	0.00
Tug Boat	0.47	4.34	11.81	0.01	0.35	0.35	0.33
Subtotal	0.49	4.43	12.31	0.01	0.35	0.35	0.33
Clamshell Dredging - Fine/Coarse Grain Material to LA-3							
Main Hoist - Clamshell Dredge							
Main Generator - Clamshell Dredge							
Deck Generator - Clamshell Dredge	0.01	0.05	0.26	0.00	0.00	0.00	0.00
Tug Boat	0.68	6.32	17.20	0.01	0.51	0.51	0.47
Subtotal	0.70	6.37	17.46	0.02	0.51	0.51	0.47

Table C-173. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2

Table C-173. Total Mitigated Emissions for the POLA Channel Deepening Project Alternative 2									
	Tons								
Location/Activity	ROG	CO	NOx	SOx	PM	PM10	PM2.5		
Dike Const. Quarry Run Placement									
Cabrillo SWH	1.35	11.53	33.29	0.03	0.88	0.88	0.82		
Dike Construction Armor Stone Placement									
Trench Excavation									
Cabrillo SWH	0.00	0.01	0.04	0.00	0.00	0.00	0.00		
Surcharge Removal									
Loading	0.60	2.41	11.55	0.01	0.05	0.05	0.04		
Transport	0.02	0.15	0.42	0.00	0.01	0.01	0.01		
Unload Cabrillo SWH	0.54	2.07	11.14	0.01	0.04	0.04	0.04		
Dredging of Contaminated Material									
Clamshell - Contaminated Material	0.06	0.25	1.23	0.00	0.01	0.01	0.01		
Dredging and Disposal of Dredging Material									
Hydraulic - Cabrillo SWH	0.10	0.81	2.51	0.01	0.06	0.06	0.06		
Clamshell - LA-2	0.49	4.43	12.31	0.01	0.35	0.35	0.33		
Clamshell - LA-3	0.70	6.37	17.46	0.02	0.51	0.51	0.47		
Total Mitigated Emissions (1)	3.86	28.03	89.96	0.09	1.91	1.91	1.78		

Table C-174. Yearly Mitigated Emissions for the POLA Channel Deepening Project Alternative 2

			T	ons (1)			
Yearly Scenario	ROG	СО	NOx	SOx	PM	PM10	PM2.5
Alternative 1 - 2009	0.7	6.2	17.7	0.0	0.5	0.5	0.4
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Net Annual Mitigated Emissions - 2009	(5.9)	(26.2)	(99.0)	(5.6)	(3.3)	(3.3)	(3.0)
Alternative 1 - 2010	2.0	17.2	49.1	0.1	1.3	1.3	1.2
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Net Annual Mitigated Emissions - 2010	(4.6)	(15.2)	(67.6)	(5.6)	(2.4)	(2.4)	(2.2)
Alternative 1 - 2011	1.2	4.6	23.1	0.0	0.1	0.1	0.1
CEQA Baseline - 2004	(6.6)	(32.4)	(116.7)	(5.6)	(3.7)	(3.7)	(3.5)
Net Annual Mitigated Emissions - 2011	(5.5)	(27.8)	(93.6)	(5.6)	(3.6)	(3.6)	(3.4)
Conformity de minimis Thresholds	10	100	10	NA	NA	70	100

Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.

Table C-175. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dike Construction Quarry Run Placement

	Tons							
Location/Equipment Type	CO2	CH4	N2O	CO2e				
Cabrillo SWH								
Barge Equipment	302.18	0.05	0.00	304				
Derrick Barge Crane	139.47	0.02	0.00	140				
Tugboat - Derrick Barge Crane	262.51	0.04	0.00	264				
Tugboat - Transport Quarry Run to Site (1)	2,526.62	0.35	0.02	2,542				
Subtotal	3,230.78	0.46	0.03	3,250.52				

Table C-176. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Surcharge Removal

Suicharge Removal		Tons						
Location/Equipment Type	CO2	CH4	N2O	CO2e				
SW Slip A#1 Surcharge Removal - Loading								
Scraper	394.09	0.06	0.00	397				
Backhoe	70.06	0.01	0.00	71				
Main Hoist - Clamshell Dredge (Electric)								
Main Generator - Clamshell Dredge (Electric)								
Deck Generator - Clamshell Dredge	52.55	0.01	0.00	53				
Dozer	293.38	0.04	0.00	295				
Off-Road Truck	306.51	0.04	0.00	308				
Water Truck	142.31	0.02	0.00	143				
Grader	52.55	0.01	0.00	53				
Subtotal	1,311.44	0.20	0.01	1,320.10				
SW Slip A#1 Surcharge Removal - Transport								
Scows								
Tug Boat	39.56	0.01	0.00	40				
Subtotal	39.56	0.01	0.00	39.80				
SW Slip A#1 Surcharge Removal - Unload CSWH								
Main Hoist - Clamshell Dredge	700.60	0.10	0.01	705				
Main Generator - Clamshell Dredge	525.45	0.08	0.01	529				
Deck Generator - Clamshell Dredge	52.55	0.01	0.00	53				
Scows								
Subtotal	1,278.60	0.19	0.01	1,286.75				

Table C-177. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material.

	Tons						
Location/Equipment Type	CO2	CH4	N2O	CO2e			
Clamshell Dredging - Contaminated Material							
Main Hoist - Clamshell Dredge (Electric)							
Main Generator - Clamshell Dredge (Electric)							
Deck Generator - Clamshell Dredge	8.05	0.00	0.00	8			
Scows							
Tug Boat	10.10	0.00	0.00	10			
Electric Pump							
Skiff	0.79	0.00	0.00	1			
Dozer	49.95	0.01	0.00	50			
Grader	26.84	0.00	0.00	27			
Compactor	24.60	0.00	0.00	25			
Water Truck	17.89	0.00	0.00	18			
Subtotal	138.22	0.02	0.00	139.15			

