Appendix F Sediment Characterization Report

DRAFT SEDIMENT CHARACTERIZATION REPORT FOR BERTHS 212–224 YTI CONTAINER TERMINAL IMPROVEMENTS PROJECT LOS ANGELES HARBOR

Submitted to:

Port of Los Angeles Environmental Management Division 425 South Palos Verdes Street San Pedro, California 90731

Submitted by:

AMEC Environment & Infrastructure, Inc. 9210 Sky Park Court, Suite 200 San Diego, California 92123

November 2013

Agreement Number: 10-2893 Project Directive Number: 29 ADP No. 130204-020 C

AMEC Project No. 1315102710

EXECUTIVE SUMMARY

The Port of Los Angeles (Port) is proposing to conduct a project at Berths 212–224 Yusen Terminals Inc. (YTI) Container Terminal to accommodate wharf improvements and upgrades (Project). The proposed Project includes dredging of harbor sediment to accommodate wharf improvements and placement of these dredged materials at the LA-2 Ocean Dredged Material Disposal Site (ODMDS) and/or at the Port's agency-approved Confined Disposal Facility (CDF), located at Berths 243–245. The Project has two separate dredging components:

- 1. Berths 214–216 would be dredged to a design depth of −53 feet (ft) mean lower low water (MLLW) plus a 2-foot overdredge allowance.
- 2. Berths 217–220 would be dredged to a design depth of -47 ft MLLW plus a 2-foot overdredge allowance.

The Project site is the YTI Container Terminal along the East Basin Channel between the Evergreen Container Terminal and the SA Recycling scrap metal facility. In addition, Berths 167–169 of the Shell Oil Terminal and Berths 174–181 of the Pasha break bulk terminal are located across the East Channel Basin from the Project site. The YTI Terminal is bounded to the south by Seaside Avenue and the Vincent Thomas Bridge. The terminal is used by YTI to provide stevedore and terminal services to container shipping lines. The area surrounding the Project site is used for transportation and industrial purposes.

As part of the permitting process for the wharf improvement Project, the Port contracted AMEC Environment & Infrastructure, Inc. (AMEC) to characterize the sediment of the Berths 212–224 dredge footprint to assess the suitability of the dredged materials for placement at either of two proposed disposal locations (LA-2 ODMDS and/or the Berths 243–245 CDF).

A previous sediment characterization study within a portion of the Project site (Berths 212–215) was performed in 2000 by Advanced Biological Testing. Sediments were analyzed to a depth of –47 feet MLLW with a 2-foot overdredge allowance. The sediments were determined to be suitable for disposal at LA-2 ODMDS or for placement at upland disposal facilities. The material was dredged in 2001 and ultimately disposed of at the Port's Anchorage Road Soil Storage Site.

More recently, a dredged material study was conducted at Berths 212–225 by Kinnetic Laboratories as part of the Port of Los Angeles 2006 Marine Exploration program for the Federal Channel Deepening Project. This study indicated that the Berths 212–225 dredged material is suitable for unconfined aquatic disposal. Dredging at Berths 212–215 was conducted in 2011 and 2012; portions of the dredged material were placed at the Cabrillo Shallow Water Habitat as well as at the Berths 243–245 CDF.

For the current dredged material characterization study, 10 vibracore samples (5 from each dredge footprint) were collected. Subsamples from each of the 5 cores were combined to create two separate site composite samples (Composites A and B) for analysis. The two site composites underwent full Tier III ocean disposal evaluation according to the Green Book guidance document (*Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual*, USEPA).

Overall, the results of the chemical analyses conducted on the two site composite samples showed the proposed dredged material to be substantially free of chemical contamination. Slightly elevated (i.e., above effects-range low [ERL] guideline levels) concentrations of arsenic, copper, mercury, nickel, polychlorinated biphenyls (PCBs), and dichlorodiphenyltricholoroethane (DDT) were observed; however, all chemical levels were well below effects-range median (ERM) guidelines. None of the chemical levels measured in this study were unusual in comparison to what is normally found in an industrial harbor.

For the most part, the toxicity tests conducted on the two site composites showed no statistically or ecologically significant effects. Specifically, no toxicity was observed in the solid-phase worm test or the suspended particulate-phase fish and mysid shrimp tests. The survival levels in the amphipod tests (an average of 68 and 87 percent for Composites A and B, respectively), were both found to be statistically reduced compared to the Reference sediment survival level (98 percent); however, the Composite B level (87 percent) was only 11 percent below reference survival, and is therefore within the allowable 20 percent ecological significance window. Because of the low levels of chemicals observed in Composite A, there does not appear to be a clear cause and effect between chemistry and toxicity. It is possible that the reduction in amphipod survival noted in the Composite A exposure is due to confounding factors (e.g., the elevated level of clay observed in the sediment core sample). Statistically significant effects were observed in the mussel tests performed on both site composites. The calculated median effected concentrations (EC₅₀s) for the bivalve larvae tests were 75 percent and >100 percent for Composites A and B, respectively. The toxicity testing laboratory reported that the effects observed on mussel larvae development may be attributed to the elevated level of un-ionized ammonia in the elutriate samples.

The bioaccumulation-phase clam and worm tissue chemistry levels observed in this study were well below action levels of the U.S. Food and Drug Administration (FDA) and the levels of concern reported in the Environmental Residue Effects Database (ERED). In addition, biological concentration factor values were low. These results indicate that the bioaccumulation potential of the proposed YTI Terminal dredged material is low and well within acceptable limits.

The results of this sediment characterization study indicate that the Berths 212–224 YTI Container Terminal Improvements Project dredged material complies with the ocean disposal suitability requirements outlined in Title 40 *Code of Federal Regulations* (CFR) Parts 220–228 and are suitable for placement at the LA-2 ODMDS or within the Berth 243–245 CDF.

TABLE OF CONTENTS

				Page		
			ARY			
			BBREVIATIONS			
1.0			ION			
	1.1	•	ct Description			
		1.1.1				
		1.1.2	Previous Sediment Characterization Studies			
		1.1.3	Current Sediment Characterization Study			
2.0	MATE		AND METHODS			
	2.1	Sedim	nent Collection	2-1		
		2.1.1	Core Collection Locations			
		2.1.2	Test Sediment Collection	2-9		
		2.1.3	Reference Sediment Collection	2-9		
		2.1.4	Control Sediment Collection	2-9		
		2.1.5				
	2.2	Samp	le Collection Documentation, Handling, and Delivery	2-10		
	2.3		ical and Physical Analyses			
		2.3.1	Grain-Size Analyses	2-12		
		2.3.2	Chemical Analyses			
	2.4	Toxici	ty Analysis	2-12		
		2.4.1	Solid-Phase Toxicity Tests	2-13		
		2.4.2	Suspended Particulate-Phase Toxicity Tests	2-13		
		2.4.3				
3.0	RESU	JLTS		3-1		
	3.1 Physical Characteristics					
	3.2		Sediment Chemistry Results			
		3.2.1	Sediment Quality Guidelines			
		3.2.2	General Chemistry			
		3.2.3	Metals			
		3.2.4	Chlorinated Pesticides			
		3.2.5	Pyrethroids			
		3.2.6	Phenols			
		3.2.7	Phthalates			
		3.2.8	Polycyclic Aromatic Hydrocarbons			
		3.2.9	Total Petroleum Hydrocarbons			
			Organotins			
			PCB Congeners			
	3.3		ty Test Results			
	0.0	3.3.1	Solid-Phase Toxicity Tests			
		3.3.2	Suspended Particulate-Phase Toxicity Tests			
		3.3.3	•			

TABLE OF CONTENTS (Cont.)

			Page
	3.4	Data Validation	
		3.4.1 Sediment Data Validation	
		3.4.2 Toxicity Testing Data Validation	
		3.4.3 Tissue Testing Data Validation	
4.0	DISCL	JSSION	
	4.1	Sediment Collection	
	4.2	Sediment Chemistry	
	4.3	Toxicity Analysis	
		4.3.1 Solid-Phase Toxicity Tests	
		4.3.2 Suspended Particulate-Phase Tests	
		4.3.3 Bioaccumulation-Phase Tests	4-4
5.0		LUSIONS	
6.0	REFE	RENCES	6-1
LIST (OF TA	BLES	
Table		Sample Collection Locations	
Table		Chemical Analyses of Sediment and Tissue Samples	
Table		Grain-Size Results	
Table		Sediment Chemistry Results Summary	
Table		Solid-Phase Toxicity Results	
Table		Suspended Particulate-Phase Toxicity Results	
Table		Bioaccumulation-Phase 28-Day Toxicity Results	
Table		Metal Bioaccumulation Results in Tissues – Composite A	
Table		Metal Bioaccumulation Results in Tissues – Composite B	
Table		Organics Bioaccumulation Results in Tissues – Composite A	
Table	500507	Organics Bioaccumulation Results in Tissues – Composite B	
Table -		Test Tissues with Statistically Elevated Bioaccumulation of Trace Metals	4-5
Table	4-2.	Test Tissues with Statistically Elevated Bioaccumulation of Pesticides and	
		Organics	
Table -		Bioaccumulation Tissue Chemistry Comparison with FDA Action Levels	
Table -		Bioaccumulation Factor (BCF) Values – Composite A	
Table -	_	Bioaccumulation Factor (BCF) Values – Composite B	
Table 4	4-6.	Environmental Residue Effects Database (ERED) Comparison	4-15

TABLE OF CONTENTS (Cont.)

LIST OF FIGURES					
Figure 1-1.	Project Vicinity	1-3			
Figure 1-2.	Project Location				
Figure 1-3.	Location of LA-2 Ocean Dredged Material Disposal and Reference Sediment Collection Sites				
Figure 2-1.	Core Sampling Locations				
Figure 4-1.	Top Silty Material Beginning To Transition to Clay (0–2 ft below the harbor bottom)	4-1			
Figure 4-2. Figure 4-3.	Transition from Silt to Clay Sediment (2–4 ft below the harbor bottom) Bottom of Core: Predominantly Clay Sediment (4–6 ft below the harbor	4-2			
	bottom)	4-2			

LIST OF APPENDICES

APPENDIX A	CORE LOGS
APPENDIX B	CORE PHOTOGRAPHS
APPENDIX C	SEDIMENT CHEMISTRY
APPENDIX D	TOXICITY LABORATORY REPORT
APPENDIX E	BIOACCUMULATION TISSUE STATISTICS AND CHEMISTRY

W:\2013\Projects\13-151-02710 Berth 214-220\R0913-211.R2\R0913-211.R2 Draft Berth 212-224 Sed Report.doc

ACRONYMS AND ABBREVIATIONS

°C	degrees Celsius
μg	microgram(s)
AMEC	AMEC Environment & Infrastructure, Inc.
BCF	bioconcentration factor
BP	bioaccumulation-phase
Calscience	Calscience Environmental Laboratories, Inc.
CDF	Confined Disposal Facility
CFR	Code of Federal Regulations
CSTF	Contaminated Sediments Task Force
су	cubic yard(s)
DDD	Dichlorodiphenyldichloroethane
DDE	Dichlorodiphenyldichloroethane
DDT	Dichlorodiphenyltrichloroethane
DGPS	Differential Global Positioning System
EC ₅₀	median effected concentration
ERED	Environmental Residue Effects Database
ERL	effects-range low
ERM	effects-range median
FDA	U.S. Food and Drug Administration
ft	foot/feet
kg	kilogram(s)
Kinnetic	Kinnetic Laboratories, Incorporated
L	liter(s)
Lab Dup	laboratory duplicate
LC ₅₀	median lethal dose
LCS	laboratory control sample
LD	lethal dose
LOED	lowest observed effect dose
mg	milligram(s)
1	

ACRONYMS AND ABBREVIATIONS (Cont.)

mL	milliliter(s)
MLLW	mean lower low water
MS	matrix spike
MSD	matrix spike duplicate
Nautilus	Nautilus Environmental
NA	not analyzed; not applicable
NOAA	National Oceanic and Atmospheric Administration
NOED	no observed effect dose
Ocean Testing Manual	Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual. USEPA-503/8-91/001
PAH	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyl
Port	Port of Los Angeles
Project	Berths 212–224 YTI Container Terminal Improvements Project
QA/QC	quality assurance and quality control
ODMDS	Ocean Dredged Material Disposal Site
RPD	relative percent difference
SAP	Sampling and Analysis Plan
SM	Standard Method
SOP	standard operating procedure
SP	solid-phase
SPP	suspended particulate-phase
TEG	TEG Oceanographic Services
TICTF	Terminal Island Container Transfer Facility
TOC	total organic carbon
TPH	total petroleum hydrocarbons
TRPH	total recoverable petroleum hydrocarbons
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
YTI	Yusen Terminals Incorporated

1.0 INTRODUCTION

This document is the Sediment Characterization Report for the Port of Los Angeles (Port) Berths 212–224 Yusen Terminals Inc. (YTI) Container Terminal Improvements Project (Project). The proposed Project is to dredge sediment to accommodate wharf improvements and place the dredged materials at the LA-2 Ocean Dredged Material Disposal Site (ODMDS) and/or at the Port's agency-approved Confined Disposal Facility (CDF), located at Berths 243–245.

AMEC Environment & Infrastructure, Inc. (AMEC) was contracted by the Port to prepare a Project-specific Sampling and Analysis Plan (SAP), conduct sediment sampling at the Project site, and provide a Sediment Characterization Report based on results of laboratory testing. AMEC prepared a SAP in April 2013 and submitted it to the Los Angeles Contaminated Sediments Task Force (CSTF) for review and concurrence. The specifics of the characterization program were presented to the CSTF at its April 24, 2013, monthly meeting. Based upon input from the CSTF, the SAP was revised and finalized in May 2013.

The dredged material sample collection program was initiated in June 2013 and involved the collection of sediment samples within the dredge footprint. Sediment samples were submitted to several laboratories for analysis. AMEC obtained physical and chemical test results from Calscience Environmental Laboratories, Inc. (Calscience) in June 2013, and received a report on toxicity test results from Nautilus Environmental (Nautilus) in September 2013. The purpose of this report is to provide an overview of the sediment quality within the Project dredge footprint and to evaluate disposal suitability for the two disposal options being pursued.

1.1 Project Description

The proposed Project involves construction of terminal improvements at Berths 212–224 within the YTI Container Terminal along the East Basin Channel of Terminal Island in Los Angeles Harbor (Figure 1-1).

Major Project construction activities will include:

- Wharf upgrades at two locations, Berths 214–216 and Berths 217–220,
- Addition of cranes and height extension of cranes,
- Backland improvements, and
- Expansion of the Terminal Island Container Transfer Facility (TICTF) on-dock rail.

In-water work is limited to Berths 214–216 and Berths 217–220. The proposed Project does not involve any improvements or changes to existing operations at Berths 212–213 or Berths 221–224, which are within the Project footprint. Construction duration is anticipated to be approximately 22 months and the operational period is to be 10 years, from 2016 through 2026.

Project Vicinity
Berths 212-224 [YTI] Container Terminal Improvements Project
Port of Los Angeles

The existing depth at Berths 214–216 and Berths 217–220 is -45 feet (ft). Improvements at Berths 214–216 consist of dredging to -53 ft mean lower low water (MLLW) with an additional 2 ft of overdredge, for a total maximum depth of -55 ft MLLW, and installation of sheet and king piles (Figure 1-2). Improvements at Berths 217–220 consist of dredging to -47 ft MLLW with an additional two feet of overdredge, for a total maximum depth of -49 ft MLLW, and installation of sheet piles. Design depth at Berths 217–220 was restricted to -47 ft MMLW because dredging to a greater depth may compromise the structural stability of the pier.

The total dredge volume is approximately 27,000 cubic yards (cy)—approximately 21,000 cy at Berths 214–216 and 6,000 cy at Berths 217–220.

The proposed Project involves potential disposal of dredged material at the LA-2 ODMDS (Figure 1-3). Alternatively, the dredged material may be disposed of at the Port's agency-approved CDF, located at Berths 243–245. The disposal location(s) will be selected based on the results of this sediment characterization study, which involved a tiered approach to sampling and analysis. The study's tiered approach initially conducted chemical analyses on the dredged material samples, followed by full Green Book-required toxicity and bioaccumulation testing. The results of the chemical, toxicity, and bioaccumulation analyses conducted on the proposed YTI dredged material (as described in detail in this report) will determine the suitability for placement of the dredged materials at either the LA-2 ODMDS or the in-harbor CDF. The disposal location(s) will be determined in consultation with the CSTF.

1.1.1 Land Uses and Influences

The Project site is located on the YTI Container Terminal along the East Basin Channel between the Evergreen Container Terminal and the SA Recycling scrap metal terminal (Figure 1-1). Land surrounding the Project site includes transportation and industrial uses. Berths 167–169 of the Shell Oil Terminal and Berths 174–181 of the Pasha break-bulk terminal are across the East Channel Basin from the Project site. The YTI Terminal is bounded to the south by Seaside Avenue and the Vincent Thomas Bridge.

The terminal is used by YTI to provide stevedore and terminal service to container shipping lines. Features of the YTI Terminal include:

- 21,937-square-foot (sq-ft) administration and in-gate building,
- 23,386-sq-ft maintenance and repair building with 10 bays,
- 4,798-sq-ft marine building,
- 1,200 wheeled slots (including 500 reefer plugs),
- Sixteen entry lanes with six scales,
- Seven exit lanes, and
- TICTF on-dock rail facility.

Project Location
Berths 212-224 [YTI] Container Terminal Improvements Project
Port of Los Angeles

Location of LA-2 Ocean Dredged Material Disposal and Reference Sediment Collection Sites

There are 14 cranes at the terminal, 10 of which are currently in operation. Four of the operating cranes are super-post-panamax and six are post-panamax. (There are also two post-panamax and two panamax cranes that are not operating.) The Project area has five storm drain locations (Figure 1-2).

1.1.2 Previous Sediment Characterization Studies

Advanced Biological Testing conducted a sediment characterization study in 2000 for dredging operations at Berths 212–215 (Kinnetic Laboratories, Inc [Kinnetic] 2006). The project depth was –47 ft MLLW with a 2-ft overdredge allowance. Arsenic, copper, lead, mercury, nickel, zinc, dichlorodiphenyldichloroethane (DDE), total dichlorodiphenyltrichloroethane (DDT), and total polycyclic aromatic hydrocarbons (PAHs) were found in concentrations above the ERL guideline levels. Significant levels of bioaccumulation of several metals, PAHs, dichlorodiphenyldichloroethane (DDD), and polychlorinated biphenyls (PCBs) were found in the tissues of test organisms when compared to the Reference site tissues. The sediments were determined to be suitable for disposal at LA-2 ODMDS or for placement at upland disposal facilities. The material was dredged in 2001 and ultimately disposed of at the Anchorage Road Soil Storage site.

A study conducted by Kinnetic Laboratories outlined the sediment characterization results of a maintenance dredging study conducted at Berths 212–225 as part of the Port of Los Angeles 2006 Marine Exploration Program carried out for the Federal Channel Deepening Project (Kinnetic, 2006). The sediment was tested to a depth of -47 ft MLLW at Berths 212–215, -46 ft MLLW at Berths 216–221, and -39 ft MLLW at Berths 222–225. The dredged material was found to be suitable for unconfined aquatic disposal. Dredging at Berths 212–215 was conducted in 2011 and 2012; a portion of the dredged material was placed at the Cabrillo Shallow Water Habitat as well as at the Port Berths 243–245 CDF.

1.1.3 Current Sediment Characterization Study

As outlined in the SAP, this sediment characterization study for the proposed Project included the collection of ten vibracore samples in two separate dredge footprints. Five of the ten samples were collected in the area of Berths 214–216, to a depth of –53 ft MLLW plus a 2-ft overdredge allowance to a final sampling target depth of –55 feet MLLW. The remaining five samples were collected in the area of Berths 217–220 to a depth of –47 ft MLLW plus a 2-ft overdredge allowance to a final target sampling depth of –49 ft MLLW. When possible, an additional 0.5 ft layer below the overdredge allowance (i.e., the Z-layer) was collected from each core. The Z-layer represents the resultant post-dredging sediment surface. To assess ocean disposal suitability, testing was conducted according to guidelines set forth in the U.S. Environmental Protection Agency (USEPA) and the U.S. Army Corps of Engineers (USACE) Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual, USEPA-503/8-91/001 (commonly referred to as the "Green Book").

The primary disposal option being pursued for the Project is ocean disposal; therefore, analyses for this study included full Green Book chemical, physical, toxicity, and bioaccumulation testing. Sediment core samples underwent analyses for physical properties (grain size, percent solids, organic carbon content) as well as a full suite of chemicals of concern (ten heavy metals, petroleum hydrocarbons, ammonia, sulfides, chlorinated and pyrethroid pesticides, PCB congeners, PAHs, phenols, phthalates, and organotins). In addition to bulk sediment analyses, the composites samples were also subjected to (1) toxicity analyses to evaluate potential biological impacts during dredging and ocean disposal operations, and (2) bioaccumulation exposures, which were performed to assess the potential for chemicals to accumulate in test organism (clams and worm) tissues.

The following report sections provide information on:

- Sample collection methods and locations;
- Sediment chemistry, toxicity, and bioaccumulation testing methods;
- Sediment chemistry, toxicity, and bioaccumulation testing results;
- Data analysis;
- A comparison of the results and data analysis to available sediment and water quality guidelines and databases;
- Quality assurance/quality control (QA/QC) evaluations of all results and deliverables for the Project; and
- Project-specific conclusions based on sediment chemistry, toxicology, and tissue analysis results.

Core logs, chemistry reports, and photographs are included as appendices to this document for reference.

2.0 MATERIALS AND METHODS

This section describes the locations and techniques that were employed to collect test sediments at ten locations in the Project dredge footprint. Coordination between AMEC and the Port, pertinent security personnel, TEG Oceanographic Services (TEG), Seaventures Inc (Seaventures), and Calscience was conducted prior to the initiation of any field activities.

2.1 Sediment Collection

Sediment collection followed the guidance provided in *Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual* (USEPA 2001), and as detailed in the SAP submitted by AMEC to the Port prior to conducting sample collection and testing (AMEC 2013). The sample collection activity was documented using core logs and photography. Core logs are in Appendix A and photographs of cores are in Appendix B.

2.1.1 Core Collection Locations

Sampling activities included sediment collection adjacent to YTI Terminal Berths 214–220. For Green Book testing purposes, the Port partitioned the dredge footprint into two separate testing areas: Composite Area A for Berths 214–216 and Composite Area B for Berths 217–220 (Figure 2-1).

As described in the SAP, the proposed dredge design depth for Composite Area A is -53 ft MLLW, and the design depth for Composite Area B is -47 ft MLLW. AMEC collected ten vibracore samples (five in each composite area) to Project depth plus a 2-ft overdredge allowance (a resultant total sample depth of -55 ft MLLW and -49 ft MLLW for Composite Areas A and B, respectively).

Sample collection locations were selected using bathymetry provided by the Port (Figure 2-1); locations were selected to maximize the recovery of characterization of proposed dredge sediment. During the field activity, the Differential Global Positioning System (DGPS) was used to navigate to each of the sampling locations listed in Table 2-1. To maintain position, a three-point anchoring technique was used by tying to nearby docks. Once the vessel was secured, AMEC recorded the position and water depth (measured with a weighted fiberglass tape) in the field log. The water depth was corrected to MLLW using National Oceanographic and Atmospheric Administration (NOAA) tide tables and compared to the bathymetric data provided by the Port. The target navigational accuracy of the DGPS is approximately ±3 meters (approximately ±10 ft).

Core Sampling Locations
Berths 212-224 [YTI] Container Terminal Improvements Project
Port of Los Angeles

FIGURE

Table 2-1.
Sample Collection Locations

		Date	Collection (Coordinates	Sample Collection Depths					
Station ID	Attempt	and Time of Sample	Latitude WGS84 (DD° mm.mmm')	Longitude WGS84 (-DDD° m.mmm')	Existing Mudline ¹ (ft MLLW)	Target Penetration Depth (ft)	Actual Penetration Depth (ft)	Total Core Length (ft) ²	Notes	
	1	6/3/2013 08:55	33°45.5420'	-118 [°] 15.5004'	-46.2	9.3	9.1		Less consolidated, 0.0' to 1.1'. Z-layer, 8.4' to 8.7'. Bottom is hard clay plug.	
A1	2	6/3/2013 10:01	33°45.5395'	-118°15.5024'	-48.6	6.9	8.0	3.3	Core was watery at surface. Consolidated and dense below 1.0'. Long (~1.5') piece of core fell out of barrel upon retrieval.	
A2	1	6/3/2013 10:40	33°45.5070'	-118°15.5309'	-47.1	8.4	8.0	7.5	Less consolidated from 0.0' to 1.2'. Dense and consolidated at 3.4'. Did not penetrate Z-layer, additional (A) collected because of apparent increase in lithology.	
	2	6/3/2013 11:35	33°45.5130'	-118°15.5393'	-46.5	9.0	7.5	6.5	Top of core is less consolidated. Consolidation and density increase at 1.9'. No Z-layer collected.	
A3	1	6/3/2013 12:12	33°45.4718'	-118°15.5737'	-47.7	7.8	7.8	4.3	Sleeve tore because of rocks in core, possible Z-layer material was mixed into core material and unable to be separated from remainder of core.	
	2	6/3/2013 13:40	33°45.4660'	-118 [°] 15.5720'	-49.8	5.7	5.6	3.2	Unconsolidated from 0.0' to 0.4'. Z-layer collected from 2.8' to 3.2' (A), rest added to composite Z-layer.	

Table 2-1.
Sample Collection Locations (Cont.)

			Collection C	Coordinates		Sample Colle			
Station ID	Attempt	Date and Time of Sample	Latitude WGS84 (DD° mm.mmm')	Longitude WGS84 (-DDD° m.mmm')	Existing Mudline ¹ (ft MLLW)	Target Penetration Depth (ft)	Actual Penetration Depth (ft)	Total Core Length (ft) ²	Notes
A4	1	6/3/2013 14:22	33°45.4532'	–118 [°] 15.5983'	-47.7	7.7	7.8	6.7	No Z-layer. Core tube bent upon removal, barrel was cut open to retrieve core because liner was compressed during penetration.
A5	1	6/4/2013 08:19	33 [°] 45.3992'	-118°15.6336'	-47.1	8.4	7.8	7.8	No Z-layer. (A) collected from 0.0' to 1.8' A5-A, (A) collected from 1.8' to 7.8' A5-B.
	1	6/7/2013 07:48	33°45.3313'	-118°15.6955'	-46.2	3.3	3.3	3.0	Z-layer and sample jars collected.
	2	6/7/2013 08:00	33°45.3313'	-118°15.6955'	-46.2	3.3	3.3	2.2	Z-layer bag added to composite.
B1	3	6/7/2013 08:24	33°45.3357'	-118°15.6929'	-46.4	3.1	3.1	2.6	Z-layer added to sample composite, separate bag.
	4	6/7/2013 08:41	33°45.3360'	-118°15.6942'	-46.4	3.1	3.3	3.3	Z-layer added to sample composite, separate bag.
	5	6/7/2013 09:05	33°45.3303'	-118°15.7008'	-46.6	2.9	2.9	2.5	Z-layer added to bag for composite.
	1	6/6/2013 14:39	33°45.2934'	-118°15.7408'	-48.1	1.4	1.8	1.5	None
B2	2	6/6/2013 14:56	33°45.2934'	-118°15.7408'	-47.0	2.5	3.0	2.3	No plug; samples collected from Attempt 2.
	3	6/6/2013 15:19	33°45.2934'	-118°15.7408'	-47.0	2.5	3.0	2.0	Z-layer bag added to composite (A) collected from 0.0' to 1.' B2-A.

Table 2-1.
Sample Collection Locations (Cont.)

Collection Coordinates						Sample Colle			
Station ID	Attempt	Date and Time of Sample	Latitude WGS84 (DD° mm.mmm')	Longitude WGS84 (-DDD° m.mmm')	Existing Mudline ¹ (ft MLLW)	Target Penetration Depth (ft)	Actual Penetration Depth (ft)	Total Core Length (ft) ²	Notes
	4	6/6/2013 15:30	33°45.2934'	-118°15.7408'	-47.0	2.5	3.0	1.5	Z-layer added for composite bag.
	5	6/6/2013 15:46	33°45.2960'	-118°15.7436'	-47.0	2.5	3.0	2.0	Plug lost; no Z-layer.
	1	6/7/2013 10:08	33°45.2643'	-118°15.7706'	-44.5	5.0	5.0	1.5	No Z-layer collected, likely pushing plug.
	2	6/7/2013 10:40	33°45.2669'	-118°15.7684'	-44.5	5.0	4.0	1.0	Core penetration got hard at 2.5', probably on concrete, lots of unconsolidated silts on top of concrete, likely blowing out sediment and having poor recovery.
В3	3	6/7/2013 10:55	33°45.2679'	-118°15.7677'	-44.5	5.0	5.0	5.0	B-3A from 2.2' to 5.0' (bottom)/clay, 1x8oz jar, Z-layer jar collected from Attempt 3, no jar collected from top because sediments are similar to Attempt 1.
	4	6/7/2013 11:40	33°45.2699'	-118°15.7663'	-44.8	4.7	4.7	2.6	Z-layer added to composite; separate baggie.
	5	6/7/2013 11:52	33°45.2699'	-118°15.7663'	-44.8	4.7	4.7	2.0	Z-layer sampled, added to composite, separate baggie.
B4	1	6/7/2013 13:02	33°45.2384'	-118°15.8026'	-45.0	4.5	4.5	2.0	No Z-layer.
D4	2	6/7/2013 13:15	33°45.2379'	-118°15.8024'	-45.0	4.5	3.0	1.3	None

Table 2-1.
Sample Collection Locations (Cont.)

		Collection Coordinates Sample Collection Depths							
Station ID	Attempt	Date and Time of Sample	Latitude WGS84 (DD° mm.mmm')	Longitude WGS84 (-DDD° m.mmm')	Existing Mudline ¹ (ft MLLW)	Target Penetration Depth (ft)	Actual Penetration Depth (ft)	Total Core Length (ft) ²	Notes
	3	6/7/2013 13:33	33°45.2380'	-118°15.8018'	-45.0	4.5	3.5	1.8	None
	4	6/7/2013 13:55	33 [°] 45.2611'	–118 [°] 15.7990'	-46.8	2.7	2.7	2.7	No Z-layer collected. Subsamples B4-A from 0.0' to 1.6', B4-B from 1.6' to 2.7'.
	5	6/7/2013 14:14	33°45.2420'	-118°15.7985'	-46.8	2.7	2.7	2.0	Z-layer collected, added to separate bag for composite.
B5	1	6/7/2013 14:56	33°45.1932'	-118°15.8529'	-45.9	3.6	3.6	1.3	No Z-layer collected, lost plug.
B3	2	6/7/2013 15:15	33 [°] 45.1926'	-118°15.8533'	-45.9	3.6	2.5	1.8	No Z-layer, hit refusal.

Notes:

² Core length recovered after extraction; represents length of core after compaction and possible loss of fines at seafloor surface.

(A) - archive

DD/-DDD° mm.mmm' - degrees decimal minutes

ft - foot/feet

MLLW - mean lower low water

WGS 84 - World Geodetic System 1984.

^{1.} Determined at the time of sampling

2.1.2 Test Sediment Collection

Trained TEG equipment technicians deployed the vibracore to collect sediment core samples. The vibracore uses a 4-inch-diameter aluminum tube connected to a stainless-steel cutter. The aluminum-encased vibrating unit uses 240-volt, 3-phase, 26-ampere electricity to drive two counter-rotating concentric vibrators. The vibracore and tube were lowered by a hydraulic winch and vibrated until the target penetration depth was achieved. Core penetration depth was determined using a tape measure secured to the vibracore head. After the vibracore was turned off, the sediment core was returned to the boat deck for processing. Core samples were carefully extruded into clean, polyethylene-lined trays, photographed, and inspected for unique strata, color, odors, etc.

Vibracore operations in Los Angeles Harbor commonly encounter the Malaga Mudstone Formation, which the vibracore equipment will not penetrate. The Malaga Mudstone Formation consists mostly of massive radiolarian mudstone or fine-grained siltstone with layers of diatomite and diatomaceous shale and limestone concretions and lenses (Woodring, Bramlette, and Kew, 1946). The Malaga is found only along the northern and eastern margins of the Palos Verdes hills. When the Malaga Mudstone layer is encountered, it typically leaves a "plug" of hard material in the core cutter and further penetration is refused. The presence of the plug in the extracted core material verifies the native refusal depth. Native refusal typically represents the extent of recently deposited material and indicates that further attempts of collection to the design and overdredge depth are unnecessary.

In several instances during the Project, the field manager was unable to verify that the Malaga Mudstone Formation had been reached (i.e., there was no plug) and the core had not achieved the desired target penetration (i.e., to the dredge design depth plus a 2-ft overdredge allowance). In these cases, the collection boat was repositioned slightly and another core attempt was made to verify refusal. Refusal during the Project was typically due to sticky clay sediments (see logs and photographs included in Appendix A and B).

2.1.3 Reference Sediment Collection

Reference sediment was collected from the established offshore reference site near the LA-2 ODMDS. This site is south-southeast of San Pedro, California, at -118.18 west, 33.553 north (Figure 1-3).

2.1.4 Control Sediment Collection

The solid-phase amphipod laboratory control sediment consisted of coarse sand collected in the same location as the organisms. The fine-grained size control sediment was collected from Sail Bay, in Mission Bay, San Diego. The control sediment for the solid-phase polychaete test consisted of clean beach sand collected from Scripps Institution of Oceanography in La Jolla, California. The bioaccumulation-phase control consisted of sediment from the clam collection location.

2.1.5 Z-layer Sediment Collection

AMEC also collected a Z-layer sediment sample from each core where penetration allowed collection. The Z-layer samples consist of the 0.5 ft core segment immediately below the overdredge depth, which best represents the new harbor bottom once the dredged material is removed. All Z-layer samples were archived for future testing if warranted.

2.2 Sample Collection Documentation, Handling, and Delivery

Sample documentation followed procedures included in the SAP. The integrity of each sample was maintained throughout the study by recording accurate core logs, filling out chain-of-custody forms at the time of sample collection, and photographically documenting each core and collection attempt.

The sample material was then homogenized and subsampled for analytical and archival purposes during the field collection, which took place from 3 June to 7 June 2013. The remainder of the sample was retained to be added and mixed into a site-wide composite sample to be used for chemical, physical, and toxicity testing. Immediately after the analytical sample containers were filled and sealed, samples were placed on ice in a cooler at 4 degrees Celsius (°C). The site-wide composite sample was mixed and prepared on 11 June 2013 were delivered to the laboratory on 11 and 12 June 2013.

2.3 Chemical and Physical Analyses

The two sediment composites were prepared by combining the sediment collected at the five individual core locations from each composite area and thoroughly homogenizing them with a stainless steel mixing paddle and electric drill. The final mixtures were considered representative composite samples that were then subsampled for physical and chemical analyses, as well as for archiving. Subsamples collected for analysis were transferred to Calscience in labeled 16-ounce glass jars and plastic bags for chemical testing and grain-size analyses, respectively.

Archived samples were collected and handled in the same manner as the test material, then frozen to -20°Celsius, and stored at AMEC's office. Archive samples will be retained for one year from the collection date. The physical and chemical analyses, USEPA- and USACE-approved analysis methods, and target detection limits for sediment and elutriate testing are listed in Table 2-2.

Table 2-2.
Chemical Analyses of Sediment and Tissue Samples

Analyte	Analysis Method	Target Detection Limits ^{a, b}	
		Sediment	Tissue
Total Solids	160.3/SM 2540 B	0.1 %	0.100 %
Total Organic Carbon	9060	0.1 %	NA
Total Ammonia	SM 4500-NH3 B/C (M)/350.2M ^c	0.2 mg/kg	NA
Total Sulfides	376.2M ^c	0.5 mg/kg	NA
Soluble Sulfides	SM 4500 S2 – D°	0.5 mg/kg	NA
Arsenic	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Cadmium	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Chromium	6020/6010B ^d	0.1 mg/kg	0.02 mg/kg
Copper	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Lead	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Mercury	7471A ^d	0.02 mg/kg	0.02 mg/kg
Nickel	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Selenium	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Silver	6020/6010B ^d	0.1 mg/kg	0.1 mg/kg
Zinc	6020/6010B ^d	1.0 mg/kg	1.0 mg/kg
Total Lipids	NOAA 1993a ^l	NA	0.1 %
TRPH	418.1M ^d	10 mg/kg	NA
C6-C44 TPH	8015B(M)/8015B ^d	5.0 mg/kg	NA
PAHs ^e	8270C SIM/ GC/TQ ^d	10 μg/kg	10 μg/kg
Chlorinated Pesticides [†]	8081A ^d	1.0 – 20 μg/kg	0.5 – 20 μg/kg
PCB Congeners ⁹	8270C SIM PCB ^d	0.5 μg/kg	0.5 μg/kg
Phenols	8270C SIM ^d	20 – 100 μg/kg	NA
Pyrethroids	GC/MS/MS ^J	0.5 – 1.0 μg/kg	NA
Phthalates	8270C SIM ^d	10 μg/kg	NA
Organotins	Rice/Krone ^h	3.0 μg/kg	NA

Notes:

- a Sediment minimum detection limits are on a wet-weight basis; tissue minimum levels are on a wet-weight basis.
- b Reporting limits provided by Calscience Environmental Laboratories, Inc.
- c Standard Methods for the Examination of Water and Wastewater, 19th Ed. American Public Health Assoc. et al. 1995.
- d USEPA 1986-1996. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.
- e Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene
- f Includes aldrin, α-benzene hexachloride (BHC), β-BHC, γ-BHC (lindane), δ-BHC, chlordane, 2,4- and 4,4-dichlorodiphenyldichloroethane (DDD), 2,4- and 4,4-dichlorodiphenyldichloroethylene (DDE), 2,4- and 4,4-dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, and toxaphene
- g PCBs (sum of 41 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194,201, and 206)
- h Rice, C.D., et al. 1987, or similar (e.g. Krone et al. 1989)
- i National Oceanographic and Atmospheric Administration (NOAA), 1993
- j allethrin (bioallethrin), bifenthrin, cyfluthrin-beta (baythroid), cyhalothrin-lamba, cypermethrin, deltamethrin (decamethrin), esfenvalerate, fenpropathrin (danitol), fenvalerate (sanmarton), fluvalinate, permethrin (cis and trans), resmethrin (bioresmethrin), resmethrin, sumithrin (phenothrin), tetramethrin, and tralomethrin

μg/kg - micrograms per kilogram (parts per billion) PCB - polychlorinated biphenyl μg/L - micrograms per liter SM - Standard Method

mg/kg - milligrams per kilogram (parts per million) SOP - standard operating procedure mg/L - milligrams per liter TPH - total petroleum hydrocarbon

NA - not applicable TRPH - total recoverable petroleum hydrocarbon

PAH - polycyclic aromatic hydrocarbon

2.3.1 Grain-Size Analyses

Composite samples were analyzed for grain size. The analyses were performed at Calscience using a laser method (ASTM D4464M). The results were reported as the percentages of gravel, sand, silt, and clay (to 0.1 percent), the corresponding millimeter and phi sizes, and a cumulative grain-size distribution diagram. The grain-size distribution and mean grain size for each sample were classified by Calscience using Plumb 1981. The full grain-size analysis is in Appendix C.

2.3.2 Chemical Analyses

Full laboratory reports, including analytical methods, detection limits, and relevant QA/QC information, are in Appendix C. A sample analysis matrix for whole sediment chemicals is in Table 2-2. Calscience, a California-accredited laboratory, conducted all analytical chemical analyses on both the sediment and tissue samples. Samples were analyzed according to USEPA- and USACE-approved methodologies, as summarized in the analytical laboratory report in Appendix C.

2.4 Toxicity Analysis

Solid-phase (SP) toxicity testing was conducted on the composite area samples, control sediment, and the Reference sediment. Suspended particulate-phase (SPP) toxicity testing was also conducted on an aqueous elutriate prepared from the composite area samples using test sediments and clean seawater. Bioaccumulation-phase (BP) exposure tests were also performed for the dredged material composite samples as well as the reference sample; then chemical tissue analyses were conducted. Toxicity testing methods followed USACE- and USEPA-approved methods as outlined in the Project-specific SAP.

All toxicity and bioaccumulation exposures were conducted at the Nautilus laboratory in San Diego, California. The control sediment used for the SP toxicity and BP tests was the native sediment collected where amphipods and clams were collected. Clean seawater was used as the control in the SPP tests. The test species used and the endpoints assessed follow.

Solid-Phase Tests

- Amphipod 10-day survival (Eohaustorius estuarius)
- Marine polychaete worm 10-day survival (Neanthes arenaceodentata)

Suspended Particulate-Phase Tests

- Mysid shrimp 96-hour survival (Americamysis bahia)
- Inland silverside fish 96-hour survival (*Menidia beryllina*)
- Mussel embryo larvae 48-hour survival/development (Mytilus galloprovincialis)

Bioaccumulation-Phase Test

- Polychaete 28-day bioaccumulation potential test (Nereis virens)
- Bivalve 28-day bioaccumulation potential test (*Macoma nasuta*)

The SP organisms used for this study met the Green Book requirement that at least two of the benthic species tested be from filter-feeding, deposit-feeding, or burrowing species. *Eohaustorius* is a burrowing filter feeder, and *Neanthes* is a burrowing deposit feeder. The full Nautilus laboratory report is in Appendix D.

2.4.1 Solid-Phase Toxicity Tests

Ten-day amphipod and polychaete SP tests were conducted under static or static-renewal conditions according to Green Book and ASTM 1998 protocols. Each of the five replicate SP test chambers (1-liter glass jars) contains a 2-centimeter layer of control, reference, or test sediment, along with 950 milliliters (mL) of clean seawater. Test chambers were permitted to equilibrate for 24 hours before test organisms were added. Test chambers were lightly aerated for the duration of the test period.

Twenty amphipods per test replicate were distributed randomly to each chamber. The polychaete test was conducted with five individuals per replicate container. Water quality parameters of dissolved oxygen (DO), pH, temperature, and salinity were measured before test initiation, then daily during the 10-day test period. Aliquots of porewater were collected and tested for total and un-ionized ammonia before test initiation. Aliquots of overlying water were collected from test chambers of each site at Days 0 and 10 for measurement of total and unionized ammonia. The organisms were not fed during the test period.

After 10 days, test organisms were removed by gently sieving the contents of each chamber through a 0.5mm Nitex mesh screen. The organisms were collected on the screen and the number of surviving organisms was recorded.

2.4.2 Suspended Particulate-Phase Toxicity Tests

The test solution used in the SPP toxicity tests was prepared by mixing seawater and test sediment to yield a volumetric water-to-sediment ratio of 4:1. A stainless steel impeller was applied to mechanically mix and vigorously agitate the mixture for 30 minutes. A 1-hour settling period followed (or longer if the mixture had not settled enough), after which the supernatant was drained from the top of the mixing chamber. The supernatant is the 100 percent SPP liquid (elutriate). Test concentrations included 100, 50, and 10 percent of the dredged-material elutriate. To attain desired concentrations, the 100 percent elutriate was mixed with clean, filtered seawater (obtained from Scripps Institution of Oceanography) to prepare the 50 and 10 percent exposure concentrations. The clean seawater used to prepare the dilutions was used for the negative control.

Control and test solutions were distributed to individual test chambers, and initial water quality readings were recorded. Readings included DO, pH, temperature, ammonia, and salinity. If DO was below 60 percent of saturation in any concentration, all test chambers were lightly aerated for the duration of the test. Water quality was monitored daily for the duration of the test period to ensure that acceptable test conditions were met. Tests were initiated by adding 10 mysid shrimp and 10 inland silversides to separate test chambers. Bivalve larvae test vials were stocked with approximately 20 fertilized embryos per milliliter (mL). During the test period, bivalve larvae were not fed; silversides were fed once daily; and mysid shrimp were fed twice daily to prevent cannibalism.

The test durations were 96 hours for the mysid shrimp and inland silverside, and 48 hours for the bivalve larvae. Counts of mysids and inland silversides were recorded daily, depending upon the visibility of the test organisms, given the opaqueness of the test solution. At test termination, final counts were made of surviving mysid shrimp and inland silversides. The bivalve larvae test was terminated by adding 1 mL of 10 percent buffered formalin to each exposure test chamber. Normal versus abnormal bivalve development was assessed by visually observing the preserved larvae on an inverted microscope. (Normally developed larvae are those that have reached the D-shaped prodissiconch I stage.)

2.4.3 Bioaccumulation-Phase Tests

BP testing was performed by exposing the polychaete worm (*Nereis virens*) and the bent-nose clam (*Macoma nasuta*) to control, reference, and test sediments for a 28-day test period. Testing was initiated in the same manner as described for other 10-day testing, except that tests were carried out in 10-gallon glass aquaria designed to accommodate 10 polychaetes and 35 clams per replicate, to yield enough tissue biomass to achieve the specified detection limits. The chambers were maintained under flow-through conditions, producing two complete turnovers of water per test chamber per day. During the test period, the water quality in each chamber was measured daily (as described in the 10-day test) and aliquots of overlying water (for analysis of total and un-ionized ammonia) were collected at Day 0, then every seven days thereafter.

Upon test termination, all sediments were sieved to remove the worms and clams. The number of surviving organisms was recorded. Surviving clams and worms were then placed, by replicate, back into clean aquaria containing clean seawater, and held in flow-through conditions to depurate for 24 hours.

Following depuration, animals were carefully removed from the holding chambers, rinsed of any debris, and placed into labeled Ziploc® plastic storage bags and frozen. Each bag was assigned a random number. Frozen test tissue was shipped via a same-day courier to Calscience for chemical analyses. As a quality control measure, pre-test samples of tissue (i.e., time zero) from both species were also frozen for future analysis, if needed. The same suite of chemical analyses used to analyze sediments was measured in the organism tissue samples.

3.0 RESULTS

3.1 Physical Characteristics

The grain size of the two sediment composite samples was analyzed. For both samples, the mean grain size was classified as silt. The proportion of silt in the Composite A sample was greater than 70 percent; in the Composite B sample, it was greater than 60 percent. The percentage of silt and clay was approximately 97 percent in Composite A and approximately 80 percent in Composite B. Field observations of sediment collected within both Project footprints indicated that the material primarily consisted of sticky, solid gray clay, similar in consistency to modeling clay. This clayey sediment was especially prevalent in Composite A; it was present in Composite B to a slightly lesser extent.

Table 3-1 summarizes the grain-size results. Photographs of characteristic sediment core samples with clay material are in Section 4.1, as Figures 4-1 through 4-3. The original laboratory data report from Calscience on grain size is in Appendix C.

Table 3-1.
Grain-Size Results

Grain Size	Units	Reference	YTI - Composite A	YTI - Composite B	Sail Bay F.G. Control	Amphipod Home
Clay	%	7.24	22.89	19.66	15.45	1.08
Silt	%	31.59	74.2	60.82	76.18	3.08
Total Silt and Clay	%	38.82	97.09	80.48	91.63	4.17
Very Fine Sand	%	44.58	2.91	18.21	8.24	3.21
Fine Sand	%	16.59	ND	1.31	0.13	35.81
Medium Sand	%	0.01	ND	ND	ND	54.42
Coarse Sand	%	ND	ND	ND	ND	2.34
Very Coarse Sand	%	ND	ND	ND	ND	0.05
Gravel	%	ND	ND	ND	ND	ND
Mean Grain Size	mm	0.12	0.019	0.033	0.023	0.271
Plumb (1981) Classification	-	Very Fine Sand	Silt	Silt	Silt	Med. Sand

Notes:

percent

ASTM - American Society for Testing and Materials

mm - millimeter

YTI - Yusen Terminals Inc.

3.2 Bulk Sediment Chemistry Results

The sediment results of this study were analyzed to determine whether test sediments contained elevated chemical contaminants relative to the Reference sediment and whether the concentrations of the contaminants may have the potential to cause adverse biological effects.

Sediment chemistry results are summarized in Table 3-2. All results are reported in dry weight. More details are in Appendix C.

3.2.1 Sediment Quality Guidelines

The sediment chemical analyses results presented in Table 3-2 are compared to effects range low (ERL) and effects range median (ERM) sediment quality guidelines as a relative measure of sediment quality (Buchman 2008). These benchmark values for sediment quality were originally developed in cooperation with NOAA. In addition, a variety of guideline values have been developed to screen sediment results to evaluate potential effects on sediment-associated biota. The ERL and ERM guideline values were derived by matching chemical and biological data.

The ERL values represent the lower 10th percentile concentration, and ERM values represent the median concentration at which statistically significant biological effects have been reported. These values were calculated using a large database of study results, including laboratory-generated and field-generated data for a large number of endpoints for species and biological effects. In summary, the ERL values represent concentrations below which biological effects are rarely expected to occur, and ERM values represent concentrations above which biological effects are expected to occur (Buchman 2008). Because of the wide range of site-specific factors that may influence the toxicity and bioavailability of any given compound in the sediment, these guidelines are not intended for use as strict criteria for regulatory application, but rather as a general screening gauge.

3.2.2 General Chemistry

The general chemistry components analyzed as part of the Project were total solids, total organic carbon (TOC), total ammonia, and total and soluble sulfides. In the Composite A and Composite B samples, total solids were measured at 72.9 and 66.4 percent, respectively; TOC, 0.71 and 0.87 percent, respectively; the concentration of total ammonia, 7.7 milligrams per kilogram (mg/kg) and 2.1 mg/kg, respectively; and the concentration of total sulfide, 41 mg/kg and 3.1 mg/kg, respectively. No soluble sulfides were detected in either the Composite A or Composite B samples.

3.2.3 Metals

Of the ten metals analyzed, four (arsenic, copper, mercury, and nickel) exceeded the ERL sediment quality guidelines, but were lower than their ERM guidelines in both the Composite A and B samples.

3.2.4 Chlorinated Pesticides

The chlorinated pesticide 4,4'-DDE was detected in both the Composite A and Composite B samples at concentrations of 3.1 μ g/kg and 12 μ g/kg, respectively. Additionally, 2,4'-DDE was detected at a concentration of 3.1 μ g/kg in the Composite B sample. These concentrations were above the ERL but below the ERM. No other chlorinated pesticides were detected above analytical method limits.

Table 3-2.
Sediment Chemistry Results Summary

Commound Nome							
Compound Name	Туре	Units	ERL	ERM	Reference	YTI Composite A	YTI Composite B
Total Solids	General Chemistry	%	_	_	71.1	72.9	66.4
Total Organic Carbon	General Chemistry	%	_	_	0.77	0.71	0.87
Total Ammonia	General Chemistry	mg/kg	-	_	3.2	7.7	2.1
Total Sulfides	General Chemistry	mg/kg	_	-	0.7	41	3.1
Soluble Sulfides	General Chemistry	mg/kg	-	-	ND (< 0.10)	ND (< 0.10)	ND (< 0.10)
Arsenic	Metals	mg/kg	8.2	<u>70</u>	2.86	8.77	8.44
Cadmium	Metals	mg/kg	1.2	9.6	0.195	0.471	0.423
Chromium	Metals	mg/kg	81	<u>370</u>	21.3	35.2	32.9
Copper	Metals	mg/kg	34	<u>270</u>	10.4	60.1	54.5
Lead	Metals	mg/kg	46.7	<u>218</u>	5.37	27.7	25.7
Mercury	Metals	mg/kg	0.15	0.71	ND (< 0.0282)	0.217	0.171
Nickel	Metals	mg/kg	20.9	<u>51.6</u>	10.9	27.3	22.4
Selenium	Metals	mg/kg	- 1	-	0.322	0.237	0.415
Silver	Metals	mg/kg	1.0	3.7	0.176	0.183	0.219
Zinc	Metals	mg/kg	150	410	46.5	112	112
C6–C44 TPH	TPH	mg/kg	-	1	ND (< 7)	ND (< 7)	24
TRPH	TRPH	mg/kg	_	11	18	65	38
Total Detectable PAHs	PAH	μg/kg	4022	44,792	ND (< 14)	749	657
Total Detectable DDTs	Chlorinated Pesticides	μg/kg	1.58	<u>46.1</u>	2.6	3.1	15.1
Total Detectable PCBs	PCB Congeners	μg/kg	22.7	180	ND (< 1.4)	38.4	0.86
Total Pyrethroids	Pyrethroids	μg/kg	_	_	ND (< 1.4)	4.5	2.2
Total Phenols	Phenols	μg/kg	-	_	33	ND (< 14)	ND (< 15)
Total Phthalates	Phthalates	μg/kg	-	_	224	232	322
Total Organotins	Organotins	μg/kg	10-	_	ND (< 4.2)	19.7	25

Notes:

Boldface - Value exceeds ERL guidelines.

% - percent < - less than

µg/kg - micrograms per kilogram DDT - dichlorodiphenyltrichloroethane

mg/kg - milligrams per kilogram

ND - not detected

PAH - polycyclic aromatic hydrocarbons PCB - polychlorinated biphenyl congeners TPH - total petroleum hydrocarbons

TRPH - total recoverable petroleum hydrocarbons

YTI - Yusen Terminals Inc.

3.2.5 Pyrethroids

The total detectable pyrethroids concentrations were measured at 4.5 micrograms per kilogram (μ g/kg) and 2.2 μ g/kg in the sediment composite samples Composite A and Composite B, respectively. Of the 15 pyrethroids analyzed, permethrin-cis/trans was detected above the reporting limits in both the Composite A and Composite B samples. Befenthrin was detected at estimated levels in both Composite Samples A and B between the method detection limit (MDL) and reporting limit (RL). None of the remaining 13 pyrethroids were detected in either sample.

3.2.6 Phenols

No phenols were detected in either of the composited sediment samples.

3.2.7 Phthalates

Three of the six phthalates analyzed were found at measurable levels ranging from 15 μ g/kg to 170 μ g/kg in the Composite A sample. Two phthalates, bis(2-ethylhexyl) phthalate and butyl benzyl phthalate, were detected above their respective reporting limits in the Composite B sample, at concentrations of 270 μ g/kg and 52 μ g/kg, respectively. The remaining phthalates analyzed were not detected. Currently, there are no sediment quality guidelines for phthalates.

3.2.8 Polycyclic Aromatic Hydrocarbons

No PAHs were measured at concentrations above their individual ERL or ERM values, including total detectable PAHs. Eleven PAHs were detected above the RLs in the Composite A sample, ranging from 15 μ g/kg to 220 μ g/kg. Twelve PAHs were detected above their RLs in the Composite B sample, ranging from 15 μ g/kg to 130 μ g/kg. The total detectable PAH concentration for the dredged material composite was 749 μ g/kg in the Composite A sample, and 657 μ g/kg in the Composite B sample. There were no other PAHs above analytical detection limits.

3.2.9 Total Petroleum Hydrocarbons

No total petroleum hydrocarbons (TPH) were detected in the sediment Composite A sample. C6–C44 TPH was detected in the Composite B sample at a concentration of 24 mg/kg, and were detectable in the C37–C40 range fractions and not detectable within the other range fractions.

3.2.10 Organotins

The concentration measured for total organotins was 19.7 μ g/kg in the Composite A sample, and 25 μ g/kg in the Composite B sample. Dibutyltin and tributyltin had respective concentrations of 0.72 μ g/kg and 19 μ g/kg in the Composite A sample, and 14 μ g/kg and 11 μ g/kg in the Composite B sample. The remaining two organotins (monobutyltin and tetrabutyltin) were below detectable limits in both composite samples.

3.2.11 PCB Congeners

PCB congener concentrations ranged from 4.3 μ g/kg for PCB 153 to less than the detection limit of 0.69 μ g/kg in the Composite A sample. The total detectable concentration of PCB congeners in Composite A was 38.4 μ g/kg. This value exceeds the ERL value for Total Detectable PCBs, 22.7 μ g/kg, but does not exceed the ERM (180 μ g/kg). The PCB congener PCB 018 was the only PCB congener detected (at 0.86 μ g/kg) above its RL in the Composite B sample.

3.3 Toxicity Test Results

An iterative testing approach was used to determine the need for a full Tier III Green Book analysis. In addition to the bulk sediment chemical analyses conducted during the initial phase of testing, a SP toxicity test with amphipods was also conducted to determine whether to do further full Green Book Tier III testing. After reviewing the results of the chemical analyses and amphipod toxicity test, the Port decided to move ahead with full Green Book testing. The results are described below, and a full toxicity report by Nautilus is included in Appendix D.

3.3.1 Solid-Phase Toxicity Tests

The 10-day SP test results are summarized below in Table 3-3.

3.3.1.1 Amphipod (Eohaustorius estuaries)

The 10-day amphipod survival was determined to be 68 percent in the Composite A sample and 87 percent in the Composite B sample. Amphipod survival was 97 percent in the laboratory control sediment, 98 percent in the LA-2 Reference sediment, and 95 percent in the fine-grain control. The fine-grain control consisted of sediment collected in the Sail Bay portion of Mission Bay in San Diego. A fine-grain control is useful for determining whether fine-grain particles have negatively affected amphipod survival.

Multiple comparison tests indicated significantly lower survival rates in Composite A (68 percent) and Composite B (87 percent) when compared to the LA-2 Reference site (98 percent). However, the Composite B survival percentage is within 20 percent of the LA-2 Reference site survival percentage; therefore the significant reduction in mean survival is not considered ecologically significant.

Based upon the low levels of chemicals observed in the dredged materials and on the high amphipod survival results, the Port decided to proceed with full Tier III Green Book testing of the Composite A and B sediments. The results of these additional analyses are described below.

3.3.1.2 Polychaete (Neanthes arenaceodentata)

Worm survival in the 10-day SP test was determined to be 100 percent in the Composite A, Composite B, and LA-2 Reference samples. The laboratory control sediment (SIO Control Sand) survival was 96 percent.

Table 3-3. Solid-Phase Toxicity Results

Site	Eohaustorius estuaries (Mean % Survival)	Neanthes arenaceodentata (Mean % Survival)
Laboratory Control (home)	97	NA
Laboratory Control (SIO Control Sand)	NA	96
Fine Grain Size Control	95	NA
LA-2 Reference	98	100
Composite A	68*	100
Composite B	87* [†]	100

Notes:

Boldface* - Value indicates a statistically significant decrease from the reference.

Boldface*† - Value indicates a statistically significant decrease, but within 20 percent of the

reference.

NA - not applicable

3.3.2 Suspended Particulate-Phase Toxicity Tests

Results of the SPP tests are summarized in Table 3-4. Neither of the composite sediment elutriates were toxic to the inland silverside minnows or mysid shrimp. Mean survival of mysids ranged from 94 to 96 percent in laboratory controls and 86 to 92 percent in undiluted elutriates. Mean survival in both controls for the inland silverside test were 96 percent and 94 to 100 percent in undiluted elutriates.

A significant effect in mussel (*Mytilus galloprovincialis*) development was observed in the undiluted (100 percent) elutriate for Composite A when compared to the laboratory control. Mean normal development (percent normal alive) of surviving mussel embryos ranged from 87 to 92 percent in the laboratory controls. Mean percent normal alive was 1.4 in the undiluted elutriate for Composite A, a 98 percent effect from control. No effect was observed in the 10 or 50 percent concentrations for the Composite A elutriate, and the resulting median effect level (EC_{50}) was determined to be 75 percent. Composite B showed statistically significant effects on mussel embryos in both the 50 and 100 percent elutriate concentrations (11 and 8.2 percent effect, respectively). There was no significant effect observed in the 10 percent concentration, and the resulting EC_{50} value for Composite B was greater than 100 percent. Note that Nautilus reported that the effects observed on mussel larvae development may have been related to elevated un-ionized ammonia levels in the elutriate samples. This is discussed further in Section 4.3.2.1 and in the toxicity testing report in Appendix D.

Table 3-4. Suspended Particulate-Phase Toxicity Results

Site	Elutriate Concentration	Mussel (Mean % Normal/Alive)	Mysid (Mean % Survival)	Inland Silverside (Mean % Survival)
Laboratory Control – A	0%	87	96	96
	10%	87	90	98
Composite A	50%	85	96	100
	100%	1.4*	92	94
Laboratory Control – B	0%	92	94	96
	10%	91	94	100
Composite B	50%	82*	96	100
	100%	88*	86	100

Notes:

Data are mean percent survival at 96 hours (mysid and fish [inland silverside] tests) and mean percent normal development at 48 hours (bivalve [mussel] test).

Boldface* - Values indicate a statistically significant decrease from the laboratory control.

3.3.3 Bioaccumulation-Phase Tests

3.3.3.1 Survival

Results of the BP survival are summarized below in Table 3-5. Mean survival of clams in the laboratory control, LA-2 Reference sediment, Composite A, and Composite B sediments ranged between 87 and 90 percent. Mean survival did not differ significantly among test, reference and control sediments. Mean survival of worms in the laboratory control and LA-2 Reference sediment was 100 and 98 percent, respectively, and between 90 and 96 percent for the study's composite sediments. No significant differences in polychaete survival among test and Reference sediments were observed. The survival test is used as a QA/QC measure to ensure that adequate clam and worm tissue is obtained for chemical tissue testing of the bioaccumulation. Further BP discussion is in Section 4.3.3.

Table 3-5.
Bioaccumulation-Phase 28-Day Toxicity Results

Site	Macoma nasuta (Mean % Survival)	Nereis virens (Mean % Survival)
Laboratory Control	87	100
LA-2 Reference Site	90	98
Composite A	88	96
Composite B	88	90

Notes:

Initial number of *Macoma* organisms per replicate = 35 Initial number of *Nereis* organisms per replicate = 10

3.3.3.2 Bioaccumulation Tissue Analysis

After the 28-day exposure period, clam and worm tissues were analyzed for chemical concentrations in the Composite A and B sediments. A complete report from Calscience of the tissue chemistry results and a full table summary of individual replicate tissue chemistry is in Appendix E. Statistical comparisons between the mean values of test sediment exposures and the Reference sediment exposures were evaluated using all available replicate data. In cases where no analytes were detected, the RL was used to calculate the mean values. All results are reported in wet weight.

3.3.3.2.1 Metal Bioaccumulation in Clam and Worm Tissues

Results of the metal bioaccumulation analyses in clams and polychaete worm tissues are summarized in Tables 3-6 and 3-7. These results are the means and standard deviations of the five replicates analyzed for each test treatment (i.e., Reference, Composite A, and Composite B).

The clam bioaccumulation test indicated that two metals (copper and lead) were significantly greater in Composite A test tissues compared to that in the reference tissues for *M. nasuta*. In tissues exposed to sediments from the Composite A sample, the average copper and lead concentrations were 1.69 ± 0.11 mg/kg and 0.31 ± 0.03 mg/kg, respectively. Composite B clam test tissues showed three metals (chromium, copper, and lead) in significantly greater amounts when compared to reference tissues. The average chromium, copper, and lead concentrations in tissues exposed to sediments from the Composite B sample were 0.48 ± 0.33 mg/kg, 1.95 ± 0.19 mg/kg, and 0.38 ± 0.07 mg/kg, respectively. In reference sediments, the average concentrations of chromium, copper, and lead were 0.184 ± 0.03 mg/kg, 1.47 ± 0.10 mg/kg and 0.15 ± 0.01 mg/kg, respectively.

Worm BP results for copper indicated that both Composite A and Composite B sediment samples contained significantly greater concentrations of copper in test tissues (1.39 \pm 0.08 mg/kg and 1.67 \pm 0.10 mg/kg, respectively) compared to the reference (1.28 \pm 0.03 mg/kg).

Table 3-6. Metal Bioaccumulation Results in Tissues - Composite A

Compound		Analytes	s Measure	ed in Clan	n Tissue	Analytes Measured in Worm Tissue				
Compound Name	Units	LA-2 Re	LA-2 Reference		Composite A		LA-2 Reference		Composite A	
Name		Mean	1 SD	Mean	1 SD	Mean	1 SD	Mean	1 SD	
Arsenic	mg/kg	2.42	0.23	2.50	0.20	2.23	0.15	2.09	0.15	
Cadmium	mg/kg	ND	_	ND	_	ND	_	ND	-	
Chromium	mg/kg	0.18	0.03	0.21	0.03	0.16	0.05	0.19	0.08	
Copper	mg/kg	1.47	0.10	1.69*	0.11	1.28	0.03	1.39*	0.08	
Lead	mg/kg	0.15	0.01	0.31*	0.03	ND	ı	ND	ı	
Nickel	mg/kg	0.38	0.03	0.34	0.04	0.28	0.03	0.25	0.04	
Selenium	mg/kg	0.26	0.02	0.22	0.02	0.27	0.05	0.25	0.03	
Silver	mg/kg	ND	_	ND		ND		ND	_	
Zinc	mg/kg	11.34	1.03	12.30	0.49	23.12	8.46	16.50	6.12	
Mercury	mg/kg	ND	-	ND	_	ND	-	ND	_	

Notes:

Boldface* significant t-test results when compared to reference (p≤0.05)

1 SD -Standard Deviation mg/kg -ND milligrams per kilogram

NĎ non-detect

Table 3-7. Metal Bioaccumulation Results in Tissues - Composite B

Compound		Analyte	s Measur	ed in Clan	n Tissue	Analytes	Measure	d in Worn	n Tissue
Compound Name	Units	LA-2 Reference		Composite B		LA-2 Reference		Composite B	
Name		Mean	1 SD	Mean	1 SD	Mean	1 SD	Mean	1 SD
Arsenic	mg/kg	2.42	0.23	2.62	0.35	2.23	0.15	2.38	0.19
Cadmium	mg/kg	ND	_	ND	_	ND	ı	ND	-
Chromium	mg/kg	0.184	0.03	0.48*	0.33	0.16	0.05	0.44	0.38
Copper	mg/kg	1.47	0.10	1.95*	0.19	1.28	0.03	1.67*	0.10
Lead	mg/kg	0.15	0.01	0.38*	0.07	ND	-	ND	-
Nickel	mg/kg	0.38	0.03	0.53	0.23	0.28	0.03	0.41	0.26
Selenium	mg/kg	0.26	0.02	0.28	0.05	0.27	0.05	0.29	0.07
Silver	mg/kg	ND	-	ND	_	ND	-	ND	_
Zinc	mg/kg	11.34	1.03	12.6	1.11	23.12	8.46	22.76	7.81
Mercury	mg/kg	ND	_	ND	_	ND	-	ND	_

Notes:

significant t-test results when compared to reference (p≤0.05) Boldface* -

1 SD -Standard Deviation

ND non-detect

mg/kg milligrams per kilogram

3.3.3.2.2 Organics Bioaccumulation in Clam and Worm Tissues

Tables 3-8 and 3-9 summarize the concentrations of total PAHs, 4,4'-DDE, and total PCB congeners in clam and worm tissues exposed to test and Reference sediments for 28 days. The statistical comparisons indicated that concentrations of total PAHs in Composite A and Composite B clam tissues (559 \pm 139 $\mu g/kg$ and 135 \pm 24.0 $\mu g/kg$, respectively) were statistically significant in animals exposed to test sediments, compared to those exposed to Reference sediments. Total PCB congeners in both Composite A and Composite B clam tissues (10.0 \pm 1.76 $\mu g/kg$ and 14.5 \pm 3.40 $\mu g/kg$, respectively) were found to be statistically significant when compared to those exposed to Reference sediments.

Worm BP tissue results indicated that total PAHs in Composite A were statistically significant (167 \pm 77.5 μ g/kg) compared to Reference sediment exposed tissue (non-detect). The chlorinated pesticide 4,4'-DDE was found to be statistically significant in both Composite A (3.04 \pm 0.38 μ g/kg) and Composite B (3.52 \pm 0.78 μ g/kg) tissues compared to the LA-2 reference worm tissue (1.63 \pm 0.30 μ g/kg). Total PCBs were found to be statistically significant in both Composite A (15.8 \pm 2.96 μ g/kg) and Composite B (18.1 \pm 5.12 μ g/kg) tissues compared to the LA-2 Reference worm tissue (non-detect).

Table 3-8.

Organics Bioaccumulation Results in Tissues – Composite A

Compound		Analy	tes Mea/ Tis	sured in sue	Clam	Analytes Measured in Worm Tissue			
Compound Name	Units		A-2 rence	Composite A		LA-2 Reference		Composite A	
		Mean	1 SD	Mean	1 SD	Mean	1 SD	Mean	1 SD
4,4'-DDE	μg/kg	9.0	3.0	6.48	0.75	1.63	0.30	3.04*	0.38
Total PAHs	μg/kg	ND	_	559*	139	ND	_	167*	77.5
Total PCBs	μg/kg	ND	ı	10.0*	1.76	ND	ı	15.8*	2.96

Notes:

Boldface* - significant t-test results when compared to reference (p≤0.05)

1 SD - Standard Deviation

µg/kg - micrograms per kilogram

DDE - dichlorodiphenyldichloroethane

ND - non-detect

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

Table 3-9.
Organics Bioaccumulation Results in Tissues – Composite B

Compound		Analy		sured in sue	Clam	Analytes Measured in Worm Tissue			
Name	Units	LA Refer	_	Composite B		LA-2 Reference		Composite B	
		Mean	1 SD	Mean	1 SD	Mean	1 SD	Mean	1 SD
4,4'-DDE	μg/kg	9.0	3.0	11	0.71	1.63	0.30	3.52*	0.78
Total PAHs	μg/kg	ND	_	135*	24.0	ND	_	11	_
Total PCBs	μg/kg	ND	_	14.5*	3.40	ND	_	18.1*	5.12

Notes:

Boldface* - significant t-test results when compared to reference (p≤0.05)

1 SD - Standard Deviation μg/kg - micrograms per kilogram

DDE - dichlorodiphenyldichloroethane
PAH - polycyclic aromatic hydrocarbon
PCB - polychlorinated biphenyl

3.4 Data Validation

QA/QC data is presented in full detail in the original laboratory reports (in Appendices C, D, and E). This section summarizes the results of the QA/QC procedures used to ensure that the chemistry, toxicity, and tissue data reported are valid.

3.4.1 Sediment Data Validation

3.4.1.1 Laboratory Duplicates

A laboratory duplicate was carried out for the Composite B sample for all analyses except dissolved sulfide. The precision between the two samples was acceptable by Calscience. Laboratory data are included in the full analytical chemistry report in Appendix C.

3.4.1.2 Calibration

Frequency and control criteria for initial and continuing calibration verifications were met. The method detection limits were met.

3.4.1.3 Blanks

Concentrations of target analytes in the method blank were below reporting limits for all testing.

3.4.1.4 Laboratory Control Samples

A laboratory control sample (LCS) analysis was performed for each applicable test. All parameters were within established control limits.

3.4.1.5 Surrogates

Surrogate recoveries for all applicable tests and samples were within acceptable control limits with one exception.

For PCB Congeners by USEPA 8270C SIM, the 2-fluorobiphenol recovery was low in the Composite A sample; the results were appropriately flagged.

3.4.1.6 Matrix Spikes

Matrix spiking was performed at the required frequencies for the sediment on both Project and non-Project samples. All matrix spike parameters outside the acceptable control limits are noted below for the Project composite samples only.

For the Composite A sample, chlorinated pesticides by USEPA 8081A, DDD, DDT, and methoxychlor were outside the control limits; because the LCS recoveries were in control, the results were released without further action. For the Composite B sample, four MS/MSD recoveries and/or RPDs were outside the control limits; because the LCS recoveries were in control, the results were released with no further action.

The zinc matrix spike concentration for the Composite A sample was above the established control limit. The results were flagged with the appropriate qualifiers and were released without further action. In the Composite B sample testing regimen, metals by USEPA 6020, the lead MS and MSD recoveries were outside the control limits. Because the LCS recoveries were in control, the results were released with no further action. The tributyltin MS recovery for the Composite B sample was outside the control limits; because the LCS recoveries were in control, the results were released with no further action. For PCB congeners by USEPA 8270C SIM PCBs in the Composite B sample, several congeners had low recovery in the MSD. Because the LCS recoveries were in control, the results were released with no further action.

3.4.2 Toxicity Testing Data Validation

All of the data presented have been thoroughly reviewed and are considered acceptable for reporting in accordance with internal QA/QC program and relevant protocols. All toxicity and bioaccumulation tests were initiated within sediment holding time requirements. Any deviations with respect to test conditions and acceptability criteria are summarized below. All deviations were determined to be minor, with no bearing on the data or their final interpretation.

3.4.2.1 Reference Toxicant Tests

Reference toxicant test results for SP and SPP tests are in Appendix D. All laboratory controls for reference toxicant tests met test acceptability criteria. Additionally, median lethal and median effected (LC₅₀/EC₅₀) concentration values for reference toxicant tests were within two standard deviations of Nautilus's internal control chart average for all species tested.

3.4.2.2 Solid-Phase Toxicity Tests

Laboratory control performance for both solid-phase tests met minimum test acceptability criteria. All other test acceptability criteria were met and water quality values were within acceptable ranges as defined by the test protocols for both species.

3.4.2.3 Suspended Particulate-Phase Toxicity Tests

Fish and mysid survival exceeded the 90 percent criterion in all laboratory controls. Mussel survival and development met both criteria, with greater than 70 percent survival and greater than 70 percent normal shell development of surviving embryos in laboratory controls. Water quality measurements were within specified ranges for the duration of the tests for all species.

3.4.2.4 Bioaccumulation Tests

Mean clam and worm survival in laboratory control sediment was 87 and 100 percent, respectively, meeting minimum tissue requirements for chemical analysis. Water quality parameters satisfied test protocol requirements and the data were considered valid without further qualification.

3.4.3 Tissue Testing Data Validation

3.4.3.1 Calibration

Frequency and control criteria for initial and continuing calibration verifications were met. The method detection limits were met.

3.4.3.2 Blanks

Concentrations of target analytes in the method blank were below reporting limits for all testing.

3.4.3.3 Laboratory Control Samples

A LCS analysis was performed for each applicable test. All parameters were within established control limits with the following exception. The Acenaphthene recovery was outside of standard control limits. However, the recovery was within the ME limits, therefore the results are released with no further action.

3.4.3.4 Surrogates

Surrogate recoveries for all applicable tests and samples were within acceptable control limits.

3.4.3.5 Matrix Spikes

Matrix spiking was performed at the required frequencies for the project and non-project tissue samples. All matrix spike parameters outside the acceptable control limits were noted below.

For Metals by EPA 6020, in one QC batch, the zinc MSD recovery was above the control limits. In the second QC batch, the Copper and Silver MS/MSDs were outside the control limits and the zinc sample concentration was over four times the spike level so the recovery could not be determined. Since all LCS/LCSD recoveries were acceptable, the data is released.

For Mercury by EPA 7471A, the recoveries in one MS/MSD pair was low outside of acceptance limits. The other MS/MSD pair was within acceptance limits and the LCS/LCSD recoveries were within acceptance limits.

Several of the Chlorinated Pesticides (by EPA 8081A) matrix spike and/or matrix spike duplicate recoveries were outside of acceptance limits. Since the LCS/LCSD recoveries were acceptable, the data is released.

4.0 DISCUSSION

The purpose of this sediment characterization study was to evaluate the quality of sediment within the Project dredge footprint so as to assess the disposal suitability of the material for placement at the LA-2 ODMDS or the Port's agency-approved CDF located at Berths 243–245.

4.1 Sediment Collection

Individual core samples collected at the YTI Terminal contained two distinct sediment layers. The topmost layer consisted of unconsolidated silt; the lower layer consisted primarily of sticky, very compact, dry-textured, gray clay. In some locations, the proportion of clay in the recovered core was much greater than the unconsolidated silt layer. An example of a typical sediment core collected in Composite Area A is shown below in the photographs in Figures 4-1 through 4-3.

Figure 4-1. Top Silty Material Beginning To Transition to Clay (0–2 ft below the harbor bottom)

Figure 4-2. Transition from Silt to Clay Sediment (2–4 ft below the harbor bottom)

Figure 4-3. Bottom of Core: Predominantly Clay Sediment (4–6 ft below the harbor bottom)

4.2 Sediment Chemistry

A total of ten vibracore samples, five from each dredge footprint, were collected and combined to create two composite samples for analysis. Overall, the results of the chemical analyses conducted on the Project composite sediment samples showed that the proposed dredged material is substantially free of chemical contamination. Slightly elevated (i.e., above ERL guideline values) levels of arsenic, copper, mercury, nickel, PCBs, and DDT were observed; however, all chemical levels were well below ERM guidelines. None of the chemical levels measured in this study were unusual, compared to what is normally observed in an industrial harbor.

4.3 Toxicity Analysis

4.3.1 Solid-Phase Toxicity Tests

As stated previously, *Eohaustorius* survival in the SP tests was statistically reduced in both composite samples compared to reference survival. Because the average amphipod survival percentage for Composite B (87 percent) was within the allowable 20 percent reference survival (98 percent) window, the reduction observed in Composite B is not considered to be ecologically significant. The Composite A amphipod survival level (68 percent) is not within the allowable 20 percent reference survival window.

Because the Composite A chemistry levels are relatively low, there does not appear to be a clear link between the measured chemistry and observed toxicity. When no clear link between these two measurements exists, the next step is to assess potential confounding factors. For solid-phase toxicity tests, the confounding factors typically assessed are: (1) effects due to particle size, (2) elevated levels of porewater un-ionized ammonia, (3) elevated levels of sulfides, and (4) heightened organism sensitivity. Nautilus did not report any excessive levels of ammonia or sulfides prior to initiating the toxicity tests, and organism sensitivity (as measured by conducting a reference toxicant test) also fell within acceptable parameters, so these potential confounding factors can likely be eliminated

Based upon the properties of the Composite A test sediments (consolidated clayey sediments with a high level of fine particles), it is possible that particle size may have played a role in the reduction in survival observed in the Composite A amphipod test. The Southern California Coastal Water Research Project (SCCWRP) notes in its Bight '08 Toxicology Laboratory Manual that "there is evidence that the amphipod *Eohaustorius* may be negatively affected by fine-grained sediments. The sensitivity seems to be seasonally influenced and somewhat unpredictable." (SCCWRP 2008). DeWitt et al. 1989 reports, however, that in numerous testes conducted with *Eohaustorius*, the species "showed little sensitivity to sediment of different grain sizes: mean survival was 92 percent in sediments with ≥80 percent silt-clay content and 97 percent for coarser sediments."

To assess the effects of grain size on individual batches of amphipods, the test toxicity laboratory performs concurrent control treatments using a broad range of grain-sized sediments. For this study, Nautilus conducted a fine-grain size control, using sediment collected from Sail Bay in Mission Bay, San Diego. The fine-grained size control contained 76 percent silt and 15 percent clay. Average amphipod survival for fine-grained size control was 95 percent. Based upon this observation, it appears unlikely that the effect observed in Composite A was solely the result of the fines content. However, the consolidated, dry-textured and clayey nature of the YTI Terminal sediments may have negatively influenced amphipod survival. Since such high percentages of hard, consolidated clay are not typical in dredged material, it is possible that the effects of grain size could not be quantified by the fine-grained control test, which was dominantly silt and contained 4.2 percent to 7.4 percent less clay than the test sediments.

4.3.2 Suspended Particulate-Phase Tests

Neither of the sediment elutriates was toxic to the inland silverside minnows or mysid shrimp. However, a significant effect in mussel (*Mytilus galloprovincialis*) development was seen in the 100 percent elutriates for both Composite A and Composite B samples, and in the 50 percent elutriate for Composite B. As described below, the effects observed on normal development of mussel embryos in the elutriate concentrations may be related to elevated ammonia levels.

4.3.2.1 Potential Confounding Factors: Ammonia

Total and un-ionized ammonia concentrations are summarized in Appendix D, Tables 12 to 15. Un-ionized ammonia (the more toxic form of ammonia) values were calculated from total ammonia measurements. Ammonia concentrations were generally below toxic concentrations, with a few exceptions.

Total and un-ionized ammonia was near threshold levels for *Mytilus* in the Composite A SPP test, and approximately half that in Composite B. Thus, ammonia may have been a contributing factor in toxicity observed to mussel larvae (Appendix D, Table 14).

4.3.3 Bioaccumulation-Phase Tests

Clam and worm tissues were exposed to the composite sediments from the proposed Project dredge footprint, as well as LA-2 Reference sediment and laboratory control sediment for a 28-day BP test. Tissues were analyzed for chemical constituents after the completion of this BP test. The tissue analysis results were evaluated in four ways:

- Concentrations of chemical analytes detected in clams and worms exposed to test sediments were statistically compared to clams and worms exposed to LA-2 Reference sediment.
- 2. Metal and organic concentrations observed in the test tissue were compared to the U.S. Food and Drug Administration (FDA) Action Levels for chemicals in fish and shellfish.

- 3. Bioconcentration factors (BCFs) were calculated by dividing concentrations of chemicals in tissues divided by the concentration in sediment.
- 4. The chemicals that showed significant bioaccumulation potential were compared to values in the Environmental Residue Effects Database (ERED). The ERED contains toxic effects levels for a variety of test organisms and associated endpoints. Specific organisms (i.e., clams and worms) and such endpoints (i.e., survival, growth, and mortality) are similar to those used for Green Book testing and were used to evaluate any exceedances of documented effects levels in tissues.

The bioaccumulation tissue test results are summarized below. The full tissue chemistry report from Calscience and statistical test results are in Appendix E, and the full BP test results are in Appendix D.

4.3.3.1 Bioaccumulation Statistical Comparisons

Statistical comparisons using a student's t-test indicate that copper, lead, total PAHs, and total PCB congeners were statistically elevated in clam tissues exposed to Composite A sediments when compared to those exposed to the LA-2 Reference sediment. Test tissues for worms exposed to Composite A sediments were also statistically elevated with copper, total PAHs, total PCB congeners, and the chlorinated pesticide 4,4'-DDE when compared to those exposed to the LA-2 Reference sediment.

Tissues from clams exposed to Composite B sediments were statistically elevated for the trace metals chromium, copper, and lead, total PAHs, and total PCB congeners when compared to those exposed to LA-2 Reference sediment. Test worm tissues exposed to Composite B area sediments were significantly elevated for copper, total PCB congeners, and pesticide 4,4'-DDE. Tissues with concentrations of metals and organics that were significantly greater in test organisms compared to reference specimens for both Composite Areas are listed in Tables 4-1 and 4-2. Full statistical summary tables are in Appendix E.

Table 4-1.

Test Tissues with Statistically Elevated Bioaccumulation of Trace Metals

Analyte	Composite Area	Test Organism	Units (wet weight)	Average Reference Tissue Concentration	Average Test Tissue Concentration	Times Above Reference
Copper	Α	Clam	mg/kg	1.47	1.69	1.2
Lead	Α	Clam	mg/kg	0.152	0.311	2.0
Copper	Α	Worm	mg/kg	1.28	1.39	1.1
Chromium	В	Clam	mg/kg	0.184	0.481	2.6
Copper	В	Clam	mg/kg	1.47	1.95	1.3
Lead	В	Clam	mg/kg	0.152	0.378	2.5
Copper	В	Worm	mg/kg	1.28	1.67	1.3

Notes:

mg/kg - milligrams per kilogram

Table 4-2.
Test Tissues with Statistically Elevated Bioaccumulation of Pesticides and Organics

Analyte	Composite Area	Test Organism	Units (wet weight)	Average Reference Tissue Concentration	Average Test Tissue Concentration	Times Above Reference
Total PAHs	Α	Clam	μg/kg	ND (< 10)	559	55.9*
Total PCBs	А	Clam	μg/kg	ND (< 0.5)	10.0	20*
4,4'-DDE	А	Worm	μg/kg	1.63	3.04	1.9
Total PAHs	А	Worm	μg/kg	ND (< 10)	167	16.7*
Total PCBs	А	Worm	μg/kg	ND (< 0.5)	15.8	31.6*
Total PAHs	В	Clam	μg/kg	ND (< 10)	135	13.5*
Total PCBs	В	Clam	μg/kg	ND (< 0.5)	14.5	29*
4,4'-DDE	В	Worm	μg/kg	1.63	3.52	2.2
Total PCBs	В	Worm	μg/kg	ND (< 0.5)	18.1	36.2*

Notes:

* Value is compared to a value less than the reporting limit.

μg/kg - micrograms per kilogram

< - less than

DDE - dichlorodiphenyldichloroethane

ND - non-detect

PAH - polycyclic aromatic hydrocarbon PCB - polychlorinated biphenyl

4.3.3.2 Bioaccumulation Comparison with FDA Action Levels

Comparisons of mean metal, organic, and pesticide compound concentrations in clam and worm tissues to available FDA Action Levels of analytes that were deemed statistically significant are in Table 4-3, as well as in the statistical summary tables at the beginning of Appendix E. Although statistical significance was observed between test and reference tissues, chemical concentrations in tissue samples exposed to Composite A and Composite B sediment are well below available FDA Action Levels. Based on this comparison, placement of the Project sediment at LA-2 ODMDS would not be expected to biomagnify any contaminants following disposal.

Table 4-3.
Bioaccumulation Tissue Chemistry Comparison with FDA Action Levels

Composite Sample	Analyte	Tissue	Units	FDA Action Level	Average Concentration
Composite A	Copper		mg/kg	NA	1.69
	Lead	Clam	mg/kg	1.7	0.311
	Total PAHs	Ciaiii	μg/kg	NA	559
	Total PCBs		μg/kg	2000	10
	Copper		mg/kg	NA	1.39
	Total PAHs	Worm	μg/kg	NA	167
	Total PCBs	VVOIIII	μg/kg	2000	15.82
	4,4'-DDE		μg/kg	5000	3.04
	Chromium		mg/kg	13	0.481
	Copper		mg/kg	NA	1.95
	Lead	Clam	mg/kg	1.7	0.378
Composite B	Total PAHs		μg/kg	NA	135
Composite B	Total PCBs		μg/kg	2000	14.5
	Copper		mg/kg	NA	1.67
	Total PCBs	Worm	μg/kg	2000	18.1
	4,4'-DDE		μg/kg	5000	3.52
Notes:		1000000	A		

Notes:

Listed 'Average Concentration' results are the average of 5 replicates.

NA indicates no FDA action limit.

Results are listed in wet weight.

FDA Action Level for Lead, Chromium, and 4,4'-DDE is from "U.S. FDA Action Levels for crustaceans and/or shellfish."

FDA Action Level for Total PCBs is from "U.S. FDA Action Levels for All Fish."

µg/kg - micrograms per kilogram
DDE - dichlorodiphenyldichloroethane
FDA - Food and Drug Administration
mg/kg - milligrams per kilogram
PAH - polycyclic aromatic hydrocarbon
PCB - polychlorinated biphenyl

4.3.3.3 Bioconcentration Factors

Bioaccumulation test results were evaluated to compare tissue loads with sediment loads by calculating the bioconcentration factor (BCF) of chemical analytes. Only chemical analytes with statistically elevated levels relative to the Reference sediment were considered. BCF values for applicable analytes detected in Composite A were mostly at or below 1.0, indicating they have very low bioavailability. The BCF value for worms exposed to the organic contaminant 4,4'-DDE in Composite A was 1.35, which still is considered very low bioavailability.

BCF values for applicable analytes detected in Composite B were mostly well below 1.0, with the exception of the BCF values for total PCBs. BCF values for Composite B were 25.4 and 31.7 for clams and worms, respectively, compared with BCF values for Composite A of 0.357 and 0.565 for clams and worms, respectively. Average test tissue total PCB congener concentrations (14.5 and 18.1 μ g/kg for clams and worms respectively) for Composite B were similar to those from Composite A (10.0 and 15.8 μ g/kg for clams and worms, respectively). BCFs for total PCBs in Composite B (25.4 and 31.7) were likely caused by the low total PCB chemical concentration (0.571 μ g/kg) measured in the sediment, rather than elevated concentrations in test tissues. The BCF values are presented below in Tables 4-4 and 4-5.

According to the USEPA guidance, BCF values greater than 1000 of dredged material contaminants should be further evaluated for bioaccumulation potential. The BCF values for the analyzed analytes in both Composite A and Composite B sediment samples are considerably lower than the guidance values (Arnot and Gobas, 2006), indicating minimal bioaccumulation potential. Based on BCF values, the proposed dredged material from the Project site would not be restricted for disposal at the LA-2 ODMDS.

Table 4-4.
Bioaccumulation Factor (BCF) Values – Composite A

Analyte	Test Organism	Units	Average Test Tissue Concentration (wet weight)	Composite A Sediment Concentration (wet weight)	BCF Composite A
Copper	Clam	mg/kg	1.69	43.8	0.0386
Lead	Clam	mg/kg	0.311	20.2	0.0154
Total PAHs	Clam	μg/kg	559	546	1.02
Total PCBs	Clam	μg/kg	10.0	28.0	0.357
Copper	Worm	mg/kg	1.39	43.8	0.0320
Total PAHs	Worm	μg/kg	166	546	0.305
Total PCBs	Worm	μg/kg	15.8	28.0	0.565
4,4'-DDE	Worm	μg/kg	3.04	2.26	1.35

Notes:

µg/kg - micrograms per kilogram
DDE - dichlorodiphenyldichloroethane
mg/kg - milligrams per kilogram
PAH - polycyclic aromatic hydrocarbon
PCB - polychlorinated biphenyl

Table 4-5.
Bioaccumulation Factor (BCF) Values – Composite B

Analyte	Test Organism	Units	Average Test Tissue Concentration (wet weight)	Composite B Sediment Concentration (wet weight)	BCF Composite B
Chromium	Clam	mg/kg	0.481	21.8	0.0221
Copper	Clam	mg/kg	1.95	36.2	0.0539
Lead	Clam	mg/kg	0.378	17.1	0.0221
Total PAHs	Clam	μg/kg	135	436	0.310
Total PCBs	Clam	μg/kg	14.5	0.571	25.4
Copper	Worm	mg/kg	1.67	36.2	0.0461
Total PCBs	Worm	μg/kg	18.1	0.571	31.7
4,4'-DDE	Worm	μg/kg	3.52	7.97	0.442

Notes:

µg/kg - micrograms per kilogram
DDE - dichlorodiphenyldichloroethane
mg/kg - milligrams per kilogram
PAH - polycyclic aromatic hydrocarbon
PCB - polychlorinated biphenyl

4.3.3.4 Environmental Residue Effects Database Comparison

To further evaluate the potential ecological effects of the concentrations of chromium, copper, lead, PAHs, PCBs, and 4,4'-DDE observed in clam and worm tissues as a result of exposure to the proposed Project dredged material sediment, the ERED was queried (USACE/EPA 2009). The database lists the following instructions and cautions to ensure proper use when comparing the results of dredged material characterization tissue data.

- The USACE/USEPA Environmental Residue-Effects Database (ERED) was developed
 to reduce the level of uncertainty associated with interpreting bioaccumulation data for
 the purpose of making regulatory decisions regarding dredged material. Use of the
 ERED will improve the decision-making process by providing the basis for making
 quantitative determinations regarding the likelihood for effects.
- The ERED contains residue-effects information on many environmental contaminants of potential concern. Although the database is the result of an extensive literature search of known residue-effects data, the search was not exhaustive.
- 3. When using the database for regulatory purposes, such as dredged material evaluations, consideration must be given to the nature of the biological effect associated with a particular residue level. The database contains information on a broad range of biological effects caused by the presence of a particular contaminant in the tissue of an organism, from the induction of particular enzymes or enzyme systems to whole-organism effects on survival, growth, or reproduction. A stronger inferential link exists between whole-organism toxicological effects (e.g., reduced survival) and ecological impacts on populations, communities, and ecosystems (i.e., effects the Marine Protection, Research and Sanctuaries Act and the Clean Water Act specifically state should be avoided). Cellular/subcellular responses are most appropriately used as

biomarkers of exposure; they are biological indicators that the organism has been exposed to some type of stress. The causal relationship between the induction of such biomarkers and higher order effects such as whole-organism survival, growth, reproduction, or ecological impacts is unknown in most cases.

4. Evaluating the environmental consequences of contaminant bioaccumulation is a complex technical and regulatory problem (Bridges et al. 1996). In part, this complexity results from the fact that bioaccumulation is a measurable phenomenon, rather than an effect. Merely identifying the presence of a chemical substance in the tissues of an organism, for example, following a bioaccumulation test is not sufficient information to conclude that the chemical will produce an adverse effect. All chemical substances have the potential to produce adverse effects (i.e., toxicity), including such diverse compounds as aspirin, zinc, and dioxin. The likelihood that a chemical substance in the tissues of an organism will produce an adverse effect is a function of the physical and chemical properties of the substance, the concentration of the chemical in the tissues of the organism, and the length of time the organism is exposed to the compound. Because environmental contaminants vary so widely in their potential to produce toxicity, contaminant-specific information must be used to reach a determination regarding the potential for a bioaccumulated substance to produce adverse effects.

Based upon the instructions listed above, criteria were established for queries of the YTI Berths 214–220 tissue data using the ERED. The criteria are as follows: (1) the actual test species or an appropriate surrogate species was used; (2) the whole body was the analysis unit; (3) the chemical of concern in test tissues and the database matched exactly; (4) an appropriate study endpoint (e.g., survival or growth) was selected; and (5) the toxicity or effects measurements were appropriate (e.g., no observed effect dose [NOED] or lowest observed effect dose [LOED]).

The following sections summarize the comparison made between Composite A and Composite B clam and worm bioaccumulation results for chromium, copper, lead, individual PAHs, individual PCB congeners, and 4,4'-DDE; appropriate study results are in the ERED. Table 4-6 provides a more detailed list of the relevant information extracted from the database about bioaccumulation of chromium, copper, lead, individual PAHs, and individual PCB congeners in clam tissue, and bioaccumulation of copper, individual PAHs, individual PCB congeners, and 4,4'-DDE in worm tissue.

Chromium

• The average concentration of chromium in clam tissues exposed to Composite B sediment was 0.481 mg/kg. The chromium concentration in clam tissues exposed to Reference sediment was 0.184 mg/kg. The chromium concentration of clams exposed to Composite B sediment was 2.7 times that of the concentration of clams exposed to the Reference sediment.

 There are no cited studies related to survival found in the ERED for chromium bioaccumulation in relevant species (e.g. clams or worms). There is, however, an ERED study report from 1982 that identified a whole body reproduction LOED of 8.28 mg/kg conducted using *Neanthes arenaceodentata*. The average Composite B clam tissue level for chromium (0.481 mg/kg) is well below the LOED level (8.28 mg/kg) cited in the ERED.

Copper

- The average copper concentration in clam tissue exposed to Composite A and Composite B sediments were 1.69 and 1.95 mg/kg, respectively. The average copper concentration in clam tissues exposed to Reference sediment was 1.47 mg/kg. As shown in Table 4-1, the average copper level in clams exposed to Composite A and B area sediments were 1.2 and 1.3 times that of the average Reference level, respectively.
- There are no specific studies in the ERED for the clam species used in this study (Macoma nasuta) for copper bioaccumulation; however there is a study using a similar species (Macoma balthica). According to the study, the whole body survival NOED for Macoma balthica is a tissue residue level of 5.0 mg/kg. The average Composite A (1.69 mg/kg) and Composite B (1.95 mg/kg) clam tissue levels are below the NOED level (5.0 mg/kg) cited in the ERED.
- The average copper concentration in worm tissues exposed to Composite A and Composite B sediments were 1.39 and 1.67 mg/kg, respectively. The copper concentration in worm tissue exposed to Reference sediment was 1.28 mg/kg. The average copper level in worms exposed to Composite A and Composite sediments B were 1.1 and 1.3 times that of the average reference level, respectively.
- There are no specific studies in the database for the worm species used in thia study (Nereis virens) for copper bioaccumulation; however, several other polychaete worm studies are available. These worm studies report whole body mortality NOEDs ranging from 6.42 to 95.5 mg/kg copper. The average Composite A worm tissue level (1.39 mg/kg) and the average Composite B worm tissue level (1.67 mg/kg) are below the cited NOED levels.

Lead

• The average lead concentrations in clam tissues exposed to Composite A and Composite B sediments were 0.311 and 0.378 mg/kg, respectively. The lead concentration in clam tissue exposed to Reference sediment was 0.152 mg/kg. As shown in Table 4-1, the average lead concentrations in clams exposed to Project dredge material were 2.0 and 2.5 times that of the average reference level for Composites A and B, respectively.

• There are no specific studies in the database for the clam species used in this study (Macoma nasuta) for lead bioaccumulation. The most similar species to Macoma nasuta located in the ERED is the Eastern Oyster (Crassostrea virginica). According to the ERED, a lead study using Eastern Oysters resulted in a NOED for lead of 2.28, 2.28, and 2.60 mg/kg for growth, mortality, and reproduction, respectively. The average Composite A clam tissue level (0.311 mg/kg) and the average Composite B clam tissue level (0.378 mg/kg) are well below the NOED levels previously stated.

Pesticide 4,4'-DDE

 There are no appropriate studies (species or endpoints) listed in the ERED for the pesticide 4,4'-DDE.

PAHs

- The PAH comparison was conducted by identifying individual PAHs that were found at detectable levels in clam and worm tissues, then querying the database for these specific PAHs.
- There are no appropriate studies (appropriate species and/or endpoints) listed in the ERED for the following individual PAHs: benzo(e)pyrene and benzo(k)fluoranthene.
- The average concentration of benzo(a)anthracene in clam tissues exposed to Composite A sediment was 15.4 μg/kg. Clam tissues exposed to reference sediment were found to be non-detect (ND<10 μg/kg) for benzo(a)anthracene.
- An ERED study report on benzo(a)anthracene identifies a whole body survival NOED of 600 μg/kg in a 1997 study conducted using zebra mussels. The average Composite A clam tissue level (15.4 μg/kg) is well below the NOED level (600 μg/kg) cited in the ERED study.
- The average concentrations of benzo(a)pyrene in Composite A and Composite B clam tissues were 38.0 and 24.4 μg/kg, respectively. The clam tissues exposed to Reference sediment were non-detect (ND<10 μg/kg) for benzo(a)pyrene.
- The database contains a 1999 benzo(a)pyrene study using the Quahog clam (*Mercenaria mercenaria*) that found whole body mortality NOED of 2.21 μg/kg. While the average Composite A (38.0 μg/kg) and Composite B (24.4 μg/kg) clam tissue levels are above the NOED level (2.21 μg/kg) cited in the ERED, no effects of mortality were observed at 1.0 μg/kg during the study; the study does not indicate the exposure route.
- The average concentrations of benzo(b)fluoranthene in clam tissues exposed to sediment from Composite A and Composite B were 53.2 and 38.2 μg/kg, respectively.
 The clam tissues exposed to Reference sediment were non-detect (ND<10 μg/kg) for benzo(b)fluoranthene.
- The database contains a 1999 benzo(b)fluoranthene study using the amphipod species *Rhepoxynius abronius* that found whole body mortality lethal dose (LD) levels ranging from 860 to 1,720 μg/kg. The average Composite A (53.2 μg/kg) and Composite B (38.2 μg/kg) clam tissue levels are well below the LD levels (860 to 1,720 μg/kg) cited in the ERED.

- The average concentration of chrysene in clam tissues exposed to Composite A sediment was 24.6 μg/kg. The clam tissues exposed to Reference sediment was nondetect (ND<10 μg/kg) for chrysene.
- The database contains a 1999 chrysene study using the amphipod species *Rhepoxynius abronius* that found whole body mortality LD levels ranging from 1,280 to 3,150 μg/kg. The average Composite A (24.6 μg/kg) clam tissue level is well below the LD levels (1,280 to 3,150 μg/kg) cited in the ERED.
- The average concentration of fluorathene in tissues exposed to Composite A sediment were 89.2 μ g/kg in clam tissue and 44.0 μ g/kg in worm tissue. The clam and worm tissues exposed to Reference sediment were both non-detect (ND<10 μ g/kg) for fluorathene.
- An ERED study report on fluorathene identified a whole body survival NOED of 1290 μg/kg from a 1997 study conducted using *Dreissena polymorpha* (zebra mussels). The average Composite A clam tissue level (89.2 μg/kg) and the average Composite A worm tissue level (44.0 μg/kg) are well below the NOED level (1290 μg/kg) cited in the ERED.
- The average concentrations of pyrene in tissues exposed to Composite A sediment were 246 μg/kg for clam tissue and 87.6 μg/kg for worm tissue. The average concentration of pyrene in clam tissue exposed to Composite B sediment was 16.0 μg/kg. The clam and worm tissues exposed to Reference sediment were both non-detect (ND<10 μg/kg) for pyrene.
- An ERED study report on pyrene identified a whole body survival NOED of 1,080 μg/kg from a 1997 study conducted using zebra mussels. The average Composite A clam tissue level (246 μg/kg) and the average Composite A worm tissue level (87.6 μg/kg) are well below the NOED level (1,080 μg/kg) cited in the ERED. The average Composite B clam tissue level (16.0 μg/kg) was also well below the NOED level (1080 μg/kg) cited in the ERED.

PCB Congeners

- PCB comparison was conducted by identifying individual PCBs that were found at detectible levels in clam and worm tissues, then querying the database for the specific PCBs.
- There are no appropriate studies (appropriate species and/or endpoints) listed in the ERED for the following individual PCBs: PCB 28, 49, 60, 66, 70, 95, 99, 101, 110, 118, 149, 151, 153, 158, 180, and 187.
- The average concentration of PCB 52 in clam tissues exposed to Composite A sediment was 0.82 μg/kg. The average concentration of PCB 52 in worm tissues exposed to Composite A sediment was 1.74 μg/kg, and 1.07 μg/kg for Composite B sediment. The clam and worm tissues exposed to Reference sediment were both non-detect (ND<0.5 μg/kg) for PCB 52.

- An ERED study report on PCB 52 identified a whole body survival NOED of 54,000 μg/kg from a 1990 study conducted using freshwater amphipod *Hyalella azteca*. The average Composite A clam (0.82 μg/kg) and worm (1.74 μg/kg) tissue levels were well below the NOED level (54,000 μg/kg) cited in the ERED. Furthermore, the average Composite B worm tissue level (1.07 μg/kg) was well below the NOED level (54,000 μg/kg) cited in the ERED.
- The average concentration of PCB 138/158 in tissues exposed to Composite B sediment was 1.50 μg/kg in clams, as well as 1.36 and 1.88 μg/kg in worms exposed to Composite A and Composite B sediment, respectively. The clam and worm tissues exposed to Reference sediment were both non-detect (ND<1.0 μg/kg) for PCB 138/152.
- An ERED study report of PCB 138 found digestive tract biochemical effects NOED of 1,580 μg/kg, conducted using the Mediterranean mussel (*Mytilus galloprovincialis*). The average Composite B clam tissue level (1.50 μg/kg) is well below the NOED level (1,580 μg/kg) cited in the ERED. Furthermore, the average Composite A worm (1.36 μg/kg) and Composite B worm (1.88 μg/kg) tissue levels were also well below the NOED level (1,580 μg/kg) cited in the ERED.

In summary, a comparison of the tissue chemistry results of the Project dredge sediment characterization study with published study data contained in the ERED show that the levels of chemicals in clam and worm tissues exposed to the proposed dredge sediments are well below any expected effects levels.

Table 4-6.
Environmental Residue Effects Database (ERED) Comparison

Analyte	Test Species	Units (wet wt.)	RL	Reference Mean Tissue Concentration ¹	Test Area Mean Tissue Concentration ¹	p-value	Test Area Mean: Reference Mean Ratio ²	Comparison to Relevant Environmental Residue-Effects Database Values
Metals								
Chromium	Clam	mg/kg	0.02	0.184	Composite B - 0.481	Composite B - 0.04	Composite B - 2.61	An ERED study report identified a whole body LOED reproduction of 8.28 mg/kg from a 1982 study conducted using <i>Neanthes arenaceodentata</i> (Oshida PS, LS Word; Mar Environ Res 07:167-174).
Copper	Clam	mg/kg	0.1	1.47	Composite A - 1.69, Composite B - 1.95	Composite A - 0.006, Composite B - 0.0005	Composite A - 1.15, Composite B - 1.33	There are no relevant effects in the ERED database for <i>Macoma nasuta</i> . However, the whole body NOED for <i>Macoma balthica</i> according to one study was determined to be 5 mg/kg for survival (Absil MCP, M Berntssen, LJA Gerringa; Aquat Toxicol 34:13-29).
Copper	Worm	mg/kg	0.1	1.28	Composite A - 1.39, Composite B - 1.67	Composite A - 0.010, Composite B - 0.00001	Composite A - 1.09, Composite B - 1.30	Several polychaete worm studies are contained in the database; however, none were conducted using <i>Nereis virens</i> (i.e. the worm species used in this study). The worm studies contained in the ERED report whole body mortality NOEDs that range from 6.422 to 95.5 mg/kg copper ([McLusky DS, CNK Phillips; Estuarine Coast Mar Sci 3:103-108] [Milanovich FP, R Spies, MS Guram, EE Sykes; Estuarine Coast Mar Sci 4:585-588] [King CK, MC Dowse, SL Simpson, DF Jolley; Arch Environ Contam Toxicol 47:314-323]).
Lead	Clam	mg/kg	0.1	0.152	Composite A - 0.311, Composite B - 0.378	< 0.00001	Composite A - 2.05, Composite B - 2.49	There are no relevant effects in the ERED database for <i>Macoma nasuta</i> . However, the whole body NOED for bivalve (the Eastern Oyster <i>Crassostrea virginica</i>) according to a 1979 study was determined to be 2.28, 2.28, and 2.26 mg/kg for growth, mortality, and reproduction, respectively (Zaroogian, G.E., G. Morrison, and J.F. Heltshe; Mar Biol 52:189-196).
PAHs ³								
Benzo (a) Anthracene	Clam	μg/kg	10	ND	Composite A - 15.4	Composite A - 0.004	Composite A - 1.54	An ERED study report on benzo(a)anthracene identified a whole body survival NOED of 600 µg/kg from a 1997 study conducted using <i>Dreissena polymorpha</i> (Roper, J, D.S. Cherry, J. W. Simmers, and H. E. Tatem; Environmental Monitoring and Assessments).
Benzo (a) Pyrene	Clam	μg/kg	10	ND	Composite A - 38.0, Composite B - 24.4	Composite A - 0.00002, Composite B - 0.00002	Composite A - 3.80, Composite B - 2.44	The database contains a 1999 benzo(a)pyrene study using the Quahog clam (Mercenaria mercenaria) that found whole body mortality NOED of 2.21 µg/kg (Anderson, R.S., C.S. Giam, L.E. Ray and M.R. Tripp; Aquat Toxicol 01:187-195)
Benzo (b) Fluoranthene	Clam	µg/kg	10	ND	Composite A - 53.2, Composite B - 38.2	Composite A - 0.00001, Composite B - < 0.00001	Composite A - 5.32, Composite B - 3.82	The database contains a 1999 benzo(b)fluoranthene study using the amphipod species <i>Rhepoxynius abronius</i> that found whole body mortality LD levels that range from 860 to 1,720 µg/kg (Boese BL, RJ Ozertich, JO Lamberson, RC Swartz, FA Cole, J Pelletier, J Jones; Arch Environ Contam Toxicol 36: 270-280).

Table 4-6.
Environmental Residue Effects Database (ERED) Comparison (Cont.)

Analyte	Test Species	Units (wet wt.)	RL	Reference Mean Tissue Concentration ¹	Test Area Mean Tissue Concentration ¹	p-value	Test Area Mean: Reference Mean Ratio ²	Comparison to Relevant Environmental Residue-Effects Database Values
Chrysene	Clam	μg/kg	10	ND	Composite A - 24.6	Composite A - 0.0003	Composite A - 2.46	The database contains a 1999 chrysene study using the amphipod species <i>Rhepoxynius abronius</i> that found whole body mortality LD levels that range from 1,280 to 3,150 µg/kg. The database also contains a 1997 study using zebra mussels that found whole body NOED to be 930 µg/kg for survival. ([Boese BL, RJ Ozertich, JO Lamberson, RC Swartz, FA Cole, J Pelletier, J Jones; Arch Environ Contam Toxicol 36: 270-280], [Roper, J, D.S. Cherry, J. W. Simmers, and H. E. Tatem; Environmental Monitoring and Assessments]).
Fluoranthene	Clam	μg/kg	10	ND	Composite A - 89.2	Composite A - 0.0001	Composite A - 8.96	An ERED study report on fluorathene identified a whole body survival NOED of 1290 µg/kg from a 1997 study conducted using <i>Dreissena polymorpha</i> (Roper, J, D.S. Cherry, J. W. Simmers, and H. E. Tatem; Environmental Monitoring and Assessments).
Fluoranthene	Worm	μg/kg	10	ND	Composite A - 44.0	Composite A - 0.004	Composite A - 4.40	An ERED study report on fluorathene identified a whole body survival NOED of 1290 µg/kg from a 1997 study conducted using <i>Dreissena polymorpha</i> (Roper, J, D.S. Cherry, J. W. Simmers, and H. E. Tatem; Environmental Monitoring and Assessments).
Pyrene	Clam	μg/kg	10	ND	Composite A - 246, Composite B - 16.0	Composite A - 0.00001, Composite B - 0.00008	Composite A - 24.6, Composite B - 1.60	An ERED study report on pyrene identified a whole body survival NOED of 1080 µg/kg from a 1997 study conducted using <i>Dreissena polymorpha</i> (Roper, J, D.S. Cherry, J. W. Simmers, and H. E. Tatem; Environmental Monitoring and Assessments).
Pyrene	Worm	μg/kg	10	ND	Composite A - 87.6	Composite A - 0.0007	Composite A - 8.76	An ERED study report on pyrene identified a whole body survival NOED of 1080 µg/kg from a 1997 study conducted using <i>Dreissena polymorpha</i> (Roper, J, D.S. Cherry, J. W. Simmers, and H. E. Tatem; Environmental Monitoring and Assessments).
PCBs ³	T		T					
PCB 52	Clam	μg/kg	0.5	ND	Composite A - 0.82	Composite A - 0.0008	Composite A - 1.64	An ERED study report on PCB 52 identified a whole body survival NOED of 54,000 µg/kg from a 1990 study conducted using freshwater amphipod <i>Hyalella azteca</i> (Borgmann, U., N.P. Norwood, and K.M. Ralph; Arch Environ Contam Toxicol 19:558-564).
PCB 52	Worm	μg/kg	0.5	ND	Composite A - 1.74, Composite B - 1.07	Composite A - < 0.00001, Composite B - 0.001	Composite A - 3.48, Composite B - 2.14	An ERED study report on PCB 52 identified a whole body survival NOED of 54,000 µg/kg from a 1990 study conducted using freshwater amphipod <i>Hyalella azteca</i> (Borgmann, U., N.P. Norwood, and K.M. Ralph; Arch Environ Contam Toxicol 19:558-564).

Table 4-6. **Environmental Residue Effects Database (ERED) Comparison (Cont.)**

Analyte	Test Species	Units (wet wt.)	RL	Reference Mean Tissue Concentration ¹	Test Area Mean Tissue Concentration ¹	p-value	Test Area Mean: Reference Mean Ratio ²	Comparison to Relevant Environmental Residue-Effects Database Values
PCB 138/158	Clam	μg/kg	1	ND	Composite B - 1.50	Composite B - 0.002	Composite B - 1.50	An ERED study report of PCB 138 found digestive tract biochemical effects NOED of 1580 µg/kg, conducted using <i>Mytilus galloprovincialis</i> (Livingston DR, C Nasci, M Sole, L Da Ros, SCM O'Hara, LD Peters, V Fossato, AN Wootton, PS Goldfarb; Aquat Toxicol 38:205-224)
PCB 138/158	Worm	μg/kg	1	ND	Composite A - 1.36, Composite B - 1.88	Composite A - 0.004, Composite B - 0.0006	Composite A - 1.36, Composite B - 1.88	An ERED study report of PCB 138 found digestive tract biochemical effects NOED of 1580 µg/kg, conducted using <i>Mytilus galloprovincialis</i> (Livingston DR, C Nasci, M Sole, L Da Ros, SCM O'Hara, LD Peters, V Fossato, AN Wootton, PS Goldfarb; Aquat Toxicol 38:205-224)

mg/kg - milligrams per kilogram
ND - non-detect
LD - lethal dose

NOED - no observed effects dose LOED - lowest observed effects dose

5.0 CONCLUSIONS

The results of this sediment characterization study indicate that dredged material within the proposed Berths 212–224 YTI Container Terminal Improvements Project footprint complies with the ocean disposal limiting permissible concentration suitability requirements outlined in Title 40 *Code of Federal Regulations* (CFR) Parts 220–228 for chemistry, toxicity, and bioaccumulation, and is therefore suitable for placement at the LA-2 ODMDS or within the Berth 243–245 CDF.

This conclusion is supported by the following findings:

- All collection and analysis QA/QC measures for physical, chemical, and biological testing were found to be acceptable and the data presented in this report are considered valid.
- Sediment chemistry levels were relatively low. There were only a few minor exceedances of ERL guideline levels, and all chemical levels were well below ERM levels. The chemical test results and the type of material observed at the bottom of the cores (e.g. predominantly stiff clay) precluded the need to test the Z-layer material.
- For the most part, the toxicity tests conducted on the two site composites showed no statistically or ecologically significant effects. Specifically, no statistically and/or ecologically significant toxicity was observed in the solid-phase amphipod (Composite B) or worm tests. There were no effects observed in the suspended particulate-phase fish and mysid shrimp tests. Amphipod survival was reduced in the Composite A exposure, but there is no clear link between sediment chemistry and toxicity. Confounding factors (e.g., sediment physical characteristics) may have contributed to the reduction in amphipod survival observed in the Composite A solid-phase test. The toxicity testing laboratory reported that the effects observed in the bivalve larvae test are likely due to elevated levels of un-ionized ammonia in the samples.
- The bioaccumulation-phase clam and worm tissue chemistry levels observed in this study were well below FDA action levels and the levels of concern reported in the Environmental Residue Effects Database (ERED). In addition, biological concentration factor values were low. These results indicate that the bioaccumulation potential of the proposed YTI Terminal dredged material is low and well within acceptable limits.

This page intentionally left blank

Port of Los Angeles Draft Sediment Characterization Report Berths 212–224 YTI Container Terminal Improvements Project Los Angeles Harbor AMEC Project No. 1315102710 November 2013

6.0 REFERENCES

- AMEC. 2013. Final Sampling and Analysis Plan for Berths 212–224 YTI Container Terminal Improvements Project. April.
- American Public Health Association, American Water Works Association, and Water Environment Federation. 1995. Standard Methods for the Examination of Water and Wastewater. 19th edition. Edited by A.D. Eaton, L.S. Clesceri, and A.E. Greenberg. Washington, DC.
- Arnot, Jon A., and Frank APC Gobas. "A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. "*Environmental Reviews* 14.4 (2006): 257–297.
- ASTM International. 1967. Standard Methods for Grain size Analysis of Soils. ASTM Designation D422-63, Part II.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. NOAA OR&R Report 08-1. Seattle Washington: Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. 34 pages.
- DeWitt et al, *Measuring the acute toxicity of estuarine sediments*, DeWitt, T.H.; Swartz, R.C.; Lanberson, J.O., 1989.
- Krone, C.A., D.W. Brown, D.G. Burrows, R.G. Bogar, S.L. Chan, U. Varanasi, 1989. A Method for Analysis of Butyltin Species and Measurement of Butyltins in Sediment and English Sole Liver from Puget Sound. *Marine Environmental Research* 27: 1–18.
- Long, E.R., D.L. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentration in Marine and Estuarine Sediments. *Environmental Management* 19 (1): 81–97.
- Plumb. 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples, USEPA/USACE Technical Committee on Criteria for Dredged and Fill Material. AD/A103 788.
- Rice, C.D., F.A. Espourteille, and R.J. Huggett. 1987. Analysis of Tributyltin in Estuarine Sediments and Oyster Tissue, *Crassostrea virginica*. *Applied Organometallic Chemistry* 1: 541544.
- SCCWRP, Bight 2008 Toxicology Laboratory Manual, The Southern California Coastal Water Research Project (SCCWRP), 2008
- United States Environmental Protection Agency (USEPA). 1995. QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations (Chemical Evaluations). USEPA 832-B-95-001.

Port of Los Angeles Draft Sediment Characterization Report Berths 212–224 YTI Container Terminal Improvements Project Los Angeles Harbor AMEC Project No. 1315102710 November 2013

- USEPA. 2001. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. USEPA-823-B-01-002. October.
- USEPA and U.S. Army Corps of Engineers. 1991. *Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual.* "Green Book", USEPA-503/8-91/001. February.
- Woodring, W.P., Bramlette, M.N., and Kew, W.S.W., 1946, Geology and paleontology of Palos Verdes Hills, California: U.S. Geological Survey, Professional Paper 207, 145p.

APPENDIX A CORE LOGS

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

Sample Type: Vibracore

6/3/2013 08:55 Date: Time:

Latitude: 33°45.5420 Longitude: -118°15.5004 Project Depth (ft MLLW): 55.5 46.2 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× × ×	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	None	Less consolidated to 1.1'	
	× · × · × · × ·		Greenish-gray			Minor black streaks, possibly dur to shells	$\mid \cdot \mid$
	×					to 1.1'	$\mid \cdot \mid$
0.5	× × ×						
	× · × × × × × × ×						\parallel
_	. ×. × × . ×						$\mid \cdot \mid$
	× × ×						
1.0	× × × × × ×						
	× × ×	Silty Sand	+			Shell at 1.1'	$ \cdot $
	· . · .× . · .						
	× — × — × —	Clay with Silt	Dark Greenish-gray	5GY 4/1			
1.5 —	× × ×		gray			Core super dense/dry below 1.5'	$\mid \cdot \mid$
-	× × ×					, 2000	$\mid \dashv$
	× × ×						
_	× × ×						$ \cdot $
2.0	$\times \times \times \times \times$						
	× × × ×						
	× × × ×						$\mid \cdot \mid$
	$\overline{\times} \times \overline{\times} \times \overline{\times}$						$\mid \cdot \mid$
2.5	x ^ x ^					Material rolls easily	
	* * * * * * * * * * * * * * * * * * *						$ \cdot $
	× × ×						$\mid \cdot \mid$
3.0	$\times \times \times \times$						
0.0	× — × — × — × — × — × — × — × — × — × —						
	× × × ×						$ \cdot $
	x x x x						
3.5 —	× ×						
	× × ×						$ \cdot $
	<u> </u>						
	× × ×						
4.0	<u>× </u>						
	x						
	$\left[\times \frac{}{\times} \times \frac{}{\times} \right]$						
	× ×						-
4.5	× × ×						
	x x x x						
	<u> </u>						
	× × × × ×						$\mid \cdot \mid$
5.0	Water Depth (ft	:): _49.2	etration (ft):	9.3	<u> </u>	ı	ш
	Tide (ft	,	netration (ft):	9.1 8.7	g of Stat	tion ID: A1-Attempt 1	

8.7

Recovered Core Length (ft):

Additional Notes: Bottom is hard clay plug.

Sampled By: Vibracore

Date: 6/3/2013 **Time:** 08:55

 Latitude:
 33°45.5420

 Longitude:
 -118°15.5004

 Project Depth (ft MLLW):
 55.5

 Mudline Elevation (ft MLLW):
 46.2

Depth in Feet 5.0	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
5.0	× × × × × × × × × × × × × × × × × × ×	Clay with Silt	Dark Greenish-gray	5GY 4/1	None		
			Greenish-gray				$\mid \cdot \mid$
	x ^ x ^						
5.5	^- 						-
	× × ×						
	× × × ×						-
6.0	× — × — × — × — × — × — × — × — × — × —						
	× × ×						
	* *						-
6.5	× × ×						
	× × × ×						=
	× × × ×						
7.0	× × × ×						-
7.0	x _x _x _x						
	~						
	× × ×						-
7.5	$\times \times \times \times$						
	× × × × × ×						-
	× × ×						
8.0	$\overline{\times} \overline{\times} \overline{\times} \overline{\times}$						
	* * * * * *						
	× × ×						
8.5 —	× × × ×					Z-layer from 8.4' to 8.7'	-
	× — ×					Defined at EE CIMILIN	
						Refusal at 55.3' MLLW	
9.0							
9.5							
10.0	Water Depth (fi	t): <u>49.2</u> Target Pene		9.3	l	<u> </u>	ш
	Tide (fi		etration (ft):	9.1 Lo	g of Stat	tion ID: A1-Attempt 1	

8.7

Additional Notes: Bottom is hard clay plug.

Recovered Core Length (ft): __

Sample Type: Vibracore

Date: 6/3/2013 **Time:** 10:01

Latitude: 33°45.5395
Longitude: -118°15.5024

Project Depth (ft MLLW): 55.5

Project Depth (ft MLLW): 55.5

Mudline Elevation (ft MLLW): 48.6

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× × × × × × × × × × × × × × × × × × ×	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	None	Minor black streaking, less dense	
			Greenion gray				-
	× × × × ×						
0.5							
	× . × × × × × ×						
	× × ×						
1.0	× ·× ·	Clay with minor Silt	Dark	5GY 4/1		Consolidated & density increase below 1.0'	
		Oldy With Hillion Cit.	Greenish-gray	001 4/1		Consolidated a definity moreage pelow 1.0	
1.5							
2.0							
							$\mid - \mid$
2.5							
							$\mid \cdot \mid$
3.0							
3.5							
4.0							$ \downarrow$
4.5							
							$\mid \cdot \mid$
5.0							
5.0	Water Depth (f			6.9			
	Tide (f		etration (ft):	8.0 Lo	g of Stat	tion ID: A1-Attempt 2	

Additional Notes: Long ~1.5' core "fell-out" of barrel upon retrieval. Core was watery at surface.

Recovered Core Length (ft): __

Vibracore Sample Type:

6/3/2013 10:40 Date: Time:

Latitude: 33°45.5070 -118°15.5309 Longitude: 55.5 Project Depth (ft MLLW): 47.1 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	×××	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	None	Minor black streaking Less consolidated	
	X		Greenish-gray			Less consolidated	-
	× × ×						-
0.5	× × × × ×						
	· × · ×					Shell hash from 0.6' to 0.8'	$ \cdot $
	X						
	× × × × ×						
1.0	× × ×						+
	× × × × × × × × × × × × × × × × × × ×						
	× · · ×	Fine grained Sand with Silt				More consolidated at 1.2'	+
1 -	× × ×						
1.5	× × ×					Shell hash from 1.6' to 1.9'	
	× · · · ×						
	× × ×						
2.0	× · · · · ×					(A) collected from 1.2' to 3.4' A2-A	
	× × ×					(A) conceded from 1.2 to 3.4 A2-A	$ \cdot $
	× × ×						
	× × ×						-
2.5	× × ×						
	. · .× . · .						
	× · ×						-
3.0	× × ×						
	×××						-
	× · · · ×						
	× × × ×	Oleverith Oilt	Darda	507/4/4		Variables a Caracalidate dat O.4	
3.5	× × × ×	Clay with Silt	Dark Greenish-gray	5GY 4/1		Very dense & consolidated at 3.4'	-
	$\times \times \times \times$					(A) collected from 3.4' to 7.5' A2-B	
	× × ×						
	× * × *						$ \cdot $
4.0	× × ×						
	$\left \begin{array}{c} \times \times \times \times \\ \times \times \times \end{array} \right $						$ \cdot $
	× × ×						
4.5	× × ×						
	× × × ×						
	* * * X						
	× × ×						
5.0	F x ^x	<u> </u>		Q /l			L
	Water Depth (f Tide (f		etration (ft):	8.4 8.0 Lo	g of Stat	tion ID: A2-Attempt 1	

Additional Notes: Did not penetrate z-later, additional (A) collected due to apparent change in lithology.

