



Chris Cannon, Director Environmental Management

October 2021

# 2020 Inventory of Air Emissions



### **Presentation Acronyms**

.

- CAAP: Clean Air Action Plan
- CARB: California Air Resources
   Board
- CHE: Cargo Handling Equipment
- CH<sub>4</sub>: methane
- CO: carbon monoxide
- CO<sub>2</sub>: carbon dioxide
- CO<sub>2</sub>e: carbon dioxide equivalent
- DPM: diesel particulate matter
- EI: emissions inventory
- EPA: U.S. Environmental Protection Agency
  - ESI: Environmental Ship Index

- HC: hydrocarbons
- NOx: oxides of nitrogen
- N<sub>2</sub>O: nitrous oxide
  - OGV: ocean-going vessel
  - PM: particulate matter
- SCAQMD: South Coast Air Quality Management District
- SOx: sulfur oxides
- TEU: twenty-foot equivalent unit
- tonnes or mtons: metric tons
- VSR: Vessel Speed Reduction
- µg/m<sup>3</sup>: micrograms per cubic meter (concentration in air)

# **POLA Annual Emissions Inventories**

- Annual activity-based
  - 2001, 2005 2020
- Source categories
  - Ships, harbor craft, cargo handling equipment, trucks, locomotives
- Pollutants
  - $\begin{array}{l} \mathsf{PM} \bullet \mathsf{PM}_{10} \bullet \mathsf{PM}_{2.5} \bullet \mathsf{DPM} \bullet \\ \mathsf{NO}_{\mathsf{x}} \bullet \mathsf{SO}_{\mathsf{x}} \bullet \mathsf{HC} \bullet \mathsf{CO} \end{array}$
- Greenhouse gases
   CO<sub>2</sub> CH<sub>4</sub> N<sub>2</sub>O CO<sub>2</sub>e
- Annually coordinated with & reviewed by CARB, SCAQMD, & EPA



## **Emissions Reductions (2019-2020)**





#### Table ES.5: Maritime Industry-related 2020-2019 Emissions Comparison by Source Category

|                           | $\mathbf{PM}_{10}$ | <b>PM</b> <sub>2.5</sub> | DPM  | NO <sub>x</sub> | SO <sub>x</sub> | СО    | HC   | CO <sub>2</sub> e |
|---------------------------|--------------------|--------------------------|------|-----------------|-----------------|-------|------|-------------------|
|                           | tons               | tons                     | tons | tons            | tons            | tons  | tons | tonnes            |
| 2020                      |                    |                          |      |                 |                 |       |      |                   |
| Ocean-going vessels       | 52                 | 48                       | 34   | 2,867           | 96              | 273   | 127  | 212,248           |
| Harbor craft              | 24                 | 22                       | 24   | 721             | 1               | 539   | 82   | 60,374            |
| Cargo handling equipment  | 6                  | 5                        | 4    | 366             | 2               | 643   | 66   | 165,961           |
| Locomotives               | 29                 | 27                       | 29   | 786             | 1               | 189   | 45   | 65,987            |
| Heavy-duty vehicles       | 6                  | 6                        | 6    | 1,075           | 4               | 284   | 43   | 398,679           |
| Total                     | 117                | 108                      | 97   | 5,814           | 104             | 1,928 | 363  | 903,250           |
| 2019                      |                    |                          |      |                 |                 |       |      |                   |
| Ocean-going vessels       | 48                 | 44                       | 30   | 2,748           | 97              | 244   | 115  | 198,254           |
| Harbor craft              | 26                 | 24                       | 26   | 755             | 1               | 543   | 83   | 60,884            |
| Cargo handling equipment  | 7                  | 6                        | 5    | 410             | 2               | 805   | 83   | 177,264           |
| Locomotives               | 32                 | 29                       | 32   | 882             | 1               | 205   | 49   | 71,364            |
| Heavy-duty vehicles       | 6                  | 6                        | 6    | 1,168           | 4               | 277   | 43   | 397,121           |
| Total                     | 119                | 109                      | 98   | 5,963           | 104             | 2,073 | 373  | 904,887           |
| Change between 2019 and 2 | 2020 (per          | cent)                    |      |                 |                 |       |      |                   |
| Ocean-going vessels       | 8%                 | 8%                       | 13%  | 4%              | -1%             | 12%   | 10%  | 7%                |
| Harbor craft              | -8%                | -8%                      | -8%  | -4%             | -1%             | -1%   | -2%  | -1%               |
| Cargo handling equipment  | -14%               | -14%                     | -10% | -11%            | -5%             | -20%  | -20% | -6%               |
| Locomotives               | -7%                | -7%                      | -7%  | -11%            | -8%             | -8%   | -7%  | -8%               |
| Heavy-duty vehicles       | -7%                | -7%                      | -7%  | -8%             | 0%              | 3%    | 0%   | 0%                |
| Total                     | -2%                | -2%                      | -1%  | -3%             | -1%             | -7%   | -3%  | -0.2%             |