Table C-178. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material

Dreaging and Disposar of Dreaging Material	Tons					
Location/Equipment Type	CO2	CH4	N2O	CO2e		
Hydraulic Dredging - Fine Grain Material CSWH						
Main Engine - Electric						
Derrick Hoist	18.44	0.00	0.00	19		
Derrick Winch	1.67	0.00	0.00	2		
Anchor Barge Winch	13.83	0.00	0.00	14		
Generator	23.06	0.00	0.00	23		
Survey Boat	5.81	0.00	0.00	6		
Crew Boat	2.91	0.00	0.00	3		
Tug Boat	177.84	0.02	0.00	179		
Electric Pump						
Subtotal	243.56	0.03	0.00	245.06		
Clamshell Dredging - Fine Grain Material to LA 2						
Main Hoist - Clamshell Dredge (Electric)						
Main Generator - Clamshell Dredge (Electric)						
Deck Generator - Clamshell Dredge	56.15	0.01	0.00	57		
Tug Boat	1,120.59	0.15	0.01	1,127		
Subtotal	1,176.74	0.16	0.01	1,183.81		
Clamshell Dredging - Fine/Coarse Grain Material to LA-3			· ·			
Main Hoist - Clamshell Dredge (Electric)						
Main Generator - Clamshell Dredge (Electric)						
Deck Generator - Clamshell Dredge	29.20	0.00	0.00	0.00		
Tug Boat	1,631.58	0.23	0.02	0.00		
Subtotal	1,660.77	0.23	0.02	0.00		

Table C-179. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2

-		Tons					
Location/Activity	CO2	CH4	N2O	CO2e			
Dike Const. Quarry Run Placement							
Cabrillo SWH	3,231	0.46	0.03	3,251			
Dike Construction Armor Stone Placement							
Trench Excavation							
Berths 243-245	10	0.00	0.00	10			
Surcharge Removal							
Loading	1,311	0.20	0.01	1,320			
Transport	40	0.01	0.00	40			
Unload Cabrillo SWH	1,279	0.19	0.01	1,287			
Dredging of Contaminated Material							
Clamshell Dredge of Contaminated	138	0.02	0.00	139			
Dredging and Disposal of Dredging Material							
Hydraulic - Cabrillo SWH	243.56	0.03	0.00	245.06			
Clamshell - LA-2	1,176.74	0.16	0.01	1,183.81			
Clamshell - LA-3	1,660.77	0.23	0.02	0.00			
Total GHG Emissions	9,089.84	1.30	0.09	7,475.41			

Table C-180. Yearly Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2.

		Metric Tons (1)					
Year/Source Category	CO2	CH4	N2O	CO2e			
Year 1 - Direct Sources	1,563.0	0.22	0.02	1,572.5			
Year 1 - Electrical Generation	417	0.00	0.00	418			
Year 1 - Total	1,980	0.22	0.02	1,990			
Year 2 - Direct Sources	4,309.9	0.61	0.04	2,817.3			
Year 2 - Electrical Generation	3,823	0.03	0.02	3,829			
Year 2 - Total	8,133	0.64	0.06	6,646			
Year 2 - Direct Sources	2,390.5	0.36	0.03	2,406.0			
Year 2 - Electrical Generation	438	0.00	0.00	438			
Year 2 - Total	2,828	0.36	0.03	2,844			

Notes: (1) All activities would occur in 2009, except surcharge disposal would occur in 2010.

Table C-181. Construction Activities for the POLA Channel Deepening Project Alternative 2 - Surcharge Removal - Electrical Demand

-	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
SW Slip A#1 Surcharge Removal - Loading								
Scraper	225	0.40	5	450	12	5,400		
Backhoe	80	0.50	2	80	12	960		
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	12	7,200	116.5	838,800
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	12	5,400	116.5	629,100
Deck Generator - Clamshell Dredge	240	0.60	1	144	5	720		
Dozer	335	0.50	2	335	12	4,020		
Off-Road Truck			4					
Water Truck	325	0.50	1	163	12	1,950		
Grader	180	0.50	1	90	8	720		

Table C-182. Construction Activities for the POLA Channel Deepening Project Alternative 2 -

Dredging of Contaminated Material - Electrical Demand

	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Clamshell Dredging - Contaminated Material								
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	12	7,200	29.8	214,211
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	12	5,400	29.8	160,658
Deck Generator - Clamshell Dredge	240	0.60	1	144	3	432		
Scows	N/A	N/A	2	N/A	12	N/A		
Tug Boat	800	0.20	1	160	4	640		
Electric Pump	N/A	N/A	1	N/A	12	N/A		
Skiff	125	0.20	1	25	2	50		
Dozer	335	0.50	2	335	8	2,680		
Grader	180	0.50	2	180	8	1,440		
Compactor	250	0.33	2	165	8	1,320		
Water Truck	240	0.50	1	120	8	960		

Table C-183. Construction Activities for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material - Electrical Demand

Dreaging and Disposar of Dreaging Mater	Power	Load	#	Hourly	Hours	Daily	Work	Total
Location/Equipment Type			Active	,		,		
Location/Equipment Type	Rating (Hp)	Factor	Active	Hp-Hrs	Per Day	Hp-Hrs	Days	Hp-Hrs
Hydraulic Dredging - Fine Grain Material CSWH					1			
Main Engine - Electric	17,000	1	1	8,500	24	204,000	43.8	8,938,090
Derrick Hoist	240	0.7	1	168	4	672		
Derrick Winch	87	0.7	1	61	1	61		
Anchor Barge Winch	180	0.7	1	126	4	504		
Generator	350	0.6	1	210	4	840		
Survey Boat	250	0.2	1	50	5	250		
Crew Boat	125	0.2	1	25	5	125		
Tug Boat	850	0.5	1	425	18	7,650		
Electric Pump	N/A	N/A	1	N/A	24	N/A		
Clamshell Dredging - Fine Grain Material to LA 2								
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	15	8,964	200.0	1,792,717
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	15	6,723	200.0	1,344,538
Deck Generator - Clamshell Dredge	240	0.6	1	144	3	448		
Tug Boat (1)	2,200	0.6	2	2,640	4.0	10,560		
Clamshell Dredging - Fine/Coarse Grain Material to I	LA-3							
Main Hoist - Clamshell Dredge (Electric)	1,200	0.50	1	600	15	8,964	104.0	932,213
Main Generator - Clamshell Dredge (Electric)	900	0.50	1	450	15	6,723	104.0	699,160
Deck Generator - Clamshell Dredge	240	0.6	1	144	3	448		-
Tug Boat (1)	2,200	0.6	2	2,640	11.2	29,568		-

Notes: (1) Based upon a daily disposal volume to LA-2 of 4,000 cy and a barge capacity of 2,000 cy.