Recovered Core Length (ft):

7.5

Sample Type: Vibracore

Date: 6/3/2013 **Time:** 10:40

Latitude: 33°45.5070
Longitude: -118°15.5309
Project Depth (ft MLLW): 55.5

Mudline Elevation (ft MLLW):

47.1

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
5.0	× × × × × × × × × × × × × × × × × × ×	Clay with Silt	Dark Greenish-gray	5GY 4/1	None		
$\mid \cdot \mid$			Greenish-gray				$\mid \cdot \mid$
	x ^ x ^						
5.5	^ - ×						$\mid \dashv$
	× × ×						
	× × × ×						-
6.0	× × × × ×						
	x x x x						-
	× × ×						
6.5	× × × ×						
0.5	× × × ×						
	× × ×						
	× × × × ×						
7.0	× × × ×						
	× × ×						-
	× × ×						
7.5	× ×					Refusal at 55.1' MLLW	-
							-
8.0							
							-
0.5							-
8.5 —							
							-
9.0							
9.5							
							$ \cdot $
10.0							
	Water Depth (f		. ,	8.4	£ Ot :		
	Tide (f	t): +1.9 Actual Pene		8.0 Lo	g of Stat	tion ID: A2-Attempt 1	

Additional Notes: Did not penetrate z-later, additional (A) collected due to apparent change in lithology.

Recovered Core Length (ft): ___

 Project Number:
 1015101929

 Project Manager:
 Barry Snyder

 Logged and Sampled By:
 KG/TH

 Sample Type:
 Vibracore

Sample Type: Date:

6/3/2013 **Time:** 11:35

 Latitude:
 33°45.5130

 Longitude:
 -118°15.5393

 Project Depth (ft MLLW):
 55.5

 Mudline Elevation (ft MLLW):
 46.5

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× × × × ×	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	None	Top is less consolidated Shell hash to 1.0' (minor)	
			Greenish-gray			One has to 1.0 (minor)	$\mid - \mid$
	X X X X						$\mid \dashv$
	× × ×						$ \neg $
0.5	× × ×						
	× . ×						
	× × ×	Ollte Consul					
	× · · ×	Silty Sand					-
1.0	× × ×	Sandy Silt	-				$\mid \dashv \mid$
	× × × ×	•					\Box
	× × ×						
	× × ×						$ \downarrow $
1.5 —	^ × · ^ ×						$ \cdot $
	× · × ×						
_	X						
	× ^ × ^						
2.0 —	× — × — × — × _	Clay with Silt	Dark Greenish-gray	5GY 4/1		Consolidation & density increases at 1.9'	
	× × ×		Oreenish-gray				$ \cdot $
\perp	\times \times \times						$\mid \cdot \mid$
	* * * * *						$\mid \dashv \mid$
2.5	× _x _x						
2.5	<u>×</u> <u>×</u> <u>×</u>						
	$\times \times \times \times$						$ \cdot $
\perp	× × × ×						-
1	× × × ×						$\mid \dashv$
3.0	× × × ×						
	× × ×						
	× × ×						
	× × ×						$\mid \cdot \mid$
3.5	$\times \times \times \times$					Some minor white shells in clay from 3.5'	
	<u>× × × </u>					to 4.0'	
	× - × - ×						
	× × × × × × × × × × × × × × × × × × ×						
4.0	×××						
	* * *						
	× * × *						
	× × × ×						
4.5	× × × ×						
	× × ×						
$\mid \cdot \mid - \mid$	× — × — × — × —						
	$\left \times \times \times \right $						
5.0	$\begin{bmatrix} x \overline{x} x \overline{x} \end{bmatrix}$						
3.0	Water Depth (fi	t): <u>48.0</u> Target Pend	etration (ft):	9.0		•	

7.5

6.5

Actual Penetration (ft):

Recovered Core Length (ft):

Additional Notes: No z-layer collected.

Tide (ft): __+1.5

Log of Station ID: A2-Attempt 2

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

Vibracore Sample Type:

> 6/3/2013 11:35 Date: Time:

Latitude: 33°45.5130 Longitude: -118°15.5393 55.5 Project Depth (ft MLLW): 46.5 Mudline Elevation (ft MLLW):

Depth	L ithology	Sediment	Color	Munsell Color	Odor	Remarks	
Depth in Feet 5.0	Lithology	Description		Notation		Reinarks	_
3.0	× × × × ×	Clay with Silt	Dark Greenish-gray	5GY 4/1	None		_
	× × × ×		Oreeriisii-gray				_
	$\begin{bmatrix} -\infty & -\infty \end{bmatrix}$						_
	× × ×						_
5.5	× ×						-
	× × ×						-
	× × ×						-
	× - × -						_
6.0	×—×—						
0.0	× × ×						_
	× × ×						_
	\XX						_
-	~ × ×						-
6.5	L x x					Refusal at 53.0' MLLW	-
							-
							_
7.0							_
							_
							_
							-
							\exists
7.5							-
							٦
8.0							\perp
							4
							+
							+
							7
8.5							_
							4
9.0							-
-							-
							-
							-
							_
9.5							
							_
							_
							_
10.0							_
	Water Depth (ft):		` '	9.0			
	Tide (ft):	+1.5 Actual Pen		7.5 Lo	g of Stat	tion ID: A2-Attempt 2	

Additional Notes: No z-layer collected.

Recovered Core Length (ft):

1015101929 **Project Number:** Barry Snyder Project Manager: KG/TH Logged and Sampled By:

Vibracore Sample Type:

4.5

5.0

6/3/2013 Date: 12:12 Time:

Latitude: 33°45.4718 -118°15.5737 Longitude: 55.5 Project Depth (ft MLLW):

47.7 Mudline Elevation (ft MLLW): Depth Sediment **Munsell Color** Lithology Color Odor Remarks in Feet Description Notation 0.0 -5GY 4/1 Clay with Silt Dark None Dense with shells Greenish-gray 0.5 Silty Sand Very Dark 5GY 3/1 Lots of shell hash Greenish-gray 1.5 2.0 0.3' gravel piece from 2.5' to 2.8' Silty Sand No shell hash Lots of shell hash Silty Sand 3.0 3.5 Fine grained Sand with Silt (A) collected from 3.7' to 4.3' A3-A 0.2' jagged edge gravel; minor shells at 4.0'

49.0 7.8 Water Depth (ft): Target Penetration (ft): Log of Station ID: A3-Attempt 1 +1.3 7.8 Tide (ft): Actual Penetration (ft): 4.3 Recovered Core Length (ft):

Additional Notes: Sleeve tore due to rocks in core, possible z-layer material was mixed into core material & unable to be separated from remainder of core.

Refusal at 55.5' MLLW

Sample Type: Vibracore

Date: 6/3/2013 **Time:** 13:40

 Latitude:
 33°45.4660

 Longitude:
 -118°15.5720

 Project Depth (ft MLLW):
 55.5

 Mudline Elevation (ft MLLW):
 49.8

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× × × × × ×	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	None	Unconsolidated	
	× . × .		Groomen gray				$ \cdot $
	× × × × × × × × × × × × × × × × × × ×	Clay with Silt					
0.5	× × × × ×	Sandy Silt			Slight Organic	Lots of shell hash below 0.5'	-
	× ·× ·	•			Odor		
	× × × × × × ×						$\mid \cdot \mid$
1.0	× × ×						
	× · × × × × × ×						$\mid \cdot \mid$
	× × × × ×						
-	× × × × ×						\mid \mid
1.5	× · × · × · · · · · · · · · · · · · · ·						
	X						+
	× × × ×						
2.0	× · × × × ×						+
	× × × ×						
	× × × ×						\mid \mid
2.5	× · × · × · · · · · · · · · · · · · · ·						
	× × × × ×						\mid \mid
	× × ×					7	
	× · × × × × ×					Z-layer from 2.8' to 3.2'	+
3.0	× × × × × × × × × × × × × × × × × × ×						
	×××					Refusal at 55.4' MLLW	$\mid \cdot \mid$
3.5							-
							+
4.0							
							+
							$ \cdot $
4.5 —							
							$ \cdot $
5.0		. 515 - :-		5.7			Ы
	Water Depth (fi Tide (fi		etration (ft):	5.7 5.6 Lo	g of Stat	tion ID: A3-Attempt 2	

Additional Notes: Z-layer collected from 2.8' to 3.2' (A), rest added to z-layer composite.

Recovered Core Length (ft): 3.2

Sample Type: Vibracore

6/3/2013 14:22 Date: Time:

Latitude: 33°45.4532 Longitude: -118°15.5983 55.5

Project Depth (ft MLLW): 47.8 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× ×	Silty Sand	Very Dark	5GY 3/1	None	Very minor shell hash	
	× · · · · ×		Greenish-gray				_
	× · · · ×						-
	×						-
0.5	× × ×	Clay with Silt	Dark	5GY 4/1		Core is much more consolidated & dense	-
	× — × = × — × _ × _ ×		Greenish-gray			to end at 0.5'	
	$\overline{\times}$ $\overline{\times}$ $\overline{\times}$						_
	x x						-
1.0	× × ×						-
	× × × ×						
	× × ×						
	× × × × × ×						
1.5 —	_ × _ ×						-
	$\overline{\times} \times \overline{\times} \times \overline{\times}$						-
	x ^ x ^						
	* * ×						_
2.0	× × ×						-
	× × ×						-
1 7	× × ×						-
	× * × *						
2.5 —	× × × ×						_
	$\times \overline{\times} \overline{\times} \overline{\times}$						-
-	* *						-
	× × ×						
3.0	××××						
	× × ×						-
	× × × × × ×						-
	× × × ×						-
3.5	× × × ×						
	× ^ × ^						
	× × ×						-
	× × ×						-
4.0	$\times \times \times \times$						
4.0	× × × ×						
	× - × - ×						
-	× × × ×						-
_ = -	× × ×						-
4.5	* * * *						
	× × ×						
	× × ×						-
	× × × × ×						-
5.0		. 100 - 1-		<u> </u>			L
	Water Depth (f		· · · —	7.7 7.3 Lo	n of Stat	tion ID: A4-Attempt 1	
	Tide (f	,		6.7 LO	y vi Sia	HOH ID. AT-AUGIIIPU	

Additional Notes: No Z-layer, core tube bent upon retrieval cut open barrel to retrievve core because liner was compressed during penetration.

Recovered Core Length (ft):

6.7

Sample Type: Vibracore

Date: 6/3/2013 **Time:** 14:22

 Latitude:
 33°45.4532

 Longitude:
 -118°15.5983

 Project Depth (ft MLLW):
 55.5

 Mudline Elevation (ft MLLW):
 47.8

Depth in Feet 5.0	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
5.0	X	Clay with Silt	Dark Greenish-gray	5GY 4/1	None		
$\mid \cdot \mid$			Greenion gray				$ \cdot $
	x ^ x ^						
5.5	^- *-						$ \cdot $
	<u> </u>						
	× × × ×						-
6.0	× × × ×						
	X						-
	x x x						
	* * * * * *						-
6.5	× × × × × × ×						
	× × ×					Refusal at 55.1' MLLW	$\dashv \dashv$
7.0							$\mid \cdot \mid$
							-
7.5							
							$\mid \cdot \mid$
8.0							
							$ \cdot $
8.5							$ \cdot $
9.0							
9.5							
9.5							
10.0	Water Danth /ff	t): <u>49.9</u> Target Pene	tration (ft):	7.7			Ы
	Water Depth (fi Tide (fi		etration (ft):	7.3 6.7 Lo	g of Stat	tion ID: A4-Attempt 1	

Additional Notes: No Z-layer, core tube bent upon retrieval cut open barrel to retrievve core because liner was compressed during penetration.

Recovered Core Length (ft): _

Sample Type: Vibracore

Date: 6/4/2013 **Time:** 08:19

 Latitude:
 33°45.3992

 Longitude:
 -118°15.6336

 Project Depth (ft MLLW):
 55.5

 Mudline Elevation (ft MLLW):
 47.1

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× · × · × ×	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	Slight Organic Odor		
_	× · ×		gray				$ \cdot $
	× × ×						
0.5	× × × ×						\mid \mid
	X					Black streaking, shell hash from 0.6' to 0.9'	
	× × ×						$ \downarrow $
1.0	× · × · × × × × × × × × × × × × × × × ×						
	× × × ×					Shell hash at 1.2'	
	× × ×						
1.5	× · × × × × ×						-
	× × × × ×					Black streaking from 1.6' to 1.9'	
	× × × × ×	Clay with Silt	Dark	5GY 4/1	None	Consolidated & very dense at 1.8'	+
2.0	× × ×	,	Greenish-gray				
	$\begin{array}{c c} \times & \times & \times \\ \hline \times & \times & \end{array}$						
	* * *						
	× × ×						
2.5 —	× × ×						-
	$\times \frac{}{\times} \times \frac{}{\times} \times$						
_	× × × ×						-
3.0	$\times \times \times \times$						
	* * *						-
	× × ×						
	$\times \times \times \times$						-
3.5	× × ×						
	× × × ×						
	$\begin{bmatrix} \times & \times & \times \\ \hline \times & \times & \times \end{bmatrix}$						
4.0	x ^ x ^						
	* * * *						+
	X						
	$\left \frac{\times}{\times} \times \frac{\times}{\times} \times \right $						$\mid \dashv$
4.5	× × × ×						
	× × × ×						$ \cdot $
	X						
5.0	* ~ ~)						
	Water Depth (ft Tide (ft		· · · —	8.4 7.8 Lo	n of Stat	tion ID: A5-Attempt 1	
	ilue (il) Actual Pene		7.8 LU	y or oral	ion io. No rationpe i	

Additional Notes: No Z-layer; (A) collected from 0.0' to 1.8' A5-A, (A) collected from 1.8' to 7.8' A5-B.

Recovered Core Length (ft): ___

Vibracore Sample Type:

6/4/2013 08:19 Date: Time:

Latitude: 33°45.3992 Longitude: -118°15.6336 55.5 Project Depth (ft MLLW): 47.1 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
<u>in Feet</u> 5.0 —	× × × × ×	Clay with Silt	Dark Greenish-gray	5GY 4/1	None		-
	× <u>×</u> ×		Greenish-gray				-
	×						
	× ×						
5.5	× × ×						-
_	× × ×						-
-	$\times \times \times \times$						-
-	× × ×						-
	× × × ×						-
6.0	× × ×						-
	$\times \times \times \times$						
	× × ×						-
4	* * *						-
6.5							-
\dashv	× × ×						-
\dashv	× × ×						-
	× — × —						-
7.0	× × ×						-
7.0	× _× × _						
	× × ×						
	* * *						-
\dashv	× × ×						-
7.5	× × × ×						-
-	\(\times \frac{\sigma}{\times \times \times } \)						-
\neg	- × × × ×						-
						Refusal at 54.9' MLLW	-
8.0							
0.0							-
4							-
4							-
\dashv							-
8.5							-
\dashv							-
7							-
9.0							-
							-
\dashv							-
\dashv							-
							-
9.5							-
\perp							-
10.0 —							_
- 1	Water Depth (ft):	50.6 Target Per	netration (ft):	8.4			

Additional Notes: No Z-layer; (A) collected from 0.0' to 1.8' A5-A, (A) collected from 1.8' to 7.8' A5-B.

7.8

Recovered Core Length (ft):

Sample Type: Vibracore

Date: 6/7/2013 **Time:** 07:48

 Latitude:
 33°45.3313

 Longitude:
 -118°15.6955

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 46.2

Depth	1 141 1	Sediment	O-1	Munsell Color	Mudline i	B •	\Box
in Feet	Lithology	Description	Color	Notation	Odor	Remarks	Ш
0.0	× × ×	Sandy Silt	Very Dark	5GY 3/1	None	Shell hash at top of core Slightly unconsolidated to 0.5'	
	× × ×		Greenish-gray			Slightly unconsolidated to 0.5	_
	× × ×						$ \downarrow $
	\(\times \(\times \) \(\times \)						
0.5	********	Fine grained Sand with	Dark	10Y 4/1		More consolidated, dense & sitcky: sand is	$\mid \dashv$
		Fine grained Sand with Clay	Greenish-gray	101 111		More consolidated, dense & sitcky; sand is dry below 0.5'	$\mid \dashv$
							$\mid \exists \mid$
1.0							
'.0							
							\parallel
							$\mid \dashv$
_							$\mid \dashv$
1.5	* ` * ` * ` * * * * * * * * * * * * *					Porportion of clay increases with depth at	$\mid \dashv$
						1.5'	
_							
2.0							
							$\mid \cdot \mid$
							$\mid \dashv$
							$\mid \exists \mid$
2.5		Clay with Sand]			Z-layer from 2.5' to 3.0'	
_							
							$\mid \dashv$
3.0	<u> </u>						┨┤
							$\mid \exists \mid$
3.5							
-							
-							$\mid - \mid$
							$\mid \dashv \mid$
4.0							
							$\lfloor \rfloor$
4.5							$\mid - \mid$
							$\mid \dashv$
							$\mid \dashv$
							$ \dashv$
5.0]
5.5	Water Depth (f	ft): 48.4 Target Pend	etration (ft):	3.3			

3.3

3.0

Additional Notes: Z-layer & sample jars collected.

Actual Penetration (ft):

Recovered Core Length (ft):

Tide (ft): +2.2

Log of Station ID: B1-Attempt 1

Sample Type: Vibracore

Date: 6/6/2013 **Time:** 08:00

 Latitude:
 33°45.3313

 Longitude:
 -118°15.6955

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 46.2

0.5 —		Description Silty Sand	Very Dark Greenish-gray	Notation 5GY 3/1	None	Shell hash at top of core Unconsolidated to 0.7'	
- - - -	× · · · × · · · × · · · · × · · · · × · · · · · × · · · · · × · · · · · × · · · · · × · · · · · × · · · · · × · · · · · · × · · · · · × · · · · · · × ·		Greenisn-gray			Unconsolidated to 0.7	1 7
- - - -							
- - - -	× · · · · ×		1				$\mid - \mid$
- - - -	` . ` .× . ` .						-
_ _ _	× ×						
	0 0 0 0 0	Fine grained Sand with					\parallel
		Fine grained Sand with Clay					-
10-							
1.0						Consolidation & proportion of clay increases with depth; sand is dry	
						moreases war acpair, same is any	-
							$\mid \dashv$
1.5							
1.5							
-							$\mid - \mid$
2.0	0000000						
						Very dense & consolidated Z-layer from 2.0' to 2.2'	-
	..*.*						\dashv
2.5 —							\parallel
							$\mid \cdot \mid$
							$\mid \exists \mid$
3.0 —							\parallel
							$\mid \cdot \mid$
3.5							-
							$\mid \cdot \mid$
4.0 —							-
							$\mid \exists \mid$
							$ \cdot $
4.5 —							$\mid \cdot \mid$
							$ \cdot $
5.0	Water Depth (f	 t): <u>48.7</u>		3.3			Т

3.3

2.2

Additional Notes: Z-layer bag added to composite.

Actual Penetration (ft):

Recovered Core Length (ft):

Tide (ft): ± 2.5

Log of Station ID: B1-Attempt 2

Sample Type: Vibracore

6/7/2013 08:24 Date: Time:

Latitude: 33°45.3357 Longitude: -118°15.6929 49.5 Project Depth (ft MLLW):

Mudline Elevation (ft MLLW):

46.4

1.0	Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
1.5 — Fine grained Sand Dark Greenish-gray 10Y 4/1 2.0 — Fine grained Sand with Clay Z-layer from 2.1' to 2.6' 3.0 — 3.5 — 4.0 — 4.5 — 5.0 — 5	0.0	× ×		Very Dark		None		-
1.0				Greenish-gray				
1.0								_
1.5 — Fine grained Sand Dark Greenish-gray 10Y 4/1 2.0 — Fine grained Sand with Clay A.5 —	1 -	1						-
1.0 —	0.5	1						-
1.5 -		× · · · ×						
1.5 -		000000000000000000000000000000000000000	Fine grained Sand	Dark Greenish-grav	10Y 4/1			_
2.0 - Fine grained Sand with Clay 2.5	\vdash	0000000						-
2.0 -	1.0	000000000000000000000000000000000000000					Sand is consolidated & dry	-
2.0 -		0000000						
2.0 -		000000						_
2.0 -	\perp							-
2.5 Fine grained Sand with Clay 3.0	1.5	0.0000000000000000000000000000000000000						-
2.5 Fine grained Sand with Clay 3.0								
2.5 Fine grained Sand with Clay 3.0								_
2.5 Fine grained Sand with Clay 3.0	\perp	000000000000000000000000000000000000000						-
2.5 — 3.0 — 3.5 — 4.0 — 4.5 — 5.0 — 5.0 —	2.0							-
2.5 — 3.0 — 3.5 — 4.0 — 4.5 — 5.0 — 5.0 —			Fine grained Sand with				Z-layer from 2.1' to 2.6'	
3.0 - 3.5 - 4.0 - 4.5 - 5.0 - 5		000000000000000000000000000000000000000	Clay					_
3.0 - 3.5 - 4.0 - 4.5 - 5.0 - 5	\perp	0000000						-
3.5 - 4.0 - 4.5 - 5.0	2.5	0000000						-
3.5 — 4.0 — 4.5 — 5.0								
3.5 — 4.0 — 4.5 — 5.0								_
3.5 — 4.0 — 4.5 — 5.0								-
4.0 - 4.5 - 4.5 - 5.0 -	3.0							-
4.0 - 4.5 - 4.5 - 5.0 -								
4.0 - 4.5 - 4.5 - 5.0 -	1 4							_
4.0 - 4.5 - 4.5 - 5.0 -								-
4.5 —	3.5							
4.5 —								
4.5 —								-
4.5 —								-
5.0	4.0							
5.0								
5.0								-
5.0								-
	4.5							
								-
								-
Water Denth (ff): 49.2 Target Penetration (ff): 3.1	5.0	Water Depth (fi	t): <u>49.2</u> Target Pene	atration (ft)	3.1		1	
Water Depth (ft): 49.2 Target Penetration (ft): 3.1 Log of Station ID: B1-Attempt 3			,	· · · —	3.1 Lo	g of Stat	tion ID: B1-Attempt 3	

Additional Notes: Z-layer added to sample composite, seperate bag.

Recovered Core Length (ft):

Sample Type: Vibracore

Date: 6/7/2013 **Time:** 08:41

 Latitude:
 33°45.3360

 Longitude:
 -118°15.6942

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 46.4

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	×	Silty Sand	Very Dark Greenish-gray	5GY 3/1	None	Slightly unconsolidated with shell hash at surface	
	×××		Greenish-gray			Surface	$ \cdot $
	×××						
0.5	×						
	× · · · ×						
	×	Fine grained Sand	Dark	10Y 4/1		More consolidated, dry at 0.8'	
		Time granted cand	Greenish-gray	101 4/1		Word consolidated, dry at 0.0	
1.0							
							-
1.5 —							-
	00000	Fine grained Sand with Clay					
		0.0,					$\mid \cdot \mid$
2.0							
							+
							+
2.5							
							+
						Stickier, rolls easier, Z-layer from 2.8' to 3.3'	
3.0							$ \cdot $
	• , • , • , • , • , •						\dashv
3.5							
							$\mid \cdot \mid$
4.0							
4.5							
5.0							
	Water Depth (f	t): <u>49.4</u> Target Pene	etration (ft):	3.1			

3.3

3.3

Additional Notes: Z-layer sample added to composite, seperate bag.

Actual Penetration (ft):

Recovered Core Length (ft):

Tide (ft): ± 3.0

Log of Station ID: B1-Attempt 4

1015101929 **Project Number:** Barry Snyder Project Manager: KG/TH Logged and Sampled By:

Vibracore Sample Type:

6/7/2013 09:05 Date: Time:

Latitude: 33°45.3303 -118°15.7008 Longitude: 49.5 Project Depth (ft MLLW):

46.6 Mudline Elevation (ft MLLW): Depth Sediment **Munsell Color** Color Lithology Odor Remarks in Feet Description Notation 5GY 3/1 Silty Sand Very Dark None Shell hash at surface Greenish-gray 0.5 Fine grained Sand Dark 10Y 3/1 Dark streak at 0.5' Greenish-gray Less consolidated at 0.5' More consolidated, dry at 1.0' Fine grained Sand with Clay 1.5 Clay increases with depth at 1.5' 2.0 Z-layer from 2.0' to 2.5' 3.0 3.5 4.5 5.0 49.8 2.9 Water Depth (ft): Target Penetration (ft):

2.9

2.5

Additional Notes: Z-layer added to bag for composite.

Actual Penetration (ft):

Recovered Core Length (ft):

+3.2

Tide (ft):

Log of Station ID: B1-Attempt 5

Sample Type:

 Type:
 Vibracore

 Date:
 6/6/2013
 Time:
 14:39

 Latitude:
 33°45.2934

 Longitude:
 -118°15.7408

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 48.1

Depth	Lithology	Sediment	Color	Munsell Color	Odor	Elevation (π MLLvv):+0.1 Remarks	
Depth in Feet	Littlology	Description		Notation			+
-		Fine grained Sand	Very Dark Greenish-gray	5GY 4/1	None	Very clean looking & homogenous	.
-							
\dashv							
<u>, </u>							-
0.5							
							-
_							-
_							-
1.0						Z-layer from 1.0' to 1.5'	-
-						, , , , , , , , , , , , , , , , , , , ,	-
							-
1.5 —							╝.
-							-
-							-
\dashv							-
							'
2.0							
-							
2.5							-
\dashv							-
							'
3.0							
							.
-							.
-							-
=							
3.5							
1.0							.
=							-
\dashv							
7							
4.5							
T.J							
\dashv							
\dashv							.
5.0 —							上

1.8

1.5

Actual Penetration (ft):

Recovered Core Length (ft):

Tide (ft):

+1.9

Log of Station ID: B2-Attempt 1

Sample Type: Vibracore

Date: 6/6/2013 **Time:** 14:56

Latitude: Not Recorded

Longitude: Not Recorded

Not Recorded

49.5

Mudline Elevation (ft MLLW): 47.0

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0		Fine grained Sand	Very Dark Greenish-gray		None	Very clean & homogeneous	_
							$ \exists$
0.5							
							-
1.0							
1.5 —							$ \cdot $
2.0						Z-layer from 2.0' to 2.3'	-
	0,0,0,0,0,0						$\left\{ \cdot \right\}$
2.5							$ \cdot $
							-
3.0 —							-
							$ \cdot $
3.5							
-							+
4.0							
							+
4.5							
5.0							
	Water Depth (ft		` '	2.5 3.0 Lo	a of Stat	tion ID: B2 Attornt 2	
	Tide (ft): _+2.0 Actual Pend		3.0 LO	y or star	tion ID: B2-Attempt 2	

Additional Notes: No plug; samples collected from Attempt 2. From 2.5' to 3.0' lost upon retieval from core catcher.

Recovered Core Length (ft): ___

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

Sample Type: Vibracore

6/6/2013 15:19 Date: Time:

Latitude: Not Recorded Longitude: Not Recorded 49.5 Project Depth (ft MLLW):

47.0 Mudline Elevation (ft MLLW):

1.5 —	Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
1.5 —	0.0	× ×		Greenish-black		None	(A) B2-A from 0.0' to 1.2'	
1.5	\Box	×						
1.5 -	-							+
1.5 Fine grained Sand Very Dark Greenish-gray Fine grained Sand Very Clean & homogeneous Very Cle		× ×						$ \dashv$
1.5 — Fine grained Sand Very Dark Greenish-gray SGY 3/1 2.5 — Very clean & homogeneous	0.5	× × ×						
1.5 Fine grained Sand Very Dark Greenish-gray SGY 3/1 Very clean & homogeneous 2.6 -		× ×						+
1.5 —	\vdash	× × ×						$ \cdot $
1.5 Fine grained Sand Very Dark Greenish-gray 5GY 3/1 Very clean & homogeneous 2.5	10	× × ×						
Fine grained Sand Very Dark Greenish-gray Very clean & homogeneous		× ×						
2.5		× ×	Fine grained Sand	Very Dark	5GY 3/1		Very clean & homogeneous	-
2.5			-	Greenish-gray				
2.5 — 3.5 — 4.0 — 4.5 —	1.5 —							$ \downarrow $
2.5 - 3.0 - 3.5 - 4.0 - 4.5 - 5.0 - Water Depth (ft): 49.0 Target Penetration (ft): 2.5								-
2.5 - 3.0 - 3.5 - 4.0 - 4.5 - 5.0 - Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
2.5 - 3.0 - 3.5 - 4.0 - 4.5 - 5.0 - Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
3.0 — 3.5 — 4.0 — 4.5 — 5.0 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5	2.0	$[\mathring{s} \circ \mathring{s} \circ \mathring{s} \circ \mathring{s} \circ \mathring{s} \circ \mathring{s}]$						$\mid \cdot \mid$
3.0 -								
3.0 -								
3.0 — 3.5 — 4.0 — 4.5 — 5.0 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5								-
3.5 — 4.0 — 4.5 — 5.0 — Water Depth (fft): 49.0 Target Penetration (fft): 2.5	2.5							$ \cdot $
3.5 — 4.0 — 4.5 — 5.0 — Water Depth (fft): 49.0 Target Penetration (fft): 2.5								
3.5 — 4.0 — 4.5 — 5.0 — Water Depth (fft): 49.0 Target Penetration (fft): 2.5								-
3.5 — 4.0 — 4.5 — 5.0 Water Depth (fft): 49.0 Target Penetration (fft): 2.5								$\mid \dashv$
4.0 — 4.5 — 5.0 — Water Depth (ff): 49.0 Target Penetration (ff): 2.5	3.0							
4.0 — 4.5 — 5.0 — Water Depth (ff): 49.0 Target Penetration (ff): 2.5	1 -							
4.0 — 4.5 — 5.0 — Water Depth (ff): 49.0 Target Penetration (ff): 2.5								$ \cdot $
4.5 — 4.5 — Water Depth (fft): 49.0 Target Penetration (fft): 2.5	35							
4.5 — 4.5 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
4.5 — 4.5 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5								$\mid \dashv$
4.5 — 4.5 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
4.5 — 4.5 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5	4.0							$ \downarrow $
5.0 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
5.0 — Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
Water Depth (ft): 49.0 Target Penetration (ft): 2.5	4.5							-
Water Depth (ft): 49.0 Target Penetration (ft): 2.5								$\mid \dashv$
Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
Water Depth (ft): 49.0 Target Penetration (ft): 2.5								
Water Depth (ft): 49.0 Target Penetration (ft): 2.3	5.0		. 40.0		2.5			Ш
Tide (ft): +2.0 Actual Penetration (ft): 3.0 Log of Station ID: B2-Attempt 3				` '	3.0 Lo	n of Stat	tion ID: B2-Attempt 3	

Additional Notes: Z-layer bag added to composite, (A) collected from 0.0' to 1.2' B2-A.

Recovered Core Length (ft): ___

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

Sample Type: Vibracore

6/6/2013 15:30 Date: Time:

Latitude: Not Recorded Longitude: Not Recorded Project Depth (ft MLLW): 49.5 47.0 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	• • • • • • • • • • • • • • • • • • • •	Fine grained Sand	Very Dark Greenish-gray		None	Homogeneous & clean	
			Groomon gray			Dark streak at 0.2'	$\mid \dashv$
0.5							
1.0							
							-
1.5							
							+
2.0							
							+
							$\mid \dashv$
2.5 —							
							+
							$ \exists$
3.0							
							-
3.5							
4.0							
							$ \rightarrow $
4.5							$ \downarrow $
5.0							
	Water Depth (ft		` '	2.5		Cara IDa Do All Cara	
	Tide (ft	h): +2.0 Actual Pene		3.0 Lo	g or Stat	tion ID: B2-Attempt 4	

1.5

Additional Notes: Z-layer added for composite bag.

Recovered Core Length (ft):

Sample Type: Vibracore

Date: 6/6/2013 **Time:** 15:46

 Latitude:
 33°45.2960

 Longitude:
 -118°15.7436

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 47.0

Depth	Lithology	Sediment	Color	Munsell Color	Odor	Remarks	Τ
Depth in Feet	- · · · · · ·	Description		Notation 50V 2/1	None		+
_		Fine grained Sand	Very Dark Greenish-gray	5GY 3/1	None	One shell at top Core very homogenous & cleaner	-
-	0000000						-
0.5							-
							-
-							-
\exists							-
1.0							
1.0							-
-	000000000000000000000000000000000000000						-
\dashv							-
, =							-
1.5							-
_							-
\dashv	0.0000000000000000000000000000000000000						-
							-
2.0							1:
_							-
\dashv							-
\dashv							-
2.5							-
4							-
-							-
3.0							-
4							-
-							-
3.5							-
7							-
4							-
4.0							-
-							-
							-
4.5							-
-							-
\dashv							-
5.0 —							<u>L</u> .
	Water Depth (ft):	49.0 Target Pene		2.5 3.0		tion ID: B2-Attempt 5	

3.0

2.0

Actual Penetration (ft):

Recovered Core Length (ft): _

Additional Notes: Plug lost, no Z-layer.

Tide (ft): ± 2.0

Log of Station ID: B2-Attempt 5

Sample Type: Vibracore

6/7/2013 10:08 Date: Time:

Latitude: 33°45.2643 -118°15.7706 Longitude: 49.5 Project Depth (ft MLLW): 44.5 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× × × × × ×	Sandy Silt	Very Dark Greenish-gray	5GY 3/1	None	Minor shell hash, large chunk at surface	
	·× · ×		Greenish-gray				$ \cdot $
	× × ×						
0.5	× · × ×						
	· × · ×						
	× × × ×						
	× × ×						
1.0	× × ×						
	× · · × ×						
1.5	î x î x						
2.0							
							$\mid \dashv$
							$\mid - \mid$
2.5							
							-
3.0							-
							-
3.5							
3.5							
-							
4.0							
4.5							
							$ \downarrow$
5.0	Water Depth (f	t): <u>48.0</u> Target Pene	etration (ft):	5.0	l	ı	۳
	Tide (f	,	etration (ft):	5.0 Lo	g of Stat	tion ID: B3-Attempt 1	

Additional Notes: No Z-layer collected, likely we are pushing plug.

Recovered Core Length (ft):

1.5

 Project Number:
 1015101929

 Project Manager:
 Barry Snyder

Logged and Sampled By: KG/TH
Sample Type: Vibracore

Date: 6/7/2013 **Time:** 10:40

Latitude: 33°45.2669
Longitude: -118°15.7684
Project Depth (ft MLLW): 49.5

Project Depth (ft MLLW): 49.5

Mudline Elevation (ft MLLW): 44.5

1.0	Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
1.5 -	0.0	× × ×		Very Dark		Slight Organic	With shell hash	_
1.5		×		Oreemsn-gray		Odoi		
1.5 1.5 2.0 3.5 3.5 4.0 4.5 4.5 Water Depth (ft): 48.0 Target Penetration (ft): 5.0		×						-
1.5								
1.5 - 2.5 - 3.5 - 3.5 - 4.5 -	0.5	' , ' ,× , ' .						
1.5 -		X X						
1.5 -	1 -							-
1.5								
2.5 - 3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Terrest Penetration (ft): 5.0	1.0							
2.5 - 3.5 - 4.0 - 4.5 - 4.5 - 48.0 Target Penetration (ft): 5.0								-
2.5 - 3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Terrest Penetration (ft): 5.0								
2.5 - 3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Terrest Penetration (ft): 5.0								
2.5 = 3.0 = 3.5 = 4.0 = 4.5 = 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0	"							
2.5 = 3.0 - 3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
2.5 = 3.0 = 3.5 = 4.0 = 4.5 = 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
2.5 = 3.0 = 3.5 = 4.0 = 4.5 = 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0	2.0							
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								-
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0	2.5							
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								-
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
3.5 - 4.0 - 4.5 - 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0	3.0							
4.0 — 4.5 — 5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								-
4.0 — 4.5 — 5.0 — Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
4.0 — 4.5 — 5.0 — Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
4.5 — 4.5 — Water Depth (fft): 48.0 Target Penetration (fft): 5.0	3.5							
4.5 — 4.5 — Water Depth (fft): 48.0 Target Penetration (fft): 5.0								-
4.5 — 4.5 — Water Depth (fft): 48.0 Target Penetration (fft): 5.0								
4.5 — 4.5 — Water Depth (fft): 48.0 Target Penetration (fft): 5.0								
5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0	4.0							
5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
5.0 Water Depth (ft): 48.0 Target Penetration (ft): 5.0								
Water Depth (fft): 48.0 Target Penetration (fft): 5.0	4.5							$\mid \dashv$
Water Depth (fft): 48.0 Target Penetration (fft): 5.0								$\mid \exists \mid$
Water Depth (fft): 48.0 Target Penetration (fft): 5.0								
Water Depth (fft): 48.0 Target Penetration (fft): 5.0								$\mid \cdot \mid$
Water Depth (ft): 48.0 Target Penetration (ft): 5.0	5.0		40.0					L
Tide (ft): +3.5 Actual Penetration (ft): 4.0 Log of Station ID: B3-Attempt 2		Water Depth (ff		` '	5.0	a of Stat	ion ID: B3 Attempt 2	

Additional Notes: Core penetration got very hard at 2.5', probably on concrete, lots of unconsolidated silts on top of concrete. Likely blowing out sediments & having poor recovery.

Recovered Core Length (ft): ___

Sample Type: Vibracore

6/7/2013 10:55 Date: Time:

Latitude: 33°45.2679 Longitude: -118°15.7677 49.5 Project Depth (ft MLLW): 44.5 Mudline Elevation (ft MLLW):

epth Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	×	Silty Sand	Very Dark Greenish-gray	5GY 3/1	None	Lots of shell hash to 2.2'	
	×××		Greenish-gray				
	· . · .× . · .						
	× ×						
5 🚽	×						
-							
-	^ × · ^						
\dashv	× · · · ×						
-							
	×						
\exists	×××						
1	×						
5 —	× × ×						
`	×						
	×						
	· . · .× . · .						
4	×××						
0 —	× · · · ×						
\dashv	×						
\dashv	× × . ×	Clay with Silt	Dark	10Y 4/1	-	Very consolidated & dense/sticky	
-	× × ×	oldy Will Olic	Greenish-gray	101 1/1		Voly concentation a defice/officity	
\dashv	× × × ×						
5 🚽	× × × ×						
\neg	* * * * *						
	× ~ ~ ~ ~ ~						
	×××						
0 -	××××						
\Box	× — × —						
	× — × —						
	× × ×						
	× × ×						
5 —	^ × ^ ×						
\exists	^						
-	× × ×						
-	× × ×						
_ 🕂	× × ×						
	× — × —						
	× <u>*</u> × <u>*</u>						
	×						
	x_x x_x						
5 –	* _* * _						
	× _ × _ ×					Z-layer from 4.5' to 5.0'	
	×_× × ×						
\dashv	<u>×</u> <u>×</u> <u>×</u> <u>×</u>						
\dashv	× × ×						
∘⊢	×— × –						

Additional Notes: B3-A from 2.2' to 5.0' (bottom)/clay, 1x8oz jar. Z-layer jar collected from Attempt 3. No jar collected from top because seds similar to Attempt 1.

Recovered Core Length (ft):

Sample Type: Vibracore

6/7/2013 11:40 Date: Time:

Latitude: 33°45.2699 Longitude: -118°15.7663 49.5 Project Depth (ft MLLW): 44.8 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	×	Silty Sand	Very Dark Greenish-gray	5GY 3/1	None	With shell hash	
	× · · · ×		Greenion gray				$\mid \cdot \mid$
	× · · · ×						
0.5	× · · · ×						$\mid \dashv$
	× ×						
	× · · · ×						
1.0	× · · · ×						-
	× · · ×						
	× · · ×						\exists
1.5 —	× _ × _ × _	Clay with Silt	Dark Greenish-gray	10Y 4/1		Minor shells at 1.4' Very consolidated, dense, sticky at 1.4'	
	$\overline{\times} \xrightarrow{\times} \overline{\times} \overline{\times}$						
	×						-
2.0	× × × ×						
	× × × ×						
	× × × × × ×					Z-layer from 2.3' to 2.6'	-
2.5	× × ×						
	<u> </u>						-
3.0							
							-
3.5 —							
							-
4.0							
							$ \exists$
4.5							
							$ \cdot $
5.0	Water Denth /ff	t): <u>48.0</u> Target Pene	tration (ft):	4.7			Ы
	Water Depth (fi Tide (fi	,	etration (ft):	4.7 2.6	g of Stat	tion ID: B3-Attempt 4	

Additional Notes: Z-layer added to composite; seperate baggie.

Recovered Core Length (ft):

2.6

Sample Type: Vibracore

6/7/2013 11:52 Date: Time:

Latitude: Not Recorded Longitude: Not Recorded Project Depth (ft MLLW): 49.5 44.8 Mudline Elevation (ft MLLW):

1.0	Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
Large chunk of shell hash at 0.3' Dense consolidated, sticky at 1.0' Z-layer from 1.7' to 2.0' Z-layer from 1.7' to 2.0'	0.0	×		Very Dark	5GY 3/1	None		-
Large chunk of shell hash at 0.3' Dense consolidated, slicky at 1.0' Z-layer from 1.7' to 2.0' Z-layer from 1.7' to 2.0' 4.0 4.5 4.0		×		Oreemsn-gray				-
1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5		× · · · ×					Large chunk of shell hash at 0.3'	-
1.5 — Clay with Silt Greenish-gray 10Y4/1 Dense consolidated, sticky at 1.0' 2.5 — 2.5 — 3.6 — 4.0 — 4.5 —	0.5	× · . · ×						-
1.0 —		×						-
1.5		× ×						_
1.5								-
1.5 -	1.0	× — × —	Clay with Silt	Dark Greenish-gray	10Y4/1		Dense consolidated, sticky at 1.0'	=
1.5 -		× × ×		Groomen gray				-
2.0		x ^ x ^						
2.0 S X X X X X X X X X	1.5	× ^ × ^						-
2.0		×_×_×_						
2.0		⊢ × —×I					Z-layer from 1.7' to 2.0'	-
2.5 — 3.0 — 3.5 — 4.0 — 4.5 — 5.0 —		_ × _ × × _ × _ ×						_
3.0 - 3.5 - 4.0 - 4.5 - 5.0 - 5.0 -	2.0							-
3.0 - 3.5 - 4.0 - 4.5 - 5.0 - 5.0 -								-
3.0 - 3.5 - 4.0 - 4.5 - 5.0 - 5.0 -								_
3.5 — 4.0 — 4.5 — 5.0 —	2.5							-
3.5 — 4.0 — 4.5 — 5.0								
3.5 — 4.0 — 4.5 — 5.0	-							-
3.5 — 4.0 — 4.5 — 5.0 —	30							_
4.0 - 4.5 - 4.5 - 5.0 -								-
4.0 - 4.5 - 4.5 - 5.0 -								_
4.0 - 4.5 - 5.0 -								_
4.5 —	3.5							-
4.5 —								-
4.5 —								-
4.5 —	4.0							_
5.0								-
5.0								_
5.0								-
	4.5							
								-
								-
	5.0							
Tide (ft): +3.2 Actual Penetration (ft): 4.7 Log of Station ID: B3-Attempt 5		Water Depth (f		. ,	4.7	£ Ot-4	tion ID. DO Attornet 5	

Recovered Core Length (ft): Additional Notes: Z-layer sampled, added to composite, seperate baggie.

2.0

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

Vibracore Sample Type:

> 6/7/2013 13:02 Date: Time:

Latitude: 33°45.2384 -118°15.8026 Longitude: 49.5 Project Depth (ft MLLW):

45.0 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× · · · ×	Silty Sand	Very Dark Greenish-gray	5GY 3/1	None	With shell hash	_
_	× · · · ×		Greenish-gray				-
_	× · · · ×						-
0.5	×××						
0.5	· .× . · .						
_	× · · ×						-
	×××						-
1.0		Fine grained Sand					
1.0						Sand looks clean & dry	-
_							-
							-
1.5							
							-
							-
2.0 —	******					Defined at 40 OLMILLIN	-
_						Refusal at 49.0' MLLW	-
-							-
2.5							_
_							-
							-
3.0							-
							-
_							_
3.5							-
							-
_							-
4.0							-
							-
							-
4.5							-
							-
							-
5.0	Water Depth (ft	t): <u>47.5</u> Target Pene	stration (ft):	4.5	<u> </u>	1	1 -
	water Depth (π Tide (ft	, _	` '	4.0 Lo	g of Stat	tion ID: B4-Attempt 1	

2.0

Recovered Core Length (ft):

Additional Notes: No Z-layer.

Sample Type: Vibracore

Date: 6/7/2013 **Time:** 13:15

 Latitude:
 33°45.2379

 Longitude:
 -118°15.8024

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 45.0

Depth	Lithology	Sediment	Color	Munsell Color	Odor	Remarks	T
0.0 —		Description Fine grained Sand	Very Dark	Notation 5GY 3/1	None		+
-		i ine granica cana	Greenish-gray	001 0/1	None	Shell hash at top of core Granite gravel piece in core catcher, riprap	
\dashv						liner	
).5							
,.5							
4							
4							
-							
1.0							
						Refusal at 48.0' MLLW	Ī
.5 —							
\dashv							
\dashv							l
-							l
.0 —							
							l
.5 —							
_							
\dashv							l
\dashv							l
							l
0 -							l
							l
							l
4							l
5 —							l
-							l
-							l
.0 —							l
							l
							l
4							l
\dashv							
.5 —							
\dashv							
\dashv							
\dashv							
.0 —							
	Water Depth (ft):	47.5 Target Pen	etration (ft):	4.5			1
	Tide (ft):	_	etration (ft):	3.0 Lo	a of Stat	tion ID: B4-Attempt 2	

1.3

Recovered Core Length (ft): __

Sample Type:

 Type:
 Vibracore

 Date:
 6/7/2013
 Time:
 13:33

 Latitude:
 33°45.2380

 Longitude:
 -118°15.8018

 Project Depth (ft MLLW):
 49.5

 Mudline Elevation (ft MLLW):
 45.0

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
		Silty Sand	Very Dark Greenish-gray		None	Shell hash on top	-
0.5 —		Fine grained Sand					
1.0						Sand in catcher was dry/clean	-
1.5 —						Refusal at 48.5' MLLW	- - -
2.0 —						Rejusal at 46.5 MILLVV	-
2.5 —							-
3.0 —							-
3.5 —							
4.0 —							
4.5 —							-
							-
5.0 —	Water Depth (fi			4.5 3.5	f Ot	tion ID: B4-Attempt 3	

3.5

1.8

Actual Penetration (ft):

Recovered Core Length (ft):

Tide (ft):

+2.3

Log of Station ID: B4-Attempt 3

1015101929 **Project Number:** Project Manager: Barry Snyder KG/TH Logged and Sampled By: Vibracore

Sample Type:

6/7/2013 Time:

Latitude: 33°45.2411 -118°15.7990 Longitude: 49.5 Project Depth (ft MLLW):

46.8 Date: 13:55 Mudline Elevation (ft MLLW): Depth Sediment **Munsell Color** Color Odor Remarks Lithology in Feet Description Notation 10Y 3/1 Silty Sand Very Dark None Shell hash at top Greenish-gray 1.5 Fine grained Sand Dark 5GY 3/1 Greenish-gray lots of shell hash from 1.6' to 1.7' 2.0 Sand appears dry at 2.0' Z-layer from 2.2' to 2.7' 3.0 3.5 4.5 5.0 49.0 2.7 Water Depth (ft): Target Penetration (ft):

Additional Notes: Z-layer collected. Subsamples B4-A from 0.0' to 1.6', B4-B from 1.6' to 2.7'.

Actual Penetration (ft):

Recovered Core Length (ft):

2.7

2.7

+2.2

Tide (ft):

Log of Station ID: B4-Attempt 4

Project Number: 1015101929 Project Manager: Barry Snyder Logged and Sampled By: KG/TH

Sample Type:

Vibracore 6/7/2013 14:14 Date: Time:

Latitude: 33°45.2420 Longitude: -118°15.7985 49.5 Project Depth (ft MLLW):

Mudline Elevation (ft MLLW):

46.8

Silly Sand Very Date Creenish-gray Sold None Shell hash to 1.3°, then becomes minor	Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
Fine grained Sand Dark SGY 3/1	0.0			Very Dark		None	Shell hash to 1.3', then becomes minor	_
1.5 - Sand on bottom very clean 1.5 - Sand on bottom very clean 2.6 - Sand on bottom very clean 2.6 - Sand on bottom very clean 2.7 - Sand on bottom very clean 2.8 - Sand on bottom very clean 2.9 - Sand on bottom very clean 2.1 - Sand on bottom very clean 2.1 - Sand on bottom very clean 2.2 - Sand on bottom very clean 2.3 - Sand on bottom very clean 2.4 - Sand on bottom very clean 2.5 - Sand on bottom very clean		× · · · ×		Greenish-gray				-
1.5 Fine grained Sand Dark Greenish-gray Sand on bottom very clean		×						
1.5 Fine grained Sand Dark Greenish-gray 5GY 3/1 Sand on bottom very clean 2.5 Z-layer from 1.5' to 2.0' 3.5	0.5	×						-
2.5 — Sand on bottom very clean Z-layer from 1.5' to 2.0' 3.5 — Sand on bottom very clean A.5 — Sand on bottom very clean Z-layer from 1.5' to 2.0'		×	Fine grained Sand	Dark	5GY 3/1			-
2.5 — Z-layer from 1.5' to 2.0' 2.5 — 3.5 — 4.0 — 4.5 — 3.5 — 4.0 — 4.0 — 4.5 — 4.0 — 4.5 — 4.0 — 4.0 — 4.5 — 4.0 — 4.0 — 4.5 — 4.0				Greenish-gray				
2.5 — Z-layer from 1.5' to 2.0' 2.5 — 3.5 — 4.0 — 4.5 — 3.5 — 4.0 — 4.0 — 4.5 — 4.0 — 4.5 — 4.0 — 4.0 — 4.5 — 4.0 — 4.0 — 4.5 — 4.0								-
2.5	1.0						Sand on bottom very clean	
2.5	-							-
2.5 - 3.5 - 4.6 -								
2.5 - 3.5 - 4.5 -	1.5 —						Z-laver from 1.5' to 2.0'	
2.5							,	
2.5								-
2.5								
3.0 — 3.5 — 4.0 — 4.5 —	2.0							-
3.0 — 3.5 — 4.0 — 4.5 —								-
3.0 -								
3.5 - 4.0 - 4.5 - 5.0 Water Penth (ft): 49.0 Target Penetration (ft): 2.7	2.5							-
3.5 - 4.0 - 4.5 - 5.0 Water Penth (ft): 49.0 Target Penetration (ft): 2.7								
3.5 - 4.0 - 4.5 - 5.0 Water Penth (ft): 49.0 Target Penetration (ft): 2.7								-
3.5 - 4.0 - 4.5 - 5.0 Water Penth (ft): 49.0 Target Penetration (ft): 2.7	30							
4.5 — 4.5 — Water Depth (ft): 49.0 Target Popetration (ft): 2.7								-
4.5 — 4.5 — Water Depth (ft): 49.0 Target Penetration (ff): 2.7								
4.5 — 4.5 — Water Depth (ft): 49.0 Target Penetration (ff): 2.7								-
4.5 – 5.0 – Water Penth (ft): 49.0 Target Popularition (ft): 2.7	3.5							
4.5 – 5.0 – Water Penth (ft): 49.0 Target Popularition (ft): 2.7								
4.5 – 5.0 – Water Penth (ft): 49.0 Target Popularition (ft): 2.7								-
4.5 – 5.0 – Water Penth (ft): 49.0 Target Popularition (ft): 2.7	4.0							
5.0 — Water Depth (ft): 49.0 Target Popularition (ft): 2.7								
5.0 — Water Depth (ff): 49.0 Target Popularition (ff): 2.7								
5.0 — Water Depth (ft): 49.0 Target Popularition (ft): 2.7								
Water Depth (ft): 49.0 Target Popularition (ft): 2.7	4.5							
Water Depth (ft): 49.0 Target Popularition (ft): 2.7								
Water Depth (ft): 49.0 Target Popularition (ft): 2.7								
Water Depth (ft): 49.0 Target Penetration (ft): 2.7	5.0							\Box
			,	· · · —	2.7 2.7 Lo	a of Stat	tion ID: B4 Attempt 5	

Recovered Core Length (ft): __ Additional Notes: Z-layer collected, added to seperate bag for composite.

2.0

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

> Sample Type: Date:

Vibracore 6/7/2013 14:56 Time:

Latitude: 33°45.1932 Longitude: -118°15.8529 Project Depth (ft MLLW): 49.5 45.9 Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	× ×	Silty Sand	Very Dark Greenish-gray		None		-
-	× × ×		Orcenion-gray				-
	× ×						-
0.5		Fine grained Sand					_
							-
			Olive	5Y 4/3			
							-
1.0						Sand looks very clean, dry, consolidated/native	-
						consolidated/native	
-							-
1.5							
							-
							-
							-
2.0							-
							-
							-
2.5							
							-
3.0							-
							-
							-
3.5							
							_
							-
4.0							
"							-
							-
							-
4.5							-
							_
							-
							-
5.0	Water Depth (fi	t): <u>48.0</u> Target Pend	etration (ft):	3.6		1	1 -
	Tide (fi	,	` '	3.6 1.3	g of Stat	tion ID: B5-Attempt 1	

1.3

Additional Notes: No Z-layer collected, lost plug.

Recovered Core Length (ft):

Project Number: 1015101929 Barry Snyder Project Manager: Logged and Sampled By: KG/TH

Sample Type: Vibracore

> 6/7/2013 15:15 Date: Time:

Latitude: 33°45.1926 -118°15.8533 Longitude: Project Depth (ft MLLW): 49.5 45.9

Mudline Elevation (ft MLLW):

Depth in Feet	Lithology	Sediment Description	Color	Munsell Color Notation	Odor	Remarks	
0.0	×××	Silty Sand	Very Dark Greenish-gray	5GY 3/1	None	Shell hash to 0.7'	
	×		Greenish-gray				$\mid - \mid$
	×						
0.5	×					Black streak at 0.5'	
	******	Fine grained Sand	-				
							$ \cdot $
1.0							-
1.0			Olive	5Y 4/3			
							-
1.5 —						Sand looks very clean, dry, possible native or fill material	-
						or fill material	
	• • • • • • • • • • • • • • • • • • •					Refusal at 48.1'	$\mid \cdot \mid$
2.0							
_							-
_							-
2.5							
3.0							$ \cdot $
							-
3.5 —							
							$\mid \cdot \mid$
4.0							
-							-
4.5							
"							-
5.0	Water Depth (f	 t): <u>48.0</u>	etration (ft):	3.6			L
	Tide (f	,	etration (ft):	2.5 1.8	g of Stat	tion ID: B5-Attempt 2	

Additional Notes: No Z-layer, hit refusal.

Recovered Core Length (ft): __

1.8

APPENDIX BCORE PHOTOGRAPHS

Sample ID: A1 Attempt #: 1

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 0855

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A1 Attempt #: 1

Core Length: 2.0 - 4.0 ft.

Sample Date & Time: 06/03/2013 0855

Sample ID: A1 Attempt #: 1

Core Length: 4.0 - 6.0 ft.

Sample Date & Time: 06/03/2013 0855

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A1 Attempt #: 1

Core Length: 6.0 - 8.0 ft.

Sample Date & Time: 06/03/2013 0855

Sample ID: A1 Attempt #: 1

Core Length: 6.5 - 8.7 ft.

Sample Date & Time: 06/03/2013 0855

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A1 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/03/2013 0855

Sample ID: A1 Attempt #: 2

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 1002

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A1 Attempt #: 2

Core Length: 2.0 - 3.3 ft.

Sample Date & Time: 06/03/2013 1002

Sample ID: A2 Attempt #: 1

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 1040

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A2 Attempt #: 1

Core Length: 2.0 - 4.0 ft.

Sample Date & Time: 06/03/2013 1040

Sample ID: A2 Attempt #: 1

Core Length: 4.0 - 6.0 ft.

Sample Date & Time: 06/03/2013 1040

ocation: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A2 Attempt #: 1

Core Length: 6.0 - 7.5 ft.

Sample Date & Time: 06/03/2013 1040

Sample ID: A2 Attempt #: 2

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 1135

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A2 Attempt #: 2

Core Length: 2.0 - 4.0 ft.

Sample Date & Time: 06/03/2013 1135

Sample ID: A2 Attempt #: 2

Core Length: 4.0 - 6.5 ft.

Sample Date & Time: 06/03/2013 1135

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A2 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/03/2013 1135

Sample ID: A3 Attempt #: 1

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 1212

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A3 Attempt #: 1

Core Length: 2.0 - 4.3 ft.

Sample Date & Time: 06/03/2013 1212

Sample ID: A3 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/03/2013 1212

Sample ID: A3 Attempt #: 2

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 1340

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A3 Attempt #: 2

Core Length: 1.0 - 3.2 ft.

Sample Date & Time: 06/03/2013 1340

Sample ID: A3 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/03/2013 1340

Sample ID: A4 Attempt #: 1

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/03/2013 1422

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A4 Attempt #: 1

Core Length: 2.0 - 4.0 ft.

Sample Date & Time: 06/03/2013 1422

Sample ID: A4 Attempt #: 1

Core Length: 5.0 - 6.7 ft.

Sample Date & Time: 06/03/2013 1422

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A4 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/03/2013 1422

Sample ID: A5 Attempt #: 1

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/04/2013 0819

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A5 Attempt #: 1

Core Length: 2.0 - 4.0 ft.

Sample Date & Time: 06/04/2013 0819

Sample ID: A5 Attempt #: 1

Core Length: 4.0 - 6.0 ft.

Sample Date & Time: 06/04/2013 0819

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: A5 Attempt #: 1

Core Length: 6.0 - 7.8 ft.

Sample Date & Time: 06/04/2013 0819

Sample ID: A5 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/04/2013 0819

Sample ID: B1 Attempt #: 1

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/07/2013 0743

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B1 Attempt #: 1

Core Length: 1.0 - 3.0 ft.

Sample Date & Time: 06/07/2013 0743

Sample ID: B1 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/07/2013 0743

Sample ID: B1 Attempt #: 2

Core Length: 0 - 2.2 ft.

Sample Date & Time: 06/07/2013 0800

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B1 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/07/2013 0800

Sample ID: B1 Attempt #: 3

Core Length: 0 - 2.6 ft.

Sample Date & Time: 06/07/2013 0824

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B1 Attempt #: 3 Core Length: Plug

Sample Date & Time: 06/07/2013 0824

Sample ID: B1 Attempt #: 4

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/07/2013 0841

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B1 Attempt #: 4

Core Length: 1.0 - 3.3 ft.

Sample Date & Time: 06/07/2013 0841

Sample ID: B1 Attempt #: 4 Core Length: Plug

Sample Date & Time: 06/07/2013 0841

Sample ID: B1 Attempt #: 5

Core Length: 0 - 2.5 ft.

Sample Date & Time: 06/07/2013 0905

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B1 Attempt #: 5 Core Length: Plug

Sample Date & Time: 06/07/2013 0905

Sample ID: B2 Attempt #: 1

Core Length: 0 - 1.5 ft.

Sample Date & Time: 06/06/2013 1439

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B2 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/06/2013 1439

Sample ID: B2 Attempt #: 2

Core Length: 0 - 2.3 ft.

Sample Date & Time: 06/06/2013 1439

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B2 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/06/2013 1456

Sample ID: B2 Attempt #: 3

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/06/2013 1519

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B2 Attempt #: 3 Core Length: Plug

Sample Date & Time: 06/06/2013 1519

Sample ID: B2 Attempt #: 4

Core Length: 0 - 1.5 ft.

Sample Date & Time: 06/06/2013 1530

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B2 Attempt #: 4 Core Length: Plug

Sample Date & Time: 06/06/2013 1530

Sample ID: B2 Attempt #: 5

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/06/2013 1546

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B2 Attempt #: 5 Core Length: Plug

Sample Date & Time: 06/06/2013 1546

Sample ID: B3 Attempt #: 1

Core Length: 0 - 1.5 ft.

Sample Date & Time: 06/07/2013 1008

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B3 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/07/2013 1008

Sample ID: B3 Attempt #: 2

Core Length: 0 - 1.0 ft.

Sample Date & Time: 06/07/2013 1040

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B3 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/07/2013 1040

Sample ID: B3 Attempt #: 3

Core Length: 0 - 2.0 ft.

Sample Date & Time: 06/07/2013 1055

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B3 Attempt #: 3

Core Length: 2.0 - 4.0 ft.

Sample Date & Time: 06/07/2013 1055

Sample ID: B3 Attempt #: 3

Core Length: 3.0 - 5.0 ft.

Sample Date & Time: 06/07/2013 1055

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B3 Attempt #: 3 Core Length: Plug

Sample Date & Time: 06/07/2013 1055

Sample ID: B3 Attempt #: 4

Core Length: 0 - 2.6 ft.

Sample Date & Time: 06/07/2013 1140

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B3 Attempt #: 4 Core Length: Plug

Sample Date & Time: 06/07/2013 1140

Sample ID: B3 Attempt #: 5

Core Length: 0 - 2.0 ft. Sample Date & Time: 06/07/2013 1152

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B3 Attempt #: 5 Core Length: Plug

Sample Date & Time: 06/07/2013 1152

Sample ID: B4 Attempt #: 1

Core Length: 0 - 2.0 ft. Sample Date & Time: 06/07/2013 1302

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B4 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/07/2013 1302

Sample ID: B4 Attempt #: 2

Core Length: 0 - 1.3 ft. Sample Date & Time: 06/07/2013 1315

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B4 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/07/2013 1315

Sample ID: B4 Attempt #: 3

Core Length: 0 - 1.8 ft. Sample Date & Time: 06/07/2013 1333

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B4 Attempt #: 3 Core Length: Plug

Sample Date & Time: 06/07/2013 1333

Sample ID: B4 Attempt #: 4

Core Length: 0 - 2.0 ft. Sample Date & Time: 06/07/2013 1355

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B4 Attempt #: 4

Core Length: 1.0 - 2.7 ft.

Sample Date & Time: 06/07/2013 1355

Sample ID: B4 Attempt #: 4 Core Length: Plug

Sample Date & Time: 06/07/2013 1355

Sample ID: B4 Attempt #: 5

Core Length: 0 - 2.0 ft. Sample Date & Time: 06/07/2013 1414

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B4 Attempt #: 5 Core Length: Plug

Sample Date & Time: 06/07/2013 1414

Sample ID: B5 Attempt #: 1

Core Length: 0 - 1.3 ft.

Sample Date & Time: 06/07/2013 1456

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B5 Attempt #: 1 Core Length: Plug

Sample Date & Time: 06/07/2013 1456

Sample ID: B5 Attempt #: 2

Core Length: 0 - 1.8 ft. Sample Date & Time: 06/07/2013 1515

Location: POLA Berths 212 - 224 (YTI Terminal)

Sample ID: B5 Attempt #: 2 Core Length: Plug

Sample Date & Time: 06/07/2013 1515

APPENDIX C SEDIMENT CHEMISTRY

Table C-1: YTI Sediment Chemistry Summary

Draft Port of Los Angeles Maintenance Dredging Project - Berths 217-224 (YTI)								
Analytical Method	Compound Name	Туре	ERL	ERM	Units	Reference	Composite A	Composite B
SM 2540 B (M)	Solids, Total	General Chemistry			%	71.1	72.9	66.4
EPA 9060A	Total Organic Carbon	General Chemistry			%	0.77	0.71	0.87
SM 4500-NH3 B/C (M)	Total Ammonia	General Chemistry			mg/kg	3.2	7.7	2.1
EPA 376.2M	Total Sulfides	General Chemistry			mg/kg	0.7	41	3.3
EPA 376.2M	Soluble Sulfides	General Chemistry			mg/kg	ND < 0.1	ND < 0.10	ND < 0.10
EPA 6020	Arsenic	Metals	8.2	<u>70</u>	mg/kg	2.86	8.77	8.44
EPA 6020	Cadmium	Metals	1.2	<u>9.6</u>	mg/kg	0.195	0.471	0.423
EPA 6020	Chromium	Metals	81	<u>370</u>	mg/kg	21.3	35.2	32.9
EPA 6020	Copper	Metals	34	<u>270</u>	mg/kg	10.4	60.1	54.5
EPA 6020	Lead	Metals	46.7	<u>218</u>	mg/kg	5.37	27.7	25.7
EPA 7471A	Mercury	Metals	0.15	<u>0.71</u>	mg/kg	ND < 0.0282	0.217	0.171
EPA 6020	Nickel	Metals	20.9	<u>51.6</u>	mg/kg	10.9	27.3	22.4
EPA 6020	Selenium	Metals			mg/kg	0.322	0.237	0.415
EPA 6020	Silver	Metals	1.0	3.7	mg/kg	0.176	0.183	0.219
EPA 6020	Zinc	Metals	150	410	mg/kg	46.5	112	112
EPA 8015B(M)	C6		V 1		mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C7	/		77 ·	mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C8				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C9-C10				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C11-C12				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C13-C14				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C15-C16				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C17-C18				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C19-C20				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C21-C22				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C23-C24	*						
, ,					mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C25-C28				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C29-C32			٠	mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C33-C36				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C37-C40				mg/kg	ND <7	ND < 6.9	11
EPA 8015B(M)	C41-C44				mg/kg	ND <7	ND < 6.9	ND < 7.5
EPA 8015B(M)	C6-C44 Total TPH				mg/kg	ND <7	ND < 6.9	24
EPA 418.1M	TRPH				mg/kg	18	65	38
EPA 8270C SIM	Naphthalene	PAH	160	2100	µg/kg	ND < 14	ND < 14	ND < 15
EPA 8270C SIM	Acenaphthylene	PAH	44	640	µg/kg	ND < 14	15	15
EPA 8270C SIM	Acenaphthene	PAH	16	<u>500</u>	µg/kg	ND < 14	ND < 14	ND < 15
EPA 8270C SIM	Fluorene	PAH	19	<u>540</u>	µg/kg	ND < 14	ND < 14	ND < 15
EPA 8270C SIM	Phenanthrene	PAH	240	<u>1500</u>	µg/kg	ND < 14	17	16
EPA 8270C SIM	Fluoranthene	PAH	600	<u>5100</u>	µg/kg	ND < 14	70	27
EPA 8270C SIM	Pyrene	PAH	665	<u>2600</u>	µg/kg	ND < 14	220	52
EPA 8270C SIM	Benzo (a) Anthracene	PAH	261	1600	µg/kg	ND < 14	27	26
EPA 8270C SIM	Chrysene	PAH	384	<u>2800</u>	µg/kg	ND < 14	48	46
EPA 8270C SIM	Benzo (k) Fluoranthene	PAH		-	µg/kg	ND < 14	82	100
EPA 8270C SIM	Benzo (b) Fluoranthene	PAH			µg/kg	ND < 14	100	130
EPA 8270C SIM	Benzo (a) Pyrene	PAH	430	<u>1600</u>	µg/kg	ND < 14	80	100
EPA 8270C SIM	Indeno (1,2,3-c,d) Pyrene	PAH		:	µg/kg	ND < 14	42	61
EPA 8270C SIM	Dibenzo (a,h) Anthracene	PAH	63.4	<u>260</u>	µg/kg	ND < 14	ND < 14	16
EPA 8270C SIM	Benzo (g,h,i) Perylene	PAH			µg/kg	ND < 14	48	68
50.00011	Total Detectable PAHs	PAH	4022	44792	µg/kg	ND	749	657
EPA 8081A	2,4'-DDD	Chlorinated Pesticides			µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	2,4'-DDE	Chlorinated Pesticides			µg/kg	ND < 1.4	ND < 1.4	3.1
EPA 8081A	2,4'-DDT	Chlorinated Pesticides		-	µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	4,4'-DDD	Chlorinated Pesticides	2.0	<u>20</u>	µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	4.4'-DDE	Chlorinated Pesticides	2.2	<u>27</u>	µg/kg	2.6	3.1	12
	,		1	7	µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	4,4'-DDT	Chlorinated Pesticides						
EPA 8081A	4,4'-DDT Total Detectable DDTs	Chlorinated Pesticides	1.58	<u>46.1</u>	µg/kg	2.6	3.1	15.1
EPA 8081A EPA 8081A	4,4'-DDT Total Detectable DDTs Aldrin	Chlorinated Pesticides Chlorinated Pesticides		46.1	μg/kg μg/kg	2.6 ND < 1.4	3.1 ND < 1.4	ND < 1.5
EPA 8081A	4,4'-DDT Total Detectable DDTs	Chlorinated Pesticides			µg/kg	2.6	3.1	
EPA 8081A EPA 8081A	4,4'-DDT Total Detectable DDTs Aldrin	Chlorinated Pesticides Chlorinated Pesticides		46.1	μg/kg μg/kg	2.6 ND < 1.4	3.1 ND < 1.4	ND < 1.5
EPA 8081A EPA 8081A EPA 8081A	4,4'-DDT Total Detectable DDTs Aldrin Alpha-BHC	Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides	1.58	46.1 :	µg/kg µg/kg µg/kg	2.6 ND < 1.4 ND < 1.4	3.1 ND < 1.4 ND < 1.4	ND < 1.5 ND < 1.5
EPA 8081A EPA 8081A EPA 8081A EPA 8081A	4,4'-DDT Total Detectable DDTs Aldrin Alpha-BHC Beta-BHC	Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides	1.58	46.1	µg/kg µg/kg µg/kg µg/kg	2.6 ND < 1.4 ND < 1.4 ND < 1.4	3.1 ND < 1.4 ND < 1.4 ND < 1.4	ND < 1.5 ND < 1.5 ND < 1.5
EPA 8081A EPA 8081A EPA 8081A EPA 8081A EPA 8081A	4,4'-DDT Total Detectable DDTs Aldrin Alpha-BHC Beta-BHC Chlordane	Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides Chlorinated Pesticides	1.58	46.1	µg/kg µg/kg µg/kg µg/kg µg/kg	2.6 ND < 1.4 ND < 1.4 ND < 1.4 ND < 1.4	3.1 ND < 1.4 ND < 1.4 ND < 1.4 ND < 1.4	ND < 1.5 ND < 1.5 ND < 1.5 ND < 1.5
EPA 8081A EPA 8081A EPA 8081A EPA 8081A EPA 8081A EPA 8081A	4,4'-DDT Total Detectable DDTs Aldrin Alpha-BHC Beta-BHC Chlordane Delta-BHC	Chlorinated Pesticides	1.58 	46.1 : : : : : : : : : : :	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	2.6 ND < 1.4 ND < 1.4 ND < 1.4 ND < 1.4 ND < 14	3.1 ND < 1.4 ND < 1.4 ND < 1.4 ND < 1.4 ND < 1.4	ND < 1.5 ND < 1.5 ND < 1.5 ND < 15 ND < 15

Analytical Method	Compound Name	Туре	ERL	ERM	Units	Reference	Composite A	Composite B
EPA 8081A	Endosulfan Sulfate	Chlorinated Pesticides		·	µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	Endrin	Chlorinated Pesticides		do. ·	µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	Endrin Aldehyde	Chlorinated Pesticides			µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	Gamma-BHC	Chlorinated Pesticides			µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	Heptachlor	Chlorinated Pesticides			µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	Heptachlor epoxide	Chlorinated Pesticides			µg/kg	ND < 1.4	ND < 1.4	ND < 1.5
EPA 8081A	Toxaphene	Chlorinated Pesticides	. 7		µg/kg	ND < 28	ND < 27	ND < 30
EPA 8270C SIM PCB Congeners	PCB018	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	0.86
EPA 8270C SIM PCB Congeners	PCB028	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB037	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB044	PCB Congeners		-	µg/kg	ND < 0.70	1.2	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB049	PCB Congeners		-	µg/kg	ND < 0.70	2.9	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB052	PCB Congeners		-	µg/kg	ND < 0.70	2.4	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB066	PCB Congeners			µg/kg	ND < 0.70	0.85	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB070	PCB Congeners			µg/kg	ND < 0.70	0.82	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB074	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB077	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB081	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB087	PCB Congeners			µg/kg	ND < 0.70	1.1	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB099	PCB Congeners			µg/kg	ND < 0.70	1.2	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB101	PCB Congeners			µg/kg	ND < 0.70	2.1	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB105	PCB Congeners			µg/kg	ND < 0.70	0.78	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB110	PCB Congeners			µg/kg	ND < 0.70	1.9	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB114	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB118	PCB Congeners		-	µg/kg	ND < 0.70	1.8	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB119	PCB Congeners		-	µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB123	PCB Congeners		-	µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB126	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB128	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB138/158	PCB Congeners			µg/kg	ND < 1.4	3.2	ND < 1.5
EPA 8270C SIM PCB Congeners	PCB149	PCB Congeners			µg/kg	ND < 0.70	4.1	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB151	PCB Congeners		-	µg/kg	ND < 0.70	1.1	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB153	PCB Congeners		-	µg/kg	ND < 0.70	4.3	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB156	PCB Congeners		-	µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB157	PCB Congeners		-	µg/kg	ND < 0.70	0.91	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB167	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB168	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB169	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB170	PCB Congeners			µg/kg	ND < 0.70	1.8	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB177	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB180	PCB Congeners			µg/kg	ND < 0.70	3.2	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB183	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB187	PCB Congeners			µg/kg	ND < 0.70	2.0	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB189	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB194	PCB Congeners		-	µg/kg	ND < 0.70	0.78	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB201	PCB Congeners			µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270C SIM PCB Congeners	PCB206	PCB Congeners		-	µg/kg	ND < 0.70	ND < 0.69	ND < 0.75
	Total Detectable PCBs	PCB Congeners	22.7	<u>180</u>	µg/kg	ND	38.44	0.86
EPA 8270D (M)/TQ/EI	Allethrin (Bioallethrin)	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Bifenthrin	Pyrethroids			μg/kg	ND < 0.70	0.41 J	0.22 J
EPA 8270D (M)/TQ/EI	Cyfluthrin-beta (Baythroid)	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Cyalothrin-Lamba	Pyrethroids		-	μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Cypermenthrin	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Deltamethrin (Decamethrin)	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Esfenvalerate	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Fenpropathrin (Danitol)	Pyrethroids	·		μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Fenvalerate (Sanmarton)	Pyrethroids		-	μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Fluvalinate	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Permethrin - Cis/Trans	Pyrethroids		· .	μg/kg	ND < 1.4	4.5	2.2
EPA 8270D (M)/TQ/EI	Sumithrin (Phenothrin)	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Resmethrin/Bioresmethrin	Pyrethroids			μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Tetramethrin	Pyrethroids		•	μg/kg	ND < 0.70	ND < 0.69	ND < 0.75
EPA 8270D (M)/TQ/EI	Tralomethrin	Pyrethroids	. (μg/kg	ND < 0.70	ND < 0.69	ND < 0.75

Analytical Method	Compound Name	Туре	ERL	ERM	Units	Reference	Composite A	Composite B
Organotins By Krone et al.	Dibutyltin	Organotins	/ ·		μg/kg	ND < 4.2	0.72	14
Organotins By Krone et al.	Monobutyltin	Organotins			μg/kg	ND < 4.2	ND < 4.1	ND < 4.5
Organotins By Krone et al.	Tetrabutyltin	Organotins		9007	μg/kg	ND < 4.2	ND < 4.1	ND < 4.5
Organotins By Krone et al.	Tributyltin	Organotins			μg/kg	ND < 4.2	19	11
EPA 8270 SIM	2,4,5-Trichlorophenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	2,4,6-Trichlorophenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	2,4-Dichlorophenol	Phenols	7		μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	2,4-Dimethylphenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	2,4-Dinitrophenol	Phenols			μg/kg	ND < 700	ND < 690	ND < 750
EPA 8270 SIM	2-Chlorophenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	2-Methylphenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	2-Nitrophenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	3/4-Methylphenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	4,6-Dinitro-2-Methylphenol	Phenols			μg/kg	ND < 700	ND < 690	ND < 750
EPA 8270 SIM	4-Chloro-3-Methylphenol	Phenols			μg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	4-Nitrophenol	Phenols			μg/kg	ND < 700	ND < 690	ND < 750
EPA 8270 SIM	Pentachlorophenol	Phenols			μg/kg	ND < 700	ND < 690	ND < 750
EPA 8270 SIM	Phenol	Phenols			μg/kg	33	ND < 14	ND < 15
EPA 8270 SIM	Bis(2-Ethylhexyl) Phthalate	Phthalates			µg/kg	14	170	270
EPA 8270 SIM	Butyl Benzyl Phthalate	Phthalates			µg/kg	ND < 14	47	52
EPA 8270 SIM	Diethyl Phthalate	Phthalates			µg/kg	ND < 14	ND < 14	ND < 15
EPA 8270 SIM	Dimethyl Phthalate	Phthalates		-	µg/kg	210	ND < 14	ND < 15
EPA 8270 SIM	Di-n-Butyl Phthalate	Phthalates			µg/kg	ND < 14	15	ND < 15
EPA 8270 SIM	Di-n-Octyl Phthalate	Phthalates		-	µg/kg	ND < 14	ND < 14	ND < 15

mg - milligram

kg - kilogram

J - concentrations greater than or equal to MDL but less than RL

ND - Non Detect

PAH - Polycyclic aromatic hydrocarbon

PCB - Polychlorinated biphenyl

TPH - Total petroleum hydrocarbons

TRPH - Total recoverable petroleum hydrocarbons

ERL - Effects Range Low

ERM - Effects Range Median

Results are presented in dry weight
Red Font indicates value higher than ERL

Red Underlined Font indicates value higher than ERM

CALSCIENCE

WORK ORDER NUMBER: 13-06-0316

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: POLA_YTI_B214-220

Attention: Tyler Huff

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

ResultLink >

Email your PM >

Danille jones-

Approved for release on 06/20/2013 by: Danielle Gonsman Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: POLA_YTI_B214-220

Work Order Number: 13-06-0316

1	Case Narrative	3
2	Work Order Narrative	5
3	Sample Summary	6
4	Client Sample Data	7 7 8
	4.3 Pyrethroids by EPA 8270D (M)/TQ/EI (Sediment)	10
	4.4 EPA 6020 ICP/MS Metals (Soil)	12
	4.5 EPA 7471A Mercury (Soil)	13
	4.6 ASTM D4464 (M) Particle Size Laser (Soil)	14
	4.7 EPA 8081A Organochlorine Pesticides (Soil)	15
	4.8 EPA 8270C SIM (Soil)	17
	4.9 EPA 8270C SIM PCB Congeners (Soil)	21
	4.10 Krone et al. Organotins (Soil)	25
	4.11 Combined Inorganic Tests	26
5	Quality Control Sample Data	27
	5.1 MS/MSD	27
	5.2 PDS/PDSD	37
	5.3 Sample Duplicate	38
	5.4 LCS/LCSD	41
6	Glossary of Terms and Qualifiers	52
7	Chain of Custody/Sample Receipt Form.	53

CASE NARRATIVE

Calscience Work Order No.: 13-06-0316 Project ID: POLA YTI- BERTH 214-220

```
Ú¦[çãā^åÁà^|[,ÁãnÁæÁ,æk¦ææãç^Á;-Á;`¦Áæ)æf°cã&ædÁ~-[¦dÊÁs,&|`åã;*Áæ)^Á;}ã~`^Á^æc`¦^•Á;¦Áæ)[{æda?•Á
^}&[`}&\^åÁse•Á\ædoK\Áse(Áse)æf•ãÆ\Ás@Á*^åã[^}oÁse)åÁ;æc\¦Ásæ(]|^•ÉÁ
Sample Condition on Receipt
U}^Á•^åã ^}oÁ•æ ] |^Á æ Á'^&^ãç^åÁ;¦Ác@áÁ;¦Éb@áÁ;}ÁR*}^ÁÍÉÁGEFHÉÁÁV@Á•æ ] |^•Á ^¦^Á
dæ)•~~\\^åÁq Áo@ Áæà[¦æq[¦^Áq Áæ)Ág&\Ë&@•oÁ,ão@Á, ^oÁg&\ÊÁ;||[, ã,*Ándã&óA&@æā;Ë,~Ë&`•qfå^ÁqÔUÔDÁ
];[&^a`;^•ÉÁÁV@^Ác^{]^;æc`;^Á[-Ác@^Á+eq;]|^Á`][}Á;^&^ā]oÁæeÁc@^Ájæae[;æc[;^Á; æ-ÁFÉ; »ÔÉÁÁCE[Á
• æ{ ] |^• Á, ^¦^Á|[**^åÁã, q[Ác@^ÁŠæà[¦æe[¦^ÁQ,-{¦{ ææã[}ÁTæ};æ*^{ ^}cÁÙ^• c^{ ÁÇŠQTÙDÂÁ*ãç^}Á
|acaà[|ace[|^Ása^}cãa&aceaī]}Á,~{ à^|•Ása}åÁs@}Áq[|^aÁs[Á^~+ða^|ða^|+ða^|*áa]}Á;ão•Á,^}åða*Á&@{ ã d^ÈÁÁ
ÔUÔÁSã& & '^] æ) & & • ÁQÁÁS) ^ DÁ, ^ \^Á, [ c^ å ÁS, Ás@ ÁÙæ ( ] | ^ ÁOE; [ { æ f ÁZ [ \{ EÁÁÁ
 Tests Performed
Ù^åã ^} dkÁ
V[cæ‡ÁÙ[|ãã•Áà^ÁÙTÁGÍ|€ÓÁ
OE[{[}ãæÁs^ÁÙTÁÍÍ€€ËÞPHËÖÆDÁQTDÁ
Ő¦æãiÁÙã^Áà^ÁŒÙVTÁÖIIÎIÁ
Öã•[|ç^åÁsa) åÁ/[cæþÁÙ*|~ãå^Áà^ÁòÚOÆÁHÏÎÈGTÁ
VÜÚPÁà^ÁÒÚŒÁFÌÈTÁ
VÚPÁÔÎ ËÔI I Á&^ Á ÔÚ ŒÂ €FÍ ÓÁOT DÁ
V[cædÁU¦*æ)a&ÁÔædà[}Ásì^ÁÒÚOÆÁJ€Î€ŒÁ
V¦æ&^ÁT^œ‡•Ásî^ÁÒÚŒÁ΀G€ÐÖIÏFÁ
Ô@∏¦ã;æe^åÄÚ^•œã&ãã^•Áà^ÁÒڌ €ÌFŒÁ
ÚÔÓÁÔ[ } * ^ } ^ ! • Áà^ ÁÒڌ GÏ €ÔÁÙQT Á
ÚOEP • ÊÂÚ@} [ | • Áæ} åÁÚ@@æþææ^ • Áæ^ ÁÒÚOE GÏ €ÔÁÙQT Á
Ú^¦^c@[ãa•Áa^ÁÒÚOĐÂG GÏ€ÖÁQT DÐVÛÐÒQÁ
U¦*æ}[œã•Áà^ÁS¦[}^Á\óÁædÈÁ
Á
Á
Data Summary
V@^Án^åã[^}o^Áa≨[]|^Á,æ-Á@[{[*^}ã^åAj¦ā[ká[Ása)adî•ãēÉÁ
P[|åã|*Ábã| ^•Á
O, (T) Á (Q) | å (a) * Á (a)
```



```
<u>Ó|æ}\•</u>À
Ô[}&^}dæaf}}•Á;Áæd*^oÁæ)æfo^•ÁsjÁo@Á;^o@A;^o@aÁa}æ}\Á;^!^Á;`}åÁs;Áa^Áa^[;Á^][¦dā;*Áa;ãæÁ;¦Á
ællÁe^•cã:*ÈÀÁ
Ü^][¦cā]*ÁŠā[ãæÁ
V@^ÁT^c@{åÁÖ^c^&cã[}AŠã[ão•Á,^¦^Á;^dĚÁÁ
<u>Šæà[¦æe[¦^ÁÔ[}d[|ÁÛæ{]|^•</u>Á
OZÁŠæà[¦æ[¦^ÁÔ[}d[|ÁÙæ{]|^ÁÇŠÔÙDÁæ}æ;^•ã;Á,æ;Á]^¦-[¦{^åÁ-{¦Á^æ&@Áæ}]|&3æà|^Ác^•dŽÁO∏Á
] æbæ ( ^e^|• Á, ^|^ Á, ão@ A. Á• cæà |ã @ å Á& | } d | | Áã ã• ÈÁ
Tædã¢ÁÙ]ã^∙Á
TædãçÁ•]ãã;*Á, æ Áj ^¦-{¦{ ^åÁæçÁc@ Á!^~~ã^åÁ-{^~~^}}&ã>•Á-{¦Ác@ Á•^åã; ^}cÁ[}Ác@ Á];[b/&cÁ
V@ÁV^dæàčcî [cā] ÁT ÙÁæ) åÁT ÙÖÁ^8[ ç^¦āN•Á, ^¦^Á[ č•ã&^Ác@Á8[ } d[ |Á]ā, ã•ĒÁV@Á^•č [c•Á@æç^Á
à^^} Á þæt * ^ å Á ã ō @ Á 5 0 | 1 | 1 | 1 ã a e P Á č æ þã ã P Þ Á
Ù`;;[*æ&^Á^&[ç^;a^•Á[;Áæd|Áæd]]|a&ææà|^Á&^•œ^Áæd;a^faæ{]|^•Á;^A;^A; aō@ā;Áæ&&^]ææà|^Á&[}d[|Áa[āæ-ÉÁ
O<u>E&¦[}^{•</u>A
ŠÔÙÆÄŠæà[¦æe[¦^ÆÔ[}d[|ÁÛæ{]|^Á
ÚÖÙÁÄÚ[•ơŐã^•ơã}ÂÛ]ã^Á
TÙ ĐTÙ Ö BẤT các ất ÂU] ã ^ ĐT các ất ÂU] ã ^ ÂÖ ǐ ] | 38 các ^ Á
T ÒËT æ\* ā\ æ\AÔ¢&^^åæ\ &^Á
ÜÚÖËÄÜ^|æãç^ÁÚ^¦&^} œã-^\^} &^Á
```


Work Order Narrative

Work Order: 13-06-0316 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/05/13. They were assigned to Work Order 13-06-0316.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

9210 Sky Park Court, Suite 200

San Diego, CA 92123-4302

Work Order:

Project Name:

PO Number:

Date Received:

13-06-0316

POLA_YTI_B214-220

06/05/13

Attn: Tyler Huff

Sample IdentificationLab NumberCollection Date and TimeNumber of ContainersMatrixReference13-06-0316-106/02/13 10:304Soil

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0316 Extraction EPA 418.1M mg/kg

06/05/13

Project: POLA_YTI_B214-220

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Reference	13-06-0316-1-A	06/02/13 10:30	Soil	IR 2	06/12/13	06/12/13 12:00	130612L01		
Comment(s): - Results are reported on a dry weight basis.									
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>		
TRPH		18	1	4	1				

Method Blank	099-07-015-1928	N/A	Soil	IR 2	06/12/13	06/12/13 12:00	130612L01
Parameter		Result	RL	•	<u>DF</u>	<u>Quali</u>	fiers
TRPH		ND	10		1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3550B EPA 8015B (M)

Units:

mg/kg Page 1 of 2

Project: POLA_YTI_B214-220

n-Octacosane

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference	13-06-0316-1-B	06/02/13 10:30	Soil	GC 45	06/06/13	06/07/13 08:24	130606B02
Comment(s): - Results are reported on	a dry weight basis.	•					
<u>Parameter</u>		<u>Result</u>	RI	=	<u>DF</u>	Qua	<u>lifiers</u>
C6		ND	7.	0	1		
C7		ND	7.	0	1		
C8		ND	7.	0	1		
C9-C10		ND	7.	0	1		
C11-C12		ND	7.	0	1		
C13-C14		ND	7.	0	1		
C15-C16		ND	7.	0	1		
C17-C18		ND	7.	0	1		
C19-C20		ND	7.	0	1		
C21-C22		ND	7.	0	1		
C23-C24		ND	7.	0	1		
C25-C28		ND	7.	0	1		
C29-C32		ND	7.	0	1		
C33-C36		ND	7.	0	1		
C37-C40		ND	7.	0	1		
C41-C44		ND	7.	0	1		
C6-C44 Total		ND	7.	0	1		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		

61-145

78

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/05/13 13-06-0316 EPA 3550B EPA 8015B (M)

mg/kg

Project: POLA_YTI_B214-220

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-352	N/A	Soil	GC 45	06/06/13	06/07/13 07:12	130606B02
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1		
C7		ND	5.0)	1		
C8		ND	5.0)	1		
C9-C10		ND	5.0)	1		
C11-C12		ND	5.0)	1		
C13-C14		ND	5.0)	1		
C15-C16		ND	5.0)	1		
C17-C18		ND	5.0)	1		
C19-C20		ND	5.0)	1		
C21-C22		ND	5.0)	1		
C23-C24		ND	5.0)	1		
C25-C28		ND	5.0)	1		
C29-C32		ND	5.0)	1		
C33-C36		ND	5.0)	1		
C37-C40		ND	5.0)	1		
C41-C44		ND	5.0)	1		
C6-C44 Total		ND	5.0)	1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		76	61-	-145			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 3540C EPA 8270D (M)/TQ/EI

06/05/13

ug/kg

Project: POLA_YTI_B214-220

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference	13-06-0316-1-E	06/02/13 10:30	Soil	GCTQ 1	06/11/13	06/12/13 18:22	130611L01

Comment(s): - Results are reported on a dry weight basis.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Units:

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Allethrin	ND	0.70	0.36	1	
Bifenthrin	ND	0.70	0.13	1	
Cyfluthrin	ND	0.70	0.12	1	
Cypermethrin	ND	0.70	0.097	1	
Deltamethrin/Tralomethrin	ND	0.70	0.29	1	
Fenpropathrin	ND	0.70	0.051	1	
Fenvalerate/Esfenvalerate	ND	0.70	0.050	1	
Fluvalinate	ND	0.70	0.081	1	
Permethrin (cis/trans)	ND	1.4	0.16	1	
Phenothrin	ND	0.70	0.097	1	
Resmethrin/Bioresmethrin	ND	0.70	0.13	1	
Tetramethrin	ND	0.70	0.053	1	
lambda-Cyhalothrin	ND	0.70	0.061	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
trans-Permethrin(C13)	66	25-200			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0316 EPA 3540C EPA 8270D (M)/TQ/EI

06/05/13

ug/kg

Project: POLA_YTI_B214-220

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-403-33	N/A	Sediment	GCTQ 1	06/11/13	06/12/13 17:46	130611L01
Comment(s): - Results were evalu	ated to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
Allethrin	ND		0.50	0.26	1		
Bifenthrin	ND		0.50	0.094	1		
Cyfluthrin	ND		0.50	0.085	1		
Cypermethrin	ND		0.50	0.069	1		
Deltamethrin/Tralomethrin	ND		0.50	0.21	1		
Fenpropathrin	ND		0.50	0.036	1		
Fenvalerate/Esfenvalerate	ND		0.50	0.036	1		
Fluvalinate	ND		0.50	0.057	1		
Permethrin (cis/trans)	ND		1.0	0.11	1		
Phenothrin	ND		0.50	0.069	1		
Resmethrin/Bioresmethrin	ND		0.50	0.092	1		
Tetramethrin	ND		0.50	0.038	1		
lambda-Cyhalothrin	ND		0.50	0.044	1		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
trans-Permethrin(C13)	65		25-200				

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/05/13 13-06-0316 EPA 3050B EPA 6020 mg/kg

Project: POLA_YTI_B214-220

Page 1 of 1

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference		13-06-0316-1-E	06/02/13 10:30	Soil	ICP/MS 03	06/06/13	06/07/13 14:16	130606L03E
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qualifiers	
Arsenic			2.86	0.141		1		
Cadmium			0.195	().141	1		
Chromium			21.3	().141	1		
Copper			10.4	().141	1		
Lead			5.37	().141	1		
Nickel			10.9	().141	1		
Selenium			0.322	().141	1		
Silver			0.176	().141	1		
Zinc			46.5	1	1.41	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0316 EPA 7471A Total EPA 7471A mg/kg

06/05/13

Project: POLA_YTI_B214-220

Page 1 of 1

Client Sample Nu	ımber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference		13-06-0316-1-E	06/02/13 10:30	Soil	Mercury	06/07/13	06/07/13 12:56	130607L01E
Comment(s):	- Results are reported on a	dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u> <u>DF</u>		Qualifiers	
Mercury			ND	0.0282		1		
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury			ND		0.0200	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

Units:

06/05/13 13-06-0316 N/A

ASTM D4464 (M)

Project: POLA_YTI_B214-220

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference	13-06-0316-1-C	06/02/13 10:30	Soil	LPSA 1	N/A	06/09/13 16:39	
Parameter			•	Result		Qualifiers	
Clay (less than 0.00391mm)				7.24			
Silt (0.00391 to 0.0625mm)				31.59			
Total Silt and Clay (0 to 0.0625mm)				38.82			
Very Fine Sand (0.0625 to 0.125mm)				44.58			
Fine Sand (0.125 to 0.25mm)				16.59			
Medium Sand (0.25 to 0.5mm)				0.010			
Coarse Sand (0.5 to 1mm)				ND			
Very Coarse Sand (1 to 2mm)				ND			
Gravel (greater than 2mm)				ND			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/05/13 13-06-0316 EPA 3545 EPA 8081A ug/kg

Project: POLA_YTI_B214-220

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Reference	13-06-0316-1-E	06/02/13 10:30	Soil	GC 51	06/06/13	06/07/13 14:26	130606L07	
Comment(s): - Results are reported o	n a dry weight basis.							
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>	
Aldrin		ND	1.4		1			
Alpha-BHC		ND	1.4		1			
Beta-BHC		ND	1.4		1			
Delta-BHC		ND	1.4		1			
Gamma-BHC		ND	1.4		1			
Chlordane		ND	14		1			
Dieldrin		ND	1.4		1			
Trans-nonachlor		ND	1.4		1			
2,4'-DDD		ND	1.4		1			
2,4'-DDE		ND	1.4		1			
2,4'-DDT		ND	1.4		1			
4,4'-DDD		ND	1.4		1			
4,4'-DDE		2.6	1.4		1			
4,4'-DDT		ND	1.4		1			
Endosulfan I		ND	1.4		1			
Endosulfan II		ND	1.4		1			
Endosulfan Sulfate		ND	1.4		1			
Endrin		ND	1.4		1			
Endrin Aldehyde		ND	1.4		1			
Endrin Ketone		ND	1.4		1			
Heptachlor		ND	1.4		1			
Heptachlor Epoxide		ND	1.4		1			
Methoxychlor		ND	1.4		1			
Toxaphene		ND	28		1			
Alpha Chlordane		ND	1.4		1			
Gamma Chlordane		ND	1.4		1			
Cis-nonachlor		ND	1.4		1			
Oxychlordane		ND	1.4		1			
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers			
2,4,5,6-Tetrachloro-m-Xylene		86	50-	130				
Decachlorobiphenyl		82	50-	130				

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/05/13 13-06-0316 EPA 3545 EPA 8081A ug/kg

Project: POLA_YTI_B214-220

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-858-203	N/A	Soil	GC 51	06/06/13	06/07/13 13:00	130606L07
Parameter		Result	<u>RL</u> <u>DF</u>		Qualifiers		
Aldrin		ND	1.0)	1		
Alpha-BHC		ND	1.0)	1		
Beta-BHC		ND	1.0)	1		
Delta-BHC		ND	1.0)	1		
Gamma-BHC		ND	1.0)	1		
Chlordane		ND	10		1		
Dieldrin		ND	1.0)	1		
Trans-nonachlor		ND	1.0)	1		
2,4'-DDD		ND	1.0)	1		
2,4'-DDE		ND	1.0)	1		
2,4'-DDT		ND	1.0)	1		
4,4'-DDD		ND	1.0)	1		
4,4'-DDE		ND	1.0)	1		
4,4'-DDT		ND	1.0)	1		
Endosulfan I		ND	1.0)	1		
Endosulfan II		ND	1.0)	1		
Endosulfan Sulfate		ND	1.0)	1		
Endrin		ND	1.0		1		
Endrin Aldehyde		ND	1.0		1		
Endrin Ketone		ND	1.0		1		
Heptachlor		ND	1.0		1		
Heptachlor Epoxide		ND	1.0		1		
Methoxychlor		ND	1.0)	1		
Toxaphene		ND	20		1		
Alpha Chlordane		ND	1.0		1		
Gamma Chlordane		ND	1.0		1		
Cis-nonachlor		ND	1.0		1		
Oxychlordane		ND	1.0		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		105	50-	-130			
Decachlorobiphenyl		105	50-	-130			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 3545 **EPA 8270C SIM**

06/05/13

Units:

ug/kg Page 1 of 4

Project: POLA_YTI_B214-220

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference	13-06-0316-1-E	06/02/13 10:30	Soil	GC/MS MM	06/06/13	06/07/13 13:20	130606L10
Comment(s): - Results are reported	on a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
1-Methylnaphthalene		ND	1	4	1		
2,4,5-Trichlorophenol		ND	1	4	1		
2,4,6-Trichlorophenol		ND	1	4	1		
2,4-Dichlorophenol		ND	1	4	1		
2,4-Dimethylphenol		ND	1	4	1		
2,4-Dinitrophenol		ND	7	00	1		
2-Chlorophenol		ND	1	4	1		
2-Methylnaphthalene		ND	1	4	1		
2-Methylphenol		ND	1	4	1		
2-Nitrophenol		ND	1	4	1		
3/4-Methylphenol		ND	1	4	1		
4,6-Dinitro-2-Methylphenol		ND	7	00	1		
4-Chloro-3-Methylphenol		ND	1	4	1		
4-Nitrophenol		ND	7	00	1		
Acenaphthene		ND	1	4	1		
Acenaphthylene		ND	1	4	1		
Anthracene		ND	1	4	1		
Benzo (a) Anthracene		ND	1	4	1		
Benzo (a) Pyrene		ND	1	4	1		
Benzo (b) Fluoranthene		ND	1	4	1		
Benzo (g,h,i) Perylene		ND	1	4	1		
Benzo (k) Fluoranthene		ND	1	4	1		
Bis(2-Ethylhexyl) Phthalate		14	1	4	1		
Butyl Benzyl Phthalate		ND	1	4	1		
Chrysene		ND	1	4	1		
Di-n-Butyl Phthalate		ND	1	4	1		
Di-n-Octyl Phthalate		ND	1	4	1		
Dibenz (a,h) Anthracene		ND	1	4	1		
Diethyl Phthalate		ND	1	4	1		
Dimethyl Phthalate		210	1		1		
Fluoranthene		ND	1	4	1		
Fluorene		ND	1		1		
Indeno (1,2,3-c,d) Pyrene		ND	1		1		
N-Nitrosodimethylamine		ND	1		1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Phenol-d6

Analytical Report

AMEC Environment & Infrastructure	Date Received:	06/05/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-0316
San Diego, CA 92123-4302	Preparation:	EPA 3545
	Method:	EPA 8270C SIM
	Units:	ug/kg

	On	io.		ug/kţ
Project: POLA_YTI_B214-220				Page 2 of 4
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Naphthalene	ND	14	1	
Pentachlorophenol	ND	700	1	
Phenanthrene	ND	14	1	
Phenol	33	14	1	
Pyrene	ND	14	1	
1,6,7-Trimethylnaphthalene	ND	14	1	
2,3,4,6-Tetrachlorophenol	ND	14	1	
2,6-Dichlorophenol	ND	14	1	
Benzoic Acid	ND	140	1	
DCPA	ND	14	1	
Dibenzothiophene	ND	14	1	
Perthane	ND	14	1	
1-Methylphenanthrene	ND	14	1	
Benzo (e) Pyrene	ND	14	1	
Perylene	ND	14	1	
Biphenyl	ND	14	1	
2,6-Dimethylnaphthalene	ND	14	1	
Isophorone	ND	140	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2,4,6-Tribromophenol	95	32-143		
2-Fluorobiphenyl	63	14-146		
2-Fluorophenol	75	15-138		
Nitrobenzene-d5	60	18-162		
p-Terphenyl-d14	90	34-148		

87

17-141

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/05/13 13-06-0316 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA_YTI_B214-220

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-256-35	N/A	Soil	GC/MS MM	06/06/13	06/07/13 12:29	130606L10
<u>Parameter</u>		Result	<u>R</u>	L	<u>DF</u>	Qua	llifiers
1-Methylnaphthalene		ND	1	0	1		
2,4,5-Trichlorophenol		ND	1	0	1		
2,4,6-Trichlorophenol		ND	1	0	1		
2,4-Dichlorophenol		ND	1	0	1		
2,4-Dimethylphenol		ND	1	0	1		
2,4-Dinitrophenol		ND	5	00	1		
2-Chlorophenol		ND	1	0	1		
2-Methylnaphthalene		ND	1	0	1		
2-Methylphenol		ND	1	0	1		
2-Nitrophenol		ND	1	0	1		
3/4-Methylphenol		ND	1		1		
4,6-Dinitro-2-Methylphenol		ND		00	1		
4-Chloro-3-Methylphenol		ND	1	0	1		
4-Nitrophenol		ND	5	00	1		
Acenaphthene		ND	1	0	1		
Acenaphthylene		ND	1	0	1		
Anthracene		ND	1	0	1		
Benzo (a) Anthracene		ND	1	0	1		
Benzo (a) Pyrene		ND	1	0	1		
Benzo (b) Fluoranthene		ND	1	0	1		
Benzo (g,h,i) Perylene		ND	1	0	1		
Benzo (k) Fluoranthene		ND	1	0	1		
Bis(2-Ethylhexyl) Phthalate		ND	1	0	1		
Butyl Benzyl Phthalate		ND	1		1		
Chrysene		ND	1		1		
Di-n-Butyl Phthalate		ND	1	0	1		
Di-n-Octyl Phthalate		ND	1		1		
Dibenz (a,h) Anthracene		ND	1		1		
Diethyl Phthalate		ND	1		1		
Dimethyl Phthalate		ND	1		1		
Fluoranthene		ND	1		1		
Fluorene		ND	1		1		
Indeno (1,2,3-c,d) Pyrene		ND	1		1		
N-Nitrosodimethylamine		ND	1		1		
Naphthalene		ND	1		1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure	Date Received:	06/05/13
9210 Sky Park Court, Suite 200	Work Order:	13-06-0316
San Diego, CA 92123-4302	Preparation:	EPA 3545
	Method:	EPA 8270C SIM
	Units:	ug/kg
D : DOLA . VTI . DOLA . 000		5

Project: POLA_YTI_B214-220				Page 4 of 4
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Pentachlorophenol	ND	500	1	
Phenanthrene	ND	10	1	
Phenol	ND	10	1	
Pyrene	ND	10	1	
1,6,7-Trimethylnaphthalene	ND	10	1	
2,3,4,6-Tetrachlorophenol	ND	10	1	
2,6-Dichlorophenol	ND	10	1	
Benzoic Acid	ND	100	1	
DCPA	ND	10	1	
Dibenzothiophene	ND	10	1	
Perthane	ND	10	1	
1-Methylphenanthrene	ND	10	1	
Benzo (e) Pyrene	ND	10	1	
Perylene	ND	10	1	
Biphenyl	ND	10	1	
2,6-Dimethylnaphthalene	ND	10	1	
Isophorone	ND	100	1	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	Qualifiers	
2,4,6-Tribromophenol	76	32-143		
2-Fluorobiphenyl	68	14-146		
2-Fluorophenol	72	15-138		
Nitrobenzene-d5	64	18-162		
p-Terphenyl-d14	77	34-148		
Phenol-d6	81	17-141		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

06/05/13 13-06-0316

Preparation:

EPA 3545 EPA 8270C SIM PCB Congeners

Method: Units:

ug/kg

Page 1 of 4

Project: POLA_YTI_B214-220

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Reference		13-06-0316-1-E	06/02/13 10:30	Soil	GC/MS HHH	06/06/13	06/07/13 19:55	130606L09
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
PCB018			ND		0.70	1		
PCB028			ND		0.70	1		
PCB037			ND		0.70	1		
PCB044			ND		0.70	1		
PCB049			ND		0.70	1		
PCB052			ND		0.70	1		
PCB066			ND		0.70	1		
PCB070			ND		0.70	1		
PCB074			ND		0.70	1		
PCB077			ND		0.70	1		
PCB081			ND		0.70	1		
PCB087			ND		0.70	1		
PCB099			ND		0.70	1		
PCB101			ND		0.70	1		
PCB105			ND		0.70	1		
PCB110			ND		0.70	1		
PCB114			ND		0.70	1		
PCB118			ND		0.70	1		
PCB119			ND		0.70	1		
PCB123			ND		0.70	1		
PCB126			ND		0.70	1		
PCB128			ND		0.70	1		
PCB138/158			ND		1.4	1		
PCB149			ND		0.70	1		
PCB151			ND		0.70	1		
PCB153			ND		0.70	1		
PCB156			ND		0.70	1		
PCB157			ND		0.70	1		
PCB167			ND		0.70	1		
PCB168			ND		0.70	1		
PCB169			ND		0.70	1		
PCB170			ND		0.70	1		
PCB177			ND		0.70	1		
PCB180			ND		0.70	1		
1 05100			ND		0.70	'		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 3545 EPA 8270C SIM PCB Congeners

Units:

Page 2 of 4

06/05/13

ug/kg

Project: POLA_YTI_B214-220

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB183	ND	0.70	1	
PCB187	ND	0.70	1	
PCB189	ND	0.70	1	
PCB194	ND	0.70	1	
PCB201	ND	0.70	1	
PCB206	ND	0.70	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	121	50-125		
p-Terphenyl-d14	111	50-125		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

06/05/13 13-06-0316

EPA 3545

Preparation: Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 3 of 4

Project: POLA_YTI_B214-220

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-341-103	N/A	Soil GC/MS HHH		06/06/13	06/07/13 16:42	130606L09
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB018		ND	(0.50	1		
PCB028		ND	(0.50	1		
PCB037		ND	(0.50	1		
PCB044		ND	(0.50	1		
PCB049		ND	(0.50	1		
PCB052		ND	(0.50	1		
PCB066		ND	(0.50	1		
PCB070		ND	(0.50	1		
PCB074		ND	(0.50	1		
PCB077		ND	(0.50	1		
PCB081		ND	(0.50	1		
PCB087		ND	(0.50	1		
PCB099		ND	(0.50	1		
PCB101		ND	(0.50	1		
PCB105		ND	(0.50	1		
PCB110		ND	(0.50	1		
PCB114		ND	(0.50	1		
PCB118		ND	(0.50	1		
PCB119		ND	(0.50	1		
PCB123		ND	(0.50	1		
PCB126		ND	(0.50	1		
PCB128		ND	(0.50	1		
PCB138/158		ND		1.0	1		
PCB149		ND	(0.50	1		
PCB151		ND	(0.50	1		
PCB153		ND	(0.50	1		
PCB156		ND	(0.50	1		
PCB157		ND	(0.50	1		
PCB167		ND		0.50	1		
PCB168		ND		0.50	1		
PCB169		ND		0.50	1		
PCB170		ND		0.50	1		
PCB177		ND		0.50	1		
PCB180		ND		0.50	1		
PCB183		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

06/05/13

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 3545 EPA 8270C SIM PCB Congeners

Units: ug/kg

Project: POLA_YTI_B214-220 Page 4 of 4

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB201	ND	0.50	1	
PCB206	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	82	50-125		
p-Terphenyl-d14	91	50-125		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

Units:

13-06-0316 EPA 3550B (M) Organotins by Krone et al. ug/kg

Project: POLA_YTI_B214-220

Tripentyltin

Page 1 of 1

06/05/13

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
Reference		13-06-0316-1-E	06/02/13 10:30	Soil	GC/MS JJJ	06/06/13	06/12/13 13:40	130606L23
Comment(s):	- Results are reported	on a dry weight basis.						
Parameter Parameter			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Dibutyltin			ND		4.2	1		
Monobutyltin			ND		4.2	1		
Tetrabutyltin			ND		4.2	1		
Tributyltin			ND		4.2	1		
<u>Surrogate</u>			Rec. (%)		Control Limits	Qualifiers		
Tripentyltin			80		48-126			
Parameter_			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Dibutyltin			ND		3.0	1		
Monobutyltin			ND		3.0	1		
Tetrabutyltin			ND		3.0	1		
Tributyltin			ND		3.0	1		
<u>Surrogate</u>			Rec. (%)		Control Limits	<u>Qualifiers</u>		

48-126

84

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA_YTI_B214-220

Date Received:

06/05/13 13-06-0316

Work Order:

Page 1 of 1

Client Sample Number			Lab Sample Number			Date/Tir	ne Collected	Matrix	
Reference			13-0	6-0316-1		06/02/13 10:30		Soil	
Comment(s): (9) - Results	s are reported or	n a dry weigl	nt basis.						
<u>Parameter</u>	<u>Results</u>	<u>RL</u>	<u>DF</u>	Qualifiers	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method	
Sulfide, Total (9)	0.70	0.14	0.2		mg/kg	06/06/13	06/06/13	EPA 376.2M	
Sulfide, Dissolved	ND	0.10	0.2		mg/kg	06/05/13	06/05/13	EPA 376.2M	
Carbon, Total Organic (9)	0.77	0.070	1		%	06/11/13	06/12/13	EPA 9060A	
Solids, Total	71.1	0.100	1		%	06/06/13	06/06/13	SM 2540 B (M)	
Ammonia (as N) (9)	3.2	0.28	1		mg/kg	06/12/13	06/12/13	SM 4500-NH3 B/C (M)	
<u>Parameter</u>	Results	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> <u>Prepared</u>	<u>Date</u> Analyzed	Method	
Sulfide, Total	ND	0.10	0.2		mg/kg	06/06/13	06/06/13	EPA 376.2M	
Sulfide, Dissolved	ND	0.10	0.2		mg/kg	06/05/13	06/05/13	EPA 376.2M	
Carbon, Total Organic	ND	0.050	1		%	06/11/13	06/12/13	EPA 9060A	
Solids, Total	ND	0.100	1		%	06/06/13	06/06/13	SM 2540 B (M)	
Ammonia (as N)	ND	0.20	1		mg/kg	06/12/13	06/12/13	SM 4500-NH3 B/C (M)	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 N/A

06/05/13

EPA 9060A

Project: POLA_YTI_B214-220

Page 1 of 10

Quality Control Sample ID		Matrix		Instrument Date		repared	Date Analyzed	MS/MSD Batch No		Number
Reference		Soil		TOC 5	06/11/	13	06/12/13 12:36	D0	611TOCS2	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	0.5500	3.000	3.350	93	3.420	96	75-125	2	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 Extraction EPA 418.1M

Project: POLA_YTI_B214-220

Page 2 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number		Number
13-06-0714-1		Sedime	nt	IR 2	06/12/1	3	06/12/13 12:00	130	612S01	
<u>Parameter</u>	Sample Conc.	Spike Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TRPH	47.61	100.0	140.8	93	142.6	95	55-135	1	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0316 EPA 3550B

06/05/13

Method:

EPA 8015B (M) Page 3 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		red Date Analyzed		MS/MSD Batch Numbe	
Reference		Soil		GC 45	06/06/1	3	06/07/13 07:48	130	606S02	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	401.0	100	398.0	100	64-130	1	0-15	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0316 EPA 3540C EPA 8270D (M)/TQ/EI

Method:

Page 4 of 10

06/05/13

Project: POLA	_Y I I	_B214-220	

Quality Control Sample ID		Matrix Instrument		Date P	repared	Date Analyzed	MS/MSD Batch		Number	
Reference		Soil		GCTQ 1	06/11/1	13	06/12/13 18:59	130	611S01	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Allethrin	ND	5.000	1.689	34	1.695	34	25-200	0	0-30	
Bifenthrin	ND	5.000	2.866	57	2.786	56	25-200	3	0-30	
Cyfluthrin	ND	5.000	1.834	37	2.034	41	25-200	10	0-30	
Cypermethrin	ND	5.000	1.668	33	1.872	37	25-200	12	0-30	
Deltamethrin/Tralomethrin	ND	5.000	2.655	53	2.836	57	25-200	7	0-30	
Fenpropathrin	ND	5.000	2.861	57	2.872	57	25-200	0	0-30	
Fenvalerate/Esfenvalerate	ND	10.00	3.443	34	3.833	38	25-200	11	0-30	
Fluvalinate	ND	5.000	1.805	36	2.068	41	25-200	14	0-30	
Permethrin (cis/trans)	ND	5.000	3.717	74	4.067	81	25-200	9	0-30	
Phenothrin	ND	5.000	4.332	87	4.289	86	25-200	1	0-30	
Resmethrin/Bioresmethrin	ND	5.000	4.190	84	4.059	81	25-200	3	0-30	
Tetramethrin	ND	5.000	4.012	80	3.985	80	25-200	1	0-30	
lambda-Cyhalothrin	ND	5.000	1.487	30	1.655	33	25-200	11	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3050B EPA 6020

Project: POLA_YTI_B214-220

Page 5 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number		Number
Reference		Soil ICP/MS 03		06/06/13		06/06/13 17:06 130		606S03		
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Arsenic	2.035	25.00	27.40	101	27.44	102	80-120	0	0-20	
Cadmium	0.1388	25.00	26.06	104	26.12	104	80-120	0	0-20	
Chromium	15.12	25.00	39.49	97	40.38	101	80-120	2	0-20	
Copper	7.364	25.00	34.29	108	33.78	106	80-120	2	0-20	
Lead	3.817	25.00	29.80	104	30.03	105	80-120	1	0-20	
Nickel	7.717	25.00	33.64	104	33.57	103	80-120	0	0-20	
Selenium	0.2289	25.00	26.38	105	27.07	107	80-120	3	0-20	
Silver	0.1249	12.50	13.45	107	13.35	106	80-120	1	0-20	
Zinc	33.07	25.00	61.56	114	63.00	120	80-120	2	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 7471A Total EPA 7471A

06/05/13

Project: POLA_YTI_B214-220

Page 6 of 10

Quality Control Sample ID		Matrix		nstrument	Date Pi	repared	Date Analyzed	MS/MSD Batch Number		Number
Reference		Soil		Mercury	06/07/1	3	06/07/13 13:03	130	0607S01	
<u>Parameter</u>	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.8865	106	0.8988	108	76-136	1	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3545 EPA 8081A

Project: POLA_YTI_B214-220

Page 7 of 10

Quality Control Sample ID		Matrix	l	nstrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
Reference		Soil		GC 51		13	06/07/13 14:55	130	606S07A	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Aldrin	ND	5.000	3.251	65	3.438	69	50-135	6	0-25	
Alpha-BHC	ND	5.000	5.616	112	6.303	126	50-135	12	0-25	
Beta-BHC	ND	5.000	4.823	96	6.075	122	50-135	23	0-25	
Delta-BHC	ND	5.000	3.667	73	4.381	88	50-135	18	0-25	
Gamma-BHC	ND	5.000	4.310	86	4.899	98	50-135	13	0-25	
Dieldrin	ND	5.000	3.752	75	4.161	83	50-135	10	0-25	
4,4'-DDD	ND	5.000	4.038	81	4.500	90	50-135	11	0-25	
4,4'-DDE	1.826	5.000	5.372	71	6.098	85	50-135	13	0-25	
4,4'-DDT	ND	5.000	3.499	70	2.729	55	50-135	25	0-25	
Endosulfan I	ND	5.000	3.192	64	3.568	71	50-135	11	0-25	
Endosulfan II	ND	5.000	3.589	72	4.118	82	50-135	14	0-25	
Endosulfan Sulfate	ND	5.000	3.742	75	4.220	84	50-135	12	0-25	
Endrin	ND	5.000	4.097	82	4.434	89	50-135	8	0-25	
Endrin Aldehyde	ND	5.000	3.325	67	3.729	75	50-135	11	0-25	
Endrin Ketone	ND	5.000	3.955	79	4.184	84	50-135	6	0-25	
Heptachlor	ND	5.000	4.140	83	4.272	85	50-135	3	0-25	
Heptachlor Epoxide	ND	5.000	3.786	76	4.233	85	50-135	11	0-25	
Methoxychlor	ND	5.000	3.799	76	2.991	60	50-135	24	0-25	
Alpha Chlordane	ND	5.000	4.068	81	4.226	85	50-135	4	0-25	
Gamma Chlordane	ND	5.000	5.180	104	5.994	120	50-135	15	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 3545 EPA 8270C SIM

06/05/13

Project: POLA_YTI_B214-220

Page 8 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
Reference		Soil		GC/MS MM	06/06/	13	06/07/13 13:46	130606S10A		
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
2,4,6-Trichlorophenol	ND	1000	887.2	89	892.6	89	40-160	1	0-20	
2,4-Dichlorophenol	ND	1000	774.8	77	742.5	74	40-160	4	0-20	
2-Methylphenol	ND	1000	797.0	80	795.3	80	40-160	0	0-20	
2-Nitrophenol	ND	1000	785.4	79	751.0	75	40-160	4	0-20	
4-Chloro-3-Methylphenol	ND	1000	877.9	88	833.3	83	40-160	5	0-20	
Acenaphthene	ND	1000	735.6	74	747.4	75	40-106	2	0-20	
Benzo (a) Pyrene	ND	1000	969.4	97	957.1	96	17-163	1	0-20	
Chrysene	ND	1000	866.0	87	857.3	86	17-168	1	0-20	
Di-n-Butyl Phthalate	ND	1000	804.3	80	799.4	80	40-160	1	0-20	
Dimethyl Phthalate	147.9	1000	975.4	83	975.3	83	40-160	0	0-20	
Fluoranthene	ND	1000	832.0	83	817.8	82	26-137	2	0-20	
Fluorene	ND	1000	792.9	79	798.2	80	59-121	1	0-20	
N-Nitrosodimethylamine	ND	1000	563.9	56	558.7	56	40-160	1	0-20	
Naphthalene	ND	1000	697.2	70	653.8	65	21-133	6	0-20	
Phenanthrene	ND	1000	802.7	80	789.8	79	54-120	2	0-20	
Phenol	23.16	1000	649.3	63	663.1	64	40-160	2	0-20	
Pyrene	ND	1000	858.4	86	849.4	85	6-156	1	0-46	

RPD: Relative Percent Difference. CL: Control Limits

06/05/13

13-06-0316

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

EPA 3545 EPA 8270C SIM PCB Congeners

Project: POLA_YTI_B214-220 Page 9 of 10

Method:

Quality Control Sample ID		Matrix Instrument		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch		Number
Reference		Soil		GC/MS HHH	06/06/	13	06/11/13 21:29	130	606S09A	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
PCB018	ND	25.00	18.68	75	16.45	66	50-125	13	0-30	
PCB028	ND	25.00	21.04	84	18.49	74	50-125	13	0-30	
PCB044	ND	25.00	21.10	84	18.47	74	50-125	13	0-30	
PCB052	ND	25.00	20.58	82	17.74	71	50-125	15	0-30	
PCB066	ND	25.00	22.46	90	19.57	78	50-125	14	0-30	
PCB077	ND	25.00	22.56	90	19.52	78	50-125	14	0-30	
PCB101	ND	25.00	22.03	88	19.10	76	50-125	14	0-30	
PCB105	ND	25.00	22.59	90	19.41	78	50-125	15	0-30	
PCB118	ND	25.00	22.94	92	19.85	79	50-125	14	0-30	
PCB126	ND	25.00	21.01	84	18.14	73	50-125	15	0-30	
PCB128	ND	25.00	21.93	88	19.03	76	50-125	14	0-30	
PCB153	ND	25.00	21.30	85	18.24	73	50-125	16	0-30	
PCB170	ND	25.00	26.20	105	22.09	88	50-125	17	0-30	
PCB180	ND	25.00	22.42	90	19.27	77	50-125	15	0-30	
PCB187	ND	25.00	21.62	86	18.59	74	50-125	15	0-30	
PCB206	ND	25.00	28.31	113	23.87	95	50-125	17	0-30	

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA_YTI_B214-220

Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 3550B (M)

06/05/13

Organotins by Krone et al.