THE PORT

# 2020 Emissions Explained vs. 2019

- COVID-19 impacted all facets of the logistics chain resulting in the following and thus affecting 2020 emissions.
  - Supply chain irregularities
  - Cruise, container, and tanker operational changes
  - Increased vessel times at berth and at anchorage
  - Decreased usage activity of harbor craft and CHE
  - Decreased rail activity
- Other factors affecting 2020 emissions include:
  - Continued transition to cleaner fleets (all source categories)
  - Slight decrease in container throughput
  - Improved emissions efficiency due to larger ships
  - Increased participation in ship incentive programs



# 2020 Emissions Explained vs. 2019

- Ships emissions 1
  - Increased at-anchorage and at-berth activity

#### • Harbor Craft – emissions

- Decreased activity
- Increased usage of newer, cleaner engines
- CHE emissions
  - Decreased activity
  - Fewer equipment
  - Increased usage of newer, cleaner engines

#### • Trains – emissions

- Decreased rail transport
- Improvements in fleet mix
- Trucks emissions
  - Continued improvement in truck fleet with higher percentage of trips made by newer trucks



### **Container Ship Operational Impacts**



OF LOS ANGELES

### **Cruise Operational Impacts**







#### **Tanker Operational Impacts**





- Disruptions have led to increased anchorage activity starting in Q4 2020
- Container (<sup>†</sup>), cruise (<sup>†</sup>), and tanker (<sup>‡</sup>) ships were the most impacted
- Emissions at anchorage up from 2019
- CARB has estimated ~7.5 tons per day NOx increase in SPBP emissions from container ships at anchorage
  - Based on anchorage activity through March 2021 and relative to average pre-pandemic baseline levels.
- Ports are working with CARB to further quantify and understand impacts from anchorage emissions



Gavin Newsom, Governor Jared Blumenfeld, CalEPA Secretary Liane M. Randolph, Chair

#### Emissions Impact of Recent Congestion at California Ports

September 13, 2021

Quantifying emissions impacts of freight movement increases and congestion in container vessels, locomotives, and heavyduty trucks near major seaports in California.

- Major seaports in California have been experiencing a substantial increase in cargo imports, resulting in significant congestion at terminals and in surrounding areas. This has led to emissions increases from freight-related sources which can negatively impact air quality especially in communities near ports.
- Congestion has led to an abnormally high number of container vessels at anchor, which use auxiliary engines continuously to provide power for shipboard functions. Additionally, increased cargo imports are expected to increase the activity of trucks and locomotives moving these containers in/out of the ports.
- In March 2021, the San Pedro Bay Ports (SPBP), which include the Ports of Los Angeles and Long Beach, saw an average increase of 50 percent in cargo movement (twenty-foot equivalent units – TEU) compared to the same time in 2019 prior to the COVID-19 pandemic (see Table 1 below). Furthermore, TEU movement in March 2021 was 58% higher than the average of Port of Los Angeles and Port of Long Beach TEUs for the past 10 years.

|      | Ports          | March 2019 | March 2020 | March 2021 | Percent increase<br>since <u>2019</u> |
|------|----------------|------------|------------|------------|---------------------------------------|
| Port | of Los Angeles | 650,977    | 449,568    | 957,599    | 47%                                   |
| Port | of Long Beach  | 552,821    | 517,664    | 840,387    | 52%                                   |

Table 1. San Pedro Bay Ports TEU Trends (2019-2021)

Combining container vessels, locomotives, and heavy-duty trucks, as of March 2021, the increased cargo movement and congestion has resulted in overall emissions increases of 14.5 tons per day (tpd) of oxides of nitrogen (NOx) and 0.27 tpd of particulate matter (PM) in the South Coast Air Basin relative to average pre-pandemic baseline levels. Table 2 below shows staff's estimate of the emission impacts broken down by source category. Details of each analysis can be found in Appendix A, B, and C for vessels, rail, and trucks, respectively.