Table C-184. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Surcharge Removal Due to Electrical Generation

Suicharge Removal Due to Electrical Ger	Tons						
Location/Equipment Type	CO2	CH4	N2O	CO2e			
SW Slip A#1 Surcharge Removal - Loading							
Scraper	0	0.00	0.00	0			
Backhoe	0	0.00	0.00	0			
Main Hoist - Clamshell Dredge (Electric)	275	0	0	275			
Main Generator - Clamshell Dredge (Electric)	206	0	0	207			
Deck Generator - Clamshell Dredge	0	0.00	0.00	0			
Dozer	0	0.00	0.00	0			
Off-Road Truck	0	0.00	0.00	0			
Water Truck	0	0.00	0.00	0			
Grader	0	0.00	0.00	0			
Subtotal	481	0.00	0.00	482			
SW Slip A#1 Surcharge Removal - Transport							
Scows							
Tug Boat							
Subtotal							
SW Slip A#1 Surcharge Removal - Unload CSWH							
Main Hoist - Clamshell Dredge							
Main Generator - Clamshell Dredge							
Deck Generator - Clamshell Dredge							
Scows							
Subtotal							
		j	Ì				
		j	Ì				

Table C-185. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging of Contaminated Material - Electrical Generation

	Tons			
Location/Equipment Type	CO2	CH4	N2O	CO2e
Clamshell Dredging - Contaminated Material				
Main Hoist - Clamshell Dredge (Electric)	70	0	0	70
Main Generator - Clamshell Dredge (Electric)	53	0	0	53
Deck Generator - Clamshell Dredge	0	0.00	0.00	0
Scows				
Tug Boat	0	0.00	0.00	0
Electric Pump				
Skiff	0	0.00	0.00	0
Dozer	0	0.00	0.00	0
Grader	0	0.00	0.00	0
Compactor	0	0.00	0.00	0
Water Truck	0	0.00	0.00	0
Subtotal	123	0.00	0.00	123

Table C-186. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2 - Dredging and Disposal of Dredging Material - Electrical Generation

Breaging and Bisposar of Breaging Materia	Tons				
Location/Equipment Type	CO2	CH4	N2O	CO2e	
Hydraulic Dredging - Fine Grain Material CSWH					
Main Engine - Electric	2,931	0.02	0.01	2,935	
Derrick Hoist	0	0.00	0.00	0	
Derrick Winch	0	0.00	0.00	0	
Anchor Barge Winch	0	0.00	0.00	0	
Generator	0	0.00	0.00	0	
Survey Boat	0	0.00	0.00	0	
Crew Boat	0	0.00	0.00	0	
Tug Boat	0	0.00	0.00	0	
Electric Pump					
Subtotal	2,931	0.02	0.01	2,935	
Clamshell Dredging - Fine Grain Material to LA 2					
Main Hoist - Clamshell Dredge (Electric)	588	0	0	589	
Main Generator - Clamshell Dredge (Electric)	441	0	0	441	
Deck Generator - Clamshell Dredge	0	0.00	0.00	0	
Tug Boat	0	0.00	0.00	0	
Subtotal	1,029	0.01	0.00	1,030	
Clamshell Dredging - Fine/Coarse Grain Material to LA-3					
Main Hoist - Clamshell Dredge (Electric)	306	0	0	306	
Main Generator - Clamshell Dredge (Electric)	229	0	0	230	
Deck Generator - Clamshell Dredge	0.00	0.00	0.00	0.00	
Tug Boat	0.00	0.00	0.00	0.00	
Subtotal	535	0.00	0.00	536	

Table C-187. Total Mitigated GHG Emissions for the POLA Channel Deepening Project Alternative 2
Due to Electrical Generation

	Tons			
Location/Activity	CO2	CH4	N2O	CO2e
Dike Const. Quarry Run Placement				
Cabrillo SWH				
Dike Construction Armor Stone Placement				
Trench Excavation				
Berths 243-245	47	0	0	47
Surcharge Removal				
Loading	481	0.00	0.00	482
Transport				
Unload Cabrillo SWH				
Dredging of Contaminated Material				
Clamshell Dredge of Contaminated	123	0.00	0.00	123
Dredging and Disposal of Dredging Material				
Hydraulic - Cabrillo SWH	2,931	0.02	0.01	2,935
Clamshell - LA-2	1,029	0.01	0.00	1,030
Clamshell - LA-3	535	0.00	0.00	536
Total Emissions	5,145	0	0	5,153

Table C-188. POLA Channel Deepening Project Alternative 2 Annual Mitigated GHG Emissions due to Electrical Generation

ado to Electrical Contration				
	Metric Tons (1)			
Year	CO2	CH4	N2O	CO2e
2009	417.0	0.00	0.00	417.6
2010	3,823.2	0.03	0.02	3,828.8
2011	437.53	0.00	0.00	438.17

Notes: (1) Emissions distributed into each calendar year according to proposed construction schedule.

Attachment B

USACE Guidance Concerning Implementation of EPA's Clean Air Act General Conformity Rule

DEPARTMENT OF THE ARMY

U.S. Army Corps of Engineers WASHINGTON, D.C. 20314-1000

REPLY TO ATTENTION OF:

CECC-E

2 0 APR 1994

MEMORANDUM FOR ALL MAJOR SUBORDINATE COMMANDERS, AND DISTRICT COMMANDERS

SUBJECT: EPA's Clean Air Act (CAA) General Conformity Rule

- 1. In the <u>Federal Register</u> of November 30, 1993, the U.S. Environmental Protection Agency (EPA) published its final General Conformity Rule to implement Section 176(c) of the Clean Air Act (CAA) for geographic areas designated as "nonattainment" and "maintenance" areas under the CAA. EPA's final rule addresses how Federal agencies are to demonstrate that activities in which they engage conform with applicable, Federally—approved CAA state implementation plans. Because these agency conformity determinations can sometimes take considerable time and cost thousands of dollars to produce, and because failure to produce and sign an adequate conformity determination where one is required can create a serious legal vulnerability for a Corps project or permit, the Corps must ensure full and careful compliance with the new EPA Final Rule.
- 2. The enclosed guidance document has been prepared to assist Corps Divisions and Districts in understanding and complying with the subject rule. This guidance document is introductory in nature, and cannot be considered a substitute for careful reading of and compliance with the rule itself. (See 58 Fed.Reg. 63214 et seg.)
- 3. One of the primary subjects discussed in the enclosed guidance document is how the General Conformity Rule relates to the Corps regulatory program under Sections 9 and 10 of the Rivers and Harbors Act of 1899, Section 404 of the Clean Water Act, and Section 103 of the Ocean Dumping Act. As soon as practicable I intend to promulgate another guidance document providing more detailed instructions on how Corps personnel should deal with CAA conformity considerations regarding Corps Civil Works projects during the planning process, including preparation of CAA conformity determinations where that is necessary.
- 4. Although the attached document is rather "legalistic" in nature, it should be broadly distributed within the Corps family (e.g., counsel, regulatory, planning, operations, etc.). This guidance also contains important policy considerations, and thus has been fully coordinated with the Office of the Assistant Secretary of the Army (Civil Works) and with the Director of Civil Works.