Page 10 of 10

Quality Control Sample ID		Matrix		Instrument Date Prepared		Date Analyzed	MS/MSD Batch Numbe		Number	
Reference		Soil		GC/MS JJJ	06/06/1	3	06/12/13 14:09	130	606S23A	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Tetrabutyltin	ND	100.0	46.28	46	52.45	52	79-175	12	0-31	3
Tributyltin	ND	100.0	116.1	116	112.3	112	69-135	3	0-29	

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3050B EPA 6020

Project: POLA_YTI_B214-220

Page 1 of 1

Quality Control Sample ID	Matrix	Instrument	Date Prepare	ed Date Analy	zed PDS/P	DSD Batch Number
Reference	Soil	ICP/MS 03	06/06/13 00:0	00 06/06/13 1	7:12 130606	S03
<u>Parameter</u>	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	%Rec. CL	Qualifiers
Arsenic	2.035	25.00	28.11	104	75-125	
Cadmium	0.1388	25.00	25.07	100	75-125	
Chromium	15.12	25.00	39.54	98	75-125	
Copper	7.364	25.00	34.56	109	75-125	
Lead	3.817	25.00	29.60	103	75-125	
Nickel	7.717	25.00	33.66	104	75-125	
Selenium	0.2289	25.00	25.94	103	75-125	
Silver	0.1249	12.50	10.74	85	75-125	
Zinc	33.07	25.00	63.41	121	75-125	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 N/A EPA 376.2M

06/05/13

Project: POLA_YTI_B214-220

Page 1 of 3

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
Reference	Soil	N/A	06/06/13 00:00	06/06/13 12:30	D0606SD1
Parameter	Sample Con	c. DUP Conc.	RPD	RPD CL	Qualifiers
Sulfide, Total	0.5000	0.5000	0	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 N/A EPA 376.2M

06/05/13

Page 2 of 3

Project: POLA_YTI_B214-220

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
Reference	Soil	N/A	06/05/13 00:00	06/05/13 20:10	D0605DSD2
Parameter	Sample Cond	c. <u>DUP Conc.</u>	<u>RPD</u>	RPD CL	Qualifiers
Sulfide, Dissolved	ND	ND	N/A	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0316 N/A

06/05/13

SM 2540 B (M) Page 3 of 3

Project: POLA_YTI_B214-220

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
Reference	Soil	N/A	06/06/13 00:00	06/06/13 18:30	D0606TSD3
Parameter	Sample Cond	c. <u>DUP Conc.</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Solids, Total	71.10	71.30	0	0-10	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 N/A

EPA 9060A Page 1 of 11

Project: POLA_YTI_B214-220

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date A	Analyzed	LCS/LCSD Bar	tch Number
099-06-013-872		Soil		TOC 5	06/11/13	06/12/	13 12:05	D0611TOCL1	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	0.6000	0.5254	88	0.5668	94	80-120	8	0-20	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0316 N/A

06/05/13

Method: SM 4500-NH3 B/C (M)

Page 2 of 11

Project: POLA_YTI_B214-220

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date A	Analyzed	LCS/LCSD Bat	tch Number
099-12-816-60		Soil		BUR05	06/12/13	06/12/	13 13:45	D0612NH3L1	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	10.00	8.960	90	8.680	87	80-120	3	0-20	

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 Extraction EPA 418.1M

Project: POLA_YTI_B214-220

Page 3 of 11

Quality Control Sample ID	Matrix	Instrument	Date Analy	/zed	LCS Batch Number
099-07-015-1928	Soil	IR 2	06/12/13 1	2:00	130612L01
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
TRPH	100.0	94.86	95	70-130	1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0316 EPA 3550B EPA 8015B (M)

06/05/13

Method:

LI A 00 13D (W)

Project: POLA_YTI_B214-220

Page 4 of 11

Quality Control Sample ID	Matrix	Instrument	Date Anal	yzed	LCS Batch Number
099-15-490-352	Soil	GC 45	06/07/13 (07:30	130606B02
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. (</u>	CL Qualifiers
TPH as Diesel	400.0	415.1	104	75-123	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

13-06-0316 EPA 3540C EPA 8270D (M)/TQ/EI

06/05/13

Page 5 of 11

Project: POLA_YTI_B214-220

Quality Control Sample ID	Matr	ix	Instrument	Date Analyzed	LCS Batch I	Number
099-14-403-33	Sedi	iment	GCTQ 1	06/12/13 17:09	130611L01	
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Allethrin	5.000	4.177	84	25-200	0-229	
Bifenthrin	5.000	3.866	77	25-200	0-229	
Cyfluthrin	5.000	3.305	66	25-200	0-229	
Cypermethrin	5.000	3.352	67	25-200	0-229	
Deltamethrin/Tralomethrin	5.000	3.670	73	25-200	0-229	
Fenpropathrin	5.000	3.686	74	25-200	0-229	
Fenvalerate/Esfenvalerate	10.00	6.106	61	25-200	0-229	
Fluvalinate	5.000	3.784	76	25-200	0-229	
Permethrin (cis/trans)	5.000	3.826	77	25-200	0-229	
Phenothrin	5.000	4.621	92	25-200	0-229	
Resmethrin/Bioresmethrin	5.000	4.709	94	25-200	0-229	
Tetramethrin	5.000	3.533	71	25-200	0-229	
lambda-Cyhalothrin	5.000	3.243	65	25-200	0-229	

Total number of LCS compounds: 13

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3050B EPA 6020

Project: POLA_YTI_B214-220

Page 6 of 11

Quality Control Sample ID	Matrix	Instrument	Date Ana	lyzed	LCS Batch Number
099-15-254-112	Soil	ICP/MS 03	06/06/13	17:03	130606L03E
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. (</u>	<u>Qualifiers</u>
Arsenic	25.00	24.75	99	80-120	
Cadmium	25.00	24.56	98	80-120	
Chromium	25.00	24.95	100	80-120	
Copper	25.00	26.62	106	80-120	
Lead	25.00	25.25	101	80-120	
Nickel	25.00	25.85	103	80-120	
Selenium	25.00	24.25	97	80-120	
Silver	12.50	10.51	84	80-120	
Zinc	25.00	27.25	109	80-120	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-06-0316 EPA 7471A Total EPA 7471A

06/05/13

Project: POLA_YTI_B214-220

LCS Batch Number

Page 7 of 11

Quality Control Sample ID	Matrix	Instrument	Date Ana	llyzed	LCS Batch Number
099-12-452-381	Soil	Mercury	06/07/13	12:54	130607L01E
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
Mercury	0.8350	0.8366	100	82-124	

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3545 EPA 8081A

Project: POLA_YTI_B214-220

Page 8 of 11

Quality Control Sample ID	Mati	rix	Instrument	Date Analyzed	LCS Batch N	lumber
099-12-858-203	Soil		GC 51	06/07/13 13:14	130606L07	
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Aldrin	5.000	3.408	68	50-135	36-149	
Alpha-BHC	5.000	3.192	64	50-135	36-149	
Beta-BHC	5.000	2.987	60	50-135	36-149	
Delta-BHC	5.000	2.644	53	50-135	36-149	
Gamma-BHC	5.000	3.179	64	50-135	36-149	
Dieldrin	5.000	3.204	64	50-135	36-149	
4,4'-DDD	5.000	3.357	67	50-135	36-149	
4,4'-DDE	5.000	3.355	67	50-135	36-149	
4,4'-DDT	5.000	3.390	68	50-135	36-149	
Endosulfan I	5.000	3.336	67	50-135	36-149	
Endosulfan II	5.000	3.336	67	50-135	36-149	
Endosulfan Sulfate	5.000	3.223	64	50-135	36-149	
Endrin	5.000	3.664	73	50-135	36-149	
Endrin Aldehyde	5.000	2.749	55	50-135	36-149	
Endrin Ketone	5.000	3.412	68	50-135	36-149	
Heptachlor	5.000	3.330	67	50-135	36-149	
Heptachlor Epoxide	5.000	3.166	63	50-135	36-149	
Methoxychlor	5.000	3.516	70	50-135	36-149	
Alpha Chlordane	5.000	3.214	64	50-135	36-149	
Gamma Chlordane	5.000	3.231	65	50-135	36-149	

Total number of LCS compounds: 20
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/05/13 13-06-0316 EPA 3545 EPA 8270C SIM

Project: POLA_YTI_B214-220

Page 9 of 11

Quality Control Sample ID	Mat	rix	Instrument	Date Analyzed	LCS Batch Number	
099-14-256-35	Soil		GC/MS MM	06/07/13 12:54	130606L10	
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
2,4,6-Trichlorophenol	1000	614.2	61	40-160	20-180	
2,4-Dichlorophenol	1000	599.4	60	40-160	20-180	
2-Methylphenol	1000	614.7	61	40-160	20-180	
2-Nitrophenol	1000	605.2	61	40-160	20-180	
4-Chloro-3-Methylphenol	1000	571.3	57	40-160	20-180	
Acenaphthene	1000	725.7	73	48-108	38-118	
Benzo (a) Pyrene	1000	955.4	96	17-163	0-187	
Chrysene	1000	813.7	81	17-168	0-193	
Di-n-Butyl Phthalate	1000	852.0	85	40-160	20-180	
Dimethyl Phthalate	1000	580.4	58	40-160	20-180	
Fluoranthene	1000	793.7	79	26-137	8-156	
Fluorene	1000	756.7	76	59-121	49-131	
N-Nitrosodimethylamine	1000	616.2	62	40-160	20-180	
Naphthalene	1000	698.5	70	21-133	2-152	
Phenanthrene	1000	764.6	76	54-120	43-131	
Phenol	1000	482.1	48	40-160	20-180	
Pyrene	1000	806.8	81	28-106	15-119	

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Method:

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

EPA 3545 EPA 8270C SIM PCB Congeners

Project: POLA_YTI_B214-220

Page 10 of 11

06/05/13

13-06-0316

Quality Control Sample ID	Matrix		Matrix Instrument		LCS Batch Number	
099-14-341-103	Soil		GC/MS HHH	06/07/13 16:11	130606L09	
Parameter	Spike Added	<u>Conc.</u> <u>Recovered</u>	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
PCB018	25.00	18.33	73	50-125	38-138	
PCB028	25.00	18.81	75	50-125	38-138	
PCB044	25.00	18.82	75	50-125	38-138	
PCB052	25.00	17.72	71	50-125	38-138	
PCB066	25.00	18.01	72	50-125	38-138	
PCB077	25.00	18.83	75	50-125	38-138	
PCB101	25.00	18.37	73	50-125	38-138	
PCB105	25.00	17.03	68	50-125	38-138	
PCB118	25.00	19.39	78	50-125	38-138	
PCB126	25.00	15.63	63	50-125	38-138	
PCB128	25.00	16.38	66	50-125	38-138	
PCB153	25.00	16.51	66	50-125	38-138	
PCB170	25.00	16.56	66	50-125	38-138	
PCB180	25.00	16.53	66	50-125	38-138	
PCB187	25.00	15.19	61	50-125	38-138	
PCB206	25.00	16.98	68	50-125	38-138	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA_YTI_B214-220

Date Received: Work Order: Preparation:

13-06-0316 EPA 3550B (M)

06/05/13

Method: Organotins by Krone et al.

Page 11 of 11

Quality Control Sample ID	Matrix	Instrument	Date An	alyzed	LCS Batch Number
099-07-016-1030	Soil	GC/MS JJJ	06/10/13	3 12:32	130606L23
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. (</u>	CL Qualifiers
Tetrabutyltin	100.0	100.0	100	79-151	
Tributyltin	100.0	101.5	102	51-129	

Glossary of Terms and Qualifiers

Work Order: 13-06-0316 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

SG The sample extract was subjected to Silica Gel treatment prior to analysis.X % Recovery and/or RPD out-of-range.

concentration by a factor of four or greater.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

algoience Privironmental Aboratories, inc.

7440 LINCOLN WAY

CHAIN OF CUSTODY RECORD

N

Р

PAGE:

TEL: (714) 895-5494 · FAX: (714) 894-7501 GARDEN GROVE, CA 92841-1432

ывоватову сцем: AMEC Earth & Environmental	onmental				₽ 9	CLIENT PHOJECT N	 	ме/иимвен: В214-220					P.O. NO.:		
ADDRESS. 3210 Sky Park Court, Suite 200	uite 200				Ξ <u>μ</u> Ξ	PHOJECI CONTAC	ACI:						Temp Blank.:		
San Diego, CA 92123					S S	SAMPLER(S): (SIGNATURE	IGNATURE)					-	LAB USE ON	T	Ī
58-449-2334	E-MAIL: tyter.huff@	: tvler.huff@amec.com			17	X		A.						113-U6-UF16	
TURNAROUND TIME	_ анву а	L	10 DAYS						REC	REQUESTED ANALYSIS	D ANA	YSIS.			3
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVE SAMPLES UNTIL SPECIAL INSTRUCTIONS:	COSTS MAY APPLY)					794 M									
Test sediment according to attached table.	ording to attac	hed table.				ha i									
- Report all applicable totals	applica	ble tot	els.	_	Table	مأري									
sport r	tsw151	r dyy r	RIGH	L.	, paq										
SAMPLEID	LOCATION/	SAMPLING	Town P	MAT-	NO. OF CONT.									COMMENTS	
Doforonce	1 A.3 Beforence	6/2/2013	1030	SED	4 \ ×	_									Τ
															T
Relinquiehed by: (Signardie)	6	6/5/13 16	10:30	He see	red by: (Signature)	ature)							Date: 6/5/13	Time: $10:30$	
(Signature)	1.47 6/5/13	15/13				ature)					Q	7 C		3 Time 6.3	
Shed by: (Signature)				Receive	d by: (Sign	(Signature)		1			67		1/39/9×	3 Time; 93C	
				1									. /	•	

Final Sampling and Analysis Plan Berths 212-224 [YTI] Container Terminal Improvements Project Port of Los Angeles AMEC Project No. 1015101929 April 2013

Table 4-2. Chemical Analyses for Elutriate, Sediment and Tissue Samples

Analyte	Analysis Method	Elutriate Target Detection Limits ^{a, b}	Sediment Target Detection Limits ^{a, b}	Tissue Target Detection Limits ^{a, b}
Total Solids	160.3/SM 2540 B	N/A	0.1 %	0.100 %
Total Organic Carbon	9060	N/A	0.1 %	N/A
Total Ammonia	SM 4500-NH3 B/C (M)/350.2M°	N/A	0.2 mg/kg	N/A
Total Sulfides	376.2M ^c	N/A	0.5 mg/kg	N/A
Soluble Sulfides	SM 4500 S2 – D°	N/A	0.5 mg/kg	N/A
Arsenic	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Cadmium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Chromium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.02 mg/kg
Copper	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Lead	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Mercury	7471A ^d	0.0002 mg/L	0.02 mg/kg	0.02 mg/kg
Nickel	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Selenium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Silver	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Zinc	6020/6010B ^d	0.005 mg/L	1.0 mg/kg	1.0 mg/kg
Total Lipids	NOAA 1993a ¹	N/A	N/A	0.1 %
TRPH	418.1M ^d	N/A	10 mg/kg	N/A
TPH (C6-C44)	8015B(M)/8015B ^d	N/A	5.0 mg/kg	N/A
PAHs ^e	8270C SIM/ GC/TQd	0.2 μg/L	10 μg/kg	10 μg/kg
Chlorinated Pesticides [†]	8081A ^d	0.1 μg/L	1.0 – 20 μg/kg	0.5 - 20 μg/kg
PCB Congeners ^g	8270C SIM PCB ^d	0.02 μg/L	0.5 μg/kg	0.5 μg/kg
Phenols	8270C SIM d	N/A	20 – 100 μg/kg	N/A
Pyrethroids	GC/MS/MS ^J	N/A	0.5 – 1.0 μg/kg	N/A
Phthalates	8270C SIM ^d	N/A	10 μg/kg	N/A
Organotins	Rice/Krone ^h	3.0 ng/L	3.0 µg/kg	N/A

Notes: OSVAINSIZE

Reporting limits provided by Calscience Environmental Laboratories, Inc.

Standard Methods for the Examination of Water and Wastewater, 19th Edition American Public Health Association et al. 1995.

USEPA 1986-1996. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.

Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene.

Includes aldrin, α-benzene hexachloride (BHC), β-BHC, γ-BHC (lindane), δ-BHC, chlordane, 2,4- and 4,4dichlorodiphenyldichloroethane (DDD), 2,4- and 4,4-dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, and toxaphene.

PCBs (sum of 41 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194,201, and 206)

Rice, C.D. et al. 1987, or similar (e.g. Krone et al. 1989)

NOAA 1993

Allethrin (Bioallethrin), Bifenthrin, Cyfluthrin-beta (Baythroid), Cyhalothrin-Lamba, Cypermethrin, Deltamethrin (Decamethrin), Esfenvalerate, Fenpropathrin (Danitol), Fenvalerate (sanmarton), Fluvalinate, Permethrin (cis and trans), Resmethrin (Bioresmethrin), Resmethrin, Sumithrin (Phenothrin), Tetramethrin, and Tralomethrin

micrograms per kilogram (parts per billion) PAH polycyclic aromatic hydrocarbon μg/kg PCB polychlorinated biphenyl micrograms per liter μg/L milligrams per kilogram (parts per million) Standard Methods mg/kg milligrams per liter standard operating procedure mg/L total petroleum hydrocarbons nanograms per liter

total recoverable petroleum hydrocarbons not applicable

* purethroids are mightighted because there was a change page 4-5 from the SAP. All analytes on this table should be measured.

WORK ORDER #: 13-06- □

SAMPLE RECEIPT FORM	Cooler _	of
CLIENT: AMEC DATE:	06 /0	DS 13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen except	sediment/tis	sue)
Temperature°C - 0.2°C (CF) =°C Blank	☐ Sam	ple
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		
\square Sample(s) outside temperature criteria but received on ice/chilled on same day of sam	ıpling.	
☐ Received at ambient temperature, placed on ice for transport by Courier.		1./
Ambient Temperature: □ Air □ Filter	Init	ial:
CUSTODY SEALS INTACT:		16
□ Cooler □ □ No (Not Intact) ☑ Not Present □ N/		tial:
□ Sample □ □ No (Not Intact) ✓ Not Present	Ini	tial: <u>H</u>
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		. \square
COC document(s) received complete		
\square Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours □		

Tedlar bag(s) free of condensation..... □ **CONTAINER TYPE:** Solid: □4ozCGJ Ø8ozCGJ Ø16ozCGJ □Sleeve() □EnCores® □TerraCores® Ø 2

Proper preservation noted on COC or sample container......

Volatile analysis container(s) free of headspace..... □

☐ Unpreserved vials received for Volatiles analysis

Water: □VOA □VOAh □VOAna2 □125AGB □125AGBh □125AGBp □1AGB □1AGBna2 □1AGBs □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □1PBna □500PB

□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □____ □

Air: Tedlar® Canister Other: Trip Blank Lot#:_____ Labeled/Checked by:

Reviewed by: 10) Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by: 1/2 So₄ u: Ultra-pure znna: ZnAc₂+NaOH f: ZnAc₂ u: Ultra-pure znna: ZnAc₂ u: Ultra-pu

CALSCIENCE

WORK ORDER NUMBER: 13-06-0713

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: POLA Berths 217-224 (YTI) Container

Terminal

Attention: Barry Snyder

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

ResultLink >

Email your PM >

Janelle june

Approved for release on 06/20/2013 by: Danielle Gonsman

Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: POLA Berths 217-224 (YTI) Container Terminal

Work Order Number: 13-06-0713

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data	5 5
4	Particle Size Graphs	6
5	Glossary of Terms and Qualifiers	8
6	Chain of Custody/Sample Receipt Form	9

Work Order Narrative

Work Order: 13-06-0713 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/11/13. They were assigned to Work Order 13-06-0713.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project Name:

13-06-0713 POLA Berths 217-224 (YTI) Container Terminal

PO Number:

Work Order:

Date Received: 06/11/13

Attn: Barry Snyder

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
Sail Bay Fine Grain Size Control	13-06-0713-1	06/11/13 14:15	1	Sediment
EOH Home Sediment	13-06-0713-2	06/11/13 14:15	1	Sediment

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

06/11/13 13-06-0713

Preparation:

N/A

Method:

ASTM D4464 (M)

Units:

70

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Sail Bay Fine Grain Size Control	13-06-0713-1-A	06/11/13 14:15	Sediment	LPSA 1	N/A	06/12/13 12:02	
Parameter				Result		Qualifiers	
Clay (less than 0.00391mm)				15.45			
Silt (0.00391 to 0.0625mm)				76.18			
Total Silt and Clay (0 to 0.0625mm)				91.63			
Very Fine Sand (0.0625 to 0.125mm)				8.24			
Fine Sand (0.125 to 0.25mm)				0.13			
Medium Sand (0.25 to 0.5mm)				ND			
Coarse Sand (0.5 to 1mm)				ND			
Very Coarse Sand (1 to 2mm)				ND			
Gravel (greater than 2mm)				ND			

Parameter	Result	<u>Qualifiers</u>	
Clay (less than 0.00391mm)	1.08		
Silt (0.00391 to 0.0625mm)	3.08		
Total Silt and Clay (0 to 0.0625mm)	4.17		
Very Fine Sand (0.0625 to 0.125mm)	3.21		
Fine Sand (0.125 to 0.25mm)	35.81		
Medium Sand (0.25 to 0.5mm)	54.42		
Coarse Sand (0.5 to 1mm)	2.34		
Very Coarse Sand (1 to 2mm)	0.050		
Gravel (greater than 2mm)	ND		

PARTICLE SIZE SUMMARY

(ASTM D422 / D4464M)

AMEC Envi	ronment & Infrastructure	Date Sampled:	6/11/2013
9210 Sky P	ark Court, Suite 200	Date Received:	6/11/2013
San Diego,	CA 92123-4302	Work Order No:	13-06-0713
		Date Analyzed:	6/12/2013
		Method:	ASTM D4464M
Project:	POLA Berths 217-224 (YTI) Container Terminal		Page 1 of 2

Sample ID	Depth ft	Description	Mean Grain Size mm
Sail Bay Fine Grain Size Control	_	Silt	0.023

		Particle	Size Distribution	, wt by perce	ent			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.00	0.00	0.00	0.13	8.24	76.18	15.45	91.63

PARTICLE SIZE SUMMARY

(ASTM D422 / D4464M)

AMEC Env	ironment & Infrastructure	Date Sampled:	6/11/2013
9210 Sky P	Park Court, Suite 200	Date Received:	6/11/2013
San Diego,	CA 92123-4302	Work Order No:	13-06-0713
		Date Analyzed:	6/12/2013
		Method:	ASTM D4464M
Project:	POLA Berths 217-224 (YTI) Container Terminal		Page 2 of 2

Sample ID	Depth ft	Description	Mean Grain Size mm
EOH Home Sediment		Medium Sand	0.271

		Particle	Size Distribution	, wt by perce	ent			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.05	2.34	54.42	35.81	3.21	3.08	1.08	4.17

Glossary of Terms and Qualifiers

Work Order: 13-06-0713 Page 1 of 1

Qualifiers	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Χ % Recovery and/or RPD out-of-range. Ζ
 - Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

** alsolence	7440
" nvironmental	GAR
aboratories, inc.	TEL:

(714) 895-5494 . FAX: (714) 894-7501

) LINCOLN WAY IDEN GROVE, CA 92841-1432

14

CHAIN OF CUSTODY RECORD DATE: $6l_{l,l}$ /2013

Р

PAGE:

LABO	LABORATORY CLIENT:					_	CELEN	PROJE	TNAM	CLIENT PROJECT NAME / NUMBER	3ER:					of particle of colors and color	_	P.O. NO.:			A CONTRACTOR OF THE PARTY OF TH		
ADDRESS						T	Ber	hs 2	17-2	Berths 217-224 (YTI) Container Terminal	Č E	ontai	ner T	ermi	nal			1015101929	0192	တ			
9210	9210 Sky Park Ct # 200						PROJECT CONTACT	T CON	rACT:								0	QUOTE NO.	 9				
CITY:	,						Barı	y Sn	yder	Barry Snyder/Tyler Huff	H	_					_	- 1					
San	San Diego, CA 92123						SAMPLER(S): (SIGNATURE)	:R(S): (8	SIGNATI	JRE)								LABUSE) No S		Ì	[
™ 358-4	TEL: 358-449-2334	E-Mail tyler.huff@amec.com		E-MAIL			\hat{Z}_{j}	S t														6	
TURN,								•				ו נ	L	H		3	9						
	SAME DAY 🔲 24 HR 🏻	48HR X 72 HR	☐ 5 DAYS	\\S	10 DAYS							אב	Д О	0	REGUES I EU AIVALTSIS	ALT	010	***************************************					
SPEC	SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)	COSTS MAY APPLY)								sə									^	\vdash			
	RWQCB REPORTING [☐ ARCHIVE SAMPLES UNTIL	S UNTIL	/			pə			bill									H				
SPEC	SPECIAL INSTRUCTIONS Dobiollo Consernor is DM						uinb	uo		ıs p				səpi				•	1/6				
ğğ	Green Book Testing						ea si	Carb	9	əvlo				oitse	s.i				<u> </u>				
<u>Б</u>	Please see attached Sheet for Analysis. Please report all applicable totals (i.e. PCBs_PAHs_efc.)	et for Analysis. Je totals (i.e. PCBs. PA	Hs etc)				st tesi lide	ganic	inomn	esiQ b				9 bet	əuəbu				M				
LAB		L OCATION!	SAMPLING	LING	1				n A I	ue I				srin	၀၁				עכ				
USE ONLY	SAMPLE ID	DESCRIPTION	DATE	TIME	n Aztrit	_k Cort	səl9		Tota	stoT	stəM	IAAT HAT	HA9	оио	ьсв	Pher	Pyre Phth	Orga	6				
7	Composite Area A	Port of Los Angeles	6/ /113	×	13.	<u> </u>	┰	×	×	×	+	×	××	(×)	X	╀	 /	╀		\vdash	-		
	Composite Area A-Z	Port of Las Angeles	61//3		sediment	X	×	<u>*</u>	<u> </u>	×	×	×	×	×	×	×	×	×					
	Composite Ayea B	Port of Los Angeles	Xe1/ /9		sediment	Z	×	×	×	K	×	×	X	×	K	×	2	X					
\	Composite Area B-2/	Port of Los Angelos	6/ //13	\triangleright	sediment	7	×	×	×	×	×	×	×	X	×	×	×	×					
	1	Port of Los Angeles	6/ /13		sediment	7	×	×	×	×	×	×	X	×	×	×	×	×					
	BANB			7117	402														×				
•	Sail Bay Fine	Sail Bay Fine Graw-STE (Ontrol	211119	CALLED	無														×				
2	EDH HOME SECRETURENT	liment	6/11/12	1415	795																		
													_										
Relinc	Relinquished by: (Signature)				Redeil Boley.	Signature)	<u>e</u>] /		-			16		Date:		Ŋ	Z Time:	8		
Re T	Ashel hv. (Signature)				Feceived by:	innature)	(e)			1						1	1		1				
×		A CONTRACTOR OF THE PROPERTY O				B	, "N	N	COMPANY SERVICE SERVIC		J	0	P				8		\sim	5)	かる	(Pad
Relin	Relinquished by: (Signature)				Received by: (Signature)	Signatu	<u>(e</u>										Date:			Time:			e 9 o
	opione per adramenta de comunicación de moderna de la casa de como de la casa de comunicación de casa de casa d	HETOTOGOSHETOSOGONOMENNEN KALA ALBONOGOSTODA MENDONOGONOGONOGONOGONOGONOGONOGONOGONOGON						A Company of the Comp															<u>f</u> 11

WORK ORDER #: 13-06- □ □ □ □

SAMPLE RECEIPT FORM Cooler

Cooler 1 of 1

CLIENT: ANEC D	ATE: _	06 / 11	/13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen extended to the contact of the contact	Blank	☐ Samp	
☐ Received at ambient temperature, placed on ice for transport by Cour Ambient Temperature: ☐ Air ☐ Filter	ier.	Initia	al:
CUSTODY SEALS INTACT: Cooler	□ N/A	Initi Initi	
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples	1	No 🗆	N/A
No analysis requested. Not relinquished. No date/time relinquished. Sampler's name indicated on COC			
Analyses received within holding time			
Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation CONTAINER TYPE:		Cornos® - I	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □ □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □	1AGB	□1AGB na ₂	2 □1AGB s

□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ □ □

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Air: DTedlar® Canister Other: D_____ Trip Blank Lot#:____ Labeled/Checked by: D

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:

SAMPLE ANOMALY FORM

SAMPLES - CONTAINE	RS & LA	BELS:			Comme	ents:	
□ Sample(s) NOT RECE □ Sample(s) received but □ Holding time expired □ Insufficient quantities □ Improper container(s) □ Improper preservative □ No preservative noted □ Sample labels illegible □ Sample label(s) do no □ Sample label(s) do no □ Project Informati □ # of Container(s) □ Analysis □ Sample container(s) □ Water present in □ Broken □ Sample container(s) r □ Air sample container □ Flat □ Very low in volute □ Leaking (Not tra □ Leaking (transfe □ Leaking (transfe	at NOT L — list sam for anal used — l used — d on COO e — note t t match comprom sample not labele (s) comp	ISTED on Couple ID(s) anysis — list test list test list test contained — Note container ed comised — duplicate o Calscience	d test est list test 8 er type in comm	nents nents comments omitted) Bag*)	` '/	abel	tion date
Other:							
HEADSPACE – Contain	ers with	n Bubble >	6mm o	r ¼ inch:			
Sample # Container # of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Analysis
		<u>, , , , , , , , , , , , , , , , , , , </u>					
Comments:			-				
*Transferred at Client's reque	st.		-		lr	nitial / Da	te: <u>D 06 /// /13</u>

CALSCIENCE

WORK ORDER NUMBER: 13-06-0714

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: POLA Berths 217-224 (YTI) Container

Terminal

Attention: Barry Snyder

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

ResultLink >

Email your PM >

Danille ponce

Approved for release on 06/25/2013 by: Danielle Gonsman

Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: POLA Berths 217-224 (YTI) Container Terminal

Work Order Number: 13-06-0714

1	Case Narrative	3
2	Work Order Narrative	5
3	Sample Summary	6
4	Client Sample Data. 4.1 EPA 376.2 (M) Total Sulfide (Soil). 4.2 EPA 376.2 (M) Dissolved Sulfide (Soil). 4.3 EPA 9060A Total Organic Carbon (Soil). 4.4 SM 2540 B (M) Total Solids (Soil). 4.5 SM 4500-NH3 B/C (M) Ammonia (Soil). 4.6 EPA 418.1 (M) TRPH (Soil). 4.7 EPA 8015B (M) C6-C44 (Soil). 4.8 Pyrethroids by EPA 8270D (M)/TQ/EI (Sediment). 4.9 EPA 6020 ICP/MS Metals (Soil). 4.10 EPA 7471A Mercury (Soil). 4.11 ASTM D4464 (M) Particle Size Laser (Soil). 4.12 EPA 8081A Organochlorine Pesticides (Soil). 4.13 EPA 8270C SIM (Soil). 4.14 EPA 8270C SIM PCB Congeners (Soil). 4.15 Krone et al. Organotins (Soil).	7 8 9 10 11 12 13 15 17 18 19 20 22 26 30
5	Particle Size Graphs	31
6	Quality Control Sample Data. 6.1 MS/MSD. 6.2 PDS/PDSD. 6.3 Sample Duplicate. 6.4 LCS/LCSD.	32 32 42 43 46
7	Glossary of Terms and Qualifiers	57
8	Chain of Custody/Sample Receipt Form	58

CASE NARRATIVE

Calscience Work Order No.: 13-06-0714
Project ID: Berths 217-224 (YTI) Container Terminal

Provided below is a narrative of our analytical effort, including any unique features or anomalies encountered as part of the analysis of the sediment samples.

Sample Condition on Receipt

One sediment sample was received for this project on June 11, 2013. The samples were transferred to the laboratory in an ice-chest with wet ice, following strict chain-of-custody (COC) procedures. The temperature of the sample upon receipt at the laboratory was 1.4°C. All samples were logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers and then stored in refrigeration units pending chemistry.

COC discrepancies (if any) were noted in the Sample Anomaly Form.

Tests Performed

Sediment:

Total Solids by SM 2540B
Ammonia by SM 4500-NH3-B/C (M)
Grain Size by ASTM D4464
Dissolved and Total Sulfide by EPA 376.2M
TRPH by EPA 418.1M
TPH C6-C44 by EPA 8015B (M)
Total Organic Carbon by EPA 9060A
Trace Metals by EPA 6020/7471
Chlorinated Pesticides by EPA 8081A
PCB Congeners by EPA 8270C SIM
PAHs, Phenols and Phthalates by EPA 8270C SIM
Pyrethroids by EPA 8270D (M)/TQ/EI
Organotins by Krone et al.

Data Summary

The sediment sample was homogenized prior to analysis.

Holding times

All holding times were met.

<u>Blanks</u>

Concentrations of target analytes in the method blank were found to be below reporting limits for all testing.

Reporting Limits

The Method Detection Limits were met.

Laboratory Control Samples

A Laboratory Control Sample (LCS) analysis was performed for each applicable test. All parameters were within established control limits.

Matrix Spikes

Matrix spiking was performed at the required frequencies for the sediment on the project and non-project samples. All project sample matrix spike parameters outside the acceptable control limits were noted below.

For Chlorinated Pesticides by EPA 8081A DDD, DDT, and methoxychlor were outs the control limits. Since the LCS recoveries were in control the results are released with no further action.

The Zinc matrix spike concentration was above the established control limit. The results have been flagged with the appropriate qualifiers and are released with no further action.

Surrogates

Surrogate recoveries for all applicable tests and samples were within acceptable control limits with the following exception:

For PCB Congeners by EPA 8270C SIM, the 2-fluorobiphenyl recovery was low in sample YTI COMP A. The results have been appropriately flagged.

<u>Acronyms</u>

LCS - Laboratory Control Sample PDS - Post Digestion Spike MS/MSD- Matrix Spike/Matrix Spike Duplicate ME-Marginal Exceedance RPD- Relative Percent Difference

Work Order Narrative

Work Order: 13-06-0714 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/11/13. They were assigned to Work Order 13-06-0714.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Work Order:

13-06-0714

Project Name: PO Number:

POLA Berths 217-224 (YTI) Container Terminal 1015101929

Date Received:

06/11/13

Attn: Barry Snyder

Number of Containers Sample Identification Lab Number **Collection Date and Time** Matrix YTI COMPA 13-06-0714-1 06/11/13 09:00 Sediment

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 N/A EPA 376.2M

Units: mg/kg
Page 1 of 1

Project: POLA Berths 217-224 (YTI) Container Terminal

- ugo : o:

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA		13-06-0714-1-A	06/11/13 09:00	Sediment	N/A	06/17/13	06/17/13 14:45	D0617SL1
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Sulfide, Total			41	1.4		2		
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Sulfide, Total			ND	0.1	0	0.2		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-06-0714 N/A

06/11/13

Units:

EPA 376.2M mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-B	06/11/13 09:00	Sediment	N/A	06/11/13	06/11/13 20:15	D0611DSL2
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Sulfide, Dissolved		ND	0.1	0	0.2		
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Sulfide, Dissolved		ND	0.1	0	0.2		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 06/11/13 13-06-0714 N/A

Method: Units: EPA 9060A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-A	06/11/13 09:00	Sediment	TOC 5	06/17/13	06/17/13 18:28	D0617TOCL1
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Carbon, Total Organic		0.71	0.0	69	1		
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Carbon, Total Organic		ND	0.0	50	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

06/11/13 13-06-0714

Preparation: Method:

SM 2540 B (M)

N/A

Units:

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-D	06/11/13 09:00	Sediment	N/A	06/13/13	06/13/13 19:00	D0613TSB1
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		72.9	0.1	00	1		
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Solids, Total		ND	0.1	00	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 06/11/13 13-06-0714

Preparation:

N/A SM 4500-NH3 B/C (M)

Method: Units:

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-B	06/11/13 09:00	Sediment	BUR05	06/19/13	06/19/13 14:00	D0619NH3L1
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	RL		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Ammonia (as N)		7.7	0.2	27	1		
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Ammonia (as N)		ND	0.2	.0	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0714 Extraction EPA 418.1M mg/kg

06/11/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13-06-0714-1-A	06/11/13 09:00	Sediment	IR 2	06/12/13	06/12/13 12:00	130612L01
dry weight basis.						
	Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
	65	14		1		
	Result	RL		<u>DF</u>	Qua	lifiers
	ND	10		1		
	Number '	Number Collected 13-06-0714-1-A 06/11/13 09:00 a dry weight basis. Result 65 Result	Number Collected 13-06-0714-1-A 06/11/13 09:00 Sediment a dry weight basis. Result 65 RL 14 Result Re	Number Collected 13-06-0714-1-A 06/11/13 09:00 a dry weight basis. Result 65 Result RL 14	Number Collected Prepared 13-06-0714-1-A 06/11/13 09:00 Sediment IR 2 06/12/13 a dry weight basis. Result RL DF 14 DF 14 65 14 1	Number Collected Prepared Analyzed 13-06-0714-1-A 06/11/13 09:00 Sediment IR 2 06/12/13 12:00 06/12/13 12:00 a dry weight basis. Result RL DF Qua Qua 65 14 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3550B EPA 8015B (M)

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 2

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA		13-06-0714-1-D	06/11/13 09:00	Sediment	GC 45	06/12/13	06/12/13 15:20	130612B03
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	6.9)	1		
C7			ND	6.9)	1		
C8			ND	6.9)	1		
C9-C10			ND	6.9)	1		
C11-C12			ND	6.9)	1		
C13-C14			ND	6.9)	1		
C15-C16			ND	6.9)	1		
C17-C18			ND	6.9)	1		
C19-C20			ND	6.9)	1		
C21-C22			ND	6.9)	1		
C23-C24			ND	6.9)	1		
C25-C28			ND	6.9)	1		
C29-C32			ND	6.9)	1		
C33-C36			ND	6.9)	1		
C37-C40			ND	6.9)	1		
C41-C44			ND	6.9)	1		
C6-C44 Total			ND	6.9)	1		
Surrogate			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			80	61-	-145			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

13-06-0714 EPA 3550B EPA 8015B (M)

06/11/13

Units:

mg/kg Page 2 of 2

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-359	N/A	Soil	GC 45	06/12/13	06/12/13 14:09	130612B03
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1		
C7		ND	5.0)	1		
C8		ND	5.0)	1		
C9-C10		ND	5.0)	1		
C11-C12		ND	5.0)	1		
C13-C14		ND	5.0)	1		
C15-C16		ND	5.0)	1		
C17-C18		ND	5.0)	1		
C19-C20		ND	5.0)	1		
C21-C22		ND	5.0)	1		
C23-C24		ND	5.0)	1		
C25-C28		ND	5.0)	1		
C29-C32		ND	5.0)	1		
C33-C36		ND	5.0)	1		
C37-C40		ND	5.0)	1		
C41-C44		ND	5.0)	1		
C6-C44 Total		ND	5.0)	1		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	Qualifiers		
n-Octacosane		80	61-	-145			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-06-0714 **EPA 3540C** EPA 8270D (M)/TQ/EI

06/11/13

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-E	06/11/13 09:00	Sediment	GCTQ 1	06/13/13	06/17/13 23:02	130613L01

Comment(s): - Results are reported on a dry weight basis.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Units:

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Allethrin	ND	0.69	0.35	1	
Bifenthrin	0.41	0.69	0.13	1	J
Cyfluthrin	ND	0.69	0.12	1	
Cypermethrin	ND	0.69	0.094	1	
Deltamethrin/Tralomethrin	ND	0.69	0.29	1	
Fenpropathrin	ND	0.69	0.050	1	
Fenvalerate/Esfenvalerate	ND	0.69	0.049	1	
Fluvalinate	ND	0.69	0.079	1	
Permethrin (cis/trans)	4.5	1.4	0.15	1	
Phenothrin	ND	0.69	0.094	1	
Resmethrin/Bioresmethrin	ND	0.69	0.13	1	
Tetramethrin	ND	0.69	0.052	1	
lambda-Cyhalothrin	ND	0.69	0.060	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
trans-Permethrin(C13)	98	25-200			

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

trans-Permethrin(C13)

Date Received: Work Order: Preparation: Method:

13-06-0714 EPA 3540C EPA 8270D (M)/TQ/EI

06/11/13

Units: ug/kg
Page 2 of 2

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
Method Blank	099-14-403-34	N/A	Sediment	GCTQ 1	06/13/13	06/17/13 22:25	130613L01			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>			
Allethrin	ND		0.50	0.26	1					
Bifenthrin	ND		0.50	0.094	1					
Cyfluthrin	ND		0.50	0.085	1					
Cypermethrin	ND		0.50	0.069	1					
Deltamethrin/Tralomethrin	ND		0.50	0.21	1					
Fenpropathrin	ND		0.50	0.036	1					
Fenvalerate/Esfenvalerate	ND		0.50	0.036	1					
Fluvalinate	ND		0.50	0.057	1					
Permethrin (cis/trans)	ND		1.0	0.11	1					
Phenothrin	ND		0.50	0.069	1					
Resmethrin/Bioresmethrin	ND		0.50	0.092	1					
Tetramethrin	ND		0.50	0.038	1					
lambda-Cyhalothrin	ND		0.50	0.044	1					
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers						

25-200

82

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3050B EPA 6020 mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-E	06/11/13 09:00	Sediment	ICP/MS 03	06/12/13	06/12/13 13:37	130612L01E
Comment(s): - Results are r	reported on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Arsenic		8.77	0.1	37	1		
Cadmium		0.471	0.1	37	1		
Chromium		35.2	0.1	37	1		
Copper		60.1	0.1	37	1		
Lead		27.7	0.1	37	1		
Nickel		27.3	0.1	37	1		
Selenium		0.237	0.1	37	1		
Silver		0.183	0.1	37	1		
Zinc		112	1.3	7	1		

Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Arsenic	ND	0.100	1	
Cadmium	ND	0.100	1	
Chromium	ND	0.100	1	
Copper	ND	0.100	1	
Lead	ND	0.100	1	
Nickel	ND	0.100	1	
Selenium	ND	0.100	1	
Silver	ND	0.100	1	
Zinc	ND	1.00	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0714 EPA 7471A Total EPA 7471A mg/kg

06/11/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA		13-06-0714-1-E	06/11/13 09:00	Sediment	Mercury	06/12/13	06/12/13 13:22	130612L05E
Comment(s):	- Results are reported on a	dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Mercury			0.217	0.0	275	1		
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Mercury			ND	0.0	200	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 06/11/13 13-06-0714

Preparation: Method:

N/A ASTM D4464 (M)

Units:

% o/s

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-C	06/11/13 09:00	Sediment	LPSA 1	N/A	06/12/13 12:21	
<u>Parameter</u>		•		Result		Qualifiers	
Clay (less than 0.00391mm)				22.89			
Silt (0.00391 to 0.0625mm)				74.20			
Total Silt and Clay (0 to 0.0625mm)				97.09			
Very Fine Sand (0.0625 to 0.125mm)				2.91			
Fine Sand (0.125 to 0.25mm)				ND			
Medium Sand (0.25 to 0.5mm)				ND			
Coarse Sand (0.5 to 1mm)				ND			
Very Coarse Sand (1 to 2mm)				ND			
Gravel (greater than 2mm)				ND			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3545 EPA 8081A ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-E	06/11/13 09:00	Sediment	GC 51	06/12/13	06/14/13 14:09	130612L06
Comment(s): - Results are reported on a dry weight basis.							
<u>Parameter</u>		<u>Result</u>	RL	<u> </u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Aldrin		ND	1.4	ļ	1		
Alpha-BHC		ND	1.4	ļ	1		
Beta-BHC		ND	1.4	ļ	1		
Delta-BHC		ND	1.4	1	1		
Gamma-BHC		ND	1.4	ļ	1		
Chlordane		ND	14		1		
Dieldrin		ND	1.4	1	1		
Trans-nonachlor		ND	1.4	ļ	1		
2,4'-DDD		ND	1.4	ļ	1		
2,4'-DDE		ND	1.4	ļ	1		
2,4'-DDT		ND	1.4	ļ	1		
4,4'-DDD		ND	1.4	ļ	1		
4,4'-DDE		3.1	1.4	1	1		
4,4'-DDT		ND	1.4	1	1		
Endosulfan I		ND	1.4	ļ	1		
Endosulfan II		ND	1.4	ļ	1		
Endosulfan Sulfate		ND	1.4	ļ	1		
Endrin		ND	1.4	ļ	1		
Endrin Aldehyde		ND	1.4	1	1		
Endrin Ketone		ND	1.4	ļ	1		
Heptachlor		ND	1.4	ļ	1		
Heptachlor Epoxide		ND	1.4	ļ	1		
Methoxychlor		ND	1.4	ļ	1		
Toxaphene		ND	27		1		
Alpha Chlordane		ND	1.4	ļ	1		
Gamma Chlordane		ND	1.4	ļ	1		
Cis-nonachlor		ND	1.4	ļ	1		
Oxychlordane		ND	1.4	l	1		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		90	50-	-130			
Decachlorobiphenyl		98	50-	-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3545 EPA 8081A ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-858-206	N/A	Soil	GC 51	06/12/13	06/17/13 14:41	130612L06
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Aldrin		ND	1.0		1		
Alpha-BHC		ND	1.0		1		
Beta-BHC		ND	1.0		1		
Delta-BHC		ND	1.0		1		
Gamma-BHC		ND	1.0		1		
Chlordane		ND	10		1		
Dieldrin		ND	1.0		1		
Trans-nonachlor		ND	1.0		1		
2,4'-DDD		ND	1.0		1		
2,4'-DDE		ND	1.0		1		
2,4'-DDT		ND	1.0		1		
4,4'-DDD		ND	1.0		1		
4,4'-DDE		ND	1.0		1		
4,4'-DDT		ND	1.0		1		
Endosulfan I		ND	1.0		1		
Endosulfan II		ND	1.0		1		
Endosulfan Sulfate		ND	1.0		1		
Endrin		ND	1.0		1		
Endrin Aldehyde		ND	1.0		1		
Endrin Ketone		ND	1.0		1		
Heptachlor		ND	1.0		1		
Heptachlor Epoxide		ND	1.0		1		
Methoxychlor		ND	1.0		1		
Toxaphene		ND	20		1		
Alpha Chlordane		ND	1.0		1		
Gamma Chlordane		ND	1.0		1		
Cis-nonachlor		ND	1.0		1		
Oxychlordane		ND	1.0		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		95	50-	130			
Decachlorobiphenyl		92	50-	130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA	13-06-0714-1-E	06/11/13 09:00	Sediment	GC/MS MM	06/17/13	06/18/13 19:36	130617L12
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
1-Methylnaphthalene		ND	14		1		
2,4,5-Trichlorophenol		ND	14		1		
2,4,6-Trichlorophenol		ND	14		1		
2,4-Dichlorophenol		ND	14		1		
2,4-Dimethylphenol		ND	14		1		
2,4-Dinitrophenol		ND	690)	1		
2-Chlorophenol		ND	14		1		
2-Methylnaphthalene		ND	14		1		
2-Methylphenol		ND	14		1		
2-Nitrophenol		ND	14		1		
3/4-Methylphenol		ND	14		1		
4,6-Dinitro-2-Methylphenol		ND	690)	1		
4-Chloro-3-Methylphenol		ND	14		1		
4-Nitrophenol		ND	690)	1		
Acenaphthene		ND	14		1		
Acenaphthylene		15	14		1		
Anthracene		29	14		1		
Benzo (a) Anthracene		27	14		1		
Benzo (a) Pyrene		80	14		1		
Benzo (b) Fluoranthene		100	14		1		
Benzo (g,h,i) Perylene		48	14		1		
Benzo (k) Fluoranthene		82	14		1		
Bis(2-Ethylhexyl) Phthalate		170	14		1		
Butyl Benzyl Phthalate		47	14		1		
Chrysene		48	14		1		
Di-n-Butyl Phthalate		15	14		1		
Di-n-Octyl Phthalate		ND	14		1		
Dibenz (a,h) Anthracene		ND	14		1		
Diethyl Phthalate		ND	14		1		
Dimethyl Phthalate		ND	14		1		
Fluoranthene		70	14		1		
Fluorene		ND	14		1		
Indeno (1,2,3-c,d) Pyrene		42	14		1		
Naphthalene		ND	14		1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 4

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Pentachlorophenol	ND	690	1	
Phenanthrene	17	14	1	
Phenol	ND	14	1	
Pyrene	220	14	1	
1,6,7-Trimethylnaphthalene	ND	14	1	
2,3,4,6-Tetrachlorophenol	ND	14	1	
2,6-Dichlorophenol	ND	14	1	
Dibenzothiophene	ND	14	1	
1-Methylphenanthrene	ND	14	1	
Benzo (e) Pyrene	83	14	1	
Perylene	37	14	1	
Biphenyl	ND	14	1	
2,6-Dimethylnaphthalene	ND	14	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2,4,6-Tribromophenol	72	32-143		
2-Fluorobiphenyl	63	14-146		
2-Fluorophenol	50	15-138		
Nitrobenzene-d5	56	18-162		
p-Terphenyl-d14	71	34-148		
Phenol-d6	63	17-141		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

to Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-256-36	N/A	Soil	GC/MS MM	06/17/13	06/18/13 19:10	130617L12
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
1-Methylnaphthalene		ND	10	0	1		
2,4,5-Trichlorophenol		ND	10	0	1		
2,4,6-Trichlorophenol		ND	10	0	1		
2,4-Dichlorophenol		ND	10	0	1		
2,4-Dimethylphenol		ND	10	0	1		
2,4-Dinitrophenol		ND	5	00	1		
2-Chlorophenol		ND	1	0	1		
2-Methylnaphthalene		ND	1	0	1		
2-Methylphenol		ND	10	0	1		
2-Nitrophenol		ND	10	0	1		
3/4-Methylphenol		ND	10	0	1		
4,6-Dinitro-2-Methylphenol		ND	5	00	1		
4-Chloro-3-Methylphenol		ND	10	0	1		
4-Nitrophenol		ND	5	00	1		
Acenaphthene		ND	1	0	1		
Acenaphthylene		ND	1		1		
Anthracene		ND	1	0	1		
Benzo (a) Anthracene		ND	1		1		
Benzo (a) Pyrene		ND	1		1		
Benzo (b) Fluoranthene		ND	1	0	1		
Benzo (g,h,i) Perylene		ND	10	0	1		
Benzo (k) Fluoranthene		ND	1	0	1		
Bis(2-Ethylhexyl) Phthalate		ND	1		1		
Butyl Benzyl Phthalate		ND	10		1		
Chrysene		ND	10		1		
Di-n-Butyl Phthalate		ND	1	0	1		
Di-n-Octyl Phthalate		ND	1		1		
Dibenz (a,h) Anthracene		ND	10		1		
Diethyl Phthalate		ND	10		1		
Dimethyl Phthalate		ND	10		1		
Fluoranthene		ND	1		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
Naphthalene		ND	10		1		
Pentachlorophenol		ND		00	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

06/11/13 13-06-0714 EPA 3545 **EPA 8270C SIM** ug/kg

Project: POLA Berths 217-224 (YTI) C	Container Terminal			Page 4 of 4
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Phenanthrene	ND	10	1	
Phenol	ND	10	1	
Pyrene	ND	10	1	
1,6,7-Trimethylnaphthalene	ND	10	1	
2,3,4,6-Tetrachlorophenol	ND	10	1	
2,6-Dichlorophenol	ND	10	1	
Dibenzothiophene	ND	10	1	
1-Methylphenanthrene	ND	10	1	
Benzo (e) Pyrene	ND	10	1	
Perylene	ND	10	1	
Biphenyl	ND	10	1	
2,6-Dimethylnaphthalene	ND	10	1	·
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	Qualifiers	
2,4,6-Tribromophenol	72	32-143		
2-Fluorobiphenyl	79	14-146		
2-Fluorophenol	83	15-138		
Nitrobenzene-d5	76	18-162		
p-Terphenyl-d14	84	34-148		
Phenol-d6	83	17-141		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

13-06-0714 EPA 3545

06/11/13

Preparation: Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 1 of 4

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA		13-06-0714-1-A	06/11/13 09:00	Sediment	GC/MS HHH	06/17/13	06/19/13 20:24	130617L13
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	RL	<u>:</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB018			ND	0.6	69	1		
PCB028			ND	0.6	69	1		
PCB037			ND	0.6	69	1		
PCB044			1.2	0.6	69	1		
PCB049			2.9	0.6	69	1		
PCB052			2.4	0.6	69	1		
PCB066			0.85	0.6	69	1		
PCB070			0.82	0.6	9	1		
PCB074			ND	0.6	69	1		
PCB077			ND	0.6	69	1		
PCB081			ND	0.6	69	1		
PCB087			1.1	0.6	69	1		
PCB099			1.2	0.6	69	1		
PCB101			2.1	0.6	59	1		
PCB105			0.78	0.6	69	1		
PCB110			1.9	0.6	69	1		
PCB114			ND	0.6	59	1		
PCB118			1.8	0.6		1		
PCB119			ND	0.6		1		
PCB123			ND	0.6		1		
PCB126			ND	0.6		1		
PCB128			ND	0.6	59	1		
PCB138/158			3.2	1.4		1		
PCB149			4.1	0.6		1		
PCB151			1.1	0.6	69	1		
PCB153			4.3	0.6		1		
PCB156			ND	0.6		1		
PCB157			0.91	0.6		1		
PCB167			ND	0.6		1		
PCB168			ND	0.6		1		
PCB169			ND	0.6		1		
PCB170			1.8	0.6		1		
PCB177			ND	0.6		1		
PCB180			3.2	0.6		1		
1 00100			J. <u>C</u>	0.0	,,	I		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0714 EPA 3545

06/11/13

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 2 of 4

Project: POLA Berths 217-224 (YTI) Container Terminal

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
PCB183	ND	0.69	1	
PCB187	2.0	0.69	1	
PCB189	ND	0.69	1	
PCB194	0.78	0.69	1	
PCB201	ND	0.69	1	
PCB206	ND	0.69	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	42	50-125	1,2,6	
p-Terphenyl-d14	96	50-125		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

Preparation: EPA 3545
Method: EPA 8270C SIM PCB Congeners

Units: ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 3 of 4

06/11/13

13-06-0714

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-341-105	N/A	Soil	GC/MS HHH	06/17/13	06/19/13 16:41	130617L13
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
PCB018		ND	(0.50	1		
PCB028		ND	(0.50	1		
PCB037		ND	(0.50	1		
PCB044		ND	(0.50	1		
PCB049		ND	(0.50	1		
PCB052		ND	(0.50	1		
PCB066		ND	(0.50	1		
PCB070		ND	(0.50	1		
PCB074		ND	(0.50	1		
PCB077		ND	(0.50	1		
PCB081		ND	(0.50	1		
PCB087		ND	(0.50	1		
PCB099		ND	(0.50	1		
PCB101		ND	(0.50	1		
PCB105		ND	(0.50	1		
PCB110		ND	(0.50	1		
PCB114		ND	(0.50	1		
PCB118		ND	(0.50	1		
PCB119		ND	(0.50	1		
PCB123		ND	(0.50	1		
PCB126		ND	(0.50	1		
PCB128		ND	(0.50	1		
PCB138/158		ND		1.0	1		
PCB149		ND	(0.50	1		
PCB151		ND	(0.50	1		
PCB153		ND	(0.50	1		
PCB156		ND	(0.50	1		
PCB157		ND	(0.50	1		
PCB167		ND	(0.50	1		
PCB168		ND		0.50	1		
PCB169		ND	(0.50	1		
PCB170		ND		0.50	1		
PCB177		ND	(0.50	1		
PCB180		ND		0.50	1		
PCB183		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

06/11/13

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

13-06-0714 EPA 3545 EPA 8270C SIM PCB Congeners

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
PCB187	ND	0.50	1		
PCB189	ND	0.50	1		
PCB194	ND	0.50	1		
PCB201	ND	0.50	1		
PCB206	ND	0.50	1		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl	50	50-125			
p-Terphenyl-d14	74	50-125			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

06/11/13 13-06-0714

Preparation: Method:

EPA 3550B (M) Organotins by Krone et al.

Units:

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI COMPA		13-06-0714-1-E	06/11/13 09:00	Sediment	GC/MS JJJ	06/12/13	06/14/13 12:40	130612L04
Comment(s):	- Results are reported of	on a dry weight basis.	•					
<u>Parameter</u>			<u>Result</u>	<u>RL</u>	i	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Dibutyltin			7.2	4.1		1		
Monobutyltin			ND	4.1		1		
Tetrabutyltin			ND	4.1		1		
TributyItin			19	4.1		1		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Tripentyltin			81	48-	-126			
Parameter Parameter			Result	RL	:	<u>DF</u>	Qua	lifiers
Dibutyltin			ND	3.0)	1		
Monobutyltin			ND	3.0)	1		
Tetrabutyltin			ND	3.0)	1		
TributyItin			ND	3.0)	1		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Tripentyltin			66	48.	-126			

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

PARTICLE SIZE SUMMARY

(ASTM D422 / D4464M)

AMEC Envi	ronment & Infrastructure	Date Sampled:	6/11/2013
9210 Sky P	ark Court, Suite 200	Date Received:	6/11/2013
San Diego,	CA 92123-4302	Work Order No:	13-06-0714
		Date Analyzed:	6/12/2013
		Method:	ASTM D4464M
Project:	POLA Berths 217-224 (YTI) Container Terminal		Page 1 of 1

Sample ID	Depth ft	Description	Mean Grain Size mm
YTI COMP A		Silt	0.019

		Particle	Size Distribution	, wt by perce	nt			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.00	0.00	0.00	0.00	2.91	74.20	22.89	97.09

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

06/11/13 13-06-0714 N/A

EPA 9060A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		Date Analyzed	MS	/MSD Batch	Number
13-06-0526-1		Sediment		TOC 5	06/17/13		06/17/13 18:28	D06	617TOCS1	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	0.1700	3.000	3.360	106	3.400	108	75-125	1	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 Extraction EPA 418.1M

Page 2 of 10

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID		Matrix		Instrument	Date Pr	epared	Date Analyzed	MS/	MSD Batch	Number
YTI COMPA		Sedime	nt	IR 2	06/12/1	3	06/12/13 12:00	130	612S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
TRPH	47.61	100.0	140.8	93	142.6	95	55-135	1	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA Berths 217-224 (YTI) Container Terminal

Date Received: Work Order: Preparation: Method:

13-06-0714 EPA 3550B EPA 8015B (M)

06/11/13

Page 3 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
YTI COMPA		Sedime	ent	GC 45	06/12/1	13	06/12/13 14:44	130	612S03	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	11.22	400.0	364.9	88	376.4	91	64-130	3	0-15	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

lambda-Cyhalothrin

Project: POLA Berths 217-224 (YTI) Container Terminal

ND

5.000

2.236

Date Received:
Work Order:
Preparation:

2.579

52

25-200

0-30

13-06-0714 EPA 3540C

06/11/13

Method:

EPA 8270D (M)/TQ/EI

Page 4 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
YTI COMPA		Sediment		GCTQ 1	06/13/13		06/18/13 02:05	130	613S01	
Parameter	<u>Sample</u> <u>Conc.</u>	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Allethrin	ND	5.000	1.801	36	2.050	41	25-200	13	0-30	
Bifenthrin	ND	5.000	3.142	63	3.422	68	25-200	9	0-30	
Cyfluthrin	ND	5.000	1.828	37	2.197	44	25-200	18	0-30	
Cypermethrin	ND	5.000	1.659	33	1.967	39	25-200	17	0-30	
Deltamethrin/Tralomethrin	ND	5.000	2.381	48	2.763	55	25-200	15	0-30	
Fenpropathrin	ND	5.000	2.961	59	3.006	60	25-200	2	0-30	
Fenvalerate/Esfenvalerate	ND	10.00	3.912	39	4.777	48	25-200	20	0-30	
Fluvalinate	ND	5.000	1.709	34	2.218	44	25-200	26	0-30	
Permethrin (cis/trans)	3.251	5.000	8.042	96	8.269	100	25-200	3	0-30	
Phenothrin	ND	5.000	6.554	131	6.613	132	25-200	1	0-30	
Resmethrin/Bioresmethrin	ND	5.000	4.612	92	5.264	105	25-200	13	0-30	
Tetramethrin	ND	5.000	4.514	90	4.959	99	25-200	9	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

06/11/13 13-06-0714 EPA 3050B EPA 6020

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 5 of 10

Quality Control Sample ID		Matrix		Instrument	ment Date Prepared		Date Analyzed	MS	/MSD Batch	Number
YTI COMPA		Sedime	ent	ICP/MS 03	06/12/13		06/12/13 13:12	130	612S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Arsenic	6.397	25.00	32.31	104	30.28	96	80-120	6	0-20	
Cadmium	0.3433	25.00	26.25	104	26.23	104	80-120	0	0-20	
Chromium	25.70	25.00	48.73	92	48.97	93	80-120	0	0-20	
Copper	43.80	25.00	69.07	101	65.70	88	80-120	5	0-20	
Lead	20.19	25.00	47.41	109	45.84	103	80-120	3	0-20	
Nickel	19.90	25.00	44.82	100	43.32	94	80-120	3	0-20	
Selenium	0.1725	25.00	25.00	99	24.20	96	80-120	3	0-20	
Silver	0.1332	12.50	12.99	103	12.63	100	80-120	3	0-20	
Zinc	81.97	25.00	113.7	127	109.7	111	80-120	4	0-20	3

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA Berths 217-224 (YTI) Container Terminal

Date Received: Work Order: Preparation: Method:

13-06-0714 EPA 7471A Total EPA 7471A

06/11/13

Page 6 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch		Number
YTI COMPA		Sedime	ent	Mercury	06/12/1	3	06/12/13 13:24	130	612S05	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Mercury	0.1584	0.8350	0.9514	95	0.9984	101	76-136	5	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 EPA 3545 EPA 8081A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 7 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
YTI COMPA		Sedime	ent	GC 51	06/12/1	13	06/14/13 17:24	130	612S06A	
Parameter	<u>Sample</u> <u>Conc.</u>	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aldrin	ND	5.000	3.776	76	4.361	87	50-135	14	0-25	
Alpha-BHC	ND	5.000	3.862	77	4.520	90	50-135	16	0-25	
Beta-BHC	ND	5.000	3.703	74	3.641	73	50-135	2	0-25	
Delta-BHC	ND	5.000	2.929	59	3.389	68	50-135	15	0-25	
Gamma-BHC	ND	5.000	3.794	76	4.402	88	50-135	15	0-25	
Dieldrin	ND	5.000	3.955	79	4.566	91	50-135	14	0-25	
4,4'-DDD	ND	5.000	6.318	126	7.256	145	50-135	14	0-25	3
4,4'-DDE	2.294	5.000	6.765	89	7.736	109	50-135	13	0-25	
4,4'-DDT	ND	5.000	2.259	45	2.271	45	50-135	1	0-25	3
Endosulfan I	ND	5.000	3.583	72	4.155	83	50-135	15	0-25	
Endosulfan II	ND	5.000	3.681	74	4.212	84	50-135	13	0-25	
Endosulfan Sulfate	ND	5.000	3.775	76	4.241	85	50-135	12	0-25	
Endrin	ND	5.000	4.472	89	5.038	101	50-135	12	0-25	
Endrin Aldehyde	ND	5.000	4.016	80	4.446	89	50-135	10	0-25	
Endrin Ketone	ND	5.000	3.219	64	3.377	68	50-135	5	0-25	
Heptachlor	ND	5.000	3.475	70	3.777	76	50-135	8	0-25	
Heptachlor Epoxide	ND	5.000	4.046	81	4.784	96	50-135	17	0-25	
Methoxychlor	ND	5.000	2.213	44	2.133	43	50-135	4	0-25	3
Alpha Chlordane	ND	5.000	4.000	80	4.567	91	50-135	13	0-25	
Gamma Chlordane	ND	5.000	3.958	79	4.502	90	50-135	13	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

06/11/13 13-06-0714 **EPA 3545 EPA 8270C SIM**

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 8 of 10

Overline Operator I Operator I D		N.A. dada		Lead more and	D-1- D		Data Arabaad		/MOD Datab	Nicordica
Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	IVI S	/MSD Batch	n Number
YTI COMPA		Sediment		GC/MS MM	06/17/13		06/18/13 20:02		617S12	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
0.40 T : 11	NID	4000	000.0	00	747.0		10 100	_	0.00	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

Method:

EPA 8270C SIM PCB Congeners

Page 9 of 10

06/11/13

13-06-0714 EPA 3545

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Quality Control Sample ID		Matrix		Date Prepared		Date Analyzed	MS	/MSD Batch	n Number
YTI COMPA		Sedime	ent	GC/MS HHH	06/17/1	13	06/20/13 15:41	130	617S13	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
PCB008	ND	25.00	18.17	73	18.25	73	50-125	0	0-30	
PCB018	ND	25.00	22.46	90	22.98	92	50-125	2	0-30	
PCB028	ND	25.00	23.30	93	23.24	93	50-125	0	0-30	
PCB044	0.8708	25.00	22.22	85	22.86	88	50-125	3	0-30	
PCB052	1.769	25.00	22.19	82	22.43	83	50-125	1	0-30	
PCB066	0.6181	25.00	24.93	97	25.41	99	50-125	2	0-30	
PCB077	ND	25.00	23.27	93	23.47	94	50-125	1	0-30	
PCB101	1.525	25.00	23.28	87	23.94	90	50-125	3	0-30	
PCB105	0.5683	25.00	24.16	94	24.63	96	50-125	2	0-30	
PCB118	1.340	25.00	28.58	109	28.81	110	50-125	1	0-30	
PCB126	ND	25.00	22.83	91	22.56	90	50-125	1	0-30	
PCB128	ND	25.00	22.97	92	23.09	92	50-125	1	0-30	
PCB153	3.100	25.00	23.60	82	24.06	84	50-125	2	0-30	
PCB170	1.326	25.00	19.96	75	19.84	74	50-125	1	0-30	
PCB180	2.333	25.00	24.69	89	24.59	89	50-125	0	0-30	
PCB187	1.491	25.00	23.18	87	23.35	87	50-125	1	0-30	
PCB195	ND	25.00	18.48	74	18.65	75	50-125	1	0-30	
PCB206	ND	25.00	19.95	80	20.12	80	50-125	1	0-30	
PCB209	0.6832	25.00	20.48	79	20.65	80	50-125	1	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0714 EPA 3550B (M)

06/11/13

Organotins by Krone et al.

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 10 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		Date Analyzed	MS/MSD Batch I		Number
13-06-0715-2		Sedime	ent	GC/MS JJJ	06/12/1	13	06/14/13 14:10	130	612S04	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Tetrabutyltin	ND	100.0	83.38	83	90.79	91	79-175	9	0-31	
Tributyltin	20.64	100.0	83.02	62	94.35	74	69-135	13	0-29	3

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

06/11/13 13-06-0714 EPA 3050B EPA 6020

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Quality Control Sample ID	Matrix	Instrument	Date Prepar	ed Date Analy	zed PDS/P	DSD Batch Number
YTI COMPA	Sediment	ICP/MS 03	06/12/13 00	:00 06/12/13 1	3:19 13061	2S01
Parameter	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	%Rec. CL	<u>Qualifiers</u>
Arsenic	6.397	25.00	31.95	102	75-125	
Cadmium	0.3433	25.00	26.37	104	75-125	
Chromium	25.70	25.00	49.28	94	75-125	
Copper	43.80	25.00	69.37	102	75-125	
Lead	20.19	25.00	46.51	105	75-125	
Nickel	19.90	25.00	44.52	98	75-125	
Selenium	0.1725	25.00	26.56	106	75-125	
Silver	0.1332	12.50	10.84	86	75-125	
Zinc	81.97	25.00	109.5	110	75-125	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 N/A

EPA 376.2M

Page 1 of 3

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matrix Instrument		Date Prepared	Date Analyzed	Duplicate Batch Number
13-06-0715-2	Sediment	N/A	06/17/13 00:00	06/17/13 14:45	D0617SD1
Parameter	Sample Cond	DUP Conc.	RPD	RPD CL	Qualifiers
Sulfide, Total	7.500	7.200	4	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 N/A

EPA 376.2M Page 2 of 3

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matrix Instrument		Date Prepared	Date Analyzed	Duplicate Batch Number
13-06-0715-2	Sediment	N/A	06/11/13 00:00	06/11/13 20:15	D0611DSD2
Parameter	Sample Cond	c. DUP Conc.	RPD	RPD CL	Qualifiers
Sulfide, Dissolved	ND	ND	N/A	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

SM 2540 B (M)

06/11/13

N/A

13-06-0714

Project: POLA Berths 217-224 (YTI) Container Terminal

	Р	ag	jе	3	3 of	3	
_		_					

Quality Control Sample ID	Matrix Instrument D		Date Prepared	Date Analyzed	Duplicate Batch Number
YTI COMPA	Sediment	N/A	06/13/13 00:00	06/13/13 19:00	D0613TSD1
<u>Parameter</u>	Sample Cond	<u>DUP Conc.</u>	<u>RPD</u>	RPD CL	Qualifiers
Solids, Total	72.90	71.70	2	0-10	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

06/11/13 13-06-0714 N/A

EPA 9060A

EPA 906 Page 1 of 11

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Sample ID Matrix Instrument		Date Prepa	Date Prepared Date Analyzed		LCS/LCSD Batch Number			
099-06-013-876		Soil		TOC 5	06/17/13	06/17/	13 18:28	D0617TOCL1	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	0.6000	0.6454	108	0.6268	104	80-120	3	0-20	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

13-06-0714 N/A

06/11/13

Method:

SM 4500-NH3 B/C (M)

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 11

Quality Control Sample ID		Matrix Instrument		Instrument	Date Prepared Date Analyzed		LCS/LCSD Ba	tch Number	
099-12-816-61		Soil		BUR05	06/19/13	06/19/	13 14:00	D0619NH3L1	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Ammonia (as N)	5.000	4.340	87	4.270	85	80-120	2	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 Extraction EPA 418.1M

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 3 of 11

Quality Control Sample ID	Matrix	Matrix Instrument		/zed	LCS Batch Number
099-07-015-1928	Soil	IR 2	06/12/13 1	2:00	130612L01
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
TRPH	100.0	94.86	95	70-130	1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA Berths 217-224 (YTI) Container Terminal

Date Received: Work Order: Preparation: Method:

13-06-0714 EPA 3550B EPA 8015B (M)

06/11/13

Page 4 of 11

Quality Control Sample ID	Matrix	Matrix Instrument		lyzed	LCS Batch Number
099-15-490-359	Soil	GC 45	06/12/13	14:28	130612B03
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
TPH as Diesel	400.0	359.7	90	75-123	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

06/11/13 13-06-0714 EPA 3540C

Method: EPA 8270D (M)/TQ/EI Page 5 of 11

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Mat	Matrix Ins		Date Analyzed	LCS Batch Number	
099-14-403-34	Sed	iment	GCTQ 1	06/17/13 21:49	130613L01	
<u>Parameter</u>	Spike Added	<u>Conc.</u> <u>Recovered</u>	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Allethrin	5.000	2.443	49	25-200	0-229	
Bifenthrin	5.000	3.868	77	25-200	0-229	
Cyfluthrin	5.000	2.431	49	25-200	0-229	
Cypermethrin	5.000	2.309	46	25-200	0-229	
Deltamethrin/Tralomethrin	5.000	2.593	52	25-200	0-229	
Fenpropathrin	5.000	2.823	56	25-200	0-229	
Fenvalerate/Esfenvalerate	10.00	4.307	43	25-200	0-229	
Fluvalinate	5.000	2.334	47	25-200	0-229	
Permethrin (cis/trans)	5.000	3.977	80	25-200	0-229	
Phenothrin	5.000	4.836	97	25-200	0-229	
Resmethrin/Bioresmethrin	5.000	4.560	91	25-200	0-229	
Tetramethrin	5.000	3.101	62	25-200	0-229	
lambda-Cyhalothrin	5.000	1.978	40	25-200	0-229	

Total number of LCS compounds: 13 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/11/13 13-06-0714 EPA 3050B EPA 6020

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 6 of 11

Quality Control Sample ID	Matrix	Instrument	Date Analyzed		LCS Batch Number
099-15-254-116	Soil	ICP/MS 03	06/14/13	11:41	130612L01E
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. (</u>	<u>Qualifiers</u>
Arsenic	25.00	25.82	103	80-120	
Cadmium	25.00	26.39	106	80-120	
Chromium	25.00	24.89	100	80-120	
Copper	25.00	27.39	110	80-120	
Lead	25.00	26.30	105	80-120	
Nickel	25.00	26.30	105	80-120	
Selenium	25.00	25.74	103	80-120	
Silver	12.50	10.82	87	80-120	
Zinc	25.00	28.07	112	80-120	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0714 EPA 7471A Total EPA 7471A

06/11/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 7 of 11

Quality Control Sample ID	Matrix	Instrument	Date Analyzed		LCS Batch Number
099-12-452-383	Soil	Mercury	06/12/13 13	:15	130612L05E
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
Mercury	0.8350	0.8128	97	82-124	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

06/11/13 13-06-0714 EPA 3545 **EPA 8081A**

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 8 of 11

Quality Control Sample ID	Matr	Matrix		Date Analyzed	LCS Batch N	Number
099-12-858-206	Soil		GC 51	06/14/13 10:48	130612L06	
Parameter	Spike Added	<u>Conc.</u> <u>Recovered</u>	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Aldrin	5.000	4.696	94	50-135	36-149	
Alpha-BHC	5.000	4.757	95	50-135	36-149	
Beta-BHC	5.000	4.549	91	50-135	36-149	
Delta-BHC	5.000	3.682	74	50-135	36-149	
Gamma-BHC	5.000	4.656	93	50-135	36-149	
Dieldrin	5.000	4.896	98	50-135	36-149	
4,4'-DDD	5.000	4.507	90	50-135	36-149	
4,4'-DDE	5.000	4.338	87	50-135	36-149	
4,4'-DDT	5.000	4.818	96	50-135	36-149	
Endosulfan I	5.000	5.422	108	50-135	36-149	
Endosulfan II	5.000	4.827	97	50-135	36-149	
Endosulfan Sulfate	5.000	4.706	94	50-135	36-149	
Endrin	5.000	4.626	93	50-135	36-149	
Endrin Aldehyde	5.000	5.179	104	50-135	36-149	
Endrin Ketone	5.000	5.280	106	50-135	36-149	
Heptachlor	5.000	4.954	99	50-135	36-149	
Heptachlor Epoxide	5.000	4.554	91	50-135	36-149	
Methoxychlor	5.000	4.869	97	50-135	36-149	
Alpha Chlordane	5.000	4.849	97	50-135	36-149	
Gamma Chlordane	5.000	4.794	96	50-135	36-149	

Total number of LCS compounds: 20 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

06/11/13 13-06-0714 EPA 3545 EPA 8270C SIM

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 9 of 11

Quality Control Sample ID	Matrix		Instrument	Date Analyzed	LCS Batch N	lumber
099-14-256-36	Soil		GC/MS MM	06/18/13 17:28	130617L12	
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
2,4,6-Trichlorophenol	1000	522.4	52	40-160	20-180	
2,4-Dichlorophenol	1000	488.3	49	40-160	20-180	
2-Methylphenol	1000	495.2	50	40-160	20-180	
2-Nitrophenol	1000	493.3	49	40-160	20-180	
4-Chloro-3-Methylphenol	1000	481.2	48	40-160	20-180	
Acenaphthene	1000	576.5	58	48-108	38-118	
Benzo (a) Pyrene	1000	732.7	73	17-163	0-187	
Chrysene	1000	657.9	66	17-168	0-193	
Di-n-Butyl Phthalate	1000	676.0	68	40-160	20-180	
Dimethyl Phthalate	1000	498.6	50	40-160	20-180	
Fluoranthene	1000	639.4	64	26-137	8-156	
Fluorene	1000	621.6	62	59-121	49-131	
N-Nitrosodimethylamine	1000	425.3	43	40-160	20-180	
Naphthalene	1000	515.8	52	21-133	2-152	
Phenanthrene	1000	606.8	61	54-120	43-131	
Phenol	1000	399.6	40	40-160	20-180	
Pyrene	1000	674.8	67	28-106	15-119	

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Page 10 of 11

Quality Control - LCS

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: 06/11/13 Work Order: 13-06-0714 Preparation: EPA 3545

EPA 8270C SIM PCB Congeners Method:

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matr	Matrix		Date Analyzed	LCS Batch Number	
099-14-341-105	Soil		GC/MS HHH	06/19/13 17:37	130617L13	
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
PCB008	25.00	21.62	86	50-125	38-138	
PCB018	25.00	24.45	98	50-125	38-138	
PCB028	25.00	26.24	105	50-125	38-138	
PCB044	25.00	25.48	102	50-125	38-138	
PCB052	25.00	24.02	96	50-125	38-138	
PCB066	25.00	27.89	112	50-125	38-138	
PCB077	25.00	27.16	109	50-125	38-138	
PCB101	25.00	26.27	105	50-125	38-138	
PCB105	25.00	26.00	104	50-125	38-138	
PCB118	25.00	28.80	115	50-125	38-138	
PCB126	25.00	24.46	98	50-125	38-138	
PCB128	25.00	24.30	97	50-125	38-138	
PCB153	25.00	24.92	100	50-125	38-138	
PCB170	25.00	23.41	94	50-125	38-138	
PCB180	25.00	25.18	101	50-125	38-138	
PCB187	25.00	24.28	97	50-125	38-138	
PCB195	25.00	21.40	86	50-125	38-138	
PCB206	25.00	24.91	100	50-125	38-138	
PCB209	25.00	20.53	82	50-125	38-138	

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0714 EPA 3550B (M) Organotins by Krone et al.

06/11/13

Method:

Page 11 of 11

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matrix	Instrument	Date Analy:	zed	LCS Batch Number	
099-07-016-1032	Soil	GC/MS JJJ	06/14/13 11	:10	130612L04	
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers	
Tetrabutyltin	100.0	88.80	89	79-151		
Tributyltin	100.0	90.42	90	51-129)	

Glossary of Terms and Qualifiers

Work Order: 13-06-0714 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.
- X % Recovery and/or RPD out-of-range.

SG

Z Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

science	7440 LINC
nvironmental	GARDEN

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

11

CHAIN OF CUSTODY RECORD DATE: 6/10/2013

P

PAGE:

GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 . FAX: (714) 894-7501

LABORATORY CLIENT:	ANNEXAS STREET, MANAGEMENT CONTRACTOR OF THE STREET, CONTRACTOR OF THE				ENI PRO	JECT NA	CLIENT PROJECT NAME / NUMBER	BER						0.4	P.O. NO.:				
AMEC				<u> </u>	3erths	217-	Berths 217-224 (YTI) Container Terminal	J)C	ontai	ner T	ermi	<u>a</u>		-	1015101929	1929			
9210 Sky Park Ct # 200				Æ	PROJECT CONTACT	ONTACT:								8	QUOTE NO.	ļ.,			
CITY:					-	snyde	Snyder/Tyler Huff	r Hu											
Diego, CA 92123				δ	SAMPLER(S	SIGNA	SIGNATURE)							<u> </u>	LAB USE ONLY				Ē
TEL: E-Mail E-Mail 858-449-2334 Ityler.huff.	_{E-Mail} tyler.huff@amec.com	E-MAIL				ZT													
TURNAROUND TIME									ט מ	Ĭ	1	SEOUESTED AND VSIS	2	9					
SAME DAY 24 HR 48HR	R 🗴 72 HR	☐5 DAYS	☐ 10 DAYS						ב צ	Ú O X	7 [[MA	7 L 1	<u>0</u>					
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)	′ APPLY)					_	sə	H	_	ļ									
ORTING	ARCHIVE SAMPLES UNTIL	UNTIL /	/	þə			рцIr												
SPECIAL INSTRUCTIONS				niup		uo	ıs p				səpi					7			
Damene Gonsman is Fivi Green Book Testing				er s				-			oite	s.i			-	£15			
Please see attached Sheet for Analysis.	ıalysis.	()		səj ja	sbi						d bai	auəbı	spi	se		34)			
Please report all applicable totals (i.e. PCDs, PAHs, etc.)	(I.e. PODS, PAI	ıs, etc.)			los						eu) Jel	`_	Z			
LAB SAMPLE ID LO	LOCATION/ DESCRIPTION	SAMPLING DATE TIME	Watrix	*Cour	Total S) lstoT 	s lstoT	Metals	HQAT HQT	eHA9	Chlori	PCB C	Pheno Pyreth	Phthal	Organ	ze			
Composite Area A	Port of Last Angeles	1	Ž		×	\leftarrow		 	+	 	X	\mapsto	F-		×				1
Commonite Arms A-X Port of A	Port of Los Angeles	6 / NB	sediment	<i></i>	×	\ \sigma	Ž	×	×	×	Z	K	×	X	À				1
\wedge	X	27	tuo miloo	 	7	X		\ <u> </u>	K	\ <u> </u>	Z	/>	X	<u> </u>					T
Composite Area B Lation	7		Sealling	7	*	×	A	1	↤	1		× •		\downarrow	٤	+	_		Т
Somposite Area 8-2 Port Oft	Port of Los Angèles	× [2]	sediment		×	×	X	×	×		×	×	×	\angle	×				
Reference Rort of L	Port of Los Angeles	6/ /13	sediment		×	**	<u>×</u>	× <u></u>	Ž	× `	×	×	X/X	×	×				
Adu	Portofua	UNIE 0900	sed	T	×	<u>^</u> لا	メ	7	メメ	X	X	X		X	×	×			
<u></u>							***************************************												
																			1
	The state of the s		4	_															
Relinquished by: (Signature)			Received by:	ignature)							Ì	R	عٌ ﴿	Date:	1113	<u>۱</u> ۷	Zie.	ار ار	
I yier Hutt (AIMEC)			=									\$	<u>ک</u> ر ا	9	<u> </u> 	7	4		T
Rejuduished by: (Signature)	The Contraction of the State of		Received by: (: (Signature)	y		(CK	<i>\</i>	Ŏ Ž		13		₹ Øge	1	Pa \
Relinquished by: (Signature)			Received by: (Signature)	ignature)) }		Ö	Datte:		-	Time:		ge 58
				E CONTRACTOR DE							MICHAELES								of 60

Table 4-2. Chemical Analyses for Elutriate, Sediment and Tissue Samples

Analyte	Analysis Method	Elutriate Target Detection Limits ^{a, b}	Sediment Target Detection Limits ^{a, b}	Tissue Target Detection Limits ^{a, b}
Total Solids	160.3/SM 2540 B	N/A	0.1 %	0.100 %
Total Organic Carbon	9060	N/A	0.1 %	N/A
Total Ammonia	SM 4500-NH3 B/C (M)/350.2M°	N/A	0.2 mg/kg	N/A
Total Sulfides	376.2M ^c	N/A	0.5 mg/kg	N/A
Soluble Sulfides	SM 4500 S2 - D°	N/A	0.5 mg/kg	N/A
Arsenic	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Cadmium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Chromium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.02 mg/kg
Copper	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Lead	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Mercury	7471A ^d	0.0002 mg/L	0.02 mg/kg	0.02 mg/kg
Nickel	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Selenium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Silver	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Zinc	6020/6010B ^d	0.005 mg/L	1.0 mg/kg	1.0 mg/kg
Total Lipids	NOAA 1993a ¹	N/A	N/A	0.1 %
TRPH	418.1M ^d	N/A	10 mg/kg	N/A
TPH (C6-C44)	8015B(M)/8015B ^d	N/A	5.0 mg/kg	N/A
PAHs ^e	8270C SIM/ GC/TQ ^d	0.2 μg/L	10 μg/kg	10 μg/kg
Chlorinated Pesticides	8081A ^d	0.1 μg/L	1.0 – 20 μg/kg	0.5 - 20 μg/kg
PCB Congeners ^g	8270C SIM PCBd	0.02 μg/L	0.5 µg/kg	0.5 μg/kg
Phenols	8270C SIM ^d	N/A	20 – 100 μg/kg	N/A
Pyrethroids	GC/MS/MS ^J	N/A	0.5 – 1.0 μg/kg	N/A
Phthalates	8270C SIM ^d	N/A	10 μg/kg	N/A
Organotins	Rice/Krone ^h	3.0 ng/L	3.0 µg/kg	N/A

Notes:

- Sediment minimum detection limits are on a wet-weight basis. Tissue minimum levels are on a wet-weight basis.
- Reporting limits provided by Calscience Environmental Laboratories, Inc.
- Standard Methods for the Examination of Water and Wastewater, 19th Edition American Public Health Association et al. 1995.
- USEPA 1986-1996. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.
- Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene.
- Includes aldrin, α -benzene hexachloride (BHC), β -BHC, γ -BHC (lindane), δ -BHC, chlordane, 2,4 and 4,4dichlorodiphenyldichloroethane (DDD), 2,4 and 4,4-dichlorodiphenyldichloroethylene (DDE), 2,4 and 4,4dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, and toxaphene.
- PCBs (sum of 41 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194,201, and 206)
- Rice, C.D. et al. 1987, or similar (e.g. Krone et al. 1989)
- NOAA 1993
- Allethrin (Bioallethrin), Bifenthrin, Cyfluthrin-beta (Baythroid), Cyhalothrin-Lamba, Cypermethrin, Deltamethrin (Decamethrin), Esfenvalerate, Fenpropathrin (Danitol), Fenvalerate (sanmarton), Fluvalinate, Permethrin (cis and trans), Resmethrin (Bioresmethrin), Resmethrin, Sumithrin (Phenothrin), Tetramethrin, and Tralomethrin

polycyclic aromatic hydrocarbon micrograms per kilogram (parts per billion) PAH µg/kg PCB polychlorinated biphenyl μg/L micrograms per liter Standard Methods milligrams per kilogram (parts per million) SM mg/kg

SOP standard operating procedure milligrams per liter mg/L TPH total petroleum hydrocarbons ng/L nanograms per liter total recoverable petroleum hydrocarbons TRPH ΝÃ

not applicable

WORK ORDER #: 13-06- □ □ □ □

SAMPLE RECEIPT FORM Cooler 1 of 1

CLIENT: AMEC	DATE: _	06 /1	1/13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen	except se	diment/tiss	sue)
Temperature 1.6° C - 0.2°C (CF) = 1.4° C	Blank	☐ Samı	ole
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		·	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	v of sampl	ina.	
☐ Received at ambient temperature, placed on ice for transport by Cou		9.	
Ambient Temperature: Air Filter	arior.	Initi	al:\Q
Ambient Temperature. 🗆 All 🗀 Filter		111111	ai.
CUSTODY SEALS INTACT:			
□ Cooler □ □ No (Not Intact) ☑ Not Present	□ N/A	Init	ial: 🍆
□ Sample □ □ No (Not Intact) ✓ Not Present	•		ial: 🗷
	The Artist of		
SAMPLE CONDITION:	es/	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	P		
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC			· 🔲
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	4		
Proper containers and sufficient volume for analyses requested	,		. 🗆
Analyses received within holding time	Ø		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours,	<u>Z</u>		
Proper preservation noted on COC or sample container			
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation CONTAINER TYPE:			
Solid: □4ozCGJ Ø8ozCGJ Ø16ozCGJ □Sleeve () □EnCores	® □Terra	Cores [®])Z	{Z
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [⊒1AGB na	₂ □1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB (□1PB na	□500PB

□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □____ □__ □

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Air: Tedlar® Canister Other: Trip Blank Lot#:____ Labeled/Checked by:

SOP T100_090 (11/20/12)

Reviewed by:

CALSCIENCE

WORK ORDER NUMBER: 13-06-0832

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: POLA Berths 217-224 (YTI) Container

Terminal

Attention: Barry Snyder

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

ResultLink >

Email your PM >

Danelle jones-

Approved for release on 06/26/2013 by: Danielle Gonsman

Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: POLA Berths 217-224 (YTI) Container Terminal

Work Order Number: 13-06-0832

1	Case Narrative	3
2	Work Order Narrative	5
3	Sample Summary	6
4	Client Sample Data. 4.1 EPA 376.2 (M) Total Sulfide (Soil). 4.2 EPA 376.2 (M) Dissolved Sulfide (Soil). 4.3 EPA 9060A Total Organic Carbon (Soil). 4.4 SM 2540 B (M) Total Solids (Soil). 4.5 SM 4500-NH3 B/C (M) Ammonia (Soil). 4.6 EPA 418.1 (M) TRPH (Soil). 4.7 EPA 8015B (M) C6-C44 (Soil). 4.8 Pyrethroids by EPA 8270D (M)/TQ/EI (Sediment). 4.9 EPA 6020 ICP/MS Metals (Soil). 4.10 EPA 7471A Mercury (Soil). 4.11 ASTM D4464 (M) Particle Size Laser (Soil). 4.12 EPA 8081A Organochlorine Pesticides (Soil). 4.13 EPA 8270C SIM (Soil). 4.14 EPA 8270C SIM PCB Congeners (Soil). 4.15 Krone et al. Organotins (Soil).	7 7 8 9 10 11 12 13 16 19 21 22 23 28 34 40
5	Particle Size Graphs	41
6	Quality Control Sample Data. 6.1 MS/MSD. 6.2 PDS/PDSD. 6.3 Sample Duplicate. 6.4 LCS/LCSD.	43 43 53 54 57
7	Glossary of Terms and Qualifiers	68
8	Chain of Custody/Sample Receipt Form	69

CASE NARRATIVE

Calscience Work Order No.: 13-06-0832
Project ID: POLA Berths 217-224 (YTI) Container Terminal

Provided below is a narrative of our analytical effort, including any unique features or anomalies encountered as part of the analysis of the sediment samples.

Sample Condition on Receipt

One sediment sample was received for this project on June 12, 2013. The sample was transferred to the laboratory in an ice-chest with wet ice, following strict chain-of-custody (COC) procedures. The temperature of the sample upon receipt at the laboratory was 1.5°C. The sample was logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers and then stored in refrigeration units pending chemistry.

COC discrepancies (if any) were noted in the Sample Anomaly Form.

Tests Performed

Total Solids by SM 2540B
Ammonia by SM 4500-NH3-B/C (M)
Grain Size by ASTM D4464
Dissolved and Total Sulfide by EPA 376.2M
TRPH by EPA 418.1M
TPH C6-C44 by EPA 8015B (M)
Total Organic Carbon by EPA 9060A
Trace Metals by EPA 6020/7471
Chlorinated Pesticides by EPA 8081A
PCB Congeners by EPA 8270C SIM
PAHs, Phenols and Phthalates by EPA 8270C SIM
Pyrethroids by EPA 8270D (M)/TQ/EI
Organotins by Krone et al.

Data Summary

The sediment sample was homogenized prior to analysis.

Holding times

All holding times were met.

Blanks

Concentrations of target analytes in the method blank were found to be below reporting limits for all testing.

Reporting Limits

The Method Detection Limits were met.

Laboratory Control Samples

A Laboratory Control Sample (LCS) analysis was performed for each applicable test. All parameters were within established control limits.

Matrix Spikes

Matrix spiking was performed at the required frequencies for the sediment on project and non-project samples. All matrix spike parameters outside the acceptable control limits were noted below.

For Metals by EPA 6020, the lead MS and MSD recoveries were outside the control limits. Since the LCS recoveries were in control the results are released with no further action.

For Chlorinated Pesticides by EPA 8081A four MS/MSD recoveries and/or RPDs were outside the control limits. Since the LCS recoveries were in control the results are released with no further action.

The Tributyltin MS recovery was outside the control limits. Since the LCS recoveries were in control the results are released with no further action.

For PCB Congeners by EPA 8270C SIM PCBs several congeners had low recovery in the MSD. Since the LCS recoveries were in control the results are released with no further action.

<u>Surrogates</u>

Surrogate recoveries for all applicable tests and samples were within acceptable control limits.

Laboratory Duplicate

A lab duplicate was performed for YTI Comp B for all analyses except Dissolved Sulfide. The precision between the two samples was acceptable.

<u>Acronyms</u>

LCS - Laboratory Control Sample PDS - Post Digestion Spike MS/MSD- Matrix Spike/Matrix Spike Duplicate ME-Marginal Exceedance RPD- Relative Percent Difference

Work Order Narrative

Work Order: 13-06-0832 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/12/13. They were assigned to Work Order 13-06-0832.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Work Order:

13-06-0832 POLA Berths 217-224 (YTI) Container Terminal

Project Name: PO Number:

1015101930

Date Received:

06/12/13

Attn: Barry Snyder

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
YTI Comp B	13-06-0832-1	06/11/13 15:00	4	Sediment
YTI Comp B Lab Dup	13-06-0832-2	06/11/13 00:00	4	Sediment

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

13-06-0832 N/A

Method: Units:

EPA 376.2M mg/kg

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B		13-06-0832-1-A	06/11/13 15:00	Sediment	N/A	06/17/13	06/17/13 14:45	D0617SL1
Comment(s):	- Results are reported on a	a dry weight basis.	•					
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Sulfide, Total			3.3	0.1	5	0.2		
Comment(s):	- Results are reported on a	a dry weight basis.					,	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Sulfide, Total			3.0	0.1	5	0.2		
<u>Parameter</u>			Result	<u>RL</u>		DF	Qua	<u>lifiers</u>
Sulfide, Total			ND	0.1	0	0.2		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 N/A EPA 376.2M

Units:

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	N/A	06/12/13	06/12/13 20:40	D0612DSL3
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Sulfide, Dissolved		ND	0.1	0	0.2		
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
Sulfide, Dissolved		ND	0.1	0	0.2		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

06/12/13 13-06-0832

Preparation: Method: N/A EPA 9060A

Units:

%

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-A	06/11/13 15:00	Sediment	TOC 5	06/17/13	06/17/13 18:28	D0617TOCL1
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Carbon, Total Organic		0.87	0.0	75	1		
Comment(s): - Results are reported on a Parameter Carbon, Total Organic	a dry weight basis.	Result 0.91	<u>RL</u> 0.0		<u>DF</u> 1	Qua	lifiers
Carbon, rotal Organic		0.91	0.0		'		
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Carbon, Total Organic		ND	0.0	50	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 06/12/13 13-06-0832

Preparation: Method:

SM 2540 B (M)

N/A

Units:

%

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	N/A	06/13/13	06/13/13 19:00	D0613TSB1
<u>Parameter</u>		Result	RL	1	DF	Qua	alifiers
Solids, Total		66.4	0.1	00	1		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Solids, Total		66.8	0.1	00	1		
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Solids, Total		ND	0.1	00	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

06/12/13 13-06-0832

Preparation:

N/A

Method:

SM 4500-NH3 B/C (M)

Units:

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-A	06/11/13 15:00	Sediment	BUR05	06/19/13	06/19/13 14:00	D0619NH3L1
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Ammonia (as N)		2.1	0.3	80	1		
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Ammonia (as N)		2.3	0.3	80	1		
<u>Parameter</u>		<u>Result</u>	RL	1	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Ammonia (as N)		ND	0.2	20	1		

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0832 Extraction EPA 418.1M

06/12/13

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B		13-06-0832-1-D	06/11/13 15:00	Sediment	IR 2	06/14/13	06/14/13 18:00	130614L01
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
TRPH			38	15		1		
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	RL		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
TRPH			34	15		1		
<u>Parameter</u>			Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
TRPH			ND	2.0)	0.2		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

Units:

06/12/13 13-06-0832 EPA 3550B EPA 8015B (M) mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 3

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B		13-06-0832-1-B	06/11/13 15:00	Sediment	GC 47	06/14/13	06/14/13 19:48	120614B02
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6			ND	7.5		1		
C7			ND	7.5		1		
C8			ND	7.5		1		
C9-C10			ND	7.5		1		
C11-C12			ND	7.5		1		
C13-C14			ND	7.5		1		
C15-C16			ND	7.5		1		
C17-C18			ND	7.5		1		
C19-C20			ND	7.5		1		
C21-C22			ND	7.5		1		
C23-C24			ND	7.5		1		
C25-C28			ND	7.5		1		
C29-C32			ND	7.5		1		
C33-C36			ND	7.5		1		
C37-C40			11	7.5		1		
C41-C44			ND	7.5		1		
C6-C44 Total			24	7.5		1		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			99	61-	145			

Units:

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

13-06-0832 EPA 3550B EPA 8015B (M)

06/12/13

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 3

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B La	ab Dup	13-06-0832-2-B	06/11/13 00:00	Sediment	GC 47	06/14/13	06/14/13 20:04	120614B02
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
C6			ND	7.5	i	1		
C7			ND	7.5		1		
C8			ND	7.5		1		
C9-C10			ND	7.5	1	1		
C11-C12			ND	7.5	i	1		
C13-C14			ND	7.5	1	1		
C15-C16			ND	7.5		1		
C17-C18			ND	7.5	i	1		
C19-C20			ND	7.5	1	1		
C21-C22			ND	7.5		1		
C23-C24			ND	7.5	i	1		
C25-C28			ND	7.5	1	1		
C29-C32			ND	7.5		1		
C33-C36			ND	7.5	i	1		
C37-C40			9.6	7.5		1		
C41-C44			ND	7.5		1		
C6-C44 Total			25	7.5		1		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			99	61-	145			

06/12/13

13-06-0832 EPA 3550B

EPA 8015B (M)

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

Units: mg/kg Page 3 of 3

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-364	N/A	Soil	GC 47	06/14/13	06/14/13 17:27	120614B02
Parameter		Result	<u>R</u>	<u> </u>	DF	Qua	<u>llifiers</u>
C6		ND	5.	0	1		
C7		ND	5.	0	1		
C8		ND	5.	0	1		
C9-C10		ND	5.	0	1		
C11-C12		ND	5.	0	1		
C13-C14		ND	5.	0	1		
C15-C16		ND	5.	0	1		
C17-C18		ND	5.	0	1		
C19-C20		ND	5.	0	1		
C21-C22		ND	5.	0	1		
C23-C24		ND	5.	0	1		
C25-C28		ND	5.	0	1		
C29-C32		ND	5.	0	1		
C33-C36		ND	5.	0	1		
C37-C40		ND	5.	0	1		
C41-C44		ND	5.	0	1		
C6-C44 Total		ND	5.	0	1		
<u>Surrogate</u>		Rec. (%)	C	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		97	61	I-145			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-06-0832 **EPA 3540C** EPA 8270D (M)/TQ/EI

Units:

ug/kg

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	GCTQ 1	06/13/13	06/18/13 00:52	130613L01

Comment(s): - Results are reported on a dry weight basis.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Allethrin	ND	0.75	0.39	1	
Bifenthrin	0.22	0.75	0.14	1	J
Cyfluthrin	ND	0.75	0.13	1	
Cypermethrin	ND	0.75	0.10	1	
Deltamethrin/Tralomethrin	ND	0.75	0.31	1	
Fenpropathrin	ND	0.75	0.055	1	
Fenvalerate/Esfenvalerate	ND	0.75	0.054	1	
Fluvalinate	ND	0.75	0.086	1	
Permethrin (cis/trans)	2.2	1.5	0.17	1	
Phenothrin	ND	0.75	0.10	1	
Resmethrin/Bioresmethrin	ND	0.75	0.14	1	
Tetramethrin	ND	0.75	0.057	1	
lambda-Cyhalothrin	ND	0.75	0.066	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
trans-Permethrin(C13)	81	25-200			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 3540C EPA 8270D (M)/TQ/EI

06/12/13

Units: ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B Lab Dup	13-06-0832-2-D	06/11/13 00:00	Sediment	GCTQ 1	06/13/13	06/18/13 01:29	130613L01
			•	•			•

Comment(s): - Results are reported on a dry weight basis.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Allethrin	ND	0.75	0.38	1	
Bifenthrin	0.29	0.75	0.14	1	J
Cyfluthrin	ND	0.75	0.13	1	
Cypermethrin	ND	0.75	0.10	1	
Deltamethrin/Tralomethrin	ND	0.75	0.31	1	
Fenpropathrin	ND	0.75	0.054	1	
Fenvalerate/Esfenvalerate	ND	0.75	0.053	1	
Fluvalinate	ND	0.75	0.086	1	
Permethrin (cis/trans)	2.2	1.5	0.17	1	
Phenothrin	ND	0.75	0.10	1	
Resmethrin/Bioresmethrin	ND	0.75	0.14	1	
Tetramethrin	ND	0.75	0.057	1	
lambda-Cyhalothrin	ND	0.75	0.065	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
trans-Permethrin(C13)	108	25-200			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 3540C EPA 8270D (M)/TQ/EI

Units:

ug/kg Page 3 of 3

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-403-34	N/A	Sediment	GCTQ 1	06/13/13	06/17/13 22:25	130613L01
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= t	to the MDL (DL	but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
Allethrin	ND	(0.50	0.26	1		
Bifenthrin	ND	(0.50	0.094	1		
Cyfluthrin	ND	(0.50	0.085	1		
Cypermethrin	ND		0.50	0.069	1		
Deltamethrin/Tralomethrin	ND		0.50	0.21	1		

0.50

0.50

0.50

1.0

0.50

0.50

0.50

0.50

Resmethrin/Bioresmethrin
Tetramethrin
lambda-Cyhalothrin

Fenpropathrin

Fluvalinate

Phenothrin

Surrogate

Fenvalerate/Esfenvalerate

Permethrin (cis/trans)

trans-Permethrin(C13)

Rec. (%)

ND

ND

ND

ND

ND

ND

ND

ND

Control Limits 25-200 **Qualifiers**

0.036

0.036

0.057

0.11

0.069

0.092

0.038

0.044

1

1

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 3050B EPA 6020 mg/kg

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	ICP/MS 03	06/13/13	06/13/13 21:03	130613L01E

Comment(s): - Results are reported on a dry weight basis.

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

Units:

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Arsenic	8.44	0.151	0.131	1	
Cadmium	0.423	0.151	0.0862	1	
Chromium	32.9	0.151	0.0935	1	
Copper	54.5	0.151	0.0631	1	
Lead	25.7	0.151	0.0992	1	
Nickel	22.4	0.151	0.0762	1	
Selenium	0.415	0.151	0.110	1	
Silver	0.219	0.151	0.0471	1	
Zinc	112	1.51	1.20	1	

Comment(s):

- Results are reported on a dry weight basis.
- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Arsenic	8.44	0.150	0.131	1	
Cadmium	0.376	0.150	0.0857	1	
Chromium	32.6	0.150	0.0929	1	
Copper	54.6	0.150	0.0627	1	
Lead	25.6	0.150	0.0987	1	
Nickel	23.2	0.150	0.0758	1	
Selenium	0.293	0.150	0.109	1	
Silver	0.178	0.150	0.0469	1	
Zinc	114	1.50	1.19	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 **EPA 3050B** EPA 6020

mg/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-254-117	N/A	Soil	ICP/MS 03	06/13/13	06/14/13 17:31	130613L01E
Comment(s): - Results were evalua-	ted to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Arsenic	ND		0.100	0.0873	1		
Cadmium	ND		0.100	0.0572	1		
Chromium	ND		0.100	0.0621	1		
Copper	ND		0.100	0.0419	1		
Lead	ND		0.100	0.0659	1		
Nickel	ND		0.100	0.0506	1		
Selenium	ND		0.100	0.0731	1		
Silver	ND		0.100	0.0313	1		
Zinc	ND		1.00	0.795	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0832 EPA 7471A Total EPA 7471A mg/kg

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B		13-06-0832-1-D	06/11/13 15:00	Sediment	Mercury	06/13/13	06/13/13 14:30	130313L01E
Comment(s): - Res	ults are reported on a	dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
Mercury			0.171	0.0	302	1		
Comment(s): - Res	ults are reported on a	dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
Mercury			0.180	0.0	300	1		
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qual	ifiers
Mercury			ND	0.0	200	1		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

06/12/13 13-06-0832

Preparation:

N/A

Method: Units:

ASTM D4464 (M)

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	LPSA 1	N/A	06/20/13 10:53	
Parameter	·			Result		Qualifiers	
Clay (less than 0.00391mm)				19.66			
Silt (0.00391 to 0.0625mm)				60.82			
Total Silt and Clay (0 to 0.0625mm)				80.48			
Very Fine Sand (0.0625 to 0.125mm)				18.21			
Fine Sand (0.125 to 0.25mm)				1.31			
Medium Sand (0.25 to 0.5mm)				ND			
Coarse Sand (0.5 to 1mm)				ND			
Very Coarse Sand (1 to 2mm)				ND			
Gravel (greater than 2mm)				ND			

Parameter	Result	Qualifiers
Clay (less than 0.00391mm)	18.28	
Silt (0.00391 to 0.0625mm)	57.16	
Total Silt and Clay (0 to 0.0625mm)	75.45	
Very Fine Sand (0.0625 to 0.125mm)	22.59	
Fine Sand (0.125 to 0.25mm)	1.97	
Medium Sand (0.25 to 0.5mm)	ND	
Coarse Sand (0.5 to 1mm)	ND	
Very Coarse Sand (1 to 2mm)	ND	
Gravel (greater than 2mm)	ND	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 EPA 8081A ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	GC 44	06/17/13	06/19/13 13:23	130617L14
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Aldrin		ND	1.5		1		
Alpha-BHC		ND	1.5		1		
Beta-BHC		ND	1.5		1		
Delta-BHC		ND	1.5		1		
Gamma-BHC		ND	1.5		1		
Chlordane		ND	15		1		
Dieldrin		ND	1.5		1		
Trans-nonachlor		ND	1.5		1		
2,4'-DDD		ND	1.5		1		
2,4'-DDE		3.1	1.5		1		
2,4'-DDT		ND	1.5		1		
4,4'-DDD		ND	1.5		1		
4,4'-DDT		ND	1.5		1		
Endosulfan I		ND	1.5		1		
Endosulfan II		ND	1.5		1		
Endosulfan Sulfate		ND	1.5		1		
Endrin		ND	1.5		1		
Endrin Aldehyde		ND	1.5		1		
Endrin Ketone		ND	1.5		1		
Heptachlor		ND	1.5		1		
Heptachlor Epoxide		ND	1.5		1		
Methoxychlor		ND	1.5		1		
Toxaphene		ND	30		1		
Alpha Chlordane		ND	1.5		1		
Gamma Chlordane		ND	1.5		1		
Cis-nonachlor		ND	1.5		1		
Oxychlordane		ND	1.5		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		79	50-	130			
Decachlorobiphenyl		83	50-	130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 EPA 8081A

ug/kg Page 2 of 5

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	GC 44	06/17/13	06/19/13 14:20	130617L14
Comment(s): - Results are reported on a	dry weight basis.		•				
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		12	3.0)	2		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		71	50-	-130			
Decachlorobiphenyl		78	50-	-130			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0832 EPA 3545 EPA 8081A ug/kg

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B Lab Dup	13-06-0832-2-D	06/11/13 00:00	Sediment	GC 44	06/17/13	06/19/13 13:37	130617L14
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
Aldrin		ND	1.5	i	1		
Alpha-BHC		ND	1.5	i	1		
Beta-BHC		ND	1.5	i	1		
Delta-BHC		ND	1.5	;	1		
Gamma-BHC		ND	1.5	;	1		
Chlordane		ND	15		1		
Dieldrin		ND	1.5	;	1		
Trans-nonachlor		ND	1.5	;	1		
2,4'-DDD		ND	1.5	;	1		
2,4'-DDE		3.0	1.5	;	1		
2,4'-DDT		ND	1.5	i	1		
4,4'-DDD		ND	1.5	;	1		
4,4'-DDT		ND	1.5	;	1		
Endosulfan I		ND	1.5	i	1		
Endosulfan II		ND	1.5	;	1		
Endosulfan Sulfate		ND	1.5	;	1		
Endrin		ND	1.5	i	1		
Endrin Aldehyde		ND	1.5	;	1		
Endrin Ketone		ND	1.5	i	1		
Heptachlor		ND	1.5	;	1		
Heptachlor Epoxide		ND	1.5	i	1		
Methoxychlor		ND	1.5	;	1		
Toxaphene		ND	30		1		
Alpha Chlordane		ND	1.5	;	1		
Gamma Chlordane		ND	1.5	;	1		
Cis-nonachlor		ND	1.5		1		
Oxychlordane		ND	1.5		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		82	50-	-130			
Decachlorobiphenyl		87	50-	-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

RL: Reporting Limit.

Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 EPA 8081A

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B Lab Dup	13-06-0832-2-D	06/11/13 00:00	Sediment	GC 44	06/17/13	06/19/13 14:34	130617L14
Comment(s): - Results are reported or	on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
4,4'-DDE		13	3.0	1	2		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		67	50-	130			
Decachlorobiphenyl		84	50-	130			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 EPA 8081A ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-858-208	N/A	Soil	GC 44	06/17/13	06/19/13 13:08	130617L14
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Aldrin		ND	1.0)	1		
Alpha-BHC		ND	1.0)	1		
Beta-BHC		ND	1.0)	1		
Delta-BHC		ND	1.0)	1		
Gamma-BHC		ND	1.0)	1		
Chlordane		ND	10		1		
Dieldrin		ND	1.0)	1		
Trans-nonachlor		ND	1.0)	1		
2,4'-DDD		ND	1.0)	1		
2,4'-DDE		ND	1.0)	1		
2,4'-DDT		ND	1.0)	1		
4,4'-DDD		ND	1.0)	1		
4,4'-DDE		ND	1.0)	1		
4,4'-DDT		ND	1.0)	1		
Endosulfan I		ND	1.0)	1		
Endosulfan II		ND	1.0)	1		
Endosulfan Sulfate		ND	1.0)	1		
Endrin		ND	1.0		1		
Endrin Aldehyde		ND	1.0)	1		
Endrin Ketone		ND	1.0)	1		
Heptachlor		ND	1.0		1		
Heptachlor Epoxide		ND	1.0		1		
Methoxychlor		ND	1.0)	1		
Toxaphene		ND	20		1		
Alpha Chlordane		ND	1.0)	1		
Gamma Chlordane		ND	1.0		1		
Cis-nonachlor		ND	1.0		1		
Oxychlordane		ND	1.0		1		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		99	50-	-130			
Decachlorobiphenyl		97	50-	-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-06-0832 EPA 3545 EPA 8270C SIM

06/12/13

Method: Units:

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 6

KTH Comp B 13-06-0832-1-D 06/11/13 (1)-13 (2)-13	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL DF Qualifiers 1-Methylnaphthalene ND 15 1 2.4.5-Trichlorophenol ND 15 1 2.4.5-Trichlorophenol ND 15 1 2.4-Dinitrylphenol ND 15 1 2.4-Dinitrylphenol ND 750 1 2.4-Dinitrylphenol ND 15 1 2.4-Dinitrylphenol ND 15 1 2-Methylphenol ND 15 1 2-Methylphenol ND 15 1 2-Methylphenol ND 15 1 4-Methylphenol ND 15 1 4-Methylphenol ND 15 1 4-Methylphenol ND 750 1 4-Chinor-3-Methylphenol ND 15 1 4-Chinor-3-Methylphenol ND 15 1 Acenaphthylene 10 15 1 Acenaphthylene 10 15 <t< th=""><th>YTI Comp B</th><th>13-06-0832-1-D</th><th>06/11/13 15:00</th><th>Sediment</th><th>GC/MS MM</th><th>06/17/13</th><th>06/18/13 20:53</th><th>130617L12</th></t<>	YTI Comp B	13-06-0832-1-D	06/11/13 15:00	Sediment	GC/MS MM	06/17/13	06/18/13 20:53	130617L12
1-Methylnaphthalene ND 15 1 2.4.5-Trichlorophenol ND 15 1 2.4.6-Trichlorophenol ND 15 1 2.4-Dichlorophenol ND 15 1 2.4-Dinitrophenol ND 15 1 2.4-Dinitrophenol ND 15 1 2-Methylpaphthalene ND 15 1 2-Methylphenol ND 15 1 2-Methylphenol ND 15 1 2-Methylphenol ND 15 1 4.6-Dinitro-2-Methylphenol ND 750 1 4.6-Dinitro-2-Methylphenol ND 750 1 4.6-Dinitro-2-Methylphenol ND 750 1 4.6-Dinitro-2-Methylphenol ND 15 1 4.6-Dinitro-2-Methylphenol ND 750 1 4.6-Dinitro-2-Methylphenol ND 15 1 4.6-Dinitro-2-Methylphenol ND 15 1 4-Roraphthlene <td< td=""><td>Comment(s): - Results are reporte</td><td>d on a dry weight basis.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Comment(s): - Results are reporte	d on a dry weight basis.						
2.4,8-Trichlorophenol ND 15 1 2.4,0-Irichlorophenol ND 15 1 2.4-Dirichtryphenol ND 15 1 2.4-Dirichtryphenol ND 750 1 2.4-Dirichtryphenol ND 15 1 2-Methylaphthalene ND 15 1 2-Methylaphthalene ND 15 1 2-Methylphenol ND 15 1 2-Methylphenol ND 15 1 4-Golintroz-Methylphenol ND 15 1 4-Golintroz-Methylphenol ND 750 1 4-Chloroz-Methylphenol ND 750 1 4-Chloroz-Methylphenol ND 750 1 4-Chloroz-Methylphenol ND 750 1 4-Nitrophenol ND 15 1 A-Chloroz-Methylphenol ND 15 1 4-Nitrophenol ND 15 1 A-Storogardistria ND 15 1 A-Chloroz-Methylphenol 15 1	<u>Parameter</u>		Result	<u>RL</u>	:	<u>DF</u>	Qua	<u>llifiers</u>
2.4.6.Trichlorophenol ND 15 1 2.4-Dinitrophenol ND 15 1 2.4-Dinitrophenol ND 750 1 2.4-Dinitrophenol ND 750 1 2-Chlorophenol ND 15 1 2-Methylaphthalene ND 15 1 2-Methylphenol ND 15 1 2-Mitrophenol ND 15 1 3/4-Methylphenol ND 15 1 4-Chloiro-3-Methylphenol ND 750 1 4-Chloiro-3-Methylphenol ND 750 1 4-Nitrophenol ND 750 1 4-Nitrophenol ND 15 1 4-Nitrophenol ND 15 1 Acenaphthylphenol ND 15 1 4-Nitrophenol ND 15 1 Acenaphthylnen 15 15 1 Benzo (a) Prime 10 15 1 Benzo (a) Prime 100 15 1 Benzo (a) Fluoranthene	1-Methylnaphthalene		ND	15		1		
2,4-Dichlorophenol ND 15 1 2,4-Dinitrophenol ND 750 1 2-Chloirophenol ND 15 1 2-Chloirophenol ND 15 1 2-Methylphaphthalene ND 15 1 2-Methylphenol ND 15 1 3/4-Methylphenol ND 15 1 4/-Chloro-3-Methylphenol ND 15 1 4-Chloro-3-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 15 1 4-Chloro-3-Methylphenol ND 750 1 Acenaphthylene ND 15 1 Acenaphthylene ND 15 1 Acenaphthylene 15 15 1 Acenaphthylene 15 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 68 15 1 <t< td=""><td>2,4,5-Trichlorophenol</td><td></td><td>ND</td><td>15</td><td></td><td>1</td><td></td><td></td></t<>	2,4,5-Trichlorophenol		ND	15		1		
2.4-Dinitrophenol ND 15 1 2.4-Dinitrophenol ND 750 1 2-Chlorophenol ND 15 1 2-Methylaphthalene ND 15 1 2-Methylphenol ND 15 1 2-Nitrophenol ND 15 1 3/4-Methylphenol ND 15 1 4-Choiro-2-Methylphenol ND 750 1 4-Chioro-3-Methylphenol ND 750 1 4-Nitrophenol ND 750 1 A-Nitrophenol ND 15 1 A-cenaphthene ND 15 1 Acenaphthene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 20 15 1 Benzo (b) Fluoranthene 52 15 1 Buyl Benzyl	2,4,6-Trichlorophenol		ND	15		1		
2.4-Dinitrophenol ND 750 1 2-Chilorophenol ND 15 1 2-Methylnaphthalene ND 15 1 2-Methylphenol ND 15 1 2-Nitrophenol ND 15 1 3/4-Methylphenol ND 15 1 4-Chiorro-3-Methylphenol ND 15 1 4-Chiorro-3-Methylphenol ND 15 1 4-Nitrophenol ND 15 1 4-Chiora-3-Methylphenol 15 15 1 4-Nitrophenol ND 15 1 4-Chiora-3-Methylphenol 15 15 1 4-Chaptaritie 16 15 1 Benzo (a) Anthracene 6 15 1 Benzo (a) Fluoranthene	2,4-Dichlorophenol		ND	15		1		
2-Chlorophenol ND 15 1 2-Methylpaphthalene ND 15 1 2-Methylphenol ND 15 1 3-V-Methylphenol ND 15 1 3-V-Methylphenol ND 15 1 4-Chloro-3-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 15 1 4-Chloro-3-Methylphenol ND 15 1 4-Chloro-3-Methylphenol ND 15 1 A-Chloro-3-Methylphenol ND 15 1 A-Chloro-3-Methylphenol ND 15 1 Acenaphthylene 15 15 1 Acenaphthylene 15 15 1 Benzo (a) Anthracene 100 15 1 Benzo (b) Fluoranthene 100	2,4-Dimethylphenol		ND	15		1		
2-Methylnaphthalene ND 15 1 2-Methylphenol ND 15 1 2-Nitrophenol ND 15 1 3/4-Methylphenol ND 15 1 4,6-Dinitro-2-Methylphenol ND 750 1 4-Nitrophenol ND 750 1 4-Nitrophenol ND 15 1 Acenaphthene ND 15 1 Acenaphthylplene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 20 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 27 15 1 Buryl Benzyl Phthalate 27 15 1 Chrysene 46 15 1	2,4-Dinitrophenol		ND	750	0	1		
2-Methylphenol ND 15 1 2-Nitrophenol ND 15 1 3/4-Methylphenol ND 15 1 4,6-Dinitro-2-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 15 1 4-Nitrophenol ND 750 1 4-Nitrophenol ND 15 1 Acenaphthylene 15 15 1 Acenaphthylene 31 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 68 15 1 Benzo (b) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Din-Butyl Phthalate ND 15 1 Di-Cyctyl Phthalate ND 15 <td< td=""><td>2-Chlorophenol</td><td></td><td>ND</td><td>15</td><td></td><td>1</td><td></td><td></td></td<>	2-Chlorophenol		ND	15		1		
2-Nitrophenol ND 15 1 3/4-Methylphenol ND 15 1 4,6-Dinitro-2-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 15 1 4-Nitrophenol ND 15 1 Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Acenaphthylene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (a) Pyrene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (g,h.i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate ND 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Ctyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 </td <td>2-Methylnaphthalene</td> <td></td> <td>ND</td> <td>15</td> <td></td> <td>1</td> <td></td> <td></td>	2-Methylnaphthalene		ND	15		1		
3/4-Methylphenol ND 15 1 4,6-Dinitro-2-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 15 1 4-Nitrophenol ND 750 1 4-Nitrophenol ND 750 1 4-Nitrophenol ND 15 1 Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (k) Fluoranthene 68 15 1 Benzo (k) Fluoranthene 270 15 1 Butyl Benzyl Phthalate 52 15 1 Butyl Benzyl Phthalate 52 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Sutyl Phthalate ND 15	2-Methylphenol		ND	15		1		
3/4-Methylphenol ND 15 1 4,6-Dinitro-2-Methylphenol ND 750 1 4-Chloro-3-Methylphenol ND 15 1 4-Nitrophenol ND 750 1 4-Nitrophenol ND 750 1 Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (k) Fluoranthene 68 15 1 Benzo (k) Fluoranthene 270 15 1 Bis(2-Ethylhexyl) Phthalate 27 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Buryl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene ND 15 1	2-Nitrophenol		ND	15		1		
4-Chloro-3-Methylphenol ND 15 1 4-Nitrophenol ND 750 1 Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (a) Pyrene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (gh,i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Detyl Phthalate ND 15 1 Di-n-Dotyl Phthalate ND 15 1 Diethyl Phthalate ND 15 1 Diethyl Phthalate ND 15 1 Direntyli Phthalate ND 15 1			ND	15		1		
4-Nitrophenol ND 750 1 Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (k) Fluoranthene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Bis(2-Ethylhexyl) Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Dctyl Phthalate ND 15 1 Dientyl Phthalate ND 15 1 Dimettyl Phthalate ND 15 1	4,6-Dinitro-2-Methylphenol		ND	750	0	1		
Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluoranthene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (k) Fluoranthene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Benzo (k) Fluoranthene 270 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Cytl Phthalate ND 15 1 Dietryl Phthalate ND 15 <t< td=""><td>4-Chloro-3-Methylphenol</td><td></td><td>ND</td><td>15</td><td></td><td>1</td><td></td><td></td></t<>	4-Chloro-3-Methylphenol		ND	15		1		
Acenaphthene ND 15 1 Acenaphthylene 15 15 1 Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (b) Fluorantene 100 15 1 Benzo (b) Fluorantene 130 15 1 Benzo (g,h,i) Perylene 68 15 1 Benzo (k) Fluorantene 100 15 1 Benzo (k) Fluoranthene 270 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 16 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Ctyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 <td< td=""><td>4-Nitrophenol</td><td></td><td>ND</td><td>750</td><td>0</td><td>1</td><td></td><td></td></td<>	4-Nitrophenol		ND	750	0	1		
Anthracene 31 15 1 Benzo (a) Anthracene 26 15 1 Benzo (a) Pyrene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (g,h,i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1			ND	15		1		
Benzo (a) Anthracene 26 15 1 Benzo (a) Pyrene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (g,h,i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Acenaphthylene		15	15		1		
Benzo (a) Pyrene 100 15 1 Benzo (b) Fluoranthene 130 15 1 Benzo (g,h,i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluoranthene ND 15 1 Fluoranthene ND 15 1 Fluoranthene 61 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Anthracene		31	15		1		
Benzo (b) Fluoranthene 130 15 1 Benzo (g,h,i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Benzo (a) Anthracene		26	15		1		
Benzo (g,h,i) Perylene 68 15 1 Benzo (k) Fluoranthene 100 15 1 Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Benzo (a) Pyrene		100	15		1		
Benzo (k) Fluoranthene 100 15 1 Bis (2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Benzo (b) Fluoranthene		130	15		1		
Bis(2-Ethylhexyl) Phthalate 270 15 1 Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Benzo (g,h,i) Perylene		68	15		1		
Butyl Benzyl Phthalate 52 15 1 Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Benzo (k) Fluoranthene		100	15		1		
Chrysene 46 15 1 Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Bis(2-Ethylhexyl) Phthalate		270	15		1		
Di-n-Butyl Phthalate ND 15 1 Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Butyl Benzyl Phthalate		52	15		1		
Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Chrysene		46	15		1		
Di-n-Octyl Phthalate ND 15 1 Dibenz (a,h) Anthracene 16 15 1 Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Di-n-Butyl Phthalate		ND	15		1		
Diethyl Phthalate ND 15 1 Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1			ND	15		1		
Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Dibenz (a,h) Anthracene		16	15		1		
Dimethyl Phthalate ND 15 1 Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	Diethyl Phthalate		ND	15		1		
Fluoranthene 27 15 1 Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1	-		ND	15		1		
Fluorene ND 15 1 Indeno (1,2,3-c,d) Pyrene 61 15 1			27	15		1		
Indeno (1,2,3-c,d) Pyrene 61 15 1	Fluorene					1		
	Indeno (1,2,3-c,d) Pyrene					1		
						1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 2 of 6

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Pentachlorophenol	ND	750	1	
Phenanthrene	16	15	1	
Phenol	ND	15	1	
Pyrene	52	15	1	
1,6,7-Trimethylnaphthalene	ND	15	1	
2,3,4,6-Tetrachlorophenol	ND	15	1	
2,6-Dichlorophenol	ND	15	1	
Dibenzothiophene	ND	15	1	
1-Methylphenanthrene	ND	15	1	
Benzo (e) Pyrene	92	15	1	
Perylene	46	15	1	
Biphenyl	ND	15	1	
2,6-Dimethylnaphthalene	20	15	1	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
2,4,6-Tribromophenol	66	32-143		
2-Fluorobiphenyl	51	14-146		
2-Fluorophenol	38	15-138		
Nitrobenzene-d5	43	18-162		
p-Terphenyl-d14	63	34-148		
Phenol-d6	47	17-141		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

13-06-0832 EPA 3545 **EPA 8270C SIM** ug/kg

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B Lab Dup	13-06-0832-2-D	06/11/13 00:00	Sediment	GC/MS MM	06/17/13	06/18/13 21:19	130617L12
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	RL		<u>DF</u>	<u>Qual</u>	<u>lifiers</u>
1-Methylnaphthalene		ND	15		1		
2.4.5-Trichlorophenol		ND	15		1		

13-00-000	00:00	Sediment GC/MS W		21:19
Comment(s): - Results are reported on a dry weight	basis.			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1-Methylnaphthalene	ND	15	1	
2,4,5-Trichlorophenol	ND	15	1	
2,4,6-Trichlorophenol	ND	15	1	
2,4-Dichlorophenol	ND	15	1	
2,4-Dimethylphenol	ND	15	1	
2,4-Dinitrophenol	ND	750	1	
2-Chlorophenol	ND	15	1	
2-Methylnaphthalene	ND	15	1	
2-Methylphenol	ND	15	1	
2-Nitrophenol	ND	15	1	
3/4-Methylphenol	ND	15	1	
4,6-Dinitro-2-Methylphenol	ND	750	1	
4-Chloro-3-Methylphenol	ND	15	1	
4-Nitrophenol	ND	750	1	
Acenaphthene	ND	15	1	
Acenaphthylene	17	15	1	
Anthracene	36	15	1	
Benzo (a) Anthracene	31	15	1	
Benzo (a) Pyrene	120	15	1	
Benzo (b) Fluoranthene	150	15	1	
Benzo (g,h,i) Perylene	77	15	1	
Benzo (k) Fluoranthene	130	15	1	
Bis(2-Ethylhexyl) Phthalate	300	15	1	
Butyl Benzyl Phthalate	42	15	1	
Chrysene	55	15	1	
Di-n-Butyl Phthalate	ND	15	1	
Di-n-Octyl Phthalate	ND	15	1	
Dibenz (a,h) Anthracene	17	15	1	
Diethyl Phthalate	ND	15	1	
Dimethyl Phthalate	ND	15	1	
Fluoranthene	32	15	1	
Fluorene	ND	15	1	
Indeno (1,2,3-c,d) Pyrene	66	15	1	
Naphthalene	ND	15	1	

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: Units: 06/12/13 13-06-0832 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 4 of 6

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Pentachlorophenol	ND	750	1	
Phenanthrene	19	15	1	
Phenol	ND	15	1	
Pyrene	58	15	1	
1,6,7-Trimethylnaphthalene	ND	15	1	
2,3,4,6-Tetrachlorophenol	ND	15	1	
2,6-Dichlorophenol	ND	15	1	
Dibenzothiophene	ND	15	1	
1-Methylphenanthrene	ND	15	1	
Benzo (e) Pyrene	110	15	1	
Perylene	49	15	1	
Biphenyl	ND	15	1	
2,6-Dimethylnaphthalene	26	15	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2,4,6-Tribromophenol	85	32-143		
2-Fluorobiphenyl	68	14-146		
2-Fluorophenol	57	15-138		
Nitrobenzene-d5	59	18-162		
p-Terphenyl-d14	79	34-148		
Phenol-d6	66	17-141		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 EPA 8270C SIM ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank	099-14-256-36	N/A	Soil	GC/MS MM	06/17/13	06/18/13 19:10	130617L12	
<u>Parameter</u>		Result	<u>RL</u> <u>DF</u>		<u>DF</u>	Qualifiers		
1-Methylnaphthalene		ND	1	0	1			
2,4,5-Trichlorophenol		ND	1	0	1			
2,4,6-Trichlorophenol		ND	1	0	1			
2,4-Dichlorophenol		ND	1	0	1			
2,4-Dimethylphenol		ND	1	0	1			
2,4-Dinitrophenol		ND	5	00	1			
2-Chlorophenol		ND	1	0	1			
2-Methylnaphthalene		ND	1	0	1			
2-Methylphenol		ND	1	0	1			
2-Nitrophenol		ND	1	0	1			
3/4-Methylphenol		ND	1	0	1			
4,6-Dinitro-2-Methylphenol		ND	5	00	1			
4-Chloro-3-Methylphenol		ND	1	0	1			
4-Nitrophenol		ND	5	00	1			
Acenaphthene		ND	1	0	1			
Acenaphthylene		ND	1		1			
Anthracene		ND	1	0	1			
Benzo (a) Anthracene		ND	1	0	1			
Benzo (a) Pyrene		ND	1	0	1			
Benzo (b) Fluoranthene		ND	1	0	1			
Benzo (g,h,i) Perylene		ND	1	0	1			
Benzo (k) Fluoranthene		ND	1	0	1			
Bis(2-Ethylhexyl) Phthalate		ND	1	0	1			
Butyl Benzyl Phthalate		ND	1		1			
Chrysene		ND	1	0	1			
Di-n-Butyl Phthalate		ND	1	0	1			
Di-n-Octyl Phthalate		ND	1	0	1			
Dibenz (a,h) Anthracene		ND	1	0	1			
Diethyl Phthalate		ND	1	0	1			
Dimethyl Phthalate		ND	1		1			
Fluoranthene		ND	1		1			
Fluorene		ND	1		1			
Indeno (1,2,3-c,d) Pyrene		ND	1		1			
Naphthalene		ND	1		1			
Pentachlorophenol		ND						

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

06/12/13 13-06-0832 EPA 3545 **EPA 8270C SIM** ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 6 of 6

Qualifiers

•	•	•	
Doromotor			Dooult
<u>Parameter</u>			<u>Result</u>

Phenanthrene
Phenol
Pyrene
1,6,7-Trimethylnaphthalene
2,3,4,6-Tetrachlorophenol
2,6-Dichlorophenol
Dibenzothiophene
1-Methylphenanthrene
Benzo (e) Pyrene
Perylene
Biphenyl
2,6-Dimethylnaphthalene
Surrogate
2.4.6. Tribromonhonal

ND
ND
Rec. (%)

<u>RL</u>	<u>DF</u>
10	1
10	1
10	1
10	1
10	1
10	1
10	1
10	1
10	1
10	1
10	1
10	1
Control Limite	Ous

1	
1	
1	
1	
1	
1	

<u>Surrogate</u>
2,4,6-Tribromophenol
2-Fluorobiphenyl
2-Fluorophenol
Nitrobenzene-d5
p-Terphenyl-d14
Phenol-d6

Rec. (%)	Control Limit
72	32-143
79	14-146
83	15-138
76	18-162
84	34-148
83	17-141

Qualifiers

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 06/12/13 13-06-0832

Preparation:

EPA 3545

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg Page 1 of 6

Project: POLA Berths 217-224 (YTI) Container Terminal

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B		13-06-0832-1-A	06/11/13 15:00	Sediment	GC/MS HHH	06/13/13	06/18/13 02:47	130613L04
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB018			0.86	0.7	75	1		
PCB028			ND	0.7	'5	1		
PCB037			ND	0.7	75	1		
PCB044			ND	0.7	'5	1		
PCB049			ND	0.7	'5	1		
PCB052			ND	0.7	'5	1		
PCB066			ND	0.7	75	1		
PCB070			ND	0.7	75	1		
PCB074			ND	0.7	'5	1		
PCB077			ND	0.7	75	1		
PCB081			ND	0.7	' 5	1		
PCB087			ND	0.7	75	1		
PCB099			ND	0.7	75	1		
PCB101			ND	0.7	' 5	1		
PCB105			ND	0.7	75	1		
PCB110			ND	0.7	' 5	1		
PCB114			ND	0.7	' 5	1		
PCB118			ND	0.7	75	1		
PCB119			ND	0.7	' 5	1		
PCB123			ND	0.7	' 5	1		
PCB126			ND	0.7	' 5	1		
PCB128			ND	0.7	' 5	1		
PCB138/158			ND	1.5	i	1		
PCB149			ND	0.7	' 5	1		
PCB151			ND	0.7	' 5	1		
PCB153			ND	0.7	'5	1		
PCB156			ND	0.7	' 5	1		
PCB157			ND	0.7	'5	1		
PCB167			ND	0.7		1		
PCB168			ND	0.7		1		
PCB169			ND	0.7		1		
PCB170			ND	0.7		1		
PCB177			ND	0.7		1		
PCB180			ND	0.7		1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 3545 EPA 8270C SIM PCB Congeners

Units: ug/kg
Page 2 of 6

Project: POLA Berths 217-224 (YTI) Container Terminal

T TOJECI. T OLA BETTIS 217-224 (T	1 age 2 01 0			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB183	ND	0.75	1	
PCB187	ND	0.75	1	
PCB189	ND	0.75	1	
PCB194	ND	0.75	1	
PCB201	ND	0.75	1	
PCB206	ND	0.75	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	59	50-125		
p-Terphenyl-d14	50	50-125		

13-06-0832

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

Preparation: EPA 3545

Method: EPA 8270C SIM PCB Congeners Units: ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B Lab Dup	13-06-0832-2-A	06/11/13 00:00	Sediment	GC/MS HHH	06/13/13	06/18/13 18:24	130613L04
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB018		ND	0.7	'5	1		
PCB028		ND	0.7	'5	1		
PCB037		ND	0.7	'5	1		
PCB044		ND	0.7	'5	1		
PCB049		ND	0.7	'5	1		
PCB052		ND	0.7	75	1		
PCB066		ND	0.7	'5	1		
PCB070		ND	0.7	'5	1		
PCB074		ND	0.7	75	1		
PCB077		ND	0.7	75	1		
PCB081		ND	0.7	75	1		
PCB087		ND	0.7	75	1		
PCB099		ND	0.7	75	1		
PCB101		ND	0.7	75	1		
PCB105		ND	0.7	'5	1		
PCB110		ND	0.7	75	1		
PCB114		ND	0.7	75	1		
PCB118		ND	0.7	75	1		
PCB119		ND	0.7	75	1		
PCB123		ND	0.7	75	1		
PCB126		ND	0.7	'5	1		
PCB128		ND	0.7	75	1		
PCB138/158		ND	1.5	i	1		
PCB149		ND	0.7	'5	1		
PCB151		ND	0.7	'5	1		
PCB153		ND	0.7	'5	1		
PCB156		ND	0.7	75	1		
PCB157		ND	0.7	'5	1		
PCB167		ND	0.7	'5	1		
PCB168		ND	0.7	75	1		
PCB169		ND	0.7	5	1		
PCB170		ND	0.7	'5	1		
PCB177		ND	0.7	75	1		
PCB180		ND	0.7	75	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-06-0832 EPA 3545 EPA 8270C SIM PCB Congeners

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 4 of 6

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB183	ND	0.75	1	
PCB187	ND	0.75	1	
PCB189	ND	0.75	1	
PCB194	ND	0.75	1	
PCB201	ND	0.75	1	
PCB206	ND	0.75	1	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	99	50-125		
p-Terphenyl-d14	102	50-125		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

13-06-0832

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

Preparation: EPA 3545
Method: EPA 8270C SIM PCB Congeners

Units: ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-341-104	N/A	Soil	GC/MS HHH	06/13/13	06/17/13 19:51	130613L04
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
PCB018		ND		0.50	1		
PCB028		ND		0.50	1		
PCB037		ND		0.50	1		
PCB044		ND		0.50	1		
PCB049		ND		0.50	1		
PCB052		ND		0.50	1		
PCB066		ND		0.50	1		
PCB070		ND		0.50	1		
PCB074		ND		0.50	1		
PCB077		ND		0.50	1		
PCB081		ND		0.50	1		
PCB087		ND		0.50	1		
PCB099		ND		0.50	1		
PCB101		ND		0.50	1		
PCB105		ND		0.50	1		
PCB110		ND		0.50	1		
PCB114		ND		0.50	1		
PCB118		ND		0.50	1		
PCB119		ND		0.50	1		
PCB123		ND		0.50	1		
PCB126		ND		0.50	1		
PCB128		ND		0.50	1		
PCB138/158		ND		1.0	1		
PCB149		ND		0.50	1		
PCB151		ND		0.50	1		
PCB153		ND		0.50	1		
PCB156		ND		0.50	1		
PCB157		ND		0.50	1		
PCB167		ND		0.50	1		
PCB168		ND		0.50	1		
PCB169		ND		0.50	1		
PCB170		ND		0.50	1		
PCB177		ND		0.50	1		
PCB180		ND		0.50	1		
PCB183		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

13-06-0832 EPA 3545 EPA 8270C SIM PCB Congeners

Project: POLA Berths 217-224 (Y	oject: POLA Berths 217-224 (YTI) Container Terminal							
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>				
PCB187	ND	0.50	1					
PCB189	ND	0.50	1					
PCB194	ND	0.50	1					
PCB201	ND	0.50	1					
PCB206	ND	0.50	1					
Surrogate	Rec. (%)	Control Limits	Qualifiers					
2-Fluorobiphenyl	69	50-125						
p-Terphenyl-d14	94	50-125						

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:

06/12/13 13-06-0832

Work Order: Preparation:

EPA 3550B (M)

Method:

Organotins by Krone et al.