### **Emissions Reductions (2005-2020)**



#### **CAAP DPM Progress**



## **CAAP NO<sub>x</sub> Progress**



# **Looking Ahead**

- Continued COVID-19 Impacts
  - Ships at anchorage in 2021
  - Ships at berth in 2021
  - Supply chain irregularities
  - POLA/POLB engaging supply chain stakeholders, including state and federal agencies, to identify solutions to improve velocity





### **Available Online**

#### http://portofla.org/emissions-inventory

#### **PORT OF LOS ANGELES INVENTORY OF AIR EMISSIONS - 2020**





#### SAN PEDRO BAY STANDARDS

The San Pedro Bay Standards establish the long-term emissionsreduction and health risk-reduction goals for the ports of Los Angeles and Long Beach. Emission Reduction Standards for DPM, NOx, and SOx have target years of 2014 and 2023 to support state ambient air quality goals. The Health Risk Reduction Standard has a target year of 2020 to align with California Air Resources Board's Goods Movement Emission Reduction Plan

#### All reductions shown are compared to 2005 baseline levels.

| CLEAN AIR AC | TION PLAN ( | CAAP) G |
|--------------|-------------|---------|
|              | 2014        | 2023    |
| DPM          | 72%         | 77%     |
| NOx          | 22%         | 59%     |
|              |             |         |
|              | 2020        |         |
| Health Risk  |             |         |
|              |             |         |

#### OVERALL EMISSIONS DEDUCTIONS

| Pollutant        | %   | tons   |
|------------------|-----|--------|
| DPM              | 89% | 766    |
| PM25             | 88% | 774    |
| PM <sub>10</sub> | 89% | 908    |
| NOx              | 64% | 10.289 |
| SO,              | 98% | 4.722  |







| A REAL PROPERTY OF TAXABLE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DPM              |  |
| And a state of the | PM <sub>25</sub> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>10</sub> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOx              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |

|             | HEAVY-DUTY VEHICLE/CLEAN TRUCK<br>EMISSIONS REDUCTIONS |              |       |    |  |  |
|-------------|--------------------------------------------------------|--------------|-------|----|--|--|
|             | Pollutant                                              | %            | tons  |    |  |  |
|             | DPM                                                    | 98%          | 242   |    |  |  |
|             | PM25                                                   | 98%          | 232   |    |  |  |
|             | PM <sub>10</sub>                                       | 98%          | 242   |    |  |  |
| C. C. C. W. | NOx                                                    | 83%          | 5,232 |    |  |  |
|             | SOx                                                    | 92%          | 41    |    |  |  |
|             | HARBOR CRA                                             | FT EMISSIONS |       | 45 |  |  |
| .+          | Pollutant                                              |              | tons  |    |  |  |
| 7           | DPM                                                    | 57%          |       |    |  |  |
| TIME - TAN  | PM2.5                                                  | 57%          |       |    |  |  |
| AND DECK    | PM.                                                    |              |       |    |  |  |

7

DALS

#### RAIL EMISSIONS REDUCTIONS Pollutan DPM

45% 89%

|       | CARGO-HANDLING EQUIPMENT<br>EMISSIONS REDUCTIONS |  |  |  |  |  |  |
|-------|--------------------------------------------------|--|--|--|--|--|--|
|       | Pollutant                                        |  |  |  |  |  |  |
|       | DPM                                              |  |  |  |  |  |  |
|       | PM <sub>2.5</sub>                                |  |  |  |  |  |  |
|       | PM <sub>10</sub>                                 |  |  |  |  |  |  |
| -1.07 | NOx                                              |  |  |  |  |  |  |
| 1     | SOx                                              |  |  |  |  |  |  |

#### 3 449 • 31,340

MARY POLLUTANTS DEFINED

DPM = 0 $NO_x = 0$  $SO_x = 0$ 

#### PM. - - Darticulate Metter lass than 2.5 microns in diameter PM<sub>25</sub> = Particulate Matter less than 2.5 microns in dia PM<sub>10</sub> = Particulate Matter less than 10 microns in diar CO<sub>2</sub> = Carbon Dioxide (A greenhouse gas contributor)

portofla.org/emissions-inventory