5. My points of contact for this guidance are Lance Wood and Bill Sapp, CECC-E; their telephone number is (202) 272-0035.

FOR THE COMMANDER:

Encl

LESTER EDELMAN Chief Counsel

EPA'S FINAL CLEAN AIR ACT GENERAL CONFORMITY RULE

INTRODUCTION.

In the Federal Register of November 30, 1993, the U.S. Environmental Protection Agency (EPA) published its final General Conformity Rule¹ to implement section 176(c) of the Clean Air Act (CAA)² for geographic areas designated as "nonattainment" and "maintenance" areas under the CAA. EPA's final rule addresses how Federal agencies are to demonstrate that activities in which they engage conform with applicable, Federally approved CAA state implementation plans.³ Because these agency conformity determinations can sometimes take considerable time and cost thousands of dollars to produce¹, and because failure to produce and sign an adequate conformity determination where one is required can create a serious legal vulnerability for a Corps project or permit, the Corps must ensure full and careful compliance with the new EPA final rule.

EPA's final rule was promulgated to implement CAA section 176(c), which was added to the Clean Air Act in 1977⁵ to require that Federal agencies assure that activities they engage in are in conformance with Federally-approved CAA state implementation plans.⁶ This requirement is clearly triggered whenever a Federal

No department, agency, or instrumentality of the Federal Government shall engage in, support in any way or provide financial assistance for, license or permit, or approve, (continued...)

¹ 58 <u>Fed. Reg.</u> 63214 (November 30, 1993).

² Clean Air Act § 176(c), 42 U.S.C. § 7506 (1993).

³ 58 <u>Fed. Reg.</u> 63214 (November 30, 1993). Section 110 of the Clean Air Act requires that all states and the District of Columbia develop state implementation plans for EPA approval that provide detailed accounts of how the state will attain the National Ambient Air Quality Standards throughout the state. 42 U.S.C. § 7410 (1993).

The EPA estimated in its proposed rule that a conformity determination would cost approximately \$5,000, whereas an extensive conformity determination would cost \$50,000. 58 Fed. Reg. 13848 (March 15, 1993). Department of Defense estimates double the figures supplied by the EPA.

⁵ Pub. L. 95-95, § 176(c) (1977).

⁶ Section 176(c)(1) provides in relevant part that:

agency engages in a Federal project, but it is also triggered whenever a Federal agency permits, licenses, funds, or approves a non-Federal undertaking. The Corps' Clean Water Act (CWA) section 404 permits, Rivers and Harbors Act of 1899 Section 10 permits, and Ocean Dumping Act Section 103 permits fall under this latter category.

II. APPLICABILITY.

- A. EXEMPTIONS AND PRESUMPTIONS. As you study the final rule and its preamble, the first general subject to consider is the "applicability" of the rule. The new rule applies generally to Federal actions except for those covered by EPA's transportation conformity rule?, actions with associated emissions below the deminimis levels specified at 40 CFR 91.853, certain classes of actions designated at 40 CFR 91.853 as exempted or presumed to conform, and actions that the new rule "grandfathers" at 40 CFR 91.850. A number of Corps activities may fit within the long list of "exempted" or "presumed to conform" activities. For example, note the specific exemption provided for maintenance dredging and debris disposal actions.
- B. GRANDFATHER CLAUSE. As you consider the "grandfather provision", remember that it describes the specific circumstances where a Federal action need not comply with the new general conformity rule, but the Corps might nevertheless have to create and sign a CAA conformity determination to show compliance with the statutory mandate of CAA Section 176(c). However, that conformity determination would not have to comply with the specific procedural requirements of the new EPA regulation. Also note that the second basis provided in the rule for grandfathering, i.e., the three-part requirement of 40 CFR 93.150(c)(2), requires that an environmental analysis had to be commenced prior to January 31, 1994, or that a contract to develop a specific environmental analysis was awarded prior to January 31, 1994. The reference in that section to the date of December 30, 1993, was an error. The EPA has since corrected that date to January 31, 1994, by publishing the correction in the Federal Register, i.e., January 31, 1994. Moreover, that same section requires that a CAA conformity

^{6(...}continued) any activity which does not conform to an implementation plan after it has been approved or promulgated under section 110. . . . The assurance of conformity to such an implementation plan shall be an affirmative responsibility of the head of such department, agency or instrumentality.

C.A.A. § 176(c)(1), 42 U.S.C. § 7506 (1993).

⁷See 40 CFR Part 51, subpart T.

determination demonstrating compliance with the statutory mandate of CAA Section 176(c) be signed by March 15, 1994.

C. ATTAINMENT VERSUS NON-ATTAINMENT AREAS. Also regarding applicability, note that the new CAA General Conformity Rule applies only to Federal actions in CAA non-attainment areas and in those attainment areas subject to maintenance plans required by CAA Section 175A (i.e., "maintenance areas"; see 58 Fed. Reg. 13841). EPA has announced its intentions to do another rulemaking at a later date describing how CAA Section 176(c) will be applied to CAA attainment areas, in general.

III. REQUIREMENTS OF THE NEW RULE.

To fully understand the requirements of the rule, you must carefully study both the rule itself and the explanatory guidance provided in the preamble. In the near future, the Office of the Chief Counsel expects to provide additional guidance that will assist Corps personnel who must prepare CAA conformity determinations, especially for Corps planning studies, feasibility reports, and the like. In this guidance, I only wish to emphasize a few important aspects of the rule, to ensure understanding of those matters throughout the Corps, for both our projects and our regulatory responsibilities.

A. CONFORMITY DETERMINATIONS. The basic requirement of the General Conformity Rule is stated at 40 CFR 93.150(b): "A Federal agency must make a determination that a <u>Federal action</u> conforms to the applicable implementation plan in accordance with the requirements of this subpart before the action is taken." (emphasis added). Obviously, to implement that mandate we must turn to the definition of "Federal action" provided at 40 CFR 93.152:

Federal action means any activity engaged in by a[n] ... agency ... of the Federal Government, or any activity that a[n] ... agency ... supports in any way, provides financial assistance for, licenses, permits, or approves... Where the Federal action is a permit, license, or other approval for some aspect of a non-Federal undertaking, the relevant activity is the part, portion, or phase of the non-Federal undertaking that requires the Federal permit, license, or approval."