Units:

ug/kg

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
YTI Comp B		13-06-0832-1-D	06/11/13 15:00	Sediment	GC/MS JJJ	06/12/13	06/14/13 11:40	130612L04
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
Dibutyltin			14	4.	5	1		
Monobutyltin			ND	4.	5	1		
Tetrabutyltin			ND	4.	5	1		
Tributyltin			11	4.	5	1		
Surrogate			Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
Tripentyltin			75	48	3-126			
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
Dibutyltin			13	4.	5	1		
Monobutyltin			ND	4.	5	1		
Tetrabutyltin			ND	4.	5	1		
Tributyltin			11	4.	5	1		
Surrogate			Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
Tripentyltin			67	48	3-126			
<u>Parameter</u>			Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Dibutyltin			ND	3.	0	1		
Monobutyltin			ND	3.	0	1		
Tetrabutyltin			ND	3.	0	1		
Tributyltin			ND	3.	0	1		
Surrogate			Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Tripentyltin			66	48	3-126			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

PARTICLE SIZE SUMMARY

(ASTM D422 / D4464M)

AMEC Environment & Infrastructure	Date Sampled:	6/11/2013
9210 Sky Park Court, Suite 200	Date Received:	6/12/2013
San Diego, CA 92123-4302	Work Order No:	13-06-0832
	Date Analyzed:	6/20/2013
	Method:	ASTM D4464M
Project: Berths 163-164		Page 1 of 2

	Sample ID	Depth ft	Description	Mean Grain Size mm
-	YTI Comp B	•	Silt	0.033

	Particle Size Distribution, wt by percent											
	Very				Very			Total				
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &				
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay				
0.00	0.00	0.00	0.00	1.31	18.21	60.82	19.66	80.48				

PARTICLE SIZE SUMMARY

(ASTM D422 / D4464M)

AMEC Envi	ironment & Infrastructure	Date Sampled:	6/11/2013
9210 Sky P	ark Court, Suite 200	Date Received:	6/12/2013
San Diego,	CA 92123-4302	Work Order No:	13-06-0832
		Date Analyzed:	6/20/2013
		Method:	ASTM D4464M
Project:	Berths 163-164		Page 2 of 2

	Sample ID	Depth ft	Description	Mean Grain Size mm
_	YTI Comp B Lab Dup		Silt	0.037

		Partio	cle Size Distribu	tion, wt by p	ercent			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.00	0.00	0.00	1.97	22.59	57.16	18.28	75.45

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

06/12/13 13-06-0832 N/A

EPA 9060A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 10

Quality Control Sample ID		Matrix		Instrument	Date Prepared		Date Analyzed	MS	MS/MSD Batch Number	
13-06-0526-1		Sedime	Sediment		06/17/13		06/17/13 18:28 D0617TOCS		617TOCS1	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	0.1700	3.000	3.360	106	3.400	108	75-125	1	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA Berths 217-224 (YTI) Container Terminal

Date Received: Work Order: Preparation: Method:

13-06-0832 Extraction EPA 418.1M

06/12/13

Page 2 of 10

Quality Control Sample ID		Matrix		Instrument Date Prepared		Date Analyzed	MS	MS/MSD Batch Numb		
13-06-0978-2		Soil		IR 2	06/14/	13	06/14/13 18:00	130	0614S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TRPH	13.36	100.0	101.5	88	102.3	89	55-135	1	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 3550B EPA 8015B (M)

06/12/13

Page 3 of 10

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID		Matrix		Instrument Date Prepared		Date Analyzed	MS	MS/MSD Batch Number		
13-06-0878-14		Soil		GC 47	06/14/1	13	06/14/13 17:59	130	614S02	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	378.7	95	378.2	95	64-130	0	0-15	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA Berths 217-224 (YTI) Container Terminal

Date Received:
Work Order:
Preparation:

13-06-0832 EPA 3540C

06/12/13

Method:

EPA 8270D (M)/TQ/EI

Page 4 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS/MSD Batch Number		Number
13-06-0714-1		Sedime	ent	GCTQ 1	06/13/13		06/18/13 02:05	130	613 S 01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Allethrin	ND	5.000	1.801	36	2.050	41	25-200	13	0-30	
Bifenthrin	ND	5.000	3.142	63	3.422	68	25-200	9	0-30	
Cyfluthrin	ND	5.000	1.828	37	2.197	44	25-200	18	0-30	
Cypermethrin	ND	5.000	1.659	33	1.967	39	25-200	17	0-30	
Deltamethrin/Tralomethrin	ND	5.000	2.381	48	2.763	55	25-200	15	0-30	
Fenpropathrin	ND	5.000	2.961	59	3.006	60	25-200	2	0-30	
Fenvalerate/Esfenvalerate	ND	10.00	3.912	39	4.777	48	25-200	20	0-30	
Fluvalinate	ND	5.000	1.709	34	2.218	44	25-200	26	0-30	
Permethrin (cis/trans)	3.251	5.000	8.042	96	8.269	100	25-200	3	0-30	
Phenothrin	ND	5.000	6.554	131	6.613	132	25-200	1	0-30	
Resmethrin/Bioresmethrin	ND	5.000	4.612	92	5.264	105	25-200	13	0-30	
Tetramethrin	ND	5.000	4.514	90	4.959	99	25-200	9	0-30	
lambda-Cyhalothrin	ND	5.000	2.236	45	2.579	52	25-200	14	0-30	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 EPA 3050B EPA 6020

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 5 of 10

Quality Control Sample ID		Matrix Instrument		Instrument	Date Prepared		Date Analyzed	MS	MS/MSD Batch Number	
13-06-0812-1		Soil		ICP/MS 03 06/13/13 0		06/13/13 12:36	06/13/13 12:36 130613S01			
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Arsenic	3.906	25.00	28.88	100	28.66	99	72-132	1	0-13	
Cadmium	ND	25.00	24.93	100	25.71	103	85-121	3	0-12	
Chromium	15.21	25.00	37.79	90	38.11	92	20-182	1	0-15	
Copper	21.24	25.00	43.93	91	47.87	106	25-157	9	0-22	
Lead	18.26	25.00	52.74	138	50.77	130	62-134	4	0-23	3
Nickel	13.44	25.00	35.88	90	37.34	96	46-154	4	0-15	
Selenium	ND	25.00	24.50	98	24.89	100	54-132	2	0-14	
Silver	ND	12.50	12.33	99	12.43	99	78-126	1	0-15	
Zinc	62.69	25.00	86.12	94	93.12	122	23-173	8	0-18	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 7471A Total EPA 7471A

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 6 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-04-1004-11		Sedime	nt	Mercury	06/13/1	13	06/13/13 12:04	130	0613S01	
<u>Parameter</u>	Sample Conc.	Spike Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	1.188	0.8350	2.244	126	2.199	121	71-137	2	0-14	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

06/12/13 13-06-0832 EPA 3545 EPA 8081A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 7 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	MS/MSD Batch Number		
YTI Comp B		Sedime	ent	GC 44	06/17/13		06/19/13 13:51	130	130617S14		
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers	
Aldrin	ND	5.000	3.511	70	3.366	67	50-135	4	0-25		
Alpha-BHC	ND	5.000	4.491	90	3.778	76	50-135	17	0-25		
Beta-BHC	ND	5.000	5.223	104	4.305	86	50-135	19	0-25		
Delta-BHC	ND	5.000	5.045	101	3.844	77	50-135	27	0-25	4	
Gamma-BHC	ND	5.000	4.034	81	3.412	68	50-135	17	0-25		
Dieldrin	ND	5.000	5.215	104	4.641	93	50-135	12	0-25		
4,4'-DDD	ND	5.000	6.598	132	6.077	122	50-135	8	0-25		
4,4'-DDE	8.215	5.000	13.60	108	12.44	85	50-135	9	0-25		
4,4'-DDT	ND	5.000	8.403	168	4.426	89	50-135	62	0-25	3,4	
Endosulfan I	ND	5.000	3.855	77	3.845	77	50-135	0	0-25		
Endosulfan II	ND	5.000	3.446	69	3.279	66	50-135	5	0-25		
Endosulfan Sulfate	ND	5.000	4.126	83	3.691	74	50-135	11	0-25		
Endrin	ND	5.000	4.807	96	4.540	91	50-135	6	0-25		
Endrin Aldehyde	ND	5.000	3.080	62	2.448	49	50-135	23	0-25	3	
Endrin Ketone	ND	5.000	4.504	90	3.903	78	50-135	14	0-25		
Heptachlor	ND	5.000	3.718	74	2.997	60	50-135	21	0-25		
Heptachlor Epoxide	ND	5.000	5.770	115	5.250	105	50-135	9	0-25		
Methoxychlor	ND	5.000	3.864	77	2.398	48	50-135	47	0-25	3,4	
Alpha Chlordane	ND	5.000	4.856	97	4.464	89	50-135	8	0-25		
Gamma Chlordane	ND	5.000	3.829	77	3.653	73	50-135	5	0-25		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Pyrene

Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 EPA 3545 EPA 8270C SIM

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 8 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-06-0714-1		Sedime	ent	GC/MS MM	06/17/	13	06/18/13 20:02	130	617S12	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
2,4,6-Trichlorophenol	ND	1000	693.0	69	747.3	75	40-160	8	0-20	
2,4-Dichlorophenol	ND	1000	625.0	63	688.1	69	40-160	10	0-20	
2-Methylphenol	ND	1000	725.6	73	799.3	80	40-160	10	0-20	
2-Nitrophenol	ND	1000	670.3	67	739.9	74	40-160	10	0-20	
4-Chloro-3-Methylphenol	ND	1000	664.0	66	737.5	74	40-160	10	0-20	
Acenaphthene	ND	1000	699.5	70	766.7	77	40-106	9	0-20	
Benzo (a) Pyrene	58.46	1000	909.8	85	970.9	91	17-163	7	0-20	
Chrysene	35.05	1000	807.8	77	893.2	86	17-168	10	0-20	
Di-n-Butyl Phthalate	10.59	1000	593.3	58	638.8	63	40-160	7	0-20	
Dimethyl Phthalate	ND	1000	684.1	68	750.5	75	40-160	9	0-20	
Fluoranthene	51.31	1000	710.0	66	779.1	73	26-137	9	0-20	
Fluorene	ND	1000	715.0	72	798.6	80	59-121	11	0-20	
N-Nitrosodimethylamine	ND	1000	501.9	50	571.3	57	40-160	13	0-20	
Naphthalene	ND	1000	688.7	69	727.7	73	21-133	6	0-20	
Phenanthrene	12.20	1000	734.7	72	797.8	79	54-120	8	0-20	
Phenol	ND	1000	530.2	53	575.6	58	40-160	8	0-20	

80

1016

86

6-156

0-46

RPD: Relative Percent Difference. CL: Control Limits

157.2

1000

958.8

Page 9 of 10

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

PCB209

Date Received: 06/12/13
Work Order: 13-06-0832
Preparation: EPA 3545

60

14.90

50-125

0-30

10

Method: EPA 8270C SIM PCB Congeners

Project: POLA Berths 217-224 (YTI) Container Terminal

ND

25.00

16.47

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-06-0440-11		Sedime	nt	GC/MS HHH	06/13/13		06/18/13 00:28	130613S04		
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
PCB008	ND	25.00	21.38	86	19.18	77	50-125	11	0-30	
PCB018	ND	25.00	21.55	86	19.06	76	50-125	12	0-30	
PCB028	ND	25.00	21.28	85	18.78	75	50-125	12	0-30	
PCB044	ND	25.00	17.89	72	15.69	63	50-125	13	0-30	
PCB052	ND	25.00	25.12	100	22.01	88	50-125	13	0-30	
PCB066	ND	25.00	20.51	82	17.67	71	50-125	15	0-30	
PCB077	ND	25.00	15.63	63	13.38	54	50-125	15	0-30	
PCB101	ND	25.00	17.26	69	14.91	60	50-125	15	0-30	
PCB105	ND	25.00	15.20	61	13.27	53	50-125	14	0-30	
PCB118	ND	25.00	19.33	77	16.95	68	50-125	13	0-30	
PCB126	ND	25.00	13.15	53	11.53	46	50-125	13	0-30	3
PCB128	ND	25.00	13.60	54	11.26	45	50-125	19	0-30	3
PCB153	ND	25.00	14.98	60	13.07	52	50-125	14	0-30	
PCB170	ND	25.00	16.60	66	14.68	59	50-125	12	0-30	
PCB180	ND	25.00	14.26	57	11.96	48	50-125	17	0-30	3
PCB187	ND	25.00	13.72	55	12.10	48	50-125	13	0-30	3
PCB195	ND	25.00	14.88	60	13.31	53	50-125	11	0-30	
PCB206	ND	25.00	15.57	62	14.17	57	50-125	9	0-30	

66

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-06-0832 EPA 3550B (M)

06/12/13

Organotins by Krone et al.

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 10 of 10

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-06-0715-2		Sedime	ent	GC/MS JJJ	06/12/	13	06/14/13 14:10	130	612S04	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Tetrabutyltin	ND	100.0	83.38	83	90.79	91	79-175	9	0-31	
Tributyltin	20.64	100.0	83.02	62	94.35	74	69-135	13	0-29	3

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 EPA 3050B EPA 6020

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 1

Quality Control Sample ID		Matrix		Instrumen	t	Date Prepared	Date Analyzed		PDS/PDSD Bate	ch Number
13-06-0812-1		Soil		ICP/MS 0	3	06/13/13 00:00	06/13/13	12:42	130613S01	
Parameter	Sample Conc.	<u>Spike</u> Added	PDS Conc.	PDS %Rec.	PDSD Conc.		%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Arsenic	3.906	25.00	29.09	101	28.55	99	75-125	2	0-20	
Cadmium	ND	25.00	25.03	100	25.17	101	75-125	1	0-20	
Chromium	15.21	25.00	36.84	87	36.46	85	75-125	1	0-20	
Copper	21.24	25.00	45.72	98	45.38	97	75-125	1	0-20	
Lead	18.26	25.00	45.06	107	44.70	106	75-125	1	0-20	
Nickel	13.44	25.00	36.70	93	36.47	92	75-125	1	0-20	
Selenium	ND	25.00	25.32	101	25.41	102	75-125	0	0-20	
Silver	ND	12.50	10.08	81	10.15	81	75-125	1	0-20	
Zinc	62.69	25.00	90.03	109	90.22	110	75-125	0	0-20	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 N/A

EPA 376.2M Page 1 of 3

Project: POLA	Berths 217-224	(YTI) Con	tainer Termin	al
---------------	----------------	-----------	---------------	----

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
13-06-0715-2	Sediment	N/A	06/17/13 00:00	06/17/13 14:45	D0617SD1
<u>Parameter</u>	Sample Cond	c. <u>DUP Conc.</u>	<u>RPD</u>	RPD CL	Qualifiers
Sulfide, Total	7.500	7.200	4	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 N/A

EPA 376.2M

Page 2 of 3

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
YTI Comp B	Sediment	N/A	06/12/13 00:00	06/12/13 20:40	D0612DSD3
Parameter	Sample Cond	<u>DUP Conc.</u>	<u>RPD</u>	RPD CL	Qualifiers
Sulfide, Dissolved	ND	ND	N/A	0-25	

Quality Control - Sample Duplicate

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

13-06-0832 N/A

06/12/13

Method:

SM 2540 B (M) Page 3 of 3

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
13-06-0714-1	Sediment	N/A	06/13/13 00:00	06/13/13 19:00	D0613TSD1
<u>Parameter</u>	Sample Cond	<u>DUP Conc.</u>	<u>RPD</u>	RPD CL	Qualifiers
Solids, Total	72.90	71.70	2	0-10	

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 N/A

EPA 9060A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 1 of 11

Quality Control Sample ID		Matrix	Matrix Instrument		Date Prepa	red Date A	Analyzed	LCS/LCSD Bar	tch Number
099-06-013-876		Soil		TOC 5	06/17/13	06/17/	13 18:28	D0617TOCL1	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon, Total Organic	0.6000	0.6454	108	0.6268	104	80-120	3	0-20	

N/A

13-06-0832

Page 2 of 11

Quality Control - LCS/LCSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

Method: SM 4500-NH3 B/C (M)

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID		Matrix		Instrument	Date Prepa	red Date A	Analyzed	LCS/LCSD Bar	tch Number
099-12-816-62		Soil		BUR05	06/19/13	06/19/	13 14:00	D0619NH3L1	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Ammonia (as N)	5.000	4.340	87	4.270	85	80-120	2	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 Extraction EPA 418.1M

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 3 of 11

Quality Control Sample ID	Matrix	Instrument	Date Analy	zed /	LCS Batch Number
099-07-015-1927	Soil	IR 2	06/14/13 1	8:00	130614L01
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
TRPH	100.0	92.28	92	70-130	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 06/12/13 13-06-0832 EPA 3550B EPA 8015B (M)

Page 4 of 11

Project: POLA Berths 217-224 (YTI) Container Terminal

Quality Control Sample ID	Matrix	Instrument	Date Analyz	zed	LCS Batch Number
099-15-490-364	Soil	GC 47	06/14/13 17	:43	120614B02
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
TPH as Diesel	400.0	444.6	111	75-123	

o Contents

Quality Control - LCS

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: POLA Berths 217-224 (YTI) Container Terminal

Date Received: Work Order:

13-06-0832 EPA 3540C

06/12/13

Method:

Preparation:

EPA 8270D (M)/TQ/EI

Page 5 of 11

Quality Control Sample ID	Mati	rix	Instrument	Date Analyzed	LCS Batch Number	
099-14-403-34	Sed	iment	GCTQ 1	06/17/13 21:49	130613L01	
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Allethrin	5.000	2.443	49	25-200	0-229	
Bifenthrin	5.000	3.868	77	25-200	0-229	
Cyfluthrin	5.000	2.431	49	25-200	0-229	
Cypermethrin	5.000	2.309	46	25-200	0-229	
Deltamethrin/Tralomethrin	5.000	2.593	52	25-200	0-229	
Fenpropathrin	5.000	2.823	56	25-200	0-229	
Fenvalerate/Esfenvalerate	10.00	4.307	43	25-200	0-229	
Fluvalinate	5.000	2.334	47	25-200	0-229	
Permethrin (cis/trans)	5.000	3.977	80	25-200	0-229	
Phenothrin	5.000	4.836	97	25-200	0-229	
Resmethrin/Bioresmethrin	5.000	4.560	91	25-200	0-229	
Tetramethrin	5.000	3.101	62	25-200	0-229	
lambda-Cyhalothrin	5.000	1.978	40	25-200	0-229	

Total number of LCS compounds: 13

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

06/12/13 13-06-0832 EPA 3050B EPA 6020

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 6 of 11

Quality Control Sample ID	Matrix	Instrument	Date Ana	lyzed	LCS Batch Number
099-15-254-117	Soil	ICP/MS 03	06/13/13	12:00	130613L01E
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
Arsenic	25.00	24.77	99	80-120	
Cadmium	25.00	25.49	102	80-120	
Chromium	25.00	24.40	98	80-120	
Copper	25.00	26.32	105	80-120	
Lead	25.00	25.98	104	80-120	
Nickel	25.00	25.21	101	80-120	
Selenium	25.00	25.55	102	80-120	
Silver	12.50	10.68	85	80-120	
Zinc	25.00	27.47	110	80-120	

Matrix

Soil

Spike Added

0.8350

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Quality Control Sample ID

099-12-452-384

<u>Parameter</u>

Mercury

Date Received: Work Order: Preparation: Method:

0.7904

95

13-06-0832 EPA 7471A Total EPA 7471A

Page 7 of 11

06/12/13

Project: POLA Berths 217-224 (YTI) Container Terminal

Instrument	Date Analyzed		LCS Batch Number		
Mercury	06/13/13	10:49	1303	13L01E	
Conc. Recovered	LCS %Rec.	%Rec.	<u>CL</u>	Qualifiers	

82-124

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

06/12/13 13-06-0832 EPA 3545 EPA 8081A

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 8 of 11

Quality Control Sample ID	Mati	rix	Instrument	Date Analyzed	LCS Batch N	Number
099-12-858-208	Soil		GC 44	06/19/13 15:36	130617L14	
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Aldrin	5.000	4.252	85	50-135	36-149	
Alpha-BHC	5.000	4.916	98	50-135	36-149	
Beta-BHC	5.000	4.273	85	50-135	36-149	
Delta-BHC	5.000	3.744	75	50-135	36-149	
Gamma-BHC	5.000	4.885	98	50-135	36-149	
Dieldrin	5.000	4.431	89	50-135	36-149	
4,4'-DDD	5.000	4.339	87	50-135	36-149	
4,4'-DDE	5.000	4.593	92	50-135	36-149	
4,4'-DDT	5.000	4.366	87	50-135	36-149	
Endosulfan I	5.000	4.436	89	50-135	36-149	
Endosulfan II	5.000	4.348	87	50-135	36-149	
Endosulfan Sulfate	5.000	4.147	83	50-135	36-149	
Endrin	5.000	4.919	98	50-135	36-149	
Endrin Aldehyde	5.000	4.636	93	50-135	36-149	
Endrin Ketone	5.000	4.323	86	50-135	36-149	
Heptachlor	5.000	4.415	88	50-135	36-149	
Heptachlor Epoxide	5.000	4.421	88	50-135	36-149	
Methoxychlor	5.000	4.444	89	50-135	36-149	
Alpha Chlordane	5.000	4.338	87	50-135	36-149	
Gamma Chlordane	5.000	4.433	89	50-135	36-149	

Total number of LCS compounds: 20
Total number of ME compounds: 0
Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

06/12/13 13-06-0832 EPA 3545 EPA 8270C SIM

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 9 of 11

Quality Control Sample ID	Matrix	x	Instrument	Date Analyzed	LCS Batch N	lumber
099-14-256-36	Soil		GC/MS MM	06/18/13 17:28	130617L12	
<u>Parameter</u>	Spike Added	<u>Conc.</u> <u>Recovered</u>	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
2,4,6-Trichlorophenol	1000	522.4	52	40-160	20-180	
2,4-Dichlorophenol	1000	488.3	49	40-160	20-180	
2-Methylphenol	1000	495.2	50	40-160	20-180	
2-Nitrophenol	1000	493.3	49	40-160	20-180	
4-Chloro-3-Methylphenol	1000	481.2	48	40-160	20-180	
Acenaphthene	1000	576.5	58	48-108	38-118	
Benzo (a) Pyrene	1000	732.7	73	17-163	0-187	
Chrysene	1000	657.9	66	17-168	0-193	
Di-n-Butyl Phthalate	1000	676.0	68	40-160	20-180	
Dimethyl Phthalate	1000	498.6	50	40-160	20-180	
Fluoranthene	1000	639.4	64	26-137	8-156	
Fluorene	1000	621.6	62	59-121	49-131	
N-Nitrosodimethylamine	1000	425.3	43	40-160	20-180	
Naphthalene	1000	515.8	52	21-133	2-152	
Phenanthrene	1000	606.8	61	54-120	43-131	
Phenol	1000	399.6	40	40-160	20-180	
Pyrene	1000	674.8	67	28-106	15-119	

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

n to Contents

Quality Control - LCS

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

 Date Received:
 06/12/13

 Work Order:
 13-06-0832

 Preparation:
 EPA 3545

Method: EPA 8270C SIM PCB Congeners

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 10 of 11

Quality Control Sample ID	M	atrix	Instrument	Date Analyzed	LCS Batch I	Number
099-14-341-104	S	oil	GC/MS HHH	06/18/13 13:40	130613L04	
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
PCB008	25.00	20.31	81	50-125	38-138	
PCB018	25.00	22.98	92	50-125	38-138	
PCB028	25.00	23.43	94	50-125	38-138	
PCB044	25.00	23.29	93	50-125	38-138	
PCB052	25.00	21.78	87	50-125	38-138	
PCB066	25.00	25.28	101	50-125	38-138	
PCB077	25.00	22.91	92	50-125	38-138	
PCB101	25.00	22.96	92	50-125	38-138	
PCB105	25.00	22.43	90	50-125	38-138	
PCB118	25.00	24.72	99	50-125	38-138	
PCB126	25.00	20.64	83	50-125	38-138	
PCB128	25.00	20.96	84	50-125	38-138	
PCB153	25.00	21.62	86	50-125	38-138	
PCB170	25.00	20.77	83	50-125	38-138	
PCB180	25.00	19.81	79	50-125	38-138	
PCB187	25.00	20.37	81	50-125	38-138	
PCB195	25.00	18.19	73	50-125	38-138	
PCB206	25.00	20.55	82	50-125	38-138	
PCB209	25.00	17.81	71	50-125	38-138	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

13-06-0832 EPA 3550B (M)

06/12/13

Organotins by Krone et al.

Project: POLA Berths 217-224 (YTI) Container Terminal

Page 11 of 11

Quality Control Sample ID	Matrix	Instrument	Date Ana	alyzed	LCS Batch Number
099-07-016-1032	Soil	GC/MS JJJ	06/14/13	11:10	130612L04
<u>Parameter</u>	Spike Added	Conc. Recovered	LCS %Rec.	%Rec.	CL Qualifiers
Tetrabutyltin	100.0	88.80	89	79-151	
TributyItin	100.0	90.42	90	51-129	

Glossary of Terms and Qualifiers

Work Order: 13-06-0832 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

waboratories, inc. alscience nvironmental

GARDEN GROVE, CA 92841-1432 7440 LINCOLN WAY

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD 6/12/2013

P

PAGE:

AME	LABORATORY CLIENT: AMEC							ا ا	OLIENI PROJECI NAME/MONIBER		7 7						ĭ.	7.0 .0 .0 .0 .0				
ADDR	ESS:						Be	ths 1	Berths 163-164	64								1015101930	0193			
9210	9210 Sky Park Ct # 200						PROJE	PROJECT CONTACT:	TACT:	į	:	•					ō	QUOTE NO.:	.: O			
San I	टार San Diego, CA 92123						SAMPLEB	\(\frac{1}{2}\)	Barry Snyder/ I yler Huff sampleg(s): (signature)	7 1 yle	I HE	_							X INC	The state of the s		
TEL: 858-4	TEL: 858-449-2334	E-Mail tyler.huff@amec.com		E-MAIL			-0		1							*		4			JHU832	F.
TURN	NAROUND TIME SAME DAY 74 HR	HANNEY H	5 DAYS	X SAN	10 DAYS							<u>Ж</u>	30E	STE	REQUESTED ANALYSIS	ALY	SIS					
SPEC	E G	SAM	SUNTIL				р			səpy	\vdash	\vdash	<u> </u>							1		1
Pe G. Pe	SPECIAL INSTRUCTIONS Danielle Gonsman is PM Green Book Testing Please see attached Sheet for Analysis. Please report all applicable totals (i.e. P.	l et fo	The off				esiupes etest te	lids ganic Carbon	sinomia	lu& bəvlossiQ t				ted Pesticides	ıdeners			su				
LAB		LOCATION/	SAMPLING	ING	1	*				ıl sne				orina	100			ijour	zis u			
USE ONLY	SAMPLE ID	DESCRIPTION	DATE	TIME	latrit	Cont		stoT stoT		stoT	steM	qят нqт	HA¶	сыс	ьсв	Phe	Pyre Phth	Orga	graiı	,		
/	YTI Comp B	Port of Los Angeles	06/11/13	1500	sediment	4	┣	 	├─	×	├	×	 	×	×			×	×			
•																						
													<u> </u>									l
													<u> </u>									
																						<u> </u>
																	<u> </u>					T
Relingu			-		Receive	Signature	ture)			١					8		2 発 8 8		M		X	
N	क्तेshed धि: (Signature)				Received by: (Signature)	: Signa	(anre)	4						1 18			Date: /	1/2		Time:	10/2	Pa
Relin	Relinquished by: (Signature)				Received by: (Signature)	: (Signa	(nre)										Date:			Time:		ge 69
																						of 7
																						'1

Table 4-2.
Chemical Analyses for Elutriate, Sediment and Tissue Samples

Analyte	Analysis Method	Elutriate Target Detection Limits ^{a, b}	Sediment Target Detection Limits ^{a, b}	Tissue Target Detection Limits ^{a, b}
Total Solids	160.3/SM 2540 B	N/A	0.1 %	0.100 %
Total Organic Carbon	9060	N/A	0.1 %	N/A
Total Ammonia	SM 4500-NH3 B/C (M)/350.2M°	N/A	0.2 mg/kg	N/A
Total Sulfides	376.2M°	N/A	0.5 mg/kg	N/A
Soluble Sulfides	SM 4500 S2 - D°	N/A	0.5 mg/kg	N/A
Arsenic	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Cadmium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Chromium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.02 mg/kg
Copper	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Lead	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Mercury	7471A ^d	0.0002 mg/L	0.02 mg/kg	0.02 mg/kg
Nickel	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Selenium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Silver	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Zinc	6020/6010B ^d	0.005 mg/L	1.0 mg/kg	1.0 mg/kg
Total Lipids	NOAA 1993a'	N/A	N/A	0.1 %
TRPH	418.1M ^a	N/A	10 mg/kg	N/A
TPH (C6-C44)	8015B(M)/8015B ^d	N/A	5.0 mg/kg	N/A
PAHs ^e	8270C SIM/ GC/TQ ^d	0.2 μg/L	10 μg/kg	10 μg/kg
Chlorinated Pesticides [†]	8081A ^d	0.1 μg/L	1.0 – 20 μg/kg	0.5 - 20 μg/kg
PCB Congeners ^g	8270C SIM PCB ^d	0.02 μg/L	0.5 µg/kg	0.5 μg/kg
Phenols	8270C SIM ^d	N/A	20 – 100 μg/kg	N/A
Pyrethroids	GC/MS/MS ^J	N/A	0.5 – 1.0 μg/kg	N/A
Phthalates	8270C SIM ^d	N/A	10 μg/kg	N/A
Organotins	Rice/Krone ^h	3.0 ng/L	3.0 µg/kg	N/A

Notes:

- Sediment minimum detection limits are on a wet-weight basis. Tissue minimum levels are on a wet-weight basis.
- Reporting limits provided by Calscience Environmental Laboratories, Inc.
- Standard Methods for the Examination of Water and Wastewater, 19th Edition American Public Health Association et al. 1995.
- ^d USEPA 1986-1996. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.
- lncludes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene.
- Includes aldrin, α-benzene hexachloride (BHC), β -BHC, γ -BHC (lindane), δ -BHC, chlordane, 2,4- and 4,4- dichlorodiphenyldichloroethane (DDD), 2,4- and 4,4-dichlorodiphenyldichloroethylene (DDE), 2,4- and 4,4- dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, and toxaphene.
- PCBs (sum of 41 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194,201, and 206)
- Rice, C.D. et al. 1987, or similar (e.g. Krone et al. 1989)
 - NOAA 1993
- Allethrin (Bioallethrin), Bifenthrin, Cyfluthrin-beta (Baythroid), Cyhalothrin-Lamba, Cypermethrin, Deltamethrin (Decamethrin), Esfenvalerate, Fenpropathrin (Danitol), Fenvalerate (sanmarton), Fluvalinate, Permethrin (cis and trans), Resmethrin (Bioresmethrin), Resmethrin, Sumithrin (Phenothrin), Tetramethrin, and Tralomethrin

pg/kg - micrograms per kilogram (parts per billion)

mg/kg - miligrams per kilogram (parts per million)

pg/kg - miligrams per kilogram (parts per million)

pc - polycyclic aromatic hydrocarbon polychlorinated biphenyl

pc - polychlorinated biphenyl

SM - Standard Methods

mg/L - milligrams per liter SOP - standard operating procedure
ng/L - nanograms per liter TPH - total petroleum hydrocarbons
N/A - not applicable TRPH - total recoverable petroleum hydrocarbons

WORK ORDER #: 13-06- □ 3 2

CANAD	LE RECEIPT FORM	
SAME	LE RECEIP I FURIVI	

Cooler of

CLIENT: AMEC DATE:	. 06 /1	2/13
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C − 6.0 °C, not frozen except Temperature	☐ Sam	ple
CUSTODY SEALS INTACT: Cooler		tial:
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples	No □	N/A
□ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC		
Proper containers and sufficient volume for analyses requested		
Proper preservation noted on COC or sample container		A
Tedlar bag(s) free of condensation		
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ □ Air: □Tedlar® □Canister Other: □ Trip Blank Lot#: Labele	□1PB na	□500PB

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:

Reviewed by: ____//

APPENDIX D TOXICITY LABORATORY REPORT

Port of Los Angeles YTI Terminal Dredged Material Characterization

Toxicity and Bioaccumulation Testing Report

June 2013

Prepared by:

Nautilus Environmental

4340 Vandever Avenue San Diego, CA 92120

Prepared for:

AMEC Environment & Infrastructure, Inc.

9210 Sky Park Court, Suite 200 San Diego, CA 92123

Submitted: September 26, 2013

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
2.0	MET	THODS	1
	2.1	Study Design	1
	2.2	Sample Collection, Receipt, and Preparation	2
	2.3	Toxicity Test Methodology	3
	2.4	Statistical Analyses	10
	2.5	Testing Schedule	10
3.0	RES	SULTS	12
	3.1	Solid-Phase Toxicity Tests	12
		3.1.1 Eohaustorius	12
		3.1.2 Neanthes	12
	3.2	Suspended Particulate-Phase Toxicity Tests	14
	3.3	Bioaccumulation Tests	18
4.0	QUA	ALITY ASSURANCE / QUALITY CONTROL	20
	4.1	Reference Toxicant Tests	20
	4.2	Solid-Phase Toxicity Tests	20
	4.3	Suspended Particulate-Phase Toxicity Tests	20
	4.4	Bioaccumulation Tests	20
	4.5	Potential Confounding Factors	20
		4.5.1 Ammonia	21
5.0	REE	FERENCES	25

LIST OF TABLES

Table 1.	Sediment Sample IDs2
Table 2.	Toxicity Test Methodology and QA/QC Requirements for Solid Phase Toxicity Tests Using the Marine Amphipods <i>Eohaustorius estuarius</i>
Table 3.	Toxicity Test Methodology and QA/QC Requirements for Solid Phase Toxicity Tests Using the Marine Polychaete Neanthes arenaceodentata
Table 4.	Toxicity Test Methodology and QA/QC Requirements for Suspended Particulate- Phase Bivalve Embryo Development Toxicity Tests Using the Mediterranean Mussel Mytilus galloprovincialis
Table 5.	Toxicity Test Methodology and QA/QC Requirements for Suspended Particulate- Phase Toxicity Tests Using the Mysid Shrimp <i>Americamysis bahia</i> 7
Table 6.	Toxicity Test Methodology and QA/QC Requirements for Suspended Particulate Phase Toxicity Tests Using the Inland Silverside Minnow <i>Menidia beryllina</i> 8
Table 7.	Toxicity Test Methodology and QA/QC Requirements for 28-Day Bioaccumulation Tests Using the Marine Clam <i>Macoma nasuta</i> and the Marine Polychaete <i>Nereis virens</i> 9
Table 8.	Toxicity Test Schedule11
Table 9.	Summary of 10-day Solid-Phase Mean Survival Results12
Table 10.	Summary of Suspended Particulate-Phase Mean Test Results14
Table 11.	Summary of 28-day Mean Survival in Bioaccumulation Tests
Table 12.	Total and Un-ionized Ammonia Concentrations in Sediment Pore Water at Test Initiation
Table 13.	Total and Un-ionized Ammonia Concentrations in Solid-Phase Toxicity Tests22
Table 14.	Total and Un-ionized Ammonia Concentrations in Suspended Particulate-Phase Toxicity Tests
Table 15.	Total and Un-ionized Ammonia Concentrations in Bioaccumulation Tests24

LIST OF FIGURES

Figure 1.	10-day survival of amphipods (E . estuarius) in the solid-phase toxicity test of YTI sediments (mean percent survival \pm 95% CI). Columns marked with an asterisk differ significantly from the LA-2 Reference sample (p < 0.05)
Figure 2.	10-day survival of polychaete worms (<i>N. arenaceodentata</i>) in the solid-phase toxicity test of YTI sediments (mean percent survival ± 95% CI)13
Figure 3.	48-hr percent normal alive of mussel larvae (<i>M. galloprovincialis</i>) in the suspended particulate-phase toxicity test of YTI sediment elutriates (mean percent normal alive ± 95% CI)
Figure 4.	96-hr survival of mysid shrimp (<i>A. bahia</i>) in the suspended particulate-phase toxicity test of YTI sediment elutriates (mean percent survival ± 95% CI)16
Figure 5.	96-hr survival of inland silverside ($\it M. beryllina$) in the suspended particulate-phase toxicity test YTI sediment elutriates (mean percent survival \pm 95% CI)17
Figure 6.	28-day survival of bent-nosed clams ($\it M. nasuta$) in the bioaccumulation exposure (mean \pm 95% CI)
Figure 7.	28-day survival of the blood worm (<i>N. virens</i>) in the bioaccumulation exposure (mean \pm 95% CI)19

1.0 INTRODUCTION

The Port of Los Angeles (POLA) is proposing to dredge sediments at Berths 214-220 for the Yusen Terminals Inc. (YTI) Container Terminal Improvements Project, and dispose of the material at the LA-2 ocean disposal site. In order to assess the suitability for ocean disposal, AMEC Environment & Infrastructure, Inc. (AMEC) has contracted with Nautilus Environmental (Nautilus) to conduct biological testing as part of the sediment characterization. The testing was conducted using methods outlined in the United States Environmental Protection Agency and Army Corps of Engineers (USEPA/USACE) "Green Book" testing protocol; "Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual" (USACE/EPA 1991).

The following report presents the results of toxicity and bioaccumulation bioassays conducted on composite sediment samples collected from two sites within the dredging footprint. In addition, reference sediment was collected and tested from the USEPA approved LA-2 Ocean Dredged Material Disposal Site. LA-2 sediment serves as a disposal-site reference location for comparison purposes. Solid- and suspended particulate-phase (SP and SPP) toxicity tests were conducted on whole sediments and sediment elutriates, respectively. Testing of the potential for bioaccumulation of contaminants in the whole sediment was also evaluated.

2.0 METHODS

2.1 Study Design

The material under consideration for ocean disposal was tested according to the project-specific Sampling and Analysis Plan (SAP) (AMEC, 2013) using criteria outlined in the Ocean Testing Manual (USEPA/USACE 1991), and the Inland Testing Manual (USEPA/USACE 1998).

The solid-phase amphipod tests included two concurrent controls. The laboratory control sediment consisted of coarse sand collected in the same location as the organisms (the amphipod collection site is composed of nearly 100 percent sand, lacking silt and clay fractions). Thus, the additional "fine grain size" control sediment was tested to better represent the common fine sediments found within bays and harbors. The control sediment for the solid-phase polychaete test consisted of clean beach sand collected from Scripps Institution of Oceanography in La Jolla, California; a fine grain control was not tested for polychaetes.

2.2 Sample Collection, Receipt, and Preparation

All site sediment cores from the YTI Terminal were collected between June 3 and June 8, 2013. Reference sediment was collected from the LA-2 ocean disposal site on June 2, 2013. Approximately 25 gallons of sediment were collected for toxicity testing from each site. The sediment was collected in food-grade polyethylene plastic liners and was then transported by courier in coolers containing wet ice to the Nautilus laboratory in San Diego, CA. Core samples were received at Nautilus between June 4 and June 8, 2013 and were stored at 4°C until being composited and homogenized by AMEC staff on June 10, 2013. Samples were identified as YTI Comp A, YTI Comp B, and LA-2 Reference (Table 1). Sub-samples were removed from each composite sample for chemical analysis, and then composited sediments were stored at 4°C until used for toxicity testing. Just prior to each phase of testing (SP, SPP, and Bioaccumulation) the samples were thoroughly homogenized. For the solid-phase toxicity tests, a sub-sample of each sample was sieved through a 500-µm Nitex® mesh screen to remove native organisms and large debris that may interfere with the survival and recovery of test organisms.

 Site ID
 Composite Date
 Receipt Date

 YTI Comp A
 June 10, 2013
 June 11, 2013^a

 YTI Comp B
 June 10, 2013
 June 11, 2013^a

 LA-2 Reference
 June 2, 2013
 June 4, 2013

Table 1. Sediment Sample IDs

Sediment elutriates for suspended particulate phase toxicity tests were prepared by mixing one part sediment with four parts seawater (adjusted to 30 parts per thousand [ppt] with de-ionized water). The sediments were then mixed for 30 minutes (min) in polyethylene plastic-lined 5-gallon plastic buckets using a stainless steel mixing blade. The elutriate preparation was allowed to settle for approximately one hour before testing with bivalve larvae (note: the elutriate was allowed to settle for several hours at 4°C to obtain enough volume for the fish and mysid tests). The resulting supernatant was then siphoned into a clean container for testing. The suspended particulate-phase tests were not performed on sediment from LA-2 Reference.

^a Samples were stored at Nautilus in 4°C overnight after compositing on June 10 and were released to Nautilus staff the following morning of June 11.

Sediments were not manipulated in any way prior to use for bioaccumulation exposures.

2.3 Toxicity Test Methodology

Test methods and acceptability criteria are described in Tables 2 through 7. For all tests, water quality parameters (pH, temperature, salinity and dissolved oxygen [D.O.]) were monitored on a daily basis. Water samples from test chambers were also collected at specified intervals to monitor ammonia concentrations. For the 28-day (d) bioaccumulation tests, composite water samples for ammonia were collected on days 0, 7, 14, 21 and 28. For the 10-d solid-phase sediment tests, pore water samples were collected and tested for ammonia before initiation, and from the overlying water at test initiation and termination. For the 48- and 96-h suspended particulate-phase tests, water samples for ammonia analysis were collected at test initiation and termination.

Toxicity Test Methodology and QA/QC Requirements for Solid Phase Toxicity Tests Using the Marine Amphipods *Eohaustorius estuarius* Table 2.

Test organism	Marine Amphipods – Eohaustorius estuarius
Test organism source	Northwestern Aquatic Sciences, Newport, OR
Test organism size class	3-5 mm
Test duration; endpoint	10 days; survival
Overlying water renewal	None
Feeding	None
Test chamber	1-L glass jar
Sediment depth	2 cm
Overlying water volume	800 mL
Test temperature	15 \pm 1°C test-wide mean, 15 \pm 3°C daily instantaneous
Dilution water	Natural seawater collected offshore of the Scripps Pier in La Jolla, CA; filtered and diluted to 30 ppt with deionized water prior to testing
Test concentrations	Undiluted sediment composites
Number of organisms/chamber	20
Number of replicates	5, plus 1 surrogate test chamber for water quality readings
Negative controls	Sediment from amphipod collection site and fine- grain control from Sail Bay
Photoperiod	Continuous light (24 hr)
Aeration	Continuous (1-2 bubbles per second)
Test Protocol	USEPA/USACE 1991,1998; US EPA 1994
Test acceptability criteria	\geq 90 percent mean survival in the lab control
Reference toxicant	Cadmium chloride

Table 3. Toxicity Test Methodology and QA/QC Requirements for Solid Phase Toxicity Tests Using the Marine Polychaete *Neanthes arenaceodentata*

Test organism Marine Polychaete – *Neanthes arenaceodentata*

Test organism source Aquatic Toxicology Support, Bremerton, WA

Test organism age at initiation 3 weeks

Test duration; endpoint 10 days; survival

Overlying water renewal None

Feeding None

Test chamber 1-L glass jar

Sediment depth/ volume 2 cm

Overlying water volume 800 mL

Test temperature $20 \pm 1^{\circ}$ C test-wide mean, $20 \pm 3^{\circ}$ C daily instantaneous

Natural seawater collected offshore of the Scripps Pier

Dilution water in La Jolla, CA; filtered and diluted to 30 ppt with

deionized water prior to testing

Test concentrations Undiluted sediment composites

Number of organisms/chamber 5

Number of replicates 5, plus 1 surrogate test chamber for water quality

readings

Negative control Clean, rinsed beach sand collected near Scripps Pier

Photoperiod 12 hours light:12 hours dark

Aeration Continuous (1-2 bubbles per second)

Test Protocol USEPA/USACE 1991,1998; ASTM 2000 E1611-00

Test acceptability criteria \geq 90 percent mean survival in controls

Reference toxicant Cadmium chloride

Toxicity Test Methodology and QA/QC Requirements for Suspended Table 4. Particulate-Phase Bivalve Embryo Development Toxicity Tests Using the Mediterranean Mussel Mytilus galloprovincialis

Test organism Mediterranean mussel - Mytilus galloprovincialis

Test organism source Taylor Shellfish, Shelton, WA

Test duration, endpoints 48 hours, survival and normal development

None

Test solution renewal None

Feeding

Test initiation Within 24 hours of elutriate preparation

Test chamber 30-mL glass shell vial

Test solution volume 10-mL

16 ± 1°C test-wide mean. 16 ± 3°C dailv Test temperature

instantaneous

Natural seawater collected offshore of the Scripps Lab Control/Dilution water

Pier in La Jolla, CA; filtered and diluted to 30 ppt

with deionized water prior to testing

Test concentrations 10, 50, and 100 percent elutriate

Number of organisms/chamber ~200 embryos

Number of replicates

Photoperiod 16 hours light/8 hours dark

Aeration None

Test Protocol USEPA/USACE 1991,1998; USEPA 1995

≥ 70% or greater survival and ≥ 70% shell Test acceptability criteria

development in controls

Reference toxicant Copper chloride

Toxicity Test Methodology and QA/QC Requirements for Suspended Table 5. Particulate-Phase Toxicity Tests Using the Mysid Shrimp Americamysis bahia

Test organism Mysid shrimp - Americamysis bahia

Aquatic BioSystems, Fort Collins, CO Test organism source

Test organism age at initiation 5 days post-hatch

Test duration; endpoint 96 hours; survival

Test solution renewal None

Feeding Artemia nauplii twice daily

Test initiation Within 24 hours of elutriate preparation

Test chamber 1-L plastic cup

Test solution volume 500 mL

25 ± 1°C test-wide mean, 25 ± 3°C daily Test temperature

instantaneous

Natural seawater collected offshore of the Scripps Lab Control/Dilution water

Pier in La Jolla, CA; filtered and diluted to 30 parts

ppt with deionized water prior to testing

Test concentrations 10, 50, and 100 percent elutriate

Number of organisms/chamber 10

Number of replicates 5

Photoperiod 16 hours light/8 hours dark

None, unless D.O. < 4.0 mg/L Aeration

Test Protocol USEPA/USACE 1991,1998; EPA-821-R-02-012

Test acceptability criteria ≥ 90 percent mean survival in controls

Reference toxicant Copper chloride

Toxicity Test Methodology and QA/QC Requirements for Suspended Table 6. Particulate Phase Toxicity Tests Using the Inland Silverside Minnow Menidia beryllina

Test organism Inland silverside - Menidia beryllina

Test organism source Aquatic BioSystems, Fort Collins, CO

Test organism age at initiation 14 days post-hatch

Test duration; endpoint 96 hours; survival

Test solution renewal None

Feeding Artemia nauplii once daily

Test initiation Within 24 hours of elutriate preparation

Test chamber 1-L glass jar

Test solution volume 500 mL

25 ± 1°C test-wide mean, 25 ± 3°C daily Test temperature

instantaneous

Natural seawater collected offshore of the Scripps Lab Control/Dilution water

Pier in La Jolla, CA; diluted to 30 ppt with deionized

water prior to testing

Test concentrations 10, 50, and 100 percent elutriate

Number of organisms/chamber 10

Number of replicates 5

Photoperiod 16 hours light/8 hours dark

Aeration None, unless D.O. < 4.0 mg/L

Test Protocol USEPA/USACE 1991,1998; EPA-821-R-02-012

Test acceptability criteria ≥ 90 percent mean survival in controls

Reference toxicant Copper chloride

Table 7. Toxicity Test Methodology and QA/QC Requirements for 28-Day Bioaccumulation Tests Using the Marine Clam *Macoma nasuta* and the Marine Polychaete *Nereis virens*

Test organisms

Marine clam *Macoma nasuta* and the marine

polychaete Nereis virens

Test organism source Clams: Brezina & Associates, Dillon Beach, CA

Worms: Aquatic Research Organisms, Hampton, NH

Test organism age at initiation Adult

Test duration 28 days + 24-hr depuration period

Test solution renewal Continuous flow-through

Feeding None

Test chamber 10-gallon glass tanks

Sediment depth/ volume 5-6 cm

Overlying water volume Approximately 7 gallons

Test temperature $15 \pm 1^{\circ}$ C test-wide mean, $15 \pm 3^{\circ}$ C daily

instantaneous

Overlying water

Undiluted natural seawater (34 ppt) collected

offshore of the Scripps Pier in La Jolla, CA

Test concentrations Undiluted sediment

Number of organisms/chamber 35 (Macoma nasuta), 10 (Nereis virens)

Number of replicates 5

Negative control Sediment from clam collection location

Photoperiod 16 hours light/8 hours dark

Aeration Continuous

Test Protocol USEPA/USACE 1991,1998

Test acceptability criteria

Adequate mass of organisms at test completion for

detection of target analyte(s)

Reference toxicant None

2.4 Statistical Analyses

Experiment-wide survival data from solid-phase and bioaccumulation tests were analyzed using one-way analysis of variance (ANOVA). When ANOVA showed a significant difference, multiple comparison t-tests then compared survival in each of the control and test sediments against survival in the LA-2 Reference sediment. Prior to analyses, normality was evaluated with D'Agostino & Pearson Omnibus test and homogeneity of variance was assessed with either Bartlett's Test or the F-Test. When necessary to satisfy these assumptions, proportional survival data were arcsine square-root transformed. Solid-phase and bioaccumulation analyses were performed with GraphPad Prism, Version 4.02.

Statistical analyses of all suspended particulate-phase and reference toxicant data were performed using CETIS Comprehensive Toxicity Data Analysis and Database Software version 1.8.4.23. Comparisons between the lab control and each test concentration were performed using Dunnett's Multiple Comparison Test if data displayed homogenous variance and a normal distribution. Data with heterogeneous variance, or non-normal distributions were analyzed using Steel's Many-One Rank Test.

2.5 Testing Schedule

A summary of the testing schedule is provided in Table 8. The solid-phase amphipod tests were initiated within one week of the receipt of the composite samples. Following results from this test, as well as analytical chemistry measurements of the samples, approval from the AMEC project manager was given to conduct the remaining tests. All remaining tests were initiated within the six week holding time specified in the SAP (AMEC, April 2013).

Table 8. Toxicity Test Schedule

Toxicity Test	Initiation Date
Solid-Phase Tests	
Eohaustorius 10-Day Survival	June 14, 2013
Neanthes 10-Day Survival	July 12, 2013
Suspended Particulate-Phase Tests	
Mytilus 48-Hour Embryo Development	July 10, 2013
Americamysis 96-Hour Survival	July 11, 2013
Menidia 96-Hour Survival	July 11, 2013
Bioaccumulation Tests	
Macoma and Nereis 28-Day Exposure	July 12, 2013

3.0 RESULTS

Summaries of toxicity test results are provided in Tables 9-11 and Figures 1-5, detailed results summaries are provided in Appendix A. Water quality and raw data sheets are provided in Appendix B and reference toxicant data can be found in Appendix C. Summaries of statistical analyses are in Appendix D. Chain of custody documentation for all samples is provided in Appendix E.

3.1 Solid-Phase Toxicity Tests

3.1.1 Eohaustorius

Echaustorius survival in the solid-phase tests was significantly lower in both composite samples compared to that in the LA-2 Reference sediment. Mean amphipod survival in the LA-2 Reference was 98 percent compared to 68 percent in YTI Comp A, and 87 percent in YTI Comp B. Mean survival in the fine-grained control was 95 percent, indicating that the organisms were not overly-sensitive to fine-grained material during this round of testing. (Table 9, Figure 1). A one-way ANOVA showed a significant difference among sites (p<0.001). Multiple comparison t-tests revealed a significant reduction in survival in YTI Comp A and YTI Comp B when compared to the LA-2 Reference site. In addition, both composite samples were significantly reduced relative to the fine grain control. It does not appear that ammonia was a contributing factor in reduced survival of *Echaustorius* based on comparison of measured concentrations to those found in published literature (see Section 4.5.1).

3.1.2 Neanthes

Mean survival of polychaete worms was 96 percent in the lab control, and 100 percent in the reference sediment. Survival in all test sediments was 100 percent (Table 9, Figure 2).

Amphipod Polychaete Site ID Survival Survival (%)(%) **Lab Control** 97 96 **Fine Grain Size Control** 95 NT **LA-2 Reference** 98 100 YTI Comp A 68* 100 YTI Comp B 87* 100

Table 9. Summary of 10-day Solid-Phase Mean Survival Results

NT- Not tested

^{*} Values in **bold** indicate a statistically significant decrease from the LA-2 Reference sediment.

Figure 1. 10-day survival of amphipods (*E. estuarius*) in the solid-phase toxicity test of YTI sediments (mean percent survival \pm 95% CI). Columns marked with an asterisk differ significantly from the LA-2 Reference sample (p < 0.05).

Figure 2. 10-day survival of polychaete worms (*N. arenaceodentata*) in the solid-phase toxicity test of YTI sediments (mean percent survival ± 95% CI).

3.2 Suspended Particulate-Phase Toxicity Tests

Results for the suspended particulate-phase tests are summarized in Table 10. Neither of the sediment elutriates was toxic to the inland silverside minnows or mysid shrimp. However, a significant effect in mussel development was observed in the undiluted elutriate for YTI Comp A compared to the lab control (Figure 3). Mean normal development (percent normal alive) of surviving mussel embryos ranged from 87 to 92 percent in the laboratory controls. Mean percent normal alive was 1.3 in the undiluted elutriate for YTI Comp A, a 98 percent effect from control. No effect was observed in the 10 or 50 percent concentrations and the resulting median effect level (EC₅₀) was 75 percent YTI Comp A elutriate. YTI Comp B showed statistically significant effects to mussel embryos in both the 50 and 100 percent elutriate concentrations (11 and 8.2 percent effect, respectively). There was no significant effect observed in the 10 percent concentration and the resulting EC₅₀ value was greater than 100 percent YTI Comp B elutriate. The effects observed in normal development of mussel embryos may have been related to elevated ammonia levels (see Section 4.5.1).

Mean survival of mysids ranged from 94 to 96 percent in laboratory controls and 86 to 92 percent in undiluted elutriates (Figure 4). Mean survival in both controls for the inland silverside test were 96 percent and 94 to 100 percent in undiluted elutriates (Figure 5).

Table 10. Summary of Suspended Particulate-Phase Mean Test Results

Site	Concentration (% Elutriate)	Mussel 48-hr Normal Alive (%)	Mysid Shrimp 96-hr Survival (%)	Inland Silverside 96-hr Survival (%)
	Lab Control	87	96	96
VTI Comp A	10	87	90	98
YTI Comp A	50	85	96	100
	100	1.4*	92	94
	Lab Control	92	94	96
YTI COMP B	10	91	94	100
TITCOMP	50	82*	96	100
	100	88*	86	100

^{*} Values in **bold** indicate a statistically significant decrease from the lab control.

Figure 3. 48-hr percent normal alive of mussel larvae (*M. galloprovincialis*) in the suspended particulate-phase toxicity test of YTI sediment elutriates (mean percent normal alive ± 95% CI). *Columns marked with an asterisk differ significantly from the laboratory control.

Figure 4. 96-hr survival of mysid shrimp (A. bahia) in the suspended particulate-phase toxicity test of YTI sediment elutriates (mean percent survival \pm 95% CI).

Figure 5. 96-hr survival of inland silverside (*M. beryllina*) in the suspended particulate-phase toxicity test YTI sediment elutriates (mean percent survival ± 95% CI).

3.3 Bioaccumulation Tests

Results of the bioaccumulation tests are summarized in Table 11 and Figures 6 and 7. Mean survival of clams in the laboratory control, LA-2 Reference sediment, and YTI composite sediments was between 87 and 90 percent. Mean survival did not differ significantly among test, reference and control sediments in the experiment-wide ANOVA (Appendix Table D-6, p = 0.853). Mean survival of worms in the laboratory control and LA-2 Reference sediment was 100 and 98 percent, respectively, and between 90 and 96 percent for the YTI composite sediments. ANOVA found no significant differences in polychaete survival among test and reference sediments (Appendix Tables D-7, p = 0.327).

Table 11. Summary of 28-day Mean Survival in Bioaccumulation Tests

Site ID	Bent-nosed Clam Survival (%)	Polychaete Worm Survival (%)
Laboratory Control	87	100
LA-2 Reference Site	90	98
YTI Comp A	88	96
YTI Comp B	88	90

Figure 6. 28-day survival of bent-nosed clams ($\it M. nasuta$) in the bioaccumulation exposure (mean \pm 95% CI).

Figure 7. 28-day survival of the blood worm (*N. virens*) in the bioaccumulation exposure (mean \pm 95% CI).

4.0 QUALITY ASSURANCE / QUALITY CONTROL

All of the data presented have been thoroughly reviewed and are deemed acceptable for reporting in accordance with our internal QA/QC program and relevant protocols. All toxicity and bioaccumulation tests were initiated within sediment holding time requirements. Any deviations with respect to test conditions and acceptability criteria are summarized below. All deviations were determined to be minor with no bearing on the data or its final interpretation.

4.1 Reference Toxicant Tests

Reference toxicant test results for solid- and suspended particulate-phase tests are provided in Appendix C. All laboratory controls for reference toxicant tests met test acceptability criteria. Additionally, median lethal and median effect (LC₅₀/EC₅₀) concentration values for reference toxicant tests were within two standard deviations of internal control chart means for all species tested.

4.2 Solid-Phase Toxicity Tests

Laboratory control performance for both solid phase tests met minimum test acceptability criteria. All other test acceptability criteria were met and water quality values were within acceptable ranges as defined by the test protocols for both species.

4.3 Suspended Particulate-Phase Toxicity Tests

Fish and mysid survival exceeded the 90 percent criterion in all lab controls. Mussel survival and development met both criteria with greater than 70 percent survival and greater than 70 percent normal shell development of surviving embryos in laboratory controls. Water quality measurements were within specified ranges for the duration of the tests for all species.

4.4 Bioaccumulation Tests

Mean clam and worm survival in laboratory control sediment was 87 and 100 percent, respectively, meeting minimum tissue requirements for chemical analysis. Water quality parameters satisfied test protocol requirements and the data were considered valid without further qualification.

4.5 Potential Confounding Factors

The influence of several potential confounding factors on test performance and interpretation were assessed and are discussed below.

4.5.1 Ammonia

Total and un-ionized ammonia concentrations are summarized in Tables 12 through 15. Unionized ammonia, the more toxic form of ammonia, values were calculated from total ammonia measurements (Hampson 1977). Ammonia concentrations were generally below concentrations expected to be toxic, with a few exceptions. The only solid-phase test to show significant toxicity was the *Eohaustorius* solid-phase test, in which both YTI Comp A and YTI Comp B significantly reduced amphipod survival from LA-2 Reference. Total and un-ionized ammonia concentrations in the sediment pore water were well below published toxic thresholds for this species (Table 12). Thus, the toxicity observed in YTI Comp A and YTI Comp B amphipod tests would appear to be unrelated to ammonia concentrations.

Total and un-ionized ammonia was near threshold levels for *Mytilus* in the in the YTI Comp A suspended particulate-phase test, and approximately half that in YTI Comp B. Thus, ammonia may have been a contributing factor in toxicity observed to mussel larvae (Table 14).

Table 12. Total and Un-ionized Ammonia Concentrations in Sediment Pore Water at Test Initiation

	Total A	Ammonia (mg/L)	Un-ionized Ammonia (r			
Fine Grain Size Control		2.6 0.033				
LA-2 Reference	4.1 0.048			0.048		
YTI Comp A		15 0.283				
YTI Comp B	7.6		0.109			
Ammonia Threshold Effect Levels (mg/L)						
	NOEC		9	96-hr LC ₅₀ c		
Test Organism	Total Un-ionized		Total	Un-ionized		
Eohaustorius ^a	60	0.8	160	1.5		
<i>Neanthes</i> ^b	20	0.7 - 1.25	-	-		
Nereis	20	0.68	-			

^a NOEC values from EPA 1994 & Kohn et al. 1994

^b Dillon et al. 1993

^c 96-h LC₅₀ values from Nautilus internal data (July 2013)

Table 13. Total and Un-ionized Ammonia Concentrations in Solid-Phase Toxicity **Tests**

	Total Amı	Total Ammonia (mg/L)		mmonia (mg/L)		
	Day 0	Day 10	Day 0	Day 10		
Overlying water						
Eohaustorius						
Lab control	<0.5	< 0.5	< 0.015	< 0.010		
Grain Size Control	<0.5	< 0.5	< 0.014	< 0.016		
LA-2 Reference	<0.5	1.5	< 0.016	0.040		
YTI Comp A	1.7	5.0	0.057	0.127		
YTI Comp B	<0.5	1.6	<0.015	0.034		
Neanthes						
Lab control	<0.5	< 0.5	< 0.015	< 0.017		
LA-2 Reference	0.7	0.9	0.028	0.033		
YTI Comp A	2.3	3.8	0.087	0.122		
YTI Comp B	<0.5	<0.5	< 0.019	<0.018		
Ammonia Threshold Effect Levels (mg/L)						
		NOEC		h LC ₅₀ °		
Test Organism	Total	Un-ionized	Total	Un-ionized		
Eohaustorius ^a	60	8.0	160	1.5		
Neanthes ^b	20	0.7 - 1.25	-	-		

 $^{^{\}rm a}$ NOEC values from EPA 1994 & Kohn et al. 1994 $^{\rm b}$ Dillon et al. 1993

^{° 96-}h LC₅₀ values from Nautilus internal data (July 2013)

Table 14. Total and Un-ionized Ammonia Concentrations in Suspended Particulate-Phase Toxicity Tests

Sample	Total Ammonia (mg/L)		Un-ionized A	mmonia (mg/L)		
Mytilus	Initiation	Termination	Initiation	Termination		
Lab Control	<0.5	0.7	< 0.013	0.018		
YTI Comp A	7.1	7.9	0.167	0.239		
YTI Comp B	3.2	3.4	0.108	0.101		
Americamysis	Initiation	Termination	Initiation	Termination		
Lab Control	<0.5	1.2	0.023	0.033		
YTI Comp A	6.7	7.7	0.197	0.320		
YTI Comp B	2.4	2.3	0.082	0.084		
Menidia	Initiation	Termination	Initiation	Termination		
Lab Control	2.1	3.1	0.096	0.117		
YTI Comp A	8.7	8.3	0.256	0.378		
YTI Comp B	3.1	2.9	0.106	0.139		
Ammonia Threshold Effect Levels (mg/L)						
	NOEC		96-h LC ₅₀ /EC ₅₀			
Test Organism	Total	Un-ionized	Total	Un-ionized		
Mytilus ^c	7.8	0.17	12	0.25		
Americamysis	29	-	-	2.3		
Menidia	4.0 ^a	0.05 ^b	-	0.12 ^c		

Note: Results are presented for each undiluted (i.e. 100 percent) elutriate concentration.

^aTang et al. 1997

b Marine Pollution Studies Laboratory (personal comm.) Nautilus internal data (July 2013)

Table 15. Total and Un-ionized Ammonia Concentrations in Bioaccumulation

Tests

Total Ammonia (mg/L)							
	Day 0	Day 7	Day 14	Day 21	Day 28		
Lab Control	<0.5	< 0.5	<0.5	<0.5	<0.5		
LA-2 Reference	< 0.5	<0.5	<0.5	<0.5	<0.5		
YTI A Comp	1.0	<0.5	<0.5	<0.5	<0.5		
YTI B Comp	<0.5	0.7	<0.5	<0.5	<0.5		
Un-ionized Ammonia (mg/L)							
Lab Control	< 0.014	<0.010	<0.010	<0.010	<0.011		
LA-2 Reference	< 0.016	< 0.010	< 0.011	< 0.012	< 0.012		
YTI A Comp	0.031	< 0.012	< 0.011	< 0.012	< 0.012		
YTI B Comp	< 0.015	0.015	< 0.011	< 0.013	< 0.012		

5.0 REFERENCES

- ASTM (1998). Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. American Society for Testing and Materials. ASTM Designation E724-98.
- ASTM (1999). Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. American Society for Testing and Materials, ASTM Designation E1367-99.
- ASTM (2000). Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates. American Society for Testing and Materials, ASTM Designation E1688-00a.
- ASTM (2007). Standard Guide for Conducting Sediment Toxicity Tests with Polychaetous Annelids. American Society for Testing and Materials. ASTM Designation E1611-00.
- Dillon TM, Moore DW and Gibson AB (1993). Development of a chronic sublethal bioassay for evaluating contaminated sediment with the marine polychaete worm *Nereis* (*Neanthes*) arenaceodentata. Environmental Toxicology and Chemistry. 12; 589-605.
- Environment Canada (1992). Biological Test Method: Acute for Sediment Toxicity Using Marine or Estuarine Amphipods. Environment Canada, Conservation and Protection, Ottawa, Ontario. 83 p., EPS 1/RM/26.
- EPA/USACE (1991). Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual. February 1991. Environmental Protection Agency, Office of Water & United States Army Corps of Engineers, Department of The Army. EPA 503/8-91/001.
- EPA (1994). Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods. June 1994. Environmental Protection Agency, Office of Research and Development. EPA 600/R-94/025.
- USEPA/USACE (1998). Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. Inland Testing Manual. February 1998. Environmental Protection Agency, Office of Water. EPA-823-B-98-004.

- EPA (2002). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. October 2002. Environmental Protection Agency, Office of Water. EPA 821/R-02/012.
- Hampson, B.L. 1977. Relationship between total ammonia and free ammonia in terrestrial and ocean waters. J. Cons. Int. Explor. Mer, Vol. 37(2):117-122.
- Kohn NP, Word JQ and Niyogi DK (1994). Acute toxicity of ammonia to four species of marine amphipod. *Marine Environmental Research*. 38; 1-15.
- Tang A, Kalocai JG, Santos S, Jamil B and Stewart J (1997). Sensitivity of blue mussel and purple sea urchin larvae to ammonia. Poster presentation at *Society of Environmental Toxicology and Chemistry*, 18th Annual Meeting, San Francisco, CA.

Appendix A
Summary of Toxicity Test Results

Appendix Table A-1. Eohaustorius estuarius 10-day Survival

Sediment Characterization for YTI Terminal

Test initiation: June 14, 2013

Site ID	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	Α	20	100		
	В	20	100		
Laboratory Control	С	19	95	97	4.5
	D	18	90		
	Е	20	100		
	Α	17	85		
	В	19	95		
Fine Grain Size Control	С	20	100	95	6.1
	D	20	100		
	E	19	95		
	Α	20	100		
	В	20	100		
LA-2 Reference	С	19	95	98	2.7
	D	19	95		
	E	20	100		
	Α	8	40		
	В	14	70		
YTI Comp A	С	14	70	68*	17
	D	15	75		
	Е	17	85		
	Α	16	80		
	В	17	85		
YTI Comp B	С	19	95	87*	5.7
	D	17	85		
	Е	18	90		

^{*}Values with a bold asterisk indicates a statistically significantly decrease from the LA-2 Reference sample. Initial number of test organisms per replicate = 20

Appendix Table A-2. Neanthes arenaceodentata 10-day Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 12, 2013

Site ID	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	Α	5	100		
	В	4	80		
Laboratory Control	С	5	100	96	8.9
	D	5	100		
	E	5	100		
	Α	5	100		
	В	5	100		
LA-2 Reference	С	5	100	100	0.0
	D	5	100		
	E	5	100		
	Α	5	100		
	В	5	100		
YTI Comp A	С	5	100	100	0.0
	D	5	100		
	E	5	100		
	Α	5	100		
	В	5	100		
YTI Comp B	С	5	100	100	0.0
	D	5	100		
	Е	5	100		

Appendix Table A-3. Mytilus galloprovincialis 48-hr Survival & Development

Sediment Characterization for YTI Terminal

Test Initiation: July 10, 2013

Site ID: YTI Comp A

Concentration (% Elutriate)	Replicate	Percent Normal Alive	Mean Percent Normal Alive	Standard Deviation
	Α	85		
Laboratory	В	89		
Control	С	79	87	5.3
Control	D	92		
	Е	91		
	Α	84	_	
	В	85		
10	С	90	87	2.1
	D	88		
	E	87		
	Α	84		
	В	83		
50	С	95	85	7.1
	D	86		
	Е	75		
	Α	1.8		
	В	0.0		
100	С	0.0	1.3*	2.1
	D	0.0		
	Е	4.9		

^{*}Values with a bold asterisk indicates a statistically significantly decrease from the lab control.

Appendix Table A-3 cont. Mytilus galloprovincialis 48-hr Survival & Development

Sediment Characterization for YTI Terminal

Test Initiation: July 10, 2013

Site ID: YTI Comp B

Concentration (% Elutriate)	Replicate	Percent Normal Alive	Mean Percent Normal Alive	Standard Deviation
	Α	90		
Laboratory	В	94		
Laboratory Control	С	92	92	1.2
Johnson	D	93		
	E	92		
	Α	94		
	В	91		
10	С	90	91	1.5
	D	91		
	E	91		
	Α	85		
	В	80		
50	С	86	82*	4.5
	D	81		
	E	75		
	Α	77		
	В	84		
100	С	89	85*	6.3
	D	80		
	Е	93		

^{*}Values with a bold asterisk indicates a statistically significantly decrease from the lab control.

Appendix Table A-4. Americamysis bahia 96-hr Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 11, 2013

Site ID: YTI Comp A

Concentration (% Elutriate)	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	А	10	100		
	В	9	90		
Laboratory Control	С	10	100	96	5.5
	D	10	100		
	E	9	90		
	Α	10	100		
	В	10	100		
10	С	8	80	90	10
	D	9	90		
	E	8	80		
	Α	10	100		
	В	9	90		
50	С	10	100	96	5.5
	D	10	100		
	E	9	90		
	А	10	100		
	В	9	90		
100	С	10	100	92	8.4
	D	9	90		
	Е	8	80		

Appendix Table A-4 cont. Americamysis bahia 96-hr Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 11, 2013

Site: YTI Comp B

Concentration (% Elutriate)	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	Α	10	100		
Labanatama	В	9	90		
Laboratory Control	С	10	100	94	5.5
Control	D	9	90		
	E	9	90		
	Α	10	100		
	В	10	100		
10	С	9	90	94	5.5
	D	9	90		
	E	9	90		
	Α	10	100		
	В	8	80		
50	С	10	100	96	8.9
	D	10	100		
	E	10	100		
	Α	10	100		
100	В	7	70		
	С	9	90	86	15
	D	7	70		
	E	10	100		

Appendix Table A-5. Menidia beryllina 96-hr Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 11, 2013

Site ID: YTI Comp A

Concentration (% Elutriate)	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	Α	9	90		
l abanatam.	В	10	100		
Laboratory Control	С	10	100	96	5.5
Control	D	10	100		
	Е	9	90		
	Α	9	90		
	В	10	100	98	4.5
10	С	10	100		
	D	10	100		
	Е	10	100		
	Α	10	100		
	В	10	100		
50	С	10	100	100	0.0
	D	10	100		
	Е	10	100		
	Α	9	90		
	В	10	100		
100	С	9	90	94	5.5
	D	10	100		
	Е	9	90		

Appendix Table A-5 cont. Menidia beryllina 96-hr Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 11, 2013

Site ID: YTI Comp B

Concentration (% Elutriate)	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	Α	9	90		
l ab anatam.	В	10	100		
Laboratory Control	С	10	100	96	5.5
Control	D	10	100		
	E	9	90		
	Α	10	100		
	В	10	100		
10	С	10	100	100	0.0
	D	10	100		
	E	10	100		
	Α	10	100		
	В	10	100		
50	С	10	100	100	0.0
	D	10	100		
	E	10	100		
	Α	10	100		
	В	10	100		
100	С	10	100	100	0.0
	D	10	100		
	Е	10	100		

Appendix Table A-6. Macoma nasuta 28-day Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 12, 2013

Site ID	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	А	33	94		
Laboratory	В	29	83		
Laboratory Control	С	35 ^a	78	87	6.7
oona or	D	31	89		
	E	32	91		
	Α	31	89		
	В	33	94		
LA-2 Reference	С	32	91	90	3.3
	D	32	91		
	E	30	86		
	Α	30	86		
	В	30	86		
YTI Comp A	С	35	100	88	8.4
	D	32	91		
	Е	27	77		
	А	32	91		
	В	30	86		
YTI Comp B	С	29	83	88	4.7
	D	33	94		
	Е	30	86		

^a Replicate initiated with 45 clams, technician error

Appendix Table A-7. Nereis virens 28-day Survival

Sediment Characterization for YTI Terminal

Test Initiation: July 12, 2013

Site ID	Replicate	# Alive	Percent Survival	Mean Percent Survival	Standard Deviation
	А	10	100		
Loborotory	В	10	100		
Laboratory Control	С	10	100	100	0.0
Control	D	10	100		
	E	10	100		
	Α	10	100		
	В	10	100		
LA-2 Reference	С	10	100	98	4.5
	D	10	100		
	E	9	90		
	Α	8	80		
	В	10	100		
YTI Comp A	С	10	100	96	8.9
	D	10	100		
	E	10	100		
	Α	10	100		
	В	8	80		
YTI Comp B	С	10	100	90	14
	D	10	100		
	Е	7	70		

Appendix B
Water Quality and Raw Data Sheets

Marine Amphipod (*Eohaustorius* estuarius) 10-day Survival Solid-Phase Sediment Test Water Quality and Raw Data Sheets

lient:	AMEC/POLA			Test Species: <u>L</u>	E. estuarius		
roject ID:	YTI Terminal			Start Date/Time:	6/14/2013	145	
itiated by:			ASSASSASSASSASSASSASSASSASSASSASSASSASS	End Date/Time:	6/24/2013	1040 45	
itial No. Or		20/rep		- 	130le-	SOTT to SO SO 76	79
	Random Number	Number Alive	10% QC Check of final counts	Random Number	Number Alive	10% QC Check of final counts	
	1	20					
	2	18					
	3	19					
	4	20					
	5	8	8				
	6	14					
	7	20					
	8	19					
	9	14					
	10	19	19				
	11	15					
	12	17					
	13	17					
	14	19					
	15	20	20				
	16	20					
	17	20					
	18	19					
	19	20					
	20	17	Î7				
	21	19					
	22	17					
	23	16					
	24	10					
	25	lg	18				
	Tech Initials:	BGIPA	SK	Tech Initials:			
tiatian OC	Check Initials:						
Counts	CUMUBS All Jar	s initiated	<u> </u>	Lights (24 Hou	r) <u>84</u>		
	water WQ (pH, sa			e water ammonia <		<u> </u>	
	QC Check Initial						
	vater WQ (pH, sal		l Edg				
14 BOLE A	valer vva (pri, sai	mity, aminoma,	1 - 2 - 2 - 3		2 .50000		
imal Sourc	e/Date Received:	NOVY MWestern	Aquatic melalia	Age at Initiation:	2/3WW4		
	Comments:	St	AUNUG UIIII7	· · · · · · · · · · · · · · · · · · ·			

Client: AMEC Test Species: Eohaustorius estuarius

Project ID: POLA Start Date/Time: 6/14/2013 1445

Test No.: 1306 - 5079 End Date/Time: 6/24/2013 1040

Random			Daily	Observ	ations (l	Jse Coc	les Prov	ided)		
Number	1	2	3	4	5	6	7	8	9	10
1	0	0	N	N	2	7	2	N	7	N
2	1		N	1E	15	2	2	N	2	15
3			IS	12	iE	15	\mathcal{N}	N	15	2
4		and the second	N	N	2	2	2	N	7	N
5			N	N	2	2	2	N	1)	N
6	and the same of th	and a second second	N	N	2	N	N	N	7)	N
7			N	N	N	1	N	N	N	N
8		American Company	N	N	N	7	N	N	1)	N
9		1	N	IE	2	<i>N</i>	N	N	N	N
10		f	N	l N	N	N	N	N	N	N
11			N	IE	2	1)	N	N	N	7
12			N	N	1)	N	IE	N	N	7
13			N	N	12	N	N	N	N	2
14			N	N	N	N	N	N	N	7
15			15	25	15	N	N	N_{-}	15	2
16			N	N	N	Ŋ	N	N	N	N
17			1E	N	N	N	N	N	N	N
18			N	N	17	N	N	N	N	N
19	The Control of the Co		N	N	N	N	N	N	N	N
20			15	N	N	N	15	15	N	N
21			13	N	N	25	N	N	N	15
22		i.	N	N	N	N	N	2	N	N
23			1E	l i	N	N	N	N	N	N
24	0.00		N	N	N	N	7	N	1)	N
25	p quopo il di di la		N	N	N	N	N	7	N	N
26		-	N	N	N	N	N	2E	N	N
27			N	N	N	N	N	N	N	N
28			IE	2E	N	1E	N	N	N	IE
29		12 m / 2800/11	IE	N	IE	N	1615	15	15	N
30	V	V		15,1E	35	IS	N	N	IE	1E

a) observations no	of recorded due to tech error
	E = Emerged, specify number. $S = Trapped$ on surface, specify number.
	D = No air flow (DO?).

QC Check: 86 7 2 13 Final Review: \$8 8 13

Sediment Bioassay

Daily Observations

Client:	AMEC	Test Species: Eohaustorius estuarius
Project ID:	POLA	Start Date/Time: 6/14/2013 445
Test No.:	1306 - 5076 to 5079	End Date/Time: 6/24/2013 1040

Random			Daily	Observ	ations (Use Cod	des Prov	rided)		
Number	1	2	3	4	5	6	7	8	9	10
31	\triangle	(A)	N	N	2	N 25	36,15	1E	N	2
32			IE	N	22	25	26	N	N	2E
33			N	N	1)	2	IE	2	IE	1E
34		a.	IE	N	15	N	3E	N	7	N
35	1	1	N	IE	N	75	2E,25	2E	25	3E
							ľ			

A also also A			1 1 1							

A) Observat	ions ni	st recor	ided di	je to	tech e	440A-				
Observation	s Key:	E = Eme	rged, spe	ecify numl	ber. S=	Trapped	on surfac	e, specif	y number	
		D = No a	ir flow (D	O?).						
	,						(

QC Check: 86 7/2/13 Final Review: 45 8/8/13

AMEC/POLA 10-Day *Eohaustorius* Survival Bioassay Random Number Assignment Project: YTI Terminal

Test Initiation Date: 6/14/13

Site	Rep	Rand #
	Α	16
Lab Control	В	24
(Eoh home sediment)	С	8
(Edit fiding dealificity)	D	25
	E	4
	Α	20
Fine Grain Size	В	21
Control	С	17
Control	D	15
	E	3
	Α	19
	В	1
LA2 Reference	С	14
	D	10
	E	7
	Α	5
	В	6
YTI Composite A	С	9
	D	11
	Е	12
	Α	23
	В	22
YTI Composite B	С	18
	D	13
	E	2

QC=BG

final review: Ac 9/3/13

Test Species: E. estuarius AMEC/POLA Client:

Lab Control Site ID:

Test No.: 1300 - 5074 to 5079

040 End Date/Time: 6/24/2013

表 Start Date/Time: 6/14/2013

Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	1.05	6.51	1.8	11.8	73	
1	西方多	291	85	7.96	Œ	
2	5.05	851	トラ	8.07	GS.	
က	6.62	15.2	++	7.98	3	
4	1.06	W-61	8.7	279801	3	
5	30 · 0	14.9	6.1	1.97	CC	
9	30.1	14.8	9,6	7.98	Bel	
7	0.06 th 165	8-h1	7.8	Po.8	JW	
89	attaw.	1000	5.8	8.03	7W	
6	azo 420.0	8.41	8.7	8.05	7)	
10	20.1	7	# #	bb't	25	

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

8/8/13

Final Review:

QC Check: 30 7/2/13

AMEC/POLA Client:

Fine Grain Size Control Site ID:

1300-5074 to S079 Test No.:

Test Species: E. estuarius

表 Start Date/Time: 6/14/2013

End Date/Time: 6/24/2013

240

A section of the Control of the Cont		A STATE OF THE PROPERTY OF THE			NAME OF THE OWNER OWNER OWNER.	
Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	30.5	15.8	0.6	60.8	77	
-	04/82	S'hI	70.8	7.96	CA.	
2	308	8上	8.	80,0	8	
က	30.5	14.8	7	9	3	
4	30.5	4.4	6.1	8.03	70	
5	30.5	N-5	4.8	8.00))	
9	30.0E	14.0	8.3	8.02	89	
	SAC O'SE TW	5'h/	8.1	8.10	78	
80	F.98	のわり	6.8	91.8	Z Z	
6	9.06	5.41	9	17.8	20	
10	D.OE	144	8.5	8.18	B C	

QC Check: 85 7/2/13

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review:

AMEC/POLA Client:

LA2 Reference Site ID: 1300-5074 to SO79 Test No.:

Test Species: E. estuarius

1450 Start Date/Time: 6/14/2013

28 End Date/Time: 6/24/2013

			TO SEE THE PROPERTY OF THE PRO	a meteorogy which specifies subsections - as see relation of the first description in		
Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	30.5	(5.8	7.0	8.13	73	
₽~	88. Ti	5	7.	8.02	8	
2	308	15.2	8.1	8.14	B	
င	D.08	2.	Ø.F	8.00	3	
4	D. 08	14.9	9.8	60.0	CC	
5	30.7	1.51	8.4	8.13	3	
9	36.7	1.51	8.3	80.8	89	
7	30.06	7.	8.0	8.18	MC	
æ	30.6	15.1	8.2	8.18	MI	
ō	20.7	15.1	8.0	0	S	
10	26.00	150	4.0	8.09	Z	

QC Check: 80 7/2/13

90 Final Review:

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

AMEC/POLA Client:

YTI Terminal Comp A Site ID:

1306-5076 Test No.:

Test Species: E. estuarius

1年 Start Date/Time: 6/14/2013

089 End Date/Time: 6/24/2013

Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	1.00	0.9	2.0	9.10	50	
1	28:0	14.8	h:8	26.7	Q)	
2	30,3	1:51	03	508	SO	
က	30.1	14.9	9°±	8.05	3	
4	30.1	14-6	8.5	8 05	2	
5	30.4	14-6	6.5	8.06	つう	
9	7.08	14.7	83	6.07	89	
7	1.06 F. pc	ずった	101	\$10P	ML	
8	0.0%	のさ	2.8	8.11	ML	
6	30.4	9.41	0.0	8.14	20	
0	850	24	2.0	80.8	23	
AND COMMISSION OF THE PROPERTY	A THE RESERVE THE RESERVE ASSESSMENT TO THE RESERVE THE RESERVE THE RESERVE THE PARTY OF THE PAR	Natural compression may represent the design of the commentation of the commentation and the commentation and the commentation of the commentation	SOURCE CONTINUES SE SEU CONTINUES PORTO DE LA COMPANIO DE LA CONTINUE DE LA CONTINUE DE LA CONTINUES DE LA CONTINUES DE LA CONTINUES DE LA CONTINUE DE LA CO	er jonen inn inn finskrinn in diskrinn in diskrinn en skirk for eitste skille kom jonskrinn in ka		

ac Check: 89 7/2/13

Final Review:

8/8/13

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Start Date/Time: 6/14/2013 14/20	Client:	AMEC/POLA			Ť.	st Species:	Test Species: <u>E. estuarius</u>
306 - 5077 End Date/Time: 6/24/2013 10 Salinity Temperature Dissolved pH Technician (ppt) 1-9 8-12 C.L. 30.4 15.9 7-9 8-12 C.L. 30.5 14.8 8-5 8-07 C.L. 30.7 14.6 8-10 8-07 C.L. 31.0 14-0 8-10 8-07 C.L. 31.0 14-10 8-10 8-07 C.L. 31.0 14-10 8-10 8-07 C.L. 32.9 14-1 8-10 8-10 R.L. 32.9 14-1 8-10 8-14 R.L. 32.9 14-1 8-10 8-14 C.L. 33.9 14-1 8-10 8-14 C.L. 34.9 14-1 8-10 8-14 C.L. 35.9 14-1 8-10 8-14 C.L. 35.0 14-1 8-14 8-15 C.L. 35.0 14-1 8-14 C.L. 35.0 14-1 6-14 C.L. 35.0 14-1 6-14 C.L. 35.0 14-1 6-14 C.L. 3	Site ID:	YTI Terminal C	omp B		Start	Date/Time:	6/14/2013 (445
Salinity Temperature (PC) Dissolved (mg/L) pH (units) Technician (units) 30.4 15.9 7.9 8.12 C.C. 30.5 14.8 8.5 8.05 AD 30.7 14.8 8.7 8.10 C.C. 31.0 14.6 8.2 8.0 C.C. 31.0 14.1 8.4 8.0 8.0 30.9 14.9 8.4 8.0 8.0 30.9 14.9 8.0 8.0 8.0 30.9 14.1 8.3 8.14 ML 30.9 14.1 8.0 8.14 ML 30.9 14.1 8.0 8.14 ML 30.9 14.1 8.0 8.14 C.C.	Test No.:	1306 - 50	22		End	Date/Time:	6/24/2013 (040
Salinity Temperature (°C) Dissolved (mg/L) pH Technician (units) Technician (units) 30.4 CO 0xygen (mg/L) (units) Initials 30.5 H 8 8 8 CC 30.5 H 8 8 CC AD 30.7 H- 8 C CC AD 31.0 H- 8 C CC AD 31.0 H- 8 C BO CC 31.0 H- B C BO BO 30.7 H- B C BO BO 30.9 H- B B BO BO 30.9 H- B B B B B 30.9 H- B B B B B B B 30.9 H- B B B B B B B B B B <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
30.5 148 855 805 30.5 148 857 805 30.7 14.6 8.6 8.05 31.0 14.6 8.4 8.01 30.9 14.9 8.7 8.05 30.9 14.9 8.0 8.05 30.9 14.1 8.5 8.14	Test Day	Salinity (ppt)	Temperature (°C)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
30.5 148 85 805 30.8 15.0 8.2 8.05 31.0 14.6 8.6 8.05 31.0 14.9 8.4 8.07 30.9 14.1 8.0 8.14 30.9 14.1 8.0 8.14 30.9 14.1 8.0 8.14	0	30.4	15.9	5. 1	71.0	3	
30.8 15.0 8.2 8.10 8.05 1 14.8 4.4 8.07 8.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6	_	30.5	8 1-1	× ×	208	2	
31.0 14.6 3.4 8.05 1.05 14.10 8.4 8.07 1.00 14.9 8.0 8.00 8.00 8.00 8.00 8.00 8.00 8.0	2	30.8	0.51	8.2	013	Q S	
31.0 14.6 8.6 8.05 6 30.9 14.9 8.2 8.07 6.05 6.05 6.05 6.05 6.05 8.00 8.14 8.00 8.14 6.05 8.14 6.05 8.14 6.05 8.14 6.05 8.14 6.05 8.14 6.05 8.14	က	7.05	8-41	7	40.0	3	
30.9 14.9 8.7 8.01 30.9 14.9 8.0 8.02 24.36.0 14.0 8.03 30.9 14.1 8.3 8.14 30.9 14.1 8.0 8.14	4	31.0	0-41	D.8	8.05	3	
30.9 149 8.2 8.02 20.9 14.9 8.0 8.03 30.9 14.7 8.3 8.14 30.9 14.7 8.0 8.14	5	31.0	19.7	8.4	6.07	CC	
30.9 (4.8 8.0 8.05 14.7 8.3 8.14 30.9 (4.7 8.0 8.14	ဖ	30.9		9	6.02	80	
30.9 14.7 8.5 8.14 30.9 14.7 8.0 8.14	7	から		0.8	8.03	Ž	
30.9 147 8.0 8.14	∞	25.60	5	8.3	P1.80	1	
	တ	30.9	14	8.0	8.14	3	
30.7	10	36.7	7	3	8.00	863	

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Check: 86 7/2/3

8

Final Review:

Client: AMEC/POLA
Project: YTI Terminal

Test Type: Amphipod 10-d survival (Eoh)

DI Blank: $0.0 \mid 0.0$

Test Start Date: 6/14/13

Analyst: AC BG
Analysis Date: 6/11/13/6/27/13

Nautilus рĤ Sub-Sample Test Salinity NH3-N Ammonia Sample ID ID (units) Date Day (mg/L) (mg/L) (ppt) Blank Spike (10 mg/L NH₃) NA NA 9.9 NA NA Como A Ce/10/13 (d) (d) Pre-test 6.0 19.5 10/10/13 Pre-test 9.9 THAT ITT COMO BO Yre-test 6/10/13 rve-test 19.8 di 6/10/13 Pre-test Blank Spike #2 Spike Check (10 mg/L NH3) NA 9.4 NA NA NA Lab Control (Edh Home) OPW C0114/13 60 28.6 0.0 40.5 Lab Control (say Bour) 2 1.72 2.1 6/14/13 30.7 2.6 O PW como A (0 7.89 4/14/13 28.8 12.3 15.0 6/14/13 OPW 29.2 6.2 7.6 26.7 41 Sample Duplicate^a NA NA 2.0 2.4 NΑ NA Sample Duplicate + Spike^a 11.2 9.2 NA NΑ NA NA Spike Check (10 mg/L NH₃) NA 9.4 NA

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

 $\frac{Percent\ Recovery = [spiked\ sample]\ (mg/L) - [sample]\ (mg/L)}{nominal\ [spike]\ (mg/L)} \ \ \times\ 100$

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank # ²	0.0	NA	9.4	10	NA NA	94
Lab Control (Sail Buy) #2	2.6	2.4	11.2	10	8	86

Comments: DReadings not taken

Notes: a Unless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

c RPD calculation not performed due to one or more values below the method detection limit.

Method Detection Limit (MDL) = 0.5 mg/L

QC Check: 86 7/2/13

Final Review:

\$ 8/8/13

Client: AMEC/POLA Project: YTI Terminal Test Type: Amphipod 10-d survival (Foh)		
DI Blank: 0.0 SW Blank: 10	Test Start Date: 6/14/2013	Analyst: <u>BG</u> Analysis Date: <u>(ol 27 l 3</u>

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	7.1	8.7
Lab Control (Eoh Home)	8	6/14/2013	0	0.6	40.5
Lab Control (Sail Bay)	9	6/14/2013	0	0.1	40.5
YTI Comp A	13	6/14/2013	0	840.41.4	1.7
YTI Comp B	14	6/14/2013	0	0.4	40.5
IAZ REF	10 +2 AC	6/14/13	DAC	2.7	3.3
		,		0.4	40.5
Spike Check (10 mg/L NH ₃)		NA NA	NA	7.1	8.7
Lab Control (Eoh Home)	15	6/24/2013	10	0.0	<0.5
Lab Control (Sail Bay)	16	6/24/2013	10	0.0	40.5
YTI Comp A	20	6/24/2013	10	4.1	5.0
YTI Comp B	21	6/24/2013	10	1.3	1.0
LAZ-REF	17	6/24/13	10	1.2	1.5
	a			0.0	40.5
Sample Duplicate ^a	9	NA	NA	0.4	9.0
Sample Duplicate + Spike ^a		NA	NA	1.4	8.7
Spike Check (10 mg/L NH ₃)		NA NA	NA NA	1 +.1	0.7

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[vHu]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.6	NA	8.7	10	NA	87
Lab Control Sail Bay	40.5	40.5	9.0	10	(0) -	7

#9		
Comments:		_
Notes: ^a Unless otherwise noted, the last sample listed on the datasheet is used for du	uplicate and duplicate + spike QC check.	
^b Acceptable range for % recovery applies only to the blank spike. Spike reconly.	coveries in samples may vary based on sar	mple matrix and are for information
° RPD calculation not performed due to one or both values below the metho	od detection limit.	
Method Detection Limit (MDL) = 0.5 mg/L		1
QC Check: 86 7/2/13	Final Review:	45 8 8 13

Marine Polychaete Worm (*Neanthes arenaceodentata*) 10-day Survival Solid-Phase Sediment Test Water Quality and Raw Data Sheets

Client:	AMEC/POLA			Test Species:	N. arenacoedent	ata	
Project ID:	YTI Terminal			Start Date/Time:	7/12/2013	1620	
Initiated by:	ML/CL			End Date/Time:	7/22/2013	1100	
Initial No. O		5/rep	_	Test No. Series:	1307	5063,5064	S156
	Random Number	Number Alive	10% QC Check of final counts	Random Number	Number Alive	10% QC Check of final counts	
	1	5					
	2	5					
	3						
	4		ga-com-				
	5	5	5				
	6	5		1			
	7	5					
	8						
	9		3				
	10	5					
	12	5					
	13	4					
	14	5	5				
	15	5					
	16	5					
	17	5	i i				
	18	5					
	19	5	5				
	20	5					
							l
		iA 24 8	81	T 			
	Tech Initials:	12 /AB	BG	Tech Initials:			
Initiation Q	C Check Initials:						
Counts	BQ All Ja	rs initiated _C(Air <u>CL</u>	Lights (12:12)) <u>BG</u> T ₀ \	Weights	_
T _o pore	water WQ (pH, sa	ılinity, ammonia)	3 CL All po	re water ammonia	<30 mg/L <u>136</u>		
	n QC Check Initia						
T _{r-pore}	water WQ (pH, sa	linity, ammonia)	6-1AB				
Animal Sour	ce/Date Received:	ATS 7	19113	Age at Initiation	: 21 da	ys	
	Comments:					101	
						1)	
QC Check:	36 7/23/13				Final Review:	45 8 8 13	

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

AMEC/POLA

10-Day Neanthes Survival Bioassay Random Number Assignment Project: YTI Terminal

Test Initiation Date: 7/12/13

Site	Rep	Rand #
	Α	8
Lab Control	В	13
(Scrips sand)	С	11
(Ocrips saria)	D	18
	E	3
	Α	5
	В	12
LA2 Reference	С	20
	D	6
	Е	7
	Α	14
	В	19
YTI Composite A	С	1
	D	16
	Е	9
	Α	4
	В	2
YTI Composite B	С	15
·	D	17
	E	10

OC= 86

final review: AC 9/3/13

ี	Client/Project ID: AMEC/POLA YTI Terminal	AMEC/POLA YT	I Terminal		Test Organism:	Test Organism: Neanthes arenacoedentata	
Sample	Sample ID/Log-in No.: Lab Control	Lab Control			Start Date/Time: 7/12/2013	1/12/2013 (620	
	Test No.:	Test No.: 1307-5063,064, 156	30H, 15L		End Date/Time: 7/22/2013	1/22/2013 1600	
Test Day	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments	
0	8.6)	29.8	7.0	798	Æ	√COllect Ammonia	
~	19.8	29.9	7.3	50.00 Co.00	A P		
2	5.02	29.6		3	2		
က	20.93	29.9	7.0	4,98	3		
4	282	29.9	2.1	8.08	M		
S.	20.2	30.0	7.2	8.02	Ac		
9	7.82	29.9	7.7	50.3	3		
7	19.9	30.0	7.1	7.98	8K		
60	20.0	79.7	1	4.99	3		
o	1.07	29.9	7:5	600	3		
10	20.0	29.8	7	9.0z	3	€ V Collect Ammonia	

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Check: 20 子23 3

8/8/13

Ž

Final Review:

Test Organism: Neanthes arenacoedentata Client/Project ID: AMEC/POLA YTI Terminal

200 Start Date/Time: 7/12/2013 End Date/Time: 7/22/2013 Test No.: 1307- S 156 Sample ID/Log-in No.: LA2 Reference

Test Day (°C)	rature		Dissolved			
		Sallmity (ppt)	Oxygen (mg/L)	pH (units)	Technician Initials	Comments
	0	38.1	1, 1	200	8	کن/ V Collect Ammonia
19.91	5	30.2	Ę	8.08		
2 20.02	9	30.4	6.9	8.33	B	
3 20.4	4	30.3	L-9	8.02	3	
4 20.4	<u> </u>	20.06	21	8.01	ML	
5 20,0	0	20.4	7.3	8.09	Ac	
6 63	8	4.08	T	01.3	3	
66) 2		30,5	17	908	BK	
907. 8		30.2	7.0	9.0°B	3	
6	سندندم	30.02	14	813	3	
10 19	19.9	30.4	7.0	40.3	3	SV Collect Ammonia

QC Check: 20 713/13

Final Review: $\sqrt{8/8}$

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Test Organism: Neanthes arenacoedentata Client/Project ID: AMEC/POLA YTI Terminal

1620 Start Date/Time: 7/12/2013 Sample ID/Log-in No.: YTI Comp A

(0) End Date/Time: 7/22/2013 Test No.: 1907 - 50 w3

					the state of the s	
Test Day	Temperature (°C)	Salinity (ppt)	Dissolved Oxygen (mg/L)	pH (units)	Technician Initials	Comments
0	135.7. B.	29.7	0	% .⊗	B	Collect Ammonia
_	2.3	29.8	12	6.00	76	
2	602	563	0.	833	S	
3	4.72	29.9	0.4	10'8	3	
4	1.3	59.9	-	22.8	M	
S.	0.06	30.0	7.1	8.6	Z	
9	205	30.0	0-4	40.8	3	
7	6,61	30.1	7.1	8,63	BK	
œ	20.0	29.9	7.0	10,8	3	
6	1.02	30.3	7	30.3	3	
10	19,9	30.0	14	8.0	3	Collect Ammonia
					TW POOLS CART CHARGE PROPERTY OF CHARGE PARTY CHARGE TO SELECT THE SECURITY OF THE SECURITY CO.	

QC Check: 869 7/23/13

Final Review: (45 8/8)(3

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Test Organism: Neanthes arenaccedentata	: 7/12/2013 N.2.0		Comments		V. V									Collect Ammonia
Test Organism	Start Date/Time: 7/12/2013	End Date/Time: 7/22/2013	Technician	a	3 3	. 4	2 2		A	3	84	3	3	3
			pH (units)	8.05	8.05	S T	1 26 +	80)	70,00	8.05	8,03	20.8	9	2.05
Client/Project ID: AMEC/POLA YTI Terminal	YTI Comp B	4	Dissolved Oxygen (mg/L)	0.1	7.0	ō) /t-		í	7,4	6.9	7.0	4.0	70
		Test No.: 1307 - 3004	Salinity (ppt)	79.9	0.0%	30.7	20.2	30.1	30.7	30.3	30.4	36.1	4.98	20.2
ient/Project ID:	Sample ID/Log-in No.: YTI Comp B	Test No.:	Temperature (°C)	2023 By	20.8	21.0	8.92	23	700.7	20.6	0.0	20,0	1.92	19.9
อี	Sample		Test Day	0	-	2	r	4	S.	9	7	80	G	10

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Check: BG 7/23/13

8/8/13

7

Final Review:

Total Ammonia Analysis Marine

Client:	AMEC		
Project:	POLA YTI Terminal		
Test Type:	10-Day N. arenaceodentata		
Di Blank:	0.0	Test Start Date: 7/12/2013	Analyst: AB
SW Blank:	0.0		Analysis Date: 7/25/13

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	7.0	8.5
Lab Control	N1	7/12/2013	0	0.1	40.5
Reference	N2	7/12/2013	0	0.6	0.7
YTI Comp A	N3	7/12/2013	0	1.9	2.3
YTI Comp B	N4	7/12/2013	0	0.3	10.5
Lab Control	N5	7/22/2013	10	0.0	<0.5
Reference	N6	7/22/2013	10	10.7	0.9
YTI Comp A	N7	7/22/2013	10	3.1	3.93.8
YTI Comp B	NB	7/22/2013	10	0.3	40.5
Spike Check (10 mg/L NH ₃)		NA NA	NA	6.9	8,4
Sample Duplicate ^a		NA	NA	0.5	0,6
Sample Duplicate + Spike ^a		NA	NA	8.3	10.1
Spike Check (10 mg/L NH ₃)		NA	NA	16,9	8.4

 $\frac{Relative\ Percent\ Difference\ (RPD) = [sample]\ (mg/L)\ - [sample\ duplicate]\ (mg/L)}{[average\ ammonia]\ (mg/L)}\ \ x\ 100$

Acceptable Range: 0-20%

RPD

NA

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

 $[NH_3]$

0.0

Acceptable Range: 80-120%b

% Recovery

85

YTI Comp B(N8)	40.5	0.6	10.1	10			I
Comments:							
Notes: a Unless otherwise noted,							
^b Acceptable range for ^b only.	% recovery applies only to	the blank spike. Spike re	ecoveries in sample	es may vary bas	ed on sample i	matrix and are for	information
° RPD calculation not p	erformed due to one or bot	th values below the method	od detection limit.				
Method Detection Limit	(MDL) = 0.5 mg/L						
QC Check: 7/30/13 86		Final Review:		KLOPE	13		

[Sample Dup]

ŃΑ

Measured

[Spike]

8.5

Nominal [Spike]

10

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Sample ID

Blank

Mediterranean Mussel (*Mytilus galloprovincialis*) 48-hr Survival and Development Suspended Particulate-Phase Test Water Quality and Raw Data Sheets

Embryo Larval Bioassay

48-hour Development

Note: #25 was difficult to read.

Client: AMEC/POLA Test Species: M. galloprovincialis

Project ID: YTI Terminal (Comp B) Start Date/Time: 7/10(131710

End Date/Time: 7112 1730

Sample	Rep	Number Counted	Number Normal	Technician Initials
21	Α	181	167	BK
22	В	180	165	LBK
23	C	166	143	IBK
24	D	175	162	BK debys
25	E	146	126	BK debys
26	Α	176	159	BK
27	В	148	130	BK
28	С	179	159	BK
29	D	162	146	BK
30	E	145	131	8K
31	Α	153	139	BK
32	В	171	160	BK
33	С	144	132	BK
34	D	186	170	BK
35	E	160	151	Bic
36	A	151	137	BK
37	В	170	159	BK
38	C	169	153	BK
39	D	33	122	BK
40	E	162	149	BK
	A B			
	С			
	D			
	E			
	A			
	В			
	C			
	D			
	E	ANNO COMPOSITION CHES CHES AND REMOVED AND AN ARREST AND AN ARREST AND ARREST ARREST AND ARREST ARRES		
	Ā			
del para conserti con e del todo en lo tra conserti con al escana del como en escana en escala del conserti co	В			
	С			
	D			
	E			

QC Check:

1017/31/13

Final Review: 80 843

AMEC/POLA

48-hr Mussel Development Bioassay Random Number Assignment Project/Sample ID: YTI Terminal/COMP B Test Initiation Date: 7/10/13

Concentration (%)	Rep	Rand #
	А	26
	В	37
Lab Control	С	22
	D	35
	Е	21
	A	32
	В	34
10	С	29
	D	38
	Ε	40
	Α	31
	В	30
50	С	23
	D	33
	Ε	39
	А	25
	В	36
100	С	28
	D	27
	E	24

QC= BK

Marine Chronic Bioassay

Client: AMEC/1201.4

Sample ID: YII TErMINED COM

Sample Log No.: <u>(つっ ろ) の |</u> Test No.: <u>(つの) - ろの</u>の ()

Test Species: M. galloprovincialis

Water Quality Measurements

Start Date/Time: $\frac{7/10/105}{170}$ End Date/Time: $\frac{7/10}{100}$

	TO SERVICE	Egovenia	1			-		 	 		_
		48	8:00	A K	808	8.13	3				
Ħ	(pH units)	24	8,00 8,05 8.06	8.03 8.05 8.05	8.07 8.09	81.8					
		0	8	8	8.07	200	N S				
ygen		48	c	2.8	7.8	2.0					
Dissolved Oxygen	(mg/L)	24	7.8	9.0	80	200					
		0	<u>م</u> م	00 6	\$.9 \$.5	2.8					
ė		48	5	15.0	15.0	15.					Commence of the Control of the Contr
l emperature	(၃)	24	169 15.5	169 153	169 153	15. 2.					
		0	691	169		169 15.4					Sarga forbolarcanii partiferanimoniib; telebran
		48	23	19.1	29.5	23.4					A (PERSONAL PROPERTY OF PERSONS ASSESSMENT O
Samnity	(tdd)	24	29,5	29.2	29,5	20.0 29.4					
		0	99.9	297 1292	300 29,5	20.0	distribution (species)				And the second s
Concentration	(%)		Lab Cointrol 39.9 29,5	۵	50	9					
200			Lar		T)	1000					

Technician Initials: WQ Readings: $\frac{0}{\mathcal{AC}}$ PA $\frac{48}{\mathcal{CL}}$ Dilutions made by: $\frac{24}{\mathcal{AC}}$

0 hrs:	
Comments:	

24 hrs: 48 hrs:

VL7/31/17

QC Check:

Final Review: 🛜 🕉 13

Embryo Larval Bioassay

48-hour Development

Client: AMEC/POLA Test Species: M. galloprovincialis

Project ID: YTI Terminal (Comp A) Start Date/Time: 7/10/13 17/0

End Date/Time: 7/12/13 (730

Sample	Rep	Number Counted	Number Normal	Technician Initials
1	Α	154	137	CC
2	В	164	156	la
3	С	167	144	G
4	D	171	143	U
5	E	(61	138	a
6	Α	195	190	a
7	В	179	155	C
8	С	162	Co.	CC
9	D	146	129	a
10	E	186	159	a
11	A	102	3	a
12	В	179	159	a
13	С	172-	154	a
14	D	150	0	a
15	E	191	158	a
16	Α	165	150	BK
17	В	126	0	BK
18	С	142	123	BK
19	D	142	٥	BK
20	E	194	170	BK
	Α			
	В			
	С			
	D			
	E			
тору быта писобания по наполни и она разпирателения по без тей потом в без тем в станувателения без	<u>A</u>			
	В			
	C			
	D			
	E			
	Α			
	В			
	С			
	D			
	E			

QC Check:

KL7/31/13

Final Review: 30 8 8 3

AMEC/POLA

48-hr Mussel Development Bioassay Random Number Assignment

Project/Sample ID: YTI Terminal/COMP A
Test Initiation Date: 7/10/13

Concentration (%)	Rep	Rand #
	А	5
	В	12
Lab Control	С	9
	D	6
	E	16
	А	1
	В	10
10	С	13
	D	20
	Ε	7
	Α	4
	В	15
50	С	2
	D	3
	Ε	18
	Α	11
	В	19
100	С	17
	D	14
	Е	8

QC= BK

Marine Chronic Bioassay

Client: AMEC/POLA

Sample ID: VTI Terminal Comp A

Sample Log No.: 12 - 2100 , -210+ C. Test No.: 1201 - 206015, Canton

Water Quality Measurements

Test Species: M. galloprovincialis Start Date/Time: 7/10/13 7/10End Date/Time: $7/10^{-1}$ $3/10^{-1}$

-	-	Sicologic Co.	Marin prop	·										
			48	48.02	000		8.0e	8.14						
	Hd Stight Ud	<i>y</i>)	24	1	600	200	1.15 0.07 8:06	8.16						
			0	-	X.00 80.X		5	7.97						and the same of th
2007	/gen	ļ	4 X	©.	8	0 6	,)	2,5						
Dissolved Oxygen		1 18111	47	0.5 0.7 0.7	7 8	0 0	9.0	2.00						
يَّز	<u> </u>	c	-		× ×	7	-	7.2 8.4						A STATE OF THE PROPERTY OF THE PARTY OF THE
ure) :	OV.	9	5.3	15.5 16.0 R.3	16.0		5.						A STATE OF THE PERSON NAMED IN COLUMN 1 IS NOT THE PERSON NAMED IN
Temperature	<u>(၃</u>	20	t	169 15.4	15.5	55 62	- 1 9	16.4 15.5			-			The second secon
		c		63	62	62								
		48) !	5	25.55	12.55	60	2:15						
Salinity	(ppt)	24		299 29,3	9.62 200	20.3 29.7	300	67.6						Control or the Orania of the Control
		0	(2000	7.08	50.3	03%	3,						
tration			- 0	I LANGE										-
Concentration	(%)		010	AD PIETO	2	R	(3						
***************************************			CHARLE	1			o la constante							

0 24 Technician Initials: WQ Readings: AC Re

84

Dilutions made by:

mment	
Cod	

0 hrs:

	2
	150
hrs: hrs:	T
24 48	2
	ı

QC Check:

B
Final Review:

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Client:	AMEC/POLA
Test No.:	1307-5065b, -5066b
Test Species:	Mytilus galloprovincialis
Animal Source:	Taylor shell fish
Date Received:	7/10/13
Test Chambers:	sentillation stell vial
Sample Volume:	10mls KC

Start Date/Time:	7/10/2013	1445	1710
End Date/Time:	7/12/2013	1445	1730
Technician Initials:	¥5	K-	

Spawn Information

First Gamete Release Time:

Sex	Number Spawning
Male	3
Female	

Gamete Selection

Gamete Selection		
Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	good motility of density
Female 1	1	good devisity, whitish, misshapea
Female 2		
Female 3		

Egg Fertilization Time: 1250

Stock(s) chosen for testing:

Embryo	Stock	Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	98
Female 2	
Female 3	

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 7-8 embryos

Number Counted:

21	7
12	10
15	- 11
7	17
15	12

Mean: (2.7

Mean
$$\underbrace{12.7}$$
 \times $\underbrace{32}$ = $\underbrace{35}$ embryos/ml

Initial Density: 635 = 2.12 (dilution factor)

Desired Final Density: 300

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts

	Time Zero Control Counts			
	Rand. No.	No. Dividing	Total	Mean % Dividing
	TK,	143	145	Person
	Toz	187	188	000
	T/03	154	155	79.0
-	4 y	16.7	168	· ICL
•	TOS	166	167	
	V	- 112	1	

48-h QC: 124/135 = 929

Comments:

QC Check: VL7/31/13

Final Review: 8 8 13

Total Ammonia Analysis Marine

Client:	AMEC		
Project:	POLA Dredge Evaluation		
Test Type:	Bivalve Elutriate		
		7110113	
DI Blank:	0 · 0	Test Start Date: 7/10/13	Analyst:
SW Blank:	0.0		Analysis Date: 1118113

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	6.8	8.3
Lab Control	25	7/10/2013	0	0.0	10.5
YTI Comp A 10%	26	7/10/2013	0	0.7	0.9
YTI Comp A 50%	27	7/10/2013	0	2.9	3.5
YTI Comp A 100%	28	7/10/2013	0	5.8	7.1
YTI Comp B 10%	29	7/10/2013	0	0.0	07
YTI Comp B 50%	30	7/10/2013	0	1.5	1.80
YTI Comp B 100%	31	7/10/2013	0	2.6	3.2
Lab Control	32	7/12/2013	2	0.0	0.7
YTI Comp A 10%	33	7/12/2013	2	1.2	1.5
YTI Comp A 50%	34	7/12/2013	2	13.4	4-1
Spike Check (10 mg/L NH ₃)		NA	NA	6.9	8.4
YTI Comp A 100%	35	7/12/2013	2	6.5	7.9
YTI Comp B 10%	36	7/12/2013	2	1-0	1-2
YTI Comp B 50%	37	7/12/2013	2	1.5	1.90
YTI Comp B 100%	38	7/12/2013	2	2.8	3.4
		N/A	514	2-7	3.3
Sample Duplicate ^a	_	NA L	NA NA	10.5	12-8
Sample Duplicate + Spike ^a	_	NA NA	NA NA	6.8	8.3
Spike Check (10 mg/L NH ₃)		NA	NA	$\frac{1}{1}$ $\frac{(\mathcal{Y},\mathcal{Y})}{2}$	10.5

 $\frac{\text{Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)}}{[average ammonia] (mg/L)} \times 100$

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	[Spike]	[Spike]	RPD	% Recovery	
Blank	0.0	NA_	93	10	NA of	83	
* 36	3.4	3.3	12.8	10	2989	94	
					30		
Comments:							
Notes: ^a Unless otherwise	noted, the last sample listed on the d	atasheet is used for du	plicate and dupli	cate + spike QC	check.		
^b Acceptable ra only.	nge for % recovery applies only to the	blank spike. Spike rec	overies in samp	les may vary ba	sed on sample m	natrix and are for ir	ıformation
° RPD calculation not performed due to one or both values below the method detection limit.							
Method Detecti	on Limit (MDL) = 0.5 mg/L						
QC Check: Ba HIS	313			Final Review:		KL8 0	13

Measured

Nominal

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Mysid Shrimp (*Americamysis bahia*) 96-hr Survival Suspended Particulate-Phase Test Water Quality and Raw Data Sheets

96-Hour Marine Sediment Bioassay Suspended Particulate Phase

Water Quality Measurements
& Test Organism Survival

Client: AMEC	AMEC															Test S	Test Species: A. bahia	A. b	ahia		,			
Sample ID: YTI Comp A	YEC	y dwo													Sta	r Dat	Start Date/Time: 7/11/2013	: 7/11	/2013	2	2			
Test No.: 1364-5005	1367	- 30	165												ш	id Dat	End Date/Time: 7/15/2013	: 7/15	/2013	-	435			
Concentration	Rep	N O	Number of Live Organisms	Live		0,	Salinity (ppt)				Temp ('	Temperature (°C)	a		ă	ssolved Ox (mg/L)	Dissolved Oxygen (mg/L)	_			pH (units)	(6)		Percent Survival
		0	48	96	٥	24	48	72	96	0	24	48 7	72 9	96	0	24 48	8 72	96	0	24	48	72	96	
Lab Control	٧	5	8	2	29.3	29,5120.0	~	13:2	36/12	30 7.1,2	59 12	15.62	255 25	25.60 B.	8.26	6.0 69	553	3.5.	803	7.98	3 197	7.95	27.75	8
	Ф	10	Š	9																	100 (0.07			R
	ပ	10	9	2																				26
	۵	10	q	0																				9
	E	10	8	0																				B
10	A	10	01	9)	0.06,5,60	30.0	38.1	33	38.11.13		15.8 25.0		35.60	25.46	<u>ئ</u>	1. 15.5 15.5	50 OF	1 5/6	800	37.98	8 797	2796	7.85	
	ω	10	01	91																				99
	ပ	5	2	8					1															3
	۵	10	10	6																				Jo
	ш	9	S	8												- 112								B
20	A	9	2	2	12,12	198.	9.849.9302	322	30.10	24,518.9		289 2	13:12	7 262 7.	650	200	15	15.6	17.91	13	1.3	525	1789	
	മ	10	0/	6																				2
	ပ	10	0	2																				2
	۵	9	9	0				00000																38,
	ш	9	02	2	n			entaren G																
100	۵	10	S. S.	01	1,62	29,1 1296	36	o. Ri	30.0	24,3 14,0 25,9	20.2	5.92	259 6	1443	 <i>[</i> 0	27.00	5.5 5.2	(5)	47.82	77.37	17-18		807794	1
	0	9	2	0																				3
	O	9	2	9			50 ly 40																	93
	۵	10	0	2												ento.						11.7900		8
	Ш	9	6	00																				8
Technician Initials	S	d.	\geq	3																				
Animal Source/Date Received:	∌/Date	Recei	ved:		AB	ABS 7/11/13	2	13								Ą	Age at Initiation:	tiation	-	5				
Comments:	į														lalia	eedin	Feeding Times (hr):	ss (hr	L		48	8 72		TT.
) 1	. 1	\$\$10 W S		29 g	
QC Check:	Z		FINE S	40													Final Review:	evie.	:	9	7	7/17/13		
::>>=>	3	1																ı				1	-	

Nautilus Environmental, LLC. 4340 Vandever Avenue. San Diego, CA 92120.

96-Hour Marine Sediment Bioassay Suspended Particulate Phase

Water Quality Measurements & Test Organism Survival

Percent Survival 100 100 3 8 8 000 90 3 20 3 96 9 3 2 2 3 7.93 7.07 7.31 5-15-2 7.98 8.07 7.98 1.5 7.859.04 1.00 8.03 7.90 96 72 792 9.04 7.95 801 pH (units) 8 1000 JAN 48 Start Date/Time: 7/11/2013 15년5 End Date/Time: 7/15/2013 1445 5.5 5.4 8.00 801 24 24 Age at Initiation: 0 0 Test Species: A. bahia パア 96 Feeding Times (hr): 500 Dissolved Oxygen (mg/L) T. 72 e. 8 50 50 *ب* عن 24 29/2/25/2/25/4 | Z5/4/25.5/18.0 28.9 125 120.1304 25.4 125.425.125.17.5 24,3 15.6 125.4 25.4 25.2 19.4 0 96 72 Temperature (°C) 48 24 0 29,3 40.0 20,0 20,2 30.2 1.08 1.08 120 1.02 96 ABS 711/13 72 Salinity (ppt) 84 24 0 0 0 2 Number of Live Organisms 96 3 0 9 <u>_</u> 0) 6 Q 2 0 0 0 3 48 0 9 <u>_</u> 0 \bigcirc Ş (2 5 Test No.: 1307-5000 5 Animal Source/Date Received: Sample ID: YTI Comp B 9 10 10 9 0 9 0 10 10 6 10 10 5 9 9 L 0 9 9 9 9 10 Client: AMEC Rep O ⋖ œ ۵ Ω ⋖ മ Ω Ω ပ Ω O ш 4 Ш ш ⋖ ω O ш **Technician Initials** Concentration Lab Control Comments: 100 6 20

Final Review: 8-13

QC Check: LN 7/W/13
Nautilus Environmental, LLC. 4340 Vandever Avenue. San Diego, CA 92120.

Total Ammonia Analysis Marine

Overlying Water

Client: Project:	AMEC POLA YTI Comp A		
	Mysid Acute Elutriate		
DI Blank: SW Blank:	O,0 O.0	Test Start Date: 7/11/2013	Analyst: AB Analysis Date: 7/17//3

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	7.0	8.54A
YTI Comp A Lab Control	47	7/11/2013	0	0.0	(0.5
YTI Comp A 10%	48	7/11/2013	0	0.7	0.9.
YTI Comp A 50%	49	7/11/2013	0	2.8	3.4
YTI Comp A 100%	50	7/11/2013	0	5.5	6.7.
YTI Comp A Lab Control	51	7/15/2013	4	1.0	1.22 AB
YTI Comp A 10%	52	7/15/2013	4	1.4	1.7
YTI Comp A 50%	53	7/15/2013	4	3.6	4.4
YTI Comp A 100%	54	7/15/2013	4	6.3	7.7
Spike Check (10 mg/L NH ₃)		NA NA	NA		
Sample Duplicate ^a		NA	NA	6.6	8.1
Sample Duplicate + Spike ^a		NA	NA	13.6	16.6
Spike Check (10 mg/L NH ₃)		NA	NA	7.0	8.5

 $\frac{\text{Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)}{[average ammonia] (mg/L)} \times 100$

Acceptable Range: 0-20%

RPD

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

 $[NH_3]$

Acceptable Range: 80-120%b

% Recovery

							a
Blank	O	NA	8.5	10	NA	85	
#54	7.7	8.1	16.6	10	5.1	5.TAB	
						89	•
Comments:							
Notes: a Unless otherwise	noted, the last sample listed on the datash	eet is used for du	uplicate and dupli	cate + spike QC	check.		
^b Acceptable rar only.	nge for % recovery applies only to the blank	spike. Spike red	coveries in sampl	les may vary bas	sed on sample r	matrix and are fo	information
^c RPD calculation not performed due to one or both values below the method detection limit.							
Method Detection	on Limit (MDL) = 0.5 mg/L						
QC Check: BG 7/1	7/13			Final Review:		VL BI	013

[Sample Dup]

Measured

[Spike]

Nominal [Spike]

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Sample ID

Total Ammonia Analysis Marine

Client: Al	MEC			
Project: Po	OLA YTI Comp B			
Test Type: M	ysid Acute Elutriate			
DI Blank:	0.0	Test Start Date:7/11/2013	Analyst: A	
SW Blank:	0.0		Analysis Date: 7/2	<u> 24/13</u>

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	6.7	8.2
YTI Comp B Lab Control	63	7/11/2013	00	0.7	0.9
YTI Comp B 10%	64	7/11/2013	0	0.7	0.9
YTI Comp B 50%	65	7/11/2013	0	1.3	1.6
YTI Comp B 100%	66	7/11/2013	0	2.0	2.4
YTI Comp B Lab Control	67	7/15/2013	4	0.9	1.1
YTI Comp B 10%	68	7/15/2013	4	0.6	0.7
YTI Comp B 50%	69	7/15/2013	4	1.6	2.0
YTI Comp B 100%	70	7/15/2013	4	1.9	2.3
Spike Check (10 mg/L NH ₃)		NA	NA		
					<u> </u>
Sample Duplicate ^a		NA	NA	2.0	2.44AB
Sample Duplicate + Spike ^a		NA	NA	8.3	10.1
Spike Check (10 mg/L NH₃)		NA	NA	6.7	8.2

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) \times 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

	QC Sample ID	[cHn]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
	Blank	0.0	NA	8.210.0AG	10	NA	LOGAB 82
l	YTI COMPB 100 (70)	2.3	a.4	10.1	10	4.3	78
E							

Comments:		
Notes: a Unless otherwise noted, the last sample listed on the datasheet is used for duplication	ite and duplicate + spike QC check.	
^b Acceptable range for % recovery applies only to the blank spike. Spike recove only.	ries in samples may vary based on sa	ample matrix and are for information
° RPD calculation not performed due to one or both values below the method de	tection limit.	
Method Detection Limit (MDL) = 0.5 mg/L		
QC Check: LW 8/27/13	Final Review:	AC 9/3/13

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Elutriate Preparati	on	
Client :	AMEC	Test Species: M bery lliba
Sample IDs :	ITI Comply ITI Comp B	A. bahia
Analyst:	P PA	A. bahia M. galloponheialis
Test No(s):	1307.5de5, 9, b; 13	4
Protocol :	EPA-503/8-91/001 Feb 1991	
Dilution Water Used	d to prepare elutriate (circle): (La	b SW or Site Water
Salinity (ppt):	30	
Ratio 1:4 (Sediment Sediment Water Vo	Volume: 3 L	Example: 2 L Sediment 8 L Water
Mix sediment and w mixing blade for a to	rater in polyethylene plastic-lined total of 30 min.	5-gallon bucket with stainless steel 1/10/13
Siphon overlying wa	ise a stainless steel spoon to many (VIIII) (VIIII) (VIIIII) (VIIIIII) (VIIIIIIIIII	
Site:	Initial DO (mg/L sup B (blooke) 3,5 of Cmg a 1mb 4) 4.2	aerate if < 6.0 mg/L). Record below:): Final DO (mg/L): 6.8 7.1 7,2
Comments: (DE Elutriate col on 7/10/13 + f	lected for bivalve tests for mysid and menida tests
QC Check:	W13113	Final Review: Sc 8/1/13

Nautilus Environmental 4340 Vandever Avenue, San Diego, CA 92120

Inland Silverside (*Menidia beryllina*) 96-hr Survival Suspended Particulate-Phase Test Water Quality and Raw Data Sheets

96-Hour Marine Sediment Bioassay Suspended Particulate Phase

Water Quality Measurements & Test Organism Survival

Start Date/Time: 7/11/2013 (⊘⊘ End Date/Time: 7/15/2013 (45) Test Species: M. beryllina Test No.: 1307 - SoluSa Sample ID: YTI Comp A Client: AMEC

Percent	Survival		96	00)	8	<i>(3</i> 6	A)	90	99	83	3	90		8	8	3	90)	96	931	B	3	90
		96	77.92					19.4					497					0,0				
		72	Ø:10			and the second		120 8 B.					× 5.					27			- March	
pH (units)		84	8.0						1000			9	ر چ					\$ \$ \$				
		24	2		in and the			7.88				Į.	20				1	33				
			803					W.2 8.00				6	17					787				
4 11	L	88	から					12.3					4.7				1000 to	2.5				
Dissolved Oxygen (mg/L)		77	ټ ټ					2000					ر ق					83 E.2				
(mg/L)	;	2 d	23				6	4				8	0				16	? !è				
Disso	18	47	S					2				15	2					2				
	9		7.2					2				1	9,					3				
	90	3	24.9					17.7				100	47					24.2				
ure	7.2		12 CE: 1249					Š				10 12 12 12 12 12 12 12 12 12 12 12 12 12	& 5		1		333	3				
Temperature (°C)	48	2 6	2				C 1 1 2	ž Ž				132					500					
Ter	24	0 2	& B				8	3				77.	3				26.8	۱,				
	0	347					7 26					72 Ch 5 3		T	T		7 10 2 10		t			
	96	T					100	3			Ī	21.1					1	,	1	1		
	72						10)				· 4	1000000				26.82		\dagger			1
(ppt)	89	\$ 2000	3				25					2,100 > 200	3									
" [24	C 4.					19					9,3				0.00	9.8200	3				
	0	266	_				29 67	1				25.2	-				29,10	-				
ω <u>κ</u>	96	0	- 5	3 9		0	0	2	93	0	2	2	3	3	2	3	0	T	6	- 9	5 6	- 6
Organisms	48	9	+	2	,	2	9	+	9	0	0	9	0	2	0	0	2	9	-	+-	\vdash	+.
	0	10	+-	_	+-	┼	5	9	10	10	9	0	10	10	10	10	10	10	10 10	┼─	1	╀
Rep		⋖	m	U	٥	ш	A	m	O	0	П	A	В	υ υ	7	ш ~	A	1	U	D 10	F 7	AA
Concentration		Lab Control					10					50					100					Technician Initials

Animal Source/Date Received:

Comments:

at 24hr 2st agasta

St. 7-18-13 Final Review:

43

24

0

Feeding Times (hr):

Age at Initiation: 14 days

Nautilus Environmental, LLC. 4340 Vandever Avenue. San Diego, CA 92120. 4/12/13

3

QC Check:

96-Hour Marine Sediment Bioassay Suspended Particulate Phase

Water Quality Measurements & Test Organism Survival

Percent Survival 20 991 130 100 3 4.38.00 793 802 8.12 7.94 90 6 3 3 90/ 3 907 9 1808 791 81017.99 28722, 129 20 20 20 30 51 75 4 75 7 25 41 51 16 20 16 4 16 2 7,85 7,30 18 13 8 19 8 05 72 pH (units) -5 48 14-2 797 597 2 W 1510 26/201 2 Test Species: M. beryllina Start Date/Time: 7/11/2013 End Date/Time: 7/15/2013 56% 0 6.2 96 Dissolved Oxygen (mg/L) 707 307 316 24,1125 250 249 24.78,3 5.4 6464 7 72 ر د 48 24 25 249 25 1 25 1 25 1 25 1 24.8 8 D 0 24.3 15.0050 248 24.7 18.4 96 72 Temperature (°C) 48 24 0 29,319,719,00 20,5 31.1 96 72 Salinity (ppt) 84 1.3 2.1 2.1. 24 0 Number of Live Organisms 0 96 2 2 9 2 2 <u></u> 3 2 3 9 2 9 Test No .: 1367 - Solucio of É 2 8 2 Q 2 9 0 9 9 _ 9 9 Sample ID: YTI Comp B 9 9 9 9 9 10 10 5 9 9 9 9 9 9 10 9 Client: AMEC Rep ပ ۵ ⋖ മ ш ⋖ മ O ۵ ш ⋖ ω O Ω ш ⋖ Concentration Lab Control 6 900 20

itdays	0 24 48 72 96	- 630 0000000 0815	1
Age at Initiation:	Feeding Times (hr):		
ABS 7/10/13	act 24 hr		

3

<u></u>

3

0

9

9

m U

3 3

0

9

36

9

M PA IN

Technician Initials

かれるをんや

Comments:

Animal Source/Date Received:

88

QC Check: UN 7/1/2/1/3

Nautilus Environmental, LLC. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review:

Elutriate Preparati	on	
Client :	AMEC	Test Species: M bery lliba
Sample IDs :	ITI Comply ITI Comp B	A. bahia
Analyst:	P PA	A. bahia M. galloponheialis
Test No(s):	1307.5de5, 9, b; 13	4
Protocol :	EPA-503/8-91/001 Feb 1991	
Dilution Water Used	d to prepare elutriate (circle): (La	b SW or Site Water
Salinity (ppt):	30	
Ratio 1:4 (Sediment Sediment Water Vo	Volume: 3 L	Example: 2 L Sediment 8 L Water
Mix sediment and w mixing blade for a to	rater in polyethylene plastic-lined total of 30 min.	5-gallon bucket with stainless steel 1/10/13
Siphon overlying wa	ise a stainless steel spoon to many (VIIII) (VIIII) (VIIIII) (VIIIIII) (VIIIIIIIIII	
Site:	Initial DO (mg/L sup B (blooke) 3,5 of Cmg a 1mb 4) 4.2	aerate if < 6.0 mg/L). Record below:): Final DO (mg/L): 6.8 7.1 7,2
Comments: (DE Elutriate col on 7/10/13 + f	lected for bivalve tests for mysid and menida tests
QC Check:	W13113	Final Review: Sc 8/1/13

Nautilus Environmental 4340 Vandever Avenue, San Diego, CA 92120

Total Ammonia Analysis Marine

SW Blank: 0.0

Client:	AMEC		
Project:	POLA YTI Comp A		
Test Type:	Menidia Acute Elutriate		
DI Blank:	0,0	Test Start Date: 7/11/13	Analyst: A
SW Blank:	0.0		Analysis Date: 7/25/13

N x 1.22

	Nautilus	Sub-Sample	Test	NH3-N	Ammonia
Sample ID	ID	Date	Day	(mg/L)	(mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	8.2	10.0
YTI Comp A Lab Control	39	7/11/2013	0	17	2.1
YTI Comp A 10%	40	7/11/2013	0	24	2.9
YTI Comp A 50%	41	7/11/2013	0	47	5.7
YTI Comp A 100%	42	7/11/2013	0	7.1	8.7
YTI Comp A Lab Control	43	7/15/2013	4	2.5	3.1
YTI Comp A 10%	44	7/15/2013	44	3.0	3.7
YTI Comp A 50%	45	7/15/2013	4	47	5.7
YTI Comp A 100%	46	7/15/2013	4	6.8	8.3
Spike Check (10 mg/L NH ₃)		NA	NA	8.2	10.0
Sample Duplicate ^a		NA NA	NA	7.1	8.7
Sample Duplicate + Spike ^a		NA	NA	14.9	18.2
Spike Check (10 mg/L NH ₃)		NA	NA	8.2	10.0

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery		
Blank	0.0	NA	10.0	10	, NA	100		
YTI (Omo A 100 (46)	8.3	7.8	18.2	10	四十五	99		
					ACH,7			
Comments:	Comments:							
	ed, the last sample listed on the datashe							
^b Acceptable range only.	for % recovery applies only to the blank	spike. Spike rec	overies in sample	es may vary ba	sed on sample n	natrix and are for i	ıformation	
^c Calculation not pe	rformed due to one or both values below	w the method dete	ection limit.					
Method Detection L	.imit (MDL) = 0.5 mg/L							
QC Check: LW 8/2	7/13_		1	Final Review:		AC 91.	3/13	

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Client: AMEC		
Project: POLA YTI Comp B		
Test Type: Menidia Acute Elutriate		
DI Blank: 0 . O . SW Blank: 0 . O	Test Start Date: 7/11/2013	Analyst: CL Analysis Date:

					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	17.4	9.0
YTI Comp B Lab Control	55	7/11/2013	0	0.4	0.5
YTI Comp B 10%	56	7/11/2013	0	0.7	0.9
YTI Comp B 50%	57	7/11/2013	0	11.2	1.5
YTI Comp B 100%	58	7/11/2013	0	2.5	3.1
YTI Comp B Lab Control	59	7/15/2013	4	0.7	0.9
YTI Comp B 10%	60	7/15/2013	4	0.8	1.0
YTI Comp B 50%	61	7/15/2013	4	(. 7	2.1
YTI Comp B 100%	62	7/15/2013	4	12.4	2.9
				:	
Spike Check (10 mg/L NH ₃)		NA	NA		

Sample Duplicate ^a		NA	NA	2.4	2.9
Sample Duplicate + Spike ^a		NA	NA	10.9	13.3
Spike Check (10 mg/L NH ₃)		NA	NA	7.1	8.7

 $\frac{\text{Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)}}{[average ammonia] (mg/L)} \ \ x \ 100$

Acceptable Range: 0-20%

RPD

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

 $[NH_3]$

Acceptable Range: 80-120%b

% Recovery

Blank	0.0	NA	9.0	10	NA	90	
X 62	2.9	2.9	13.3	10	0	104	
Comments:							
Notes: " Unless otherwise	noted, the last sample listed on the	datasheet is used for du	plicate and duplica	ite + spike QC	check.		
^b Acceptable ra only.	nge for % recovery applies only to the	e blank spike. Spike re	coveries in sample:	s may vary bas	sed on sample	matrix and are for in	formation
° RPD calculation	on not performed due to one or both	values below the metho	d detection limit.				
	on not performed due to one or both on on Limit (MDL) = 0.5 mg/L	values below the metho	d detection limit.				-n

[Sample Dup]

Measured

[Spike]

Nominal

[Spike]

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Sample ID

Marine Clam (*Macoma nasuta*) and Polychaete Worm (*Nereis virens*)
28-day Bioaccumulation Test
Water Quality and Raw Data Sheets

28-Day Marine Sediment Bioassay Bioaccumulation

Client:	AMEC/ POLA	Start Date/Time: 7/	12/2013 1500
Project ID:	YTI Terminal	End Date/Time: 8/	9/2013 1 000
Worm Species:	Nereis virens	Initial Number of	35 clams
Clam Species:	Macoma nasuta	Each Species:	10 worms

Site	Rep	Number of Surviving Worms	
Lab	А	10	33
Control	В	10	29
	C.©>	į C	35
	D	10	3
	E	10	32
LA2	Α	10	31.
Reference	В	10	33
	С	10	32
	D	10	32
	E	9	30
YTI Comp A	Ā	47Q8	30
	В	10	30
	С	10	35
	D	10	32
	E	10	27
YTI Comp B	Α	10	32
	В	8	30
	С	1	29
	D	10*	A2-33
	E	7	M65230
	Α		
	В		
	С		
	D		
	E		
	Α		
	В		
-	C		
	D		
	E		
	Α		
	В		
	С		
	D		
	E		

QC Check: AC 8/30 @ Replicate initiated with 45 dams; tech error.

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120. 米 Worへ Split in half.

28-Day Marine Sediment Bioassay Bioaccumulation

Client/Project ID: AMEC/POLA

Test Organism: Macoma nasuta and Nereis virens

Sample ID/Log-in No.: Lab Control

Start Date/Time: 7/12/2013 1500

000

Test No.: 1907 - SOG7 ← SOG8 + S (57 End Date/Time: 8/9/2013

Rep	Day	Mortalities	Flow Adjustments	Additional Comments	Technician Initials
0 - V		0	A-D KAT		7
S. C.	2	2 clean, 1 clums			8
7-77	က	I chain leach			3
44 W 4 8 9	4	水子中北京中下水	ī		本事を
100 A 800	r.	- Contractor			S 4 2
2 C.D	ဖ	2 claw claw			3
440.	2	, accu			8K
	8				3
	6	1			3
,	10				3
1	11				3
	12	· ·			3
A. Carrier	13	on and the same of			AC
1	14				2
S	15	1 clam			BK
	16	1			3
	17	Clam			Z
) a	18	i clam			87
Note that the state of the stat	19	· Constitution of the cons			3
n n	20	Iclam, Iclam			8×
	21	·			ر چ
<u></u>	22	Ì			7
and versions and	23	and the same of th			8
20	24	i clam			3
8,C	25	Idam, Idam			3
ىل	26	Cam			3
	27	The state of the s			\frac{1}{2}
<i>></i>	28	\$ 000000000000000000000000000000000000			3K

ac check: 40 7010

Final Review: $\frac{\log 4/26/l3}{2}$

28-Day Marine Sediment Bioassay Bioaccumulation

Technician Initials Z S 7 N 8 d 3 Test Organism: Macoma nasuta and Nereis virens 3 3 3 3 A ST SK 3 B 3 3K 3 必 000 200 Additional Comments Start Date/Time: 7/12/2013 End Date/Time: 8/9/2013 Adjustments P-E ↑ Flow ケタ dam, 2dam, 1ctim 4 claims, 2 claims 2 CLAIMS trelans, I clan Mortalities 2000 () AB/ 1 Ì 55 1300-51 Sample ID/Log-in No.: LA2 Reference Day 72 9 8 19 20 22 22 23 24 Client/Project ID: AMEC/POLA 6 13 12 7 17 ~ ∞ တ \sim r 4 Ŋ တ Test No.: Rep 4 C/0 E 1 Ш 6 3,0 ħ d

ac Check: AC 8 9/3/13

À

25 26 27 27 28 Final Review: WHOWELS

28-Day Marine Sediment Bioassay Bioaccumulation

Test Organism: Macoma nasuta and Nereis virens (CQQ Start Date/Time: 7/12/2013 End Date/Time: 8/9/2013 1307-5061 Client/Project ID: AMEC/POLA Test No.:

Technician Initials BK BK 图器 MA 2 Z 3 \$ BR 3 3 Z 2 588 3 3 3 8 岩 Additional Comments Adjustments 4+C+ Flow CLAM, 2 clams CLAVNS clam cach Mortalities 2 dams clam CLCLAN 16 1885 2 Malams 2 clams -N Day 10 7 13 13 16 22 22 23 24 24 ~ 17 2 25 26 27 28 ග Sample ID/Log-in No.: YTI Comp A ന 4 Ŋ 9 ~ ~ ∞ Rep ABE しナカ a 7 7-4) \ ļ ì 177 10 į إب)

n QC Check:

9/26/1/3 Final Review:

28-Day Marine Sediment Bioassay Bioaccumulation

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

ac check: 76 9/3/

Final Review: W 9/26/16/13

lyst

28-Day Marine Sediment Bioassay Bioaccumulation

DIOACC	Dioaccullulation	5										-		ΰ	ort Date	J.	C+2# Date/Time: 7/12/2013 \500	3	8	
Client:			AMEC/POLA	/POLA			I		Project ID:	<u>:</u>	YTI Terminal	nal	1	у П		/Time	Fnd Date/Time: 8/2/2043	00		100
Test Species:	Sei Sei		Macon	Macoma and Nereis	Nereis		ı		Site D:	 <u>e</u>	Lab Control	0		3	200					
do 160 l							Joseph	O por	Oxygen (ma/L)	u/L)		pH (units)	nits)			S	Salınıty (ppt)	()		Analy
		Tem	Temperature (°C)	(S)				5		ا ا	<	α C	۵	ш	٨	ω	ပ	۵	ш	
- Cay	۷	ш	ပ	۵	Ш	∢	ю	U		۱	4	V 61 61	000	0 0	6,4	240	33	330	333	AG
č	OTION	0	2 17	1 1 N	ナナ	8	09 (V	7	J. \$\infty\$	00 1		7	2 0		9 6	000	120 227 227 220	200	2.22	3
, -		2		4	25	5	i	C	-		375	-		100		13.5	23 23 23 23 23	12.2	23.2	1
2	13	14.4	12.7	19.2 15.6	-	3	3,5	1	-	-	1.96	1.5.7	1 2 6	100 C.	Elica	22.0	220 322	23.2 23.3	33.3	3
8	1	15.5	14.7 19.3		F.7 199	05	63		+	-	4-5	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2	120 120 027 200	12.00	233	23.24	WHARTHY 73	CHE	HMI
4	2	13.51	55	15.2	15.55	200	18.3		0	0.20		- 2	7 5	791791 33 1 337 353 353	1 K	327	353	333	\$33	R
ro	15.	14.2	14.2 15.7 15.1	15.	15.4	15.4 %	-	\dashv	09 r	$^{\sim}$	1 1 2 1 200 H 200 H 200		907	490 400 480	33.7	33.7 33.3	33.5	53.4 33.4	33.4	3
9	15.2	14.4	152 14.4 15.9	15,3	15.6	2.	30,5				100 100 100 100		1 2	1 58	33,3	33,4	33.4	488	334	80 不
1**	6.3	97	S		15.2 15.7	7	00 °	\neg	+			47.77	4 80 480			33.7	33.3	53.3	333	3
ω	15.3 14.8	14.8	15.3	7.0				+		\neg		100	07 70	10 102 1910 84 33.4 335 33.5	28.4	133.4	23.5	33.9	33.8	5
,	ة الم الم	ā	174	ロターでの	T To	$\frac{a}{c}$	w w	<u>~</u> ර	コーナダ		1707	1014	7.		100	000	23.0	240	120 220	5

5/2013 0,7

* Collect NH₃ Samples 925 A Comments: QC Check:

Final Review:

E

れなら

7.66

7.

S) S)

1.9.1

j.

200

<u>ر</u> ر

0 N

35,7

E,

6

128V

10.4

0

() (ii)

 $\frac{1}{\infty}$

Q

4

15

500 I I

153

5

22

30

ゆけ

00

21*

亿

<u>v</u> がら

15

\$ 1

20

9

Z

725

707

33.4

300

23.0

12.8

58 100

100

65

5

1937.96

3

0

100 4.0

マーク

1 ري ا<u>ح</u>

なのか

8

がの

しらら

793

794

2007

100

90 60

3

90 20.

8.57 00 ()

7

23 5

200

194

2,5

Ŝ

0.0%

8

W

Ċ

8

8.3

C.

0

125

3

288

S

3,

96 8.8

õ

5

15.53

S. S.

S

58*

J)

(ÿ

25

26 27

5

4

J

I

23 24 2001

200

S L

33.2 33.1

23.7

28.0

PC

Nin

33.4

33.2 33.5

33.33 333

7.82 33.2

183

7.80 7.78

3

2 3

> 5 $\frac{\infty}{7}$

80 O

-00

で、五

2

120

2

33.7 33.0

793

457

1207

7,91

00) (1) 0.H

60 V.

88 N 33.2

BR

80,00

33.0

12/2

792 707

からけ

964 75

194

362 7,93

7.89

17,886

3

2 0

400

4

24.5

57 27

2,4

2.0 7 &

ナナ

<u>7</u>

0

% ∞ or 10

5. J

8 30

0.0

10.0 N.c 5.5

50

148

14* ਨ 16 17

3

33.2

33. 200

484

7.89

(3) (9) (9)

23.2

33,3

33.7

2000 33.0

7.88

7,90

134

7.84

4

7

0 0.0 eC Se

15.8 ñ.

アプ

5,3

4.8 3

454

90 Q 4,0%

Ü

φ 0, 400

<u>5</u>

Ü

54

ľ

E,

あかり

44

4

₹ +

7-8

40

15.10

5.7

(F)

~ 6 တ

J

7

子の子 ほび

12 13

0

×

60

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

28-Day Marine Sediment Bioassay Bioaccumulation

								7			ט	o			S S	טופור המוניו וווויייייייייייייייייייייייייייייי		-			
Client: Test Species:	es:	(≥	Macoma and	and Nereis	ereis			. 9/	Site ID:	, ,	LA2 Ref	Reference			End	d Date/	Date/Time: 8/2/2013	12013	-	000	
-		Tempe	Temperature (°C)	ြင့			Dissolve	d Oxygen (mg/L)	n (mg/L)			ta.	pH (units)					Salinity (ppt)	_		Analyst
Day	٨		ပ	۵	Ш	∢	Ф	ပ	۵	ш	A	В	ပ	۵	ш	ار	_ [× ×
*0	-	50		64	£ 00	5,	2	00	25	1.8	815	8.14	8.14	- 1	8.10	J	3	J,	M	7	<u>يَ</u> {
色	\top		+	- 2	د ر	12/		2.5	7	7.6	2,10	7.94	793	1,90			1	2	1	1	(WILL)
)		202	7 7.	000	5.5	29	0.5	7,9	7,7	7.7	1.91	261	7.93	187	7.9.		2	-	7	7	1
	1	+		3 6	25	4	2.4	4.4	34	4	7.81	J8-E	7.76	784				7	20:	7	3 3
		_		1 2	200	2	3	2	ر ص	3.5	187	7.96	794	1.96	7.92	39.3		23.52	<u> </u>	3	3 5
4 u		+	\top	-	18.5		0.0	0	7.9	7.9	7.85	7.99	796		7,97	N	64.	~	800	,	FC.
			-5		12/4		0	4.9	8.0	34	704	496	7,94	4.94	4.94	3		4	7	-	3
0 *	-) 7		15.6		2	0.	7.8	2.8	794		7.93	9	7.9S.	2.	7	in	S		- K
	0 (6	+-	· \r	000	4.51	4	3.4	4	7.7	46	士多士	4.9	7.89	1	7.30	2	16	0	-		3.3
	_	7	S	15.6	5.00	98C	14	4.8	7.9	7.9	194	364	494	6.0	4.96	1	10	7,	, 0	7 1	2 3
	+	1	+	15.6		4,8	104	4	77	77	7.89	790	7.88	7.65	7.91	8	1,	100	0,	0000	5 5
	4-	+-	2,0	2.0		47	$+ \overline{}$	1+	44	26	7.89	24	4.82	100	404	33.0		13	7	v -	3
	1	+	5	72	15.5	× 5		2	6.8	d'	726	7.48	7.96	7,97	7.99					22	3/2
	- 1		1		T.	000	-	7.9	7.9	7,0	7.84	285	7.86	7,40	7.89	M		T	- 100	35.4	0 0
			ev.		, 1 <u>7</u>	8,3	83	~ 00	8.5	85	794	35	7,93	60.	404	55.4				0 -	$\tilde{i} \mid \mathcal{E}$
100	+-	+		4.4	0.7	8.7	0.8	©.⊗	100	Ø. Ø.	792	494	26E	٠,١	797	53.	1	1 -	<u>-</u>	55.1	<u>y</u> = 4
9)000	5.0		5.0	4.4	4.84	8.2	1.8	7.3	60	7.98	8,0	7.97	co	4.52	8			100	0.00	2 6
T		. 17 C	22	44		∞ €	6/2	827	83	80,00	40.	_	48.4	32.7	+ 5.+	3	1 -	1 -		1,00	3
	+	3 4	5	4.3	348		-8	0	4	-	10	_	25	5	5.7	7,00		-	25.00	200	} \
	_	1	53	April .	3	00	0,2	ري 0.	<i>c</i> 4	÷	7.96	200	2 7 7 7				2 (200	
	T	4	2	143		83		9	4.8	83	90.07	200			~	36	A	_	555.5	8 2	3 3
21*	5	S	S	5	にせ	2	<i>∞</i>	5	8		36.7	18/	-	202		320	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2200	0,0	200	3 3
33	_	3	5.2		200	4	20	() ()	8.3	7	, N	7.96	5	200		33.7	5.5	33.3	Λ:	22.5	
7 2			(_	╁	C.	N N	トシー	19.7	7.98	1	٠, ۱	L		B.	200	7. (35	9 -
3 3		<	0 0	_	7	0,	<u> </u>	500	in S	oż O	794	494	77.99				5.50			S	3
74	7	٠, "	ة أ ل			120	10,14		+	ļ,	797	184	235-	17.30	7.89	33.4	33.6		33.7	33.T	3
25		i.	5	7,0	+	- 0	-	5	+	+	-	TAN TO	201	8	0.60	交	33.5	5.25	39.5	33.5	Z
26	ナルナ	0 S	3	2 2		2 8	_	30	900	+	1	1,90	- 5		60%	336	D-02	33.6	33.6	23.62	3
27	SI	5 G	2.	2 = 1	2	2 12 2 2	200	0 0%	0 %	3 0	80	20,0	Ģ.	-		33.5	33.5	33.5	25.5	53 100 100	8
- 58*	<u>z</u>	5	ſ	_	_	b	_	9 1	*												

Comments: * Collect

* Collect NH₃ Samples

ac check:

3

Final Review: 10

28-Day Marine Sediment Bioassay Bioaccumulation

3/13	-	Analyst	te	AL	k	3	ML	Re	S	BK	3	3	3	3	NC	AE	36	BK	3	B	3	MI	3	3/2	Z	8	3	3	ML	3	PK.
1500 89		ш	330	330	33.1	39.3	23.3	35.3		33.5	33.3	336	33.2	53.2	33.1	33.3	33.3	33.1	33.	33.2	33. (33.8			333	33.V	33.5			33.6	33,5
U	pt)	۵	33. O	0.6%	33,3	33.3	93.U	333	33.4	33.5	33.3	33.6	33.4	33.2	23.2	33.3	333	33,2	33.1		33. (E		- 1	23.3	8	33.5			386	335
8/2/20	Salinity (ppt)	ပ	33.0	80	33,7	49.3	39.3	33.3	53.3	33,4	33.2	1335	33.	33.2	93.1	33.4	333	33.1	33.7	-33.7		E.		33.6	923	33.4	23.5 2.5	1			23.52
Start Date/Time: 7/12/2013 End Date/Time: 8/2/20134	S	Δ	33.0	046	33.4	2.68 0	33.3	33.1	53.3	33,4	33.7	- 33.4	1881	33.1	33.6	33.4	33.4	33.1	33.2	- 33.2	-	330		33.6	333	0335	35.3 3	7.83.4		133C	33,5
tart Dat ind Dat		∢	986	<i>K</i>	33.	-33.3	23.3	33	53.3	33,4	33.2	334	33.2	-	3 331	33.3		33.1	33.2	33.2		133.8	5.85.5	33.7	33.7	3,	33.3	12.			2 33.5
S III		ш	8.12	799	7,95	-17.97	184	28.	26t	7.93	7.88	7.97	1 7.92	76t	1,98	121	797	362	0.2	25-1	07.96	19:1		8:62	-		4	7.91	\dashv	_	3 %.62
1 1	ts)	٥	21.8	797	964	7.84	7.97	7.98	8.01	9621	17.92	17.98	16-617	297	262	292	96t.	7.96	1 8.00	454 5	,	1961	00	g.	7,98	8799	5 7.9B	0/190	8:00	8.0	\$ 0.
_	pH (units)	O	2 3 13	362 8	7.92	187 0	361 -	28.02	8.00	17.999	0 7.93	3 7.98	5 792	867 1	27.98	2,40	7,94	27.95	399	2 795	67.93	2000	2 8.03	0	1.97	9.100.	8 7.45	17.90			4 8.03
YTI Terminal YTI Comp A		ш	3.12	2.98	5 7.93	98.F	1 8.02	18.02	1 8.01	108 3	94790	7 8.03	7.	Abit &	1 8,02	1792	%.00 %.00	7 8.02	千8.03	1 8:02	57.96	7		7	Ø	\sim	1.04 798	9 791			13 8.64 F.64
		∢	18.12	7.82	587 3	7 7.9	8.6	7.9	7 8.01	8 8:00	71	9 797	PT 79	8647	Q.	1 7.91	398	Łbt	17.9	799	17.95	1	3 8.90	201	L		2 7.0	9 7.89			9.0 0.0
# <u>#</u>	J/L)	ш	8	51 1		1.7		<i>O</i> ^	4	7	3 +8	4	アチ	+ +	8	52	7 83	0.8	0.8	3 8.4	2 8		69 68	2	7 8.2	3	Ćo		00	6	F
Project ID: Site ID:	/gen (mç	٥	1.8 2	1	8.7 1)+	37 0	0.8	9.0	7.9		4		4	2 8.0		23.	P 29	1.8 8.1	5 83	182	200	3 8	<i>∞</i>	ලා	X Z	2.8	8 7.8	\neg	00	9 0:0
	Dissolved Oxygen (mg/L)	S	8.2	7.7	11.7	17.4	0.8 6	_	18/8			ie T	179		00	2 7.9		80	œ	3 83	3	6	4- 00	& (O	3 8.2	ري ال	7.3 5	87 L	80	3	4.7
	Disso	В	1.8	7	7	4.7	83	7.8.7	8.3	2.8		05	9 8.0	bit 6	62 7		1 8.4	1 8.2	\top		0	· variant period	-	ØG.	83		2 83	6/t 6	-		رخ دی
.s		٠.	8	7	5 7.2	9 F B	8	282	1	6 8.		000 D	pt 5	0,4	5,00	66 0	1 8.4	0 8.	œ		8 8.2	⊘	00	1, 00°	1 ×	00 00	\dot{c}_0	47.9		13 62	14.8 8.7
A nd Nere		Ш	9.51	1	5 15.	3 15.8	\vdash	0 15.2	251 52	5 15.6		$\overline{}$		0.69	5	(5.0	1/2/15/1			9 149	14.6 A.B	11.8 11	7	15 54	3 14	(J) (4.8	14.0	415	かわげ	T.	アルカニ
AMEC/POLA Macoma and Nereis	ture (°C)	Ω	3 154	5	5 15.	5 169	158	52	5.61 1	5.81 F	9.61 15.4	451 6	415,0	0.0	├	7 15	15	5		149	P	-	J-416	_	S 143	<u>o.</u>	14.9	545	h/h) 5/h	15 L	ι÷-
Mac	Temperature (°C)	O	Ş	7	9 15.	16.	2 14	4 14.4	9 (4.4)	I	7 14.9	17/14.9		5	14.5 14.6	14:71	4.9 15.0	たころ	<u></u>	(0 14.1	サラ	7 16	3 19-1	71 1/2	70	5 TI	4.7 19		7) 871	El TE	エジア
ໍດໍ	-	A B	1.51 77	15.8 16.7	5/15	0-201 0-	Z	14.6 14.4	14.4 14.5	エ		14.9 14.7	1	15.9		3,4,6	ALCOHOL:	ユデーゴの	14.0 14.5	40 146		17-11-05	4 14	14.8 N	たわしたれ	14.0 HS		7	N WHI	to 14.	1 25
Client: Test Species:			(5)	5) 3	15.	0-সা ১৩	14.5			2	14.9		14.4		3,47		140				1 A	オー) 14				<u>1</u>				
Client: Test S	-	Day	*0	٦	2	က	4	5	9	1*	∞	6	9	~	12	13	14*	15	16	17	18	19	20	21*	22	23	24	25	26	27	28*

Comments: * Collect NH₃ Samples

AC 9 313

QC Check:

Final Review: $\mathcal{W} = \mathcal{U}/\mathcal{U}$

16/4		Analyst	316	101	Z N	3	1	16	3	BK	3	3	3	2	2	3	8,	25%	2	P.C.	1	Z Z	ر. ا	3	MI	8	2	Z	MIL	ML	BK
		<u>А</u>		10		33.3	23.4 K	5.5	4	ka	ļ	1	10	1	33.0	33.3	33.3		1 -	-		0	4.	2	 	23.6	33.4	33.7	+	VO	(A
100			33	. *		+	$\overline{}$	N	10	رنا	w	5 33.	7 33.	23,	. 100,000	-				+ ` -	, and district	CHENNES	4 33	-	33.5	T	-	1	0 200	5	N
2013	(\$00)	(144) 0	0 33		33.3	5 33.3	-	233	4 33	33	500	33,	33.	100	┼	33.4	23.3	8			23.		500	1.22.	B	3		-	, -	8	5 33
: 7/12	Salinity (nnt)	r D	33	Ť		33.3	23.4	60	83	33.5	33.3	335	33.3	33.2	23	8	333	+	┼	<u> </u>	23	33.6	22.6		53.3	8	+	23.8	-	33.7	33.5
»/Time »/Time		, ഇ	33.0	28.82	33,3	23.2	7.6%	334		83		33.4	33.3	33.2	2	33.4	333	33.2	33.2	33.2	33.1	33.	335		333	83.57	33.5	33.8	33.5	33.6	33.6
Start Date/Time: 7/12/2013 (SOC) End Date/Time : 8/2/2013 № 0		∢	331	28	23.5	33.2	23.2	W W	33.2	33.4	23.2	33.2	33.j	33,1	33.0	35.3	5.55	33.1	53.1	33.2	28	33.8	334	3.50	233	2.8	33.5	33.8	1	33.6	33,5
Sta		Ш	80.8	1.83		1-87	7967	196	564	293	7.91	7.98	4,89	16:4	799	7.92	794		365	795		293	1999	7,00	7,94	960		33.5	8.00	7.90	8,01
		۵	800	2	1.99	4.8.4	196	1	364	7.98	7.96	10-8	40.4	494	7,90		7.918	1999	7	ã	6	98	- 40	1000	06	2007	—⊹		8028	artite.	8,04
	oH (units)	Ü	8.09	100	125	78.F	797	7.967	493 =	7.89	7.90 7	799		7.89	1.98	7.90 7	7957	795 7	3 86.4	7 t 96 t	23	747	8.028	8.07.8	196	00	793	<u> </u>	2000	_	9
nal	Ha		8	B	120 1	t 35 t	_	7.86 7.	7.80 4	7.84 7		7967	- 184	F.80 7	1 53	ال م		£ 98.£	7.90 7	L 88t	50	4-7	98	Catherine	١.	0	7.80 7	子光子	47		7.88 8.
YTI Terminal YTI Comp B		⋖		97 198	527		937	7,93 7.		7927.	48千千	7937	786 7	F 484	8 7,	7.81 7.	10 7.88				1.907	15.16	7.987	7.8/0/85	7.87	98			1	-	-0
卢			Š	137	7	7 7.79			\						-		790	790	793	767	-	1	İ	1	7.89	7	T.	3.5	7.9	565	70
 	/L)	ш	80	<u></u>	7.8	4	6.	73	4	7.9	4,	0.0		70	હ ે	7.8	30	7.9	02	8.3	380	8.0	0.0	<i>∞</i>	0.2 0.2	9	i	178	00		∞
Project ID: Site ID:	len (mg	۵	3	8.0	7,9	7-28	‰ ⊙.	12	0.	43	4	Ø O	4.9	4.9	7.00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	80.50	00 <)	8.2	8.4	0	23	8.3	83	8.7	ċ	83	7.9	2.8	6,	8.1
kalka	ved Oxygen (mg/L)	ပ	Ø. ○.	1.8	27	44	6.	8	4,0	4.4	15	7.6	1+	7.4	<u>م</u>	2.5	30	<u>~</u>	9.0	8.5	00	2	8	745%	<u>~</u>	0.3	çoo.	7.8	1.0	0. 0.	4.0
	Dissolv	8	- PO	1	7.6	7.6	7	z.	4	4.4	54	2+ 4	2	4.6	4	1.7	49	4.4	404	% O	6	7	Ċ	E	2.6	S	75	4.10	7.7	7.	7.7
		⋖	7.8	1,00	7.9	L+ 00	6.	۵.	6	0,0	4	2	2ţ	ササ	à	ž.	20,	4.9	& 0	25	0	67	0	هز	2.0	1.9	80	3.00	é	2	4.0
ereis		В	15.9	6.0	5,4	5,3	3	15.3	15,0	(5.3	7	\neg	(2,3	19.0	(t)	14.8	15.7		15.0	5.0	À	5.		N N	3.0	15	30	5.5	14.5	60	5
AMEC/POLA Macoma and Nereis	(S)	٥	15.6	0.0	ž	-+	5.5			5				(J)	N	Ň	14.7	4.5	4.4		14.2	3	14-3-1	ひ.エ	147	14.8 14	9	7	アゲ	ev.	+
AMEC/POLA Macoma and	ature (°	U	9	5.3			500		7	S		_+	-	eS)	c'onne	1.	5			\dashv	ò	20	7		Z.	Ô<	0	,4 15.			0,0 2
A A	Temperature (°C)		2 15	3	N	9		ĈŲ.	7	S		10	-	$\overline{}$	\dashv	7.		-	-	-	37	2	4	じわりか	7	3 万 元	S	5	871 6	٠	2 2
		В	3.	1		12	0 150		7 2	15.				7 157	ಸ		rz	-	\exists	\exists	0	2	7		3 15.4	1 000	4	8 15.7	7	R.	5
pecies		А	I	7	2,5	5	ž		۰	15		5,3	£	15.7	100 100		5	<u>,</u>	3	14.0	S)		S	Ñ	15.3	10	(2)	<u>(2)</u>	(5.2	2	2
Client: Test Species:		Day	*0	-	2	ო	4	2	9	1*	∞	6	9	7	12	13	14*	15	16	17	18	19	20	21*	22	23	24	25	26	27	28*

Comments: * Collect NH₃ Şamples

ac check: $A \subset O(3)/3$

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

28-Day Marine Sediment Bioassay Bioaccumulation

AMEC(POLA

Maconna and Neveis

Test Species:

Client:

Project ID: YT, Terminal Site ID: Cong

A+B

Start Date/Time:

Water Quality Measurements

1500

Ac

End Date/Time: €

	~***	-		()	í	i															
Dav		e	emperat	inre ("C)	S)	DIS	solve	0 0 0 0	gen (r	Dissolved Oxygen (mg/L)	<u>injonenna</u>	Ha	pH (pH units)	(s)			Salinity	ity (nnt)	+	-	
	A	മ	ပ	Ω	ш	<	œ	C	_	Ш	۷	. a	ر	ء د	L	<) (Analyst
	Ŀ			_	-					1			c	اد	u	۲	0	د	<u></u>	ш	,
73	7	5	- And		I	2.00	رم م	de	7.	シャメ	9	2 8	7 33	<u> </u>	6	2	200011	22.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9	
	-					2	-		3		,	a L	()	2 3 3))	200	V 58) ない (1.70	X	
57	10	上下の	1:01	7100	D 0	-	1		1	74	100	1 00	1 3	700	12/20	1	2	8 6 6	77 74 7 00 7 00 7 00 00 00 00 00 00 00 00 00		
Comments	1.5		1.1.	Name of the last o							3	5	50	1 1 1	5		ğ 2		8	5	3

VACATA

CESS

Final Review: $\mathcal{U}_{\mathcal{U}/\mathcal{B}}$

QC Check:

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

AMEC/POLA 28-day Bioaccumulation YTI Terminal

Test Species: Macoma nasuta and Nereis virens

Test Date: 7/12/13

Site	Rep	Rand #
LA2 Reference	A	9
	В	12
	С	4
	D	6
	Е	10
YTI	Α	7
Composite A	В	5
	С	11
	D	14
	E	13
YTI	Α	8
Composite B	В	2
	С	1
	D	3
	Ε	15

E 15
Indicate C for clam, or W for worm next to random number

Total Ammonia Analysis Marine

Client: AMEC		
Project: POLA		
Test Type: 28-Day Bioaccumulation		
DI Blank:	Test Start Date: 7/12/2013	Analyst: TS Analysis Date: 9/24/13
		N x 1.22

					18 A 1.22
	Nautilus	Sub-Sample	Test	NH3-N	Ammonia
Sample ID	ID	Date	Day	(mg/L)	(mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	7.6	9.3
Lab Control	B1	7/12/2013	0	-0.	20.5
Reference	B2	7/12/2013	0	6.4	40.5
YTI Comp A	В3	7/12/2013	0	0.8	8,10
YTI Comp B	B4	7/12/2013	0	6.3	40.5
Lab Control	B5	7/19/2013	7	0.2	20.5
Reference	B6	7/19/2013	7	0.2	6.6
YTI Comp A	B7	7/19/2013	7	6.3	20.5
YTI Comp B	B8	7/19/2013	7	0.0	0.7
Lab Control	B9	7/26/2013	14	0.0	40.5
Reference	B10	7/26/2013	14	0.1	40.5
Spike Check (10 mg/L NH ₃)		NA	NA	7.60	9.3
YTI Comp A	B11	7/26/2013	14	G-1	(6.5
YTI Comp B	B12	7/26/2013	14	6.2	40.5
Lab Control	B13	8/2/2013	21	-0.1	<0.5
Reference	B14	8/2/2013	21	0.0	<0.5
YTI Comp A	B15	8/2/2013	21	0.0	<0.5
YTI Comp B	B16	8/2/2013	21	0.4	40.5
Lab Control	B17	8/9/2013	28	0.0	40.5
Reference	B18	8/9/2013	28	-0.2	20.5
YTI Comp A	B19	8/9/2013	28	6.0	40.5
YTI Comp B	B20	8/9/2013	28	0.0	40.5
Sample Duplicate ^a		NA	NA	0.3	46.5
Sample Duplicate + Spike ^a		NA	NA	7.8	9.5
Spike Check (10 mg/L NH ₃)		NA	NA	7.60	9.3

 $\frac{\text{Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)}}{[average ammonia] (mg/L)} \times 100$

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	W93-00	NA	9.3	10	NA	93
VII COMOB	10.5	40.5	9.5	10		8 4 8

Tit Comp 2		
Comments:		
Notes: "Unless otherwise noted, the last sample listed on the datasheet is used for duplicate	and duplicate + splke QC check.	
^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries	s in samples may vary based on sa	imple matrix and are for information
only. c RPD calculation not performed due to one or both values below the method detec	tion limit.	
Method Detection Limit (MDL) = 0.5 mg/L		A / / / / / / / / / / / / / / / / / / /
QC Check: 4C 9/18/13	Final Review:	9/25/13

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix C

Reference Toxicant Data

CETIS Summary Report

Point Estimate Summary

20

Report Date: Test Code: 19 Jun-13 10:07 (p 1 of 1) 130614eera | 07-2203-5945

115.5%

90.0%

Acute Amphip	ood Survival Test				Nautilus Environmental (CA)
Batch ID:	01-5191-3962	Test Type:	Survival (96h)	Analyst:	
Start Date:	14 Jun-13 16:05	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Diluted Natural Seawater
Ending Date:	18 Jun-13 14:30	Species:	Eohaustorius estuarius	Brine:	Not Applicable
Duration:	94h	Source:	Northwestern Aquatic Science, OR	Wage:Size	3-5 MM

Sample ID: 00-0192-5160 Code: 130614eera Client: Internal Sample Date: 14 Jun-13 Material: Cadmium chloride Project:

0.05688

0.1

Receive Date: 14 Jun-13 Source: Reference Toxicant
Sample Age: 16h Station: Cadmium chloride

Comparison Summary											
Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method											
18-3812-0276	96h Survival Rate	1.25	2.5	1.768	15.1%		Dunnett Multiple Comparison Test				

Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Method			
15-9339-835	6 96h Survival R	ate	EC50	9.612	7.784	11.87		Trimmed Spearman-Kärber			
96h Surviva	l Rate Summary										
C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	0	0	0.0%	0.0%
1.25		4	0.9	0.8695	0.9305	8.0	1	0.04082	0.08165	9.07%	10.0%
2.5		4	0.825	0.778	0.872	0.7	1	0.06292	0.1258	15.25%	17.5%
5		4	0.725	0.669	0.781	0.6	0.9	0.075	0.15	20.69%	27.5%
10		4	0.7	0.6695	0.7305	0.6	0.8	0.04082	0.08165	11.66%	30.0%

0.1431

0

0.2

0.05774

0.1155

96h Surviv	96h Survival Rate Detail									
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4					
0	Lab Control	1	1	1	1					
1.25		0.8	1	0.9	0.9					
2.5		1	0.8	0.8	0.7					
5		0.6	0.6	0.9	0.8					
10		0.6	0.8	0.7	0.7					
20		0.2	0	0	0.2					

Analyst: Rds QA: 1996/14/12

Report Date: Test Code: 19 Jun-13 10:07 (p 1 of 2)

130614eera | 07-2203-5945

							Test	JOGU.		4eera 07-	
Acute Amphip	pod Survival Tes	st							Nautilus	Environm	ental (CA)
0 l i - ID.	18-3812-0276	Enc	lpoint: 96h	Survival Ra	te		CETI	S Version:	CETISv1.	8.4	
Analysis ID: Analyzed:	19 Jun-13 10:0				trol vs Treati	ments	Offic	ial Results:	Yes		
		Zeta	Alt Hyp	Trials	Seed		NOEL	LOEL	TOEL	TU	PMSD
Data Transfor Angular (Corre		NA	C > T	NA	NA		1.25	2.5	1.768		15.1%
Dunnett Multi	iple Comparisor	Test							en()		
Control	vs C-mg/L		Test Stat	Critical		P-Value	P-Type	Decision(
Lab Control	1.25		1.575	2.407	0.241 6	0.2046	CDF	-	icant Effect		
	2.5*		2.555	2.407	0.241 6	0.0376	CDF	Significant			
	5*		3.796	2.407	0.241 6	0.0029	CDF	Significant			
	10*		4.177	2.407	0.241 6	0.0013	CDF	Significant			
	20*		11	2.407	0.241 6	<0.0001	CDF	Significant	Effect		
Auxiliary Tes	ts										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:5%)			
Extreme Value	e Grubbs E	xtreme Val	ue	2.102	2.802	0.6778	No Outlier	s Detected			
ANOVA Table	e										
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(α:5%)		
Between	2.920323		0.5840646		5	29.15	<0.0001	Significant	Effect		
	0.360695	6	0.0200386		18						
Error Total	3.281018		0.020000		23	_					
Distributiona	ol Tacte										
Attribute	Test			Test Stat	Critical	P-Value	Decision	α:1%)			
Attribute											
Marianaga	Modiliou	one Equalit	v of Variance	2.089	4.248	0.1141	Egual Var	lances			
Variances			y of Variance		4.248 4.248	0.1141 0.0236	Equal Var Equal Var				
Variances	Levene I	Equality of \	/ariance	3.433	4.248	0.0236	Equal Var	iances			
Variances Distribution	Levene I Shapiro-		/ariance					iances			
Variances Distribution 96h Survival	Levene I Shapiro- Rate Summary	Equality of \ Wilk W Nor	/ariance mality	3.433 0.9184	4.248 0.884	0.0236 0.0537	Equal Var Normal D	iances istribution	Std Err	CV94	%Fffect
Variances Distribution	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count	/ariance mality Mean	3.433 0.9184 95% LCL	4.248 0.884 95% UCL	0.0236 0.0537 Median	Equal Var Normal D	iances istribution Max	Std Err	CV%	%Effect
Variances Distribution 96h Survival	Levene I Shapiro- Rate Summary	Equality of \ Wilk W Nor Count	/ariance mality Mean	3.433 0.9184 95% LCL	4.248 0.884 95% UCL	0.0236 0.0537 Median	Equal Var Normal D Min	iances istribution Max	0	0.0%	0.0%
Variances Distribution 96h Survival C-mg/L	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count	/ariance mality Mean 1 0.9	3.433 0.9184 95% LCL 1 0.7701	4.248 0.884 95% UCL 1	0.0236 0.0537 Median 1 0.9	Equal Var Normal D Min 1 0.8	Max 1	0 0.04082	0.0% 9.07%	0.0%
Variances Distribution 96h Survival C-mg/L 0	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count	Mean 1 0.9 0.825	3.433 0.9184 95% LCL 1 0.7701 0.6248	4.248 0.884 95% UCL 1 1	0.0236 0.0537 Median 1 0.9 0.8	Equal Var Normal D Min 1 0.8 0.7	Max 1 1	0 0.04082 0.06292	0.0% 9.07% 15.25%	0.0% 10.0% 17.5%
Variances Distribution 96h Survival C-mg/L 0 1.25	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count 4 4	Mean 1 0.9 0.825 0.725	3.433 0.9184 95% LCL 1 0.7701	4.248 0.884 95% UCL 1 1 1 0.9637	0.0236 0.0537 Median 1 0.9 0.8 0.7	Min 1 0.8 0.7 0.6	Max 1 1 0.9	0 0.04082 0.06292 0.075	0.0% 9.07% 15.25% 20.69%	0.0% 10.0% 17.5% 27.5%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count 4 4	Mean 1 0.9 0.825	3.433 0.9184 95% LCL 1 0.7701 0.6248	4.248 0.884 95% UCL 1 1 0.9637 0.8299	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6	Max 1 1 0.9 0.8	0 0.04082 0.06292 0.075 0.04082	0.0% 9.07% 15.25% 20.69% 11.66%	0.0% 10.0% 17.5% 27.5% 30.0%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count 4 4 4 4	Mean 1 0.9 0.825 0.725	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863	4.248 0.884 95% UCL 1 1 1 0.9637	0.0236 0.0537 Median 1 0.9 0.8 0.7	Min 1 0.8 0.7 0.6	Max 1 1 0.9	0 0.04082 0.06292 0.075	0.0% 9.07% 15.25% 20.69%	0.0% 10.0% 17.5% 27.5%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20	Levene I Shapiro- Rate Summary Control Type	Equality of \ Wilk W Nor Count 4 4 4 4 4 4	Mean 1 0.9 0.825 0.725 0.7	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701	4.248 0.884 95% UCL 1 1 0.9637 0.8299	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6	Max 1 1 0.9 0.8	0 0.04082 0.06292 0.075 0.04082	0.0% 9.07% 15.25% 20.69% 11.66%	0.0% 10.0% 17.5% 27.5% 30.0%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20	Levene l Shapiro- Rate Summary Control Type Lab Control	Equality of \ Wilk W Nor Count 4 4 4 4 4 4	Mean 1 0.9 0.825 0.725 0.7	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701	4.248 0.884 95% UCL 1 1 1 0.9637 0.8299 0.2837	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7 0.1 Median	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6 0	Max 1 1 0.9 0.8 0.2	0 0.04082 0.06292 0.075 0.04082 0.05774	0.0% 9.07% 15.25% 20.69% 11.66% 115.5%	0.0% 10.0% 17.5% 27.5% 30.0% 90.0%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20 Angular (Con	Levene I Shapiro- Rate Summary Control Type Lab Control	Count 4 4 4 4 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4	Mean 1 0.9 0.825 0.725 0.7 0.1 mary	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701 0	4.248 0.884 95% UCL 1 1 1 0.9637 0.8299 0.2837	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7 0.1	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6 0 Min 1.412	Max 1 1 0.9 0.8 0.2 Max 1.412	0 0.04082 0.06292 0.075 0.04082 0.05774 Std Err	0.0% 9.07% 15.25% 20.69% 11.66% 115.5% CV%	0.0% 10.0% 17.5% 27.5% 30.0% 90.0% %Effect 0.0%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20 Angular (Cor.	Levene I Shapiro- Rate Summary Control Type Lab Control rrected) Transfo Control Type	Count 4 4 4 4 4 4 7 Trmed Sumi	Mean 1 0.9 0.825 0.725 0.7 0.1 mary Mean	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701 0	4.248 0.884 95% UCL 1 1 1 0.9637 0.8299 0.2837	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7 0.1 Median	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6 0	Max 1 1 0.9 0.8 0.2 Max 1.412	0 0.04082 0.06292 0.075 0.04082 0.05774 Std Err 0 0.06231	0.0% 9.07% 15.25% 20.69% 11.66% 115.5% CV% 0.0% 9.94%	0.0% 10.0% 17.5% 27.5% 30.0% 90.0% %Effect 0.0% 11.17%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20 Angular (Cor C-mg/L 0 1.25	Levene I Shapiro- Rate Summary Control Type Lab Control rrected) Transfo Control Type	Count 4 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mean 1 0.9 0.825 0.725 0.7 0.1 mary Mean 1.412	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701 0 95% LCL 1.412	4.248 0.884 95% UCL 1 1 1 0.9637 0.8299 0.2837 95% UCL 1.412	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7 0.1 Median 1.412	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6 0 Min 1.412	Max 1 1 0.9 0.8 0.2 Max 1.412	0 0.04082 0.06292 0.075 0.04082 0.05774 Std Err 0 0.06231 0.09191	0.0% 9.07% 15.25% 20.69% 11.66% 115.5% CV% 0.0% 9.94% 15.9%	0.0% 10.0% 17.5% 27.5% 30.0% 90.0% %Effect 0.0% 11.17% 18.11%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20 Angular (Cor C-mg/L 0 1.25 2.5	Levene I Shapiro- Rate Summary Control Type Lab Control rrected) Transfo Control Type	Count 4 4 4 4 4 Count Count Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 1 0.9 0.825 0.725 0.7 0.1 mary Mean 1.412 1.254	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701 0 95% LCL 1.412 1.056	4.248 0.884 95% UCL 1 1 1 0.9637 0.8299 0.2837 95% UCL 1.412 1.453	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7 0.1 Median 1.412 1.249	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6 0 Min 1.412 1.107	Max 1 1 0.9 0.8 0.2 Max 1.412	0 0.04082 0.06292 0.075 0.04082 0.05774 Std Err 0 0.06231	0.0% 9.07% 15.25% 20.69% 11.66% 115.5% CV% 0.0% 9.94%	0.0% 10.0% 17.5% 27.5% 30.0% 90.0% %Effect 0.0% 11.17% 18.11% 26.91%
Variances Distribution 96h Survival C-mg/L 0 1.25 2.5 5 10 20 Angular (Cor. C-mg/L 0 1.25	Levene I Shapiro- Rate Summary Control Type Lab Control rrected) Transfo Control Type	Count 4 4 4 4 4 Count Count Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 1 0.9 0.825 0.725 0.7 0.1 mary Mean 1.412 1.254 1.156	3.433 0.9184 95% LCL 1 0.7701 0.6248 0.4863 0.5701 0 95% LCL 1.412 1.056 0.8637	4.248 0.884 95% UCL 1 1 1 0.9637 0.8299 0.2837 95% UCL 1.412 1.453 1.449	0.0236 0.0537 Median 1 0.9 0.8 0.7 0.7 0.1 Median 1.412 1.249 1.107	Equal Var Normal D Min 1 0.8 0.7 0.6 0.6 0 Min 1.412 1.107 0.9912	Max 1 1 0.9 0.8 0.2 Max 1.412 1.412 1.419	0 0.04082 0.06292 0.075 0.04082 0.05774 Std Err 0 0.06231 0.09191	0.0% 9.07% 15.25% 20.69% 11.66% 115.5% CV% 0.0% 9.94% 15.9%	0.0% 10.0% 17.5% 27.5% 30.0% 90.0% %Effect 0.0% 11.17% 18.11%

Analyst: BG QA: KEP VIA

Report Date:

19 Jun-13 10:07 (p 2 of 2)

130614eera | 07-2203-5945 Test Code:

Report Date:

19 Jun-13 10:07 (p 1 of 1)

Test Code: 130614eera | 07-2203-5945

Acute Amphipod Survival Test	
------------------------------	--

Nautilus Environmental (CA)

Analysis ID:15-9339-8356Endpoint:96h Survival RateCETIS Version:CETISv1.8.4Analyzed:19 Jun-13 10:05Analysis:Trimmed Spearman-KärberOfficial Results:Yes

Trimmed Spearman-Kärber Estimates

 Threshold Option
 Threshold
 Trim
 Mu
 Sigma
 EC50
 95% LCL
 95% UCL

 Control Threshold
 0
 10.00%
 0.9828
 0.0458
 9.612
 7.784
 11.87

Residual Analysis

Attribute	Method	Test Stat	Critical	P-Value	Decision(α:5%)	
Extreme Value	Grubbs Extreme Value	2.102	2.802	0.6778	No Outliers Detected	

96h Survi	val Rate Summary		Calculated Variate(A/B)								
C-mg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	А	В
0	Lab Control	4	1	1	1	0	0	0.0%	0.0%	40	40
1.25		4	0.9	8.0	1	0.04082	0.08165	9.07%	10.0%	36	40
2.5		4	0.825	0.7	1	0.06292	0.1258	15.25%	17.5%	34	41
5		4	0.725	0.6	0.9	0.075	0.15	20.69%	27.5%	29	40
10		4	0.7	0.6	0.8	0.04082	0.08165	11.66%	30.0%	28	40
20		4	0.1	0	0.2	0.05774	0.1155	115.5%	90.0%	4	40

Report Date:

19 Jun-13 10:12 (1 of 1)

Acute Amphipod Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)
Protocol: EPA/600/R-94/025 (1994)

Organism: Eohaustorius estuarius (Amphipod)

Endpoint: 96h Survival Rate

Material: Cadmium chloride

Source: Reference Toxicant-REF

Acute Amphipod Survival Test

Mean: 8.738 Sigma: 2.822 Count: 17

-1s Warning Limit: 5.916

-2s Action Limit: 3.094

CV: 32.30% +1s Warning Limit: 11.56

+2s Action Limit: 14.38

Quality	Control	Data
- Caurity	00111101	Dutt

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Jun	17	10.58	1.844	0.6535			04-7355-3643	07-6874-3745
2			23	5.151	-3.587	-1.271	(-)		13-2405-8190	14-5588-5921
3		Jul	8	9.819	1.081	0.3831			15-6016-6275	08-2935-4591
4		Sep	6	9.123	0.3854	0.1366			19-8263-9958	15-3049-8972
5		Oct	11	8.208	-0.53	-0.1878			04-5683-5278	08-5229-4738
6	2012	Mar	20	5.125	-3.613	-1.28	(-)		08-7199-6871	10-8279-6045
7		Apr	1	11.49	2.749	0.9741			16-6898-4384	19-8941-9944
8			10	5.017	-3.721	-1.319	(-)		17-6920-6681	20-9566-8272
9			17	6.123	-2.615	-0.9268			09-5184-8036	12-7137-1039
10		Jun	22	5.471	-3.267	-1.158	(-)		07-6049-5353	11-0995-0121
11		Jul	20	10.54	1.804	0.6392			16-2846-0234	13-2124-5320
12			24	13.56	4.822	1.709	(+)		13-0734-2251	08-2819-6469
13		Sep	11	10.82	2.083	0.738			04-2672-2264	19-7399-3537
14		Oct	5	13.09	4.356	1.544	(+)		11-0626-8499	15-2615-3111
15			19	10.24	1.5	0.5315			20-1096-6081	15-0965-7000
16	2013	Mar	5	7.357	-1.381	-0.4895			15-1987-8538	07-6132-5027
17			19	6.83	-1.908	-0.676			15-7965-1544	07-5996-2822
18		Jun	14	9.612	0.8735	0.3095			07-2203-5945	15-9339-8356

96-hour Marine Acute Bioassay Static Conditions

Water Quality Measurements & Test Organism Survival

Client: Internal	Test Species: I	E. estuariu	s			Te	ch Initi	ials	
Sample ID: CdCl ₂	Start Date/Time: 6	6/14/2013	1605		0	24	48	72	96
Test No.: 130614eera	End Date/Time: 6	6/18/2013	1430	Counts:	ML				CL
				Readings:	CL	AD	$C_{\mathcal{S}}$	in	a
				Dilutions made by:	0.				
				High conc. made (mg/L):	20				
				Vol. Cd stock added (mL):					
	Cd stock concentration (m	g/L): 10°	40	Final Volume (mL):					

Concentration mg/L	RAND #	Li	ber of ve nisms		S	Salinit (ppt)	у			Ter	npera (°C)	ture	02		Dissolved Oxygen (mg/L)			pH (units)					
		0	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	1
Lab Control	10	10	10	30.0		30.3	30.4	30.2	48	14.2	14.2	AZ	13.9	80	8-2	7.9	7.6	87	84	802	7.94	7.92	7.93
	5	10	10		30									<u> </u>									
	6	10	10																				
	11	10	10		A							a						20000000000					
1.25	22	10	9	30.2	2810	30.4	30.2	30 W	45	14.1.	14.0	14.0	13.9	86	8.3	7.9	7.5	84	8.15	8.03	1.94	7.94	1.92
	2	10	Ĭo		301								11.03										
	24	10	9					**************************************															
	19	10	9		Part All	KD																	
2.5	4	11.88	1)	10.2	28/5	35.3	30.5	30.5	H-W	141	14.0	140	138	80	82	29	77	85	816	800	2.97	794	7.96
	1	10	8		300																		
	21	10	8																		<u> </u>		
	23	10	7			K.F														ļ			
5.0	20	10	6	30	28/4	301	30-2	30-3	45	14.1	14.0	14.1	13.8	86	8-1	5.8	7.5	85	8.18	800	297	794	7.95
	18	10	6		299					era a antique													
	3	10	9					***************************************															
	14	10	8		1	0																-	
10	17	10	0	30·0		301	30.2	30.2	H.V	142	14.1	19.1	13.9	86	82	80	7.5	8.3	31	805	2.99	7.98	7.92
	12	10	8	10000	29.8															ļ	ļ	ļ	
	8	10	7													<u> </u>			<u> </u>	ļ	<u> </u>		
	9	10	7		AD						12,111111111111111111111111111111111111										6	a de la manusca de la constanta	
20	15	10	2	29.V	28	À दि	29.7	29.9	14.6	14.0	140	14.0	136	8.4	84	2:5	7.7	86	8.17	103	001	7.78	7.96
	16	10	Ó		296											ļ.,	ļ			ļ			
	13	10	0														<u> </u>	<u> </u>		ļ	ļ	ļ	
	7	10	2																				

Initial Counts QC'd by:			
Animal Source/Date Received:	Novihwestern Aquatic Sciences G17113	Size at Initiation: 3-5 mm	
Comments:			
			. ()

QC Check:

6/19/13 861

Final Review: VFP 6 14 3

CETIS Summary Report

Report Date: Test Code: 24 Jul-13 11:59 (p 1 of 1) 130712nara | 12-6036-7885

······································								rest oode.			TZTIATA TZ	
Neanthes 96-h	Survival Test									Nautilus	Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	00-6759-6780 12 Jul-13 16:55 16 Jul-13 15:10 94h	! :	Test Type: Protocol: Species: Source:	Survival ASTM E1611- Neanthes are Aquatic Tox S	naceodentata			Analyst: Diluent: Brine: Age:		ted Natural S Applicable	Seawater	
Sample ID: Sample Date: Receive Date: Sample Age:	12 Jul-13	! !	Code: Material: Source: Station:	130712nara Cadmium chlo Reference To Cadmium chlo	kicant			Client: Project:	Inte	rnal		
Comparison S	Summary						X		XXX 5 2 7 6 X			
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Meth	nod			
07-0383-2761	Survival Rate		5	10	7.071	9.55%		Stee	l Man	ıy-One Rank	Sum Test	
Point Estimate	e Summary				it er til standa för klade som en med det som stade skalen med för							
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Meth	nod			
14-3553-9167	Survival Rate		EC50	7.629	7.078	8.224		Trim	med :	Spearman-k	(ärber	
Survival Rate	Summary											
C-mg/L	Control Type	Count	Mean	95% LCI	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
	Lab Control	4	1	1	1	1	1	0		0	0.0%	0.0%
2.5		4	0.975	0.9563	0.9937	0.9	1	0.02	5	0.05	5.13%	2.5%
5		4	1	1	1	1	1	0		0	0.0%	0.0%
10		4	0.125	0.07801	0.172	0	0.3	0.06	292	0.1258	100.7%	87.5% 100.0%
20 40		4 4	0	0 0	0 0	0	0	0 0		0 0		100.0%
Survival Rate	Detail		_		W							
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
	Lab Control	1	1	1	1							
2.5		1	0.9	1	1							
5		1	1	1	1							
10		0.3	0	0.1	0.1							
20		0	0	0	0							
40		0	0	0	0							

Report Date: Test Code: 24 Jul-13 11:59 (p 1 of 2)

130712nara | 12-6036-7885

							Test	Code:	1307	12nara 12	2-6036-788
Neanthes 96	-h Survival Test								Nautilus	Environn	nental (CA)
Analysis ID:	07-0383-2761	End	dpoint: Su	rvival Rate		·	CET	IS Version:	CETISv1.	8.4	
Analyzed:	24 Jul-13 11:5	7 An a	alysis: No	nparametric	-Control vs	Treatments	Offic	ial Results	: Yes		
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		NOEL	LOEL	TOEL	TU	PMSD
Angular (Corr	rected)	NA	C > T	NA	NA		5	10	7.071		9.55%
Steel Many-C	One Rank Sum T	est									
Control	vs C-mg/L		Test Stat	Critical	Ties D	F P-Value	P-Type	Decision	(a:5%)		
Lab Control	2.5		16	10	1 6	0.5065	Asymp	Non-Signi	ficant Effect		
	5		18	10	1 6	0.7500	Asymp	Non-Signi	ficant Effect		
	10*		10	10	0 6	0.0276	Asymp	Significan	t Effect		
ANOVA Table	e										
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	3.330569		1.11019		3	120.3	<0.0001	Significan	t Effect		
Error	0.110733	3	0.009227	772	12						
Total	3.441303				15						
Distributiona	al Tests					**************************************					
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Mod Lev	ene Equality	y of Variance	1.724	5.953	0.2151	Equal Var	iances			
Variances	Levene E	Equality of V	/ariance	3.712	5.953	0.0425	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nori	mality	0.7869	0.8408	0.0018	Non-norm	al Distributi	on		
Survival Rate	e Summary										
C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
2.5		4	0.975	0.8954	1	1	0.9	1	0.025	5.13%	2.5%
5		4	1	1	1	1	1	1	0	0.0%	0.0%
10		4	0.125	0	0.3252	0.1	0	0.3	0.06292	100.7%	87.5%
20		4	0	0	0	0	0	0	0		100.0%
					0	0	0	0	0		100.0%
40		4	0	0	0	0	U		U		100.0%
	rected) Transfor			0	0	0	U	U	0		100.0%
Angular (Cor	rected) Transfor Control Type			0 95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
Angular (Cor C-mg/L	,	med Sumn	nary							CV%	
Angular (Cor C-mg/L	Control Type	med Sumn	nary Mean	95% LCL	95% UCL	Median	Min	Max	Std Err		%Effect
Angular (Cor C-mg/L 0 2.5	Control Type	med Sumn Count	Mean 1.412	95% LCL 1.412	95% UCL	Median	Min 1.412	Max 1.412	Std Err	0.0%	%Effect
Angular (Cor C-mg/L 0 2.5 5	Control Type	med Sumn Count 4	Mean 1.412 1.371	95% LCL 1.412 1.242	95% UCL 1.412 1.501	Median 1.412 1.412	Min 1.412 1.249	Max 1.412 1.412	Std Err 0 0.04074	0.0% 5.94%	%Effect 0.0% 2.89%
• ,	Control Type	med Sumn Count 4 4 4	Mean 1.412 1.371 1.412	95% LCL 1.412 1.242 1.412	95% UCL 1.412 1.501 1.412	Median 1.412 1.412 1.412	Min 1.412 1.249 1.412	Max 1.412 1.412 1.412	Std Err 0 0.04074	0.0% 5.94% 0.0%	%Effect 0.0% 2.89% 0.0%

Report Date: Test Code:

24 Jul-13 11:59 (p 2 of 2)

130712nara | 12-6036-7885

Report Date: Test Code: 24 Jul-13 11:59 (p 1 of 1)

130712nara | 12-6036-7885

Neanthes 96-h Survival Test

Nautilus Environmental (CA)

Analysis ID: 14-3553-9167 Endpoint: Survival Rate CETIS Version: CETISv1.8.4

Analyzed: 24 Jul-13 11:57 Analysis: Trimmed Spearman-Kärber Official Results: Yes

Trimmed Spearman-Kärber Estimates

 Threshold Option
 Threshold
 Trim
 Mu
 Sigma
 EC50
 95% LCL
 95% UCL

 Control Threshold
 0
 1.25%
 0.8825
 0.01629
 7.629
 7.078
 8.224

Survival F	Rate Summary				_						
C-mg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	1	1	1	0	0	0.0%	0.0%	40	40
2.5		4	0.975	0.9	1	0.025	0.05	5.13%	2.5%	39	40
5		4	1	1	1	0	0	0.0%	0.0%	40	40
10		4	0.125	0	0.3	0.06292	0.1258	100.7%	87.5%	5	40
20		4	0	0	0	0	0		100.0%	0	40
40		4	0	0	0	0	0		100.0%	0	40

Graphics

24 Jul-13 11:55 (1 of 1)

Neanthes 96-h Survival Test Nautilus Environmental (CA)

Test Type: Survival Organism: Neanthes arenaceodentata (Polycha Material: Cadmium chloride

Protocol: ASTM E1611-00 (2000) Endpoint: Survival Rate Source: Reference Toxicant-REF

Neanthes 96-h Survival Test

wicum.	11.0	oount.	10	13 Warning Emili.	5.021	-23 ACTION EITHIG.	0.242
Sigma:	2.779	CV:	23.60%	+1s Warning Limit:	14.58	+2s Action Limit:	17.36

Quality	/ Control	Data
G G G G I I	y Contion	Duta

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning Action	Test ID	Analysis ID
1	2011	Aug	5	7.954	-3.846	-1.384	(-)	20-3080-1811	03-7530-2445
2		Sep	16	7.334	-4.466	-1.607	(-)	18-2093-5043	17-5340-3813
3	2012	Feb	28	14.14	2.342	0.8428		16-6209-9761	07-9744-0637
4		Jun	13	14.14	2.342	0.8428		19-3428-8273	00-9159-1641
5			13	13.2	1.395	0.502		08-3573-0593	08-2667-0688
6		Jul	19	9.013	-2.787	-1.003	(-)	05-3194-5614	06-9744-1383
7		Aug	23	10.72	-1.082	-0.3894		00-6415-4847	03-7452-2860
8		Sep	14	13.2	1.395	0.502		01-3108-0767	00-3026-5642
9		Oct	15	14.14	2.342	0.8428		12-2615-0269	05-9401-1565
10		Nov	30	14.14	2.342	0.8428		00-0423-6005	16-0678-5834
11	2013	Jul	12	7.629	-4.171	-1.501	(-)	12-6036-7885	05-4895-6417

Marine Acute Bioassay Static Conditions

QC Check:

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Water Quality Measurements & Test Organism Survival

Client:	Inter	nal			Test Species: N. arenaceodentata										Te	ch Init	ials						
Sample ID:	CdC	l ₂				-	Star	t Date,	/Time:	7/12	/2013	3	NO	5		-			0	24	48	72	.96
Test No.:	130	7121	avr	λ		-	End	d Date	/Time:	7/16	/2013	3	15	10		-	C	Counts:	8g				cc
						-										_		adings:		ML	AD	W	ML
																Dilutio		ade by:	1 .				
																		, (mg/L):					1
																		d (mL):				52.5	
						Cd sto	ck co	ncentra	ation (i	mg/L):	١.	040)					(mL):					
										J, _,.		<u> </u>		-				- (,.	L	L			لــــا
		1	oer of			Salinit	:V			Ter	npera	ture			Disso	lved C	Oxyge	'n			рН	2040 Contactor Communication	
Concentration mg/L_	Rand #	Organ	ve nisms			(ppt)					(°C)					(mg/L					(units))	
	"	0	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	3	\$ 10		300		+		299		-				-		1	6.5	6.7	747	_			7.86
	4	510			700				110		1110				10.1						10		1700
	2	510	1.																				
	9	510																			Same of the		
2.5	22	\$10		29.0	219	30.1	30.0	30.1	197	[9,3	19u	19.5	la.h	69	67	(07	6.10	6.8	7.92	747	801	195	198
	23	510	,,486,	2014	1			70.1		11.7	1 (*)		117		0, 1	7.7		1.0		[26]	0 - 1	1.07	7.90
*	19	510		ML			4 11																
	15	510	10																				
5	1	510		2gst	アルン	20 C	29.9	299	199	19.3	1910	19.6	195	69	127	67	45	67	799	197	201	184	790
	18	510		29,4										D. 1		W. /		15		77.	0.01		,,,
	24	510	lD																				
	16	510	10																			45.45	
10	6	510	3	29.7	20.7	29.9	30.1	362	198	19.3	195	19.5	105	69	6.8	(0.7	(1.6	6.7	799	796	805	1.85	791
	20	510	Õ																				
	5	510	Ī									200											
	12	510	ĺ																				
20	10	510	0	194	29.5	29.W	29.8	29.4	199	19.3	195	19.5	19.4	69	6.0	4.8	6.7	6.0	799	798	804	7.86	7.04
	7	51D	0																				
	13	510	Ò																				
	17	510	0																				
40	8	510	Õ	187	29.0	291	29.1	192	19.7	19.2	195	19.5	19.5	7.0	7.0	6.9	6.6	6.2	800	7.99	805	1.85	786
	11	\$10	0																	A LA ALV			
	14	510	0			-1																	
	21	1510	0				es no mo	-1															
Q	1	VF																••••••				in the second	
Animal Source/Da	ate Re	ceived	: .	AT	<u>S_</u>		719	1113)			Age a	at Initia	ation:		2\	da	45					
Comments:	-																						
																				1 1			

CETIS Summary Report

Report Date:

31 Jul-13 14:39 (p 1 of 3)

Test Code:

130710msdv | 10-9836-3796

							1001 0000.		1001.10111001.110.0000.0100
Bivalve Larva	l Survival and Developn	nent Test							Nautilus Environmental (CA)
Batch ID: Start Date:	10 Jul-13 14:45 F	rotocol:	Development- EPA/600/R-95	5/136 (1995)			Analyst: Diluent:		ed Natural Seawater
Ending Date: Duration:		Species: Source:	Mytilus gallopi Taylor Shellfis				Brine: Age:	Not A	Applicable
Sample ID:	05-0458-8522 C	Code:	130710msdv				Client:	Interr	nal
Sample Date:	10 Jul-13 N	flaterial:	Copper chloric	de			Project:		
Receive Date:	10 Jul-13	Source:	Reference To:	xicant					
Sample Age:	15h S	Station:	Copper Chlori	de					
Comparison S	Summary					er sektek kilones e			
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Meth	od	
12-3998-0218	Combined Development	t Ra 5	10	7.071	8.38%		Steel	Many	-One Rank Sum Test
18-4348-0015	Development Rate	5	10	7.071	6.31%		Dunn	ett Mu	ultiple Comparison Test
04-5405-3327	Survival Rate	20 _	40	28.28	7.36%		Steel	Many	-One Rank Sum Test
Point Estimate	e Summary								
Analysis ID	Endpoint	Level	μg/L	95% LCL	95% UCL	TU	Meth	od	
03-5789-9070	Combined Development		9.081	7.927	11.02		Linea	ır Intei	rpolation (ICPIN)
		EC50	12.82	11.86	13.97				
04-7883-9678	Development Rate	EC25	8.945	7.875	10.7		Linea	ır Intei	rpolation (ICPIN)
		EC50	12.71	11.71	13.76				
15-6444-9625	Survival Rate	EC25	25.92	24.3	30.4		Linea	ır Intei	rpolation (ICPIN)
		EC50	32.45	29.51	41.92				
Test Acceptab	ility								
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Over	lap	Decision
04-7883-9678	Development Rate	Contro	ol Resp	0.8931	0.9 - NL		Yes		Below Acceptability Criteria
18-4348-0015	Development Rate	Contro	ol Resp	0.8931	0.9 - NL		Yes		Below Acceptability Criteria
04-5405-3327	Survival Rate	Contro	ol Resp	1	0.5 - NL		Yes		Passes Acceptability Criteria
15-6444-9625	Survival Rate	Contro	ol Resp	1	0.5 - NL		Yes		Passes Acceptability Criteria

The development rate in the control was slightly below the EFA 1995 mean test occeptability writerion of 90% (89.3%). However, a dose response was observed, and the calculated effect conceptration was within two standard deviations of the historical mean. The tast was therefore deemed valid.

This test meets the Inland testing manual (EPA1998) control criterion 06570%

Analyst: VL QA: WP8 1113

Report Date: Test Code:

31 Jul-13 14:39 (p 2 of 3)

	rval Survival and	Developme	nt Test						Nautilus	s Environm	nental (CA
Combined	Development Rat	e Summary	1								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Lab Control	5	0.9051	0.8937	0.9165	0.8646	0.9448	0.01365	0.03053	3.37%	0.0%
2.5		5	0.8896	0.8674	0.9117	0.8405	0.9877	0.02653	0.05932	6.67%	1.72%
5		5	0.8977	0.889	0.9064	0.8712	0.9264	0.0104	0.02325	2.59%	0.82%
10		5	0.6294	0.599	0.6599	0.5706	0.773	0.03643	0.08146	12.94%	30.46%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Developme	ent Rate Summary	,									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Lab Control	5	0.8931	0.8834	0.9028	0.8646	0.9239	0.01158	0.0259	2.9%	0.0%
2.5		5	0.9105	0.9031	0.918	0.8903	0.936	0.0089	0.0199	2.19%	-1.95%
5		5	0.8934	0.8762	0.9105	0.8212	0.9467	0.02055	0.04595	5.14%	-0.03%
10		5	0.6194	0.5921	0.6468	0.5537	0.7412	0.03276	0.07325	11.82%	30.64%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Survival Ra	ate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	1	1	1	1	1	0	0	0.0%	0.0%
2.5		5	0.9656	0.9518	0.9794	0.908	1	0.01653	0.03696	3.83%	3.44%
5		5	0.9816	0.9686	0.9946	0.9202	1	0.01552	0.0347	3.54%	1.84%
10		5	0.9791	0.9662	0.9921	0.9202	1	0.01547	0.0346	3.53%	2.09%
20		5	0.9804	0.9705	0.9903	0.9387	1	0.01186	0.02653	2.71%	1.96%
40		5	0.211	0.1039	0.3182	0.06748	0.7239	0.1283	0.287	136.0%	78.9%
Combined	Development Rate	e Detail									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
C-μg/L 0	Control Type Lab Control	Rep 1 0.8967	Rep 2 0.8646	Rep 3 0.9239	Rep 4 0.8957	Rep 5 0.9448					
				i		·					
0		0.8967	0.8646	0.9239	0.8957	0.9448 0.8773		0.000000			
0 2.5		0.8967 0.8405 0.9119	0.8646 0.9877 0.8712	0.9239 0.8466 0.9018	0.8957 0.8957 0.9264	0.9448 0.8773 0.8773					
0 2.5 5 10		0.8967 0.8405 0.9119 0.6012	0.8646 0.9877 0.8712 0.5706	0.9239 0.8466 0.9018 0.5951	0.8957 0.8957 0.9264 0.6074	0.9448 0.8773 0.8773 0.773					
0 2.5 5 10 20		0.8967 0.8405 0.9119	0.8646 0.9877 0.8712	0.9239 0.8466 0.9018	0.8957 0.8957 0.9264	0.9448 0.8773 0.8773					
0 2.5 5 10 20 40	Lab Control	0.8967 0.8405 0.9119 0.6012	0.8646 0.9877 0.8712 0.5706	0.9239 0.8466 0.9018 0.5951	0.8957 0.8957 0.9264 0.6074	0.9448 0.8773 0.8773 0.773					
0 2.5 5 10 20 40 Developme	Lab Control	0.8967 0.8405 0.9119 0.6012	0.8646 0.9877 0.8712 0.5706 0	0.9239 0.8466 0.9018 0.5951 0	0.8957 0.8957 0.9264 0.6074 0	0.9448 0.8773 0.8773 0.773 0					
0 2.5 5 10 20 40 Developme C-µg/L	Lab Control Int Rate Detail Control Type	0.8967 0.8405 0.9119 0.6012 0	0.8646 0.9877 0.8712 0.5706 0	0.9239 0.8466 0.9018 0.5951 0	0.8957 0.8957 0.9264 0.6074 0	0.9448 0.8773 0.8773 0.773 0 0					
0 2.5 5 10 20 40 Developme C-µg/L 0	Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1	0.8646 0.9877 0.8712 0.5706 0 0	0.9239 0.8466 0.9018 0.5951 0 0	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4	0.9448 0.8773 0.8773 0.773 0 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5	Lab Control Int Rate Detail Control Type	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5	Lab Control Int Rate Detail Control Type	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467	0.9239 0.8466 0.9018 0.5951 0 0 Fep 3 0.9239 0.8903 0.8212	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5	Lab Control Int Rate Detail Control Type	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412					
0 2.5 5 10 20 40 Developme C-µg/L 0 2.5 5 10	Lab Control Int Rate Detail Control Type	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0					
0 2.5 5 10 20 40 Developme C-µg/L 0 2.5 5 10	Lab Control Int Rate Detail Control Type	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20 40 Survival Ra C-μg/L	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62 0	0.9239 0.8466 0.9018 0.5951 0 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101 0 0	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723 0	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20 40 Survival Ra C-μg/L	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62 0	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101 0 0	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723 0 0	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20 40 Survival Ra C-μg/L 0 2.5	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62 0	0.9239 0.8466 0.9018 0.5951 0 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101 0 0	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723 0	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20 40 Survival Ra	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62 0	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101 0 0	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723 0 0	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20 40 Survival Ra C-μg/L 0 2.5	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0 0 Rep 1 1 0.908	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62 0	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101 0 0 Rep 3 1 0.9509	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723 0 0	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0 0					
0 2.5 5 10 20 40 Developme C-μg/L 0 2.5 5 10 20 40 Survival Ra C-μg/L 0 2.5	nt Rate Detail Control Type Lab Control	0.8967 0.8405 0.9119 0.6012 0 0 Rep 1 0.8967 0.9257 0.9119 0.5537 0 0 Rep 1 1 0.908 1	0.8646 0.9877 0.8712 0.5706 0 0 Rep 2 0.8646 0.936 0.9467 0.62 0 0 Rep 2 1 1 0.9202	0.9239 0.8466 0.9018 0.5951 0 0 Rep 3 0.9239 0.8903 0.8212 0.6101 0 0 Rep 3 1 0.9509 1	0.8957 0.8957 0.9264 0.6074 0 0 Rep 4 0.869 0.9068 0.8988 0.5723 0 0	0.9448 0.8773 0.8773 0.773 0 0 0 Rep 5 0.9112 0.8938 0.8882 0.7412 0 0 Rep 5 1 0.9816 0.9877					

Report Date: Test Code:

31 Jul-13 14:39 (p 3 of 3)

							,
Bivalve La	rval Survival and I	Developme	nt Test				Nautilus Environmental (CA)
Combined	Development Rate	e Binomials	6				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	165/184	166/192	170/184	146/163	154/163	
2.5		137/163	161/163	138/163	146/163	143/163	
5		176/193	142/163	147/163	151/163	143/163	
10		98/163	93/163	97/163	99/163	126/163	
20		0/163	0/163	0/163	0/163	0/163	
40		0/163	0/163	0/163	0/163	0/163	
Developm	ent Rate Binomials	3					
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	165/184	166/192	170/184	146/168	154/169	
2.5		137/148	161/172	138/155	146/161	143/160	
5		176/193	142/150	147/179	151/168	143/161	
10		98/177	93/150	97/159	99/173	126/170	
20		0/153	0/162	0/172	0/158	0/180	
40		0/12	0/118	0/16	0/11	0/15	
Survival R	ate Binomials						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	163/163	163/163	163/163	163/163	163/163	
2.5		148/163	163/163	155/163	161/163	160/163	
5		163/163	150/163	163/163	163/163	161/163	
10		163/163	150/163	159/163	163/163	163/163	
20		153/163	162/163	163/163	158/163	163/163	
40		12/163	118/163	16/163	11/163	15/163	

Report Date: Test Code: 31 Jul-13 10:14 (p 1 of 4)

Bivalve Larval Survival and Development Test Nautilus Environmental (C												
Analysis ID: Analyzed:	12-3998-0218 31 Jul-13 10:14		Endpoint: Analysis:		d Development Rate netric-Control vs Treatmen		ΓIS Versior cial Result		CETISv1.8.4 Yes			
Data Transfo	rm	Zeta	Alt H	yp Tria	ls Seed	NOEL	LOEL	TOEL	TU	PMSD		
Angular (Corre	ected)	NA	C > T	NA	NA	5	10	7.071		8.38%		

Steel Many-Or	Steel Many-One Rank Sum Test													
Control	vs	C-µg/L	Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(α:5%)					
Lab Control		2.5	22.5	17	1	8	0.3045	Asymp	Non-Significant Effect					
		5	27	17	0	8	0.7105	Asymp	Non-Significant Effect					
		10*	15	17	0	8	0.0123	Asymp	Significant Effect					

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.4180117	0.1393372	3	20.52	<0.0001	Significant Effect
Error	0.1086542	0.006790886	16			
Total	0.5266659		19			

Distributional Tests	3				
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	5.272	11.34	0.1529	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.8504	0.866	0.0054	Non-normal Distribution

Combined	Combined Development Rate Summary														
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	5	0.9051	0.8672	0.9431	0.8967	0.8646	0.9448	0.01365	3.37%	0.0%				
2.5		5	0.8896	0.8159	0.9632	0.8773	0.8405	0.9877	0.02653	6.67%	1.72%				
5		5	0.8977	0.8689	0.9266	0.9018	0.8712	0.9264	0.0104	2.59%	0.82%				
10		5	0.6294	0.5283	0.7306	0.6012	0.5706	0.773	0.03643	12.94%	30.46%				
20		5	0	0	0	0	0	0	0		100.0%				
40		5	0	0	0	0	0	0	0		100.0%				

Angular (C	Angular (Corrected) Transformed Summary														
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	5	1.261	1.195	1.327	1.244	1.194	1.334	0.02382	4.23%	0.0%				
2.5		5	1.249	1.096	1,401	1.213	1.16	1.46	0.05487	9.83%	0.98%				
5		5	1.247	1.199	1.295	1.252	1.204	1.296	0.01728	3.1%	1.12%				
10		5	0.9185	0.809	1.028	0.8873	0.8562	1.074	0.03944	9.6%	27.16%				
20		5	0.03917	0.03916	0.03918	0.03917	0.03917	0.03917	0	0.0%	96.89%				
40		5	0.03917	0.03916	0.03918	0.03917	0.03917	0.03917	0	0.0%	96.89%				

Report Date:

31 Jul-13 10:15 (p 2 of 4)

							Test	Code:	130	710msdv	10-9836-3796
Bivalve Larva	l Survival and D	evelo	oment Test						Nautil	us Enviro	nmental (CA)
Analysis ID: Analyzed:	18-4348-0015 31 Jul-13 10:14	ļ	Endpoint: Analysis:		elopment ametric-C	Rate ontrol vs Treatments		IS Version: cial Results		1.8.4	
Data Transfor	·m	Zeta	Alt H	lур	Trials	Seed	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)	NA	C > T	•	NA	NA	5	10	7.071		6.31%

Dunnett Multi	Dunnett Multiple Comparison Test													
Control	vs	C-µg/L	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(a:5%)					
Lab Control		2.5	-0.7606	2.227	0.085	8	0.9356	CDF	Non-Significant Effect					
		5	-0.1086	2.227	0.085	8	0.7872	CDF	Non-Significant Effect					
		10*	8.729	2.227	0.085	8	<0.0001	CDF	Significant Effect					

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	0.4440236	0.1480079	3	40.89	<0.0001	Significant Effect	
Error	0.05790778	0.003619236	16				
Total	0.5019314		19				

Distributional Tests	;				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	3.081	11.34	0.3792	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9762	0.866	0.8767	Normal Distribution

Developme	Development Rate Summary													
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect			
0	Lab Control	5	0.8931	0.8609	0.9253	0.8967	0.8646	0.9239	0.01158	2.9%	0.0%			
2.5		5	0.9105	0.8858	0.9352	0.9068	0.8903	0.936	0.0089	2.19%	-1.95%			
5		5	0.8934	0.8363	0.9504	0.8988	0.8212	0.9467	0.02055	5.14%	-0.03%			
10		5	0.6194	0.5285	0.7104	0.6101	0.5537	0.7412	0.03276	11.82%	30.64%			
20		5	0	0	0	0	0	0	0		100.0%			
40		5	0	0	0	0	0	0	0		100.0%			

Angular (C	Angular (Corrected) Transformed Summary													
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect			
0	Lab Control	5	1.24	1.187	1.292	1.244	1.194	1.291	0.01888	3.41%	0.0%			
2.5		5	1.268	1.224	1.313	1.261	1.233	1.315	0.01589	2.8%	-2.34%			
5		5	1.244	1.152	1.335	1.247	1.134	1.338	0.03293	5.92%	-0.33%			
10		5	0.9074	0.8112	1.004	0.8964	0.8392	1.037	0.03467	8.54%	26.79%			
20		5	0.03899	0.0374	0.04057	0.03929	0.03728	0.04043	0.000569	3.27%	96.85%			
40		5	0.1194	0.06678	0.172	0.1295	0.04604	0.1513	0.01895	35.49%	90.37%			

Report Date: Test Code:

31 Jul-13 10:15 (p 3 of 4)

Bivalve Larv	al Survival and	Developm	ent Test							Nautilus	Environr	nental (CA
Analysis ID: Analyzed:	04-5405-3327 31 Jul-13 10:1		ndpoint: Su nalysis: No	rvival Rate onparametric	-Control v	's Ti	reatments		IS Version:	CETISv1. Yes	.8.4	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed			NOEL	LOEL	TOEL	TU	PMSD
Angular (Cor	rected)	NA	C > T	NA	NA			20	40	28.28	-	7.36%
Steel Many-(One Rank Sum T	est										
Control	vs C-μg/L		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(a:5%)		
Lab Control	2.5		17.5	16	1	8	0.0695	Asymp	Non-Signif	icant Effect		
	5		22.5	16		8	0.3937	Asymp	9	icant Effect		
	10		22.5	16		8	0.3937	Asymp	J	icant Effect		
	20		20	16		8	0.1899	Asymp	0	icant Effect		
	40*		15	16		8	0.0191	Asymp	Significant			
ANOVA Tabl	e					-						
Source	Sum Squ	iares	Mean Sq	uare	DF		F Stat	P-Value	Decision(a:5%)		
Between	4.438498		0.887699	7	5		35.69	<0.0001	Significant			
Error	0.596906	4	0.024871	1	24							
Total	5.035405		***************************************		29		-					
Distributiona	al Tests											
Attribute	Test			Test Stat	Critical		P-Value	Decision(α:1%)			
Variances	Mod Lev	ene Equal	ity of Varianc	e 0.6445	4.248		0.6690	Equal Var	iances			
Variances	Levene E	Equality of	Variance	3.529	3.895		0.0156	Equal Variances				
Distribution	Shapiro-	Wilk W No	ormality	0.7816	0.9031		< 0.0001	Non-norm	al Distributio	n		
										111		
N	e Summary											
Survival Rate	e Summary Control Type	Count	Mean	95% LCL	95% UC)L	Median	Min	Max	Std Err	CV%	%Effect
Survival Rate C-µg/L	•	Count 5	Mean 1	95% LCL	95% UC)L		Min 1	Max		CV%	%Effect
Survival Rate C-µg/L	Control Type		***************************************				Median			Std Err		
Survival Ratα C-μg/L 0 2.5	Control Type	5	1	1	1		Median	1	1	Std Err	0.0%	0.0%
Survival Rate C-µg/L 0 2.5 5	Control Type	5 5	1 0.9656	1 0.9197	1		Median 1 0.9816	1 0.908	1	Std Err 0 0.01653	0.0% 3.83%	0.0% 3.44%
Survival Rate C-µg/L 0 2.5 5	Control Type	5 5 5	1 0.9656 0.9816	1 0.9197 0.9385	1 1 1		Median 1 0.9816	1 0.908 0.9202	1 1 1	Std Err 0 0.01653 0.01552	0.0% 3.83% 3.54%	0.0% 3.44% 1.84% 2.09%
Survival Rate C-µg/L 0 2.5 5 10	Control Type	5 5 5 5	1 0.9656 0.9816 0.9791	1 0.9197 0.9385 0.9362	1 1 1		Median 1 0.9816 1	1 0.908 0.9202 0.9202	1 1 1 1	Std Err 0 0.01653 0.01552 0.01547	0.0% 3.83% 3.54% 3.53%	0.0% 3.44% 1.84%
Survival Rate C-μg/L 0 2.5 5 10 20 40	Control Type	5 5 5 5 5 5	1 0.9656 0.9816 0.9791 0.9804 0.211	1 0.9197 0.9385 0.9362 0.9474	1 1 1 1		Median 1 0.9816 1 1 0.9939	1 0.908 0.9202 0.9202 0.9387	1 1 1 1	Std Err 0 0.01653 0.01552 0.01547 0.01186	0.0% 3.83% 3.54% 3.53% 2.71%	3.44% 1.84% 2.09% 1.96%
Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor	Control Type Lab Control	5 5 5 5 5 5 med Sum	1 0.9656 0.9816 0.9791 0.9804 0.211	1 0.9197 0.9385 0.9362 0.9474	1 1 1 1		Median 1 0.9816 1 1 0.9939	1 0.908 0.9202 0.9202 0.9387	1 1 1 1	Std Err 0 0.01653 0.01552 0.01547 0.01186	0.0% 3.83% 3.54% 3.53% 2.71%	0.0% 3.44% 1.84% 2.09% 1.96%
Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor	Control Type Lab Control rected) Transfor	5 5 5 5 5 5 5	1 0.9656 0.9816 0.9791 0.9804 0.211	1 0.9197 0.9385 0.9362 0.9474 0	1 1 1 1 1 0.5674	:L	Median 1 0.9816 1 1 0.9939 0.09202	1 0.908 0.9202 0.9202 0.9387 0.06748	1 1 1 1 1 0.7239	Std Err 0 0.01653 0.01552 0.01547 0.01186 0.1283	0.0% 3.83% 3.54% 3.53% 2.71% 136.0%	0.0% 3.44% 1.84% 2.09% 1.96% 78.9%
Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum	1 0.9656 0.9816 0.9791 0.9804 0.211 mary	1 0.9197 0.9385 0.9362 0.9474 0	1 1 1 1 1 0.5674	:L	Median 1 0.9816 1 1 0.9939 0.09202	1 0.908 0.9202 0.9202 0.9387 0.06748	1 1 1 1 1 0.7239	Std Err 0 0.01653 0.01552 0.01547 0.01186 0.1283	0.0% 3.83% 3.54% 3.53% 2.71% 136.0%	0.0% 3.44% 1.84% 2.09% 1.96% 78.9%
Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0 2.5	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum Count	1 0.9656 0.9816 0.9791 0.9804 0.211 mary Mean 1.532	1 0.9197 0.9385 0.9362 0.9474 0 95% LCL 1.531	1 1 1 1 1 0.5674 95% UC	EL_	Median 1 0.9816 1 1 0.9939 0.09202 Median 1.532	1 0.908 0.9202 0.9202 0.9387 0.06748 Min 1.532	1 1 1 1 1 0.7239 Max 1.532	Std Err 0 0.01653 0.01552 0.01547 0.01186 0.1283 Std Err 0	0.0% 3.83% 3.54% 3.53% 2.71% 136.0% CV%	0.0% 3.44% 1.84% 2.09% 1.96% 78.9% %Effect 0.0%
Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0 2.5	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 med Sum Count 5	1 0.9656 0.9816 0.9791 0.9804 0.211 mary Mean 1.532 1.407	1 0.9197 0.9385 0.9362 0.9474 0 95% LCL 1.531 1.278	1 1 1 1 0.5674 95% UC 1.532 1.537	GL.	Median 1 0.9816 1 1 0.9939 0.09202 Median 1.532 1.435	1 0.908 0.9202 0.9202 0.9387 0.06748 Min 1.532 1.263	1 1 1 1 1 0.7239 Max 1.532 1.532	Std Err 0 0.01653 0.01552 0.01547 0.01186 0.1283 Std Err 0 0.04663	0.0% 3.83% 3.54% 3.53% 2.71% 136.0% CV% 0.0% 7.41%	0.0% 3.44% 1.84% 2.09% 1.96% 78.9% %Effect 0.0% 8.12%
Survival Rate C-μg/L 0 2.5 5 10 20 40	Control Type Lab Control rected) Transfor Control Type	5 5 5 5 5 5 med Sum Count 5 5	1 0.9656 0.9816 0.9791 0.9804 0.211 mary Mean 1.532 1.407 1.468	1 0.9197 0.9385 0.9362 0.9474 0 95% LCL 1.531 1.278 1.335	1 1 1 1 0.5674 95% UC 1.532 1.537 1.601	S.L.	Median 1 0.9816 1 1 0.9939 0.09202 Median 1.532 1.435 1.532	1 0.908 0.9202 0.9202 0.9387 0.06748 Min 1.532 1.263 1.284	1 1 1 1 1 0.7239 Max 1.532 1.532 1.532	Std Err 0 0.01653 0.01552 0.01547 0.01186 0.1283 Std Err 0 0.04663 0.0479	0.0% 3.83% 3.54% 3.53% 2.71% 136.0% CV% 0.0% 7.41% 7.3%	0.0% 3.44% 1.84% 2.09% 1.96% 78.9% %Effect 0.0% 8.12% 4.17%

Report Date: Test Code: 31 Jul-13 10:15 (p 4 of 4)

Report Date:

31 Jul-13 10:15 (p 1 of 3)

Test Code:

130710msdv | 10-9836-3796

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 03-5789-9070 Analyzed: 31 Jul-13 10:14 Endpoint: Combined Development Rate Analysis: Linear Interpolation (ICPIN)

CETISv1.8.4 CETIS Version: Official Results:

Yes

Linear Interpola	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	1359064	1000	Yes	Two-Point Interpolation

Point Estimates

Level	μg/L	95% LCL	95% UC
EC25	9.081	7.927	11.02
EC50	12.82	11.86	13.97

Combined	d Development Rat	e Summary	Calculated Variate(A/B)								
C-μg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9051	0.8646	0.9448	0.01365	0.03053	3.37%	0.0%	801	886
2.5		5	0.8896	0.8405	0.9877	0.02653	0.05932	6.67%	1.72%	725	815
5		5	0.8977	0.8712	0.9264	0.0104	0.02325	2.59%	0.82%	759	845
10		5	0.6294	0.5706	0.773	0.03643	0.08146	12.94%	30.46%	512	815
20		5	0	0	0	0	0		100.0%	0	815
40		5	0	0	0	0	0		100.0%	0	815

Graphics

Report Date:

31 Jul-13 10:15 (p 2 of 3)

Test Code:

130710msdv | 10-9836-3796

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: Analyzed:

04-7883-9678 31 Jul-13 10:14

Analysis:

Endpoint: Development Rate

Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.4

Linear Interpola	ation Options				
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	93938	1000	Yes	Two-Point Interpolation

Point Estimates

Level	μg/L	95% LCL	95% UC
EC25	8.945	7.875	10.7
EC50	12.71	11.71	13.76

Development Rate Summary			Calculated Variate(A/B)								
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.8931	0.8646	0.9239	0.01158	0.0259	2.9%	0.0%	801	897
2.5		5	0.9105	0.8903	0.936	0.0089	0.0199	2.19%	-1.95%	725	796
5		5	0.8934	0.8212	0.9467	0.02055	0.04595	5.14%	-0.03%	759	851
10		5	0.6194	0.5537	0.7412	0.03276	0.07325	11.82%	30.64%	513	829
20		5	0	0	0	0	0		100.0%	0	825
40		5	0	0	0	0	0		100.0%	0	172

Graphics

Report Date:

31 Jul-13 10:15 (p 3 of 3)

Test Code:

130710msdv | 10-9836-3796

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: Analyzed:

15-6444-9625 31 Jul-13 10:14

Endpoint: Survival Rate Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Official Results:

CETISv1.8.4 Yes

Linear Interpola	ation Options		
X Transform	Y Transform	Seed	Resar

Resamples Exp 95% CL Method

Linear Linear 1204356 1000 Yes Two-Point Interpolation

Point Estimates

Level	μg/L	95% LCL	95% UC
EC25	25.92	24.3	30.4
EC50	32 45	29.51	41 92

Survival I	Rate Summary		Calculated Variate(A/B)								
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	А	В
0	Lab Control	5	1	1	1	0	0	0.0%	0.0%	815	815
2.5		5	0.9656	0.908	1	0.01653	0.03696	3.83%	3.44%	787	815
5		5	0.9816	0.9202	1	0.01552	0.0347	3.54%	1.84%	800	815
10		5	0.9791	0.9202	1	0.01547	0.0346	3.53%	2.09%	798	815
20		5	0.9804	0.9387	1	0.01186	0.02653	2.71%	1.96%	799	815
40		5	0.211	0.06748	0.7239	0.1283	0.287	136.0%	78.9%	172	815

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival
Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Development Rate

Material: Copper chloride

Source: Reference Toxicant-REF

Bivalve Larval Survival and Development Test

Quali	ty Con	trol Data	а							
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2012	Nov	13	4.091	-7.349	-1.962	(-)		16-2586-9280	19-7451-6090
2		Dec	5	17.1	5.658	1.511	(+)		17-5951-5975	13-1946-8153
3	2013	Jan	24	9.788	-1.652	-0.4411			20-8582-9547	09-0079-6369
4			24	11.8	0.3635	0.09707			14-2291-4286	02-1982-6605
5			26	7.51	-3.93	-1.049	(-)		04-1387-5400	03-9637-5631
6		Feb	7	13.93	2.49	0.6648			11-7014-2670	05-8474-1082
7			9	9.81	-1.63	-0.4352			03-6836-9424	12-1620-4564
8			19	14.61	3.167	0.8456			04-5663-0104	17-4674-6012
9			20	9.557	-1.883	-0.5029			21-1062-2821	21-4473-8496
10		Mar	5	16.91	5.469	1.46	(+)		08-9136-0206	00-8102-9322
11			7	11.44	0.00163	0.000435			05-5501-3020	15-2467-0428
12			8	9.363	-2.077	-0.5545			12-9537-7450	09-1022-1133
13			21	16.98	5.535	1.478	(+)		05-9590-7799	20-0082-7594
14			26	6.583	-4.857	-1.297	(-)		11-3003-2528	12-2262-3339
15		May	2	14.26	2.821	0.7534			16-0143-2407	08-3550-0080
16			7	13.05	1.607	0.4291			02-6091-8512	00-2150-5072
17			14	13.35	1.907	0.5092			18-9528-2070	03-8361-8573
18			29	13.7	2.264	0.6045			06-8722-8513	03-9638-2513
19			29	6.845	-4.595	-1.227	(-)		14-9746-9153	04-5524-7511
20		Jun	18	8.15	-3.29	-0.8785			12-2146-1379	18-2724-8163
21		Jul	10	12.82	1.379	0.3681			10-9836-3796	03-5789-9070

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism: Mytilus galloprovincialis (Bay Mussel Material: Copper chloride

Protocol: EPA/600/R-95/136 (1995) Endpoint: Development Rate Source: Reference Toxicant-REF

Bivalve Larval Survival and Development Test

Quality Control Data											
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2012	Nov	13	4.041	-7.529	-1.992	(-)		16-2586-9280	16-8301-8577	
2		Dec	5	17.62	6.052	1.601	(+)		17-5951-5975	13-3724-4809	
3	2013	Jan	24	11.22	-0.3513	-0.09297			14-2291-4286	06-2822-0925	
4			24	10.01	-1.558	-0.4123			20-8582-9547	05-5941-2374	
5			26	7.483	-4.087	-1.081	(-)		04-1387-5400	04-9418-6756	
6		Feb	7	13.99	2.421	0.6405			11-7014-2670	03-7347-9680	
7			9	9.673	-1.897	-0.5019			03-6836-9424	04-9175-8387	
В			19	13.83	2.264	0.5991			04-5663-0104	12-7309-6114	
9			20	9.397	-2.173	-0.575			21-1062-2821	08-3144-0973	
10		Mar	5	17.23	5.662	1.498	(+)		08-9136-0206	18-0505-8125	
11			7	11.94	0.3691	0.09767			05-5501-3020	01-1708-3412	
12			8	10.04	-1.527	-0.404			12-9537-7450	03-6244-3019	
13			21	17.09	5.519	1.46	(+)		05-9590-7799	12-0274-6486	
14			26	6.754	-4.816	-1.274	(-)		11-3003-2528	03-7867-8973	
15		May	2	14.52	2.953	0.7814			16-0143-2407	03-8019-1302	
16			7	13.43	1.862	0.4927			02-6091-8512	20-1774-5230	
17			14	13.56	1.989	0.5265			18-9528-2070	03-1135-2986	
18			29	13.97	2.402	0.6357			06-8722-8513	07-9875-3443	
19			29	7.06	-4.51	-1.194	(-)		14-9746-9153	09-3883-6352	
20		Jun	18	8.553	-3.017	-0.7983			12-2146-1379	07-1806-0886	
21		Jul	10	12.71	1.143	0.3024			10-9836-3796	04-7883-9678	

Report Date:

31 Jul-13 10:16 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism: Myti

Protocol: EPA/600/R-95/136 (1995) Endpoint: Survival Rate

Organism: Mytilus galloprovincialis (Bay Mussel

Material: Source:

Copper chloride

ource: Reference Toxicant-REF

Qualit	y Con	trol Data	а							
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Nov	16	29.63	-0.6504	-0.1397			01-3866-2459	09-7123-6611
2		Dec	13	27.4	-2.875	-0.6175			16-5303-6389	03-4314-1413
3	2012	Feb	2	30.73	0.4486	0.09636			02-8290-1129	06-5308-1220
4			15	26.89	-3.39	-0.7281			03-9202-5766	03-0054-0264
5		Apr	10	22.23	-8.054	-1.73	(-)		15-7981-3111	00-9478-2939
6		May	15	34.4	4.12	0.8849			19-9919-9115	06-3888-9077
7		Jul	17	29.56	-0.7243	-0.1556			00-3685-9935	09-6737-3689
3			18	28.46	-1.817	-0.3902			00-9675-8352	17-9922-1502
€		Sep	7	35.99	5.705	1.225	(+)		02-8412-2333	13-0108-2795
10			12	39.82	9.541	2.049	(+)	(+)	11-2649-8855	01-9640-6551
11			18	29.27	-1.009	-0.2166			04-8953-1458	18-1880-6886
12		Nov	13	29.77	-0.5051	-0.1085			16-2586-9280	01-0474-2618
13	2013	Jan	24	36.69	6.41	1.377	(+)		20-8582-9547	07-5471-1162
14			26	29.38	-0.9023	-0.1938			04-1387-5400	19-1179-1229
15		Feb	7	36.89	6.611	1.42	(+)		11-7014-2670	04-6605-1393
16		Mar	7	31.21	0.9257	0.1988			05-5501-3020	15-0705-6905
17			8	28.83	-1.451	-0.3116			12-9537-7450	13-1150-4633
18			26	25.8	-4.481	-0.9625			11-3003-2528	01-1386-0792
19		May	29	30.92	0.6447	0.1385			14-9746-9153	17-7839-1939
20		Jun	18	21.8	-8.478	-1.821	(-)		12-2146-1379	02-6513-2144
21		Jul	10	32.45	2.172	0.4665			10-9836-3796	15-6444-9625

CETIS Test Data Worksheet

Report Date: Test Code:

02 Jul-13 13:35 (p 1 of 1)

10-9836-3796/130710msdv

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date:

10 Jul-13

Species: Mytilus galloprovincialis

Sample Code:

130710msdv

End Date: Sample Date: 02 Jul-13 13:34

12 Jul-13

Protocol: EPA/600/R-95/136 (1995) Material: Copper chloride

Sample Source: Reference Toxicant

Sample Station: Copper Chloride

C-µg/L	Code		Initial Density	Final Density	# Counted	# Normal	Notes
	Jour	 1		, mar bensity			Notes
		 2			192	166	N#
		 3			169	154	
					172	Q	
received the factor of the fac		 4			15	Ö	
		 5			150	93	
		6			180		
		7			162	_ O	
		 8			158		
		9			179	147	1, U
		10			168	146	V
		11			142	137	
		12			173	99	
		13			55	138	
		14			16.1	146	
		15			193	176	
		16			159	97	
		17			172	161	
		18			118	0	
		19	A commence and monopole and access		189	170	
		20			11.4	151	
		21			160	143	
		22			150	147	
		23			1/2	Ó	
		24			172	98	
		25			144	165	
		26			12	0	
***************************************		27			170	126	
		28			153	0	
		29			161	143	
	1	30			(1)	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

CETIS Test Data Worksheet

Report Date: Test Code: 02 Jul-13 13:35 (p 1 of 1)

10-9836-3796/130710msdv

Bivalve Larv	al Sur	vival	and D	evelopment Tes	st			Nautilus Environmental (CA
Start Date: End Date: Sample Date	10 . 12 . 10 .	lul-13 lul-13 lul-13	13:34	Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Copper chloride			130710msdv Reference Toxicant Copper Chloride
C-µg/L	Code		Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	25					
0	LC	2	1					
0	LC	3	19					
0	LC	4	10					
0	LC	5	2					
2.5		1	11					
2.5		2	17					
2.5		3	13					
2.5		4	14					
2.5		5	21					
5		1	15					
5		2	22					
5		3	9					
5		4	20					
5		5	29					
10		1	24					
10		2	5					
10		3	16					
10		4	12					
10		5	27					
20		1	28					
20		2	7					
20		3	3					
20		4	8					
20		5	6					
40		1	26					
40		2	18					
40		3	23					
40		4	30					
40		5	4					

ac 2

Marine Chronic Bioassay

Client: Internal Sample ID: CuCl₂ Test No.: 130710msdv

Test Species: M. galloprovincialis

Water Quality Measurements

Start Date/Time: 7/10/2013 1445

End Date/Time: 7/12/2013

							-				
		48	10.8	20.8	2015	20.8	30.8°	8.03			
Hd	(pH units)	24	7,98	8.02 7.95	8.01	2,48	7.79	7.99			
		0	8.02	8.02		8.03	20.8	8,63			
ygen		48	0	-	Ø,	8,7 25,79 8,03	5	0,0			
Dissolved Oxygen	(mg/L)	24	2.7	2,7	200	8.7 &	8.7	8,7			
Diss		0	2.8	8.0	7.9	ି ଓ	0.8	7.9			
re		48	5 H	14.6 8.0	37	145 8.0	3	ヹ			
Femperature	(°C)	54	カラ	675	25	2'51	Ž	2'51			
È		0	15.8	t's1	15.9	15.9	16.0	0'91			
		48	51.5	31.1	8.16	5.1	21:15	9.15			
Salinity	(ppt)	24	31.6	31.9	81.9	71.8	31.8	31.7			
		0	32.1	32.3	32,4	32,4	32.4	27.3			
Concentration	(hg/L)		Lab Control	2.5	5	10	20	40			

24 48	かが	
Ο	8K	K.
,	WQ Readings:	Dilutions made by:
	Technician Initials:	

40 30% Final Volume (mL): High conc. made (μg/L): Vol. Cu stock added (mL):

,	0226	
. (/L):	
	_	
	D)	
_	3.	
	$\overline{}$	
	_	
	ion	
	0	
١		
	=	
•	w	
	-	
	~	
	~	
•	Ser	
	\circ	
	$\overline{}$	
	concentrat	
	0	
	~	
	tock	
	\simeq	
	\mathcal{O}	
	stoc	
	0)	
	\neg	
	$\vec{\sim}$	
	\circ	

0 hrs: 24 hrs: _ 48 hrs: _ Comments:

QC Check:

213

Final Review: 140 8/1/13

Client: Test No.: Test Species: Animal Source: Date Received: Test Chambers: Sample Volume:		o provinc Fish	<u>ll</u> uals	Start Da End Da Technician	te/Time:	7/10/2013 7/12/2013 Y 5	1445	
Spawn Information	n		Gamete Selection	Beaker	Condition	(sperm motility,	ena density, co	lor, shape,
First Gamete Relea	ase Time: 110°	٥	Sex	Number(s)	Condition		c.)	
Thist Connote Holes		anna de la compansa d	Male	1,2,3	dosq	motility -		
Sex	Number Spawning		Female 1	1	good de	ensity, whit	ish miss hope	λ
Male	3		Female 2		ļ			
Female			Female 3					
Embryo Stock Sel	ection		Egg F	ertilization Time	: 1250			
Stock Number	% of embryos at 2-c division stage	ell	Stock(s) ch	osen for testing	:	glanecum international distribution		
Female 1	98							
Female 2								
Female 3						•		
Embryo Inoculum Target count on Se Number Counted:	Preparation edgwick-Rafter slide for de	esired density 7 10 11 17 12	r is 7-8 embryos Mear 	: <u>12.7</u>	_			
	Mean 12.7	50 X 42 = E	<u>635</u> embry	yos/ml				
Desired Final (to inoculate with	h 0.5 ml)	=	Filomenia na ciliptere minera na propini na minera di	on factor)	,			
Prepare the embry and 125 ml of dilut	o inoculum according to i ion water (1.25 parts).	the calculated	dilution factor. For exa	ample, if the dilu	ution factor	is 2.25, use 100	ml of existing st	ock (1 part)
	Time Zero Control Co Rand. No. Dividing No. 143 Total 187 Total 154 Dy 167	Total 145 188 155 168	Mean % Dividing		48-h QC: <u> </u>	24/135	=92%	

Comments:

QC Check:

VL7/31/13

Final Review: VFP 8/1/13

CETIS Summary Report

Report Date:

16 Jul-13 17:21 (p 1 of 1)

Test Code:

130711myra | 12-4282-0224

Sart Date										1621 00			iniyia ji t	
Sant Date	Mysid 96-h Ac	ute Survival Tes	it							Alexandro Victoria		Nautilus	Environme	ental (CA)
Sample Date: 11 Jul-13	Batch ID: Start Date: Ending Date: Duration:	11 Jul-13 16:00 15 Jul-13 14:50		Protocol: Species:	EPA Ame	/821/R-02-0 ricamysis b	ahia			Diluent Brine:	t: Di No	ot Applicable	Seawater	
Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method 06-5926-1608 96h Survival Rate 200 400 282.8 22.4% Dunnett Multiple Comparison Test Point Estimate Summary Analysis ID Endpoint Level µg/L 95% LCL 95% UCL TU Method 5-7501-2492 96h Survival Rate EC50 276.3 239.8 318.3 Spearman-Kärber 69h Survival Tate EC50 276.3 239.8 318.3 Spearman-Kärber 69h Survival Rate Summary EC50 276.3 239.8 318.3 Spearman-Kärber C-µg/L Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 100 Lab Control 4 1 1 1 1 0.05 0.1 10.53% 0.0% 200 4 0.1 0.025 0.9215 <td>Receive Date:</td> <td>11 Jul-13 11 Jul-13</td> <td></td> <td>Material: Source:</td> <td colspan="4">erial: Copper chloride rce: Reference Toxicant</td> <td></td> <td colspan="5"></td>	Receive Date:	11 Jul-13 11 Jul-13		Material: Source:	erial: Copper chloride rce: Reference Toxicant									
Analysis ID Endpoint 200 400 282.8 22.4% Dunnett Multiple Comparison Test	Comparison S	Summary												
Point Estimate Summary	Analysis ID	Endpoint		NOE					TU				· T	
Real	06-5926-1608	96h Survival Ra	ite	200		400	282.8	22.4%			Dunnet	Multiple Com	parison Les	l
Analysis ID Endpoint Ecvel pg/fc 339.8 318.3 Spearman-Kärber 15-7501-2492 96h Survival Rate Summary 15-7501-2492 Pg/fc Stable S	Point Estimate	e Summary	gggggebellikegerg (AAA bellis ke								NA . Ale e e			
96h Survival Rate Summary C-μg/L Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 Lab Control 4 0.95 0.9127 0.9873 0.8 1 0.05 0.1 10.53% 0.0% 50 4 1 1 1 1 1 1 0 0 0 0.0% -5.26% 100 4 1 1 1 1 1 1 0 0 0 0.0% -5.26% 200 4 0.85 0.7785 0.9215 0.6 1 0.09574 0.1915 22.53% 10.53% 400 4 0.1 0.02532 0.1747 0 0.4 0.1 0.2 200.0% 89.47% 800 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									TU	*****************************				
C-μg/L Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 Lab Control 4 0.95 0.9127 0.9873 0.8 1 0.05 0.1 10.53% 0.0% 50 4 1 1 1 1 0 0 0.0% -5.26% 100 4 1 1 1 1 0 0 0.0% -5.26% 200 4 0.85 0.7785 0.9215 0.6 1 0.09574 0.1915 22.53% 10.53% 400 4 0.1 0.02532 0.1747 0 0.4 0.1 0.2 200.0% 89.47% 800 8 8 8 8 1	15-7501-2492	96h Survival Ra	ate	EC50)	276.3	239.8	318.3			Spearn	ian-Karber		
C-μg/L Control Type Count Mean 95% ECC 95% ECC <t< td=""><td>96h Survival F</td><td>Rate Summary</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	96h Survival F	Rate Summary												
O Lab Control 4 0.95 0.9127 0.9873 0.8 1 0.05 0.1 10.53% 0.0% 50 4 1 1 1 1 1 0 0 0.0% -5.26% 100 4 1 1 1 1 1 0 0 0.0% -5.26% 200 4 0.85 0.7785 0.9215 0.6 1 0.09574 0.1915 22.53% 10.53% 400 4 0.1 0.02532 0.1747 0 0.4 0.1 0.2 200.0% 89.47% 800 8 4 0	C-ua/L	Control Type	Cour	nt Mear	ı	95% LCL	95% UCL	Min	Max	К.	Std Err			%Effect
50			4	0.95		0.9127	0.9873	8.0	1		0.05			
100			4	1		1	1	1	1					
200 400 400 400 10.002532 0.1747 0 0.4 0.1 0.2 200.0% 89.47% 800 96h Survival Rate Detail C-μg/L Control Type Rep 1 Rep 2 Rep 3 Rep 4 0 Lab Control 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100		4	1		1		1						
400	200		4	0.85			0.9215							
800 4 0 C - μg/L Control Type Rep 1 Rep 2 Rep 3 Rep 4 0 Lab Control 1 1 0.8 1 50 1 1 1 1 100 1 1 1 1 200 1 1 1 1 400 0 0 0.4 0	400		4										200.0%	
C-μg/L Control Type Rep 1 Rep 2 Rep 3 Rep 4 0 Lab Control 1 1 0.8 1 50 1 1 1 1 100 1 1 1 1 200 1 1 0.6 0.8 400 0 0 0.4 0	800		4	0		0	0	0	0		U	U		100.0%
0 Lab Control 1 1 0.8 1 50 1 1 1 1 1 100 1 1 1 1 1 200 1 1 1 0.6 0.8 400 0 0 0 0.4 0	96h Survival	Rate Detail												
0 Lab Control 1 1 0.8 1 50 1 1 1 1 100 1 1 1 1 200 1 1 0.6 0.8 400 0 0 0.4 0	C-µg/L	Control Type	Rep	1 Rep	2	Rep 3	Rep 4							
100 1 1 1 1 1 1 200 1 1 1 0.6 0.8 400 0 0 0.4 0		Lab Control	1	1		8.0	1							
200 1 1 0.6 0.8 400 0 0 0.4 0	50		1	1		1	1							
200 1 1 0.6 0.8 400 0 0 0.4 0	100		1	1		1	1							
400 0 0.4 0	1		1	1		0.6	0.8							
			0	0		0.4	0							
800	800		0	0		0	0							

Report Date: Test Code: 16 Jul-13 17:21 (p 1 of 2)

130711myra | 12-4282-0224

							rest	Code:	10071	ımyra 12	7202 0227
Mysid 96-h A	cute Survival Te	est							Nautilus	Environm	ental (CA)
Analysis ID: Analyzed:	06-5926-1608 16 Jul-13 17:2		dpoint: 96h alysis: Para		te trol vs Treat	ments		S Version: ial Results:	CETISv1.8 Yes	3.4	
Data Transfo		Zeta	Alt Hyp	Trials	Seed		NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre		NA	C > T	NA	NA		200	400	282.8		22.4%
Dunnett Mult	iple Compariso	n Test									
Control	vs C-μg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(x:5%)		
Lab Control	50		-0.5538	2.356	0.253 6	0.9298	CDF	Non-Signif	cant Effect		
Edd Common	100		-0.5538	2.356	0.253 6	0.9298	CDF	Non-Signif	cant Effect		
	200		1.068	2.356	0.253 6	0.3552	CDF	Non-Signif	icant Effect		
	400*		8.795	2.356	0.253 6	<0.0001	CDF	Significant	Effect		
ANOVA Table	e										
Source	Sum Squ	uares	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	2,947818	}	0.7369545		4	31.89	< 0.0001	Significant	Effect		
Error	0.346690)5	0.0231127		15						
Total	3.294508				19	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Mod Lev	ene Equalit	y of Variance	1.441	4.893	0.2689	Equal Vai	riances			
Variances		Equality of \		6.038	4.893	0.0042	Unequal \	/ariances			
Distribution		-Wilk W Nor		0.9291	0.866	0.1483	Normal D	istribution			
96h Survival	Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	0.95	0.7909	1	1	0.8	1	0.05	10.53%	0.0%
50		4	1	1	1	1	1	1	0	0.0%	-5.26%
100		4	1	1	1	1	1	1	0	0.0%	-5.26%
200		4	0.85	0.5453	1	0.9	0.6	1	0.09574	22.53%	10.53%
400		4	0.1	0	0.4182	0	0	0.4	0.1	200.0%	89.47%
800		4	0	0	0	0	0	0	0		100.0%
Angular (Co	rrected) Transfo	rmed Sumi	mary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.286	1.096	1.475	1.345	1.107	1.345	0.05953	9.26%	0.0%
50		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	-4.63%
100		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	-4.63%
200		4	1.171	0.8199	1.522	1.226	0.8861	1.345	0.1103	18.84%	8.93%
400		4	0.3403	-0.02503	0.7057	0.2255	0.2255	0.6847	0.1148	67.47%	73.53%
800		4	0.2255	0.2255	0.2256	0.2255	0.2255	0.2255	0	0.0%	82.46%
000		7	5.2255								

Report Date: Test Code: 16 Jul-13 17:21 (p 2 of 2)

130711myra | 12-4282-0224

Nautilus Environmental (CA) Mysid 96-h Acute Survival Test Endpoint: 96h Survival Rate **CETIS Version:** CETISv1.8.4 Analysis ID: 06-5926-1608 Official Results: Parametric-Control vs Treatments Yes Analysis: Analyzed: 16 Jul-13 17:21 Graphics 1.0 0.30 ---0.8 96h Survival Rate Reject Null 0.6 0.5 -0.20 0.2 -0.25 0.1 -0.30 -0.35 0.0 800 50 100 200 400 -2.0 -1.5 -1.0 -0.5 0.0 1.0 1.5 Rankits C-µg/L

Report Date:

16 Jul-13 17:21 (p 1 of 1)

Test Code:

130711myra | 12-4282-0224

Nautilus Environmental (CA)

Mysid 96-h Acute Survival Test

15-7501-2492 Endpoint: 96h Survival Rate

CETIS Version:

CETISv1.8.4

Analysis ID: Analyzed:

16 Jul-13 17:21

Analysis: Untrimmed Spearman-Kärber

Official Results:

Yes

Spearman-Kärber Estimates

 Threshold Option
 Threshold
 Trim
 Mu
 Sigma
 EC50
 95% LCL
 95% UCL

 Control Threshold
 0.05
 0.00%
 2.441
 0.03074
 276.3
 239.8
 318.3

96h Survi	val Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	0.95	0.8	1	0.05	0.1	10.53%	0.0%	19	20
50		4	1	1	1	0	0	0.0%	-5.26%	20	20
100		4	1	1	1	0	0	0.0%	-5.26%	20	20
200		4	0.85	0.6	1	0.09574	0.1915	22.53%	10.53%	17	20
400		4	0.1	0	0.4	0.1	0.2	200.0%	89.47%	2	20
800		4	0	0	0	0	0		100.0%	0	20

Report Date:

23 Jul-13 10:43 (1 of 1)

Mysid 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)

Organism: Americamysis bahia (Opossum Shri

m Shri Material:

Copper chloride

Protocol: EPA/821/R-02-012 (2002)

Endpoint: 96h Survival Rate

Source:

Reference Toxicant-REF

Mean: 217.9 Sigma: 33.87 Count: :

20 15.50% -1s Warning Limit: 184 +1s Warning Limit: 251.8 -2s Action Limit: 150.2 +2s Action Limit: 285.6

Quality Control Data

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2012	Apr	12	146.4	-71.49	-2.111	(-)	(-)	18-4156-9891	06-8116-5972
2		Jun	20	244.4	26.54	0.7836			14-4876-2820	15-5597-1021
3		Jul	18	226.2	8.305	0.2452			19-0591-6573	01-8064-5028
4		Aug	9	211.9	-6.007	-0.1774			03-7650-1350	01-2638-0993
5			14	224.5	6.592	0.1946			00-4657-5056	17-8150-2104
6		Sep	14	254.2	36.33	1.073	(+)		02-3745-0967	07-8515-2357
7		Oct	11	262.9	45.04	1.33	(+)		16-6426-6275	09-7589-5463
8		Nov	6	251	33.08	0.9767			10-8430-0036	06-6663-1893
9		Dec	5	220.5	2.638	0.07788			04-0398-2004	00-6325-8584
10			14	238.6	20.67	0.6103			18-8768-0228	02-9826-1371
11	2013	Jan	9	193.2	-24.71	-0.7296			03-0771-5543	14-5886-5607
12			26	146.4	-71.49	-2.111	(-)	(-)	17-7211-3223	08-8577-1525
13		Feb	7	266.7	48.81	1.441	(+)		19-2692-5068	03-4918-2198
14			8	200	-17.9	-0.5285			06-9316-5762	17-6117-6270
15			9	229.7	11.84	0.3496			20-8185-6664	18-8287-9152
16		Mar	9	184.7	-33.25	-0.9817			12-8356-2336	06-9480-6166
17		Apr	4	220.5	2.638	0.07788			07-3349-2487	06-7553-2117
18			30	229.7	11.84	0.3496			17-7383-1596	04-6524-3221
19		May	7	184.3	-33.56	-0.9907			00-3243-0139	19-9640-3177
20		Jun	4	221.9	4.014	0.1185			12-8621-3943	18-1045-5488
21		Jul	11	276.3	58.37	1.723	(+)		12-4282-0224	15-7501-2492

Water Quality Measurements & Test Organism Survival

Sample ID: CuCl ₂ Start Date/Time: 7/10/2013 1560 1000 0 24 48 72 Test No.: 130715myra 5 13.0710 mg/m 30711myrand Date/Time: 7/14/2013 1450 Counts: PA 85 M445	96 M
Test No. 130710 mg on 30710 mg on 30711 mg rend Date/Time: 7/14/2013 1450 Counts: PA RS MLAS	MU
Test No. 1661 Ipiniyid	1_1_1_
Readings: TE MAD	W
Dilutions made by: LN BA	
High conc. made (μg/L): 800 ₹₩	
Vol. Cu stock added (mL): 17 b = 17 b	
Cu stock concentration (μg/L): (μg/L): Final Volume (mL): 2000 2000	1122

Concentration (μg/L)	Rand #			ber o ganis	f Live ims			Ş	Salinit (ppt)	-			Ter	npera (°C)	ture				lved C (mg/L	Oxyge)	n			pH (units)	Codestation
(149/12)	"	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	8	5	5	5	5	5	198	362	299	303	30.4	145	80	240	25.1	25.1	8.0		7.1	55	9.7	791	8.01	802	7.38	7.90
	7	5	5	5	5	5			30.3					153			7.2		55					7.92	PD	
	15	5	5	54	4	4					179700												And			
	4	5	5	5	5	5									100										1,00 Mi 1,00 Mi	
50	11	5	5	5	5	5	299			20.60	30.7	24.4	155		1	25.2	8.0	61	7.0	6.0	5.7	7.97	861	8:05	798	7.99
	12	5	5	5	5	5			20.2					25.2			21		6.0					797		
	2	5	5	5	5	5	ataata			12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Ĭ .									
	21	5	5	5	5	5																				
100	10	5	5	5	5	5	199			304	30.4	245	15.4	<u> </u>	752	29.3	41		7.0	5.7	5.7	192	801	1.	7.98	7.87
	13	5	5	5	5	5			35		an areas and			251			7.2		5.9					797		
	1	5	5	5	5	5			20.4																	
	23	5	5	5	5	5											\$100 miles									
200	20	5	5	5	5	5	29.9	303	1.	34	30.4	14.5	15.0	4.0	253	25.3	8-1	(v.D			5.8	1.93	801	806	199	789
	14	5	9	5	5	5		- 1	20.4					153			72		59					197	10 (A) 1 10 (A) 1 10 (A) 10 (A)	
	6	5	4	4	3	3																				
	22	5	4	4	id	4																		ļ		<u> </u>
400	3	_5	3	0			19.8		198	30.Z	31.3	45	5.4	240	25.4	25.4	81	6.2	7.0	6.2	5.9	192	8.02		\$76.	7.92
	19	5		2	0		12 N. 13 N.		30.V					253			32		5,8					7.98		-
	16	5	3	2	2	2			W.																<u> </u>	ļ
	9	5	0			20000	200					211		1.10								200		in .	-	
800	5	5	3	0	1000000		17.1			30.1	36.1	145	253		254	25.4	81	6-1	70	62	5.8	11:K	180	1.	805	791
	24	5	2	1		0			30.2		300			25.1	and the second		E		6.0					799		ļ
	18	5	1	0			de Alesa E		i (in de in in)													No. 100			COMPANY	
	17	5		0					<u></u>		<u></u>	<u></u>				lana.							<u> </u>			

Initial Counts
OC'd by:

Animal Source/Date Received: 1110 13 PASS Age at Initiation: 5 April 110 13 PASS Age at Initiation: 6 April 11

QC Check: LN 7/10/13

Final Review: VL71813

CETIS Summary Report

Report Date: Test Code:

16 Jul-13 17:29 (p 1 of 1)

de: 130711mbra | 06-9216-5908

									1631 0				11112.01 00	
Inland Silversi	de 96-h Acute S	urvival Te	st									Nautilus	Environme	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	00-1540-0493 11 Jul-13 16:35 15 Jul-13 14:40 94h	Pro Spe	t Type: tocol: cies: irce:	Survival (9 EPA/821/ Menidia b Aquatic B	R-02-0 er y llin				Analys Diluer Brine: Age:	nt: [d Natural S oplicable	eawater	
Sample ID: Sample Date: Receive Date: Sample Age:	11 Jul-13	Sou	le: erial: irce: tion:	130711m Copper cl Reference Copper C	nloride e Toxi	cant			Client Projec		nterna	al		
Comparison S	Summary													
Analysis ID	Endpoint		NOE	L LOE	L	TOEL	PMSD	TU		Metho				
05-1902-3886	96h Survival Ra	te	100	200		141.4	13.9%			Dunne	tt Mu	Itiple Comp	arison Tes	t
Point Estimate	e Summary													
Analysis ID	Endpoint		Leve	i μg/L	-	95% LCL	95% UCL	TU		Metho	d			
21-2743-4643	96h Survival Ra	te	EC50) 141.	4	124	161.3			Spearr	man-l	Kärber		
Test Acceptab	oility													
Analysis ID	Endpoint		Attril	oute		Test Stat	TAC Limi	its		Overla	эр	Decision		
05-1902-3886	96h Survival Ra	te	Cont	rol Resp		1	0.9 - NL			Yes			cceptability	
	96h Survival Ra		Cont	rol Resp		1	0.9 - NL			Yes		Passes Ad	cceptability	Criteria ————
96h Survival I	Rate Summary													
C-μg/L	Control Type	Count	Mea	n 95%	LCL	95% UCL	Min	Ma	х	Std E	rr	Std Dev	CV%	%Effect
0	Lab Control	4	1	1		1	1	1		0		0	0.0%	0.0%
50		4	1	1		1	1	1		0		0	0.0%	0.0%
100		4	0.9	0.85	69	0.9431	0.8	1		0.057		0.1155	12.83%	10.0%
200		4	0.1	0.05	5688	0.1431	0	0.2		0.057	74	0.1155	115.5%	90.0%
400		4	0	0		0	0	0		0		0		100.0%
800		4	0	0		0	0	0		0		0		100.0%
96h Survival	Rate Detail													
C-μg/L	Control Type	Rep 1	Rep		3	Rep 4								
0	Lab Control	1	1	1		1								
50		1	1	1		1								
100		0.8	1	1		8.0								
200		0	0.2	0		0.2								
400		0	0	0		0								
800		0	0	0		0								

Report Date: Test Code:

16 Jul-13 17:29 (p 1 of 1)

130711mbra | 06-9216-5908

									1651	Code.	1007	Timbra	00 0210 0000
Inland Silvers	side 96	5-h Acute Surviv	al Test								Nautilu	ıs Enviro	nmental (CA)
Analysis ID: Analyzed:		902-3886 ul-13 17:29	Endpoint: Analysis:		Survival Ra metric-Con		√reat	ments		S Version		1.8.4	
Data Transfor	'n	Zeta	Alt H	lур	Trials	Seed			NOEL	LOEL	TOEL	ΤU	PMSD
Angular (Corre	ected)	NA	C > T	-	NA	NA			100	200	141.4		13.9%
Dunnett Multi	iple C	omparison Test											
Control	vs	C-µg/L	Test	Stat	Critical	MSD	DF	P-Value	P-Type	Decisio	n(α:5%)		
Lab Control		50	0		2.287	0.157	6	0.7500	CDF	Non-Sig	nificant Effe	ct	
200 01		100	1.732	2	2.287	0.157	6	0.1239	CDF	Non-Sig	nificant Effe	ct	
		200*	14.56	6	2.287	0.157	6	<0.0001	CDF	Significa	int Effect		
ANOVA Table													
Source		Sum Squares	Mear	n Squa	re	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between		2.808445	0.936	31485		3		99.05	<0.0001	Significa	int Effect		
Error		0.1134158	0.009	945131	7	12							
Total		2.921861				15							
Distributiona	l Test	6											
Attribute Test					Test Stat	Critica	al	P-Value	Decision	(α:1%)			et, järgemani, om joon, joonsen maanaan on varjahkki akkiistön killistön killistö

Distribution	Shapiro-	Wilk W Nor	mality	0.8197	0.8408	0.0050	Non-no	rmal Distribu	ıtion		
96h Surviva	al Rate Summary				-						
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%
50		4	1	1	1	1	1	1	0	0.0%	0.0%
100		4	0.9	0.7163	1	0.9	0.8	1	0.05774	12.83%	10.0%
200		4	0.1	0	0.2837	0.1	0	0.2	0.05774	115.5%	90.0%
400		4	0	0	0	0	0	0	0		100.0%
800		4	0	0	0	0	0	0	0		100.0%

Angular (C	orrected) Transfor	med Sumr	nary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
50		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
100		4	1.226	1.007	1.445	1.226	1.107	1.345	0.06874	11.21%	8.85%
200		4	0.3446	0.1258	0.5634	0.3446	0.2255	0.4636	0.06874	39.9%	74.39%
400		4	0.2255	0.2255	0.2256	0.2255	0.2255	0.2255	0	0.0%	83.24%
800		4	0.2255	0.2255	0.2256	0.2255	0.2255	0.2255	0	0.0%	83.24%

Report Date:

16 Jul-13 17:29 (p 1 of 1)

Test Code:

130711mbra | 06-9216-5908

Inland Silverside 96-h Acute Survival Test

Nautilus Environmental (CA)

Analysis ID: Analyzed:

21-2743-4643

Endpoint: 96h Survival Rate

CETIS Version:

CETISv1.8.4

Official Results: Yes Analysis: Untrimmed Spearman-Kärber 16 Jul-13 17:29

Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0	0.00%	2.151	0.02856	141.4	124	161.3

96h Survi	val Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	1	1	1	0	0	0.0%	0.0%	20	20
50	Edb Comro.	4	1	1	1	0	0	0.0%	0.0%	20	20
100		4	0.9	0.8	1	0.05774	0.1155	12.83%	10.0%	18	20
200		4	0.1	0	0.2	0.05774	0.1155	115.5%	90.0%	2	20
400		4	0	0	0	0	0		100.0%	0	20
800		4	0	0	0	0	0		100.0%	0	20

16 Jul-13 17:31 (1 of 1)

Inland Silverside 96-h Acute Survival Test

Protocol: EPA/821/R-02-012 (2002)

Nautilus Environmental (CA)

Test Type: Survival (96h)

Organism: Menidia beryllina (Inland Silverside)

Endpoint: 96h Survival Rate

Material: Copper chloride

Reference Toxicant-REF Source:

Inland Silverside 96-h Acute Survival Test

192.6 Mean: Sigma: 40.45

20 Count: 21.00% CV:

-1s Warning Limit: 152.2

-2s Action Limit: 111.7

+2s Action Limit: 273.5 +1s Warning Limit: 233

Quality Co	ntrol	Data
------------	-------	------

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Jun	23	147.3	-45.29	-1.12	(-)		05-2107-1041	05-9540-6331
2		Jul	28	238.1	45.53	1.126	(+)		01-6343-6449	12-9704-3526
3		Aug	25	144.5	-48.08	-1.189	(-)		05-5823-2261	15-2283-7803
4		Sep	20	120.5	-72.08	-1.782	(-)		06-3695-9039	12-2236-1593
5		Oct	20	229.2	36.57	0.9042			07-3892-1606	02-4474-7245
6		Nov	17	259	66.36	1.641	(+)		17-8936-4519	19-9945-6978
7		Dec	15	248.6	55.95	1.383	(+)		01-4479-8124	14-1199-6620
8	2012	Jan	12	211.3	18.66	0.4614			19-8808-8752	12-8970-8273
9		Feb	22	262.9	70.34	1.739	(+)		06-7665-9706	20-9384-3150
10		Mar	29	174.1	-18.49	-0.4572			05-6826-0640	08-0221-7732
11		Jun	6	257.2	64.57	1.597	(+)		18-8343-8398	07-5920-5510
12		Aug	15	245.4	52.76	1.304	(+)		09-7983-0200	09-2700-9318
13		Sep	12	168.2	-24.42	-0.6038			03-5102-6858	08-5346-6708
14		Oct	25	136.4	-56.24	-1.391	(-)		07-9246-4343	01-9148-8858
15		Dec	5	105.2	-87.42	-2.161	(-)	(-)	06-0212-4364	02-3516-9009
16	2013	Jan	9	141.4	-51.18	-1.265	(-)		17-2187-6754	18-4890-8322
17			26	149.2	-43.43	-1.074	(-)		18-1935-7382	02-8788-6074
18		Feb	16	229.4	36.8	0.9097			10-2313-3759	14-4667-5668
19		Mar	27	178.2	-14.42	-0.3565			07-8835-5536	15-9493-1462
20		Jun	13	207.1	14.45	0.3573			15-3690-9471	03-7822-6454
21		Jul	11	141.4	-51.18	-1.265	(-)		06-9216-5908	21-2743-4643

Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements

rai GC	,,,QI	LIVII	3																	OL I E	est O	rgar	IISM	Sur	viva
Client: Internal				_	Т	est Sp	ecies	: <u>M.</u> I	beryll	ina								Te	ch Init	ials					
: CuCl	2							_	Star	t Date	/Time	: 7/1	Ž/201:	3 /	loh	5		_			0	24	48	72	96
:130	711	mb	100					_	End	d Date	/Time	: 7/1	3/201:		44	מ	Counts			ounts:	Mi	BG	ML	100	ML
								_										-							IN
																		Dilutio			1				
																	High	conc.	made	(μg/L):	800		-		-
																١	/ol. Cu	stock	adde	i (mL):	17.60		44		
								Cu st	ock co	oncent	ration	(μ g/L)	:_ a	01900	")	_					2222		2000		-
Rand #					9		Salinity (ppt)				Te	mpera (°C)	ture		Dissolved Oxygen (mg/L)				n		ı	pH (units)		
	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
19	5	5	5	5	5	21.8	36.1	30.0	303	30.2	171	25.1	24.0	53	25.4	1.2	5.2	7.1	49	4.9	7.88	7.91	18:03	7.91	7.75
14	5	5	5	5	5											No.									
6	5	5	5	5	5																				
24	5	5	6	5	19							1 1/4													
11	5	5	5	5	5	29.8	303	SOD	3019	30.3	24.6	116.3	24,0	254	25,4	7.8	5-2	7.1	5.1	5.3	7.90	7.95	8:04	195	7.80
20	5	5	5	5	5											001	1.2	53					E		
1	5	5	5	7			1,744																		
7	5	5	5	5	5									15.155.15	YELL										
5	5	4	4	14	4	29.8	70.Z	30.0	303	30,4	245	25.0		35.4	2513	20	5.2	7.1	53	5.4	7.90	195	8.04	197	793
9	5	5	5	5	5			D.1	Verging of				25.3	Pro		7.2									
18	5	5	5	5	5		1 mg 2 22									100									
2	5	4	4	4	4							1				i und									
21	5	0		_	-	29.71	30.2	29.9	30.2	30.5	24.6	150	24.0	254	25.4	8.1	5.6	7.1	5.8	5.6	791	797	8.13	803	788
	Rand # 19 14 6 24 11 7 5 9 18 2	Rand # 0 19 5 14 5 6 5 24 5 11 5 5 5 5 9 5 18 5 2 5	Rand # 0 24 19 5 5 14 5 5 24 5 5 11 5 5 20 5 5 1 5 5 7 5 5 5 5 4 9 5 5 18 5 5 2 5 4	Rand # 0 24 48 19 5 5 5 14 5 5 5 11 5 5 5 5	Rand Number of Live	Internal CuCl ₂ 30711 mb/s Signal Sig	Rand Number of Live Organisms	Rand Number of Live Organisms	Rand Number of Live Organisms Salining (ppt)	Internal	Internal Test Sp. Start Date	Internal Test Species Start Date/Time Start Date/Time End Date/Time	Internal Test Species: M. A.	Internal Test Species: M. beryll Start Date/Time: 7/12/201: 13 0 7 1 1 m b c o End Date/Time: 7/12/201: End Date/Time: 7/12/201:	Internal Test Species M. beryllina Tlubra Tlubr	Internal	Internal	Internal Test Species: M. beryllina Start Date/Time: 7/12/2013 1	Internal	Test Species: M. beryllina	Internal	Internal Test Species: M.	Internal Test Species: M. beryllina Test Species: Test Species	Test Species: M. beryllina Start Date/Time: 71/12/2013 1/37/5 Counts: ML Readings: Find Date/Time: 71/12/2013 1/37/5 Dilutions made by: High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): Vol. Cu stock added (mL): High conc. made (µg/L): High conc. m	Test Species: M. beryllina Start Date/Time: 71/2/2013 1/2/15 COURLS COUNTS: ML PS

88 5.2

QV

Initial Counts QC'd by:	6						
Animal Source/Date Red	eived: ABS 7 10 13 Age at Initiation: 14d			Fee	ding Ti	mes	
	• • •		0	24	48	72	96
Comments:	i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal	AM:		484	0920	1900	08/5
	Organisms fed prior to initiation, circle one ((y) / n)						

245 15.0

50.1

27.730.1

29.5 30.0 1

LN FIIU113 Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

QC Check:

 \bigcirc

5 0

O

 \circ

Final Review: KL7 10 13

791 7.97

789 7.99

Appendix D
Summary of Statistical Analyses

Appendix Table D-1. Statistical Analysis of Echaustorius Survival

Sediment Characterization for YTI Terminal

Test initiation: June 14, 2013

Analysis of Variance (ANOVA)								
Dependent variable:	Eohaustorius Survival							
Source	SS	df	MS	F	р			
Site	0.6635	4	0.1659	12.35	<0.0001*			
Residual	0.2687	20	0.01344					

Bold asterisk indicates a statistically significant difference in amphipod survival among sediments (p<0.05).

Multiple Comparison t-tests								
Compa	rison	Percent Difference	р					
LA-2 Reference vs.	YTI Comp A	-30	0.0004*					
LA-2 Reference vs.	YTI Comp B	-11	0.0016*					
Fine Grain Control vs.	YTI Comp A	-27	0.0021*					
Fine Grain Control vs.	YTI Comp B	-8	0.0289*					

Bold asterisk indicates a statistically significant reduction in survival relative to the LA-2 Reference sediment or Fine Grain Size Control (p<0.05).

Appendix Table D-2. Analysis of Neanthes arenaceodentata Survival

Sediment Characterization for YTI Terminal

Test initiation: July 10, 2013

Analysis of Variance (ANOVA)								
Dependent variable:			Neanthes Surviva	I				
Source	SS	df	MS	F	Р			
Site	0.006000	3	0.002000	1.000	0.4182			
Residual	0.0320	16	0.0020					

Appendix D-3. Analysis of *Americamysis bahia* Survival Sediment Characterization for YTI Terminal

Test initiation: July 11, 2013

CETIS Summary Report

Report Date: Test Code:

01 Aug-13 09:04 (p 1 of 1) 1307-S065 | 19-8461-1956

Mysid 96-h Acute Survival Test	Nautilus Environmental (CA)
•	

Test Type: Survival (96h) Batch ID: 06-2275-4419

Protocol: EPA/821/R-02-012 (2002)/EPT/ACE 11 Jul-13 15:30 Start Date: Americamysis bahia Ending Date: 15 Jul-13 14:35 Species:

Aquatic Biosystems, CO Source: Duration: 95h

Diluent: Brine: Age:

Analyst:

Not Applicable Diluted Notwal Seawaton Not Applicable

13-3100 Client: **AMEC** 01-9219-3544 Code: Sample ID: Elutriate Project:

Sample Date: 11 Jul-13 12:15 Material: AMEC POLA (AMEC/POLA) Receive Date: 11 Jul-13 12:15 Source:

Station: YTI Comp A Sample Age: 3h

Sample Note: Sediment sample date/time: 6/11/2013, 09:00; Receipt date/time: 6/11/2013, 17:00; Receipt temperature 4°C

Comparison S	Summary						
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method
18-5809-2743	96h Survival Rate	100	>100	NA	10.9%	1	Dunnett Multiple Comparison Test

96h Survi	val Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.96	0.9395	0.9805	0.9	1	0.02449	0.05477	5.71%	0.0%
10		5	0.9	0.8627	0.9373	0.8	1	0.04472	0.1	11.11%	6.25%
50		5	0.96	0.9395	0.9805	0.9	1	0.02449	0.05477	5.71%	0.0%
100		5	0.92	0.8888	0.9512	0.8	1	0.03742	0.08367	9.09%	4.17%

96h Survi	ival Rate Detail					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Control	1	0.9	1	1	0.9
10		1	1	8.0	0.9	8.0
50		1	0.9	1	1	0.9
100		1	0.9	1	0.9	8.0

96h Survi	val Rate Binomials					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Control	10/10	9/10	10/10	10/10	9/10
10		10/10	10/10	8/10	9/10	8/10
50		10/10	9/10	10/10	10/10	9/10
100		10/10	9/10	10/10	9/10	8/10

Report Date: Test Code: 16 Jul-13 17:54 (p 1 of 1)

1307-S065 | 19-8461-1956

Mysid 96-h A	cute S	Survival Test									Nautili	us Enviro	nmental (CA
Analysis ID: Analyzed:	Analyzed: 16 Jul-13 17:54 Analysis: Parametric-Control vs Treatmen						tments	CET Offic	1.8.4				
Data Transfo	rm	Zet	a Alt H	Нур	Trials	Seed			NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	ected)	NA	C > 1		NA	NA			100	>100	NA	1	10.9%
Dunnett Mult	iple C	omparison Test	t										
Control	vs	C-%	Test	Stat	Critical	MSD	DF	P-Value	P-Type	Decisio	n(a:5%)		
Lab Control		10	1.196	3	2.227	0.166	8	0.2602	CDF	Non-Sigi	nificant Effe	ot .	
		50	0		2.227	0.166	8	0.7500	CDF	Non-Sigi	nificant Effe	ct	
		100	0.816	32	2.227	0.166	8	0.4065	CDF	Non-Sig	nificant Effe	ct	
ANOVA Table)												
Source		Sum Squares	Mear	ı Squ	are	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between		0.030261	0.010	0087		3		0.7229	0.5529	Non-Sigi	nificant Effe	ct	
Error		0.2232544	0.013	39534		16							
Total		0.2535154				19							

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	1.575	11.34	0.6650	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9134	0.866	0.0741	Normal Distribution
96h Survival Rate S	ummary				

96h Survi	96h Survival Rate Summary														
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	5	0.96	0.892	1	1	0.9	1	0.02449	5.71%	0.0%				
10		5	0.9	0.7758	1	0.9	0.8	1	0.04472	11.11%	6.25%				
50		5	0.96	0.892	1	1	0.9	1	0.02449	5.71%	0.0%				
100		5	0.92	0.8161	1	0.9	0.8	1	0.03742	9.09%	4.17%				

Angular (C	Angular (Corrected) Transformed Summary														
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	5	1.347	1.236	1.458	1.412	1.249	1.412	0.03992	6.63%	0.0%				
10		5	1.257	1.068	1.447	1.249	1.107	1.412	0.0682	12.13%	6.63%				
50		5	1.347	1.236	1.458	1.412	1.249	1.412	0.03992	6.63%	0.0%				
100		5	1.286	1.126	1.446	1.249	1.107	1.412	0.05765	10.03%	4.53%				

CETIS Summary Report

Report Date: Test Code: 01 Aug-13 09:20 (p 1 of 1) 1307-S066 | 08-9253-3032

Mysid 96-h Acute Survival Test Nautilus Environmental (CA)												
Batch ID: Start Date: Ending Date: Duration:	08-0647-8475 11 Jul-13 15:45 15 Jul-13 14:45 95h		Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02-0 Americamysis b Aquatic Biosyst	oahia '	EPA/) 1991,	1 CE 1998	Analyst: Diluent: Brine: Age:		Applicabl e। Applicable	Piloted N Seawo	latural ater
	01-5409-7810 11 Jul-13 11:30 11 Jul-13 11:30 4h		Code: Material: Source: Station:	13-3101 Elutriate AMEC POLA (A YTI Comp B	AMEC/POLA	s)		Client: Project:	AME	EC		
Sample Note:	Sediment samp	le date	/time: 6/11/2	2013, 09:00; Red	eipt date/tin	ne: 6/11/20	013, 17:	00; Recei	pt temp	erature 4°C		
Comparison S Analysis ID 20-8090-0520	Summary Endpoint 96h Survival Ra	te	NOEL 100	LOEL >100	TOEL NA	PMSD 14.1%	TU 1		e thod unnett M	1ultiple Com	parison Tes	st
96h Survival F	Rate Summary											
C-% 0 10 50 100 96h Survival F C-% 0 10 50	Control Type Lab Control	Coun 5 5 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.94 0.94 0.96 0.86 1 Rep 2 0.9 1 0.8	1 0.9 1	95% UCL 0.9605 0.9605 0.9934 0.9166 Rep 4 0.9	Min 0.9 0.9 0.8 0.7 Rep 5 0.9 0.9	Max 1 1 1 1	0.0 0.0	d Err D2449 D2449 D4 D6782	Std Dev 0.05477 0.05477 0.08944 0.1517	CV% 5.83% 5.83% 9.32% 17.63%	%Effect 0.0% 0.0% -2.13% 8.51%
	Rate Binomials	1	0.7	0.9	0.7	1		Control Control Control				
0 10 50 100	Control Type Lab Control	10/10 10/10 10/10 10/10	9/10 10/10 8/10	10/10	9/10 9/10 10/10 7/10	9/10 9/10 10/10 10/10						

Report Date:

16 Jul-13 17:58 (p 1 of 1)

		VI
Test Code:	1307-S066	

					AT-40.03 - 00011-00011-0001-0001-0001-0001-000		lest	Code:	13	07-8066	08-9253-3032
ute S	urvival Test	t							Nautili	us Enviro	nmental (CA)
										1.8.4	
m		Zeta	Alt Hyp	Trials	Seed		NOEL	LOEL	TOEL	TU	PMSD
cted)		NA	C > T	NA	NA		100	>100	NA	1	14.1%
ole C	omparison ⁻	Гest									
vs	C-%		Test Sta	t Critical	MSD D	F P-Value	P-Type	Decision	n(α:5%)		
	10		0	2.227	0.198 8	0.7500	CDF	Non-Sigr	nificant Effec	ct	
	50		-0.4135	2.227	0.198 8	0.8725	CDF	Non-Sigr	nificant Effec	et	
**************	100		1.159	2.227	0.198 8	0.2730	CDF	Non-Sigr	nificant Effec	ot	
	Sum Squar	es	Mean Sc	uare	DF	F Stat	P-Value	Decision	ı(α:5%)		
	0.05447748		0.018159	16	3	0.9165	0.4551	Non-Sigr	nificant Effec	ct	
	0.3170224		0.019813	9	16						
	0.3714998				19						
	20-8 16 J m cted)	20-8090-0520 16 Jul-13 17:58 m oted) ble Comparison vs	n Zeta cted) NA ble Comparison Test vs C-% 10 50 100 Sum Squares 0.05447748 0.3170224	20-8090-0520 Endpoint: 96 16 Jul-13 17:58 Analysis: Pa m Zeta Alt Hyp cted) NA C > T ple Comparison Test vs C-% Test Sta 10 0 50 -0.4135 100 1.159 Sum Squares Mean Sq 0.05447748 0.018158 0.3170224 0.019813	20-8090-0520	20-8090-0520 Endpoint: 96h Survival Rate 16 Jul-13 17:58 Analysis: Parametric-Control vs Treat m Zeta Alt Hyp Trials Seed cted) NA C > T NA NA vs C-% Test Stat Critical MSD D 10 0 2.227 0.198 8 50 -0.4135 2.227 0.198 8 100 1.159 2.227 0.198 8 Sum Squares Mean Square DF O.01815916 3 0.3170224 0.0198139 16	20-8090-0520	20-8090-0520	20-8090-0520	20-80-90-0520	20-8090-0520

Distributional Tests					
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	3.882	11.34	0.2745	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9125	0.866	0.0713	Normal Distribution

96h Surviv	96h Survival Rate Summary														
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	5	0.94	0.872	1	0.9	0.9	1	0.02449	5.83%	0.0%				
10		5	0.94	0.872	1	0.9	0.9	1	0.02449	5.83%	0.0%				
50		5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	-2.13%				
100		5	0.86	0.6717	1	0.9	0.7	1	0.06782	17.63%	8.51%				

Angular (Angular (Corrected) Transformed Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	1.314	1.203	1.425	1.249	1.249	1.412	0.03992	6.79%	0.0%	
10		5	1.314	1.203	1.425	1.249	1.249	1.412	0.03992	6.79%	0.0%	
50		5	1.351	1.182	1.52	1.412	1.107	1.412	0.06097	10.09%	-2.8%	
100		5	1.211	0.9485	1.474	1.249	0.9912	1.412	0.09458	17.46%	7.85%	

Analyst: 1 QA:

Appendix D-4. Analysis of Menidia beryllina Survival

Sediment Characterization for YTI Terminal

Test initiation: July 11, 2013

CETIS Summary Report

Ending Date: 15 Jul-13 14:55

Report Date: Test Code:

01 Aug-13 09:22 (p 1 of 1) 1307-S065a | 08-8520-2128

Nautilus	Environmental	(CA)

Batch ID: Start Date:

18-2557-7449 11 Jul-13 16:00

Inland Silverside 96-h Acute Survival Test

Test Type: Survival (96h) Protocol:

EPA/821/R-02-012 (2002) / EPA/ACE Menidia beryllina

Analyst:

SArtificial Saltwater Diluted Natural Diluent:

Brine:

Sea water o Instant Ocean IVA

14d Age:

Sample ID:

Duration:

21-0470-2153

Code:

13-3100 Elutriate Client: **AMEC**

Project:

Sample Date: 11 Jul-13 12:15 Receive Date: 11 Jul-13 12:15

Material: Source:

Species:

Source:

AMEC POLA (AMEC/POLA)

Aquatic Indicators

Sample Age: 4h Station: YTI Comp A

Sample Note: Sediment sample date/time: 6/11/2013, 09:00; Receipt date/time: 6/11/2013, 17:00; Receipt temperature 4 C

Comparison :	Summary
--------------	---------

Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method
09-3585-5603	96h Survival Rate	100	>100	NA	6.56%	1	Dunnett Multiple Comparison Test

Test Acceptability

Analysis ID	Endpoint	Attribute	Test Stat	TAC Limits	Overlap	Decision
09-3585-5603	96h Survival Rate	Control Resp	0.96	0.9 - NL	Yes	Passes Acceptability Criteria

96h Survival Rate Summary

C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.96	0.9395	0.9805	0.9	1	0.02449	0.05477	5.71%	0.0%
10		5	0.98	0.9633	0.9967	0.9	1	0.02	0.04472	4.56%	-2.08%
50		5	1	1	1	1	1	0	0	0.0%	-4.17%
100		5	0.94	0.9195	0.9605	0.9	1	0.02449	0.05477	5.83%	2.08%

96h Survival Rate Detail

3011 Gui 11.	ar riate betain					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Control	0.9	1	1	1	0.9
10		0.9	1	1	1	1
50		1	1	1	1	1
100		0.9	1	0.9	1	0.9

96h Survival Rate Binomials

C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Lab Control	9/10	10/10	10/10	10/10	9/10
10		9/10	10/10	10/10	10/10	10/10
50		10/10	10/10	10/10	10/10	10/10
100		9/10	10/10	9/10	10/10	9/10

Analyst: LN 0A: 4 8/1/3

CETIS™ v1.8.4.23

Report Date:

17 Jul-13 16:15 (p 1 of 1)

de 9	6-h Acute Surviv	ral Tact										
		vai rest								Nautilu	ıs Enviro	nmental (CA
	· · ·	Endpoint: Analysis:				Гrea	itments				1.8.4	
n	Zeta	a Alt	Нур	Trials	Seed			NOEL	LOEL	TOEL	TU	PMSD
ted)	NA	C > -	Γ	NA	NA			100	>100	NA	1	6.56%
le C	omparison Test											
vs	C-%	Test	Stat	Critical	MSD	DF	P-Value	P-Tvpe	Decision)(a:5%)		
	10	-0.70	71	2.227	0.103	8	0.9280	CDF		·	t	
	50	-1.41	4	2.227	0.103	8	0.9860	CDF				
	100	0.70	71	2.227	0.103	8	0.4534	CDF				
	Sum Squares	Mear	Squ	are	DF		F Stat	P-Value	Decision	(a:5%)		
	0.02655933	0.008	88531	1	3		1.667	0.2140			·	
	0.08498986	0.005	3118	66	16			5.2.10	r ton-orgin	meant Lifet	l.	
	0.1115492				19		-					
	17 on ted)	ted) NA le Comparison Test vs C-% 10 50 100 Sum Squares 0.02655933 0.08498986	T Jul-13 16:10 Analysis: T Zeta	T Jul-13 16:10 Analysis: Pain Zeta Alt Hyp	17 Jul-13 16:10 Analysis: Parametric-Commetric-Commetric Parametric Parame	T Jul-13 16:10 Analysis: Parametric-Control vs T	Total Analysis Parametric Control vs Treast	17 Jul-13 16:10 Analysis: Parametric-Control vs Treatments 17 Jul-13 16:10 Analysis: Parametric-Control vs Treatments 18 Jul-13 16:10 Analysis: Parametric-Control vs Treatments 19 Jul-13 16:10 NA NA 10 Jul-13 16:10 MSD DF P-Value 10 Jul-13 16:10 MSD DF DF DF DF 10 Jul-13 16:10 MSD DF DF DF DF	17 Jul-13 16:10 Analysis: Parametric-Control vs Treatments Office	Total Tota	Total Jul-13 16:10 Analysis: Parametric-Control vs Treatments Official Results: Yes	Total Jul-13 16:10 Analysis: Parametric-Control vs Treatments Official Results: Yes

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances Variances Distribution	Mod Levene Equality of Variance Levene Equality of Variance Shapiro-Wilk W Normality	1 10.67 0.9344	5.953 5.292 0.866	0.4262 0.0004 0.1876	Equal Variances Unequal Variances Normal Distribution
96h Survival Ra	ite Summary				

DOIT OUT VI	vai mate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.96	0.892	1	1	0.9	1	0.02449	5.71%	
10		5	0.98	0.9245	1	1	0.9	1	0.02449	4.56%	0.0%
50		5	1	1	1	1	1	1	0.02		-2.08%
100		5	0.94	0.872	1	0.9	0.9	1	0.02449	0.0%	-4.17%
						0.0	0.5	ı	0.02449	5.83%	2.08%

C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.347	1.236	1.458	1.412	1,249	1.412	0.03992	6.63%	0.0%
10		5	1.379	1.289	1.47	1.412	1,249	1.412	0.03259	5.28%	-2.42%
50		5	1.412	1.412	1.412	1.412	1.412	1.412	0.00200	0.0%	
100		5	1.314	1.203	1.425	1.249	1.249	1.412	0.03992	6.79%	-4.84% 2.42%

Analyst: UN QA: 4

CETIS Summary Report

Report Date:

01 Aug-13 09:24 (p 1 of 1)

Test Code: 1307-S066a | 20-5339-9786

Inland Silvers	ide 96-h Acute S	Survival Tes	st						Nautilu	s Environr	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	14-8834-6613 11 Jul-13 16:15 15 Jul-13 15:10 95h	Prot	ocol: cies:	Survival (96h) EPA/821/R-02-0 Menidia beryllin Aquatic Indicato		EPA/AC 1991, 190	E 0 78 B		lficial Saltwa lant Ocean (\		I Natural
•	16-0162-3596 11 Jul-13 11:30 11 Jul-13 11:30 5h		erial: rce:	13-3101 Elutriate AMEC POLA (A YTI Comp B	AMEC/POLA	۸)		Client: AM Project:	EC		
Sample Note:	Sediment samp	le date/time	: 6/11/20	013, 09:00; Rec	eipt date/tim	ne: 6/11/20	13, 17:00); Receipt tem	oerature 4°C		
Comparison S Analysis ID 08-5408-7641	Summary Endpoint 96h Survival Ra	ate	NOEL 100	LOEL >100	TOEL NA	PMSD 4.17%	TU 1	Method Steel Ma	ny-One Ranl	⟨Sum Test	
Test Acceptab Analysis ID 08-5408-7641	Endpoint 96h Survival Ra	ate	Attrib L Contro		Test Stat 0.96	TAC Lim	iits	Overlap Yes	Decision Passes A	cceptability	<i>r</i> Criteria
96h Survival F	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.96	0.9395	0.9805	0.9	1	0.02449	0.05477	5.71%	0.0%
10		5	1	1	1	1	1	0	0	0.0%	-4.17%
50 100		5 5	1	1	1 1	1	1 1	0 0	0 0	0.0% 0.0%	-4.17% -4.17%
96h Survival F	Rate Detail								-		
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9	1	1	1	0.9					
10		1	1	1	1	1					
50		1	1	1	1	1					
100		1	1	1	1	1					
96h Survival F	Rate Binomials					ontoneroccoscoccico de escribe con escoccico como como como como como como co					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	9/10	10/10	10/10	10/10	9/10					
10		10/10	10/10	10/10	10/10	10/10					
50		10/10	10/10	10/10	10/10	10/10					
100		10/10	10/10	10/10	10/10	10/10					

Analyst: W QA: 1 8/1/13

Report Date:

17 Jul-13 16:18 (p 1 of 1)

Test Code:

1307-S066a | 20-5339-9786

Analyzed: 17 Data Transform Angular (Corrected Steel Many-One F Control vs Lab Control ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con	08-5408-7641 17 Jul-13 16:1 ed) Rank Sum T vs C-% 10 50 100 Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V	En 8 An Zeta NA est	Alt Hyp C > T Test Stat 32.5 32.5 32.5 Mean Squ 0.0053118 0.0019918 of Variance ariance mality Mean 0.96	Trials NA Critical 17 17 17 17 Uare 866 95	C-Control vs Seed NA Ties 1 8 1 8 DF 3 16 19	F P-Value 0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Type Asymp Asymp Asymp O.0829 Decision(Equal Var Unequal Var	iances	CETISv: Yes TOEL NA α:5%) ficant Effecticant Effeticant Effecticant Effecticant Effecticant Effecticant Effectica	TU 1	PMSD 4.17%
Analyzed: 17 Data Transform Angular (Corrected Steel Many-One F Control vs Lab Control ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con 0 Lab 10 10 100	### Rank Sum Took Sum Square 0.0159356	8 An Zeta NA est ares 3 ene Equality quality of Vilk W Norm Count 5	Alt Hyp C > T Test Stat 32.5 32.5 32.5 Mean Squ 0.0053118 0.0019918 of Variance ariance mality Mean 0.96	Trials NA Critical 17 17 17 17 17 Test State 95 Test State 0.6711	C-Control vs Seed NA Ties 1 8 1 8 1 8 1 8 DF 3 16 19 Critical 5.953 5.292 0.866	F P-Value 0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Type Asymp Asymp Asymp O.0829 Decision(Equal Var Unequal V Non-norm	LOEL >100 Decision(Non-Signif Non-Signif Non-Signif Non-Signif Oecision(Non-Signif inces /ariances al Distribution	TOEL NA α:5%) ficant Effecticant Effeticant Effecticant Effecticant Effecticant Effecticant Effectic	TU 1	4.17%
Data Transform Angular (Corrected Steel Many-One F Control vs Lab Control ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con Data	Pank Sum Tovs C-% 10 50 100 Sum Squit 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene Et Shapiro-West Summary ntrol Type	Zeta NA est ares 3 2 2 3 ene Equality quality of V. Vilk W Norn Count 5	Alt Hyp C > T Test Stat 32.5 32.5 32.5 Mean Squ 0.0053118 0.0019919 of Variance ariance mality Mean 0.96	Trials NA Critical 17 17 17 17 ware 866 95 Test State 9 3 96 0.6711	Seed NA	F P-Value 0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Type Asymp Asymp Asymp O.0829 Decision(Equal Var Unequal V Non-norm	LOEL >100 Decision(Non-Signif Non-Signif Non-Signif Oecision(Non-Signif (a:1%) iances /ariances al Distribution	TOEL NA α:5%) ficant Effecticant Effectic	1 ct ct ct	4.17%
Angular (Corrected Steel Many-One F Control vs Lab Control vs Lab Control ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution Distribution Distribution Control Cont	Rank Sum Tovs C-% 10 50 100 Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V se Summary ntrol Type	ares 3 2 3 ene Equality quality of Vivilk W Norm Count 5	C > T Test Stat 32.5 32.5 32.5 Mean Squ 0.0053118 0.0019919	NA Critical 17 17 17 17 ware 866 95 Test State 9 3 96 0.6711	NA Ties E 1 8 1 8 1 8 DF 3 16 19 Critical 5.953 5.292 0.866	0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Type Asymp Asymp Asymp O.0829 Decision(Equal Var Unequal V Non-norm	>100 Decision(Non-Signif Non-Signif Decision(Non-Signifi (a:1%) iances /ariances al Distributior	NA α:5%) ficant Effecticant	1 ct ct ct	4.17%
Steel Many-One F Control vs Lab Control ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution Och Survival Rate C-% Con Date Distribution Och Survival Rate C-% Con Distribution	Rank Sum Tovs C-% 10 50 100 Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V se Summary ntrol Type	ares 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Test Stat 32.5 32.5 32.5 Mean Squ 0.0053118 0.0019919 v of Variance ariance mality Mean 0.96	t Critical 17 17 17 17 uare 866 95 Test State 96 0.6711	Ties D 1 8 1 8 1 8 1 8 DF 3 16 19 Critical 5.953 5.292 0.866	0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Type Asymp Asymp Asymp P-Value 0.0829 Decision(Equal Var Unequal V Non-norm	Decision(and Non-Signif Non-Signi	α:5%) ficant Effecticant	ot ot ot	
Control vs Lab Control ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution Oh Survival Rate C-% Con Lab 0 0 00	VS C-% 10 50 100 Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V Summary ntrol Type	ares 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32.5 32.5 32.5 Mean Squ 0.0053118 0.0019919 of Variance ariance mality Mean 0.96	17 17 17 uare 866 95 Test Stat 9 3 96 0.6711	1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	Asymp Asymp P-Value 0.0829 Decision(Equal Var Unequal V Non-norm	Non-Signif Non-Signif Non-Signif Decision(a Non-Signifi (a:1%) iances /ariances al Distributior	ficant Effecticant Effectic	et et	
ANOVA Table Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con Date Do Labe Do Con	10 50 100 Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V summary ntrol Type	ene Equality quality of V Vilk W Norn Count	32.5 32.5 32.5 Mean Squ 0.0053118 0.0019919 of Variance ariance mality Mean 0.96	17 17 17 uare 866 95 Test Stat 9 3 96 0.6711	1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	Asymp Asymp P-Value 0.0829 Decision(Equal Var Unequal V Non-norm	Non-Signif Non-Signif Non-Signif Decision(a Non-Signifi (a:1%) iances /ariances al Distributior	ficant Effecticant Effectic	et et	
ANOVA Table Source Between Error Total Distributional Test Attribute Variances Distribution 96h Survival Rate C-% Con Date Do Lab Do Con Do	Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V	ene Equality quality of V Vilk W Norn Count	Mean Squ 0.0053118 0.0019919 of Variance ariance mality Mean 0.96	17 17 uare 866 95 Test State 96 0.6711	1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0.9699 0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	Asymp Asymp P-Value 0.0829 Decision(Equal Var Unequal V Non-norm	Non-Signif Non-Signif Non-Signif Decision(a Non-Signifi (a:1%) iances /ariances al Distributior	ficant Effecticant Effectic	et et	
Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con Date Distribution 000	Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V	ene Equality quality of V Vilk W Norn Count	Mean Squ 0.0053118 0.0019919 of Variance ariance mality Mean 0.96	17 uare 866 95 Test State 9 3 96 0.6711	1 8 1 8 DF 3 16 19 Critical 5.953 5.292 0.866	0.9699 0.9699 F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Value 0.0829 Decision(Equal Var Unequal V Non-norm	Non-Signif Non-Signif Decision(a Non-Signifi (a:1%) iances /ariances al Distribution	ficant Effecticant Effecticant Effections α:5%) icant Effecticant	et et	
Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con Date Do Lab Do	Sum Squa 0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V	ene Equality quality of V Vilk W Norn Count	Mean Squ 0.0053118 0.0019919 of Variance ariance mality Mean 0.96	uare 866 95 Test Stat 9 3 96 0.6711	DF 3 16 19 Critical 5.953 5.292 0.866	F Stat 2.667 P-Value 0.0728 <0.0001 <0.0001	P-Value 0.0829 Decision(Equal Var Unequal V Non-norm	Decision(α Non-Signifi (α:1%) iances /ariances al Distribution	icant Effec α:5%) icant Effec	et	
Source Between Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con Date Distribution 000	0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V e Summary ntrol Type	ene Equality quality of V Vilk W Norn Count	0.0053118 0.0019918 v of Variance ariance mality Mean 0.96	Test Stat 95 96 0.6711	3 16 19 Critical 5.953 5.292 0.866	2.667 P-Value 0.0728 <0.0001 <0.0001	Decision(Equal Var Unequal V	Decision(α Non-Signifi (α:1%) iances /ariances al Distribution	α:5%) icant Effec	t	
Between Error Total Distributional Test Attribute Variances Variances Distribution P6h Survival Rate C-% Con Lab	0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V e Summary ntrol Type	ene Equality quality of V Vilk W Norn Count	0.0053118 0.0019918 v of Variance ariance mality Mean 0.96	Test Stat 95 96 0.6711	3 16 19 Critical 5.953 5.292 0.866	2.667 P-Value 0.0728 <0.0001 <0.0001	Decision(Equal Var Unequal V	Non-Signifi (α:1%) iances /ariances al Distribution	icant Effec		
Error Total Distributional Test Attribute Variances Variances Distribution 96h Survival Rate C-% Con D Lab 10 50 00	0.0159356 0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V e Summary ntrol Type	ene Equality quality of V Vilk W Norn Count	0.0053118 0.0019918 v of Variance ariance mality Mean 0.96	Test Stat 95 96 0.6711	3 16 19 Critical 5.953 5.292 0.866	2.667 P-Value 0.0728 <0.0001 <0.0001	Decision(Equal Var Unequal V	Non-Signifi (α:1%) iances /ariances al Distribution	icant Effec		
Total Distributional Tes: Attribute Variances Variances Distribution 96h Survival Rate C-% Con D Lab 10 50 00	0.0318712 0.0478068 sts Test Mod Leve Levene E Shapiro-V e Summary ntrol Type	ene Equality quality of Vi Vilk W Norn Count	o.0019919 of Variance ariance nality Mean 0.96	Test Stat 96 0.6711 95% LCL	16 19 Critical 5.953 5.292 0.866	P-Value 0.0728 <0.0001 <0.0001	Decision(Equal Var Unequal V Non-norm	(α:1%) iances /ariances al Distribution	n		
Distributional Tes Attribute Variances Variances Distribution 96h Survival Rate C-% Con D Lab 10 50	sts Test Mod Leve Levene E Shapiro-V e Summary ntrol Type	ene Equality quality of Vi Vilk W Norn Count 5	of Variance ariance nality Mean 0.96	Test Stat 9 3 96 0.6711	19 Critical 5.953 5.292 0.866	0.0728 <0.0001 <0.0001 Median	Equal Var Unequal V Non-norm	iances /ariances al Distributior		CV%	
Attribute Variances Variances Distribution 96h Survival Rate C-% Con D Lab 10 50	Test Mod Leve Levene E Shapiro-V Summary ntrol Type	quality of Volume Vilk W Norn Count	ariance mality Mean 0.96	96 96 0.6711 95% LCL	5.953 5.292 0.866 95% UCL	0.0728 <0.0001 <0.0001 Median	Equal Var Unequal V Non-norm	iances /ariances al Distributior		CV%	
Attribute Variances Variances Distribution 96h Survival Rate C-% Con D Lab 10 50	Test Mod Leve Levene E Shapiro-V Summary ntrol Type	quality of Volume Vilk W Norn Count	ariance mality Mean 0.96	96 96 0.6711 95% LCL	5.953 5.292 0.866 95% UCL	0.0728 <0.0001 <0.0001 Median	Equal Var Unequal V Non-norm	iances /ariances al Distributior		CV%	
Variances Variances Distribution 96h Survival Rate C-% Con D Label 10 50	Mod Leve Levene E Shapiro-V e Summary ntrol Type	quality of Volume Vilk W Norn Count	ariance mality Mean 0.96	96 96 0.6711 95% LCL	5.953 5.292 0.866 95% UCL	0.0728 <0.0001 <0.0001 Median	Equal Var Unequal V Non-norm	iances /ariances al Distributior		CV%	
Distribution 96h Survival Rate C-% Con D Lab 10 50	Levene E Shapiro-V Summary ntrol Type	quality of Volume Vilk W Norn Count	ariance mality Mean 0.96	96 0.6711 95% LCL	5.292 0.866 95% UCL	<0.0001 <0.0001 Median	Unequal V Non-norm	ariances/ al Distribution		CV%	
96h Survival Rate C-% Con D Lab 10 50	Shapiro-V Summary ntrol Type	Count 5	Mean 0.96	0.6711 95% LCL	0.866 95% UCL	<0.0001 Median	Non-norm	al Distribution		CV%	
C-% Con D Lab 10 50	e Summary ntrol Type	Count 5	Mean 0.96	95% LCL	95% UCL	Median		3		CV%	
C-% Con D Lab 10 50 100	ntrol Type	5	0.96				Min	Max	Std Err	CV%	
D Lab 10 50 00		5	0.96				Min	Max	Std Err	CV%	
10 50 100	o Control			0.892	1	1				- 4 / 3	%Effect
50 100				1	4	•	0.9	1	0.02449	5.71%	0.0%
		5	1	1	1	1	1	1	0	0.0%	-4.17%
		5	1	1	1	1	1		0	0.0%	-4.17%
Angular (Corrected	d) Tues of				,	!	I	1	0	0.0%	-4.17%
3.0/											
	ntrol Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
) Lab (10	Control	5	1.347	1.236	1.458	1.412	1.249	1.412	0.03992	6.63%	0.0%
50		5 5	1.412	1.412	1.412	1.412	1.412	1.412	0	0.0%	-4.84%
00		5	1.412 1.412	1.412 1.412	1.412	1.412	1.412		0	0.0%	-4.84%
			1.412	1,412	1.412	1.412	1.412	1.412	0	0.0%	-4.84%
Graphics											
1.0		•	•	•		0.100 _					
0.9						Ē		1			
0.8						0.075				0 0 0	~
0.7 F						0.050		İ		``/	,
ival					red	ngle		1	_		
96h Survival Rate					Centered	Ø 0.025		1			
0.5					J	0.000		0-0-0-0			_
0.4						0.035					
0.3						-0.025					
0.2						-0.050		† !			
0.1						0.035		1			
[-0.075		1			
0.0	10		50	100		-0.100	10	<u> </u>			
		C-%				-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.0	1.5	2.0

Appendix D-5. Analysis of *Mytilus galloprovincialis* Embryo Development

Sediment Characterization for YTI Terminal

Test initiation: July 10, 2013

CETIS Summary Report

Report Date:

26 Sep-13 15:13 (p 1 of 1)

Test Code: 1307-S065b | 08-7234-8874

Bivalve Larval	l Survival and Γ	evelopmer	t Test						Nautilus	Environm	ental (CA)
Batch ID: Start Date: Ending Date: Duration:	05-7772-3829 10 Jul-13 17:10 12 Jul-13 17:30 48h	Prof Spe	Type: ocol: cies: rce:	Development-S EPA/600/R-95/ Mytilus gallopro Taylor Shellfish	136 (1995) ovincialis	EPALACE 1991,	Anal Dilue Princ Age:	ent: Dilute e: Not A	ed Natural S Applicable	Seawater	
Sample ID:	01-6796-9334	Cod	e:	13-3100			Clier		С		
•	10 Jul-13 16:30		erial:	Elutriate			Proje	ect:			
	10 Jul-13 16:30		rce:	AMEC POLA (AMEC/POLA	A)					
Sample Age:	40m	Stat	ion:	YTI Comp A							
Sample Note:	Sediment sam	ple date/time	e: 6/11/2	:013, 09:00; Red	ceipt date/tim	ne: 6/11/201	3, 17:00; R	eceipt tempe	erature 4°C		
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
19-2119-5373	Combined Dev	elopment R	a 50	100	70.71	9.15%	2	Dunnett M	ultiple Com	parison Tes	t
Point Estimate	e Summary										
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Method			
15-2801-7410	Combined Dev	elopment R	a EC25	61.43	56.87	63.49	1.628	Linear Inte	rpolation (I	CPIN)	
			EC50	74.56	71.35	76.25	1.341				***
Test Acceptab	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Overlap	Decision		
19-2119-5373	Combined Dev	elopment R	a PMSE)	0.09149	NL - 0.25		No	Passes A	cceptability	Criteria
Combined De	velopment Rate	Summary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Lab Control	5	0.871	7 0.8518	0.8916	0.7914	0.9231	0.02386	0.05336	6.12%	0.0%
10		5	0.866		0.8744	0.8405	0.8953	0.00933	0.02086	2.41%	0.59%
50		5	0.846	3 0.8198	0.8728	0.7546	0.9512	0.03173	0.07095	8.38%	2.91%
100		5	0.013	5 0.005495	0.0215	0	0.04908	0.009583	0.02143	158.8%	98.45%
Combined De	velopment Rate	e Detail									
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.8466	0.888	3 0.7914	0.9231	0.9091					
0											
10		0.8405	0.854	8 0.8953	0.8763	0.8659					
		0.8405 0.8363	0.854 0.827		0.8763 0.8623	0.8659 0.7546					
10 50											
10 50 100	velopment Rate	0.8363 0.0184	0.827	2 0.9512	0.8623	0.7546					
10 50 100 Combined De	velopment Rate Control Type	0.8363 0.0184	0.827	2 0.9512 0	0.8623	0.7546					
10 50 100	•	0.8363 0.0184 e Binomials	0.827 0	2 0.9512 0	0.8623 0	0.7546 0.04908					
10 50 100 Combined De C-%	Control Type	0.8363 0.0184 e Binomials Rep 1	0.827 0 Rep 2	2 0.9512 0 Rep 3	0.8623 0 Rep 4	0.7546 0.04908 Rep 5					
10 50 100 Combined De C-%	Control Type	0.8363 0.0184 e Binomials Rep 1 138/163	0.827: 0 Rep 2	2 0.9512 0 2 Rep 3 79 129/163 86 154/172	0.8623 0 Rep 4 180/195	0.7546 0.04908 Rep 5 150/165					

Analyst: KHAC QAAC9/26/13

CETIS™ v1.8.4.23

Report Date:

26 Sep-13 15:13 (p 1 of 1)

Nautilus Environmental (CA)

Test Code: 1307-S065b | 08-7234-8874

Bivalve	Larval	Survival	and	Development	Test
---------	--------	----------	-----	-------------	------

19-2119-5373 **Endpoint:** Combined Development Rate **CETIS Version:** CETISv1.8.4

Analysis ID: Analyzed: 26 Sep-13 15:12 Analysis: Parametric-Control vs Treatments Official Results: Yes

Sample Note: Sediment sample date/time: 6/11/2013, 09:00; Receipt date/time: 6/11/2013, 17:00; Receipt temperature 4 C

Data Transform	Zeta	Alt Hyp	Trials	Seed	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	NA	C > T	NA	NA	50	100	70.71	2	9.15%

Dunnett Multiple Comparison Test Control C-% Test Stat Critical MSD DF P-Value P-Type Decision(a:5%) Lab Control 10 0.2396 2.227 0.113 8 0.6570 CDF Non-Significant Effect 50 0.6388 2.227 0.113 8 0.4834 CDF Non-Significant Effect 100* 22.03 2.227 CDF Significant Effect 0.113 8 < 0.0001

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)	
Between	4.53699	1.51233	3	236.3	<0.0001	Significant Effect	
Error	0.102395	0.006399687	16				
Total	4.639385		19				

Distributional	ests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	4.616	11.34	0.2022	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9655	0.866	0.6587	Normal Distribution

Combine	d Development Rate	e Summary	1								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.8717	0.8054	0.9379	0.8883	0.7914	0.9231	0.02386	6.12%	0.0%
10		5	0.8666	0.8407	0.8925	0.8659	0.8405	0.8953	0.00933	2.41%	0.59%
50		5	0.8463	0.7582	0.9344	0.8363	0.7546	0.9512	0.03173	8.38%	2.91%
100		5	0.0135	0	0.0401	0	0	0.04908	0.009583	158.8%	98.45%

Angular (Co	rrected) Transfor	med Sumn	nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.21	1.113	1.307	1.23	1.096	1.29	0.03489	6.45%	0.0%
10		5	1.198	1.159	1.236	1.196	1.16	1.241	0.01385	2.59%	1.0%
50		5	1.178	1.043	1.312	1.154	1.053	1.348	0.04832	9.18%	2.67%
100		5	0.0954	-0.0076	0.1984	0.03917	0.03917	0.2234	0.0371	86.95%	92.11%

Report Date:

26 Sep-13 15:13 (p 2 of 2)

Test Code:

1307-S065b | 08-7234-8874

Bivalve Larval Survival	and	Develo	pment	Test
-------------------------	-----	--------	-------	------

Nautilus Environmental (CA)

Analysis ID: 15-28 Analyzed: 26 Se

15-2801-7410 26 Sep-13 15:12 Endpoint: Combined Development Rate
Analysis: Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.8.4

Official Results: Yes

Sample Note: Sediment sample date/time: 6/11/2013, 09:00; Receipt date/time: 6/11/2013, 17:00; Receipt temperature 4 C

Linear	Interpolation	Options
--------	---------------	---------

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	821978	1000	Yes	Two-Point Interpolation

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC25	61.43	56.87	63.49	1.628	1.575	1.758
EC50	74.56	71.35	76.25	1.341	1.312	1.401

Combin	ed Development Rat		Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.8717	0.7914	0.9231	0.02386	0.05336	6.12%	0.0%	756	865
10		5	0.8666	0.8405	0.8953	0.00933	0.02086	2.41%	0.59%	775	894
50		5	0.8463	0.7546	0.9512	0.03173	0.07095	8.38%	2.91%	724	856
100		5	0.0135	0	0.04908	0.009583	0.02143	158.8%	98.45%	11	815

CETIS Summary Report

Report Date: Test Code:

26 Sep-13 15:23 (p 1 of 1) 1307-S066b | 16-6834-7350

								Test Cod	3:	1307	-30000 10	-6834-7350
Bivalve Larva	Survival and D	evelopment	Test							Nautilus	Environm	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	21-2538-5141 10 Jul-13 17:10 12 Jul-13 17:30 48h		ocol: :ies:	Development-S EPA/600/R-95/ Mytilus gallopro Taylor Shellfish	136 (1995)/ ₍ ovincialis	EPA/AC 1991, 199	E 18	Analyst: Diluent: Brine: Age:			Seawater	
Sample ID: Sample Date: Receive Date: Sample Age:	10-7254-0976 10 Jul-13 16:30 10 Jul-13 16:30 40m	Code Mate Sour Stati	rial: ce:	13-3101 Elutriate AMEC POLA (AMEC/POLA) YTI Comp B				Client: AMEC Project:				
Batch Note:	Sediment samp	le date/time	: 6/11/1:	3, 15:00; Recei	pt date/time:	6/11/13, 17	7:00; R	eceipt ten	peratur	e 4°C.		
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU		thod			
12-9155-9066	Combined Deve	elopment Ra	10	50	22.36	5.17%	10	Du	nnett M	ultiple Com	parison Tes	st
Test Acceptab	oility											
Analysis ID	D Endpoint Attribut			ute	Test Stat TAC Limits			Ov	Overlap Decision			
12-9155-9066	Combined Deve	elopment Ra	PMSD		0.05169	NL - 0.25		No		Passes A	cceptability	Criteria
Combined De	velopment Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Sto	d Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9209	0.9164	0.9253	0.9034	0.93	53 0.0	05311	0.01188	1.29%	0.0%
10		5	0.913	0.9074	0.9185	0.8957	0.93		06611	0.01478	1.62%	0.86%
50		5	0.8152	0.7984	0.8321	0.7485	0.86		202	0.04518	5.54%	11.47%
100		5	0.845	0.8215	0.8685	0.773	0.92	57 0.0	2814	0.06293	7.45% 	8.24%
Combined De	velopment Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	0.9034	0.9353	0.9167	0.9264	0.9227						
10		0.9357	0.914	0.8957	0.9053	0.9141						
50		0.8528	0.8037	0.8614	0.8098	0.7485						
100		0.773	0.8405	0.8883	0.7975	0.9257						
Combined De	velopment Rate	Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Lab Control	159/176	159/17	70 165/180	151/163	167/181						
10		160/171	170/18	36 146/163	153/169	149/163						
50		139/163	131/16	3 143/166	132/163	122/163						
100		126/163	137/16	3 159/179	130/163	162/175						

Report Date:

26 Sep-13 16:24 (p 1 of 1)

Test Code:

1307-S066b | 16-6834-7350

Bivalve Larval Survival and Development Test Nautilus Environmental (C										
Analysis ID:	01-7701-6282	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.4					
Analyzed:	26 Sep-13 16:24	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes					

Batch N	Batch Note: Sediment sample date/time: 6/11/13, 15:00; Receipt date/time: 6/11/13, 17:00; Receipt temperature 4 C.										
Linear I	Linear Interpolation Options										
X Transform Y Transform Seed Resamples Exp 95% CL Method											
Linear		Linear	8391	23	1000	Yes	Two-Point Interpolation				
Point E	stimates										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL					
EC25	>100	N/A	N/A	<1	NA	NA					
EC50	>100	N/A	N/A	<1	NA	NA					

Combine	ed Development Rat	e Summary	Calculated Variate(A/B)								
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	А	В
0	Lab Control	5	0.9209	0.9034	0.9353	0.005311	0.01188	1.29%	0.0%	801	870
10		5	0.913	0.8957	0.9357	0.006611	0.01478	1.62%	0.86%	778	852
50		5	0.8152	0.7485	0.8614	0.0202	0.04518	5.54%	11.47%	667	818
100		5	0.845	0.773	0.9257	0.02814	0.06293	7.45%	8.24%	714	843

Report Date: Test Code: 26 Sep-13 15:23 (p 1 of 1) 1307-S066b | 16-6834-7350

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 12-9155-9066 Endpoint: Combined Development Rate CETIS Version: CETISv1.8.4

Analyzed: 26 Sep-13 15:14 Analysis: Parametric-Control vs Treatments Official Results: Yes

Batch Note: Sediment sample date/time: 6/11/13, 15:00; Receipt date/time: 6/11/13, 17:00; Receipt temperature 4 C.

Data Transform	Zeta	Alt Hyp	Trials	Seed	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	NA	C > T	NA	NA	10	50	22.36	10	5.17%

Dunnett Multiple Comparison Test Control C-% Test Stat Critical MSD DF P-Value P-Type Decision(a:5%) Non-Significant Effect Lab Control 10 0.3952 2.227 0.079 8 0.5908 CDF 50* 4.42 2.227 0.079 8 0.0006 CDF Significant Effect CDF Significant Effect 100* 3.187 2.227 0.079 8 0.0076

Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
0.08803269	0.02934423	3	9.229	0.0009	Significant Effect
0.0508741	0.003179631	16			
0.1389068		19			
	0.08803269 0.0508741	0.08803269 0.02934423 0.0508741 0.003179631	0.08803269 0.02934423 3 0.0508741 0.003179631 16	0.08803269 0.02934423 3 9.229 0.0508741 0.003179631 16	0.08803269 0.02934423 3 9.229 0.0009 0.0508741 0.003179631 16

Distributional 1	ests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	8.635	11.34	0.0346	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9664	0.866	0.6786	Normal Distribution

Combine	Combined Development Rate Summary												
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
0	Lab Control	5	0.9209	0.9061	0.9356	0.9227	0.9034	0.9353	0.005311	1.29%	0.0%		
10		5	0.913	0.8946	0.9313	0.914	0.8957	0.9357	0.006611	1.62%	0.86%		
50		5	0.8152	0.7591	0.8713	0.8098	0.7485	0.8614	0.0202	5.54%	11.47%		
100		5	0.845	0.7669	0.9231	0.8405	0.773	0.9257	0.02814	7.45%	8.24%		

Angular (Angular (Corrected) Transformed Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	1.286	1.259	1.313	1.289	1.255	1.314	0.009774	1.7%	0.0%	
10		5	1.272	1.239	1.306	1.273	1.242	1.314	0.01203	2.12%	1.1%	
50		5	1.129	1.057	1.2	1.12	1.045	1.189	0.02581	5.11%	12.26%	
100		5	1.173	1.06	1.285	1.16	1.074	1.295	0.04047	7.72%	8.84%	

Appendix Table D-6. Analysis of Macoma nasuta Survival

Sediment Characterization for YTI Terminal

Test initiation: July 12, 2013

Analysis of Variance (ANOVA)											
Dependent variable: Percent <i>Macoma nasuta</i> Survival											
Source	SS	df	MS	F	Р						
Site	0.002740	3	0.0009133	0.2606	0.8527						
Residual	0.05608	16	0.003505								

Appendix Table D-7. Analysis of Nereis virens Survival

Sediment Characterization for YTI Terminal

Test initiation: July 12, 2013

	Analysis of	Variance (A	ANOVA)		
Dependent variable:		Perce	nt <i>Nereis viren</i> s S	urvival	
Source	SS	df	MS	F	Р
Site	0.02800	3	0.009333	1.244	0.3265
Residual	0.1200	16	0.0075		

Appendix E
Chain of Custody Documentation

LOG-IN NOS. 13-3100 - 13-3101

Client: AMEC

Tech Intials B 8 Sample Description Sediment Sediment Test Typols): EOM QUESTONING INCOM THES SCO. Tooking: 1306-3074 to 8079 Receipt No. Container Approx. Total
Temp. (°C) Containers Type Received (L) <u>§</u> 8/2 7 I Dag 2000 W NI 40 GIR 13 1500 GIG13 1700 4:0 G/4/13 0900 Colu/13 1700 LAZ -Raciena 6/2/13 1436 6/4/13 1930 Receipt Date & Time Project: POLA YTE TERMINAL Collection Date & Time 7 YTI COMP B YTI COMP A Sample ID Samples Shipp

Sub-samples for additional chemistry:	Collect Porewater Tech Initials	Screen Size. 5000th Other Tech Initials	10MC Tech Initials	Other Tech initials	
ognipies of hipped vie;	COC Present? (Y) N	Sieving Required? N Sc	Lab Control Sediment: EON HOME	Sail Bay	S 0 5

Test Organism:	EONAU Starus	BNOWE	Pishy	Meniala	NESTARS
Supplier:	NW Agwatics	Taylasselle	(AB)S	Aguatic Ind.	STR
Receipt Date:	E (0/7/13	2012	× = -	W 00	<u>e</u> <u>e</u> <u>e</u>
Condition:	G1002	6-06 d	G000	0005	7095

2.
7
4
2
G7.
Checl
ġ

Comments:

Final Review:

8-1-18-13

Vautilus Environmental 4340 Vandever Avenue San Diego, CA 92120 Phone 858,587,7333

Fax 858.587.3961

(O°) eruterequeT tqieceR Date (0/4/13 Page / of 1 12:20 4 (Date) (Time) 7 0 RECEIVED BY (LABORATORY) RECEIVED BY (COURIER) ANALYSES REQUIRED Which Cor Adrienne Cloar Company 8 X Printed Name (Signature) PAN XOLLEGINES とのことである (4.130 COLPOINS 大学のよううな (Time) (Time) 5 RELINQUISHED BY (COURIER) おお RELINQUISHED BY (CLIENT) COMMENTS きるでく 5 day 5, MESSELGET PX Piess での方が、でるていると るというのと X 子 別 taler INFRAGINATION - CON NO. OF CONTAINERS Printed Name) City/State/Zip Company) Company) V Invoice To: Company Address Contact Phone SONO CO CEMBII CONTAINER TYPE ت 1000 アスタ

られる

よろの Ü SAMPLE RECEIPT Received Good Condition? Matches Test Schedule? Total No. of Containers COVINDONMON The trans MATRIX の火 子かり からなる TIME SOLVI SUNTON かか 251002J San Door SPECIAL INSTRUCTIONS/COMMENTS: 08/67/01/01/01/01/01 中市 PART 子灰 6/2/13 DATE PROJECT INFORMATION 1000 P POR Sample Collection By: City/State/Zip Reference SAMPLE ID Company Report to: Contact Address Phone Email PO No.: Shipped Client:

9

σ

Additional costs maybe required for sample disposal or storage. Payment Net 30 unless otherwise contracted.

www.nautilusenvironmental.com

DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator

Nautilus Environmental

4340 Vandever Ave. San Diego, CA 92120 Phone 858.587.7333 Fax 858.587.3961

Date 06/11/2013 Page 1 of 1 Receipt Temperature (°C) (Time) (Date) RECEIVED BY (LABORATORY) RELINQUISHED BY (COURIER) ANALYSES REQUIRED Š 48 ddS dS Χ × Printed Name) (Сопрапу) YTI Terminal Sediment Composite for EOH, hold remainder of sample YTI Terminal Sediment Composite Please start SP amphipod testing 0011 81110 pending chemistry results. (Date) RELINQUISHED BY (CLIENT) RECEIVED BY (COURIER) Same as "Report to" at left tyler.huff@arnec.com NO. OF CONTAINERS City/State/Zip Printed Name 9 g (Сотрапу) Company Invoice To: Address Contact Phone Email 5 gallon bag 5 gallon bag CONTAINER TYPE SAMPLE RECEIPT Received Good Condition? Matches Test Schedule? Total No. of Containers sediment sediment MATRIX AMEC Environment & Infrastructure barry.snyder@amec.com and TIME 1500 9210 Sky Park Ct. Ste 200 006 Barry Snyder/Tyler Huff San Diego, CA 92123 SPECIAL INSTRUCTIONS/COMMENTS: (858) 300-4300 6/11/2013 6/11/2013 DATE PROJECT INFORMATION hand-delivered 1015101929 AMEC/POLA City/State/Zip Sample Collection By: YTI Comp A YII Comp B SAMPLE ID Company Address Report to: Contact Phone Email Shipped Via: Client: PO No.:

DISTRIBUTION: WHITE - Nautilus Environmental, COLOR - Originator

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted

APPENDIX E

BIOACCUMULATION TISSUE STATISTICS AND CHEMISTRY

Appendix Table E-1. Summary of Lipid and Solid Concentrations in Clam Tissues Following the 28-Day Bioaccumulation Exposure

Macoma nasuta

		Analy	yte (%)
	RL	0.1	0.1
	Replicate	Lipids	Solids
Reference	9C	0.6	15.4
	12C	0.28	13.7
	4C	0.71	12.8
	6C	0.65	14.8
	10C	0.62	14.5
	Mean	0.57	14.24
	Std. Dev.	0.17	1.01
Composite A	7C	0.44	Solids 15.4 13.7 12.8 14.8 14.5
	5C	0.5	13.8
	11C	0.55	14
	14C	0.5	15
	13C	0.53	13.7
	Mean	0.50	14.04
Composite A Composite B	Std. Dev.	0.04	0.55
	p-value ^o	0.20	0.35
Composite B	8C	0.55	15.9
	2C	0.6	14.3
	1C	0.57	14.3
	3C	0.61	14.1
	15C	0.47	14
	Mean	0.56	14.52
	Std. Dev.	0.06	0.78
	p-value ^o	0.44	0.32

^a FDA action limits are reported in wet weight.

RL = reporting limit

^b One-tailed unpaired t-tests were performed

Appendix Table E-2. Summary of Lipid and Solid Concentrations in Worm Tissues Following the 28-Day Bioaccumulation Exposure

Nereis virens

		Analyte (%)			
	RL	0.1	0.1		
	Replicate	Lipids	Solids		
Reference	9W	1.4	16.4		
	12W	1.1	16.2		
	4W	1.5	17.6		
	6W	1.2	15.3		
	10W	1.4	15.4		
	Mean	1.32	16.18		
	Std. Dev.	0.16	0.93		
Composite A	7W	1.3	19.5		
	5W	1.4	16.3		
	11W	1.5	16.9		
	14W	1.4	17.1		
	13W	1.3	16.7		
	Mean	1.38	17.30		
	Std. Dev.	0.08	1.26		
	p-value ^o	0.24	0.075		
Composite B	8W	1.5	17.1		
	2W	1.8	17.1		
	1W	1.6	16.2		
	3W	1.6	17.1		
	15W	1.8	16.9		
	Mean	1.66	16.88		
	Std. Dev.	0.13	0.39		
	p-value ^o	0.0036	0.079		

^a FDA action limits are reported in wet weight.

RL = reporting limit

^b One-tailed unpaired t-tests were performed

Appendix Table E-3. Summary of Trace Metal Concentrations in Clam Tissues Following the 28-Day Bioaccumulation Exposure

Macoma nasuta

		Trace Metal (mg/kg wet weight)									
		Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Selenium (Se)	Silver (Ag)	Zinc (Zn)
	RL	0.10	0.10	0.020	0.10	0.10	0.010	0.10	0.10	0.10	1.0
Site	FDA ^a	86	4.0	13	-	1.7	1.0*	80	-	-	-
Reference 9C 12C 4C 6C	9C	2.65	ND	0.173	1.5	0.161	ND	0.377	0.289	ND	12.4
	2.15	ND	0.158	1.49	0.146	ND	0.334	0.228	ND	9.62	
	4C	2.21	ND	0.163	1.39	0.138	ND	0.376	0.264	ND	11.4
	2.5	ND	0.223	1.37	0.144	ND	0.41	0.262	ND	11.7	
	10C	2.6	ND	0.201	1.62	0.172	ND	0.398	0.276	ND	11.6
	Mean	2.42	NA	0.184	1.47	0.152	NA	0.38	0.26	NA	11.34
	Std. Dev.	0.23	NA	0.03	0.10	0.01	NA	0.03	0.02	NA	1.03
Composite A	7C	2.54	ND	0.181	1.66	0.284	ND	0.305	0.226	ND	12.6
	5C	2.39	ND	0.227	1.78	0.313	ND	0.35	0.192	ND	12.8
	11C	2.26	ND	0.194	1.51	0.306	ND	0.287	0.226	ND	11.5
	14C	2.8	ND	0.185	1.73	0.293	ND	0.388	0.202	ND	12.3
	13C	2.51	ND	0.242	1.76	0.36	ND	0.372	0.252	ND	12.3
	Mean	2.50	NA	0.21	1.69	0.311	NA	0.34	0.22	NA	12.30
	Std. Dev.	0.20	NA	0.03	0.11	0.03	NA	0.04	0.02	NA	0.49
	p-value ⁰	0.29	NA	0.12	0.006	0.000002	NA	0.07	0.01	NA	0.05
Composite B	8C	2.34	ND	0.27	1.73	0.288	ND	0.403	0.317	ND	11.2
	2C	2.48	ND	0.392	2.09	0.462	ND	0.527	0.312	ND	12.5
	1C	3.21	ND	1.06	2.19	0.439	ND	0.914	0.326	ND	14.1
	3C	2.68	ND	0.417	1.95	0.357	ND	0.443	0.236	ND	13.2
	15C	2.39	ND	0.268	1.81	0.343	ND	0.339	0.217	ND	12
	Mean	2.62	NA	0.481	1.95	0.378	NA	0.53	0.28	NA	12.60
	Std. Dev.	0.35	NA	0.33	0.19	0.07	NA	0.23	0.05	NA	1.11
	p-value ^b	0.16	NA	0.040	0.0005	0.00006	NA	0.10	0.25	NA	0.05

^a FDA action limits are reported in wet weight.

RL = reporting limit

ND = not detected

^b One-tailed unpaired t-tests were performed

^{*}FDA action limits for methyl mercury (wet weight)

Appendix Table E-4. Summary of Trace Metal Concentrations in Worm Tissues Following the 28-Day Bioaccumulation Exposure

Nereis virens

	Trace Metal (mg/kg wet weight)										
		Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Selenium (Se)	Silver (Ag)	Zinc (Zn)
	RL	0.10	0.10	0.020	0.10	0.10	0.010	0.10	0.10	0.10	1.0
Site	FDA ^a	86	4.0	13	-	1.7	1.0*	80	-	-	-
Reference 9W 12W 4W	9W	2.23	ND	0.132	1.29	ND	ND	0.293	0.187	ND	16.1
	12W	2.17	ND	0.23	1.25	ND	ND	0.266	0.266	ND	35.4
	4W	2.32	ND	0.171	1.3	ND	ND	0.256	0.32	ND	25.2
	6W 10W	2.4	ND	0.186	1.31	ND	ND	0.32	0.304	ND	24.7
		2.02	ND	0.0938	1.24	ND	ND	0.243	0.285	ND	14.2
	Mean	2.23	NA	0.163	1.28	NA	NA	0.28	0.27	NA	23.12
	Std. Dev.	0.15	NA	0.05	0.03	NA	NA	0.03	0.05	NA	8.46
Composite A	7W	1.9	ND	0.128	1.51	ND	ND	0.228	0.239	ND	15.4
	5W	2.03	ND	0.243	1.38	ND	ND	0.242	0.295	ND	25.8
	11W	2.05	ND	0.297	1.42	ND	ND	0.305	0.221	ND	11.5
	14W	2.17	ND	0.106	1.31	ND	ND	0.207	0.229	ND	18.9
	13W	2.31	ND	0.157	1.33	ND	ND	0.25	0.258	ND	10.9
	Mean	2.09	NA	0.19	1.39	NA	NA	0.25	0.25	NA	16.50
	Std. Dev.	0.15	NA	0.08	80.0	NA	NA	0.04	0.03	NA	6.12
	p-value ^b	0.10	NA	0.30	0.010	NA	NA	0.10	0.20	NA	0.10
Composite B	W8	2.39	ND	0.199	1.65	ND	ND	0.315	0.252	ND	30.6
	2W	2.55	ND	0.35	1.73	ND	ND	0.307	0.375	ND	12.6
	1W	2.58	ND	1.08	1.81	ND	ND	0.855	0.338	ND	30.6
	3W	2.26	ND	0.441	1.57	ND	ND	0.366	0.295	ND	18.8
	15W	2.13	ND	0.12	1.6	ND	ND	0.196	0.207	ND	21.2
	Mean	2.38	NA	0.44	1.67	NA	NA	0.41	0.29	NA	22.76
	Std. Dev.	0.19	NA	0.38	0.10	NA	NA	0.26	0.07	NA	7.81
	p-value ^o	0.09	NA	0.07	0.00001	NA	NA	0.14	0.30	NA	0.47

^a FDA action limits are reported in wet weight.

RL = reporting limit

ND = not detected

^b One-tailed unpaired t-tests were performed

^{*}FDA action limits for methyl mercury (wet weight)

Appendix Table E-5. Summary of PAH Concentrations in Clam Tissues Following the 28-Day Bioaccumulation Exposure - YTI Terminal *Macoma nasuta*

					Reference							Composite A	4							Composite	В		1		
Analyte (µg/kg wet weight)	RL	FDAª	9C	12C	4C	6C	10C	Mean	Std. Dev.	7C	5C	11C	14C	13C	Mean	Std. Dev.	p-value ^b	8C	2C	1C	3C	15C	Mean	Std. Dev.	p-value ^b
Acenaphthene	10		ND	ND	ND	ND	ND	NA	NA	24	ND	ND	ND	ND	24.0	NA	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Acenaphthylene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Anthracene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	14	ND	12	13.0	1	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (a) Anthracene	10		ND	ND	ND	ND	ND	NA	NA	13	12	20	14	18	15.4	3	< 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (a) Pyrene	10		ND	ND	ND	ND	ND	NA	NA	33	29	48	36	44	38.0	8	< 0.05	23	27	30	21	21	24.4	4	< 0.05
Benzo (b) Fluoranthene	10		ND	ND	ND	ND	ND	NA	NA	46	41	67	50	62	53.2	11	< 0.05	35	42	46	35	33	38.2	6	< 0.05
Benzo (e) Pyrene	10		ND	ND	ND	ND	ND	NA	NA	31	28	46	34	42	36.2	8	< 0.05	22	26	30	22	21	24.2	4	< 0.05
Benzo (g,h,i) Perylene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (k) Fluoranthene	10		ND	ND	ND	ND	ND	NA	NA	34	27	51	38	45	39.0	9	< 0.05	26	29	33	26	25	27.8	3	< 0.05
Biphenyl	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Chrysene	10		ND	ND	ND	ND	ND	NA	NA	21	18	33	23	28	24.6	6	< 0.05	ND	10	12	ND	ND	11.0	1	> 0.05
Dibenz (a,h) Anthracene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2,6-Dimethylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Fluoranthene	10		ND	ND	ND	ND	ND	NA	NA	70	63	120	83	110	89.2	25	< 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Fluorene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Indeno (1,2,3-c,d) Pyrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2-Methylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
1-Methylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
1-Methylphenanthrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Naphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Perylene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	13	10	12	11.7	2	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Phenanthrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Pyrene	10		ND	ND	ND	ND	ND	NA	NA	200	180	310	230	310	246.0	61	< 0.05	15	19	17	15	14	16.0	2	< 0.05
1,6,7-Trimethylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Dibenzothiophene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Total PAHs	10		ND	ND	ND	ND	ND	NA	NA	472	398	722	518	683	559	139	< 0.05	121	153	168	119	114	135	24	< 0.05

^a FDA action limits are reported in wet weight.

RL = reporting limit

Italicized values indicate the analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

ND = not detected

^b One-tailed unpaired t-tests were performed

Appendix Table E-6. Summary of PAH Concentrations in Worm Tissues Following the 28-Day Bioaccumulation Exposure - YTI Terminal Nereis virens

												1		1						7					
					Reference							Composite	A							Composite	В				
Analyte (μg/kg wet weight)	RL	FDAª	9W	12W	4W	6W	10W	Mean	Std. Dev.	7W	5W	11W	14W	13W	Mean	Std. Dev.	p-value ^b	8W	2W	1W	3W	15W	Mean	Std. Dev.	p-value ^b
Acenaphthene	10		ND	ND	ND	ND	ND	NA	NA	12	ND	11	ND	ND	11.5	0.71	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Acenaphthylene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Anthracene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	10	10.0	NA	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (a) Anthracene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (a) Pyrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (b) Fluoranthene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	13	ND	10	11.5	2.12	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (e) Pyrene	10		ND	ND	ND	ND	ND	NA	NA	ND	10	15	12	13	12.5	2.08	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (g,h,i) Perylene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Benzo (k) Fluoranthene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	12	ND	11	11.5	0.71	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Biphenyl	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Chrysene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	14	11	12	12.3	1.53	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Dibenz (a,h) Anthracene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2,6-Dimethylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	10	10.0	NA	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Fluoranthene	10		ND	ND	ND	ND	ND	NA	NA	19	38	69	46	48	44.0	18.07	< 0.05	ND	ND	ND	ND	ND	NA	NA	NA
Fluorene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Indeno (1,2,3-c,d) Pyrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2-Methylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
1-Methylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
1-Methylphenanthrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Naphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	11	ND	ND	ND	ND	11.0	NA	> 0.05
Perylene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Phenanthrene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Pyrene	10		ND	ND	ND	ND	ND	NA	NA	38	77	140	95	88	87.6	36.65	< 0.05	ND	ND	ND	ND	ND	NA	NA	NA
1,6,7-Trimethylnaphthalene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Dibenzothiophene	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Total PAHs	10		ND	ND	ND	ND	ND	NA	NA	69	125	274	164	202	166.8	77.54	< 0.05	11	ND	ND	ND	ND	11.0	NA	> 0.05

^a FDA action limits are reported in wet weight.

RL = reporting limit

Italicized values indicate the analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

ND = not detected

^bOne-tailed unpaired t-tests were performed

Appendix Table E-7. Summary of PCB Concentrations in Clam Tissues Following the 28-Day Bioaccumulation Exposure - YTI Terminal *Macoma nasuta*

					Reference)		1				Composite /	4							Composite	В				
Analyte (µg/kg wet weight)	RL	FDAª	9C	12C	4C	6C	10C	Mean	Std. Dev.	7C	5C	11C	14C	13C	Mean	Std. Dev.	p-value ^b	8C	2C	1C	3C	15C	Mean	Std. Dev.	p-value ^b
PCB003	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA.	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB008	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB018	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB028	0.5		ND	ND	ND	ND	ND	NA	NA	0.54	ND	0.62	ND	ND	0.58	0.06	NA	ND	ND	0.51	ND	ND	0.51	NA	NA
PCB031	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	0.62	ND	0.64	0.63	0.01	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB033	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB037	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB044	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB049	0.5		ND	ND	ND	ND	ND	NA	NA	1	0.88	1.3	1.1	1	1.06	0.16	NA	0.83	0.86	1.1	0.64	0.73	0.83	0.2	NA
PCB052	0.5		ND	ND	ND	ND	ND	NA	NA	0.68	0.76	0.89	0.77	1	0.82	0.13	NA	0.64	0.63	0.8	0.53	0.56	0.63	0.1	NA
PCB056	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB060	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB066	0.5		ND	ND	ND	ND	ND	NA	NA	0.63	0.63	0.9	0.66	0.86	0.74	0.13	NA	0.64	0.62	0.82	0.58	0.59	0.65	0.1	NA
PCB070	0.5		ND	ND	ND	ND	ND	NA	NA	0.71	0.66	0.76	0.67	0.8	0.72	0.06	NA	0.54	0.59	0.75	0.52	ND	0.60	0.1	NA
PCB074	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB077	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB081	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB087	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	0.52	ND	ND	0.52	NA	NA	ND	ND	0.56	ND	ND	0.56	NA	NA
PCB095	0.5		ND	ND	ND	ND	ND	NA	NA	0.65	0.76	0.84	0.71	0.86	0.76	0.09	NA	0.79	0.98	1.2	0.8	0.88	0.93	0.2	NA
PCB097	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	0.64	ND	ND	0.64	NA	NA	0.52	0.61	0.73	ND	ND	0.62	0.1	NA
PCB099	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	0.67	0.69	0.84	0.5	0.6	0.66	0.1	NA
PCB101	0.5		ND	ND	ND	ND	ND	NA	NA	1	0.93	1.2	1.1	1.3	1.11	0.15	NA	1.5	1.4	1.7	1.1	1.3	1.40	0.2	NA
PCB105	0.5		ND	ND	ND	ND	ND	NA	NA	0.58	ND	ND	0.51	0.51	0.53	0.04	NA	ND	0.56	0.58	ND	ND	0.57	0.0	NA
PCB110	0.5		ND	ND	ND	ND	ND	NA	NA	1	0.99	1.5	1.1	1.4	1.20	0.24	NA	1.5	1.4	1.7	1.1	1.3	1.40	0.2	NA
PCB114	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB118	0.5		ND	ND	ND	ND	ND	NA	NA	0.92	0.76	1	0.84	1	0.90	0.10	NA	1.2	1.3	1.6	1	1.1	1.24	0.2	NA
PCB119	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB123	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB126	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB128	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	0.57	0.51	ND	0.54	0.0	NA
PCB132	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB138/158	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	1.4	1.4	2	1.4	1.3	1.50	0.3	NA
PCB141	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB149	0.5		ND	ND	ND	ND	ND	NA	NA	0.57	0.51	0.77	0.68	0.73	0.65	0.11	NA	1	1.2	1.5	1	0.99	1.14	0.2	NA
PCB151	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	0.54	0.53	0.68	0.54	ND	0.57	0.1	NA
PCB153	0.5		ND	ND	ND	ND	ND	NA	NA	0.94	0.89	1.2	0.93	1.1	1.01	0.13	NA	1.7	1.8	2.4	1.5	1.6	1.80	0.4	NA
PCB156	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB157	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB167	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA	ND	ND	ND	ND	ND	NA NA	NA	NA
PCB168	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA	NA
PCB169	0.5		ND ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB170	0.5		ND ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB174 PCB177	0.5 0.5		ND ND	ND ND	ND ND	ND ND	ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA
PCB177 PCB180			ND ND	1	-	+	ND	NA NA	_			+			4	NA NA			0.56		1				NA NA
PCB180 PCB183	0.5		ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	0.56 ND	0.68 ND	0.53 ND	ND ND	0.59 NA	0.1 NA	NA NA
																									
PCB184 PCB187	0.5		ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA
PCB189	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB194	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB195	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB193	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA	NA NA
PCB201	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA	NA
PCB203	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA	ND	ND	ND	ND	ND	NA NA	NA	NA
PCB206	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA	NA
PCB209	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA	ND	ND	ND	ND	ND	NA NA	NA	NA
Total PCB Congeners	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	9.22	7.77	12.76	9.07	11.20	10.00	1.76	< 0.05	13.47	15.13	20.72	12.25	10.95	14.50	3.40	< 0.05
a FDA action limits are reported in wet w		1										.2	2.01			0	. 5.00					. 2.00		2.10	. 5.00

^a FDA action limits are reported in wet weight.

RL = reporting limit

ND = not detected

^b One-tailed unpaired t-tests were performed

Appendix Table E-8. Summary of PCB Concentrations in Worm Tissues Following the 28-Day Bioaccumulation Exposure - YTI Terminal Nereis virens

					Reference]				Composite A	4							Composite	В				
Analyte (µg/kg wet weight)	RL	FDA ^a	9C	12C	4C	6C	10C	Mean	Std. Dev.	7C	5C	11C	14C	13C	Mean	Std. Dev.	p-value ^b	8C	2C	1C	3C	15C	Mean	Std. Dev.	p-value ^b
PCB003	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB008	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB018	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	0.69	ND	0.69	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB028	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	0.57	0.62	0.64	0.61	0.04	NA	ND	0.52	ND	ND	ND	0.52	NA	NA
PCB031	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB033	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB037	0.5		ND	ND	ND	ND	ND	NA	NA	0.51	ND	0.75	0.56	ND	0.61	0.13	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB044	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	0.53	ND	0.63	0.55	ND	0.57	0.05	NA	ND	0.55	ND 0.54	ND	ND	0.55	NA 0.44	NA
PCB049	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND 4.0	ND 4.5	0.57	ND 4.7	ND 4.0	0.57	NA 0.00	NA	ND	0.73	0.51	ND 0.00	0.65	0.63	0.11	NA NA
PCB052	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	1.8	1.5	2.1	1.7	1.6	1.74	0.23	NA	1.1	1.3	0.89	0.66	1.4	1.07	0.30	NA NA
PCB056 PCB060	0.5 0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND 0.00	ND	ND 0.00	ND 0.00	ND	NA 0.00	NA 0.04	NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB060 PCB066	0.5		ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	0.66 0.73	ND 0.62	0.69 0.79	0.62	ND 0.72	0.66 0.73	0.04	NA NA	ND 0.5	ND 0.87	ND 0.58	ND 0.58	ND 0.63	NA 0.63	NA 0.14	NA NA
PCB070	0.5		ND ND	ND	ND	ND ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA	NA	NA NA	ND	ND	ND	ND	ND	NA	NA	NA NA
PCB070	0.5		ND	ND	ND	ND ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND ND	NA NA	NA NA	NA NA	ND	ND	ND ND	ND	ND	NA NA	NA NA	NA NA
PCB074 PCB077	0.5		ND	ND	ND	ND ND	ND	NA NA	NA NA	ND	ND ND	ND	ND	ND ND	NA NA	NA NA	NA NA	ND	ND	ND ND	ND	ND	NA NA	NA NA	NA NA
PCB077	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND ND	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB087	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND ND	NA NA	NA NA	NA NA	ND	ND	ND ND	ND	ND	NA NA	NA NA	NA NA
PCB095	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	1.5	1.2	1.3	1.4	1.2	1.32	0.13	NA	1.2	1.7	1.3	1.2	1.6	1.40	0.23	NA
PCB097	0.5		ND	ND	ND	ND	ND	NA	NA	0.57	ND	0.53	ND	ND	0.55	0.03	NA	ND	0.56	ND	ND	0.69	0.63	0.09	NA
PCB099	0.5		ND	ND	ND	ND	ND	NA	NA	0.67	ND	0.71	0.69	0.64	0.68	0.03	NA	0.7	0.88	0.62	0.6	1.2	0.80	0.25	NA
PCB101	0.5		ND	ND	ND	ND	ND	NA	NA	1.8	1.3	2.1	1.8	1.5	1.70	0.31	NA	1.7	2.1	1.5	1.5	3.8	2.12	0.97	NA
PCB105	0.5		ND	ND	ND	ND	ND	NA	NA	0.53	ND	0.57	0.56	0.58	0.56	0.02	NA	ND	0.67	0.53	ND	0.85	0.68	0.16	NA
PCB110	0.5		ND	ND	ND	ND	ND	NA	NA	1.6	0.95	1.7	1.7	1.2	1.43	0.34	NA	1.2	1.3	1.1	0.95	1.5	1.21	0.21	NA
PCB114	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB118	0.5		ND	ND	ND	ND	ND	NA	NA	1	0.88	0.82	0.87	0.78	0.87	0.08	NA	0.81	1.5	0.94	0.87	1.2	1.06	0.29	NA
PCB119	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB123	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB126	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB128	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB132	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB138/158	1.0		ND	ND	ND	ND	ND	NA	NA	1.7	1.3	1.3	1.3	1.2	1.36	0.19	NA	1.6	2.4	1.6	1.6	2.2	1.88	0.39	NA
PCB141	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB149	0.5		ND	ND	ND	ND	ND	NA	NA	1	0.85	0.91	1	0.91	0.93	0.07	NA	1	1.8	1.2	1.1	1.7	1.36	0.36	NA
PCB151	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	0.51	ND	0.51	NA	NA	0.55	0.54	0.64	0.57	0.72	0.60	0.08	NA
PCB153	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	2.2	1.7	1.9	1.9	1.7	1.88	0.20	NA	2.3	2.9	2.2	2.1	5.5	3.00	1.43	NA
PCB156	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA NA	NA	NA	ND	ND	ND	ND	ND	NA NA	NA	NA
PCB157	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA
PCB167 PCB168	0.5 0.5		ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA
PCB169	0.5		ND ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND ND	ND ND	ND	ND ND	NA NA	NA NA	NA NA	ND	ND	ND ND	ND	ND ND	NA NA	NA NA	NA NA
PCB169 PCB170	0.5		ND ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND ND	ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	0.54	ND ND	ND ND	ND ND	0.54	NA NA	NA NA
PCB174	0.5		ND ND	ND	ND	ND ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND ND	NA NA	NA NA	NA NA	ND	ND	ND ND	ND	ND	NA	NA NA	NA NA
PCB177	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA	ND	ND	ND	ND	ND	NA NA	NA	NA NA
PCB180	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	0.68	0.55	ND	ND	ND	0.62	0.09	NA	0.62	1.2	0.75	0.61	0.67	0.77	0.25	NA
PCB183	0.5		ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA NA
PCB184	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB187	0.5		ND	ND	ND	ND	ND	NA	NA	0.72	0.51	0.59	0.58	0.52	0.58	0.08	NA	0.66	1	0.65	0.66	1.1	0.81	0.22	NA
PCB189	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB194	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB195	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB200	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB201	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB203	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB206	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
PCB209	0.5		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Total PCB Congeners	0.5		ND	ND	ND	ND	ND	NA	NA	18.20	11.36	18.53	17.82	13.19	15.82	2.96	< 0.05	13.94	23.06	15.01	13.00	25.41	18.08	5.12	< 0.05

^a FDA action limits are reported in wet weight.

RL = reporting limit

ND = not detected

^b One-tailed unpaired t-tests were performed

Appendix Table E-9. Summary of Pesticide Concentrations in Clam Tissues Following the 28-Day Bioaccumulation Exposure - YTI Terminal

Macoma nasuta

					Reference							Composite	A						1	Composite	В				
Analyte (µg/kg wet weight)	RL	FDAª	9C	12C	4C	6C	10C	Mean	Std. Dev.	7C	5C	11C	14C	13C	Mean	Std. Dev.	p-value ^b	8C	2C	1C	3C	15C	Mean	Std. Dev.	p-value ^b
2,4'-DDD	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2,4'-DDE	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2,4'-DDT	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
4,4'-DDD	1.0	5000	ND	ND	ND	ND	ND	NA	NA	1.1	ND	1.5	ND	ND	1.30	0.28	> 0.05	ND	ND	ND	ND	ND	NA	NA	NA
4,4'-DDE	1.0	5000	8.9	4.3	10	9.8	12	9	3	6	5.5	7.3	6.5	7.1	6.48	0.75	0.047	11	11	12	10	11	11.00	0.71	0.08
4,4'-DDT	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Aldrin	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Alpha Chlordane	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Alpha-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Beta-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Delta-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Dieldrin	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endosulfan I	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endosulfan II	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endosulfan Sulfate	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endrin	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endrin Aldehyde	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endrin Ketone	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Gamma Chlordane	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Gamma-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Heptachlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Heptachlor Epoxide	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Methoxychlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Chlordane	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Cis-nonachlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Toxaphene	25		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Trans-nonachlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Oxychlordane	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA

^a FDA action limits are reported in wet weight.

^bOne-tailed unpaired t-tests were performed

RL = reporting limit

ND = not detected

NA = not applicable

Appendix Table E-10. Summary of Pesticide Concentrations in Worm Tissues Following the 28-Day Bioaccumulation Exposure - YTI Terminal Nereis virens

					Reference]				Composite	A							Composite	В]		
Analyte (µg/kg wet weight)	RL	FDA ^a	9W	12W	4W	6W	10W	Mean	Std. Dev.	7W	5W	11W	14W	13W	Mean	Std. Dev.	p-value ^b	8W	2W	1W	3W	15W	Mean	Std. Dev.	p-value ^b
2,4'-DDD	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2,4'-DDE	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
2,4'-DDT	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
4,4'-DDD	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
4,4'-DDE	1.0	5000	1.7	ND	1.7	1.2	1.9	1.63	0.30	3.2	2.7	3.6	3	2.7	3.04	0.38	0.00010	2.7	4.7	3.8	3	3.4	3.52	0.78	0.0004
4,4'-DDT	1.0	5000	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	4.7	ND	ND	ND	4.70	NA	NA
Aldrin	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Alpha Chlordane	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Alpha-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Beta-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Delta-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Dieldrin	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endosulfan I	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endosulfan II	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endosulfan Sulfate	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endrin	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endrin Aldehyde	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Endrin Ketone	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Gamma Chlordane	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Gamma-BHC	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Heptachlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Heptachlor Epoxide	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Methoxychlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Chlordane	10		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Cis-nonachlor	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Toxaphene	25		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA
Trans-nonachlor	1.0		ND	ND	ND	ND	ND	NA	NA	1	ND	ND	ND	ND	1.00	NA	> 0.05	1.2	ND	ND	ND	ND	1.20	NA	> 0.05
Oxychlordane	1.0		ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA

^a FDA action limits are reported in wet weight.

^bOne-tailed unpaired t-tests were performed

RL = reporting limit

ND = not detected

NA = not applicable

CALSCIENCE

WORK ORDER NUMBER: 13-08-0936

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Berths 212-224 YTI Terminal

Attention: Barry Snyder

9210 Ský Park Court, Suite 200 San Diego, CA 92123-4302

ResultLink >

Email your PM >

Danilla ponce

Approved for release on 08/29/2013 by: Danielle Gonsman Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Berths 212-224 YTI Terminal

Work Order Number: 13-08-0936

1	Case Narrative	3
2	Work Order Narrative	5
3	Sample Summary	6
4	Client Sample Data. 4.1 SM 2540 B (M) Total Solids (Soil). 4.2 % Lipids via MeCl2 Ext. (NOAA 1993a) (Soil). 4.3 EPA 6020 ICP/MS Metals (Soil). 4.4 EPA 7471A Mercury (Soil). 4.5 EPA 8081A Organochlorine Pesticides (Soil). 4.6 EPA 8270C SIM PAHs (Soil). 4.7 EPA 8270C SIM PCB Congeners (Soil).	7 11 15 26 30 71
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 PDS/PDSD. 5.3 Sample Duplicate. 5.4 LCS/LCSD.	167 167 174 177 181
6	Glossary of Terms and Qualifiers	191
7	Chain of Custody/Sample Receipt Form	192

CASE NARRATIVE

Calscience Work Order No.: 13-08-0936
Project ID: Berths 212-224 YTI Terminal

Provided below is a narrative of our analytical effort, including any unique features or anomalies encountered as part of the analysis of the tissue samples.

Sample Condition on Receipt

Thirty tissue samples were received for this project on August 13, 2013. The samples were transferred to the laboratory in an ice-chest with wet ice, following strict chain-of-custody (COC) procedures. The temperature of the sample upon receipt at the laboratory was 1.4°C. All samples were logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers and then stored in refrigeration units pending chemistry.

COC discrepancies (if any) were noted in the Sample Anomaly Form.

Sample Preparation

The tissue samples were thawed and homogenized using a stainless steel blending device. The homogenization unit was thoroughly cleaned between the tissue samples. Samples were composited according the client's instructions listed on the COC.

After extractions, the tissue extracts were subjected to appropriate clean-up procedures. The samples were then analyzed in accordance with the instructions listed on the Chain of Custody for the following methods:

Total Solids by SM 2540B
Percent Lipids by MeCl2 Ext (NOAA 1993a)
Trace Metals by EPA 6020/7471
Chlorinated Pesticides by EPA 8081A
PCB Congeners by EPA 8270C SIM
PAHs by EPA 8270C SIM

Data Summary

Holding times

All holding times were met.

Blanks

Concentrations of target analytes in the method blank were found to be below reporting limits for all testing.

Reporting Limits

The Method Detection Limits were met.

Laboratory Control Samples

A Laboratory Control Sample (LCS) analysis was performed for each applicable test. All parameters were within established control limits with the following exception.

The Acenaphthene recovery was outside of standard control limits. However, the recovery was within the ME limits, therefore the results are released with no further action.

Matrix Spikes

Matrix spiking was performed at the required frequencies for the tissues on project and non-project samples. All matrix spike parameters outside the acceptable control limits were noted below.

For Metals by EPA 6020, in one QC batch, the Zinc MSD recovery was above the control limits. In the second QC batch, the Copper and Silver MS/MSDs were outside the control limits and the Zinc sample concentration was over four times the spike level so the recovery could not be determined. Since all LCS/LCSD recoveries were acceptable, the data is released.

For Mercury by EPA 7471A, the recoveries in one MS/MSD pair was low outside of acceptance limits. The other MS/MSD pair was within acceptance limits and the LCS/LCSD recoveries were within acceptance limits.

Several of the Chlorinated Pesticides (by EPA 8081A) matrix spike and/or matrix spike duplicate recoveries were outside of acceptance limits. Since the LCS/LCSD recoveries were acceptable, the data is released.

Surrogates

Surrogate recoveries for all applicable tests and samples were within acceptable control limits.