- B. DIRECT EMISSIONS. Regarding what air emissions must be considered in a CAA conformity determination, the rule defines two classes: direct emissions, and indirect emissions. The definition of "direct emissions" is straightforward: "Direct emissions" means those emissions of a criteria pollutant or its precursors that are caused or initiated by the Federal action and occur at the same time and place as the action." (40 CFR 93.152)
- C. INDIRECT EMISSIONS. In contrast, the definition of "indirect emissions" needs careful study: "indirect emissions"

means those emissions of a criteria pollutant or its precursors that: (1) Are caused by the Federal action but may occur later in time and/or may be further removed in distance from the action itself but are still reasonably foreseeable; and (2) The Federal agency can practicably control and will maintain control over due to a continuing program responsibility of the Federal agency." (40 CFR 93.152; emphasis added.) Note that the second, limiting part of that definition is crucial, since the underlined words provide essential restrictions on how far the Corps' responsibilities extend regarding documenting and controlling indirect emissions. Those restrictions from the rule's definition of "indirect emissions" are especially important, given the General Conformity Rule's broad, "but for" definition of the term "caused by": "Caused by, as used in the terms 'direct emissions' and 'indirect emissions, ' means emissions that would not otherwise occur in the absence of the Federal action. "8 This definition of the term "caused by" can be characterized as a "but for" approach to the concept of causation, because, standing alone, it would require the Corps to take responsibility for all indirect emissions that would not occur without (i.e., "but for") the Corps permit or project. If the General Conformity Rule did not contain the various limiting provisions discussed herein, that "but for" approach to defining "caused by" would have made the Corps responsible for dealing with potential emissions that might not occur "but for" the Corps project or permit, but which might be substantially removed in time and/or distance from the Corps action; those emissions would be almost impossible for the Corps to predict, document, or control through mitigation measures.

Consequently, it is of considerable importance to the Corps Civil Works program that everyone understand and make proper use of the restrictions noted above in the definition of "indirect emissions" when deciding whether or how we need to prepare a CAA conformity determination. Of course, the Corps must consider the "direct emissions" caused by our proposed project or activity, or by the specific activity requiring a Corps permit. However, the final General Conformity Rule does not require the Corps to document or analyze any "indirect emissions" unless we determine that it would be practicable for the Corps to control them, and that the Corps would maintain control over them due to a continuing Corps program responsibility. As we shall discuss later, we expect that the Corps will not be legally required under the General Conformity Rule to analyze, document, and seek mitigation measures for indirect emissions for many Corps project-related actions, and for the vast majority of actions requiring Corps permit authorization, since often it will not be practicable for the Corps to control such emissions, and frequently the Corps will not have a continuing program responsibility to maintain control over them.

^{8 40} CFR 913.152 (1994).

The logic behind the limitation on what "indirect emissions" the Corps must analyze, document, and seek mitigation measures to reduce, is explained in the preamble to EPA's rule, as follows:

The EPA does not believe that it is reasonable to conclude that a Federal agency "supports" an activity by third persons over whom the agency has no practicable control—or "supports" emissions over which the agency has no practicable control, based on the mere fact that, if one inspects the "causal" chain of events, the activity or emissions can be described as being a "reasonably foreseeable" result of the agency's actions.

In fact, achievement of the clean air goals is not primarily the responsibility of the Federal government. Instead, Congress assigned that responsibility to the State and local agencies.... Where the Federal control over the resultant emissions is relatively minor, the problem is likely caused by multiple pollution sources and a solution may be impossible unless it is directed at all the contributing sources. This role is given to the State and local agencies by Congress and should not be interpreted as the Federal agencies' role under section 176(c).9

- IV. CORPS IMPLEMENTATION OF THE EPA GENERAL CONFORMITY RULE.
 - A. CORPS PROJECTS VERSUS NON-FEDERAL ACTIVITIES NEEDING CORPS PERMIT AUTHORIZATION.

From a legal point of view, many of the limitations on Corps responsibilities for documenting and mitigating for indirect emissions (as discussed above) apply to both Corps Civil Works projects and to Corps regulatory program actions regulating non-Federal activities. Nevertheless, there are some significant distinctions that must be made, as a practical matter, regarding how often and in what circumstances the Corps will voluntarily choose to go beyond our strict legal obligations under the General Conformity Rule regarding CAA analyses of indirect emissions. As we explain at some length hereinafter, for practical reasons, policy reasons, and legal reasons, we are not required to, and thus we will not, prepare CAA conformity determinations for the vast majority of the approximately 100,000 activities that we must authorize yearly through the Corps regulatory program. We intend to assert and make full use of the various exemptions and limitations written into the General Conformity Rule that apply to our regulatory program, which exemptions and limitations will usually lead us to conclude that the emissions we are responsible for fall below the de mimimis exemption level. Among the many reasons why this approach is necessary and appropriate is the fact

⁹⁵⁸ Fed. Reg. 63220 (November 30, 1993)

that we must provide relatively expeditious decisions for non-Federal activities that require Corps permit authorization, and because all of the non-Federal activities that require Corps permits are fully subject to the CAA authorities of the U.S. EPA and of the state and local governments.

In contrast, some Corps water resource development projects go through lengthy planning processes, with full-scale NEPA Environmental Impact Statements, coordination with numerous state and Federal agencies, etc. Moreover, many of our water resource development projects are subject to litigation brought by project opponents. Consequently, wherever it is practicable and appropriate, the Corps will go beyond our strict legal obligations under the General Conformity Rule, and we will prepare CAA conformity determinations that consider indirect emissions that would follow from our project, even where it is debatable whether we could "practicably" control those indirect emissions, and even where it is debatable whether the Corps has a continuing program responsibility to control those indirect emissions. In other words, we should err on the side of caution in writing CAA conformity determinations for large-scale Corps projects, and in coordinating those determinations with the U.S. EPA and with state and local clean air agencies. However, whenever the Corps does voluntarily choose to go beyond our obligations under the General Conformity Rule while preparing a CAA conformity determination, the fact that we are voluntarily going beyond our understanding of our legal obligations must be clearly stated in our public documentation.

When the Corps prepares a CAA conformity determination for a Corps project in the planning stage, and in that conformity determination we voluntatily address all indirect emissions that would be "caused by" our project, that will provide us the valuable opportunity to demonstrate that any short-term increase in emissions from project construction will be entirely or partially offset by decreases in long-term, "without project condition" emissions, due to increased efficiencies (for example, through more efficient port operations from a port improvement project). Also, when we prepare a CAA conformity determination that deals with all indirect emissions that can reasonably be said to be "caused by" our project, our project can be presented to the state CAA authority and specifically approved as part of the state implementation plan, along with any necessary state revisions to that SIP necessary to accommodate the Federal project and all associated indirect emissions. Development and coordination of our CAA conformity determination should be undertaken as early as possible in the planning stage for a large-scale or litigationprone Corps project. The resulting documentation will be extremely useful to help defend our project from potential litigation challenging compliance with the CAA. On the other hand, for smallscale Corps projects, covered only by environmental assessments and findings of no significant impact, and where no CAA-related litigation can be anticipated, we can probably rely only on the

exemptions found in the General Conformity Rule, and need not necessarily prepare a full-blown CAA conformity determination voluntarily addressing various indirect emissions. Please feel free to consult the points of contact provided in this guidance if you are in doubt about whether a particular Civil Works activity should be covered by a CAA conformity determination voluntarily covering indirect emissions.

B. THE CORPS REGULATORY PROGRAM.

One crucial aspect of this guidance involves how we expect all Corps offices to implement the CAA General Conformity Rule regarding non-Federal activities requiring authorization under the Corps regulatory program. Of course, if another Federal agency requires a Corps permit for one of its activities or projects, that Federal agency is fully responsible for ensuring compliance with CAA Section 176(c), and the Corps can adopt and rely upon that agency's conformity determination, or upon whatever waiver or presumption under the CAA General Conformity Rule that agency believes will satisfy CAA Section 176(c). However, for non-Federal activities, the Corps must take responsibility for whatever CAA conformity determination may be necessary. Nevertheless, for the reasons explained hereinafter, the new rule and its preamble clearly indicate that the vast majority of activities needing Corps permit authorization will not require a CAA conformity determination, because practically all of those activities will fall below the de minimis threshold levels for emissions specified at 40 CFR 93.153.

C. SCOPE OF ANALYSIS. One feature of EPA's final General Conformity Rule that clearly demonstrates that the Corps will not have to perform many conformity determinations is the rule's definition of the term "Federal action". The final rule's definition clearly distinguishes between large Federal projects, such as a Federally funded and Federally controlled military base, versus non-Federal undertakings that simply require a Federal permit. Oftentimes in the latter case, the Federal agency only has to permit a minor part, portion, or phase of a much larger non-Federal undertaking. To reflect the limited Federal responsibility under the CAA derived from such Federal permits, the EPA definition of "Federal action" indicates that, in complying with section 176(c), Federal regulatory agencies are only responsible for analyzing the emissions resulting from the "part, portion, or phase" of the non-Federal undertaking that they permit. To deal with this important point, the EPA added the following sentence to the final rule's definition of "Federal action":

Where the Federal action is a permit, license, or other approval for some aspect of a non-Federal undertaking, the relevant activity is the part, portion, or phase of

the non-Federal undertaking that requires the Federal permit, license, or approval. 10

As you can see, the legal principle behind the quoted sentence is the same principle that supports the "narrow scope of analysis" approach for our NEPA documents reflected at Appendix B of 33 CFR Part 325, paragraph 7.b. and the "permit area" approach used to limit Corps responsibilities in Appendix C, implementing the National Historic Preservation Act." The rule of administrative law and practice created by the sentence just quoted from EPA's definition of "Federal action" is that, for the limited and particular purposes of the CAA Conformity Rule and for every Corps CAA conformity determination for a Corps regulatory action under this rule, the Corps will always use a narrow "scope of analysis" for purposes of CAA Section 176(c), even if we choose to use a broader scope of analysis for purposes of NEPA, the public interest review, or the 404(b)(1) analysis for that same permit case.

This narrow scope of analysis for purposes of the CAA conformity analysis is always appropriate, for several reasons. For example, the Corps regulators have no expertise or authority allowing them to evaluate or control air emissions from the larger, overall projects, such as a shopping center, that may require a Corps permit for one phase or portion of that larger project (e.g., placement of fill material on which part of the shopping center will later be constructed and operated). In contrast, the state and EPA clean air authorities have broad, general authority, expertise, and responsibility to evaluate and control air emissions from the larger, overall projects, such as shopping centers, regardless of whether part of all of such a shopping center happens to be constructed on fill material permitted by the Corps of Engineers.

D. CONFORMITY DETERMINATIONS FOR CORPS PERMITS CASES WILL BE NECESSARY VERY RARELY. The sentence quoted above from EPA's definition of "Federal action" may well be the most important provision of the General Conformity Rule relating to the Corps regulatory program, because this provision, in conjunction with the restrictive language discussed above from the definition of "indirect emissions", means that very rarely will the Corps have to prepare a CAA conformity determination document for a Corps regulatory action. The reasons for this conclusion are reflected in the following case example, provided by EPA in the preamble of the final General Conformity Rule. In this example, the EPA shows the close relationship between the sentence quoted above from the definition of "Federal action" and the restrictive language from the definition of "indirect emissions", as follows:

^{10 58} Fed. Reg. 63248 (November 30, 1993).

^{11. 55} Fed. Reg. 27000 (June 29, 1990)

[In the final rule] the definition of "Federal action" is revised by adding the following sentence to the end of the definition in the [proposed rule]: Where the Federal action is a permit, license, or other approval for some aspect of a nonfederal undertaking, the relevant activity is the part, portion, or phase of the nonfederal undertaking that requires the Federal permit, license or approval. The following examples illustrate the meaning of the revised definition.

Assume, for example, that the [Corps] issues a permit and that permitted fill activity represents one phase of a larger nonfederal undertaking; i.e., the construction of an office building by a nonfederal entity. Under the conformity rule, the [Corps] would be responsible for addressing all emissions from that one phase of the overall office development undertaking that the [Corps] permits; i.e., the fill activity at the wetland site. However, the [Corps] is not responsible for evaluating all emissions from later phases of the overall office development (the construction, operation, and use of the office building itself), because later phases generally are not within the [Corps'] continuing program responsibility and generally cannot be practicably controlled by the [Corps]. 12

The conclusion to be drawn regarding the preamble's case example is that the Corps almost certainly would not have to prepare a CAA conformity determination for that permit action described in the preamble, because the direct emissions from the fill activity would be relatively minor, and thus in all probability they would fall below the <u>de minimis</u> levels exempted by 40 CFR 93.153. Moreover, in this example one cannot identify any indirect emissions for which the Corps would be responsible.