Acronyms

LCS - Laboratory Control Sample
PDS - Post Digestion Spike
MS/MSD- Matrix Spike/Matrix Spike Duplicate
ME-Marginal Exceedance
RPD- Relative Percent Difference

Work Order Narrative

Work Order: 13-08-0936 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 08/13/13. They were assigned to Work Order 13-08-0936.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Work Order: Project Name:

13-08-0936 Berths 212-224 YTI Terminal

PO Number:

Date/Time Received:

08/13/13 18:50

Number of

Containers:

30

Attn: Barry Snyder

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
1C	13-08-0936-1	08/10/13 15:00	1	Tissue
2C	13-08-0936-2	08/10/13 15:00	1	Tissue
3C	13-08-0936-3	08/10/13 15:00	1	Tissue
4C	13-08-0936-4	08/10/13 15:00	1	Tissue
5C	13-08-0936-5	08/10/13 15:00	1	Tissue
6C	13-08-0936-6	08/10/13 15:00	1	Tissue
7C	13-08-0936-7	08/10/13 15:00	1	Tissue
8C	13-08-0936-8	08/10/13 15:00	1	Tissue
9C	13-08-0936-9	08/10/13 15:00	1	Tissue
10C	13-08-0936-10	08/10/13 15:00	1	Tissue
11C	13-08-0936-11	08/10/13 15:00	1	Tissue
12C	13-08-0936-12	08/10/13 15:00	1	Tissue
13C	13-08-0936-13	08/10/13 15:00	1	Tissue
14C	13-08-0936-14	08/10/13 15:00	1	Tissue
15C	13-08-0936-15	08/10/13 15:00	1	Tissue
1W	13-08-0936-16	08/10/13 13:00	1	Tissue
2W	13-08-0936-17	08/10/13 13:00	1	Tissue
3W	13-08-0936-18	08/10/13 13:00	1	Tissue
4W	13-08-0936-19	08/10/13 13:00	1	Tissue
5W	13-08-0936-20	08/10/13 13:00	1	Tissue
6W	13-08-0936-21	08/10/13 13:00	1	Tissue
7W	13-08-0936-22	08/10/13 13:00	1	Tissue
8W	13-08-0936-23	08/10/13 13:00	1	Tissue
9W	13-08-0936-24	08/10/13 13:00	1	Tissue
10W	13-08-0936-25	08/10/13 13:00	1	Tissue
11W	13-08-0936-26	08/10/13 13:00	1	Tissue
12W	13-08-0936-27	08/10/13 13:00	1	Tissue
13W	13-08-0936-28	08/10/13 13:00	1	Tissue
14W	13-08-0936-29	08/10/13 13:00	1	Tissue
15W	13-08-0936-30	08/10/13 13:00	1	Tissue

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

N/A SM 2540 B (M)

Units:

Project: Berths 212-224 YTI Terminal

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB3
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		14.3	().100	1		
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		14.3	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		14.1	(0.100	1		
Parameter	·	Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		12.8	(0.100	1		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		13.8	().100	1		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		14.8	().100	1		
			·				
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		13.7	().100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		15.9	(0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

N/A SM 2540 B (M)

Units:

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB3
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		15.4	C).100	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		14.5	C).100	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		14.0	C).100	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		13.7		0.100	1		
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		13.7	C).100	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		15.0	C).100	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		14.0		0.100	1		
<u>Parameter</u>		Result	F	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		16.2		0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:

08/13/13

Work Order: Preparation:

13-08-0936 N/A

Method:

SM 2540 B (M)

Units:

%

Project: Berths 212-224 YTI Terminal

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB3
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		17.1	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		17.1	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		17.6	(0.100	1		
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	lifiers
Solids, Total		16.3	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		15.3	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		19.5	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		17.1	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Solids, Total		16.4		0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

N/A

Method:

SM 2540 B (M)

Units:

0/

Project: Berths 212-224 YTI Terminal

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-A	08/10/13 13:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB4
<u>Parameter</u>	·	Result	<u>F</u>	<u> </u>	DF	<u>Qualifiers</u>	
Solids, Total		15.4	C).100	1		
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		16.9	C).100	1		
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		16.2	C).100	1		
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		16.7	C).100	1		
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		17.1	C).100	1		
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		16.9	C).100	1		
<u>Parameter</u>		Result	E	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		ND	C).100	1		
<u>Parameter</u>		Result	<u>F</u>	<u> २८</u>	<u>DF</u>	Qua	alifiers
Solids, Total		ND	C	0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

Work Order:

13-08-0936

N/A

Preparation: Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Project: Berths 212-224 YTI Terminal

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	N/A	N/A	08/22/13 12:00	130822B01
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.57	0	.10	1		
<u>Parameter</u>		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.60	0	.10	1		
<u>Parameter</u>		Result	<u> </u>	 <u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		0.61		.10	1		
<u>Parameter</u>		Result		 <u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.71		0.10	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.50	0	.10	1		
<u>Parameter</u>		Result	<u> </u>	 <u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.65		.10	1		
<u>Parameter</u>		Result	<u> </u>	 <u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		0.44		.10	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
% Lipids		0.55	0	.10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

Work Order: Preparation: 13-08-0936

N/A

Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	N/A	N/A	08/22/13 12:00	130822B01
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.60	0	.10	1		
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.62	0	.10	1		
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.55	0	.10	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.28		.10	1		
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.53	0	.10	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.50	0	.10	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		0.47		.10	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	DF	Qua	alifiers
% Lipids		1.6	0	.10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

Work Order: Preparation: 13-08-0936

N/A

Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Project: Berths 212-224 YTI Terminal

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	N/A	N/A	08/22/13 12:00	130822B01
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
% Lipids		1.8	(0.10	1		
<u>Parameter</u>		Result		<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
% Lipids		1.6	(0.10	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	DF	Qua	lifiers
% Lipids		1.5	().10	1		
<u>Parameter</u>		Result	<u>_</u>	<u> </u>	DF	Qua	lifiers
% Lipids		1.4	().10	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
% Lipids		1.2	().10	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	DF	Qua	lifiers
% Lipids		1.3	().10	1		
<u>Parameter</u>		Result		 <u>२L</u>	<u>DF</u>	Qua	<u>llifiers</u>
% Lipids		1.5		0.10	1		
Parameter		Result	<u>_</u>	<u> </u>	<u>DF</u>	Qua	alifiers
% Lipids		1.4	(0.10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

Work Order:

13-08-0936

N/A

Preparation: Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Project: Berths 212-224 YTI Terminal

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	N/A	N/A	08/22/13 12:00	130822B02
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.4	C).10	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		1.5	C).10	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.1	C).10	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.3	C).10	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.4	C).10	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.8	C).10	1		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
% Lipids		ND).10	1		
<u>Parameter</u>		Result	E	<u> </u>	<u>DF</u>	Qua	alifiers
% Lipids		ND	C).10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Project: Berths 212-224 YTI Terminal

Page 1 of 11

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 20:44	130815L01T
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Arsenic		3.21	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		1.06	0	.0200	1		
Copper		2.19	0	.100	1		
Lead		0.439	0	.100	1		
Nickel		0.914	0	.100	1		
Selenium		0.326	0	.100	1		
Silver		ND	0	.100	1		
Zinc		14.1	1	.00	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	<u>llifiers</u>
Arsenic		2.48	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.392	0	.0200	1		
Copper		2.09	0	.100	1		
Lead		0.462	0	.100	1		
Nickel		0.527	0	.100	1		
Selenium		0.312	0	.100	1		
Silver		ND	0	.100	1		
Zinc		12.5	1	.00	1		
<u>Parameter</u>		Result	<u>F</u>	R <u>L</u>	DF	Qua	<u>llifiers</u>
Arsenic		2.68	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.417	0	.0200	1		
Copper		1.95	0	.100	1		
Lead		0.357	0	.100	1		
Nickel		0.443	0	.100	1		
Selenium		0.236	0	.100	1		
Silver		ND	0	.100	1		
Zinc		13.2	1	.00	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Units:

mg/kg Page 2 of 11

Project: Berths 212-224 YTI Terminal

T: 00 D / 1 ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 20:53	130815L01T
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	lifiers
Arsenic		2.21	0.	.100	1		
Cadmium		ND	0.	100	1		
Chromium		0.163	0.	.0200	1		
Copper		1.39	0.	100	1		
Lead		0.138	0.	.100	1		
Nickel		0.376	0.	.100	1		
Selenium		0.264	0.	.100	1		
Silver		ND	0.	.100	1		
Zinc		11.4		.00	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.39	0.	.100	1		
Cadmium		ND	0.	.100	1		
Chromium		0.227	0.	.0200	1		
Copper		1.78	0.	.100	1		
Lead		0.313	0.	.100	1		
Nickel		0.350	0.	.100	1		
Selenium		0.192	0.	.100	1		
Silver		ND	0.	.100	1		
Zinc		12.8		.00	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
Arsenic		2.50	0.	.100	1		
Cadmium		ND	0.	.100	1		
Chromium		0.223	0.	.0200	1		
Copper		1.37	0.	.100	1		
Lead		0.144	0.	.100	1		
Nickel		0.410	0.	.100	1		
Selenium		0.262		.100	1		
Silver		ND		.100	1		
				.00			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Project: Berths 212-224 YTI Terminal

Page 3 of 11

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C	13-08-0936-7-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:02	130815L01T
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.54	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.181	0	.0200	1		
Copper		1.66	0	.100	1		
Lead		0.284	0	.100	1		
Nickel		0.305	0	.100	1		
Selenium		0.226	0	.100	1		
Silver		ND	0	.100	1		
Zinc		12.6	1	.00	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.34	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.270	0	.0200	1		
Copper		1.73	0	.100	1		
Lead		0.288	0	.100	1		
Nickel		0.403	0	.100	1		
Selenium		0.317	0	.100	1		
Silver		ND	0	.100	1		
Zinc		11.2	1	.00	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.65	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.173	0	.0200	1		
Copper		1.50	0	.100	1		
Lead		0.161	0	.100	1		
Nickel		0.377	0	.100	1		
Selenium		0.289	0	.100	1		
Silver		ND	0	.100	1		
Zinc		12.4	1	.00	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Units:

mg/kg Page 4 of 11

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:11	130815L01T
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	DF Qualifiers	
Arsenic		2.60	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.201	0	.0200	1		
Copper		1.62	0	.100	1		
Lead		0.172	0	.100	1		
Nickel		0.398	0	.100	1		
Selenium		0.276	0	.100	1		
Silver		ND	0	.100	1		
Zinc		11.6	1	.00	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.26	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.194	0	.0200	1		
Copper		1.51	0	.100	1		
Lead		0.306	0	.100	1		
Nickel		0.287	0	.100	1		
Selenium		0.226	0	.100	1		
Silver		ND	0	.100	1		
Zinc		11.5	1	.00	1		
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.15	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.158	0	.0200	1		
Copper		1.49	0	.100	1		
Lead		0.146	0	.100	1		
Nickel		0.334	0	.100	1		
Selenium		0.228	0	.100	1		
Silver		ND	0	.100	1		
Zinc		9.62		.00	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 5 of 11

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C	13-08-0936-13-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:26	130815L01T
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.51	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.242	0	.0200	1		
Copper		1.76	0	.100	1		
Lead		0.360	0	.100	1		
Nickel		0.372	0	.100	1		
Selenium		0.252	0	.100	1		
Silver		ND	0	.100	1		
Zinc		12.3	1	.00	1		
<u>Parameter</u>		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.80	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.185	0	.0200	1		
Copper		1.73	0	.100	1		
Lead		0.293	0	.100	1		
Nickel		0.388	0	.100	1		
Selenium		0.202	0	.100	1		
Silver		ND	0	.100	1		
Zinc		12.3	1	.00	1		
<u>Parameter</u>		Result		RL	DF	Qua	alifiers
Arsenic		2.39	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.268	0	.0200	1		
Copper		1.81	0	.100	1		
Lead		0.343	0	.100	1		
Nickel		0.339	0	.100	1		
Selenium		0.217	0	.100	1		
Silver		ND	0	.100	1		
Zinc		12.0	1	.00	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3050B EPA 6020 mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 6 of 11

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1W	13-08-0936-16-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:35	130815L01T
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.58	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		1.08	C	0.0200	1		
Copper		1.81	C	0.100	1		
Lead		ND	C	.100	1		
Nickel		0.855	C	.100	1		
Selenium		0.338	C).100	1		
Silver		ND	C	0.100	1		
Zinc		30.6	1	.00	1		
<u>Parameter</u>		Result		<u>RL</u>	DF	Qua	alifiers
Arsenic		2.55	C).100	1		
Cadmium		ND	C).100	1		
Chromium		0.350	C	0.0200	1		
Copper		1.73	C	0.100	1		
Lead		ND	C	0.100	1		
Nickel		0.307	C	0.100	1		
Selenium		0.375	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		12.6	1	.00	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
Arsenic		2.26	C).100	1		
Cadmium		ND	C).100	1		
Chromium		0.441	C	0.0200	1		
Copper		1.57	C).100	1		
Lead		ND	C).100	1		
Nickel		0.366	C	0.100	1		
Selenium		0.295	C	0.100	1		
Silver		ND	C	0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Units:

Page 7 of 11

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W	13-08-0936-19-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:44	130815L01T
Parameter		Result	E	<u> </u>	<u>DF</u>	Qua	alifiers
Arsenic		2.32	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.171	C	0.0200	1		
Copper		1.30	C	0.100	1		
Lead		ND	C	.100	1		
Nickel		0.256	C	0.100	1		
Selenium		0.320	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		25.2		.00	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Arsenic		2.03	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.243	C	0.0200	1		
Copper		1.38	C	0.100	1		
Lead		ND	C	0.100	1		
Nickel		0.242	C	.100	1		
Selenium		0.295	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		25.8	1	.00	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Arsenic		2.40	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.186	C	0.0200	1		
Copper		1.31	C	.100	1		
Lead		ND		0.100	1		
Nickel		0.320	C	0.100	1		
Selenium		0.304		0.100	1		
Silver		ND		0.100	1		
Zinc		24.7	1	.00	1		

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020 mg/kg

08/13/13

Units:

Page 8 of 11

Project: Berths 212-224 YTI Terminal

Cadmium

Chromium

Copper

Lead

Nickel

Selenium

							-
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7W	13-08-0936-22-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:13	130815L02T
Parameter		Result	R	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Arsenic		1.90	0	.100	1		
Cadmium		ND	0	.100	1		
Chromium		0.128	0	.0200	1		
Copper		1.51	0	.100	1		
Lead		ND	0	.100	1		
Nickel		0.228	0	.100	1		
Selenium		0.239	0	.100	1		
Silver		ND	0	.100	1		
Zinc		15.4	1	.00	1		
Parameter		Result	R	<u>kL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Arsenic		2.39	0	.100	1		

0.100

0.0200

0.100

0.100

0.100

0.100

ND

0.199

1.65

ND

0.315

0.252

Silver	ND	0.100	1	
Zinc	30.6	1.00	1	
<u>Parameter</u>	Result	<u>RL</u>	DF	Qualifiers
Arsenic	2.23	0.100	1	
Cadmium	ND	0.100	1	
Chromium	0.132	0.0200	1	
Copper	1.29	0.100	1	
Lead	ND	0.100	1	
Nickel	0.293	0.100	1	
Selenium	0.187	0.100	1	
Silver	ND	0.100	1	
Zinc	16.1	1.00	1	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Units:

Page 9 of 11

Project: Berths 212-224 YTI Terminal

Project: Berths 212-224 YT	T Terminal					Pa	ige 9 of 11
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:22	130815L02T
<u>Parameter</u>	·	Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Arsenic		2.02	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.0938	C	0.0200	1		
Copper		1.24	C	0.100	1		
Lead		ND	C	0.100	1		
Nickel		0.243	C	0.100	1		
Selenium		0.285	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		14.2	1	.00	1		
Parameter Arsenic Cadmium Chromium Copper		Result 2.05 ND 0.297 1.42	0 0	R <u>L</u> 0.100 0.100 0.0200 0.100	<u>DF</u> 1 1 1	Qua	alifier <u>s</u>
Lead		ND		0.100	1		
Nickel		0.305).100	1		
Selenium		0.221).100	1		
Silver		ND		0.100	1		
Zinc		11.5		.00	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers

Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic	2.17	0.100	1	
Cadmium	ND	0.100	1	
Chromium	0.230	0.0200	1	
Copper	1.25	0.100	1	
Lead	ND	0.100	1	
Nickel	0.266	0.100	1	
Selenium	0.266	0.100	1	
Silver	ND	0.100	1	
Zinc	35.4	1.00	1	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3050B EPA 6020

08/13/13

mg/kg

Project: Berths 212-224 YTI Terminal

Page 10 of 11

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13W	13-08-0936-28-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:31	130815L02T
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Arsenic		2.31	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.157	C	0.0200	1		
Copper		1.33	C	0.100	1		
Lead		ND	C	0.100	1		
Nickel		0.250	C	0.100	1		
Selenium		0.258	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		10.9	1	.00	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Arsenic		2.17	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.106	C	0.0200	1		
Copper		1.31	C).100	1		
Lead		ND	C).100	1		
Nickel		0.207	C).100	1		
Selenium		0.229	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		18.9	1	.00	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
Arsenic		2.13	C	0.100	1		
Cadmium		ND	C	0.100	1		
Chromium		0.120	C	0.0200	1		
Copper		1.60		0.100	1		
Lead		ND	C	0.100	1		
Nickel		0.196	C	0.100	1		
Selenium		0.207	C	0.100	1		
Silver		ND	C	0.100	1		
Zinc		21.2	1	.00	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020 mg/kg

08/13/13

Units:

Page 11 of 11

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-258-20	N/A	Soil	ICP/MS 03	08/15/13	08/16/13 19:59	130815L01T
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qual	<u>ifiers</u>
Arsenic		ND		0.100	1		
Cadmium		ND		0.100	1		
Chromium		ND		0.0200	1		
Copper		ND		0.100	1		
Lead		ND		0.100	1		
Nickel		ND		0.100	1		
Selenium		ND		0.100	1		
Silver		ND		0.100	1		
Zinc		ND		1.00	1		

<u>Parameter</u>	Result	<u>RL</u>	DF	Qualifiers
Arsenic	ND	0.100	1	
Cadmium	ND	0.100	1	
Chromium	ND	0.0200	1	
Copper	ND	0.100	1	
Lead	ND	0.100	1	
Nickel	ND	0.100	1	
Selenium	ND	0.100	1	
Silver	ND	0.100	1	
Zinc	ND	1.00	1	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	Mercury	08/15/13	08/19/13 17:28	130815L05T
<u>Parameter</u>	·	Result	<u> </u>	<u>RL</u>	DF	Qualifiers	
Mercury		ND	(0.00958			
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	(0.00958	0.599		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u>_</u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	C	0.00958	0.599		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	Mercury	08/15/13	08/19/13 17:55	130815L05T
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qualifiers	
Mercury		ND	(0.00958			
<u>Parameter</u>		Result	<u> 1</u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u>[</u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u>₹L</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.00958	0.599		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	Mercury	08/15/13	08/19/13 18:12	130815L05T
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Mercury		ND	0.00958		0.599		
Parameter		Result	<u>[</u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u>_</u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Mercury		ND	(0.00958	0.599		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	Mercury	08/15/13	08/19/13 18:39	130815L06T
Parameter		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Mercury		ND	0.00958		0.599		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	lifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	(0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	C	0.00958	0.599		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 1 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:09	130816F05
<u>Parameter</u>		Result	RI	<u> </u>	<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.	0	0.5		
2,4'-DDE		ND	1.	0	0.5		
2,4'-DDT		ND	1.	0	0.5		
4,4'-DDD		ND	1.	0	0.5		
4,4'-DDT		ND	1.	0	0.5		
Aldrin		ND	1.	0	0.5		
Alpha Chlordane		ND	1.	0	0.5		
Alpha-BHC		ND	1.	0	0.5		
Beta-BHC		ND	1.	0	0.5		
Delta-BHC		ND	1.	0	0.5		
Dieldrin		ND	1.	0	0.5		
Endosulfan I		ND	1.	0	0.5		
Endosulfan II		ND	1.	0	0.5		
Endosulfan Sulfate		ND	1.	0	0.5		
Endrin		ND	1.	0	0.5		
Endrin Aldehyde		ND	1.	0	0.5		
Endrin Ketone		ND	1.	0	0.5		
Gamma Chlordane		ND	1.	0	0.5		
Gamma-BHC		ND	1.	0	0.5		
Heptachlor		ND	1.	0	0.5		
Heptachlor Epoxide		ND	1.	0	0.5		
Methoxychlor		ND	1.	0	0.5		
Chlordane		ND	10)	0.5		
Cis-nonachlor		ND	1.	0	0.5		
Toxaphene		ND	25	5	0.5		
Trans-nonachlor		ND	1.	0	0.5		
Oxychlordane		ND	1.	0	0.5		
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		

RL: Reporting Limit.

2,4,5,6-Tetrachloro-m-Xylene

Dibutylchlorendate

DF: Dilution Factor.

MDL: Method Detection Limit.

50-135

50-135

89

79

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 2 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10	13-08-0936-1-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 21:25	130816F05
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		12	5	.0	2.5		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		96	5	0-135			
Dibutylchlorendate		79	5	0-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Units:

Page 3 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:23	130816F05
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

RL: Reporting Limit. DF: Dilution Factor.

2,4,5,6-Tetrachloro-m-Xylene

Dibutylchlorendate

MDL: Method Detection Limit.

50-135

50-135

83

81

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 4 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 21:39	130816F05
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qual	lifiers
4,4'-DDE		11	2	0	1		
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		90	5	D-135			
Dibutylchlorendate		86	5	0-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Project: Berths 212-224 YTI Terminal

Page 5 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:38	130816F05
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		85	50-1	135			
Dibutylchlorendate		80	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Project: Berths 212-224 YTI Terminal

Page 6 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 21:53	130816F05
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
4,4'-DDE		10	2	2.0	1		
Surrogate		Rec. (%)	<u>(</u>	Control Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		107	5	50-135			
Dibutylchlorendate		92	5	50-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Project: Berths 212-224 YTI Terminal

Page 7 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:52	130816F05
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		88	50-	135			
Dibutylchlorendate		77	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 8 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:08	130816F05
<u>Parameter</u>		Result	<u>R</u>	<u> </u>	<u>DF</u>	Qual	<u>ifiers</u>
4,4'-DDE		10	2.	0	1		
		D (0()					
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		98	50)-135			
Dibutylchlorendate		85	50)-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 9 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5C	13-08-0936-5-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:06	130816F05
<u>Parameter</u>		Result	RL		<u>DF</u>	<u>Qualifiers</u>	
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		5.5	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Cont</u>	rol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		82	50-13	35			
Dibutylchlorendate		82	50-13	35			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 10 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:21	130816F05
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
<u>Surrogate</u>		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		85	50-	135			

RL: Reporting Limit.

Dibutylchlorendate

DF: Dilution Factor.

MDL: Method Detection Limit.

50-135

83

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 11 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:22	130816F05
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qual	lifiers
4,4'-DDE		9.8	2	.0	1		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		94	5	0-135			
Dibutylchlorendate		93	5	0-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 12 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

Lab Sample Number Date/Time Date Prepared Date/Time Client Sample Number QC Batch ID Matrix Instrument Collected Analyzed 08/23/13 15:35 7C 08/10/13 15:00 13-08-0936-7-B Tissue GC 51 08/16/13 130816F05 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 2,4'-DDD 1.0 0.5 2,4'-DDE ND 1.0 0.5 2,4'-DDT ND 1.0 0.5 4,4'-DDD 1.0 0.5 1.1 4,4'-DDE 1.0 0.5 6.0 4,4'-DDT ND 1.0 0.5 Aldrin ND 1.0 0.5 Alpha Chlordane ND 1.0 0.5 Alpha-BHC ND 1.0 0.5 Beta-BHC ND 1.0 0.5 Delta-BHC ND 1.0 0.5 Dieldrin ND 1.0 0.5 Endosulfan I ND 1.0 0.5 Endosulfan II ND 1.0 0.5 Endosulfan Sulfate ND 1.0 0.5 Endrin ND 1.0 0.5 Endrin Aldehyde ND 1.0 0.5 Endrin Ketone ND 1.0 0.5 Gamma Chlordane ND 1.0 0.5 Gamma-BHC ND 1.0 0.5 Heptachlor ND 1.0 0.5 Heptachlor Epoxide ND 0.5 1.0 Methoxychlor ND 1.0 0.5 Chlordane ND 10 0.5 Cis-nonachlor ND 1.0 0.5 Toxaphene ND 25 0.5 Trans-nonachlor ND 1.0 0.5 Oxychlordane ND 1.0 0.5

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

117

81

Qualifiers

Control Limits

50-135

50-135

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg Page 13 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:49	130816F05
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		84	50-	135			
Dibutylchlorendate		78	50-	135			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 14 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:36	130816F05
Parameter		Result	RI	=	<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		11	2.0)	1		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50	-135			
Dibutylchlorendate		86	50	-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 15 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 16:04	130816F05
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDT		ND	1.0	1	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0	1	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0	1	0.5		
Dieldrin		ND	1.0	1	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0	1	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0)	0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0)	0.5		
Heptachlor		ND	1.0)	0.5		
Heptachlor Epoxide		ND	1.0)	0.5		
Methoxychlor		ND	1.0)	0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0	1	0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0)	0.5		
Oxychlordane		ND	1.0	1	0.5		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		91	50-	135			
Dibutylchlorendate		88	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 16 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:51	130816F05
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		8.9	2	.0	1		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		97	5	0-135			
Dibutylchlorendate		97	5	0-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 17 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 16:18	130816F05
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
<u>Surrogate</u>		Rec. (%)	Cont	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		90	50-1	35			
Dibutylchlorendate		88	50-1	35			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 18 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 23:05	130816F05
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		12	2	.0	1		
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		101	5	0-135			
Dibutylchlorendate		99	5	0-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A

08/13/13

Units:

ug/kg Page 19 of 41

Project: Berths 212-224 YTI Terminal

2,4,5,6-Tetrachloro-m-Xylene

Dibutylchlorendate

Lab Sample Number Date/Time Date Prepared Date/Time Analyzed Client Sample Number QC Batch ID Matrix Instrument Collected 08/23/13 19:27 13-08-0936-11-B 08/10/13 15:00 11C Tissue GC 51 08/16/13 130816F05 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 2,4'-DDD 1.0 0.5 2,4'-DDE ND 1.0 0.5 2,4'-DDT ND 1.0 0.5 4,4'-DDD 1.5 1.0 0.5 4,4'-DDE 7.3 1.0 0.5 4,4'-DDT ND 1.0 0.5 Aldrin ND 1.0 0.5 Alpha Chlordane ND 1.0 0.5 Alpha-BHC ND 1.0 0.5 Beta-BHC ND 1.0 0.5 Delta-BHC ND 1.0 0.5 Dieldrin ND 1.0 0.5 Endosulfan I ND 1.0 0.5 Endosulfan II ND 1.0 0.5 Endosulfan Sulfate ND 1.0 0.5 Endrin ND 1.0 0.5 Endrin Aldehyde ND 1.0 0.5 Endrin Ketone ND 1.0 0.5 Gamma Chlordane ND 1.0 0.5 Gamma-BHC ND 1.0 0.5 Heptachlor ND 1.0 0.5 Heptachlor Epoxide ND 0.5 1.0 Methoxychlor ND 1.0 0.5 Chlordane ND 10 0.5 Cis-nonachlor ND 1.0 0.5 Toxaphene ND 25 0.5 Trans-nonachlor ND 1.0 0.5 Oxychlordane ND 1.0 0.5 Qualifiers Surrogate Rec. (%) **Control Limits**

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

50-135

50-135

94

93

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 20 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12C	13-08-0936-12-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 19:41	130816F05
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		4.3	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	Cont	rol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		82	50-1	35			
Dibutylchlorendate		76	50-1	35			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 21 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C	13-08-0936-13-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 10:57	130816F05
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		7.1	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
<u>Surrogate</u>		Rec. (%)	<u>Con</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		90	50-	135			
Dibutylchlorendate		70	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Units: uç
Page 22 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
14C	13-08-0936-14-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 11:11	130816F05
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		6.5	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	Qualifiers		
0.450 Tatasahlana Val			5 0	405			

RL: Reporting Limit.

2,4,5,6-Tetrachloro-m-Xylene

Dibutylchlorendate

DF: Dilution Factor.

MDL: Method Detection Limit.

94

75

50-135

50-135

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 23 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 11:26	130816F05
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135			
Dibutylchlorendate		74	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Units: ug
Page 24 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 18:25	130816F05
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
4,4'-DDE		11	2	.0	1		
Surrogate		Rec. (%)	C	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		96	_	0-135	<u>Quamitoro</u>		
• • • • • • • • • • • • • • • • • • • •			_				
Dibutylchlorendate		74	5	0-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 25 of 41

Project: Berths 212-224 YTI Terminal

/Time QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1W	13-08-0936-16-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 11:40	130816F05
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		3.8	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0)	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0)	0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		88	50-	-135			
Dibutylchlorendate		89	50-	-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 26 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 11:54	130816F05
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		4.7	1.0		0.5		
4,4'-DDT		4.7	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		88	50-	135			
Dibutylchlorendate		77	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 27 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3W	13-08-0936-18-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 12:08	130816F05
Parameter		Result	RL		DF	Qua	<u>llifiers</u>
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		3.0	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		87	50-	135			
Dibutylchlorendate		91	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Project: Berths 212-224 YTI Terminal

Page 28 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W	13-08-0936-19-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 12:23	130816F05
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		1.7	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0)	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		96	50-	-135			
Dibutylchlorendate		80	50-	-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Units:

Page 29 of 41

Project: Berths 212-224 YTI Terminal

Lab Sample Number Date/Time Date Prepared Date/Time Analyzed Client Sample Number QC Batch ID Matrix Instrument Collected 08/24/13 12:37 13-08-0936-20-B 08/10/13 13:00 5W Tissue GC 51 08/16/13 130816F05 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND 2,4'-DDD 1.0 0.5 2,4'-DDE ND 1.0 0.5 2,4'-DDT ND 1.0 0.5 4,4'-DDD ND 1.0 0.5 4,4'-DDE 1.0 0.5 2.7 4,4'-DDT ND 1.0 0.5 Aldrin ND 1.0 0.5 Alpha Chlordane ND 1.0 0.5 Alpha-BHC ND 1.0 0.5 Beta-BHC ND 1.0 0.5 Delta-BHC ND 1.0 0.5 Dieldrin ND 1.0 0.5 Endosulfan I ND 1.0 0.5 Endosulfan II ND 1.0 0.5 Endosulfan Sulfate ND 1.0 0.5 Endrin ND 1.0 0.5 Endrin Aldehyde ND 1.0 0.5 Endrin Ketone ND 1.0 0.5 Gamma Chlordane ND 1.0 0.5 Gamma-BHC ND 1.0 0.5 Heptachlor ND 1.0 0.5 Heptachlor Epoxide ND 0.5 1.0 Methoxychlor ND 1.0 0.5 Chlordane ND 10 0.5 Cis-nonachlor ND 1.0 0.5 Toxaphene ND 25 0.5 Trans-nonachlor ND 1.0 0.5 Oxychlordane ND 1.0 0.5

RL: Reporting Limit. D

2,4,5,6-Tetrachloro-m-Xylene

Surrogate

Dibutylchlorendate

DF: Dilution Factor.

MDL: Method Detection Limit.

Rec. (%)

85

71

Qualifiers

Control Limits

50-135

50-135

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Units: uç
Page 30 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6W	13-08-0936-21-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 12:51	130816F06
<u>Parameter</u>	·	Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		1.2	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0)	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0)	0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0)	0.5		
Heptachlor		ND	1.0)	0.5		
Heptachlor Epoxide		ND	1.0)	0.5		
Methoxychlor		ND	1.0)	0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0)	0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0)	0.5		
Oxychlordane		ND	1.0)	0.5		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

89

76

Control Limits

50-135

50-135

Qualifiers

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 31 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
7W	13-08-0936-22-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:06	130816F06	
Parameter		Result	<u>RL</u>		<u>DF</u>	Qualifiers		
2,4'-DDD		ND	1.0		0.5			
2,4'-DDE		ND	1.0		0.5			
2,4'-DDT		ND	1.0		0.5			
4,4'-DDD		ND	1.0		0.5			
4,4'-DDE		3.2	1.0		0.5			
4,4'-DDT		ND	1.0		0.5			
Aldrin		ND	1.0		0.5			
Alpha Chlordane		ND	1.0		0.5			
Alpha-BHC		ND	1.0		0.5			
Beta-BHC		ND	1.0		0.5			
Delta-BHC		ND	1.0		0.5			
Dieldrin		ND	1.0		0.5			
Endosulfan I		ND	1.0		0.5			
Endosulfan II		ND	1.0		0.5			
Endosulfan Sulfate		ND	1.0		0.5			
Endrin		ND	1.0		0.5			
Endrin Aldehyde		ND	1.0		0.5			
Endrin Ketone		ND	1.0		0.5			
Gamma Chlordane		ND	1.0		0.5			
Gamma-BHC		ND	1.0		0.5			
Heptachlor		ND	1.0		0.5			
Heptachlor Epoxide		ND	1.0		0.5			
Methoxychlor		ND	1.0		0.5			
Chlordane		ND	10		0.5			
Cis-nonachlor		ND	1.0		0.5			
Toxaphene		ND	25		0.5			
Trans-nonachlor		1.0	1.0		0.5			
Oxychlordane		ND	1.0		0.5			
Surrogate		Rec. (%)	<u>Con</u>	ntrol Limits	Qualifiers			
2,4,5,6-Tetrachloro-m-Xylene		103	50-	135				
Dibutylchlorendate		90	50-1	135				

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 32 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

Project: Berths 212-224 YTT Terminal							Page 32 of 41		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
8W	13-08-0936-23-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:20	130816F06		
<u>Parameter</u>	·	Result	RL	•	<u>DF</u>	Qua	lifiers		
2,4'-DDD		ND	1.0)	0.5				
2,4'-DDE		ND	1.0)	0.5				
2,4'-DDT		ND	1.0)	0.5				
4,4'-DDD		ND	1.0)	0.5				
4,4'-DDE		2.7	1.0)	0.5				
4,4'-DDT		ND	1.0)	0.5				
Aldrin		ND	1.0)	0.5				
Alpha Chlordane		ND	1.0)	0.5				
Alpha-BHC		ND	1.0)	0.5				
Beta-BHC		ND	1.0)	0.5				
Delta-BHC		ND	1.0)	0.5				
Dieldrin		ND	1.0)	0.5				
Endosulfan I		ND	1.0)	0.5				
Endosulfan II		ND	1.0)	0.5				
Endosulfan Sulfate		ND	1.0)	0.5				
Endrin		ND	1.0)	0.5				
Endrin Aldehyde		ND	1.0)	0.5				
Endrin Ketone		ND	1.0)	0.5				
Gamma Chlordane		ND	1.0)	0.5				
Gamma-BHC		ND	1.0)	0.5				
Heptachlor		ND	1.0)	0.5				
Heptachlor Epoxide		ND	1.0)	0.5				
Methoxychlor		ND	1.0)	0.5				
Chlordane		ND	10		0.5				
Cis-nonachlor		ND	1.0)	0.5				
Toxaphene		ND	25		0.5				
Trans-nonachlor		1.2	1.0		0.5				
Oxychlordane		ND	1.0		0.5				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

108

98

Control Limits

50-135

50-135

Qualifiers

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 33 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9W	13-08-0936-24-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:34	130816F06
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		1.7	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		99	50-	-135			
Dibutylchlorendate		97	50-	-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 34 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:48	130816F06	
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualifiers		
2,4'-DDD		ND	1.0		0.5			
2,4'-DDE		ND	1.0		0.5			
2,4'-DDT		ND	1.0		0.5			
4,4'-DDD		ND	1.0		0.5			
4,4'-DDE		1.9	1.0		0.5			
4,4'-DDT		ND	1.0		0.5			
Aldrin		ND	1.0		0.5			
Alpha Chlordane		ND	1.0		0.5			
Alpha-BHC		ND	1.0		0.5			
Beta-BHC		ND	1.0		0.5			
Delta-BHC		ND	1.0		0.5			
Dieldrin		ND	1.0		0.5			
Endosulfan I		ND	1.0		0.5			
Endosulfan II		ND	1.0		0.5			
Endosulfan Sulfate		ND	1.0		0.5			
Endrin		ND	1.0		0.5			
Endrin Aldehyde		ND	1.0		0.5			
Endrin Ketone		ND	1.0		0.5			
Gamma Chlordane		ND	1.0		0.5			
Gamma-BHC		ND	1.0		0.5			
Heptachlor		ND	1.0		0.5			
Heptachlor Epoxide		ND	1.0		0.5			
Methoxychlor		ND	1.0		0.5			
Chlordane		ND	10		0.5			
Cis-nonachlor		ND	1.0		0.5			
Toxaphene		ND	25		0.5			
Trans-nonachlor		ND	1.0		0.5			
Oxychlordane		ND	1.0		0.5			
Surrogate		Rec. (%)	Con	ntrol Limits	Qualifiers			
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135				
Dibutylchlorendate		85	50-	135				

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 35 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11W	13-08-0936-26-B	08/10/13 13:00	Tissue (GC 51	08/16/13	08/24/13 14:03	130816F06
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		3.6	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Conti</u>	rol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		97	50-13	35			
Dibutylchlorendate		83	50-13	35			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 36 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12W	13-08-0936-27-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:17	130816F06
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		ND	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0)	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0)	0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		83	50-	-135			
Dibutylchlorendate		67	50-	-135			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Units:

Page 37 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13W	13-08-0936-28-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:31	130816F06
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
2,4'-DDD		ND	1.0		0.5		
2,4'-DDE		ND	1.0		0.5		
2,4'-DDT		ND	1.0		0.5		
4,4'-DDD		ND	1.0		0.5		
4,4'-DDE		2.7	1.0		0.5		
4,4'-DDT		ND	1.0		0.5		
Aldrin		ND	1.0		0.5		
Alpha Chlordane		ND	1.0		0.5		
Alpha-BHC		ND	1.0		0.5		
Beta-BHC		ND	1.0		0.5		
Delta-BHC		ND	1.0		0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0		0.5		
Endosulfan II		ND	1.0		0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0		0.5		
Endrin Aldehyde		ND	1.0		0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0		0.5		
Gamma-BHC		ND	1.0		0.5		
Heptachlor		ND	1.0		0.5		
Heptachlor Epoxide		ND	1.0		0.5		
Methoxychlor		ND	1.0		0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0		0.5		
Oxychlordane		ND	1.0		0.5		
<u>Surrogate</u>		Rec. (%)	<u>Cont</u>	rol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50-13	35			
D'hart dablaman data		00	50.44	0.5			

RL: Reporting Limit.

Dibutylchlorendate

DF: Dilution Factor.

MDL: Method Detection Limit.

50-135

63

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 38 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
14W	13-08-0936-29-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:45	130816F06	
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualifiers		
2,4'-DDD		ND	1.0		0.5			
2,4'-DDE		ND	1.0		0.5			
2,4'-DDT		ND	1.0		0.5			
4,4'-DDD		ND	1.0		0.5			
4,4'-DDE		3.0	1.0		0.5			
4,4'-DDT		ND	1.0		0.5			
Aldrin		ND	1.0		0.5			
Alpha Chlordane		ND	1.0		0.5			
Alpha-BHC		ND	1.0		0.5			
Beta-BHC		ND	1.0		0.5			
Delta-BHC		ND	1.0		0.5			
Dieldrin		ND	1.0		0.5			
Endosulfan I		ND	1.0		0.5			
Endosulfan II		ND	1.0		0.5			
Endosulfan Sulfate		ND	1.0		0.5			
Endrin		ND	1.0		0.5			
Endrin Aldehyde		ND	1.0		0.5			
Endrin Ketone		ND	1.0		0.5			
Gamma Chlordane		ND	1.0		0.5			
Gamma-BHC		ND	1.0		0.5			
Heptachlor		ND	1.0		0.5			
Heptachlor Epoxide		ND	1.0		0.5			
Methoxychlor		ND	1.0		0.5			
Chlordane		ND	10		0.5			
Cis-nonachlor		ND	1.0		0.5			
Toxaphene		ND	25		0.5			
Trans-nonachlor		ND	1.0		0.5			
Oxychlordane		ND	1.0		0.5			
<u>Surrogate</u>		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers			
2,4,5,6-Tetrachloro-m-Xylene		93	50-1	135				
Dibutylchlorendate		75	50-1	135				

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 39 of 41

Project: Berths 212-224 YTI Terminal

Fime OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
15W	13-08-0936-30-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 15:00	130816F06	
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>Qualifiers</u>	
2,4'-DDD		ND	1.0		0.5			
2,4'-DDE		ND	1.0		0.5			
2,4'-DDT		ND	1.0		0.5			
4,4'-DDD		ND	1.0		0.5			
4,4'-DDE		3.4	1.0		0.5			
4,4'-DDT		ND	1.0		0.5			
Aldrin		ND	1.0		0.5			
Alpha Chlordane		ND	1.0		0.5			
Alpha-BHC		ND	1.0		0.5			
Beta-BHC		ND	1.0		0.5			
Delta-BHC		ND	1.0		0.5			
Dieldrin		ND	1.0		0.5			
Endosulfan I		ND	1.0		0.5			
Endosulfan II		ND	1.0		0.5			
Endosulfan Sulfate		ND	1.0		0.5			
Endrin		ND	1.0		0.5			
Endrin Aldehyde		ND	1.0		0.5			
Endrin Ketone		ND	1.0		0.5			
Gamma Chlordane		ND	1.0		0.5			
Gamma-BHC		ND	1.0		0.5			
Heptachlor		ND	1.0		0.5			
Heptachlor Epoxide		ND	1.0		0.5			
Methoxychlor		ND	1.0		0.5			
Chlordane		ND	10		0.5			
Cis-nonachlor		ND	1.0		0.5			
Toxaphene		ND	25		0.5			
Trans-nonachlor		ND	1.0		0.5			
Oxychlordane		ND	1.0		0.5			
Surrogate		Rec. (%)	<u>Cont</u>	trol Limits	Qualifiers			
2,4,5,6-Tetrachloro-m-Xylene		83	50-1	35				
Dibutylchlorendate		56	50-1	35				

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 40 of 41

Project: Berths 212-224 YTI Terminal

Firm a OC Datab ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-294-22	N/A	Soil	GC 51	08/16/13	08/23/13 13:55	130816F05
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		ND	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0)	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0)	0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0)	0.5		
Heptachlor		ND	1.0)	0.5		
Heptachlor Epoxide		ND	1.0)	0.5		
Methoxychlor		ND	1.0)	0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0)	0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0)	0.5		
Oxychlordane		ND	1.0)	0.5		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		105	50	-135			
Dibutylchlorendate		102	50	-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 41 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Method Blank	099-14-294-23	N/A	Soil	GC 51	08/16/13	08/24/13 10:43	130816F06		
Parameter		Result	RL	RL		Qua	Qualifiers		
2,4'-DDD		ND	1.0)	0.5				
2,4'-DDE		ND	1.0)	0.5				
2,4'-DDT		ND	1.0)	0.5				
4,4'-DDD		ND	1.0)	0.5				
4,4'-DDE		ND	1.0)	0.5				
4,4'-DDT		ND	1.0)	0.5				
Aldrin		ND	1.0)	0.5				
Alpha Chlordane		ND	1.0)	0.5				
Alpha-BHC		ND	1.0)	0.5				
Beta-BHC		ND	1.0)	0.5				
Delta-BHC		ND	1.0)	0.5				
Dieldrin		ND	1.0)	0.5				
Endosulfan I		ND	1.0)	0.5				
Endosulfan II		ND	1.0)	0.5				
Endosulfan Sulfate		ND	1.0)	0.5				
Endrin		ND	1.0)	0.5				
Endrin Aldehyde		ND	1.0)	0.5				
Endrin Ketone		ND	1.0		0.5				
Gamma Chlordane		ND	1.0		0.5				
Gamma-BHC		ND	1.0		0.5				
Heptachlor		ND	1.0		0.5				
Heptachlor Epoxide		ND	1.0		0.5				
Methoxychlor		ND	1.0)	0.5				
Chlordane		ND	10		0.5				
Cis-nonachlor		ND	1.0		0.5				
Toxaphene		ND	25		0.5				
Trans-nonachlor		ND	1.0		0.5				
Oxychlordane		ND	1.0		0.5				
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers				
2,4,5,6-Tetrachloro-m-Xylene		121	50-	-135					
Dibutylchlorendate		105	50	-135					

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg

Project: Berths 212-224 YTI Terminal Page 1 of 32 Lab Sample Number Date/Time Client Sample Number Matrix QC Batch ID Date/Time Instrument Date Prepared Collected Analyzed 08/23/13 13:27 08/10/13 15:00 1C 13-08-0936-1-B Tissue GC/MS AAA 08/16/13 130816L01 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers ND Acenaphthene 10 1 ND Acenaphthylene 10 1 ND Anthracene 10 Benzo (a) Anthracene ND 10 Benzo (a) Pyrene 30 10 Benzo (b) Fluoranthene 46 10 Benzo (e) Pyrene 30 10 Benzo (g,h,i) Perylene ND 10 Benzo (k) Fluoranthene 33 10 Biphenyl ND 10 Chrysene 12 10 Dibenz (a,h) Anthracene ND 10 2,6-Dimethylnaphthalene ND 10 Fluoranthene ND 10 Fluorene ND 10 ND Indeno (1,2,3-c,d) Pyrene 10 2-Methylnaphthalene ND 10 ND 10 1-Methylnaphthalene 1-Methylphenanthrene ND 10 Naphthalene ND 10 Perylene ND 10 Phenanthrene ND 10 Pyrene 17 10 1,6,7-Trimethylnaphthalene ND 10 Dibenzothiophene ND 10

RL: Reporting Limit.

Surrogate

2-Fluorobiphenyl

Nitrobenzene-d5

p-Terphenyl-d14

DF: Dilution Factor.

MDL: Method Detection Limit.

Rec. (%)

110

97

138

Control Limits

14-146

18-162

34-148

Qualifiers

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 2 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 13:53	130816L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		27	10		1		
Benzo (b) Fluoranthene		42	10		1		
Benzo (e) Pyrene		26	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		29	10		1		
Biphenyl		ND	10		1		
Chrysene		10	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		19	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		100	14-	146			
Nitrobenzene-d5		88	18-	162			
p-Terphenyl-d14		118	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 3 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 14:20	130816L01
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		21	10		1		
Benzo (b) Fluoranthene		35	10		1		
Benzo (e) Pyrene		22	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		26	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		15	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Coi	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		99	14-	146			
Nitrobenzene-d5		105	18-	162			
p-Terphenyl-d14		116	34-	148			

RL: Reporting Limit. DF: Dilution Factor. MDL: M

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 4 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 14:46	130816L01
<u>Parameter</u>	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		96	14-	146			
Nitrobenzene-d5		97	18-	162			
p-Terphenyl-d14		114	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg
Page 5 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5C	13-08-0936-5-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 15:12	130816L01
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		12	10		1		
Benzo (a) Pyrene		29	10		1		
Benzo (b) Fluoranthene		41	10		1		
Benzo (e) Pyrene		28	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		27	10		1		
Biphenyl		ND	10		1		
Chrysene		18	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		63	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		180	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		81	18-	162			
p-Terphenyl-d14		107	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg

Page 6 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue (GC/MS AAA	08/16/13	08/23/13 15:39	130816L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Contr	rol Limits	Qualifiers		
2-Fluorobiphenyl		111	14-14	16			
Nitrobenzene-d5		103	18-16	62			
p-Terphenyl-d14		128	34-14	48			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 7 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C	13-08-0936-7-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 18:09	130816L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		24	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		13	10		1		
Benzo (a) Pyrene		33	10		1		
Benzo (b) Fluoranthene		46	10		1		
Benzo (e) Pyrene		31	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		34	10		1		
Biphenyl		ND	10		1		
Chrysene		21	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		70	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		200	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		102	14-	146			
Nitrobenzene-d5		96	18-	162			
p-Terphenyl-d14		125	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 8 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 18:35	130816L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		23	10		1		
Benzo (b) Fluoranthene		35	10		1		
Benzo (e) Pyrene		22	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		26	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		15	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
<u>Surrogate</u>		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		95	14-	146			
Nitrobenzene-d5		86	18-	162			
p-Terphenyl-d14		115	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg
Page 9 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 19:02	130816L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Cont</u>	rol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		103	14-14	46			
Nitrobenzene-d5		119	18-16	62			
p-Terphenyl-d14		115	34-14	48			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg

Project: Berths 212-224 YTI Terminal Page 10 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 19:28	130816L01
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		106	14-	146			
Nitrobenzene-d5		114	18-	162			
p-Terphenyl-d14		120	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg
Page 11 of 32

Project: Berths 212-224 YTI Terminal

Nitrobenzene-d5

p-Terphenyl-d14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11C	13-08-0936-11-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 19:54	130816L01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		14	10		1		
Benzo (a) Anthracene		20	10		1		
Benzo (a) Pyrene		48	10		1		
Benzo (b) Fluoranthene		67	10		1		
Benzo (e) Pyrene		46	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		51	10		1		
Biphenyl		ND	10		1		
Chrysene		33	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		120	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		13	10		1		
Phenanthrene		ND	10		1		
Pyrene		310	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		122	14-	146			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

18-162

34-148

120

143

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg
Page 12 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12C	13-08-0936-12-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 20:21	130816L01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		96	14-	146			
Nitrobenzene-d5		80	18-	162			
p-Terphenyl-d14		112	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C

EPA 8270C SIM PAHs ug/kg

Project: Berths 212-224 YTI Terminal

Page 13 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C	13-08-0936-13-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 20:47	130816L01
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		12	10		1		
Benzo (a) Anthracene		18	10		1		
Benzo (a) Pyrene		44	10		1		
Benzo (b) Fluoranthene		62	10		1		
Benzo (e) Pyrene		42	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		45	10		1		
Biphenyl		ND	10		1		
Chrysene		28	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		110	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		12	10		1		
Phenanthrene		ND	10		1		
Pyrene		310	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		117	14-	146			
Nitrobenzene-d5		112	18-	162			
p-Terphenyl-d14		136	34-	148			

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 14 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14C	13-08-0936-14-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 21:13	130816L01
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		14	10		1		
Benzo (a) Pyrene		36	10		1		
Benzo (b) Fluoranthene		50	10		1		
Benzo (e) Pyrene		34	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		38	10		1		
Biphenyl		ND	10		1		
Chrysene		23	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		83	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		10	10		1		
Phenanthrene		ND	10		1		
Pyrene		230	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		111	14-	146			
Nitrobenzene-d5		109	18-	162			
p-Terphenyl-d14		127	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg
Page 15 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 21:40	130816L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		21	10		1		
Benzo (b) Fluoranthene		33	10		1		
Benzo (e) Pyrene		21	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		25	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		14	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		102	14-	146			
Nitrobenzene-d5		89	18-	162			
p-Terphenyl-d14		119	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 16 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1W	13-08-0936-16-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 22:06	130816L01
<u>Parameter</u>	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		98	14-	146			
Nitrobenzene-d5		81	18-	162			
p-Terphenyl-d14		112	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg

Project: Berths 212-224 YTI Terminal Page 17 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 22:32	130816L01
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		70	18-	162			
p-Terphenyl-d14		105	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 18 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3W	13-08-0936-18-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 22:59	130816L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		116	14-	146			
Nitrobenzene-d5		105	18-	162			
p-Terphenyl-d14		132	34-	148			

RL: Reporting Limit. DF: Dilution Factor. MDI

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 19 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W	13-08-0936-19-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 23:25	130816L01
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		110	14-	146			
Nitrobenzene-d5		79	18-	162			
p-Terphenyl-d14		124	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Page 20 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5W	13-08-0936-20-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 23:51	130816L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		10	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		38	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		77	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		72	18-	162			
p-Terphenyl-d14		103	34-	148			

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C PA 8270C SIM PAHs

Units:

EPA 8270C SIM PAHs

Offics.

ug/kg Page 21 of 32

08/13/13

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6W	13-08-0936-21-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 00:18	130816L02
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		104	14-	146			
Nitrobenzene-d5		76	18-	162			
p-Terphenyl-d14		117	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg Page 22 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7W	13-08-0936-22-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 00:44	130816L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		12	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		19	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		38	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		101	14-	146			
Nitrobenzene-d5		70	18-	162			
p-Terphenyl-d14		113	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 23 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8W	13-08-0936-23-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 01:10	130816L02
Parameter	·	Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		11	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		136	14-	146			
Nitrobenzene-d5		101	18-	162			
p-Terphenyl-d14		147	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 24 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9W	13-08-0936-24-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 01:36	130816L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		107	14-	146			
Nitrobenzene-d5		78	18-	162			
p-Terphenyl-d14		120	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 25 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 02:03	130816L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		126	14-	146			
Nitrobenzene-d5		101	18-	162			
p-Terphenyl-d14		141	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg

Project: Berths 212-224 YTI Terminal

Page 26 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11W	13-08-0936-26-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 02:29	130816L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		11	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		13	10		1		
Benzo (e) Pyrene		15	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		12	10		1		
Biphenyl		ND	10		1		
Chrysene		14	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		69	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		140	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		113	14-	146			
Nitrobenzene-d5		84	18-	162			
p-Terphenyl-d14		122	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units: ug/kg
Page 27 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12W	13-08-0936-27-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 02:55	130816L02
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		91	14-	146			
Nitrobenzene-d5		77	18-	162			
p-Terphenyl-d14		103	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Page 28 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13W	13-08-0936-28-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 03:21	130816L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		10	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		10	10		1		
Benzo (e) Pyrene		13	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		11	10		1		
Biphenyl		ND	10		1		
Chrysene		12	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		10	10		1		
Fluoranthene		48	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		88	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Con	trol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		113	14-1	146			
Nitrobenzene-d5		88	18-1	162			
p-Terphenyl-d14		130	34-	148			

RL: Reporting Limit. DF:

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 29 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14W	13-08-0936-29-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 03:48	130816L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		12	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		11	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		46	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		95	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Col	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		113	14-	146			
Nitrobenzene-d5		102	18-	162			
p-Terphenyl-d14		126	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Page 30 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15W	13-08-0936-30-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 04:14	130816L02
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Con	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		103	14-1	146			
Nitrobenzene-d5		89	18-	162			
p-Terphenyl-d14		117	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units:

ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 31 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-943-5	N/A	Soil	GC/MS AAA	08/16/13	08/23/13 11:15	130816L01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		108	14-	146			
Nitrobenzene-d5		102	18-	162			
p-Terphenyl-d14		128	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Project: Berths 212-224 YTI Terminal

Page 32 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-943-6	N/A	Soil	GC/MS AAA	08/16/13	08/23/13 16:05	130816L02
Parameter	·	Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		84	18-	162			
p-Terphenyl-d14		106	34-	148			

RL: Reporting Limit. D

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

08/13/13 13-08-0936 EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 1 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 14:18	130816F03
<u>Parameter</u>		Result	<u>R</u>	L	<u>DF</u>	Qualifiers	
PCB003		ND	0.	.50	1		
PCB008		ND	0.	.50	1		
PCB018		ND	0.	.50	1		
PCB028		0.51	0.	.50	1		
PCB031		ND	0.	.50	1		
PCB033		ND	0.	.50	1		
PCB037		ND	0.	.50	1		
PCB044		ND	0.	.50	1		
PCB049		1.1	0.	.50	1		
PCB052		0.80	0.	.50	1		
PCB056		ND	0.	.50	1		
PCB060		ND	0.	.50	1		
PCB066		0.82	0.	.50	1		
PCB070		0.75	0.	.50	1		
PCB074		ND	0.	.50	1		
PCB077		ND	0.	.50	1		
PCB081		ND	0.	.50	1		
PCB087		0.56	0.	.50	1		
PCB095		1.2	0.	.50	1		
PCB097		0.73	0.	.50	1		
PCB099		0.84		.50	1		
PCB101		1.7	0.	.50	1		
PCB105		0.58	0.	.50	1		
PCB110		1.7	0.	.50	1		
PCB114		ND	0.	.50	1		
PCB118		1.6	0.	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		0.57		.50	1		
PCB132		ND		.50	1		
PCB138/158		2.0	1.		1		
PCB141		ND		.50	1		
PCB149		1.5		.50	1		
PCB151		0.68		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

<u>RL</u>

0.50

13-08-0936 **EPA 3540C**

Qualifiers

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 2 of 64

08/13/13

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
DOD 450

•
Parameter
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209
Surrogato
Surrogate 2 Fluoropinhanyl
2-Fluorobiphenyl

p-Terphenyl-d14

Result
2.4
ND
0.68
ND

ND

117

Rec. (%) 100

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Control Limits
14-146

34-148

50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
50	1
ontrol Limits	Qualifiers
I-146	

<u>DF</u>

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

08/13/13 13-08-0936 EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Units.

Page 3 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 14:48	130816F03
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		ND	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		ND	0	.50	1		
PCB049		0.86	0	.50	1		
PCB052		0.63	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		0.62	0	.50	1		
PCB070		0.59	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		0.98	0	.50	1		
PCB097		0.61	0	.50	1		
PCB099		0.69	0	.50	1		
PCB101		1.4	0	.50	1		
PCB105		0.56	0	.50	1		
PCB110		1.4	0	.50	1		
PCB114		ND	0	.50	1		
PCB118		1.3	0	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		1.4		.0	1		
PCB141		ND		.50	1		
PCB149		1.2		.50	1		
PCB151		0.53		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C 70C SIM PCB Congeners

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 4 of 64

Project: Berths 212-224 YTI Terminal

				1 3.9 1 11 11
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	1.8	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	0.56	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	77	14-146		
p-Terphenyl-d14	98	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C

EPA 8270C SIM PCB Congeners

Units: ug/kg

Page 5 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 15:18	130816F03
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
PCB003		ND	0.	.50	1		
PCB008		ND	0.	.50	1		
PCB018		ND	0.	.50	1		
PCB028		ND	0.	.50	1		
PCB031		ND	0.	.50	1		
PCB033		ND	0.	.50	1		
PCB037		ND	0.	.50	1		
PCB044		ND	0.	.50	1		
PCB049		0.64	0.	.50	1		
PCB052		0.53	0.	.50	1		
PCB056		ND	0.	.50	1		
PCB060		ND	0.	.50	1		
PCB066		0.58	0.	.50	1		
PCB070		0.52	0.	.50	1		
PCB074		ND	0.	.50	1		
PCB077		ND	0.	.50	1		
PCB081		ND	0.	.50	1		
PCB087		ND	0.	.50	1		
PCB095		0.80	0.	.50	1		
PCB097		ND	0.	.50	1		
PCB099		0.50	0.	.50	1		
PCB101		1.1	0.	.50	1		
PCB105		ND	0.	.50	1		
PCB110		1.1	0.	.50	1		
PCB114		ND	0.	.50	1		
PCB118		1.0	0.	.50	1		
PCB119		ND	0.	.50	1		
PCB123		ND	0.	.50	1		
PCB126		ND	0.	.50	1		
PCB128		0.51	0.	.50	1		
PCB132		ND	0.	.50	1		
PCB138/158		1.4	1.	.0	1		
PCB141		ND	0.	.50	1		
PCB149		1.0	0.	.50	1		
PCB151		0.54	0.	.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

<u>RL</u>

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Qualifiers

Units:

ug/kg

Page 6 of 64

08/13/13

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209
_

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

Result 1.5 ND ND ND ND ND ND ND ND 0.53 ND ND ND ND ND ND ND ND ND ND ND

Rec. (%)

77

103

0.50 **Control Limits** 14-146

34-148

Qualifiers

<u>DF</u>

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 7 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 15:48	130816F03
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		ND	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		ND	0	.50	1		
PCB049		ND	0	.50	1		
PCB052		ND	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		ND	0	.50	1		
PCB070		ND	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		ND	0	.50	1		
PCB097		ND	0	.50	1		
PCB099		ND	0	.50	1		
PCB101		ND	0	.50	1		
PCB105		ND	0	.50	1		
PCB110		ND	0	.50	1		
PCB114		ND	0	.50	1		
PCB118		ND	0	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		ND		.0	1		
PCB141		ND		.50	1		
PCB149		ND		.50	1		
PCB151		ND		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Page 8 of 64

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

Project: Berths 212-224 YTI Terminal

<u>DF</u> <u>Parameter</u> Result <u>RL</u> Qualifiers PCB153 ND 0.50 1 ND PCB156 0.50 1 PCB157 ND 0.50 1 PCB167 ND 0.50 **PCB168** ND 0.50 PCB169 ND 0.50 PCB170 ND 0.50 PCB174 ND 0.50 PCB177 ND 0.50 PCB180 ND 0.50 ND PCB183 0.50 PCB184 ND 0.50 PCB187 ND 0.50 PCB189 ND 0.50 PCB194 ND 0.50 PCB195 ND 0.50 PCB200 ND 0.50 PCB201 ND 0.50 PCB203 ND 0.50 PCB206 ND 0.50 1 PCB209 ND 0.50 Surrogate Rec. (%) **Control Limits** Qualifiers 2-Fluorobiphenyl 84 14-146 p-Terphenyl-d14 34-148 111

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936 **EPA 3540C**

Preparation: Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 9 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5C	13-08-0936-5-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 16:17	130816F03
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		ND	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		ND	0	.50	1		
PCB049		0.88	0	.50	1		
PCB052		0.76	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		0.63	0	.50	1		
PCB070		0.66	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		0.76	0	.50	1		
PCB097		ND	0	.50	1		
PCB099		ND	0	.50	1		
PCB101		0.93	0	.50	1		
PCB105		ND	0	.50	1		
PCB110		0.99	0	.50	1		
PCB114		ND	0	.50	1		
PCB118		0.76	0	.50	1		
PCB119		ND	0	.50	1		
PCB123		ND	0	.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		ND	1.		1		
PCB141		ND		.50	1		
PCB149		0.51		.50	1		
PCB151		ND		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

<u>RL</u>

13-08-0936 **EPA 3540C**

08/13/13

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 10 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB153 PCB156 PCB157 PCB167 **PCB168** PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206 PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

Result 0.89 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

ND

77

99

Rec. (%)

0.50 **Control Limits**

34-148

1 Qualifiers 14-146

<u>DF</u>

1

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 11 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 16:47	130816F03
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		ND	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		ND	0	.50	1		
PCB049		ND	0	.50	1		
PCB052		ND	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		ND	0	.50	1		
PCB070		ND	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		ND	0	.50	1		
PCB097		ND	0	.50	1		
PCB099		ND		.50	1		
PCB101		ND	0	.50	1		
PCB105		ND	0	.50	1		
PCB110		ND	0.	.50	1		
PCB114		ND	0	.50	1		
PCB118		ND	0.	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		ND	1.		1		
PCB141		ND		.50	1		
PCB149		ND		.50	1		
PCB151		ND		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 12 of 64

Project: Berths 212-224 YTI Terminal

 				1 3.90 1= 31 3
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	ND	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	69	14-146		
p-Terphenyl-d14	92	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 13 of 64

7C 13-08-0936-7-B 08/10/11 Tissue GC/MS HHI 08/16/13 08/23/13 130816F03 Parameter Result RL DE Qualifers PCB003 ND 0.50 1 1 PCB0018 ND 0.50 1 1 PCB028 0.54 0.50 1 1 PCB033 ND 0.50 1 1 PCB033 ND 0.50 1 1 PCB044 ND 0.50 1 1 PCB0459 ND 0.50 1 1 PCB046 ND 0.50 1 1 PCB047 ND 0.50 1 1 PCB0502 0.68 0.50 1 1 PCB066 0.60 0.63 0.50 1 PCB067 ND 0.50 1 1 PCB074 ND 0.50 1 1 PCB075 ND 0.5	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
PCB003 ND 0.50 1 PCB008 ND 0.50 1 PCB018 ND 0.50 1 PCB028 0.54 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB044 ND 0.50 1 PCB0499 1.0 0.50 1 PCB052 0.68 0.50 1 PCB054 ND 0.50 1 PCB056 ND 0.50 1 PCB067 ND 0.50 1 PCB07 0.50 1 1 PCB07 0.71 0.50 1 PCB07 ND 0.50 1 PCB07 ND 0.50 1 PCB07 ND 0.50 1 PCB081 ND 0.50 1 PCB095 ND 0.50 1 PCB096 ND 0	7C	13-08-0936-7-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 17:18	130816F03
PCB018 ND 0.50 1 PCB018 ND 0.50 1 PCB028 0.54 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB044 ND 0.50 1 PCB044 ND 0.50 1 PCB052 0.68 0.50 1 PCB052 0.68 0.50 1 PCB056 ND 0.50 1 PCB056 ND 0.50 1 PCB066 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB087 ND 0.50 1 PCB098 ND 0.50 1 PCB099 ND 0.50 1 PCB101 1.0	Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
PCB018 ND 0.50 1 PCB028 0.54 0.50 1 PCB031 ND 0.50 1 PCB032 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 1.0 0.50 1 PCB052 0.68 0.50 1 PCB066 ND 0.50 1 PCB067 ND 0.50 1 PCB068 ND 0.50 1 PCB07 ND 0.50 1 PCB087 ND 0.50 1 PCB097 ND 0.50 1 PCB101 ND 0.50 1 PCB102 ND 0.5	PCB003		ND	0	.50	1		
PCB028 0.54 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 1,0 0.50 1 PCB056 0.68 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.63 0.50 1 PCB070 0.71 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB101 1.0 0.50 1 PCB102 1.0	PCB008		ND	0	.50	1		
PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 1.0 0.50 1 PCB052 0.68 0.50 1 PCB066 ND 0.50 1 PCB060 ND 0.50 1 PCB070 0.50 1 PCB071 0.50 1 PCB072 0.71 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB0895 0.65 0.50 1 PCB097 ND 0.50 1 PCB106 1.0 0.50 1 PCB119 1.0 0.50 1 PCB110 1.0 0.50 1	PCB018		ND	0	.50	1		
PCB033 ND 0.50 1 PCB044 ND 0.50 1 PCB044 ND 0.50 1 PCB049 1.0 0.50 1 PCB052 0.68 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB085 0.50 1 PCB097 ND 0.50 1 PCB101 1.0 0.50 1 PCB102 0.50 1 1 PCB118 ND 0.50 1 PCB118 ND 0.50 1 PCB128 ND 0.50	PCB028		0.54	0	.50	1		
PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 1.0 0.50 1 PCB052 0.68 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 ND 0.50 1 PCB077 0.71 0.50 1 PCB077 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB0987 ND 0.50 1 PCB0997 ND 0.50 1 PCB09897 ND 0.50 1 PCB101 1.0 0.50 1 PCB110 1.0 0.50 1 PCB111 1.0 0.50 1 PCB113 ND 0.50 1 PCB114 ND 0.50 1 PCB123 ND	PCB031		ND	0	.50	1		
PCB044 ND 0.50 1 PCB049 1.0 0.50 1 PCB052 0.68 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB076 0.71 0.50 1 PCB077 ND 0.50 1 PCB078 ND 0.50 1 PCB079 ND 0.50 1 PCB071 ND 0.50 1 PCB079 ND 0.50 1 PCB091 ND 0.50 1 PCB095 0.50 1 1 PCB096 ND 0.50 1 PCB101 1.0 0.50 1 PCB102 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND <	PCB033		ND	0	.50	1		
PCB049 1.0 0.50 1 PCB052 0.68 0.50 1 PCB066 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.63 0.50 1 PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB081 ND 0.50 1 PCB082 ND 0.50 1 PCB083 0.50 1 PCB094 ND 0.50 1 PCB095 ND 0.50 1 PCB101 1.0 0.50 1 PCB102 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50	PCB037		ND	0	.50	1		
PCB052 0.68 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.63 0.50 1 PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB082 ND 0.50 1 PCB095 0.65 0.50 1 PCB096 ND 0.50 1 PCB101 1.0 0.50 1 PCB102 1.0 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB138/158 ND	PCB044		ND	0	.50	1		
PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.63 0.50 1 PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB097 ND 0.50 1 PCB0980 0.60 0.50 1 PCB101 1.0 0.50 1 PCB102 1.0 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND	PCB049		1.0	0	.50	1		
PCB060 ND 0.50 1 PCB070 0.63 0.50 1 PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 0.65 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB101 0.50 1 1 PCB102 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB139 ND 0.50 1 PCB132 ND <t< td=""><td>PCB052</td><td></td><td>0.68</td><td>0</td><td>.50</td><td>1</td><td></td><td></td></t<>	PCB052		0.68	0	.50	1		
PCB066 0.63 0.50 1 PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 0.65 0.50 1 PCB097 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB1105 0.58 0.50 1 PCB1106 1.0 0.50 1 PCB1107 ND 0.50 1 PCB1108 0.50 1 1 PCB1109 ND 0.50 1 PCB1110 ND 0.50 1 PCB1114 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB138/158 N	PCB056		ND	0	.50	1		
PCB070 0.71 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 0.65 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB109 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 1.0 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB124 ND 0.50 1 PCB135 ND 0.50 1 PCB136 ND 0.50 1 PCB137 ND 0.50 1 PCB138/158 ND	PCB060		ND	0	.50	1		
PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 0.65 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.50 1 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.50 1 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB137 ND 0.50 1 PCB138/158 ND 0.50 1 PCB144 ND 0.50 1 PCB149 ND 0.50 1 PCB149 ND <	PCB066		0.63	0	.50	1		
PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 0.65 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 0.50 1 PCB144 ND 0.50 1 PCB149 ND 0.50 1 PCB149 ND 0.50 1 PCB149 ND 0.50 1 PCB149 ND 0.50 1 <t< td=""><td>PCB070</td><td></td><td>0.71</td><td>0</td><td>.50</td><td>1</td><td></td><td></td></t<>	PCB070		0.71	0	.50	1		
PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB124 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 0.50 1 PCB1414 ND 0.50 1 PCB1449 ND 0.50 1 PCB149 0.50 1 1 PCB149 0.50 1 1 PCB149 0.50 1 1 PCB149 0.50 1 1 PCB149 <td>PCB074</td> <td></td> <td>ND</td> <td>0</td> <td>.50</td> <td>1</td> <td></td> <td></td>	PCB074		ND	0	.50	1		
PCB087 ND 0.50 1 PCB095 0.65 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB138/158 ND 0.50 1 PCB1411 ND 0.50 1 PCB1429 ND 0.50 1 PCB1439 ND 0.50 1 PCB1441 ND 0.50 1 PCB1441 ND 0.50 1 PCB1449 ND 0.50 1 <	PCB077		ND	0	.50	1		
PCB095 0.66 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB123 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 0.50 1 PCB1411 ND 0.50 1 PCB1414 ND 0.50 1 PCB149 0.50 1 1	PCB081		ND	0	.50	1		
PCB0997 ND 0.50 1 PCB0999 ND 0.50 1 PCB1011 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB1411 ND 0.50 1 PCB1414 ND 0.50 1 PCB1449 ND 0.50 1	PCB087		ND	0	.50	1		
PCB099 ND 0.50 1 PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB138/158 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB095		0.65	0	.50	1		
PCB101 1.0 0.50 1 PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB132 ND 0.50 1 PCB133 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB144 ND 0.50 1 PCB149 0.57 0.50 1	PCB097		ND	0	.50	1		
PCB105 0.58 0.50 1 PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB138 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB099		ND	0	.50	1		
PCB110 1.0 0.50 1 PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB101		1.0	0	.50	1		
PCB114 ND 0.50 1 PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB105		0.58	0	.50	1		
PCB118 0.92 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB110		1.0	0	.50	1		
PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB114		ND	0	.50	1		
PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB118		0.92	0	.50	1		
PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB119		ND	0	.50	1		
PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB123		ND	0	.50	1		
PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB126		ND	0	.50	1		
PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB128		ND	0	.50	1		
PCB141 ND 0.50 1 PCB149 0.57 0.50 1	PCB132		ND	0	.50	1		
PCB149 0.57 0.50 1	PCB138/158		ND	1.	.0	1		
	PCB141		ND	0	.50	1		
	PCB149		0.57	0	.50	1		
	PCB151		ND	0	.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C SIM PCB Congeners

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 14 of 64

Project: Berths 212-224 YTI Terminal

· · · · · · · · · · · · · · · · · · ·				9
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB153	0.94	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	78	14-146		
p-Terphenyl-d14	114	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 15 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 17:48	130816F03
<u>Parameter</u>		<u>Result</u>	<u>R</u> l	L	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		0.83	0.	50	1		
PCB052		0.64	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		0.64	0.	50	1		
PCB070		0.54	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND		50	1		
PCB095		0.79		50	1		
PCB097		0.52		50	1		
PCB099		0.67	0.	50	1		
PCB101		1.5	0.	50	1		
PCB105		ND		50	1		
PCB110		1.5		50	1		
PCB114		ND		50	1		
PCB118		1.2		50	1		
PCB119		ND		50	1		
PCB123		ND		50	1		
PCB126		ND		50	1		
PCB128		ND		50	1		
PCB132		ND		50	1		
PCB138/158		1.4	1.		1		
PCB141		ND		50	1		
PCB149		1.0		50	1		
PCB151		0.54		50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

Project: Berths 212-224 YTI Terminal

Page 16 of 64

,				<u> </u>
Parameter	Result	<u>RL</u>	<u>DF</u>	Qualifiers
CB153	1.7	0.50	1	
CB156	ND	0.50	1	
CB157	ND	0.50	1	
CB167	ND	0.50	1	
CB168	ND	0.50	1	
CB169	ND	0.50	1	
CB170	ND	0.50	1	
CB174	ND	0.50	1	
CB177	ND	0.50	1	
CB180	ND	0.50	1	
CB183	ND	0.50	1	
CB184	ND	0.50	1	
CB187	ND	0.50	1	
CB189	ND	0.50	1	
CB194	ND	0.50	1	
CB195	ND	0.50	1	
CB200	ND	0.50	1	
CB201	ND	0.50	1	
CB203	ND	0.50	1	
CB206	ND	0.50	1	
CB209	ND	0.50	1	
urrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
Fluorobiphenyl	74	14-146		
-Terphenyl-d14	109	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

EPA 3540C

Preparation: Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 17 of 64

No. No.	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
PCB003 ND 0.50 1 PCB008 ND 0.50 1 PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB049 ND 0.50 1 PCB069 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB089 ND 0.50 1 PCB099 ND 0.5	9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 18:17	130816F03
PCB008 ND 0.50 1 PCB018 ND 0.50 1 PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB056 ND 0.50 1 PCB056 ND 0.50 1 PCB066 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB098 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.5	Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB018 ND 0.50 1 PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB052 ND 0.50 1 PCB066 ND 0.50 1 PCB067 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB086 ND 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB110 ND 0.5	PCB003		ND	0.	.50	1		
PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB052 ND 0.50 1 PCB056 ND 0.50 1 PCB066 ND 0.50 1 PCB067 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB0881 ND 0.50 1 PCB095 ND 0.50 1 PCB0969 ND 0.50 1 PCB101 ND 0.50 1 PCB110 ND 0.50 1 PCB111 ND 0	PCB008		ND	0.	.50	1		
PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB052 ND 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB077 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB082 ND 0.50 1 PCB093 ND 0.50 1 PCB094 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB111 ND 0.50 1 PCB113 ND 0.5	PCB018		ND	0.	.50	1		
PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB052 ND 0.50 1 PCB056 ND 0.50 1 PCB066 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB087 ND 0.50 1 PCB0887 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB101 ND 0.50 1 PCB102 ND 0.50 1 PCB114 ND 0.50 1 PCB113 ND 0.50 1 PCB126 ND 0.	PCB028		ND	0.	.50	1		
PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB0562 ND 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB0666 ND 0.50 1 PCB077 ND 0.50 1 PCB078 ND 0.50 1 PCB079 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB088 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB110 ND 0.50 1 PCB1118 ND 0.50 1 PCB1128 ND <th< td=""><td>PCB031</td><td></td><td>ND</td><td>0.</td><td>.50</td><td>1</td><td></td><td></td></th<>	PCB031		ND	0.	.50	1		
PCB044 ND 0.50 1 PCB049 ND 0.50 1 PCB052 ND 0.50 1 PCB056 ND 0.50 1 PCB0606 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB0827 ND 0.50 1 PCB0837 ND 0.50 1 PCB095 ND 0.50 1 PCB0969 ND 0.50 1 PCB101 ND 0.50 1 PCB114 ND 0.50 1 PCB115 ND 0.50 1 PCB116 ND 0.50 1 PCB117 ND 0.50 1 PCB118 ND 0.50 1 PCB126 ND <th< td=""><td>PCB033</td><td></td><td>ND</td><td>0.</td><td>.50</td><td>1</td><td></td><td></td></th<>	PCB033		ND	0.	.50	1		
PCB049 ND 0.50 1 PCB052 ND 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB078 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB0989 ND 0.50 1 PCB101 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB138/158 ND <t< td=""><td>PCB037</td><td></td><td>ND</td><td>0.</td><td>.50</td><td>1</td><td></td><td></td></t<>	PCB037		ND	0.	.50	1		
PCB052 ND 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB081 ND 0.50 1 PCB082 ND 0.50 1 PCB095 ND 0.50 1 PCB096 ND 0.50 1 PCB101 ND 0.50 1 PCB102 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB138/158 ND 0.50 1 PCB1411 ND 0.50 1	PCB044		ND	0.	.50	1		
PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB0985 ND 0.50 1 PCB0997 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB114 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB129 ND 0	PCB049		ND	0.	.50	1		
PCB060 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB082 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB101 ND 0.50 1 PCB102 ND 0.50 1 PCB110 ND 0.50 1 PCB110 ND 0.50 1 PCB1110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.	PCB052		ND	0.	.50	1		
PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB101 ND 0.50 1 PCB102 ND 0.50 1 PCB110 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB129 ND 0.50 1 PCB138/158 ND <th< td=""><td>PCB056</td><td></td><td>ND</td><td>0.</td><td>.50</td><td>1</td><td></td><td></td></th<>	PCB056		ND	0.	.50	1		
PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB106 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB138/158 ND 1.0 1 PCB149 ND 0.50 1 PCB149 ND	PCB060		ND	0.	.50	1		
PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB0997 ND 0.50 1 PCB0999 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB129 ND 0.50 1 PCB138/158 ND 0.50 1 PCB149 ND 0.50 1 PCB149 ND 0.50 1	PCB066		ND	0.	.50	1		
PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB138 ND 0.50 1 PCB138 ND 0.50 1 PCB144 ND 0.50 1 PCB149 ND 0.50 1	PCB070		ND	0.	.50	1		
PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB138 ND 0.50 1 PCB138 ND 0.50 1 PCB138/158 ND 0.50 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB074		ND	0.	.50	1		
PCB087 ND 0.50 1 PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB077		ND	0.	.50	1		
PCB095 ND 0.50 1 PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB139 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB081		ND	0.	.50	1		
PCB097 ND 0.50 1 PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB087		ND	0.	.50	1		
PCB099 ND 0.50 1 PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB132 ND 0.50 1 PCB133/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB095		ND	0.	.50	1		
PCB101 ND 0.50 1 PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB132 ND 0.50 1 PCB133/158 ND 1.0 1 PCB1411 ND 0.50 1 PCB1449 ND 0.50 1	PCB097		ND	0.	.50	1		
PCB105 ND 0.50 1 PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB099		ND	0.	.50	1		
PCB110 ND 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB101		ND	0.	.50	1		
PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB105		ND	0.	.50	1		
PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB110		ND	0.	.50	1		
PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB114		ND	0.	.50	1		
PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB118		ND	0.	.50	1		
PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB119		ND	0.	.50	1		
PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB123		ND	0.	.50	1		
PCB132 ND 0.50 1 PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB126		ND	0.	.50	1		
PCB138/158 ND 1.0 1 PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB128		ND	0.	.50	1		
PCB141 ND 0.50 1 PCB149 ND 0.50 1	PCB132		ND	0.	.50	1		
PCB149 ND 0.50 1	PCB138/158		ND	1.	.0	1		
	PCB141		ND	0.	.50	1		
PCB151 ND 0.50 1	PCB149		ND	0.	.50	1		
	PCB151		ND	0.	.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C SIM PCB Congeners

08/13/13

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 18 of 64

Project: Berths 212-224 YTI Terminal

- rojecti Bertile 2 12 22 1 1 11 Terrillina				. ago 10 0
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	ND	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	79	14-146		
p-Terphenyl-d14	105	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C EPA 8270C SIM PCB Congeners

Method: Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 19 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 18:48	130816F03
<u>Parameter</u>		Result	<u>R</u>	L	<u>DF</u>	Qua	alifiers
PCB003		ND	0.	.50	1		
PCB008		ND	0.	.50	1		
PCB018		ND	0.	.50	1		
PCB028		ND	0.	.50	1		
PCB031		ND	0.	.50	1		
PCB033		ND	0.	.50	1		
PCB037		ND	0.	.50	1		
PCB044		ND	0.	.50	1		
PCB049		ND	0.	.50	1		
PCB052		ND	0.	.50	1		
PCB056		ND	0.	.50	1		
PCB060		ND	0.	.50	1		
PCB066		ND	0.	.50	1		
PCB070		ND	0.	.50	1		
PCB074		ND	0.	.50	1		
PCB077		ND	0.	.50	1		
PCB081		ND	0.	.50	1		
PCB087		ND	0.	.50	1		
PCB095		ND	0.	.50	1		
PCB097		ND	0.	.50	1		
PCB099		ND	0.	.50	1		
PCB101		ND	0.	.50	1		
PCB105		ND	0.	.50	1		
PCB110		ND	0.	.50	1		
PCB114		ND	0.	.50	1		
PCB118		ND	0.	.50	1		
PCB119		ND	0.	.50	1		
PCB123		ND	0.	.50	1		
PCB126		ND	0.	.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		ND	1.		1		
PCB141		ND		.50	1		
PCB149		ND		.50	1		
PCB151		ND		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 20 of 64

Qualifiers

08/13/13

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209

<u>Surrogate</u>

2-Fluorobiphenyl

p-Terphenyl-d14

Result ND
ND
ND ND
ND

Rec. (%)

75

103

<u>RL</u>
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Control Limits
14-146

0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
Control Limits	<u>Qualifiers</u>
14-146	
34-148	

<u>DF</u>

1 1 1

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 21 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11C	13-08-0936-11-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 19:17	130816F03
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
PCB003		ND	0.	.50	1		
PCB008		ND	0.	.50	1		
PCB018		ND	0.	.50	1		
PCB028		0.62	0.	.50	1		
PCB031		0.62	0.	.50	1		
PCB033		ND	0.	.50	1		
PCB037		ND	0.	.50	1		
PCB044		ND	0.	.50	1		
PCB049		1.3	0.	.50	1		
PCB052		0.89	0.	.50	1		
PCB056		ND	0.	.50	1		
PCB060		ND	0.	.50	1		
PCB066		0.90	0.	.50	1		
PCB070		0.76	0.	.50	1		
PCB074		ND	0.	.50	1		
PCB077		ND	0.	.50	1		
PCB081		ND	0.	.50	1		
PCB087		0.52	0.	.50	1		
PCB095		0.84	0.	.50	1		
PCB097		0.64	0.	.50	1		
PCB099		ND	0.	.50	1		
PCB101		1.2	0.	.50	1		
PCB105		ND	0.	.50	1		
PCB110		1.5	0.	.50	1		
PCB114		ND	0.	.50	1		
PCB118		1.0	0.	.50	1		
PCB119		ND	0.	.50	1		
PCB123		ND	0.	.50	1		
PCB126		ND	0.	.50	1		
PCB128		ND	0.	.50	1		
PCB132		ND	0.	.50	1		
PCB138/158		ND	1.	.0	1		
PCB141		ND	0.	.50	1		
PCB149		0.77	0.	.50	1		
PCB151		ND	0.	.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners ug/kg

Project: Berths 212-224 YTI Terminal

Page 22 of 64

08/13/13

				1 3.90 == 01 0 1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	1.2	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	73	14-146		
p-Terphenyl-d14	106	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

....

Page 23 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12C	13-08-0936-12-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 19:46	130816F03
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		ND	0.	50	1		
PCB052		ND	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		ND	0.	50	1		
PCB070		ND	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND	0.	50	1		
PCB095		ND	0.	50	1		
PCB097		ND	0.	50	1		
PCB099		ND	0.	50	1		
PCB101		ND	0.	50	1		
PCB105		ND	0.	50	1		
PCB110		ND	0.	50	1		
PCB114		ND	0.	50	1		
PCB118		ND	0.	50	1		
PCB119		ND	0.	50	1		
PCB123		ND	0.	50	1		
PCB126		ND		50	1		
PCB128		ND		50	1		
PCB132		ND		50	1		
PCB138/158		ND	1.		1		
PCB141		ND		50	1		
PCB149		ND		50	1		
PCB151		ND		50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C OC SIM PCB Congeners

08/13/13

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 24 of 64

Project: Berths 212-224 YTI Terminal

			. age <u>=</u> . e. e
<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	0.50	1	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
64	14-146		
87	34-148		
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.50 ND 0.50	ND 0.50 1 ND <td< td=""></td<>

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

Units:

08/13/13 13-08-0936 EPA 3540C

EPA 8270C SIM PCB Congeners

ug/kg

Project: Berths 212-224 YTI Terminal

Page 25 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C	13-08-0936-13-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 20:14	130816F03
Parameter		Result	RI	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		0.64	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		1.0	0.	50	1		
PCB052		1.0	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		0.86	0.	50	1		
PCB070		0.80	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND	0.	50	1		
PCB095		0.86	0.	50	1		
PCB097		ND	0.	50	1		
PCB099		ND	0.	50	1		
PCB101		1.3	0.	50	1		
PCB105		0.51	0.	50	1		
PCB110		1.4	0.	50	1		
PCB114		ND	0.	50	1		
PCB118		1.0	0.	50	1		
PCB119		ND	0.	50	1		
PCB123		ND	0.	50	1		
PCB126		ND	0.	50	1		
PCB128		ND	0.	50	1		
PCB132		ND	0.	50	1		
PCB138/158		ND	1.	0	1		
PCB141		ND	0.	50	1		
PCB149		0.73	0.	50	1		
PCB151		ND	0.	50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C SIM PCB Congeners

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 26 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209
<u>Surrogate</u>

<u>Result</u>
1.1
ND

Rec. (%)

74

107

RL
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Control Limits
14-146

34-148

)	1
)	1
)	1
)	1
)	1
)	1
)	1
)	1
)	1
)	1
trol Limits	Qualifiers

<u>DF</u>

1

RL: Reporting Limit.

2-Fluorobiphenyl

p-Terphenyl-d14

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Date/Time Collected

Page 27 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number

Lab Sample Number

Date Prepared Date/Time Analyzed Matrix QC Batch ID Instrument

14C	13-08-0936-14-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 20:43	130816F03
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
PCB003		ND	0.50)	1		
PCB008		ND	0.50)	1		
PCB018		ND	0.50)	1		
PCB028		ND	0.50)	1		
PCB031		ND	0.50)	1		
PCB033		ND	0.50)	1		
PCB037		ND	0.50)	1		
PCB044		ND	0.50)	1		
PCB049		1.1	0.50)	1		
PCB052		0.77	0.50)	1		
PCB056		ND	0.50)	1		
PCB060		ND	0.50)	1		
PCB066		0.66	0.50)	1		
PCB070		0.67	0.50)	1		
PCB074		ND	0.50)	1		
PCB077		ND	0.50)	1		
PCB081		ND	0.50)	1		
PCB087		ND	0.50)	1		
PCB095		0.71	0.50)	1		
PCB097		ND	0.50)	1		
PCB099		ND	0.50)	1		
PCB101		1.1	0.50)	1		
PCB105		0.51	0.50)	1		
PCB110		1.1	0.50)	1		
PCB114		ND	0.50)	1		
PCB118		0.84	0.50)	1		
PCB119		ND	0.50)	1		
PCB123		ND	0.50)	1		
PCB126		ND	0.50)	1		
PCB128		ND	0.50)	1		
PCB132		ND	0.50)	1		
PCB138/158		ND	1.0		1		
PCB141		ND	0.50)	1		
PCB149		0.68	0.50)	1		
PCB151		ND	0.50)	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 28 of 64

08/13/13

Project: Berths 212-224 YTI Terminal

				<u> </u>
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	0.93	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	72	14-146		
p-Terphenyl-d14	105	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C

08/13/13

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 29 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 21:12	130816F03
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
PCB003		ND	0.8	50	1		
PCB008		ND	0.8	50	1		
PCB018		ND	0.8	50	1		
PCB028		ND	0.8	50	1		
PCB031		ND	0.8	50	1		
PCB033		ND	0.5	50	1		
PCB037		ND	0.8	50	1		
PCB044		ND	0.8	50	1		
PCB049		0.73	0.5	50	1		
PCB052		0.56	0.5	50	1		
PCB056		ND	0.5	50	1		
PCB060		ND	0.5	50	1		
PCB066		0.59	0.5	50	1		
PCB070		ND	0.5	50	1		
PCB074		ND	0.5	50	1		
PCB077		ND	0.5	50	1		
PCB081		ND	0.5	50	1		
PCB087		ND	0.5	50	1		
PCB095		0.88	0.5	50	1		
PCB097		ND	0.5	50	1		
PCB099		0.60	0.5	50	1		
PCB101		1.3	0.5	50	1		
PCB105		ND	0.5	50	1		
PCB110		1.3	0.5	50	1		
PCB114		ND	0.5	50	1		
PCB118		1.1	0.5	50	1		
PCB119		ND	0.5	50	1		
PCB123		ND	0.5	50	1		
PCB126		ND	0.5	50	1		
PCB128		ND	0.5	50	1		
PCB132		ND	0.5	50	1		
PCB138/158		1.3	1.0	0	1		
PCB141		ND	0.5	50	1		
PCB149		0.99	0.5	50	1		
PCB151		ND	0.8	50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 30 of 64

Project: Berths 212-224 YTI Terminal

				. ago oo .
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
PCB153	1.6	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	70	14-146		
p-Terphenyl-d14	102	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 31 of 64

PCB044 ND 0.50 1 PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB070 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB081 ND 0.50 1 PCB085 ND 0.50 1 PCB096 ND 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB101 1.5 0.50 1 PCB105 1.5 0.50 1 PCB116 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB119 ND <	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
PCB003 ND 0.50 1 PCB008 ND 0.50 1 PCB018 ND 0.50 1 PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 0.51 0.50 1 PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB066 ND 0.50 1 PCB067 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB081 ND 0.50 1 PCB095 ND 0.50 1 PCB096 ND 0.50 1 PCB097 ND <	1W	13-08-0936-16-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 02:51	130816F03
PCB008 ND 0.50 1 PCB018 ND 0.50 1 PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB044 ND 0.50 1 PCB044 ND 0.50 1 PCB052 0.89 0.50 1 PCB056 0.89 0.50 1 PCB056 ND 0.50 1 PCB066 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB089 1,3 0.50 1 PCB099 0.62 0.50 1 PCB101 1,5	Parameter		Result	R	L	<u>DF</u>	Qua	alifiers
PCB018 ND 0.50 1 PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB047 ND 0.50 1 PCB044 ND 0.50 1 PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB066 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB0897 ND 0.50 1 PCB101 1.3 0.50 1 PCB102 0.50	PCB003		ND	0	.50	1		
PCB028 ND 0.50 1 PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 0.50 1 PCB049 0.50 1 PCB052 0.89 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB0861 ND 0.50 1 PCB0895 1.3 0.50 1 PCB109 ND 0.50 1 PCB109 ND 0.50 1	PCB008		ND	0	.50	1		
PCB031 ND 0.50 1 PCB033 ND 0.50 1 PCB047 ND 0.50 1 PCB044 ND 0.50 1 PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB072 ND 0.50 1 PCB073 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB0989 ND 0.50 1 PCB1091 1.5 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB113 ND	PCB018		ND	0	.50	1		
PCB033 ND 0.50 1 PCB044 ND 0.50 1 PCB044 ND 0.50 1 PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB066 ND 0.50 1 PCB066 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB078 ND 0.50 1 PCB079 ND 0.50 1 PCB071 ND 0.50 1 PCB070 ND 0.50 1 PCB071 ND 0.50 1 PCB097 ND 0.50 1 PCB101 1.5 0.50 1 PCB102 1.1 0.50 1 PCB118 ND 0.50 1 PCB128 ND <	PCB028		ND	0	.50	1		
PCB037 ND 0.50 1 PCB044 ND 0.50 1 PCB049 0.50 1 PCB052 0.50 1 PCB056 ND 0.50 1 PCB066 ND 0.50 1 PCB067 ND 0.50 1 PCB077 ND 0.50 1 PCB077 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB095 1 0.50 1 PCB0967 ND 0.50 1 PCB0989 1 0.50 1 PCB0999 1 0.50 1 PCB1010 1.5 0.50 1 PCB118 0.50 1 1 PCB119 1.0 0.50 1 PCB118 0.94 0.50 1 PCB128 ND 0.50 1	PCB031		ND	0	.50	1		
PCB044 ND 0.50 1 PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB076 ND 0.50 1 PCB077 ND 0.50 1 PCB078 ND 0.50 1 PCB097 ND 0.50 1 PCB098 1,3 0.50 1 PCB099 0.62 0.50 1 PCB101 1,5 0.50 1 PCB110 1,1 0.50 1 PCB114 ND 0.50 1 PCB118 0,94 0.50 1 PCB128 ND 0.50 1 PCB128 ND	PCB033		ND	0	.50	1		
PCB049 0.51 0.50 1 PCB052 0.89 0.50 1 PCB066 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.58 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB075 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB087 ND 0.50 1 PCB098 ND 0.50 1 PCB1099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB102 0.53 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB119 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND	PCB037		ND	0	.50	1		
PCB052 0.89 0.50 1 PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.58 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB082 ND 0.50 1 PCB093 ND 0.50 1 PCB094 ND 0.50 1 PCB101 1.3 0.50 1 PCB102 1.3 0.50 1 PCB103 1.5 0.50 1 PCB104 1.5 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND	PCB044		ND	0	.50	1		
PCB056 ND 0.50 1 PCB060 ND 0.50 1 PCB066 0.58 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB0887 ND 0.50 1 PCB097 ND 0.50 1 PCB0989 0.62 0.50 1 PCB101 1.5 0.50 1 PCB102 0.53 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB118 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB138/158 ND	PCB049		0.51	0	.50	1		
PCB060 ND 0.50 1 PCB070 0.58 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB098 1.3 0.50 1 PCB099 ND 0.50 1 PCB101 1.5 0.50 1 PCB105 1.5 0.50 1 PCB114 ND 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB118 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB138/58 ND 0.50 1 PCB144 ND	PCB052		0.89	0	.50	1		
PCB066 0.58 0.50 1 PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB1106 0.53 0.50 1 PCB1107 1.1 0.50 1 PCB1108 0.50 1 PCB1109 0.50 1 PCB1109 0.50 1 PCB1110 ND 0.50 1 PCB1118 0.94 0.50 1 PCB1129 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 <	PCB056		ND	0	.50	1		
PCB070 ND 0.50 1 PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB098 ND 0.50 1 PCB1091 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB137 ND 0.50 1 PCB138 ND 0.50 1 PCB139 ND 0.50 1 PCB139 ND 0.50 1 PCB139/158 ND	PCB060		ND	0	.50	1		
PCB074 ND 0.50 1 PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB098 0.50 1 1 PCB109 0.50 1 1 PCB101 1.5 0.50 1 PCB105 0.50 1 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.50 1 1 PCB123 ND 0.50 1 PCB124 ND 0.50 1 PCB132 ND 0.50 1 PCB134 ND 0.50 1 PCB135/158 1.6 1.0 1 PCB144 ND 0.50 1 PCB144 ND	PCB066		0.58	0	.50	1		
PCB077 ND 0.50 1 PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB139 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB144 ND 0.50 1 PCB149 0.50 1 1	PCB070		ND	0	.50	1		
PCB081 ND 0.50 1 PCB087 ND 0.50 1 PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 0.50 1 1	PCB074		ND	0	.50	1		
PCB087 ND 0.50 1 PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB139 ND 0.50 1 PCB138/158 ND 0.50 1 PCB1411 ND 0.50 1 PCB1429 ND 0.50 1 PCB1439 ND 0.50 1 PCB1441 ND 0.50 1 PCB1441 ND 0.50 1 PCB1449 ND 0.50 1	PCB077		ND	0	.50	1		
PCB095 1.3 0.50 1 PCB097 ND 0.50 1 PCB099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB123 ND 0.50 1 PCB124 ND 0.50 1 PCB128 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 0.50 1 PCB1411 ND 0.50 1 PCB1414 ND 0.50 1 PCB149 0.50 1	PCB081		ND	0	.50	1		
PCB097 ND 0.50 1 PCB099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 0.50 1 1	PCB087		ND	0	.50	1		
PCB099 0.62 0.50 1 PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB128 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB1411 ND 0.50 1 PCB1419 1.2 0.50 1	PCB095		1.3	0	.50	1		
PCB101 1.5 0.50 1 PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB144 ND 0.50 1 PCB149 1.2 0.50 1	PCB097		ND	0	.50	1		
PCB105 0.53 0.50 1 PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB127 ND 0.50 1 PCB138/158 ND 0.50 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB099		0.62	0	.50	1		
PCB110 1.1 0.50 1 PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB101		1.5	0	.50	1		
PCB114 ND 0.50 1 PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB105		0.53	0	.50	1		
PCB118 0.94 0.50 1 PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB110		1.1	0	.50	1		
PCB119 ND 0.50 1 PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB114		ND	0	.50	1		
PCB123 ND 0.50 1 PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB118		0.94	0	.50	1		
PCB126 ND 0.50 1 PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB119		ND	0	.50	1		
PCB128 ND 0.50 1 PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB123		ND	0	.50	1		
PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB126		ND	0	.50	1		
PCB132 ND 0.50 1 PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1	PCB128		ND	0	.50	1		
PCB138/158 1.6 1.0 1 PCB141 ND 0.50 1 PCB149 1.2 0.50 1						1		
PCB141 ND 0.50 1 PCB149 1.2 0.50 1						1		
PCB149 1.2 0.50 1						1		
						1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 32 of 64

Project: Berths 212-224 YTI Terminal

				<u> </u>
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	2.2	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	0.75	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	0.65	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	55	14-146		
p-Terphenyl-d14	86	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C EPA 8270C SIM PCB Congeners

Method: Units:

ug/kg

iiio.

Page 33 of 64

Project: Berths 212-224 YTI Terminal

. ago oo o. o .

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/26/13 16:43	130816F03
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		0.52	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		0.55	0	.50	1		
PCB049		0.73	0	.50	1		
PCB052		1.3	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		0.87	0	.50	1		
PCB070		ND	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		1.7	0	.50	1		
PCB097		0.56	0	.50	1		
PCB099		0.88	0	.50	1		
PCB101		2.1	0	.50	1		
PCB105		0.67	0	.50	1		
PCB110		1.3	0	.50	1		
PCB114		ND	0	.50	1		
PCB118		1.5	0	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		2.4		.0	1		
PCB141		ND		.50	1		
PCB149		1.8		.50	1		
PCB151		0.54		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

<u>RL</u>

0.50

0.50

13-08-0936 **EPA 3540C** EPA 8270C SIM PCB Congeners

Qualifiers

Units:

ug/kg

Page 34 of 64

08/13/13

Project: Berths 212-224 YTI Terminal
Parameter

PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177

_	
Ρ	CB153
Ρ	CB156
Ρ	CB157
Ρ	CB167
Ρ	CB168
Ρ	CB169
Ρ	CB170
Ρ	CB174
Ρ	CB177
Ρ	CB180
	CB183
Ρ	CB184
Ρ	CB187
	CB189
	CB194
	CB195
•	CB200
	CB201
	CB203
	CB206
Р	CB209
_	
	urrogate
2	-Fluorobi

p-Terphenyl-d14

Result
2.9
ND
0.54
ND
ND
1.2
ND
ND
1.0
ND

ND

76

88

Rec. (%)

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Control Limits
14-146

0.00	•
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
0.50	1
Control Limits	<u>Qualifiers</u>
14-146	
34-148	

<u>DF</u>

1

1 1 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Units.

Page 35 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3W	13-08-0936-18-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 03:47	130816F03
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0.	.50	1		
PCB008		ND	0.	.50	1		
PCB018		ND	0.	.50	1		
PCB028		ND	0.	.50	1		
PCB031		ND	0.	.50	1		
PCB033		ND	0.	.50	1		
PCB037		ND	0.	.50	1		
PCB044		ND	0.	.50	1		
PCB049		ND	0.	.50	1		
PCB052		0.66	0.	.50	1		
PCB056		ND	0.	.50	1		
PCB060		ND	0.	.50	1		
PCB066		0.58	0.	.50	1		
PCB070		ND	0.	.50	1		
PCB074		ND	0.	.50	1		
PCB077		ND	0.	.50	1		
PCB081		ND	0.	.50	1		
PCB087		ND	0.	.50	1		
PCB095		1.2	0.	.50	1		
PCB097		ND	0.	.50	1		
PCB099		0.60	0.	.50	1		
PCB101		1.5	0.	.50	1		
PCB105		ND	0.	.50	1		
PCB110		0.95	0.	.50	1		
PCB114		ND	0.	.50	1		
PCB118		0.87	0.	.50	1		
PCB119		ND	0.	.50	1		
PCB123		ND	0.	.50	1		
PCB126		ND	0.	.50	1		
PCB128		ND	0.	.50	1		
PCB132		ND	0.	.50	1		
PCB138/158		1.6	1.	.0	1		
PCB141		ND	0.	.50	1		
PCB149		1.1	0.	.50	1		
PCB151		0.57	0.	.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 36 of 64

Project: Berths 212-224 YTI Terminal

Project. Bertins 212-224 f 11 Terminal				Page 36 01 6
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	2.1	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	0.61	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	0.66	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	64	14-146		
p-Terphenyl-d14	102	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 37 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W	13-08-0936-19-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 04:15	130816F03
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		ND	0.	50	1		
PCB052		ND	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		ND	0.	50	1		
PCB070		ND	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND	0.	50	1		
PCB095		ND	0.	50	1		
PCB097		ND	0.	50	1		
PCB099		ND	0.	50	1		
PCB101		ND	0.	50	1		
PCB105		ND	0.	50	1		
PCB110		ND	0.	50	1		
PCB114		ND	0.	50	1		
PCB118		ND	0.	50	1		
PCB119		ND	0.	50	1		
PCB123		ND	0.	50	1		
PCB126		ND	0.	50	1		
PCB128		ND	0.	50	1		
PCB132		ND	0.	50	1		
PCB138/158		ND	1.	0	1		

RL: Reporting Limit.

PCB141

PCB149

PCB151

DF: Dilution Factor.

MDL: Method Detection Limit.

0.50

0.50

0.50

1

1

ND

ND

ND

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Qualifiers

Page 38 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB153 PCB156 PCB157 PCB167 **PCB168** PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206

Result ND

Rec. (%)

67

103

<u>RL</u> 0.50 **Control Limits**

14-146

34-148

<u>DF</u>

1

1

1

RL: Reporting Limit.

PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Ullits.

Page 39 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5W	13-08-0936-20-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 04:42	130816F03
<u>Parameter</u>		Result	RI	=	<u>DF</u>	Qua	alifiers
PCB003		ND	0.9	50	1		
PCB008		ND	0.9	50	1		
PCB018		ND	0.9	50	1		
PCB028		ND	0.9	50	1		
PCB031		ND	0.9	50	1		
PCB033		ND	0.9	50	1		
PCB037		ND	0.9	50	1		
PCB044		ND	0.9	50	1		
PCB049		ND	0.9	50	1		
PCB052		1.5	0.9	50	1		
PCB056		ND	0.9	50	1		
PCB060		ND	0.9	50	1		
PCB066		0.62	0.9	50	1		
PCB070		ND	0.9	50	1		
PCB074		ND	0.9	50	1		
PCB077		ND	0.9	50	1		
PCB081		ND	0.9	50	1		
PCB087		ND	0.9	50	1		
PCB095		1.2	0.9	50	1		
PCB097		ND	0.9	50	1		
PCB099		ND	0.9	50	1		
PCB101		1.3	0.9	50	1		
PCB105		ND	0.9	50	1		
PCB110		0.95	0.9	50	1		
PCB114		ND	0.9	50	1		
PCB118		0.88	0.9	50	1		
PCB119		ND	0.9	50	1		
PCB123		ND	0.9	50	1		
PCB126		ND	0.9	50	1		
PCB128		ND	0.9	50	1		
PCB132		ND	0.9	50	1		

RL: Reporting Limit.

PCB138/158

PCB141

PCB149

PCB151

DF: Dilution Factor.

MDL: Method Detection Limit.

1.3

ND

0.85

ND

1.0

0.50

0.50

0.50

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

08/13/13 13-08-0936 EPA 3540C

Method: Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 40 of 64

Project: Berths 212-224 YTI Terminal

	5	5.		0 115
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	1.7	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	0.55	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	0.51	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	60	14-146		
p-Terphenyl-d14	90	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Ullits.

Page 41 of 64

Project: Berths 212-224 YTI Terminal

- ago .. o. o.

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6W	13-08-0936-21-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 05:10	130816F04
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		ND	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		ND	0	.50	1		
PCB049		ND	0	.50	1		
PCB052		ND	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		ND	0	.50	1		
PCB070		ND	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		ND	0	.50	1		
PCB097		ND	0	.50	1		
PCB099		ND	0	.50	1		
PCB101		ND	0	.50	1		
PCB105		ND	0	.50	1		
PCB110		ND	0	.50	1		
PCB114		ND	0	.50	1		
PCB118		ND	0	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		ND		.0	1		
PCB141		ND		.50	1		
PCB149		ND		.50	1		
PCB151		ND		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 42 of 64

,				9
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB153	ND	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	65	14-146		
p-Terphenyl-d14	95	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

. Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 43 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7W	13-08-0936-22-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 05:38	130816F04
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0.8	50	1		
PCB008		ND	0.8	50	1		
PCB018		ND	0.8	50	1		
PCB028		ND	0.8	50	1		
PCB031		ND	0.8	50	1		
PCB033		ND	0.8	50	1		
PCB037		0.51	0.5	50	1		
PCB044		0.53	0.5	50	1		
PCB049		ND	0.8	50	1		
PCB052		1.8	0.5	50	1		
PCB056		ND	0.8	50	1		
PCB060		0.66	0.8	50	1		
PCB066		0.73	0.8	50	1		
PCB070		ND	0.8	50	1		
PCB074		ND	0.8	50	1		
PCB077		ND	0.8	50	1		
PCB081		ND	0.8	50	1		
PCB087		ND	0.5	50	1		
PCB095		1.5	0.5	50	1		
PCB097		0.57	0.8	50	1		
PCB099		0.67	0.8	50	1		
PCB101		1.8	0.8	50	1		
PCB105		0.53	0.8	50	1		
PCB110		1.6	0.8	50	1		
PCB114		ND	0.8	50	1		
PCB118		1.0	0.8	50	1		
PCB119		ND	0.5	50	1		
PCB123		ND	0.8	50	1		
PCB126		ND	0.5	50	1		
PCB128		ND	0.8	50	1		
PCB132		ND	0.8	50	1		
PCB138/158		1.7	1.0	0	1		
PCB141		ND	0.5	50	1		
PCB149		1.0	0.5	50	1		
PCB151		ND	0.8	50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

Page 44 of 64

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	2.2	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	0.68	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	0.72	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	72	14-146		
p-Terphenyl-d14	109	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 45 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8W	13-08-0936-23-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 06:05	130816F04
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		ND	0.	50	1		
PCB052		1.1	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		0.50	0.	50	1		
PCB070		ND	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND	0.	50	1		
PCB095		1.2	0.	50	1		
PCB097		ND	0.	50	1		
PCB099		0.70	0.	50	1		
PCB101		1.7	0.	50	1		
PCB105		ND	0.	50	1		
PCB110		1.2	0.	50	1		
PCB114		ND	0.	50	1		
PCB118		0.81	0.	50	1		
PCB119		ND	0.	50	1		
PCB123		ND	0.	50	1		
PCB126		ND	0.	50	1		
PCB128		ND	0.	50	1		
PCB132		ND		50	1		
PCB138/158		1.6	1.	0	1		
PCB141		ND		50	1		
PCB149		1.0		50	1		
PCB151		0.55		50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C SIM PCB Congeners

08/13/13

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 46 of 64

Project: Berths 212-224 YTI Terminal

p-Terphenyl-d14

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
PCB153	2.3	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	0.62	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	0.66	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	68	14-146		

101

34-148

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Offits.

Page 47 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9 W	13-08-0936-24-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 06:34	130816F04
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
PCB003		ND	0.5	0	1		
PCB008		ND	0.5	60	1		
PCB018		ND	0.5	60	1		
PCB028		ND	0.5	60	1		
PCB031		ND	0.5	60	1		
PCB033		ND	0.5	60	1		
PCB037		ND	0.5	60	1		
PCB044		ND	0.5	60	1		
PCB049		ND	0.5	60	1		
PCB052		ND	0.5	60	1		
PCB056		ND	0.5	60	1		
PCB060		ND	0.5	60	1		
PCB066		ND	0.5	60	1		
PCB070		ND	0.5	60	1		
PCB074		ND	0.5	60	1		
PCB077		ND	0.5	60	1		
PCB081		ND	0.5	60	1		
PCB087		ND	0.5	50	1		
PCB095		ND	0.5	60	1		
PCB097		ND	0.5	60	1		
PCB099		ND	0.5	50	1		
PCB101		ND	0.5	60	1		
PCB105		ND	0.5	50	1		
PCB110		ND	0.5	50	1		
PCB114		ND	0.5	50	1		
PCB118		ND	0.5	60	1		
PCB119		ND	0.5	60	1		
PCB123		ND	0.5	60	1		
PCB126		ND	0.5	60	1		
PCB128		ND	0.5		1		
PCB132		ND	0.5		1		
PCB138/158		ND	1.0		1		

RL: Reporting Limit.

PCB141

PCB149

PCB151

DF: Dilution Factor.

MDL: Method Detection Limit.

0.50

0.50

0.50

1

ND

ND

ND

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

<u>RL</u>

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

13-08-0936 EPA 3540C

08/13/13

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 48 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

<u>Parameter</u> PCB153 ND ND PCB156 PCB157 ND PCB167 ND **PCB168** ND PCB169 ND PCB170 ND PCB174 ND PCB177 ND PCB180 ND ND PCB183 PCB184 ND PCB187 ND PCB189 ND PCB194 ND PCB195 ND PCB200 ND PCB201 ND PCB203 ND PCB206 ND PCB209 ND

Rec. (%)

61

91

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

14-146

34-148

Qualifiers

<u>DF</u>

1

1

1

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Units.

Page 49 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 07:01	130816F04
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		ND	0.	50	1		
PCB052		ND	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		ND	0.	50	1		
PCB070		ND	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND	0.	50	1		
PCB095		ND	0.	50	1		
PCB097		ND	0.	50	1		
PCB099		ND	0.	50	1		
PCB101		ND	0.	50	1		
PCB105		ND	0.	50	1		
PCB110		ND	0.	50	1		
PCB114		ND	0.	50	1		
PCB118		ND	0.	50	1		
PCB119		ND	0.	50	1		
PCB123		ND	0.	50	1		
PCB126		ND	0.	50	1		
PCB128		ND	0.	50	1		
PCB132		ND	0.	50	1		
PCB138/158		ND	1.	0	1		
PCB141		ND	0.	50	1		
PCB149		ND	0.	50	1		
PCB151		ND	0.	50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C SIM PCB Congeners

08/13/13

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 50 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	ND	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	63	14-146		
p-Terphenyl-d14	90	34-148		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 51 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11W	13-08-0936-26-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 07:29	130816F04
<u>Parameter</u>		Result	RI	=	<u>DF</u>	Qua	<u>lifiers</u>
PCB003		ND	0.9	50	1		
PCB008		ND	0.9	50	1		
PCB018		ND	0.9	50	1		
PCB028		0.57	0.9	50	1		
PCB031		ND	0.9	50	1		
PCB033		ND	0.9	50	1		
PCB037		0.75	0.9	50	1		
PCB044		0.63	0.9	50	1		
PCB049		0.57	0.9	50	1		
PCB052		2.1	0.9	50	1		
PCB056		ND	0.9	50	1		
PCB060		0.69	0.9	50	1		
PCB066		0.79	0.9	50	1		
PCB070		ND	0.9	50	1		
PCB074		ND	0.9	50	1		
PCB077		ND	0.9	50	1		
PCB081		ND	0.9	50	1		
PCB087		ND	0.9	50	1		
PCB095		1.3	0.9	50	1		
PCB097		0.53	0.9	50	1		
PCB099		0.71	0.9	50	1		
PCB101		2.1	0.9	50	1		
PCB105		0.57	0.9	50	1		
PCB110		1.7	0.9	50	1		
PCB114		ND	0.9	50	1		
PCB118		0.82	0.9	50	1		
PCB119		ND	0.9	50	1		
PCB123		ND	0.9	50	1		
PCB126		ND	0.9		1		
PCB128		ND	0.9		1		
PCB132		ND	0.9		1		
PCB138/158		1.3	1.0		1		
PCB141		ND	0.9		1		
PCB149		0.91	0.9		1		
PCB151		ND	0.9		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C SIM PCB Congeners

08/13/13

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 52 of 64

Project: Berths 212-224 YTI Terminal

<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
1.9	0.50	1	
ND	0.50	1	
0.59	0.50	1	
ND	0.50	1	
	Control Limits	Qualifiers	
61	14-146		
91	34-148		
	1.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.9 0.50 ND 0	1.9 0.50 1 ND 0.50 1 ND <t< td=""></t<>

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C

08/13/13

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 53 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12W	13-08-0936-27-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/26/13 14:10	130816F04
<u>Parameter</u>		Result	<u>R</u>	L	DF	Qua	<u>alifiers</u>
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		ND	0.	50	1		
PCB028		ND	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		ND	0.	50	1		
PCB044		ND	0.	50	1		
PCB049		ND	0.	50	1		
PCB052		ND	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		ND	0.	50	1		
PCB066		ND	0.	50	1		
PCB070		ND	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND		50	1		
PCB095		ND		50	1		
PCB097		ND		50	1		
PCB099		ND	0.	50	1		
PCB101		ND		50	1		
PCB105		ND		50	1		
PCB110		ND		50	1		
PCB114		ND		50	1		
PCB118		ND		50	1		
PCB119		ND		50	1		
PCB123		ND		50	1		
PCB126		ND		50	1		
PCB128		ND		50	1		
PCB132		ND		50	1		
PCB138/158		ND	1.		1		
PCB141		ND		50	1		
PCB149		ND		50	1		
PCB151		ND		50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

<u>RL</u>

Units:

13-08-0936 **EPA 3540C** EPA 8270C SIM PCB Congeners

Qualifiers

08/13/13

ug/kg Page 54 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB153 PCB156 PCB157 PCB167 **PCB168** PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206

Result ND

Rec. (%)

72

99

0.50 **Control Limits** 14-146

34-148

Qualifiers

<u>DF</u>

1

1

1

RL: Reporting Limit.

PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 55 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13W	13-08-0936-28-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 08:25	130816F04
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
PCB003		ND	0	.50	1		
PCB008		ND	0	.50	1		
PCB018		ND	0	.50	1		
PCB028		0.64	0	.50	1		
PCB031		ND	0	.50	1		
PCB033		ND	0	.50	1		
PCB037		ND	0	.50	1		
PCB044		ND	0	.50	1		
PCB049		ND	0	.50	1		
PCB052		1.6	0	.50	1		
PCB056		ND	0	.50	1		
PCB060		ND	0	.50	1		
PCB066		0.72	0	.50	1		
PCB070		ND	0	.50	1		
PCB074		ND	0	.50	1		
PCB077		ND	0	.50	1		
PCB081		ND	0	.50	1		
PCB087		ND	0	.50	1		
PCB095		1.2	0	.50	1		
PCB097		ND	0	.50	1		
PCB099		0.64	0	.50	1		
PCB101		1.5	0	.50	1		
PCB105		0.58	0	.50	1		
PCB110		1.2	0	.50	1		
PCB114		ND		.50	1		
PCB118		0.78	0	.50	1		
PCB119		ND		.50	1		
PCB123		ND		.50	1		
PCB126		ND		.50	1		
PCB128		ND		.50	1		
PCB132		ND		.50	1		
PCB138/158		1.2		.0	1		
PCB141		ND		.50	1		
PCB149		0.91		.50	1		
PCB151		ND		.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C 8270C SIM PCB Congeners

Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 56 of 64

08/13/13

Project: Berths 212-224 YTI Terminal

· · · · · · · · · · · · · · · · · · ·				g
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	1.7	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	0.52	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	60	14-146		
p-Terphenyl-d14	84	34-148		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Ullits.

Page 57 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14W	13-08-0936-29-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 08:52	130816F04
Parameter		Result	<u>RI</u>	<u> </u>	<u>DF</u>	Qua	alifiers
PCB003		ND	0.	50	1		
PCB008		ND	0.	50	1		
PCB018		0.69	0.	50	1		
PCB028		0.62	0.	50	1		
PCB031		ND	0.	50	1		
PCB033		ND	0.	50	1		
PCB037		0.56	0.	50	1		
PCB044		0.55	0.	50	1		
PCB049		ND	0.	50	1		
PCB052		1.7	0.	50	1		
PCB056		ND	0.	50	1		
PCB060		0.62	0.	50	1		
PCB066		0.77	0.	50	1		
PCB070		ND	0.	50	1		
PCB074		ND	0.	50	1		
PCB077		ND	0.	50	1		
PCB081		ND	0.	50	1		
PCB087		ND	0.	50	1		
PCB095		1.4	0.	50	1		
PCB097		ND	0.	50	1		
PCB099		0.69		50	1		
PCB101		1.8	0.	50	1		
PCB105		0.56	0.	50	1		
PCB110		1.7	0.	50	1		
PCB114		ND	0.	50	1		
PCB118		0.87	0.	50	1		
PCB119		ND	0.	50	1		
PCB123		ND	0.		1		
PCB126		ND	0.		1		
PCB128		ND		50	1		
PCB132		ND	0.		1		
PCB138/158		1.3	1.0		1		
PCB141		ND	0.		1		
PCB149		1.0		50	1		
PCB151		0.51		50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

08/13/13

Units:

LIA/ka

Page 58 of 64

Project: Berths 212-224 YTI Terminal

<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1.9	0.50	1	
ND	0.50	1	
0.58	0.50	1	
ND	0.50	1	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
73	14-146		
102	34-148		
	1.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.9	1.9 0.50 1 ND 0.50 1 ND <t< td=""></t<>

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

08/13/13 13-08-0936 EPA 3540C

Method: EPA 8270C SIM PCB Congeners Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 59 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15W	13-08-0936-30-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 09:20	130816F04
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
PCB003		ND	0.5	50	1		
PCB008		ND	0.5	50	1		
PCB018		ND	0.5	50	1		
PCB028		ND	0.5	50	1		
PCB031		ND	0.5	50	1		
PCB033		ND	0.5	50	1		
PCB037		ND	0.5	50	1		
PCB044		ND	0.5	50	1		
PCB049		0.65	0.5	50	1		
PCB052		1.4	0.5	50	1		
PCB056		ND	0.5	50	1		
PCB060		ND	0.5	50	1		
PCB066		0.63	0.5	50	1		
PCB070		ND	0.5	50	1		
PCB074		ND	0.5	50	1		
PCB077		ND	0.5	50	1		
PCB081		ND	0.5	50	1		
PCB087		ND	0.5	50	1		
PCB095		1.6	0.5	50	1		
PCB097		0.69	0.5	50	1		
PCB099		1.2	0.5	50	1		
PCB101		3.8	0.5	50	1		
PCB105		0.85	0.5	50	1		
PCB110		1.5	0.5	50	1		
PCB114		ND	0.5	50	1		
PCB118		1.2	0.5	50	1		
PCB119		ND	0.5	50	1		
PCB123		ND	0.5	50	1		
PCB126		ND	0.5	50	1		
PCB128		ND	0.5		1		
PCB132		ND	0.5		1		
PCB138/158							
PCB141			1.0)	1		
		2.2	1.0 0.5		1 1		
PCB149			1.0 0.5 0.5	50			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

<u>RL</u>

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners ug/kg

Project: Berths 212-224 YTI Terminal

Page 60 of 64

Qualifiers

08/13/13

Parameter
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209
Surrogate
2-Fluorobiphenyl

p-Terphenyl-d14

<u>Result</u>
5.5
ND
0.67
ND
ND
1.1
ND

Rec. (%)

64

90

0.50 **Control Limits** 14-146

34-148

<u>DF</u>

1

1

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 61 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-318-35	N/A	Soil	GC/MS HHH	08/16/13	08/23/13 13:49	130816F03
<u>Parameter</u>		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
PCB003		ND	().50	1		
PCB008		ND	().50	1		
PCB018		ND	().50	1		
PCB028		ND	().50	1		
PCB031		ND	().50	1		
PCB033		ND	(0.50	1		
PCB037		ND	(0.50	1		
PCB044		ND	(0.50	1		
PCB049		ND	(0.50	1		
PCB052		ND	(0.50	1		
PCB056		ND	(0.50	1		
PCB060		ND	(0.50	1		
PCB066		ND	(0.50	1		
PCB070		ND	(0.50	1		
PCB074		ND	(0.50	1		
PCB077		ND	(0.50	1		
PCB081		ND	(0.50	1		
PCB087		ND	(0.50	1		
PCB095		ND	(0.50	1		
PCB097		ND	(0.50	1		
PCB099		ND	(0.50	1		
PCB101		ND	(0.50	1		
PCB105		ND	(0.50	1		
PCB110		ND	(0.50	1		
PCB114		ND	(0.50	1		
PCB118		ND	(0.50	1		
PCB119		ND		0.50	1		
PCB123		ND).50	1		
PCB126		ND	(0.50	1		
PCB128		ND	(0.50	1		
PCB132		ND	0.50		1		
PCB138/158		ND	1.0		1		
PCB141		ND		0.50	1		
PCB149		ND	0.50		1		
PCB151		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

<u>RL</u>

0.50

13-08-0936 **EPA 3540C**

08/13/13

Method: Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 62 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB153 PCB156 PCB157 PCB167 **PCB168** PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206 PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

Result ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

ND

ND

93

102

Rec. (%)

0.50 **Control Limits**

14-146

34-148

Qualifiers

<u>DF</u>

1

1

1

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

EPA 3540C

Preparation: Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Ullits.