E. "PART, PORTION, OR PHASE" OF A LARGER UNDERTAKING. The preamble for the final rule provides several other important explanatory passages that accurately describe the limited nature of the responsibilities the Corps must fulfill as we operate our regulatory program in compliance with EPA's General Conformity Rule. As the EPA states in the preamble, the "inclusive definition" that EPA had published for public comment in the proposed rule to define the term "indirect emissions" would have been overly burdensome and inappropriate for regulatory programs that might have to "document the air quality affects from tens of thousands of public and private business activities each year, even where the associated Federal action in extremely minor." The EPA

^{12 58} Fed. Reg. 63227 (November 30, 1993).

^{13 58} Fed. Reg. 63219 (November 30, 1993).

goes on to use the Corps in an illustration of this point by explaining that:

[T]he Army Corps of Engineers estimates that 65,000 of their regulatory actions would have required a conformity review in 1992 under the inclusive definition. The [Corps] permits are often limited to a small portion of a much larger project and, thus, may not be the best mechanism to review the larger project: e.g., one river crossing for a 500 mile gas pipeline or a half-acre wetland fill for a twenty acre shopping mall.¹⁴

As the EPA explains here, it would be impractical to force a Federal regulatory agency like the Corps to do potentially time-consuming and costly air quality analyses when the activity that agency permits may be a very minor aspect of a much larger non-Federal undertaking, and when that specific activity needing a Corps permit may have little or no effect on air quality.

F. CONTINUING PROGRAM RESPONSIBILITY. The EPA also used the Corps in an illustration to explain the phrase "continuing program responsibility" in the definition of the term "indirect emissions". In their example the EPA explains that only if the Corps were to impose conditions on a permit as part of its responsibilities under its regulatory program and these permit conditions, in and of themselves, would lead to an increase in the air emissions caused by the activity, would the Corps be required to include the air emissions caused by its permit conditions in our CAA conformity analysis. However, the preamble to EPA's rule makes clear that normally the Corps is not responsible for indirect emissions related to activities needing Corps permits:

i. Exclusive definition [for the term "indirect emissions"]-types of Federal actions not covered. The following types of
Federal actions, among others, are not covered by the
conformity rule under the exclusive definition approach [i.e.,
the approach adopted in the final rule]...(3) Certain
indirect emissions related to a [Corps of Engineers] permit
for the discharge of dredged or fill material. The indirect
emissions from development activities related to [Corps]
permit actions are not subject to the continuing program
responsibility of the [Corps], or cannot be practicably
controlled by the [Corps].

The EPA preamble also recognizes that the Corps has an explicit exemption from the conformity rule where:

^{14 58} Fed. Reg. 63219 (November 30, 1993).

^{15 58} Fed. Reg. 63220 (November 30, 1993).

^{16 58} Fed. Reg. 63224 (November 30, 1993).

The indirect emissions from development activities related to [Corps] permit actions are not covered where such emissions are not subject to the continuing program responsibility of the [Corps], or cannot be practicably controlled by the [Corps]. 17

The EPA then goes on in the preamble to explain the changes in the definition for the term "indirect emissions" that EPA adopted in its final General Conformity Rule (i.e., the "exclusive" definition). Again it uses the Corps in an illustration. The EPA points out that conformity analyses are not required when Federal actions are incidental to later development by private parties. As the EPA states:

...this approach would not require a conformity analysis for certain Federal actions that are necessary for, but incidental to, subsequent development by private parties. For example, the exclusive definition does not generally require that a [Corps] fill permit needed for a relatively minor part, portion, or phase of a twenty acre development on private land would somehow require the [Corps] to evaluate all emissions from the construction, operation, and use of that larger development. 18 (emphasis added)

Here the EPA explains that the "activity" contemplated under section 176(c) in many cases is properly limited to the particular "part, portion, or phase" of a non-Federal action that is actually permitted by the regulatory agency (i.e., the Corps). As the EPA goes on to explain:

The person's [i.e., permit applicant's] activities that fall outside the Federal agency's continuing program responsibility to control are subject to control by state and local agencies. 19

As indicated above, generally speaking the Corps does not have a continuing program responsibility to measure, monitor, control, or mitigate for air emissions that may result from the construction or operation of a non-Corps facility (such as a shopping center, factory, or non-Federal port), even though some part, portion, or phase of that facility requires a permit from the Corps. Under the CAA, the state and local clean air authorities have full responsibility and authority to deal with those emissions, and to prevent or condition the construction of the non-Federal facility as necessary to deal with those air emissions. Under the General

^{17 58} Fed. Reg. 63224 (November 30, 1993).

^{18 58} Fed. Reg. 63222 (November 30, 1993).

^{19 58} Fed. Reg. 63222 (November 30, 1993)

Conformity Rule the Corps (1) must consider <u>direct emissions</u> from only the particular part, portion, or phase of the larger, non-Federal facility that we permit; and (2) we must consider <u>indirect emissions</u> from that same part, portion, or phase, and then only to the extent that we can practicably control them, and have a continuing program responsibility to control them.

G. CORPS DOCUMENTATION OF COMPLIANCE WITH CAA SECTION 176(C)

For any permit case where the Corps reasonably determines that the emissions from the particular "part, portion, or phase" of a larger, non-Federal undertaking, needing a Corps permit, would fall below the <u>de minimis</u> threshold levels of 40 CFR 93.153, the Corps will not have to conduct a technical analysis to document that the emissions from the proposed undertaking would not exceed the <u>de minimis</u> thresholds. This conclusion is supported by the following example taken from EPA's preamble to the General Conformity Rule:

Example 4: Where a [Corps of Engineers] permit is needed to fill a wetland so that a shopping center can be built on the fill, generally speaking, the [Corps] could not practicably maintain control over and would not have a continuing program responsibility to control indirect emissions from subsequent construction, operation, or use of that shopping center. Therefore, only those emissions from the equipment and motor vehicles used in the filling operation, support equipment, and emissions from movement of the fill material itself would be included in the analysis. If such emissions are below the deminimis levels described below for applicability purposes (section 51.858), no conformity determination ... would be required for the issuance of the ... permit.²⁰

The same point is made elsewhere in the preamble to the General Conformity Rule, as follows:

Most Federal actions result in little or no direct or indirect air emissions. The EPA intends such actions to be exempted under the <u>de minimis</u> levels specified in the rule and, thus, no further analysis by the Federal agency is required to demonstrate that such actions conform.... Further, the EPA believes that Federal actions which are <u>de minimis</u> should not be required by this rule to make an applicability analysis. A different interpretation could result in an extremely wasteful process which generates vast numbers of useless conformity statements. Paragraphs (c)(1) and (2) of Section 51.853 are added to the final rule to provide that <u>de minimis</u> actions are exempt from the requirements of this rule. Therefore, it is

^{20 58} Fed. Reg. 63223 (November 30, 1993).

not necessary for a Federal agency to document emissions levels for a de minimis action. 21

Although we expect that the vast majority of activities needing Corps permits will not need CAA conformity determinations for the reasons explained above, nevertheless, for any permit case where litigation can be anticipated if the Corps issues the permit, the permit administrative record should explain our limited CAA responsibilities under the CAA General Conformity Rule, and the basis for our conclusion that the relevant emissions would be deminimis. That explanation often may need to include a discussion of why it would not be "practicable" for the Corps to control certain specified indirect emissions, and why the Corps does not have a continuing program responsibility to control such indirect emissions, and why our CAA responsibilities are limited to the particular "part, portion, or phase" of a larger undertaking requiring Corps permit authorization.

V. CONCLUSION.

Because of the various provisions discussed above, we expect that very few Corps permit actions will require CAA conformity analyses, and that our CAA conformity determinations will normally conclude that the air emissions relevant to our permit action are safely below the final rule's de minimis levels. It seems that the only time that the Corps will have to do a full-scale CAA conformity determination in a permit case is when the emissions associated with the particular activity needing the Corps permit, or the particular activity required by Corps permit conditions (e.g., the placement of the fill, or the construction of the structure in the water, or the actual dredging and disposal operation, or implementation of the required mitigation plan) are so substantial that those emissions would exceed the de minimis thresholds by themselves. This conclusion flows logically from the provisions discussed above from EPA's final rule and preamble, based in part on the principle of limited Corps responsibilities under the CAA.

Nevertheless, the practical necessity that the Corps will use a "narrow scope of analysis" to limit our requirements under the CAA conformity rule must not lead the Corps necessarily to use such a narrow scope of analysis for purposes of the Corps' other responsibilities under other aspects of the public interest review or the 404(b)(1) Guidelines. Because the Corps has ample discretion to adopt and use a broader scope of analysis for purposes of NEPA, the Endangered Species Act, etc., we will not use the CAA conformity determination as an excuse or occasion to reduce our more wide-ranging reviews and responsibilities under those other statutes and regulations.

²¹⁵⁸ Fed. Reg. 63228-63229 (November 30, 1993).

The Corps' very limited expertise, authority, and continuing program responsibilities regarding air emissions fully justifies our using a narrow scope of analysis for purposes of compliance with CAA Section 176(c). In contrast, our broader, traditional responsibility, authority, and expertise to regulate activities affecting aquatic resources will often justify our using a broader scope of analysis to consider effects of a proposed undertaking on aquatic resources, endangered species, etc. Thus, for any particular permit case, the Corps will implement the CAA General Conformity Rule by focusing on only the specific part, portion, or phase of the larger undertaking that requires our permit authorization. Nevertheless, we often will consider all direct and indirect effects of the larger undertaking when evaluating effects on the aquatic environment.

Corps Headquarters points of contact for this guidance are Lance Wood and Bill Sapp of the Office of the Chief Counsel (CECC-E); their telephone number is (202) 272-0035. However, non-counsel Corps employees should only contact them in conjunction with district/division counsel to ensure proper coordination.

DISTRIBUTION: COMMANDER, LOWER MISSISSIPPI VALLEY DIVISION, ATTN: CELMV MISSOURI RIVER DIVISION, ATTN: CEMRD NEW ENGLAND DIVISION, ATTN: CENED NORTH ATLANTIC DIVISION, ATTN: CENAD NORTH CENTRAL DIVISION, ATTN: CENCD NORTH PACIFIC DIVISION, ATTN: CENPD OHIO RIVER DIVISION, ATTN: CEORD PACIFIC OCEAN DIVISION, ATTN: CEPOD SOUTH ATLANTIC DIVISION, ATTN: CESAD SOUTH PACIFIC DIVISION, ATTN: CESPD -OC SOUTHWESTERN DIVISION, ATTN: CESWD MEMPHIS DISTRICT, ATTN: CELMM NEW ORLEANS DISTRICT, ATTN: CELMN ST. LOUIS DISTRICT, ATTN: CELMS VICKSBURG DISTRICT, ATTN: CELMK KANSAS CITY DISTRICT, ATTN: CEMRK OMAHA DISTRICT, ATTN: CEMRO BALTIMORE DISTRICT, ATTN: CENAB NEW YORK DISTRICT, ATTN: CENAN · NORFOLK DISTRICT, ATTN: CENAO CHICAGO DISTRICT, ATTN: CENCC DETROIT DISTRICT, ATTN: CENCE ROCK ISLAND DISTRICT, ATTN: CENCR ST. PAUL DISTRICT, ATTN: CENCS ALASKA DISTRICT, ATTN: CENPA PORTLAND DISTRICT, ATTN: CENPP SEATTLE DISTRICT, ATTN: CENPS WALLA WALLA DISTRICT, ATTN: CENPW HUNTINGTON DISTRICT, ATTN: CEORH. LOUISVILLE DISTRICT, ATTN: CEORL NASHVILLE DISTRICT, ATTN: CEORN PITTSBURGH DISTRICT, ATTN: CEORP JACKSONVILLE DISTRICT, ATTN: CESAJ MOBILE DISTRICT, ATTN: CESAM SAVANNAH DISTRICT, ATTN: CESAS LOS ANGELES DISTRICT, ATTN: CESPL --SACRAMENTO DISTRICT, ATTN: CESPK .-ALBUQUERQUE DISTRICT, ATTN: CESWA. FORT WORTH DISTRICT, ATTN: CESWF ... GALVESTON DISTRICT, ATTN: CESWG LITTLE ROCK DISTRICT, ATTN: CESWL-TULSA DISTRICT, ATTN: CESWT