Page 63 of 64

Project: Berths 212-224 YTI Terminal

rage 03 01 04

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-318-36	N/A	Soil	GC/MS HHH	08/16/13	08/23/13 23:35	130816F04
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
PCB003		ND		0.50	1		
PCB008		ND		0.50	1		
PCB018		ND		0.50	1		
PCB028		ND		0.50	1		
PCB031		ND		0.50	1		
PCB033		ND		0.50	1		
PCB037		ND		0.50	1		
PCB044		ND		0.50	1		
PCB049		ND		0.50	1		
PCB052		ND		0.50	1		
PCB056		ND		0.50	1		
PCB060		ND		0.50	1		
PCB066		ND		0.50	1		
PCB070		ND		0.50	1		
PCB074		ND		0.50	1		
PCB077		ND		0.50	1		
PCB081		ND		0.50	1		
PCB087		ND		0.50	1		
PCB095		ND		0.50	1		
PCB097		ND		0.50	1		
PCB099		ND		0.50	1		
PCB101		ND		0.50	1		
PCB105		ND		0.50	1		
PCB110		ND		0.50	1		
PCB114		ND		0.50	1		
PCB118		ND		0.50	1		
PCB119		ND		0.50	1		
PCB123		ND		0.50	1		
PCB126		ND		0.50	1		
PCB128		ND		0.50	1		
PCB132		ND		0.50	1		
PCB138/158		ND		1.0	1		
PCB141		ND		0.50	1		
PCB149		ND		0.50	1		
PCB151		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 64 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB153	ND	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	83	14-146		
p-Terphenyl-d14	117	34-148		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 1 of 7

Quality Control Sample ID		Matrix		Instrument	Date Pr	epared	Date Analyzed	MS	/MSD Batch	Number
1C		Tissue		ICP/MS 03	08/15/1	3	08/16/13 20:08	130	815 S 01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Arsenic	3.207	12.50	16.17	104	16.36	105	80-120	1	0-20	
Cadmium	ND	12.50	13.83	111	13.20	106	80-120	5	0-20	
Chromium	1.059	12.50	14.79	110	13.61	100	80-120	8	0-20	
Copper	2.189	12.50	15.04	103	15.60	107	80-120	4	0-20	
Lead	0.4390	12.50	13.72	106	13.48	104	80-120	2	0-20	
Nickel	0.9137	12.50	14.61	110	13.49	101	80-120	8	0-20	
Selenium	0.3260	12.50	14.61	114	13.46	105	80-120	8	0-20	
Silver	ND	6.250	6.810	109	6.703	107	80-120	2	0-20	
Zinc	14.08	12.50	27.45	107	29.40	123	80-120	7	0-20	3

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Method:

Page 2 of 7

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-08-0763-6		Tissue		ICP/MS 03	08/15/1	13	08/20/13 13:18	130	815S02	
Parameter	<u>Sample</u> <u>Conc.</u>	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Arsenic	36.17	12.50	49.47	106	46.88	86	80-120	5	0-20	
Cadmium	5.945	12.50	19.18	106	17.52	93	80-120	9	0-20	
Chromium	0.5405	12.50	13.27	102	12.71	97	80-120	4	0-20	
Copper	46.61	12.50	57.94	91	54.80	66	80-120	6	0-20	3
Lead	0.1250	12.50	13.44	106	12.34	98	80-120	9	0-20	
Nickel	1.428	12.50	14.69	106	14.07	101	80-120	4	0-20	
Selenium	0.7356	12.50	14.36	109	14.11	107	80-120	2	0-20	
Silver	2.163	6.250	9.815	122	8.306	98	80-120	17	0-20	3
Zinc	157.3	12.50	165.8	4X	154.2	4X	80-120	4X	0-20	Q

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 7

Quality Control Sample ID		Matrix		Instrument	Date Pi	repared	Date Analyzed	MS/MSD Batch Number		Number
1C		Tissue		Mercury	08/15/1	3	08/19/13 17:30	130)815 S 05	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.5000	0.3196	64	0.1800	36	76-136	56	0-16	3,4

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 4 of 7

Quality Control Sample ID		Matrix		Instrument	Date Pr	epared	Date Analyzed	MS	/MSD Batch	Number
6W		Tissue		Mercury	08/15/1	3	08/19/13 18:28	130	815 S 06	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.5000	0.3870	77	0.4000	80	76-136	3	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Project: Berths 212-224 YTI Terminal

Page 5 of 7

Quality Control Sample ID		Matrix	In	strument	Date Pre	epared	Date Analyzed	MS	MS/MSD Batch Number		
12C		Tissue	G	C 51	08/16/13	3	08/24/13 15:14	130	816 S 05		
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
4,4'-DDD	ND	5.000	4.722	94	4.821	96	50-135	2	0-25		
4,4'-DDE	4.323	5.000	10.86	131	11.02	134	50-135	2	0-25		
4,4'-DDT	ND	5.000	4.250	85	4.311	86	50-135	1	0-25		
Aldrin	ND	5.000	3.791	76	3.864	77	50-135	2	0-25		
Alpha Chlordane	ND	5.000	3.939	79	4.013	80	50-135	2	0-25		
Alpha-BHC	ND	5.000	3.815	76	3.909	78	50-135	2	0-25		
Beta-BHC	ND	5.000	4.226	85	4.393	88	50-135	4	0-25		
Delta-BHC	ND	5.000	4.243	85	4.326	87	50-135	2	0-25		
Dieldrin	ND	5.000	4.117	82	4.184	84	50-135	2	0-25		
Endosulfan I	ND	5.000	4.111	82	4.202	84	50-135	2	0-25		
Endosulfan II	ND	5.000	1.888	38	1.910	38	50-135	1	0-25	3	
Endosulfan Sulfate	ND	5.000	1.191	24	1.207	24	50-135	1	0-25	3	
Endrin	ND	5.000	4.030	81	4.073	81	50-135	1	0-25		
Endrin Aldehyde	ND	5.000	0.09250	2	0.07030	1	50-135	27	0-25	3,4	
Endrin Ketone	ND	5.000	1.239	25	1.282	26	50-135	3	0-25	3	
Gamma Chlordane	ND	5.000	3.643	73	3.633	73	50-135	0	0-25		
Gamma-BHC	ND	5.000	3.779	76	3.848	77	50-135	2	0-25		
Heptachlor	ND	5.000	3.912	78	3.957	79	50-135	1	0-25		
Heptachlor Epoxide	ND	5.000	4.320	86	4.406	88	50-135	2	0-25		
Methoxychlor	ND	5.000	3.329	67	3.404	68	50-135	2	0-25		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C

08/13/13

Method:

EPA 8270C SIM PAHs

Page 6 of 7

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	n Number
7C		Tissue		GC/MS AAA	08/16/1	13	08/23/13 20:47	130	0816S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Acenaphthene	24.22	100.0	90.36	66	92.61	68	40-160	2	0-20	
Acenaphthylene	ND	100.0	89.52	90	91.35	91	40-160	2	0-20	
Anthracene	ND	100.0	81.37	81	82.32	82	40-160	1	0-20	
Benzo (a) Anthracene	13.02	100.0	103.9	91	104.4	91	40-160	0	0-20	
Benzo (a) Pyrene	33.30	100.0	124.2	91	125.6	92	40-160	1	0-20	
Benzo (b) Fluoranthene	46.22	100.0	139.7	93	127.5	81	40-160	9	0-20	
Benzo (g,h,i) Perylene	ND	100.0	81.35	81	84.64	85	40-160	4	0-20	
Benzo (k) Fluoranthene	34.45	100.0	112.5	78	114.0	80	40-160	1	0-20	
Chrysene	21.20	100.0	102.2	81	101.6	80	40-160	1	0-20	
Dibenz (a,h) Anthracene	ND	100.0	90.76	91	92.85	93	40-160	2	0-20	
Fluoranthene	70.28	100.0	163.9	94	153.9	84	40-160	6	0-20	
Fluorene	ND	100.0	95.20	95	95.53	96	40-160	0	0-20	
Indeno (1,2,3-c,d) Pyrene	ND	100.0	109.3	109	111.1	111	40-160	2	0-20	
2-Methylnaphthalene	ND	100.0	97.15	97	98.38	98	40-160	1	0-20	
1-Methylnaphthalene	ND	100.0	88.22	88	96.03	96	40-160	8	0-20	
Naphthalene	ND	100.0	87.99	88	90.13	90	40-160	2	0-20	
Phenanthrene	ND	100.0	89.77	90	98.07	98	40-160	9	0-20	
Pyrene	201.5	100.0	304.7	103	275.4	74	40-160	10	0-46	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C

08/13/13

Method:

EPA 8270C SIM PCB Congeners

Page 7 of 7

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	n Number
4C		Tissue		GC/MS HHH	08/16/	13	08/24/13 01:27	130	816 S 03	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
PCB008	ND	50.00	44.79	90	44.26	89	50-150	1	0-30	
PCB018	ND	50.00	43.27	87	43.85	88	50-150	1	0-30	
PCB028	ND	50.00	43.77	88	43.90	88	50-150	0	0-30	
PCB044	ND	50.00	44.94	90	45.44	91	50-150	1	0-30	
PCB052	ND	50.00	40.74	81	41.14	82	50-150	1	0-30	
PCB066	ND	50.00	46.97	94	47.20	94	50-150	0	0-30	
PCB077	ND	50.00	45.51	91	45.95	92	50-150	1	0-30	
PCB101	ND	50.00	44.56	89	44.93	90	50-150	1	0-30	
PCB105	ND	50.00	44.75	90	44.92	90	50-150	0	0-30	
PCB118	ND	50.00	47.40	95	47.12	94	50-150	1	0-30	
PCB126	ND	50.00	43.51	87	43.83	88	50-150	1	0-30	
PCB128	ND	50.00	49.13	98	49.17	98	50-150	0	0-30	
PCB153	ND	50.00	44.28	89	44.49	89	50-150	0	0-30	
PCB170	ND	50.00	37.05	74	36.74	73	50-150	1	0-30	
PCB180	ND	50.00	43.91	88	43.67	87	50-150	1	0-30	
PCB187	ND	50.00	42.95	86	43.29	87	50-150	1	0-30	
PCB195	ND	50.00	44.34	89	43.37	87	50-150	2	0-30	
PCB206	ND	50.00	39.26	79	38.91	78	50-150	1	0-30	
PCB209	ND	50.00	44 41	89	43.36	87	50-150	2	0-30	

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 1 of 3

Quality Control Sample ID	Matrix	Instrument	Date Prepare	ed Date Analy	zed PDS/PI	OSD Batch Number
1C	Tissue	ICP/MS 03	08/15/13 00:	00 08/16/13 2	0:14 130815	S01
<u>Parameter</u>	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	%Rec. CL	<u>Qualifiers</u>
Arsenic	3.207	12.50	15.76	100	75-125	
Cadmium	ND	12.50	13.02	104	75-125	
Chromium	1.059	12.50	14.02	104	75-125	
Copper	2.189	12.50	14.85	101	75-125	
Lead	0.4390	12.50	13.35	103	75-125	
Nickel	0.9137	12.50	14.19	106	75-125	
Selenium	0.3260	12.50	13.45	105	75-125	
Silver	ND	6.250	5.745	92	75-125	
Zinc	14.08	12.50	27.26	105	75-125	

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 2 of 3

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d Date Analyz	zed PDS/PDS	D Batch Number
13-08-0763-6	Tissue	ICP/MS 03	08/15/13 00:0	00 08/19/13 14	1:24 13081550	02
Parameter	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	%Rec. CL	<u>Qualifiers</u>
Arsenic	36.17	12.50	45.75	77	75-125	
Cadmium	5.945	12.50	18.25	98	75-125	
Chromium	0.5405	12.50	13.49	104	75-125	
Copper	46.61	12.50	55.17	68	75-125	5
Lead	0.1250	12.50	13.02	103	75-125	
Nickel	1.428	12.50	15.11	109	75-125	
Selenium	0.7356	12.50	13.77	104	75-125	
Silver	2.163	6.250	7.465	85	75-125	
Zinc	157.3	12.50	137.5	4X	75-125	Q

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total **EPA 7471A**

08/13/13

Project: Berths 212-224 YTI Terminal

39	130815S05	
d	PDS/PDSD Batch Number	

Page 3 of 3

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

13-08-0936 N/A

08/13/13

SM 2540 B (M) Page 1 of 4

Project: Berths 212-224 YTI Terminal

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
1C	Tissue N/A 0		08/17/13 00:00	08/17/13 16:45	D0817TSD3
Parameter	Sample Cond	DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total	14.30	15.50	8	0-10	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

13-08-0936 N/A

08/13/13

SM 2540 B (M)

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
6W	Tissue N/A 0		08/17/13 00:00	08/17/13 16:45	D0817TSD4
<u>Parameter</u>	Sample Cond	DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total	15.30	14.30	7	0-10	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

Method:

13-08-0936 N/A

08/13/13

MeCl2 Ext. (NOAA 1993a)

Page 3 of 4

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
4C	Tissue	N/A	N/A	08/22/13 12:00	130822D01
Parameter	Sample Co	nc. DUP Conc.	RPD	RPD CL	<u>Qualifiers</u>
% Lipids	0.7100	0.7300	3	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

Method:

13-08-0936 N/A

08/13/13

MeCl2 Ext. (NOAA 1993a)

Page 4 of 4

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
13W	Tissue	N/A	N/A	08/22/13 12:00	130822D02
Parameter	Sample Co.	nc. <u>DUP Conc.</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
% Lipids	1.340	1.300	3	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 1 of 10

Quality Control Sample ID		Matrix	Ir	nstrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-15-258-20		Soil	I	CP/MS 03	08/15/13	08/16/	13 20:05	130815L01T	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Arsenic	12.50	11.95	96	12.32	99	80-120	3	0-20	
Cadmium	12.50	12.54	100	12.41	99	80-120	1	0-20	
Chromium	12.50	12.40	99	12.54	100	80-120	1	0-20	
Copper	12.50	12.54	100	13.37	107	80-120	6	0-20	
Lead	12.50	12.32	99	12.55	100	80-120	2	0-20	
Nickel	12.50	12.60	101	13.26	106	80-120	5	0-20	
Selenium	12.50	11.84	95	12.23	98	80-120	3	0-20	
Silver	6.250	5.612	90	5.777	92	80-120	3	0-20	
Zinc	12.50	13.18	105	13.41	107	80-120	2	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 2 of 10

Quality Control Sample ID		Matrix	ı	nstrument	Date Prepare	d Date A	Analyzed	LCS/LCSD Ba	tch Number
099-15-258-21		Soil	ı	CP/MS 03	08/15/13	08/19/	13 20:46	130815L02T	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	LCS %Rec.	LCSD Conc.	<u>LCSD</u> %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Arsenic	12.50	12.95	104	12.85	103	80-120	1	0-20	
Cadmium	12.50	12.77	102	12.48	100	80-120	2	0-20	
Chromium	12.50	13.44	108	12.53	100	80-120	7	0-20	
Copper	12.50	13.06	104	13.83	111	80-120	6	0-20	
Lead	12.50	13.19	106	12.65	101	80-120	4	0-20	
Nickel	12.50	13.72	110	13.52	108	80-120	1	0-20	
Selenium	12.50	13.48	108	12.07	97	80-120	11	0-20	
Silver	6.250	5.528	88	5.637	90	80-120	2	0-20	
Zinc	12.50	12.87	103	14.19	114	80-120	10	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 10

Quality Control Sample ID		Matrix Instrument		Date Prepared Date Ana		Analyzed	LCS/LCSD Batch Number		
099-12-409-46		Soil	r	Mercury	08/15/13	08/15/	13 15:53	130815L05T	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.8350	0.9197	110	0.8176	98	82-124	12	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 4 of 10

Quality Control Sample ID		Matrix Instrument		Date Prepa	Date Prepared Date Analyzed		LCS/LCSD Batch Number		
099-12-409-47		Soil	N	Mercury	08/15/13	08/15/	13 15:56	130815L06T	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.8350	0.9270	111	0.7970	95	82-124	15	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 **EPA 8081A**

Project: Berths 212-224 YTI Terminal

Page 5 of 10

Quality Control Sample ID		Ma	atrix	Instrume	nt Da	ate Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-294-22		Sc	oil	GC 51	08	3/16/13	08/24/13	3 17:28	130816F05	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
4,4'-DDD	5.000	4.391	88	4.396	88	50-135	36-149	0	0-25	
4,4'-DDE	5.000	4.522	90	4.544	91	50-135	36-149	0	0-25	
4,4'-DDT	5.000	4.422	88	4.451	89	50-135	36-149	1	0-25	
Aldrin	5.000	4.273	85	4.319	86	50-135	36-149	1	0-25	
Alpha Chlordane	5.000	4.316	86	4.345	87	50-135	36-149	1	0-25	
Alpha-BHC	5.000	4.086	82	4.188	84	50-135	36-149	2	0-25	
Beta-BHC	5.000	3.975	80	4.119	82	50-135	36-149	4	0-25	
Delta-BHC	5.000	4.175	84	4.228	85	50-135	36-149	1	0-25	
Dieldrin	5.000	4.418	88	4.450	89	50-135	36-149	1	0-25	
Endosulfan I	5.000	4.396	88	4.423	88	50-135	36-149	1	0-25	
Endosulfan II	5.000	4.404	88	4.393	88	50-135	36-149	0	0-25	
Endosulfan Sulfate	5.000	4.282	86	4.266	85	50-135	36-149	0	0-25	
Endrin	5.000	4.383	88	4.454	89	50-135	36-149	2	0-25	
Endrin Aldehyde	5.000	4.575	91	4.565	91	50-135	36-149	0	0-25	
Endrin Ketone	5.000	4.631	93	4.613	92	50-135	36-149	0	0-25	
Gamma Chlordane	5.000	4.189	84	4.208	84	50-135	36-149	0	0-25	
Gamma-BHC	5.000	4.220	84	4.240	85	50-135	36-149	0	0-25	
Heptachlor	5.000	4.308	86	4.373	87	50-135	36-149	2	0-25	
Heptachlor Epoxide	5.000	4.323	86	4.356	87	50-135	36-149	1	0-25	
Methoxychlor	5.000	4.712	94	4.704	94	50-135	36-149	0	0-25	

Total number of LCS compounds: 20 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Project: Berths 212-224 YTI Terminal

Page 6 of 10

0-25

Quality Control Sample ID		Ma	atrix	Instrume	nt D	ate Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-294-23		Sc	oil	GC 51	08	3/16/13	08/24/13	3 17:56	130816F06	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
4,4'-DDD	5.000	5.680	114	5.585	112	50-135	36-149	2	0-25	
4,4'-DDE	5.000	5.753	115	5.652	113	50-135	36-149	2	0-25	
4,4'-DDT	5.000	5.756	115	5.665	113	50-135	36-149	2	0-25	
Aldrin	5.000	5.520	110	5.438	109	50-135	36-149	2	0-25	
Alpha Chlordane	5.000	5.497	110	5.414	108	50-135	36-149	2	0-25	
Alpha-BHC	5.000	5.240	105	5.169	103	50-135	36-149	1	0-25	
Beta-BHC	5.000	5.236	105	5.186	104	50-135	36-149	1	0-25	
Delta-BHC	5.000	5.338	107	5.283	106	50-135	36-149	1	0-25	
Dieldrin	5.000	5.688	114	5.600	112	50-135	36-149	2	0-25	
Endosulfan I	5.000	5.621	112	5.535	111	50-135	36-149	2	0-25	
Endosulfan II	5.000	5.609	112	5.509	110	50-135	36-149	2	0-25	
Endosulfan Sulfate	5.000	5.553	111	5.474	109	50-135	36-149	1	0-25	
Endrin	5.000	5.631	113	5.547	111	50-135	36-149	2	0-25	
Endrin Aldehyde	5.000	5.903	118	5.816	116	50-135	36-149	1	0-25	
Endrin Ketone	5.000	6.083	122	6.002	120	50-135	36-149	1	0-25	
Gamma Chlordane	5.000	5.416	108	5.252	105	50-135	36-149	3	0-25	
Gamma-BHC	5.000	5.398	108	5.314	106	50-135	36-149	2	0-25	
Heptachlor	5.000	5.588	112	5.516	110	50-135	36-149	1	0-25	
Heptachlor Epoxide	5.000	5.530	111	5.451	109	50-135	36-149	1	0-25	

6.075

121

50-135

36-149

1

Total number of LCS compounds: 20
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

5.000

123

6.164

Methoxychlor

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Project: Berths 212-224 YTI Terminal

Page 7 of 10

Quality Control Sample ID		M	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-15-943-5		Sc	oil	GC/MS	AAA	08/16/13	08/23/13	3 16:06	130816L01	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec		ME CL	RPD	RPD CL	<u>Qualifiers</u>
Acenaphthene	100.0	117.6	118	115.9	116	48-108	38-118	1	0-11	ME
Acenaphthylene	100.0	92.32	92	89.31	89	40-160	20-180	3	0-20	
Anthracene	100.0	94.03	94	87.86	88	40-160	20-180	7	0-20	
Benzo (a) Anthracene	100.0	119.0	119	118.1	118	40-160	20-180	1	0-20	
Benzo (a) Pyrene	100.0	82.80	83	82.15	82	40-160	20-180	1	0-20	
Benzo (b) Fluoranthene	100.0	126.9	127	127.0	127	40-160	20-180	0	0-20	
Benzo (g,h,i) Perylene	100.0	108.2	108	106.9	107	40-160	20-180	1	0-20	
Benzo (k) Fluoranthene	100.0	137.1	137	135.9	136	40-160	20-180	1	0-20	
Chrysene	100.0	125.5	125	126.6	127	40-160	20-180	1	0-20	
Dibenz (a,h) Anthracene	100.0	122.9	123	123.7	124	40-160	20-180	1	0-20	
Fluoranthene	100.0	132.3	132	124.2	124	40-160	20-180	6	0-20	
Fluorene	100.0	129.7	130	126.2	126	40-160	20-180	3	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	154.2	154	149.8	150	40-160	20-180	3	0-20	
2-Methylnaphthalene	100.0	131.8	132	134.2	134	40-160	20-180	2	0-20	
1-Methylnaphthalene	100.0	123.5	124	134.4	134	40-160	20-180	8	0-20	
Naphthalene	100.0	119.2	119	124.3	124	40-160	20-180	4	0-20	
Phenanthrene	100.0	128.0	128	119.2	119	40-160	20-180	7	0-20	
Pyrene	100.0	121.6	122	123.7	124	40-160	20-180	2	0-16	

Total number of LCS compounds: 18 Total number of ME compounds: 1

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Method:

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

EPA 3540C EPA 8270C SIM PAHs

Project: Berths 212-224 YTI Terminal

Page 8 of 10

08/13/13 13-08-0936

Quality Control Sample ID		Ma	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-15-943-6		Sc	oil	GC/MS	AAA	08/16/13	08/26/13	3 13:12	130816L02	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec		ME CL	RPD	RPD CL	<u>Qualifiers</u>
Acenaphthene	100.0	107.1	107	104.3	104	48-108	38-118	3	0-11	
Acenaphthylene	100.0	81.02	81	80.37	80	40-160	20-180	1	0-20	
Anthracene	100.0	75.37	75	73.43	73	40-160	20-180	3	0-20	
Benzo (a) Anthracene	100.0	104.2	104	101.6	102	40-160	20-180	3	0-20	
Benzo (a) Pyrene	100.0	72.43	72	69.39	69	40-160	20-180	4	0-20	
Benzo (b) Fluoranthene	100.0	115.0	115	106.6	107	40-160	20-180	8	0-20	
Benzo (g,h,i) Perylene	100.0	96.98	97	91.54	92	40-160	20-180	6	0-20	
Benzo (k) Fluoranthene	100.0	121.4	121	113.6	114	40-160	20-180	7	0-20	
Chrysene	100.0	107.9	108	106.3	106	40-160	20-180	1	0-20	
Dibenz (a,h) Anthracene	100.0	111.9	112	106.6	107	40-160	20-180	5	0-20	
Fluoranthene	100.0	109.8	110	106.4	106	40-160	20-180	3	0-20	
Fluorene	100.0	113.0	113	105.9	106	40-160	20-180	6	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	138.1	138	127.0	127	40-160	20-180	8	0-20	
2-Methylnaphthalene	100.0	118.7	119	117.2	117	40-160	20-180	1	0-20	
1-Methylnaphthalene	100.0	117.7	118	111.0	111	40-160	20-180	6	0-20	
Naphthalene	100.0	107.0	107	105.6	106	40-160	20-180	1	0-20	
Phenanthrene	100.0	107.8	108	98.35	98	40-160	20-180	9	0-20	
Pyrene	100.0	104.6	105	105.4	105	40-160	20-180	1	0-16	

Total number of LCS compounds: 18 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: 08/13/13
Work Order: 13-08-0936
Preparation: EPA 3540C

Method: EPA 8270C SIM PCB Congeners

Project: Berths 212-224 YTI Terminal Page 9 of 10

Quality Control Sample ID		Ma	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-318-35		Sc	oil	GC/MS	ннн	08/16/13	08/23/1	3 21:41	130816F03	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSE %Red	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
PCB008	50.00	34.39	69	32.58	65	50-150	33-167	5	0-30	
PCB018	50.00	32.76	66	31.15	62	50-150	33-167	5	0-30	
PCB028	50.00	33.54	67	32.09	64	50-150	33-167	4	0-30	
PCB044	50.00	34.24	68	32.94	66	50-150	33-167	4	0-30	
PCB052	50.00	31.66	63	30.58	61	50-150	33-167	3	0-30	
PCB066	50.00	35.70	71	34.71	69	50-150	33-167	3	0-30	
PCB077	50.00	35.60	71	34.82	70	50-150	33-167	2	0-30	
PCB101	50.00	33.94	68	33.17	66	50-150	33-167	2	0-30	
PCB105	50.00	33.02	66	32.57	65	50-150	33-167	1	0-30	
PCB118	50.00	35.33	71	34.82	70	50-150	33-167	1	0-30	
PCB126	50.00	31.94	64	32.12	64	50-150	33-167	1	0-30	
PCB128	50.00	28.88	58	28.39	57	50-150	33-167	2	0-30	
PCB153	50.00	33.17	66	32.71	65	50-150	33-167	1	0-30	
PCB170	50.00	27.61	55	26.54	53	50-150	33-167	4	0-30	
PCB180	50.00	31.36	63	31.11	62	50-150	33-167	1	0-30	
PCB187	50.00	32.64	65	32.36	65	50-150	33-167	1	0-30	
PCB195	50.00	32.75	66	31.17	62	50-150	33-167	5	0-30	
PCB206	50.00	28.77	58	27.91	56	50-150	33-167	3	0-30	
PCB209	50.00	31.23	62	30.39	61	50-150	33-167	3	0-30	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: 08/13/13
Work Order: 13-08-0936
Preparation: EPA 3540C

Method: EPA 8270C SIM PCB Congeners

Project: Berths 212-224 YTI Terminal Page 10 of 10

Quality Control Sample ID		Ma	atrix	Instrume	ent	Date Prepared	Date Ar	alyzed	LCS/LCSD Bat	ch Number
099-14-318-36		Sc	oil	GC/MS	ннн	08/16/13	08/23/1	3 22:38	130816F04	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec	<u>%Rec. CL</u>	ME CL	RPD	RPD CL	<u>Qualifiers</u>
PCB008	50.00	53.95	108	55.66	111	50-150	33-167	3	0-30	
PCB018	50.00	51.60	103	52.79	106	50-150	33-167	2	0-30	
PCB028	50.00	52.61	105	54.20	108	50-150	33-167	3	0-30	
PCB044	50.00	53.92	108	54.68	109	50-150	33-167	1	0-30	
PCB052	50.00	49.98	100	50.99	102	50-150	33-167	2	0-30	
PCB066	50.00	57.17	114	58.29	117	50-150	33-167	2	0-30	
PCB077	50.00	57.27	115	58.49	117	50-150	33-167	2	0-30	
PCB101	50.00	54.42	109	54.88	110	50-150	33-167	1	0-30	
PCB105	50.00	54.24	108	54.95	110	50-150	33-167	1	0-30	
PCB118	50.00	57.48	115	58.81	118	50-150	33-167	2	0-30	
PCB126	50.00	52.97	106	53.55	107	50-150	33-167	1	0-30	
PCB128	50.00	47.95	96	48.69	97	50-150	33-167	2	0-30	
PCB153	50.00	54.36	109	55.18	110	50-150	33-167	1	0-30	
PCB170	50.00	44.45	89	45.12	90	50-150	33-167	2	0-30	
PCB180	50.00	53.20	106	54.64	109	50-150	33-167	3	0-30	
PCB187	50.00	53.92	108	55.17	110	50-150	33-167	2	0-30	
PCB195	50.00	52.32	105	52.86	106	50-150	33-167	1	0-30	
PCB206	50.00	47.19	94	48.21	96	50-150	33-167	2	0-30	
PCB209	50.00	50.82	102	52.54	105	50-150	33-167	3	0-30	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order: 13-08-0936 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

7440 LINCOLN WAY

TEL: (714) 895-5494 . FAX: (714) 894-7501 GARDEN GROVE, CA 92841-1432

aboratories, Inc.

wironmental with the state of t

alsclonce.

CHAIN OF CUSTODY RECORD

08/12/13

က

PAGE:

1015101929 QUOTE NO. 8 REQUESTED ANALYSIS 8 Berths 212-224 YTI Terminal × × \times × \times \times × × × PCB Congeners Barry Snyder, Tyler Huff Chlorinated Pesticides × × × × × × × SHA9 × × × Total Lipids × × \times × × × PROJECT CONTACT Metals × × × × × × \times × × × × Fotal Solids × × × Please list tests required Received by: (Signature) e-мы∟ barry.snyder@amec.coi Tissue 10 DAYS Tissue Tissue Tissue, Tissue Tissue Tissue Tissue Tissue Tissue Matrix Danielle Gonsman is PM; see attached sheet for addional information. Keep frozen. Only count/open cooler at Calscience Sample Receiving. × TIME 15/2 5 DAYS SAMPLING 123 Please report all applicable totals (i.e. PCBs, PAHs, etc.) POLA - YTI Terminal 8/1413 DATE ARCHIVE SAMPLES UNTIL 72 HR POLA - YTI Terminal POLA - YTI Terminal POLA - YTI Terminal POLA - YTI Terminal POLA - YTI Terminal POLA - YTI Terminal tyler.huff@amec.com POLA - YTI Terminal POLA - YTI Terminal POLA - YTI Terminal LOCATION/ DESCRIPTION SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY Report results in wet and dry weight. 48HR RWQCB REPORTING 24 HR 9210 Sky Park Ct # 200 San Diego, CA 92123 whene by: (Signature) by: (Signature) by: (Signature) SAMPLE ID 10C 5 4C 5° 9 70 80 90 2C SAME DAY (858) 300-4322 FURNAROUND TIME AMEC 9 LAB USE ONLY D Ø Ø M 7

aboratories, Inc. wironmental ... alscience

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

CHAIN OF CUSTODY RECORD
DATE: 08/12/13 R PAGE: DATE: TEL: (714) 895-5494 . FAX: (714) 894-7501

LABORATORY CLIENT:			A Distriction of the Commission		CLIENT PROJECT NAME / NUMBER	(OJECT)	VAME / N	IOMBER :		TOTAL PROPERTY.	TOTAL CONTRACTOR CONTR	Management of the Control of the Con	P.O. NO.:		
AMEC						-	Č	5	F -		-			2.7.4.0.4	ç
ADDRESS:					<u> </u>	PROJECT CONTACT	CONTAC	#77-:	Beruis 212-224 1 11 ferminal ROJECT CONTACT:		<u> </u>			QUOTE NO:	9
OITY:						Barr	Sny	der, T	Barry Snyder, Tyler Huff	tuff					
San Diego, CA 92123					<u> </u>	SAMPLER(S)	(8): (8)	(SIGNATURE)	_					LAB USE ONLY	
TEL: (858) 300-4322	E-Mail tyler.huff@amec.com	<u> </u>	E-MAIL arry.snyc	E-MAIL barry.snyder@amec.cor	cor c		3					,		08-0	2936
TURNAROUND TIME SAME DAY 24 HR	IR 🗌 48HR 🔲 72 HR	5 DAYS	×	10 DAYS						-	REGL	ESTED	REQUESTED ANALYSIS	SIS	
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)	NAL COSTS MAY APPLY)							\vdash	\vdash	_			<u> </u>		
RWQCB REPORTING	G 🔲 ARCHIVE SAMPLES UNTIL	UNTIL	_			, , , , , , , , , , , , , , , , , , ,									
Danielle Gonsman is F	PECIAL INSTRUCTIONS Danielle Gonsman is PM; see attached sheet for addional information	addional i	nformatic	JN.	-411 ING	require			sepioi						
Keep frozen. Only count/open cooler	Report results in wet and dry weight. Keep frozen. Only count/open cooler at Calscience Sample Receiving	ce Sample	, Receivii	ŋ.	<i>3</i> 430.	44.5.15		•	səd I	siens					
Please report all applic	Please report all applicable totals (i.e. PCBs, PAHs, etc.)	Hs, etc.)			, + - 3	bilo		spid	ated	əbuc					
LAB I	LOCATION	SAMPLING	ING	Г		40 5 5 1 C	sje) S					
SUN ESCE	DESCRIPTION	DATE	TIME	strit	ont	5 25 5 S	Юe		СЫ	ЬСІ					
// 11C	POLA - YTI Terminal	8/10/12	1500	Tissue	-	×	×	×	×	×					
/2 12C	POLA - YTI Terminal) (1500	Tissue	τ-	×	×	×	×	×					
(} 13C	POLA - YTI Terminal		ODS/	Tissue	1	×	×	×	×	×					
14C	POLA - YTI Terminal		0251	Tissue	1	×	×	×	×	×					
<i>l[5</i>] 15C	POLA - YTI Terminal		1500	Tissue	1	×	×	×	×	×					
/لا الا	POLA - YTI Terminal		1300	Tissue	_	×	×	×	×	×					
(7 2W	POLA - YTI Terminal		1300	Tissue	_	×	×	×	×	×					
1.8° 3W	POLA - YTI Terminal		1300	Tissue	-	×	×	×	×	×					
19 4W	POLA - YTI Terminal		1300	Tissue	~	×	×	×	×	×					
20 5W	POLA - YTI Terminal		1300	Tissue	Ţ	×	×	×	×	×					
Relipquished by: (Signature)	Cibert Shars	1435	15,	Received by.	Signatifice		Andrew Control						all	Date: 06(13)	Time: 43()
Feilhovisfied by: (Signature)				Received by: (by: (\$ ignature)	(n)	(A)		and the same of th		ر	B		Date: 13/5	Time: 755
Kelinduished by: (Signature)				Received by: (Signature)	(Signatur) (e								Dafe: /	Time:
Constitution of the second of	<u> </u>	ACCIONATION AND INTERNATIONAL PROPERTY OF THE	Service Contractor Contractor Contractor	CONTROL OF STREET, STR	MARKING AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	CONTRACTOR CONTRACTOR CONTRACTOR	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	Company of the Compan	Continue to the second	Maria Company	Secretary of the second	Scounted and Supplemental Suppl	THE CONTRACTOR OF THE CONTRACT	PROCESSION CONTRACTOR	

Lat	alsclance .	7440 LINCOLN WAY	844-4439												CHAIL PATE	<u>5</u>	CHAIN OF CUSIODY KEC	<u>S</u>	100Y	Д Х
	TWI On mental	פאוטבוא פואסער, כא פגפא	100											-	į			3	2	
4	a aboratories, Inc.	TEL: (714) 895-5494 . FAX: (714) 894-7501	(714) 894-7	501										ш.	PAGE:		3	<u>წ</u>	1	
LABORAT AMEC	LABORATORY CLIENT:	oran in energy en en en en en en en en en en en en en			unicota nacemple de Danishi de La Caracana		CLIENT	CLIENT PROJECT NAME / NUMBER	T NAME	/ NOME	ER:	No. of Particular Science Scie			NAMES OF TAXABLE PARTY	oser production and the second	P.O. NO			NATION AND ADDRESS OF THE PERSONS ASSESSED.
ADDRESS	ADDRESS:	Annual designation of the second seco					Ber PROJEC	Berths 212	12-22	4 YT	Le	Berths 212-224 YTI Terminal	_					1015101929	929	
OITY:	ONY FAIR OL# 200						Bar	Barry Snyder, Tyler Huff	yder	Ţ	F.	Ħ					g g			
San E	San Diego, CA 92123		•				SAMPLER(S): (SIGNATURE)	R(S): (S)	GNATU	RE)							LAB	LAB USE ONLY	<u>\</u>	
⊤ĒL: (858)	TEL: (858) 300-4322	E-Mail tyler.huff@amec.com		E-MAIL Jarry.sn)	E-MAIL <u>barry.snyder@amec.co</u> i	c.cor)	H	\angle								0	80	의	
TURNA.	TURNAROUND TIME SAME DAY [24 HR	48HR 72 HR	5 DAYS	X SAN	10 DAYS				1			R	OGE .	STE	REQUESTED ANALYSIS	ALY	SIS			
SPECIA	SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVI	COSTS MAY APPLY) ARCHIVE SAMPLES UNTIL	UNTIL	_			p												1	
SPECIA Dan	LINSTRUCTIONS Iielle Gonsman is PM	PECIAL INSTRUCTIONS Danielle Gonsman is PM; see attached sheet for addional information.	addional	informat	ion.		equire				icides									
X A A B	Report results in wet and dry weignt. Keep frozen. Only count/open coole	Report results in wet and dry weignt. Keep frozen. Only count/open cooler at Calscience Sample Receiving	ce Sampl	e Receiv	ing.		Januar eda				l Pest	uers								
Ple	Please report all applicable totals (i.e. PCBs,		PAHs, etc.)				t tail ebilo		spidi		ated	əɓuc								
LAB	Ĺ		SAMPLING	ING		*	75 P. S.		פן די	sŀ	nino) S								
ONE,	SAMPLE ID	DESCRIPTION	DATE	TIME	atrit	jorit	s Defected:	39M	тot	łАЧ	сы	BCE		_						
$\overline{\lambda}$	W9	POLA - YTI Terminal	8/10/13	RCC	Tissue	1	×	×	×	×	×	×								
72	7W	POLA - YTI Terminal		-	Tissue	1	`	x x	×	×	×	×								
23	8W	POLA - YTI Terminal			Tissue	1	_	×	×	×	×	×								
オケ	M6	POLA - YTI Terminal			Tissue	1	_	×	×	×	×	×								
X	10W	POLA - YTI Terminal			Tissue	1	(×	×	×	×	×								
76	11W	POLA - YTI Terminal			Tissue	-		×	×	×	×	×								
7	12W	POLA - YTI Terminal			Tissue	-	<u> </u>	×	×	×	×	×								
28	13W	POLA - YTI Terminal			Tissue	1	_	×	×	×	×	×								
Z	14W	POLA - YTI Terminal			Tissue	1	^	×	×	×	×	×								
20	15W	POLA - YTI Terminal	>	う	∭enssi⊥	-		×	×	×	×	×								
Reling	Relinquianed by: (Signature)	GGON 811313	1435	\ c	Received by		g)								8	7	Date:	N N		Time:
No.	arched by: (Signature)	of an amendation and a second			Received by: Signature)	Signatu	$p_{\widehat{\mathbf{g}}}$	- Common and Assessment					J	B	\		. 1/8 Marco	2//2		Time:
Relind	Relindulshed by: (Signature)				Received by: (Signature)	(Signatu	re)										Date:		F	Time:

Table 4-2.
Chemical Analyses for Elutriate, Sediment and Tissue Samples

Analyte	Analysis Method	Elutriate Target Detection Limits ^{a, b}	Sediment Target Detection Limits ^{a, b}	Tissue Target Detection Limits ^{a, b}
Total Solids	160.3/SM 2540 B	N/A	0.1 %	0.100 %
Total Organic Carbon	9060	N/A	0.1 %	N/A
Total Ammonia	SM 4500-NH3 B/C (M)/350.2M°	N/A	0.2 mg/kg	N/A
Total Sulfides	376.2M ^c	N/A	0.5 mg/kg	N/A
Soluble Sulfides	SM 4500 S2 - D°	N/A	0.5 mg/kg	N/A
Arsenic	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Cadmium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Chromium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.02 mg/kg
Copper	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Lead	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Mercury	7471A ^d	0.0002 mg/L	0.02 mg/kg	0.02 mg/kg
Nickel	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Selenium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Silver	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Zinc	6020/6010B ^d	0.005 mg/L	1.0 mg/kg	1.0 mg/kg
Total Lipids	NOAA 1993a	N/A	N/A	0.1 %
TRPH	418.1M ^d	N/A	10 mg/kg	N/A
TPH (C6-C44)	8015B(M)/8015B ^d	N/A	5.0 mg/kg	N/A
- PAHs ^e	8270C SIM/ GC/TQd	0.2 μg/L	10 μg/kg	10 μg/kg
Chlorinated Pesticides	8081A ^d	0.1 µg/L	1.0 – 20 μg/kg	0.5 - 20 μg/kg
PCB Congeners ⁹	8270C SIM PCB ^d	0.02 μg/L	0.5 μg/kg	0.5 μg/kg
Phenols	8270C SIM ^d	N/A	20 – 100 μg/kg	N/A
Pyrethroids	GC/MS/MS ^J	N/A	0.5 – 1.0 μg/kg	N/A
Phthalates	8270C SIM d	N/A	10 μg/kg	N/A
Organotins	Rice/Krone ^h	3.0 ng/L	3.0 μg/kg	N/A

Notes:

- ^a Sediment minimum detection limits are on a wet-weight basis. Tissue minimum levels are on a wet-weight basis.
- ^b Reporting limits provided by Calscience Environmental Laboratories, Inc.
- Standard Methods for the Examination of Water and Wastewater, 19th Edition American Public Health Association et al. 1995.
- d USEPA 1986-1996. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.
- Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene.
- Includes aldrin, α-benzene hexachloride (BHC), β-BHC, γ-BHC (lindane), δ-BHC, chlordane, 2,4- and 4,4-dichlorodiphenyldichloroethane (DDD), 2,4- and 4,4-dichlorodiphenyldichloroethylene (DDE), 2,4- and 4,4-dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, and toxaphene.
- PCBs (sum of 41 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194,201, and 206)
- h Rice, C.D. et al. 1987, or similar (e.g. Krone et al. 1989)
- NOAA 1993
- Allethrin (Bioallethrin), Bifenthrin, Cyfluthrin-beta (Baythroid), Cyhalothrin-Lamba, Cypermethrin, Deltamethrin (Decamethrin), Esfenvalerate, Fenpropathrin (Danitol), Fenvalerate (sanmarton), Fluvalinate, Permethrin (cis and trans), Resmethrin (Bioresmethrin), Resmethrin, Sumithrin (Phenothrin), Tetramethrin, and Tralomethrin

polycyclic aromatic hydrocarbon micrograms per kilogram (parts per billion) μg/kg micrograms per liter PC8 polychlorinated biphenyl μg/L milligrams per kilogram (parts per million) SM Standard Methods mg/kg SOP standard operating procedure milligrams per liter mg/L TPH total petroleum hydrocarbons

 ng/L
 nanograms per liter
 TPH
 total petroleum hydrocarbons

 N/A
 not applicable
 TRPH
 total recoverable petroleum hydrocarbons

WORK ORDER #: 13-08- □ □ □ □ □

. alscience nvironmental aboratories, inc.

RECEIPT FORM

Cooler 1 of 1

CLIENT: AMEC	DATE: _	08/13	3/13
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not froz Temperature	☑ Blank	☐ Sam	
☐ Received at ambient temperature, placed on ice for transport by C Ambient Temperature: ☐ Air ☐ Filter		Init	ial: W
CUSTODY SEALS INTACT: Cooler			ial: 45
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete.	• •	No	N/A
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labe ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC	🗹		
Sample container(s) intact and good condition			
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen Proper preservation noted on COC or sample container	··· 8/13/13		Z Z
Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation CONTAINER TYPE: Tissue Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnColor	🗖 🚉 🛴	□ □ aCores [®] ⊅	Z Z Z
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGB □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □_ Air: □Tedlar® □Canister Other: □ Trip Blank Lot#:	p □1AGB Bs □1PB □□_ Labeled	□1AGBna □1PBna □1/Checked b	12 □1AGBs □500PB □
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +	Envelope	Reviewed b	ру: <u>«Х //</u>

Supplemental Report 1

CALSCIENCE

WORK ORDER NUMBER: 13-08-0936

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Berths 212-224 YTI Terminal

Attention: Barry Snyder

9210 Ský Park Court, Suite 200 San Diego, CA 92123-4302

ResultLink >

Email your PM >

Janelle june

Approved for release on 08/29/2013 by: Danielle Gonsman Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Berths 212-224 YTI Terminal

Work Order Number: 13-08-0936

1	Case Narrative	3
2	Work Order Narrative	5
3	Sample Summary	6
4	Client Sample Data. 4.1 SM 2540 B (M) Total Solids (Soil). 4.2 % Lipids via MeCl2 Ext. (NOAA 1993a) (Soil). 4.3 EPA 6020 ICP/MS Metals (Soil). 4.4 EPA 7471A Mercury (Soil). 4.5 EPA 8081A Organochlorine Pesticides (Soil). 4.6 EPA 8270C SIM PAHs (Soil). 4.7 EPA 8270C SIM PCB Congeners (Soil).	7 7 11 15 31 37 78 110
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 PDS/PDSD. 5.3 Sample Duplicate. 5.4 LCS/LCSD.	174 174 181 184 188
6	Glossary of Terms and Qualifiers	198
7	Chain of Custody/Sample Receipt Form	199

CASE NARRATIVE

Calscience Work Order No.: 13-08-0936
Project ID: Berths 212-224 YTI Terminal

Provided below is a narrative of our analytical effort, including any unique features or anomalies encountered as part of the analysis of the tissue samples.

Sample Condition on Receipt

Thirty tissue samples were received for this project on August 13, 2013. The samples were transferred to the laboratory in an ice-chest with wet ice, following strict chain-of-custody (COC) procedures. The temperature of the sample upon receipt at the laboratory was 1.4°C. All samples were logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers and then stored in refrigeration units pending chemistry.

COC discrepancies (if any) were noted in the Sample Anomaly Form.

Sample Preparation

The tissue samples were thawed and homogenized using a stainless steel blending device. The homogenization unit was thoroughly cleaned between the tissue samples. Samples were composited according the client's instructions listed on the COC.

After extractions, the tissue extracts were subjected to appropriate clean-up procedures. The samples were then analyzed in accordance with the instructions listed on the Chain of Custody for the following methods:

Total Solids by SM 2540B
Percent Lipids by MeCl2 Ext (NOAA 1993a)
Trace Metals by EPA 6020/7471
Chlorinated Pesticides by EPA 8081A
PCB Congeners by EPA 8270C SIM
PAHs by EPA 8270C SIM

Data Summary

Holding times

All holding times were met.

Blanks

Concentrations of target analytes in the method blank were found to be below reporting limits for all testing.

Reporting Limits

The Method Detection Limits were met.

Laboratory Control Samples

A Laboratory Control Sample (LCS) analysis was performed for each applicable test. All parameters were within established control limits with the following exception.

The Acenaphthene recovery was outside of standard control limits. However, the recovery was within the ME limits, therefore the results are released with no further action.

Matrix Spikes

Matrix spiking was performed at the required frequencies for the tissues on project and non-project samples. All matrix spike parameters outside the acceptable control limits were noted below.

For Metals by EPA 6020, in one QC batch, the Zinc MSD recovery was above the control limits. In the second QC batch, the Copper and Silver MS/MSDs were outside the control limits and the Zinc sample concentration was over four times the spike level so the recovery could not be determined. Since all LCS/LCSD recoveries were acceptable, the data is released.

For Mercury by EPA 7471A, the recoveries in one MS/MSD pair was low outside of acceptance limits. The other MS/MSD pair was within acceptance limits and the LCS/LCSD recoveries were within acceptance limits.

Several of the Chlorinated Pesticides (by EPA 8081A) matrix spike and/or matrix spike duplicate recoveries were outside of acceptance limits. Since the LCS/LCSD recoveries were acceptable, the data is released.

Surrogates

Surrogate recoveries for all applicable tests and samples were within acceptable control limits.

Acronyms

LCS - Laboratory Control Sample PDS - Post Digestion Spike MS/MSD- Matrix Spike/Matrix Spike Duplicate ME-Marginal Exceedance RPD- Relative Percent Difference

Work Order Narrative

Work Order: 13-08-0936 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 08/13/13. They were assigned to Work Order 13-08-0936.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Work Order: Project Name:

13-08-0936 Berths 212-224 YTI Terminal

PO Number:

Date/Time Received:

08/13/13 18:50

Number of

Containers:

30

Attn: Barry Snyder

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
1C	13-08-0936-1	08/10/13 15:00	1	Tissue
2C	13-08-0936-2	08/10/13 15:00	1	Tissue
3C	13-08-0936-3	08/10/13 15:00	1	Tissue
4C	13-08-0936-4	08/10/13 15:00	1	Tissue
5C	13-08-0936-5	08/10/13 15:00	1	Tissue
6C	13-08-0936-6	08/10/13 15:00	1	Tissue
7C	13-08-0936-7	08/10/13 15:00	1	Tissue
8C	13-08-0936-8	08/10/13 15:00	1	Tissue
9C	13-08-0936-9	08/10/13 15:00	1	Tissue
10C	13-08-0936-10	08/10/13 15:00	1	Tissue
11C	13-08-0936-11	08/10/13 15:00	1	Tissue
12C	13-08-0936-12	08/10/13 15:00	1	Tissue
13C	13-08-0936-13	08/10/13 15:00	1	Tissue
14C	13-08-0936-14	08/10/13 15:00	1	Tissue
15C	13-08-0936-15	08/10/13 15:00	1	Tissue
1W	13-08-0936-16	08/10/13 13:00	1	Tissue
2W	13-08-0936-17	08/10/13 13:00	1	Tissue
3W	13-08-0936-18	08/10/13 13:00	1	Tissue
4W	13-08-0936-19	08/10/13 13:00	1	Tissue
5W	13-08-0936-20	08/10/13 13:00	1	Tissue
6W	13-08-0936-21	08/10/13 13:00	1	Tissue
7W	13-08-0936-22	08/10/13 13:00	1	Tissue
8W	13-08-0936-23	08/10/13 13:00	1	Tissue
9W	13-08-0936-24	08/10/13 13:00	1	Tissue
10W	13-08-0936-25	08/10/13 13:00	1	Tissue
11W	13-08-0936-26	08/10/13 13:00	1	Tissue
12W	13-08-0936-27	08/10/13 13:00	1	Tissue
13W	13-08-0936-28	08/10/13 13:00	1	Tissue
14W	13-08-0936-29	08/10/13 13:00	1	Tissue
15W	13-08-0936-30	08/10/13 13:00	1	Tissue

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

N/A

Method:

SM 2540 B (M)

Units:

%

Project: Berths 212-224 YTI Terminal

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB3	
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	Qualifiers	
Solids, Total		14.3	C	0.100	1			
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		14.3	C).100	1			
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		14.1	C).100	1			
<u>Parameter</u>	,	Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	alifiers	
Solids, Total		12.8	C).100	1			
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		13.8	C).100	1			
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		14.8	C).100	1			
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		13.7		0.100	1			
<u>Parameter</u>		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers	
Solids, Total		15.9	C	0.100	1			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

N/A

Method:

SM 2540 B (M)

Units:

0/

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB3
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		15.4	C).100	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		14.5	C).100	1		
Parameter	,	Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		14.0	C).100	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		13.7		0.100	1		
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		13.7	C).100	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		15.0	C).100	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Solids, Total		14.0		0.100	1		
<u>Parameter</u>		Result	F	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		16.2		0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

N/A

Method:

SM 2540 B (M)

Units:

9/

Project: Berths 212-224 YTI Terminal

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB3	
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	Qualifiers	
Solids, Total		17.1	C	.100	1			
<u>Parameter</u>		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		17.1	C	.100	1			
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		17.6	C	.100	1			
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers	
Solids, Total		16.3	C	.100	1			
<u>Parameter</u>		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		15.3	C	.100	1			
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers	
Solids, Total		19.5	C	.100	1			
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		17.1	C	.100	1			
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>	
Solids, Total		16.4	C	.100	1			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:

08/13/13

Work Order: Preparation:

13-08-0936

N/A

Method:

SM 2540 B (M)

Units:

0/

Project: Berths 212-224 YTI Terminal

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-A	08/10/13 13:00	Tissue	N/A	08/17/13	08/17/13 16:45	D0817TSB4
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		15.4	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Solids, Total		16.9	(0.100	1		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		16.2	(0.100	1		
Parameter		Result	<u> </u>	<u> </u>	DF	Qua	alifiers
Solids, Total		16.7	(0.100	1		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		17.1	(0.100	1		
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		16.9	(0.100	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Solids, Total		ND).100	1		
<u>Parameter</u>		Result	<u> </u>	<u>રા</u>	<u>DF</u>	Qua	alifiers
Solids, Total		ND	(0.100	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

Work Order:

13-08-0936

Preparation:

N/A

Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Project: Berths 212-224 YTI Terminal

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	N/A	N/A	08/22/13 12:00	130822B01
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.57	C).10	1		
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		0.60	C	0.10	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.61	C).10	1		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
% Lipids		0.71	C).10	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.50	C).10	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.65	C).10	1		
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
% Lipids		0.44).10	1		
<u>Parameter</u>		Result	<u> </u>	 <u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.55	C	0.10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

N/A

Work Order:

13-08-0936

Preparation: Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	N/A	N/A	08/22/13 12:00	130822B01
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.60	C).10	1		
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		0.62	C).10	1		
<u>Parameter</u>		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
% Lipids		0.55	C).10	1		
Parameter		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
% Lipids		0.28	C).10	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.53	C).10	1		
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.50	C).10	1		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		0.47	C).10	1		
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.6	C).10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:

08/13/13

Work Order:

13-08-0936

Preparation:

N/A

Method:

MeCl2 Ext. (NOAA 1993a)

Units:

%

Project: Berths 212-224 YTI Terminal

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	N/A	N/A	08/22/13 12:00	130822B01	
Parameter		Result	E	<u>kL</u>	DF	Qua	Qualifiers	
% Lipids		1.8	0	.10	1			
Parameter		Result	R	<u>RL</u>	<u>DF</u>	Qua	alifiers	
% Lipids		1.6	0	.10	1			
Parameter		Result	R	<u>RL</u>	<u>DF</u>	Qua	alifiers	
% Lipids		1.5	0	.10	1			
Parameter		Result	<u>R</u>	<u>RL</u>	DF	Qua	alifiers	
% Lipids		1.4	0	.10	1			
<u>Parameter</u>		Result	R	<u>RL</u>	<u>DF</u>	Qua	alifiers	
% Lipids		1.2	0	.10	1			
<u>Parameter</u>		Result	R	<u>RL</u>	<u>DF</u>	Qua	alifiers	
% Lipids		1.3	0	.10	1			
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers	
% Lipids		1.5	0	.10	1			
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers	
% Lipids		1.4	0	.10	1			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received:

08/13/13

Work Order:

13-08-0936

Preparation:

N/A

Method:

MeCl2 Ext. (NOAA 1993a)

Units:

Page 4 of 4

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	N/A	N/A	08/22/13 12:00	130822B02
Parameter		Result	R	<u>:L</u>	DF	Qua	<u>alifiers</u>
% Lipids		1.4	0	.10	1		
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		1.5	0	.10	1		
Parameter		Result	<u>R</u>	<u>!L</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.1	0	.10	1		
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.3	0	.10	1		
<u>Parameter</u>		Result	R	<u>!L</u>	<u>DF</u>	Qua	alifiers
% Lipids		1.4	0	.10	1		
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		1.8	0	.10	1		
<u>Parameter</u>		Result	R	<u>!L</u>	<u>DF</u>	Qua	<u>alifiers</u>
% Lipids		ND	0	.10	1		
<u>Parameter</u>		Result	R	<u>!L</u>	<u>DF</u>	Qua	alifiers
% Lipids		ND	0	.10	1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

mg/kg

Units:

Page 1 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 20:44	130815L01T
Comment(s): - Results are reported on a	dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic		22.4	0.	699	1		
Cadmium		ND	0.	699	1		
Chromium		7.41	0.	140	1		
Copper		15.3	0.	699	1		
Lead		3.07	0.	699	1		
Nickel		6.39	0.	699	1		
Selenium		2.28	0.	699	1		
Silver		ND	0.	699	1		
Zinc		98.5	6.	99	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		17.3	0.699	1	
Cadmium		ND	0.699	1	
Chromium		2.74	0.140	1	
Copper		14.6	0.699	1	
Lead		3.23	0.699	1	
Nickel		3.69	0.699	1	
Selenium		2.18	0.699	1	
Silver		ND	0.699	1	
Zinc		87.2	6.99	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020

08/13/13

Units: mg/kg
Page 2 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 20:50	130815L01T
Comment(s): - Results are reported on a	dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic		19.0	0.	709	1		
Cadmium		ND	0.	709	1		
Chromium		2.96	0.	142	1		
Copper		13.8	0.	709	1		
Lead		2.53	0.	709	1		
Nickel		3.14	0.	709	1		
Selenium		1.68	0.	709	1		
Silver		ND	0.	709	1		
Zinc		93.7	7.	09	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		17.2	0.781	1	
Cadmium		ND	0.781	1	
Chromium		1.27	0.156	1	
Copper		10.9	0.781	1	
Lead		1.07	0.781	1	
Nickel		2.94	0.781	1	
Selenium		2.06	0.781	1	
Silver		ND	0.781	1	
Zinc		89.3	7.81	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Project: Berths 212-224 YTI Terminal

Page 3 of 16

13-08-0936-5-B on a dry weight basis.	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 20:56	130815L01T
on a dry weight basis.	Result					
	<u>Result</u>	n				
		<u>K</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
	17.3	0.	725	1		
	ND	0.	725	1		
	1.64	0.	145	1		
	12.9	0.	725	1		
	2.27	0.	725	1		
	2.54	0.	725	1		
	1.39	0.	725	1		
	ND	0.	725	1		
	92.4	7.	25	1		
		ND	ND 0.	ND 0.725	ND 0.725 1	ND 0.725 1

Result	<u>RL</u>	<u>DF</u>	Qualifiers
16.9	0.676	1	
ND	0.676	1	
1.51	0.135	1	
9.24	0.676	1	
0.970	0.676	1	
2.77	0.676	1	
1.77	0.676	1	
ND	0.676	1	
78.9	6.76	1	
	16.9 ND 1.51 9.24 0.970 2.77 1.77	16.9 0.676 ND 0.676 1.51 0.135 9.24 0.676 0.970 0.676 2.77 0.676 1.77 0.676 ND 0.676	16.9 0.676 1 ND 0.676 1 1.51 0.135 1 9.24 0.676 1 0.970 0.676 1 2.77 0.676 1 1.77 0.676 1 ND 0.676 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Units:

mg/kg Page 4 of 16

Project: Berths 212-224 YTI Terminal

Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C		13-08-0936-7-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:02	130815L017
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
Arsenic			18.6	0.	.730	1		
Cadmium			ND	0.	.730	1		
Chromium			1.32	0.	.146	1		
Copper			12.1	0.	.730	1		
Lead			2.07	0.	.730	1		
Nickel			2.23	0.	.730	1		
Selenium			1.65	0.	.730	1		
Silver			ND	0.	.730	1		
Zinc			91.8	7.	.30	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Arsenic		14.7	0.629	1	
Cadmium		ND	0.629	1	
Chromium		1.70	0.126	1	
Copper		10.9	0.629	1	
Lead		1.81	0.629	1	
Nickel		2.54	0.629	1	
Selenium		1.99	0.629	1	
Silver		ND	0.629	1	
Zinc		70.7	6.29	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020

08/13/13

Units:

mg/kg Page 5 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:08	130815L01T
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	╘	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic		17.2	0.	649	1		
Cadmium		ND	0.	649	1		
Chromium		1.12	0.	130	1		
Copper		9.76	0.	649	1		
Lead		1.04	0.	649	1		
Nickel		2.45	0.	649	1		
Selenium		1.88	0.	649	1		
Silver		ND	0.	649	1		
Zinc		80.3	6.	49	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		17.9	0.690	1	
Cadmium		ND	0.690	1	
Chromium		1.38	0.138	1	
Copper		11.2	0.690	1	
Lead		1.19	0.690	1	
Nickel		2.75	0.690	1	
Selenium		1.90	0.690	1	
Silver		ND	0.690	1	
Zinc		80.3	6.90	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Units:

mg/kg Page 6 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11C	13-08-0936-11-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:20	130815L01T
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic		16.1	0.	714	1		
Cadmium		ND	0.	714	1		
Chromium		1.38	0.	143	1		
Copper		10.8	0.	714	1		
Lead		2.19	0.	714	1		
Nickel		2.05	0.	714	1		
Selenium		1.61	0.	714	1		
Silver		ND	0.	714	1		
Zinc		82.2	7.	14	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		15.7	0.730	1	
Cadmium		ND	0.730	1	
Chromium		1.15	0.146	1	
Copper		10.9	0.730	1	
Lead		1.06	0.730	1	
Nickel		2.44	0.730	1	
Selenium		1.66	0.730	1	
Silver		ND	0.730	1	
Zinc		70.2	7.30	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020 mg/kg

08/13/13

Units:

Page 7 of 16

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C		13-08-0936-13-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:26	130815L01T
Comment(s):	- Results are reported on	a dry weight basis.	•					
<u>Parameter</u>			Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Arsenic			18.3	0.	730	1		
Cadmium			ND	0.	730	1		
Chromium			1.77	0.	146	1		
Copper			12.8	0.	730	1		
Lead			2.63	0.	730	1		
Nickel			2.72	0.	730	1		
Selenium			1.84	0.	730	1		
Silver			ND	0.	730	1		
Zinc			89.9	7.	30	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		18.7	0.667	1	
Cadmium		ND	0.667	1	
Chromium		1.23	0.133	1	
Copper		11.5	0.667	1	
Lead		1.95	0.667	1	
Nickel		2.59	0.667	1	
Selenium		1.35	0.667	1	
Silver		ND	0.667	1	
Zinc		81.9	6.67	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020 mg/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 8 of 16

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C		13-08-0936-15-B	08/10/13 15:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:32	130815L01T
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Arsenic			17.1	0.	.714	1		
Cadmium			ND	0.	.714	1		
Chromium			1.92	0.	.143	1		
Copper			12.9	0.	.714	1		
Lead			2.45	0.	.714	1		
Nickel			2.42	0.	.714	1		
Selenium			1.55	0.	.714	1		
Silver			ND	0.	.714	1		
Zinc			85.9	7.	.14	1		

s.			
<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
16.0	0.617	1	
ND	0.617	1	
6.65	0.123	1	
11.2	0.617	1	
ND	0.617	1	
5.28	0.617	1	
2.09	0.617	1	
ND	0.617	1	
189	6.17	1	
i	16.0 ND 6.65 11.2 ND 5.28 2.09	Result RL 16.0 0.617 ND 0.617 6.65 0.123 11.2 0.617 ND 0.617 5.28 0.617 2.09 0.617 ND 0.617 0.617 0.617	Result RL DF 16.0 0.617 1 ND 0.617 1 6.65 0.123 1 11.2 0.617 1 ND 0.617 1 5.28 0.617 1 2.09 0.617 1 ND 0.617 1 ND 0.617 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020

08/13/13

Units:

mg/kg Page 9 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 21:38	130815L01T
Comment(s): - Results are reported on a dry weight basis.							
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic		14.9	0.	585	1		
Cadmium		ND	0.	585	1		
Chromium		2.05	0.	117	1		
Copper		10.1	0.	585	1		
Lead		ND	0.	585	1		
Nickel		1.79	0.	585	1		
Selenium		2.19	0.	585	1		
Silver		ND	0.	585	1		
Zinc		73.8	5.	85	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		13.2	0.585	1	
Cadmium		ND	0.585	1	
Chromium		2.58	0.117	1	
Copper		9.19	0.585	1	
Lead		ND	0.585	1	
Nickel		2.14	0.585	1	
Selenium		1.72	0.585	1	
Silver		ND	0.585	1	
Zinc		110	5.85	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

0.568

0.568

5.68

13-08-0936 EPA 3050B EPA 6020

08/13/13

Units:

mg/kg Page 10 of 16

Project: Berths 212-224 YTI Terminal

Selenium

Silver

Zinc

Lab Sample Number Date/Time Date Prepared Date/Time Analyzed Client Sample Number Matrix QC Batch ID Instrument Collected 08/10/13 13:00 08/16/13 21:44 4W ICP/MS 03 08/15/13 130815L01T 13-08-0936-19-B **Tissue** Comment(s): - Results are reported on a dry weight basis. Result RLDF Qualifiers <u>Parameter</u> 13.2 0.568 Arsenic 1 Cadmium ND 0.568 Chromium 0.970 0.114 7.39 Copper 0.568 Lead ND 0.568 Nickel 1.45 0.568

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		12.5	0.613	1	
Cadmium		ND	0.613	1	
Chromium		1.49	0.123	1	
Copper		8.45	0.613	1	
Lead		ND	0.613	1	
Nickel		1.48	0.613	1	
Selenium		1.81	0.613	1	
Silver		ND	0.613	1	
Zinc		159	6.13	1	

1.82

ND

143

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020 mg/kg

08/13/13

Units:

Page 11 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6W	13-08-0936-21-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:10	130815L02T
Comment(s): - Results are reported on a	dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qualifiers	
Arsenic		15.7	0.	654	1		
Cadmium		ND	0.	654	1		
Chromium		1.22	0.	131	1		
Copper		8.59	0.	654	1		
Lead		ND	0.	654	1		
Nickel		2.09	0.	654	1		
Selenium		1.98	0.	654	1		
Silver		ND	0.	654	1		
Zinc		162	6.	54	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		9.74	0.513	1	
Cadmium		ND	0.513	1	
Chromium		0.659	0.103	1	
Copper		7.74	0.513	1	
Lead		ND	0.513	1	
Nickel		1.17	0.513	1	
Selenium		1.23	0.513	1	
Silver		ND	0.513	1	
Zinc		78.8	5.13	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020

08/13/13

Units: mg/kg
Page 12 of 16

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8W		13-08-0936-23-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:16	130815L02T
Comment(s):	- Results are reported on	a dry weight basis.	•					_
<u>Parameter</u>			Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic			14.0	0.	585	1		
Cadmium			ND	0.	585	1		
Chromium			1.16	0.	117	1		
Copper			9.63	0.	585	1		
Lead			ND	0.	585	1		
Nickel			1.84	0.	585	1		
Selenium			1.47	0.	585	1		
Silver			ND	0.	585	1		
Zinc			179	5.	85	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		13.6	0.610	1	
Cadmium		ND	0.610	1	
Chromium		0.806	0.122	1	
Copper		7.89	0.610	1	
Lead		ND	0.610	1	
Nickel		1.79	0.610	1	
Selenium		1.14	0.610	1	
Silver		ND	0.610	1	
Zinc		97.9	6.10	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020

08/13/13

Units: mg/kg
Page 13 of 16

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W		13-08-0936-25-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:22	130815L02T
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic			13.1	0.	.649	1		
Cadmium			ND	0.	.649	1		
Chromium			0.609	0.	.130	1		
Copper			8.05	0.	.649	1		
Lead			ND	0.	.649	1		
Nickel			1.58	0.	.649	1		
Selenium			1.85	0.	.649	1		
Silver			ND	0.	.649	1		
Zinc			92.3	6.	.49	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		12.1	0.592	1	
Cadmium		ND	0.592	1	
Chromium		1.76	0.118	1	
Copper		8.41	0.592	1	
Lead		ND	0.592	1	
Nickel		1.80	0.592	1	
Selenium		1.31	0.592	1	
Silver		ND	0.592	1	
Zinc		67.8	5.92	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Units: mg/kg
Page 14 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12W	13-08-0936-27-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:28	130815L02T
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Arsenic		13.4	0.	617	1		
Cadmium		ND	0.	617	1		
Chromium		1.42	0.	123	1		
Copper		7.75	0.	617	1		
Lead		ND	0.	617	1		
Nickel		1.64	0.	617	1		
Selenium		1.64	0.	617	1		
Silver		ND	0.	617	1		
Zinc		219	6.	17	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		13.8	0.599	1	
Cadmium		ND	0.599	1	
Chromium		0.939	0.120	1	
Copper		7.98	0.599	1	
Lead		ND	0.599	1	
Nickel		1.50	0.599	1	
Selenium		1.54	0.599	1	
Silver		ND	0.599	1	
Zinc		65.0	5.99	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 **EPA 3050B** EPA 6020

mg/kg Page 15 of 16

Project: Berths 212-224 YTI Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14W		13-08-0936-29-B	08/10/13 13:00	Tissue	ICP/MS 03	08/15/13	08/16/13 22:34	130815L02T
Comment(s):	- Results are reported or	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Arsenic			12.7	0.	.585	1		
Cadmium			ND	0.	.585	1		
Chromium			0.620	0.	.117	1		
Copper			7.67	0.	.585	1		
Lead			ND	0.	.585	1		
Nickel			1.21	0.	.585	1		
Selenium			1.34	0.	.585	1		
Silver			ND	0.	.585	1		
Zinc			111	5.	.85	1		

Comment(s):	- Results are reported on a dry weight basis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic		12.6	0.592	1	
Cadmium		ND	0.592	1	
Chromium		0.713	0.118	1	
Copper		9.44	0.592	1	
Lead		ND	0.592	1	
Nickel		1.16	0.592	1	
Selenium		1.22	0.592	1	
Silver		ND	0.592	1	
Zinc		125	5.92	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

mg/kg

Units:

Page 16 of 16

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-258-20	N/A	Soil	ICP/MS 03	08/15/13	08/16/13 19:59	130815L01T
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qual	<u>ifiers</u>
Arsenic		ND		0.100	1		
Cadmium		ND		0.100	1		
Chromium		ND		0.0200	1		
Copper		ND		0.100	1		
Lead		ND		0.100	1		
Nickel		ND		0.100	1		
Selenium		ND		0.100	1		
Silver		ND		0.100	1		
Zinc		ND		1.00	1		

Parameter	Result	<u>RL</u>	<u>DF</u>	Qualifiers
Arsenic	ND	0.100	1	
Cadmium	ND	0.100	1	
Chromium	ND	0.0200	1	
Copper	ND	0.100	1	
Lead	ND	0.100	1	
Nickel	ND	0.100	1	
Selenium	ND	0.100	1	
Silver	ND	0.100	1	
Zinc	ND	1.00	1	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 1 of 6

Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C		13-08-0936-1-B	08/10/13 15:00	Tissue	Mercury	08/15/13	08/19/13 17:28	130815L05T
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	,	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0670	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0670	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0679	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	,	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0748	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0694	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0647	0.599		

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 2 of 6

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C		13-08-0936-7-B	08/10/13 15:00	Tissue	Mercury	08/15/13	08/19/13 17:46	130815L05T
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	-	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND	(0.0699	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND	(0.0603	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND	(0.0622	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	·-	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND	(0.0661	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	1	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Mercury			ND	(0.0684	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND	(0.0699	0.599		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 6

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C		13-08-0936-13-B	08/10/13 15:00	Tissue	Mercury	08/15/13	08/19/13 18:03	130815L05T
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>	<u>r</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND		0.0699	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND		0.0639	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND		0.0684	0.599		
Comment(s):	- Results are reported on	a dry weight basis.	•					
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND		0.0591	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND		0.0560	0.599		
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury			ND		0.0560	0.599		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 4 of 6

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W		13-08-0936-19-B	08/10/13 13:00	Tissue	Mercury	08/15/13	08/19/13 18:22	130815L05T
Comment(s):	- Results are reported	on a dry weight basis.	•	•				
<u>Parameter</u>			Result	<u>1</u>	<u>RL</u>		Qua	<u>alifiers</u>
Mercury			ND		0.0544			
			_					
Comment(s):	- Results are reported	on a dry weight basis.						
Parameter			Result		<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND		0.0588	0.599		
			_					
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0626	0.599		
Comment(s):	- Results are reported	on a dry weight basis.					·	
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0491	0.599		
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
Mercury			ND	(0.0560	0.599		
Comment(s):	- Results are reported	on a dry weight basis.						
Parameter			Result	_	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0584	0.599		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 5 of 6

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W		13-08-0936-25-B	08/10/13 13:00	Tissue	Mercury	08/15/13	08/19/13 18:39	130815L06T
Comment(s):	- Results are reported	on a dry weight basis.	•					
<u>Parameter</u>	<u>ameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0622	0.599		
			_					
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0567	0.599		
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0591	0.599		
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0574	0.599		
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0560	0.599		
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	-	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury			ND	(0.0567	0.599		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 7471A Total EPA 7471A mg/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 6 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-409-46	N/A	Soil	Mercury	08/15/13	08/15/13 15:51	130815L05T
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	C	0.00958	0.599		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	C	0.00958	0.599		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

2,4,5,6-Tetrachloro-m-Xylene

Dibutylchlorendate

Project: Berths 212-224	YTI Terminal					Pa	ge 1 of 41
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:09	130816F05
Comment(s): - Results are	reported on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	i	<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	7.0)	0.5		
2,4'-DDE		ND	7.0)	0.5		
2,4'-DDT		ND	7.0)	0.5		
4,4'-DDD		ND	7.0)	0.5		
4,4'-DDT		ND	7.0)	0.5		
Aldrin		ND	7.0)	0.5		
Alpha Chlordane		ND	7.0)	0.5		
Alpha-BHC		ND	7.0)	0.5		
Beta-BHC		ND	7.0)	0.5		
Delta-BHC		ND	7.0)	0.5		
Dieldrin		ND	7.0)	0.5		
Endosulfan I		ND	7.0)	0.5		
Endosulfan II		ND	7.0)	0.5		
Endosulfan Sulfate		ND	7.0)	0.5		
Endrin		ND	7.0)	0.5		
Endrin Aldehyde		ND	7.0)	0.5		
Endrin Ketone		ND	7.0)	0.5		
Gamma Chlordane		ND	7.0)	0.5		
Gamma-BHC		ND	7.0)	0.5		
Heptachlor		ND	7.0)	0.5		
Heptachlor Epoxide		ND	7.0)	0.5		
Methoxychlor		ND	7.0)	0.5		
Chlordane		ND	70		0.5		
Cis-nonachlor		ND	7.0)	0.5		
Toxaphene		ND	170	0	0.5		
Trans-nonachlor		ND	7.0)	0.5		
Oxychlordane		ND	7.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

89

79

50-135

50-135

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Project: Berths 212-224 YTI Terminal

RL: Reporting Limit.

Page 2 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 21:25	130816F05
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	L	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
4,4'-DDE		86	35	5	2.5		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		96	50)-135			
Dibutylchlorendate		79	50)-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 3 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:23	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	7.0		0.5		
2,4'-DDE		ND	7.0		0.5		
2,4'-DDT		ND	7.0		0.5		
4,4'-DDD		ND	7.0		0.5		
4,4'-DDT		ND	7.0		0.5		
Aldrin		ND	7.0		0.5		
Alpha Chlordane		ND	7.0		0.5		
Alpha-BHC		ND	7.0		0.5		
Beta-BHC		ND	7.0		0.5		
Delta-BHC		ND	7.0		0.5		
Dieldrin		ND	7.0		0.5		
Endosulfan I		ND	7.0		0.5		
Endosulfan II		ND	7.0		0.5		
Endosulfan Sulfate		ND	7.0		0.5		
Endrin		ND	7.0		0.5		
Endrin Aldehyde		ND	7.0		0.5		
Endrin Ketone		ND	7.0		0.5		
Gamma Chlordane		ND	7.0		0.5		
Gamma-BHC		ND	7.0		0.5		
Heptachlor		ND	7.0		0.5		
Heptachlor Epoxide		ND	7.0		0.5		
Methoxychlor		ND	7.0		0.5		
Chlordane		ND	70		0.5		
Cis-nonachlor		ND	7.0		0.5		
Toxaphene		ND	170)	0.5		
Trans-nonachlor		ND	7.0		0.5		
Oxychlordane		ND	7.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		83	50-	135			
Dibutylchlorendate		81	50-	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

ug/kg

Project: Berths 212-224 YTI Terminal

Page 4 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 21:39	130816F05
Comment(s): - Results are reported on a	a dry weight basis.					•	
<u>Parameter</u>		Result	RI	=.	<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		78	14		1		
<u>Surrogate</u>		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		90	50	-135			
Dibutylchlorendate		86	50	-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 5 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:38	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	7.1		0.5		
2,4'-DDE		ND	7.1		0.5		
2,4'-DDT		ND	7.1		0.5		
4,4'-DDD		ND	7.1		0.5		
4,4'-DDT		ND	7.1		0.5		
Aldrin		ND	7.1		0.5		
Alpha Chlordane		ND	7.1		0.5		
Alpha-BHC		ND	7.1		0.5		
Beta-BHC		ND	7.1		0.5		
Delta-BHC		ND	7.1		0.5		
Dieldrin		ND	7.1		0.5		
Endosulfan I		ND	7.1		0.5		
Endosulfan II		ND	7.1		0.5		
Endosulfan Sulfate		ND	7.1		0.5		
Endrin		ND	7.1		0.5		
Endrin Aldehyde		ND	7.1		0.5		
Endrin Ketone		ND	7.1		0.5		
Gamma Chlordane		ND	7.1		0.5		
Gamma-BHC		ND	7.1		0.5		
Heptachlor		ND	7.1		0.5		
Heptachlor Epoxide		ND	7.1		0.5		
Methoxychlor		ND	7.1		0.5		
Chlordane		ND	71		0.5		
Cis-nonachlor		ND	7.1		0.5		
Toxaphene		ND	180)	0.5		
Trans-nonachlor		ND	7.1		0.5		
Oxychlordane		ND	7.1		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		85	50-	135			
Dibutylchlorendate		80	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg Page 6 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 21:53	130816F05
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
4,4'-DDE		71	14	1	1		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		107	50	D-135			
Dibutylchlorendate		92	50)-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Page 7 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 14:52	130816F05
Comment(s): - Results are reported	ed on a dry weight basis.						
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
2,4'-DDD		ND	7.8		0.5		
2,4'-DDE		ND	7.8		0.5		
2,4'-DDT		ND	7.8		0.5		
4,4'-DDD		ND	7.8		0.5		
4,4'-DDT		ND	7.8		0.5		
Aldrin		ND	7.8		0.5		
Alpha Chlordane		ND	7.8		0.5		
Alpha-BHC		ND	7.8		0.5		
Beta-BHC		ND	7.8		0.5		
Delta-BHC		ND	7.8		0.5		
Dieldrin		ND	7.8		0.5		
Endosulfan I		ND	7.8		0.5		
Endosulfan II		ND	7.8		0.5		
Endosulfan Sulfate		ND	7.8		0.5		
Endrin		ND	7.8		0.5		
Endrin Aldehyde		ND	7.8		0.5		
Endrin Ketone		ND	7.8		0.5		
Gamma Chlordane		ND	7.8		0.5		
Gamma-BHC		ND	7.8		0.5		
Heptachlor		ND	7.8		0.5		
Heptachlor Epoxide		ND	7.8		0.5		
Methoxychlor		ND	7.8		0.5		
Chlordane		ND	78		0.5		
Cis-nonachlor		ND	7.8		0.5		
Toxaphene		ND	200		0.5		
Trans-nonachlor		ND	7.8		0.5		
Oxychlordane		ND	7.8		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		88	50-1	135			
Dibutylchlorendate		77	50-1	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

Units:

EPA 3545 EPA 8081A ug/kg

08/13/13

13-08-0936

Page 8 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:08	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
4,4'-DDE		78	16		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		98	50-	135			
Dibutylchlorendate		85	50-	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 9 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5C	13-08-0936-5-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:06	130816F05
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	7.2		0.5		
2,4'-DDE		ND	7.2		0.5		
2,4'-DDT		ND	7.2		0.5		
4,4'-DDD		ND	7.2		0.5		
4,4'-DDE		40	7.2		0.5		
4,4'-DDT		ND	7.2		0.5		
Aldrin		ND	7.2		0.5		
Alpha Chlordane		ND	7.2		0.5		
Alpha-BHC		ND	7.2		0.5		
Beta-BHC		ND	7.2		0.5		
Delta-BHC		ND	7.2		0.5		
Dieldrin		ND	7.2		0.5		
Endosulfan I		ND	7.2		0.5		
Endosulfan II		ND	7.2		0.5		
Endosulfan Sulfate		ND	7.2		0.5		
Endrin		ND	7.2		0.5		
Endrin Aldehyde		ND	7.2		0.5		
Endrin Ketone		ND	7.2		0.5		
Gamma Chlordane		ND	7.2		0.5		
Gamma-BHC		ND	7.2		0.5		
Heptachlor		ND	7.2		0.5		
Heptachlor Epoxide		ND	7.2		0.5		
Methoxychlor		ND	7.2		0.5		
Chlordane		ND	72		0.5		
Cis-nonachlor		ND	7.2		0.5		
Toxaphene		ND	180		0.5		
Trans-nonachlor		ND	7.2		0.5		
Oxychlordane		ND	7.2		0.5		
Surrogate		Rec. (%)	Con	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		82	50-1	135			
Dibutylchlorendate		82	50-1	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 10 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:21	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	6.8		0.5		
2,4'-DDE		ND	6.8		0.5		
2,4'-DDT		ND	6.8		0.5		
4,4'-DDD		ND	6.8		0.5		
4,4'-DDT		ND	6.8		0.5		
Aldrin		ND	6.8		0.5		
Alpha Chlordane		ND	6.8		0.5		
Alpha-BHC		ND	6.8		0.5		
Beta-BHC		ND	6.8		0.5		
Delta-BHC		ND	6.8		0.5		
Dieldrin		ND	6.8		0.5		
Endosulfan I		ND	6.8		0.5		
Endosulfan II		ND	6.8		0.5		
Endosulfan Sulfate		ND	6.8		0.5		
Endrin		ND	6.8		0.5		
Endrin Aldehyde		ND	6.8		0.5		
Endrin Ketone		ND	6.8		0.5		
Gamma Chlordane		ND	6.8		0.5		
Gamma-BHC		ND	6.8		0.5		
Heptachlor		ND	6.8		0.5		
Heptachlor Epoxide		ND	6.8		0.5		
Methoxychlor		ND	6.8		0.5		
Chlordane		ND	68		0.5		
Cis-nonachlor		ND	6.8		0.5		
Toxaphene		ND	170		0.5		
Trans-nonachlor		ND	6.8		0.5		
Oxychlordane		ND	6.8		0.5		
Surrogate		Rec. (%)	<u>Con</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		85	50-	135			
Dibutylchlorendate		83	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A

08/13/13

Units: ug/kg
Page 11 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:22	130816F05
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		66	14		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135			
Dibutylchlorendate		93	50-	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 12 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C	13-08-0936-7-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:35	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	7.3		0.5		
2,4'-DDE		ND	7.3		0.5		
2,4'-DDT		ND	7.3		0.5		
4,4'-DDD		8.3	7.3		0.5		
4,4'-DDE		44	7.3		0.5		
4,4'-DDT		ND	7.3		0.5		
Aldrin		ND	7.3		0.5		
Alpha Chlordane		ND	7.3		0.5		
Alpha-BHC		ND	7.3		0.5		
Beta-BHC		ND	7.3		0.5		
Delta-BHC		ND	7.3		0.5		
Dieldrin		ND	7.3		0.5		
Endosulfan I		ND	7.3		0.5		
Endosulfan II		ND	7.3		0.5		
Endosulfan Sulfate		ND	7.3		0.5		
Endrin		ND	7.3		0.5		
Endrin Aldehyde		ND	7.3		0.5		
Endrin Ketone		ND	7.3		0.5		
Gamma Chlordane		ND	7.3		0.5		
Gamma-BHC		ND	7.3		0.5		
Heptachlor		ND	7.3		0.5		
Heptachlor Epoxide		ND	7.3		0.5		
Methoxychlor		ND	7.3		0.5		
Chlordane		ND	73		0.5		
Cis-nonachlor		ND	7.3		0.5		
Toxaphene		ND	180		0.5		
Trans-nonachlor		ND	7.3		0.5		
Oxychlordane		ND	7.3		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		117	50-1	135			
Dibutylchlorendate		81	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 13 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 15:49	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	6	.3	0.5		
2,4'-DDE		ND	6	.3	0.5		
2,4'-DDT		ND	6	.3	0.5		
4,4'-DDD		ND	6	.3	0.5		
4,4'-DDT		ND	6	.3	0.5		
Aldrin		ND	6	.3	0.5		
Alpha Chlordane		ND	6	.3	0.5		
Alpha-BHC		ND	6	.3	0.5		
Beta-BHC		ND	6	.3	0.5		
Delta-BHC		ND	6	.3	0.5		
Dieldrin		ND	6	.3	0.5		
Endosulfan I		ND	6	.3	0.5		
Endosulfan II		ND	6	.3	0.5		
Endosulfan Sulfate		ND	6	.3	0.5		
Endrin		ND	6	.3	0.5		
Endrin Aldehyde		ND	6	.3	0.5		
Endrin Ketone		ND	6	.3	0.5		
Gamma Chlordane		ND	6	.3	0.5		
Gamma-BHC		ND	6	.3	0.5		
Heptachlor		ND	6	.3	0.5		
Heptachlor Epoxide		ND	6	.3	0.5		
Methoxychlor		ND	6	.3	0.5		
Chlordane		ND	6	3	0.5		
Cis-nonachlor		ND	6	.3	0.5		
Toxaphene		ND	1	60	0.5		
Trans-nonachlor		ND	6	.3	0.5		
Oxychlordane		ND	6	.3	0.5		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		84	5	0-135			
Dibutylchlorendate		78	5	0-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A

08/13/13

Units:

ug/kg Page 14 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:36	130816F05
Comment(s): - Results are reported on a	dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
4,4'-DDE		66	13	3	1		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		94	50	D-135			
Dibutylchlorendate		86	50)-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 15 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 16:04	130816F05
Comment(s): - Results are reported	d on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
2,4'-DDD		ND	6.5		0.5		
2,4'-DDE		ND	6.5		0.5		
2,4'-DDT		ND	6.5		0.5		
4,4'-DDD		ND	6.5		0.5		
4,4'-DDT		ND	6.5		0.5		
Aldrin		ND	6.5		0.5		
Alpha Chlordane		ND	6.5		0.5		
Alpha-BHC		ND	6.5		0.5		
Beta-BHC		ND	6.5		0.5		
Delta-BHC		ND	6.5		0.5		
Dieldrin		ND	6.5		0.5		
Endosulfan I		ND	6.5		0.5		
Endosulfan II		ND	6.5		0.5		
Endosulfan Sulfate		ND	6.5		0.5		
Endrin		ND	6.5		0.5		
Endrin Aldehyde		ND	6.5		0.5		
Endrin Ketone		ND	6.5		0.5		
Gamma Chlordane		ND	6.5		0.5		
Gamma-BHC		ND	6.5		0.5		
Heptachlor		ND	6.5		0.5		
Heptachlor Epoxide		ND	6.5		0.5		
Methoxychlor		ND	6.5		0.5		
Chlordane		ND	65		0.5		
Cis-nonachlor		ND	6.5		0.5		
Toxaphene		ND	160		0.5		
Trans-nonachlor		ND	6.5		0.5		
Oxychlordane		ND	6.5		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		91	50-1	135			
Dibutylchlorendate		88	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A

08/13/13

Units: ug/kg
Page 16 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 22:51	130816F05
Comment(s): - Results are reported on a	a dry weight basis.						_
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
4,4'-DDE		58	13		1		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		97	50-1	135			
Dibutylchlorendate		97	50-1	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 17 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

Date Prepared Date/Time QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Number Collected Analyzed 08/23/13 16:18 08/10/13 15:00 10C 13-08-0936-10-B Tissue GC 51 08/16/13 130816F05 Comment(s): - Results are reported on a dry weight basis. RL DF Qualifiers <u>Parameter</u> Result 6.9 2,4'-DDD ND 0.5 2,4'-DDE ND 6.9 0.5 2,4'-DDT ND 6.9 0.5 4,4'-DDD ND 0.5 6.9 4,4'-DDT ND 6.9 0.5 Aldrin ND 6.9 0.5 Alpha Chlordane ND 6.9 0.5 Alpha-BHC ND 6.9 0.5 Beta-BHC ND 6.9 0.5 Delta-BHC ND 6.9 0.5 Dieldrin ND 6.9 0.5 Endosulfan I ND 6.9 0.5 Endosulfan II ND 0.5 6.9 Endosulfan Sulfate ND 6.9 0.5 Endrin ND 0.5 6.9 Endrin Aldehyde ND 6.9 0.5 Endrin Ketone ND 6.9 0.5 Gamma Chlordane ND 6.9 0.5 Gamma-BHC ND 6.9 0.5 Heptachlor ND 6.9 0.5 Heptachlor Epoxide 0.5 ND 6.9 Methoxychlor ND 6.9 0.5 Chlordane ND 69 0.5 Cis-nonachlor ND 6.9 0.5 Toxaphene ND 170 0.5 Trans-nonachlor ND 6.9 0.5 Oxychlordane ND 6.9 0.5

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

90

88

Qualifiers

Control Limits

50-135

50-135

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg
Page 18 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 23:05	130816F05
Comment(s): - Results are reported on a	a dry weight basis.	•					
<u>Parameter</u>		Result	RL	<u>.</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
4,4'-DDE		86	14		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		101	50	-135			
Dibutylchlorendate		99	50	-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 **EPA 8081A**

08/13/13

Units: ug/kg Page 19 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11C	13-08-0936-11-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/23/13 19:27	130816F05
Comment(s): - Results are reported of	on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	7.1		0.5		
2,4'-DDE		ND	7.1		0.5		
2,4'-DDT		ND	7.1		0.5		
4,4'-DDD		11	7.1		0.5		
4,4'-DDE		52	7.1		0.5		
4,4'-DDT		ND	7.1		0.5		
Aldrin		ND	7.1		0.5		
Alpha Chlordane		ND	7.1		0.5		
Alpha-BHC		ND	7.1		0.5		
Beta-BHC		ND	7.1		0.5		
Delta-BHC		ND	7.1		0.5		
Dieldrin		ND	7.1		0.5		
Endosulfan I		ND	7.1		0.5		
Endosulfan II		ND	7.1		0.5		
Endosulfan Sulfate		ND	7.1		0.5		
Endrin		ND	7.1		0.5		
Endrin Aldehyde		ND	7.1		0.5		
Endrin Ketone		ND	7.1		0.5		
Gamma Chlordane		ND	7.1		0.5		
Gamma-BHC		ND	7.1		0.5		
Heptachlor		ND	7.1		0.5		
Heptachlor Epoxide		ND	7.1		0.5		
Methoxychlor		ND	7.1		0.5		
Chlordane		ND	71		0.5		
Cis-nonachlor		ND	7.1		0.5		
Toxaphene		ND	180		0.5		
Trans-nonachlor		ND	7.1		0.5		
Oxychlordane		ND	7.1		0.5		
Surrogate		Rec. (%)	<u>Con</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135			
Dibutylchlorendate		93	50-1	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Units:

Page 20 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

Date Prepared Date/Time QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Number Collected Analyzed 08/10/13 15:00 08/23/13 19:41 12C 13-08-0936-12-B Tissue GC 51 08/16/13 130816F05 Comment(s): - Results are reported on a dry weight basis. RL DF Qualifiers <u>Parameter</u> Result 2,4'-DDD ND 7.3 0.5 2,4'-DDE ND 7.3 0.5 2,4'-DDT ND 7.3 0.5 4,4'-DDD ND 7.3 0.5 4,4'-DDE 32 7.3 0.5 4,4'-DDT ND 7.3 0.5 Aldrin ND 7.3 0.5 Alpha Chlordane ND 7.3 0.5 Alpha-BHC ND 7.3 0.5 Beta-BHC ND 7.3 0.5 Delta-BHC ND 7.3 0.5 Dieldrin ND 7.3 0.5 Endosulfan I ND 7.3 0.5 Endosulfan II ND 7.3 0.5 Endosulfan Sulfate ND 7.3 0.5 Endrin ND 7.3 0.5 Endrin Aldehyde ND 7.3 0.5 **Endrin Ketone** ND 7.3 0.5 Gamma Chlordane ND 7.3 0.5 Gamma-BHC ND 7.3 0.5 Heptachlor ND 7.3 0.5 Heptachlor Epoxide ND 7.3 0.5 Methoxychlor ND 7.3 0.5 Chlordane ND 73 0.5 Cis-nonachlor ND 7.3 0.5 Toxaphene ND 180 0.5 Trans-nonachlor ND 7.3 0.5 Oxychlordane ND 7.3 0.5

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Control Limits

50-135 50-135 Qualifiers

Rec. (%)

82

76

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 21 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C	13-08-0936-13-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 10:57	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	7.3		0.5		
2,4'-DDE		ND	7.3		0.5		
2,4'-DDT		ND	7.3		0.5		
4,4'-DDD		ND	7.3		0.5		
4,4'-DDE		52	7.3		0.5		
4,4'-DDT		ND	7.3		0.5		
Aldrin		ND	7.3		0.5		
Alpha Chlordane		ND	7.3		0.5		
Alpha-BHC		ND	7.3		0.5		
Beta-BHC		ND	7.3		0.5		
Delta-BHC		ND	7.3		0.5		
Dieldrin		ND	7.3		0.5		
Endosulfan I		ND	7.3		0.5		
Endosulfan II		ND	7.3		0.5		
Endosulfan Sulfate		ND	7.3		0.5		
Endrin		ND	7.3		0.5		
Endrin Aldehyde		ND	7.3		0.5		
Endrin Ketone		ND	7.3		0.5		
Gamma Chlordane		ND	7.3		0.5		
Gamma-BHC		ND	7.3		0.5		
Heptachlor		ND	7.3		0.5		
Heptachlor Epoxide		ND	7.3		0.5		
Methoxychlor		ND	7.3		0.5		
Chlordane		ND	73		0.5		
Cis-nonachlor		ND	7.3		0.5		
Toxaphene		ND	180		0.5		
Trans-nonachlor		ND	7.3		0.5		
Oxychlordane		ND	7.3		0.5		
Surrogate		Rec. (%)	Cont	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		90	50-1	35			
Dibutylchlorendate		70	50-1	35			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 22 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14C	13-08-0936-14-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 11:11	130816F05
Comment(s): - Results are repor	ted on a dry weight basis.		•				
<u>Parameter</u>		<u>Result</u>	RL	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	6.7	7	0.5		
2,4'-DDE		ND	6.7	7	0.5		
2,4'-DDT		ND	6.7	7	0.5		
4,4'-DDD		ND	6.7	7	0.5		
4,4'-DDE		44	6.7	7	0.5		
4,4'-DDT		ND	6.7	7	0.5		
Aldrin		ND	6.7	7	0.5		
Alpha Chlordane		ND	6.7	7	0.5		
Alpha-BHC		ND	6.7	7	0.5		
Beta-BHC		ND	6.7	7	0.5		
Delta-BHC		ND	6.7	7	0.5		
Dieldrin		ND	6.7	7	0.5		
Endosulfan I		ND	6.7	7	0.5		
Endosulfan II		ND	6.7	7	0.5		
Endosulfan Sulfate		ND	6.7	7	0.5		
Endrin		ND	6.7	7	0.5		
Endrin Aldehyde		ND	6.7	7	0.5		
Endrin Ketone		ND	6.7	7	0.5		
Gamma Chlordane		ND	6.7	7	0.5		
Gamma-BHC		ND	6.7	,	0.5		
Heptachlor		ND	6.7	7	0.5		
Heptachlor Epoxide		ND	6.7	7	0.5		
Methoxychlor		ND	6.7	,	0.5		
Chlordane		ND	67		0.5		
Cis-nonachlor		ND	6.7	7	0.5		
Toxaphene		ND	17	0	0.5		
Trans-nonachlor		ND	6.7	7	0.5		
Oxychlordane		ND	6.7	7	0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	-135			
Dibutylchlorendate		75	50-	-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 23 of 41

Project: Berths 212-224 YTI Terminal

Dibutylchlorendate

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 11:26	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
2,4'-DDD		ND	7.1		0.5		
2,4'-DDE		ND	7.1		0.5		
2,4'-DDT		ND	7.1		0.5		
4,4'-DDD		ND	7.1		0.5		
4,4'-DDT		ND	7.1		0.5		
Aldrin		ND	7.1		0.5		
Alpha Chlordane		ND	7.1		0.5		
Alpha-BHC		ND	7.1		0.5		
Beta-BHC		ND	7.1		0.5		
Delta-BHC		ND	7.1		0.5		
Dieldrin		ND	7.1		0.5		
Endosulfan I		ND	7.1		0.5		
Endosulfan II		ND	7.1		0.5		
Endosulfan Sulfate		ND	7.1		0.5		
Endrin		ND	7.1		0.5		
Endrin Aldehyde		ND	7.1		0.5		
Endrin Ketone		ND	7.1		0.5		
Gamma Chlordane		ND	7.1		0.5		
Gamma-BHC		ND	7.1		0.5		
Heptachlor		ND	7.1		0.5		
Heptachlor Epoxide		ND	7.1		0.5		
Methoxychlor		ND	7.1		0.5		
Chlordane		ND	71		0.5		
Cis-nonachlor		ND	7.1		0.5		
Toxaphene		ND	180)	0.5		
Trans-nonachlor		ND	7.1		0.5		
Oxychlordane		ND	7.1		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

50-135

74

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Ur

Units:

Page 24 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC 51	08/16/13	08/24/13 18:25	130816F05
Comment(s): - Results are reported	d on a dry weight basis.						
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
4,4'-DDE		75	14	ļ.	1		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		96	50)-135			
Dibutylchlorendate		74	50)-135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 25 of 41

Project: Berths 212-224 YTI Terminal

Date/Time QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1W	13-08-0936-16-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 11:40	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	6.2		0.5		
2,4'-DDE		ND	6.2		0.5		
2,4'-DDT		ND	6.2		0.5		
4,4'-DDD		ND	6.2		0.5		
4,4'-DDE		24	6.2		0.5		
4,4'-DDT		ND	6.2		0.5		
Aldrin		ND	6.2		0.5		
Alpha Chlordane		ND	6.2		0.5		
Alpha-BHC		ND	6.2		0.5		
Beta-BHC		ND	6.2		0.5		
Delta-BHC		ND	6.2		0.5		
Dieldrin		ND	6.2		0.5		
Endosulfan I		ND	6.2		0.5		
Endosulfan II		ND	6.2		0.5		
Endosulfan Sulfate		ND	6.2		0.5		
Endrin		ND	6.2		0.5		
Endrin Aldehyde		ND	6.2		0.5		
Endrin Ketone		ND	6.2		0.5		
Gamma Chlordane		ND	6.2		0.5		
Gamma-BHC		ND	6.2		0.5		
Heptachlor		ND	6.2		0.5		
Heptachlor Epoxide		ND	6.2		0.5		
Methoxychlor		ND	6.2		0.5		
Chlordane		ND	62		0.5		
Cis-nonachlor		ND	6.2		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		ND	6.2		0.5		
Oxychlordane		ND	6.2		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		88	50-1	135			
Dibutylchlorendate		89	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 26 of 41

Project: Berths 212-224 YTI Terminal

ima OC Batab ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 11:54	130816F05
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	5.8		0.5		
2,4'-DDE		ND	5.8		0.5		
2,4'-DDT		ND	5.8		0.5		
4,4'-DDD		ND	5.8		0.5		
4,4'-DDE		27	5.8		0.5		
4,4'-DDT		28	5.8		0.5		
Aldrin		ND	5.8		0.5		
Alpha Chlordane		ND	5.8		0.5		
Alpha-BHC		ND	5.8		0.5		
Beta-BHC		ND	5.8		0.5		
Delta-BHC		ND	5.8		0.5		
Dieldrin		ND	5.8		0.5		
Endosulfan I		ND	5.8		0.5		
Endosulfan II		ND	5.8		0.5		
Endosulfan Sulfate		ND	5.8		0.5		
Endrin		ND	5.8		0.5		
Endrin Aldehyde		ND	5.8		0.5		
Endrin Ketone		ND	5.8		0.5		
Gamma Chlordane		ND	5.8		0.5		
Gamma-BHC		ND	5.8		0.5		
Heptachlor		ND	5.8		0.5		
Heptachlor Epoxide		ND	5.8		0.5		
Methoxychlor		ND	5.8		0.5		
Chlordane		ND	58		0.5		
Cis-nonachlor		ND	5.8		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		ND	5.8		0.5		
Oxychlordane		ND	5.8		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		88	50-1	35			
Dibutylchlorendate		77	50-1	35			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A ug/kg

08/13/13

Units:

Page 27 of 41

Project: Berths 212-224 YTI Terminal

Dibutylchlorendate

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3W	13-08-0936-18-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 12:08	130816F05
Comment(s): - Results are reported on a	a dry weight basis.	•					
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
2,4'-DDD		ND	5.8		0.5		
2,4'-DDE		ND	5.8		0.5		
2,4'-DDT		ND	5.8		0.5		
4,4'-DDD		ND	5.8		0.5		
4,4'-DDE		17	5.8		0.5		
4,4'-DDT		ND	5.8		0.5		
Aldrin		ND	5.8		0.5		
Alpha Chlordane		ND	5.8		0.5		
Alpha-BHC		ND	5.8		0.5		
Beta-BHC		ND	5.8		0.5		
Delta-BHC		ND	5.8		0.5		
Dieldrin		ND	5.8		0.5		
Endosulfan I		ND	5.8		0.5		
Endosulfan II		ND	5.8		0.5		
Endosulfan Sulfate		ND	5.8		0.5		
Endrin		ND	5.8		0.5		
Endrin Aldehyde		ND	5.8		0.5		
Endrin Ketone		ND	5.8		0.5		
Gamma Chlordane		ND	5.8		0.5		
Gamma-BHC		ND	5.8		0.5		
Heptachlor		ND	5.8		0.5		
Heptachlor Epoxide		ND	5.8		0.5		
Methoxychlor		ND	5.8		0.5		
Chlordane		ND	58		0.5		
Cis-nonachlor		ND	5.8		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		ND	5.8		0.5		
Oxychlordane		ND	5.8		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		87	50-1	135			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

50-135

91

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 28 of 41

Project: Berths 212-224 YTI Terminal

OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
4W	13-08-0936-19-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 12:23	130816F05		
Comment(s): - Results are reported	on a dry weight basis.								
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qualifiers</u>			
2,4'-DDD		ND	5.7		0.5				
2,4'-DDE		ND	5.7		0.5				
2,4'-DDT		ND	5.7		0.5				
4,4'-DDD		ND	5.7		0.5				
4,4'-DDE		9.9	5.7		0.5				
4,4'-DDT		ND	5.7		0.5				
Aldrin		ND	5.7		0.5				
Alpha Chlordane		ND	5.7		0.5				
Alpha-BHC		ND	5.7		0.5				
Beta-BHC		ND	5.7		0.5				
Delta-BHC		ND	5.7		0.5				
Dieldrin		ND	5.7		0.5				
Endosulfan I		ND	5.7		0.5				
Endosulfan II		ND	5.7		0.5				
Endosulfan Sulfate		ND	5.7		0.5				
Endrin		ND	5.7		0.5				
Endrin Aldehyde		ND	5.7		0.5				
Endrin Ketone		ND	5.7		0.5				
Gamma Chlordane		ND	5.7		0.5				
Gamma-BHC		ND	5.7		0.5				
Heptachlor		ND	5.7		0.5				
Heptachlor Epoxide		ND	5.7		0.5				
Methoxychlor		ND	5.7		0.5				
Chlordane		ND	57		0.5				
Cis-nonachlor		ND	5.7		0.5				
Toxaphene		ND	140)	0.5				
Trans-nonachlor		ND	5.7		0.5				
Oxychlordane		ND	5.7		0.5				
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers				
2,4,5,6-Tetrachloro-m-Xylene		96	50-	135					
Dibutylchlorendate		80	50-	135					

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 29 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

T TOJECL DETLIS Z I	2-224 1 11 Tellillilai					ray	6 23 01 41
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5W	13-08-0936-20	-B 08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 12:37	130816F05
Comment(s): - Res	sults are reported on a dry weight basis	S					
<u>Parameter</u>		Result	<u>RL</u>	•	<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	6.1		0.5		
2,4'-DDE		ND	6.1		0.5		
2,4'-DDT		ND	6.1		0.5		
4,4'-DDD		ND	6.1		0.5		
4,4'-DDE		16	6.1		0.5		
4,4'-DDT		ND	6.1		0.5		
Aldrin		ND	6.1		0.5		
Alpha Chlordane		ND	6.1		0.5		
Alpha-BHC		ND	6.1		0.5		
Beta-BHC		ND	6.1		0.5		
Delta-BHC		ND	6.1		0.5		
Dieldrin		ND	6.1		0.5		
Endosulfan I		ND	6.1		0.5		
Endosulfan II		ND	6.1		0.5		
Endosulfan Sulfate		ND	6.1		0.5		
Endrin		ND	6.1		0.5		
Endrin Aldehyde		ND	6.1		0.5		
Endrin Ketone		ND	6.1		0.5		
Gamma Chlordane		ND	6.1		0.5		
Gamma-BHC		ND	6.1		0.5		
Heptachlor		ND	6.1		0.5		
Heptachlor Epoxide		ND	6.1		0.5		
Methoxychlor		ND	6.1		0.5		
Chlordane		ND	61		0.5		
Cis-nonachlor		ND	6.1		0.5		
Toxaphene		ND	150	0	0.5		
Trans-nonachlor		ND	6.1		0.5		
Oxychlordane		ND	6.1		0.5		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

85

71

Qualifiers

Control Limits

50-135

50-135

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 30 of 41

Project: Berths 212-224 YTI Terminal

Surrogate

Dibutylchlorendate

2,4,5,6-Tetrachloro-m-Xylene

Date Prepared Date/Time QC Batch ID Client Sample Number Lab Sample Date/Time Matrix Instrument Number Collected Analyzed 08/10/13 13:00 08/24/13 12:51 6W 13-08-0936-21-B Tissue GC 51 08/16/13 130816F06 Comment(s): - Results are reported on a dry weight basis. RL DF Qualifiers <u>Parameter</u> Result 6.5 2,4'-DDD ND 0.5 2,4'-DDE ND 6.5 0.5 2,4'-DDT ND 6.5 0.5 4,4'-DDD ND 0.5 6.5 4,4'-DDE 7.6 6.5 0.5 4,4'-DDT ND 6.5 0.5 Aldrin ND 6.5 0.5 Alpha Chlordane ND 6.5 0.5 Alpha-BHC ND 6.5 0.5 Beta-BHC ND 6.5 0.5 Delta-BHC ND 6.5 0.5 Dieldrin ND 6.5 0.5 Endosulfan I ND 6.5 0.5 Endosulfan II ND 6.5 0.5 Endosulfan Sulfate ND 6.5 0.5 Endrin ND 6.5 0.5 Endrin Aldehyde ND 6.5 0.5 **Endrin Ketone** ND 6.5 0.5 Gamma Chlordane ND 6.5 0.5 Gamma-BHC ND 6.5 0.5 Heptachlor ND 6.5 0.5 Heptachlor Epoxide ND 6.5 0.5 Methoxychlor ND 6.5 0.5 Chlordane ND 65 0.5 Cis-nonachlor ND 6.5 0.5 Toxaphene ND 160 0.5 Trans-nonachlor ND 6.5 0.5 Oxychlordane ND 6.5 0.5

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Control Limits

50-135

50-135

Qualifiers

Rec. (%)

89

76

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 31 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7W	13-08-0936-22-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:06	130816F06
Comment(s): - Results are reported or	n a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	5.1		0.5		
2,4'-DDE		ND	5.1		0.5		
2,4'-DDT		ND	5.1		0.5		
4,4'-DDD		ND	5.1		0.5		
4,4'-DDE		16	5.1		0.5		
4,4'-DDT		ND	5.1		0.5		
Aldrin		ND	5.1		0.5		
Alpha Chlordane		ND	5.1		0.5		
Alpha-BHC		ND	5.1		0.5		
Beta-BHC		ND	5.1		0.5		
Delta-BHC		ND	5.1		0.5		
Dieldrin		ND	5.1		0.5		
Endosulfan I		ND	5.1		0.5		
Endosulfan II		ND	5.1		0.5		
Endosulfan Sulfate		ND	5.1		0.5		
Endrin		ND	5.1		0.5		
Endrin Aldehyde		ND	5.1		0.5		
Endrin Ketone		ND	5.1		0.5		
Gamma Chlordane		ND	5.1		0.5		
Gamma-BHC		ND	5.1		0.5		
Heptachlor		ND	5.1		0.5		
Heptachlor Epoxide		ND	5.1		0.5		
Methoxychlor		ND	5.1		0.5		
Chlordane		ND	51		0.5		
Cis-nonachlor		ND	5.1		0.5		
Toxaphene		ND	130)	0.5		
Trans-nonachlor		5.2	5.1		0.5		
Oxychlordane		ND	5.1		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		103	50-	135			
Dibutylchlorendate		90	50-	135			

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 32 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8W	13-08-0936-23-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:20	130816F06
Comment(s): - Results are reported or	n a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	5.8		0.5		
2,4'-DDE		ND	5.8		0.5		
2,4'-DDT		ND	5.8		0.5		
4,4'-DDD		ND	5.8		0.5		
4,4'-DDE		16	5.8		0.5		
4,4'-DDT		ND	5.8		0.5		
Aldrin		ND	5.8		0.5		
Alpha Chlordane		ND	5.8		0.5		
Alpha-BHC		ND	5.8		0.5		
Beta-BHC		ND	5.8		0.5		
Delta-BHC		ND	5.8		0.5		
Dieldrin		ND	5.8		0.5		
Endosulfan I		ND	5.8		0.5		
Endosulfan II		ND	5.8		0.5		
Endosulfan Sulfate		ND	5.8		0.5		
Endrin		ND	5.8		0.5		
Endrin Aldehyde		ND	5.8		0.5		
Endrin Ketone		ND	5.8		0.5		
Gamma Chlordane		ND	5.8		0.5		
Gamma-BHC		ND	5.8		0.5		
Heptachlor		ND	5.8		0.5		
Heptachlor Epoxide		ND	5.8		0.5		
Methoxychlor		ND	5.8		0.5		
Chlordane		ND	58		0.5		
Cis-nonachlor		ND	5.8		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		6.8	5.8		0.5		
Oxychlordane		ND	5.8		0.5		
Surrogate		Rec. (%)	Con	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		108	50-1	135			
Dibutylchlorendate		98	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units: ug/kg

Project: Berths 212-224 YTI Terminal

Page 33 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9W	13-08-0936-24-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:34	130816F06
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	6.1		0.5		
2,4'-DDE		ND	6.1		0.5		
2,4'-DDT		ND	6.1		0.5		
4,4'-DDD		ND	6.1		0.5		
4,4'-DDE		10	6.1		0.5		
4,4'-DDT		ND	6.1		0.5		
Aldrin		ND	6.1		0.5		
Alpha Chlordane		ND	6.1		0.5		
Alpha-BHC		ND	6.1		0.5		
Beta-BHC		ND	6.1		0.5		
Delta-BHC		ND	6.1		0.5		
Dieldrin		ND	6.1		0.5		
Endosulfan I		ND	6.1		0.5		
Endosulfan II		ND	6.1		0.5		
Endosulfan Sulfate		ND	6.1		0.5		
Endrin		ND	6.1		0.5		
Endrin Aldehyde		ND	6.1		0.5		
Endrin Ketone		ND	6.1		0.5		
Gamma Chlordane		ND	6.1		0.5		
Gamma-BHC		ND	6.1		0.5		
Heptachlor		ND	6.1		0.5		
Heptachlor Epoxide		ND	6.1		0.5		
Methoxychlor		ND	6.1		0.5		
Chlordane		ND	61		0.5		
Cis-nonachlor		ND	6.1		0.5		
Toxaphene		ND	150)	0.5		
Trans-nonachlor		ND	6.1		0.5		
Oxychlordane		ND	6.1		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		99	50-	135			
Dibutylchlorendate		97	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 34 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 13:48	130816F06
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	6.5		0.5		
2,4'-DDE		ND	6.5		0.5		
2,4'-DDT		ND	6.5		0.5		
4,4'-DDD		ND	6.5		0.5		
4,4'-DDE		12	6.5		0.5		
4,4'-DDT		ND	6.5		0.5		
Aldrin		ND	6.5		0.5		
Alpha Chlordane		ND	6.5		0.5		
Alpha-BHC		ND	6.5		0.5		
Beta-BHC		ND	6.5		0.5		
Delta-BHC		ND	6.5		0.5		
Dieldrin		ND	6.5		0.5		
Endosulfan I		ND	6.5		0.5		
Endosulfan II		ND	6.5		0.5		
Endosulfan Sulfate		ND	6.5		0.5		
Endrin		ND	6.5		0.5		
Endrin Aldehyde		ND	6.5		0.5		
Endrin Ketone		ND	6.5		0.5		
Gamma Chlordane		ND	6.5		0.5		
Gamma-BHC		ND	6.5		0.5		
Heptachlor		ND	6.5		0.5		
Heptachlor Epoxide		ND	6.5		0.5		
Methoxychlor		ND	6.5		0.5		
Chlordane		ND	65		0.5		
Cis-nonachlor		ND	6.5		0.5		
Toxaphene		ND	160)	0.5		
Trans-nonachlor		ND	6.5		0.5		
Oxychlordane		ND	6.5		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135			
Dibutylchlorendate		85	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3545 EPA 8081A

08/13/13

Units:

ug/kg Page 35 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11W	13-08-0936-26-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:03	130816F06
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualifiers	<u>lifiers</u>
2,4'-DDD		ND	5.9		0.5		
2,4'-DDE		ND	5.9		0.5		
2,4'-DDT		ND	5.9		0.5		
4,4'-DDD		ND	5.9		0.5		
4,4'-DDE		22	5.9		0.5		
4,4'-DDT		ND	5.9		0.5		
Aldrin		ND	5.9		0.5		
Alpha Chlordane		ND	5.9		0.5		
Alpha-BHC		ND	5.9		0.5		
Beta-BHC		ND	5.9		0.5		
Delta-BHC		ND	5.9		0.5		
Dieldrin		ND	5.9		0.5		
Endosulfan I		ND	5.9		0.5		
Endosulfan II		ND	5.9		0.5		
Endosulfan Sulfate		ND	5.9		0.5		
Endrin		ND	5.9		0.5		
Endrin Aldehyde		ND	5.9		0.5		
Endrin Ketone		ND	5.9		0.5		
Gamma Chlordane		ND	5.9		0.5		
Gamma-BHC		ND	5.9		0.5		
Heptachlor		ND	5.9		0.5		
Heptachlor Epoxide		ND	5.9		0.5		
Methoxychlor		ND	5.9		0.5		
Chlordane		ND	59		0.5		
Cis-nonachlor		ND	5.9		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		ND	5.9		0.5		
Oxychlordane		ND	5.9		0.5		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		97	50-1	135			
Dibutylchlorendate		83	50-1	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 **EPA 8081A**

Units: ug/kg Page 36 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12W	13-08-0936-27-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:17	130816F06
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qualifiers</u>	<u>lifiers</u>
2,4'-DDD		ND	6.2		0.5		
2,4'-DDE		ND	6.2		0.5		
2,4'-DDT		ND	6.2		0.5		
4,4'-DDD		ND	6.2		0.5		
4,4'-DDE		ND	6.2		0.5		
4,4'-DDT		ND	6.2		0.5		
Aldrin		ND	6.2		0.5		
Alpha Chlordane		ND	6.2		0.5		
Alpha-BHC		ND	6.2		0.5		
Beta-BHC		ND	6.2		0.5		
Delta-BHC		ND	6.2		0.5		
Dieldrin		ND	6.2		0.5		
Endosulfan I		ND	6.2		0.5		
Endosulfan II		ND	6.2		0.5		
Endosulfan Sulfate		ND	6.2		0.5		
Endrin		ND	6.2		0.5		
Endrin Aldehyde		ND	6.2		0.5		
Endrin Ketone		ND	6.2		0.5		
Gamma Chlordane		ND	6.2		0.5		
Gamma-BHC		ND	6.2		0.5		
Heptachlor		ND	6.2		0.5		
Heptachlor Epoxide		ND	6.2		0.5		
Methoxychlor		ND	6.2		0.5		
Chlordane		ND	62		0.5		
Cis-nonachlor		ND	6.2		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		ND	6.2		0.5		
Oxychlordane		ND	6.2		0.5		
Surrogate		Rec. (%)	Con	trol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		83	50-1	35			
Dibutylchlorendate		67	50-1	35			

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Project: Berths 212-224 YTI Terminal

Page 37 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13W	13-08-0936-28-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:31	130816F06
Comment(s): - Results are reported	on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
2,4'-DDD		ND	6.0		0.5		
2,4'-DDE		ND	6.0		0.5		
2,4'-DDT		ND	6.0		0.5		
4,4'-DDD		ND	6.0		0.5		
4,4'-DDE		16	6.0		0.5		
4,4'-DDT		ND	6.0		0.5		
Aldrin		ND	6.0		0.5		
Alpha Chlordane		ND	6.0		0.5		
Alpha-BHC		ND	6.0		0.5		
Beta-BHC		ND	6.0		0.5		
Delta-BHC		ND	6.0		0.5		
Dieldrin		ND	6.0		0.5		
Endosulfan I		ND	6.0		0.5		
Endosulfan II		ND	6.0		0.5		
Endosulfan Sulfate		ND	6.0		0.5		
Endrin		ND	6.0		0.5		
Endrin Aldehyde		ND	6.0		0.5		
Endrin Ketone		ND	6.0		0.5		
Gamma Chlordane		ND	6.0		0.5		
Gamma-BHC		ND	6.0		0.5		
Heptachlor		ND	6.0		0.5		
Heptachlor Epoxide		ND	6.0		0.5		
Methoxychlor		ND	6.0		0.5		
Chlordane		ND	60		0.5		
Cis-nonachlor		ND	6.0		0.5		
Toxaphene		ND	150)	0.5		
Trans-nonachlor		ND	6.0		0.5		
Oxychlordane		ND	6.0		0.5		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		94	50-	135			
Dibutylchlorendate		63	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 38 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14W	13-08-0936-29-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 14:45	130816F06
Comment(s): - Results are reported	on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
2,4'-DDD		ND	5.8		0.5		
2,4'-DDE		ND	5.8		0.5		
2,4'-DDT		ND	5.8		0.5		
4,4'-DDD		ND	5.8		0.5		
4,4'-DDE		18	5.8		0.5		
4,4'-DDT		ND	5.8		0.5		
Aldrin		ND	5.8		0.5		
Alpha Chlordane		ND	5.8		0.5		
Alpha-BHC		ND	5.8		0.5		
Beta-BHC		ND	5.8		0.5		
Delta-BHC		ND	5.8		0.5		
Dieldrin		ND	5.8		0.5		
Endosulfan I		ND	5.8		0.5		
Endosulfan II		ND	5.8		0.5		
Endosulfan Sulfate		ND	5.8		0.5		
Endrin		ND	5.8		0.5		
Endrin Aldehyde		ND	5.8		0.5		
Endrin Ketone		ND	5.8		0.5		
Gamma Chlordane		ND	5.8		0.5		
Gamma-BHC		ND	5.8		0.5		
Heptachlor		ND	5.8		0.5		
Heptachlor Epoxide		ND	5.8		0.5		
Methoxychlor		ND	5.8		0.5		
Chlordane		ND	58		0.5		
Cis-nonachlor		ND	5.8		0.5		
Toxaphene		ND	150)	0.5		
Trans-nonachlor		ND	5.8		0.5		
Oxychlordane		ND	5.8		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		93	50-	135			
Dibutylchlorendate		75	50-	135			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Units:

ug/kg Page 39 of 41

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15W	13-08-0936-30-B	08/10/13 13:00	Tissue	GC 51	08/16/13	08/24/13 15:00	130816F06
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
2,4'-DDD		ND	5.9		0.5		
2,4'-DDE		ND	5.9		0.5		
2,4'-DDT		ND	5.9		0.5		
4,4'-DDD		ND	5.9		0.5		
4,4'-DDE		20	5.9		0.5		
4,4'-DDT		ND	5.9		0.5		
Aldrin		ND	5.9		0.5		
Alpha Chlordane		ND	5.9		0.5		
Alpha-BHC		ND	5.9		0.5		
Beta-BHC		ND	5.9		0.5		
Delta-BHC		ND	5.9		0.5		
Dieldrin		ND	5.9		0.5		
Endosulfan I		ND	5.9		0.5		
Endosulfan II		ND	5.9		0.5		
Endosulfan Sulfate		ND	5.9		0.5		
Endrin		ND	5.9		0.5		
Endrin Aldehyde		ND	5.9		0.5		
Endrin Ketone		ND	5.9		0.5		
Gamma Chlordane		ND	5.9		0.5		
Gamma-BHC		ND	5.9		0.5		
Heptachlor		ND	5.9		0.5		
Heptachlor Epoxide		ND	5.9		0.5		
Methoxychlor		ND	5.9		0.5		
Chlordane		ND	59		0.5		
Cis-nonachlor		ND	5.9		0.5		
Toxaphene		ND	150		0.5		
Trans-nonachlor		ND	5.9		0.5		
Oxychlordane		ND	5.9		0.5		
Surrogate		Rec. (%)	Cont	trol Limits	<u>Qualifiers</u>		
2,4,5,6-Tetrachloro-m-Xylene		83	50-1	35			
Dibutylchlorendate		56	50-1	35			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Page 40 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-294-22	N/A	Soil	GC 51	08/16/13	08/23/13 13:55	130816F05
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0	1	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		ND	1.0	1	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0	1	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0	1	0.5		
Beta-BHC		ND	1.0	1	0.5		
Delta-BHC		ND	1.0	1	0.5		
Dieldrin		ND	1.0		0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0		0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0	1	0.5		
Endrin Ketone		ND	1.0		0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0	1	0.5		
Heptachlor		ND	1.0)	0.5		
Heptachlor Epoxide		ND	1.0	1	0.5		
Methoxychlor		ND	1.0	1	0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0		0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0)	0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		105	50-	135			
Dibutylchlorendate		102	50-	135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A ug/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 41 of 41

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-294-23	N/A	Soil	GC 51	08/16/13	08/24/13 10:43	130816F06
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
2,4'-DDD		ND	1.0)	0.5		
2,4'-DDE		ND	1.0)	0.5		
2,4'-DDT		ND	1.0)	0.5		
4,4'-DDD		ND	1.0)	0.5		
4,4'-DDE		ND	1.0)	0.5		
4,4'-DDT		ND	1.0)	0.5		
Aldrin		ND	1.0)	0.5		
Alpha Chlordane		ND	1.0)	0.5		
Alpha-BHC		ND	1.0)	0.5		
Beta-BHC		ND	1.0)	0.5		
Delta-BHC		ND	1.0)	0.5		
Dieldrin		ND	1.0)	0.5		
Endosulfan I		ND	1.0)	0.5		
Endosulfan II		ND	1.0)	0.5		
Endosulfan Sulfate		ND	1.0)	0.5		
Endrin		ND	1.0)	0.5		
Endrin Aldehyde		ND	1.0)	0.5		
Endrin Ketone		ND	1.0)	0.5		
Gamma Chlordane		ND	1.0)	0.5		
Gamma-BHC		ND	1.0)	0.5		
Heptachlor		ND	1.0)	0.5		
Heptachlor Epoxide		ND	1.0)	0.5		
Methoxychlor		ND	1.0)	0.5		
Chlordane		ND	10		0.5		
Cis-nonachlor		ND	1.0)	0.5		
Toxaphene		ND	25		0.5		
Trans-nonachlor		ND	1.0)	0.5		
Oxychlordane		ND	1.0		0.5		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2,4,5,6-Tetrachloro-m-Xylene		121	50-	-135			
Dibutylchlorendate		105	50-	-135			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg

Project: Berths 212-224 YTI Terminal

Page 1 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C	13-08-0936-1-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 13:27	130816L01
Comment(s): - Results are reported of	n a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	70		1		
Acenaphthylene		ND	70		1		
Anthracene		ND	70		1		
Benzo (a) Anthracene		ND	70		1		
Benzo (a) Pyrene		210	70		1		
Benzo (b) Fluoranthene		320	70		1		
Benzo (e) Pyrene		210	70		1		
Benzo (g,h,i) Perylene		ND	70		1		
Benzo (k) Fluoranthene		230	70		1		
Biphenyl		ND	70		1		
Chrysene		87	70		1		
Dibenz (a,h) Anthracene		ND	70		1		
2,6-Dimethylnaphthalene		ND	70		1		
Fluoranthene		ND	70		1		
Fluorene		ND	70		1		
Indeno (1,2,3-c,d) Pyrene		ND	70		1		
2-Methylnaphthalene		ND	70		1		
1-Methylnaphthalene		ND	70		1		
1-Methylphenanthrene		ND	70		1		
Naphthalene		ND	70		1		
Perylene		ND	70		1		
Phenanthrene		ND	70		1		
Pyrene		120	70		1		
1,6,7-Trimethylnaphthalene		ND	70		1		
Dibenzothiophene		ND	70		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		110	14-	146			
Nitrobenzene-d5		97	18-	162			
p-Terphenyl-d14		138	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs ug/kg

Project: Berths 212-224 YTI Terminal

Page 2 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C	13-08-0936-2-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 13:53	130816L01
Comment(s): - Results are reported o	n a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	70		1		
Acenaphthylene		ND	70		1		
Anthracene		ND	70		1		
Benzo (a) Anthracene		ND	70		1		
Benzo (a) Pyrene		190	70		1		
Benzo (b) Fluoranthene		300	70		1		
Benzo (e) Pyrene		180	70		1		
Benzo (g,h,i) Perylene		ND	70		1		
Benzo (k) Fluoranthene		200	70		1		
Biphenyl		ND	70		1		
Chrysene		73	70		1		
Dibenz (a,h) Anthracene		ND	70		1		
2,6-Dimethylnaphthalene		ND	70		1		
Fluoranthene		ND	70		1		
Fluorene		ND	70		1		
Indeno (1,2,3-c,d) Pyrene		ND	70		1		
2-Methylnaphthalene		ND	70		1		
1-Methylnaphthalene		ND	70		1		
1-Methylphenanthrene		ND	70		1		
Naphthalene		ND	70		1		
Perylene		ND	70		1		
Phenanthrene		ND	70		1		
Pyrene		130	70		1		
1,6,7-Trimethylnaphthalene		ND	70		1		
Dibenzothiophene		ND	70		1		
Surrogate		Rec. (%)	Coi	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		100	14-	146			
Nitrobenzene-d5		88	18-	162			
p-Terphenyl-d14		118	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 3 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C	13-08-0936-3-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 14:20	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	71		1		
Acenaphthylene		ND	71		1		
Anthracene		ND	71		1		
Benzo (a) Anthracene		ND	71		1		
Benzo (a) Pyrene		150	71		1		
Benzo (b) Fluoranthene		250	71		1		
Benzo (e) Pyrene		160	71		1		
Benzo (g,h,i) Perylene		ND	71		1		
Benzo (k) Fluoranthene		180	71		1		
Biphenyl		ND	71		1		
Chrysene		ND	71		1		
Dibenz (a,h) Anthracene		ND	71		1		
2,6-Dimethylnaphthalene		ND	71		1		
Fluoranthene		ND	71		1		
Fluorene		ND	71		1		
Indeno (1,2,3-c,d) Pyrene		ND	71		1		
2-Methylnaphthalene		ND	71		1		
1-Methylnaphthalene		ND	71		1		
1-Methylphenanthrene		ND	71		1		
Naphthalene		ND	71		1		
Perylene		ND	71		1		
Phenanthrene		ND	71		1		
Pyrene		110	71		1		
1,6,7-Trimethylnaphthalene		ND	71		1		
Dibenzothiophene		ND	71		1		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		99	14-1	146			
Nitrobenzene-d5		105	18-1	162			
p-Terphenyl-d14		116	34-1	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 4 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C	13-08-0936-4-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 14:46	130816L01
Comment(s): - Results are reported or	n a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	78		1		
Acenaphthylene		ND	78		1		
Anthracene		ND	78		1		
Benzo (a) Anthracene		ND	78		1		
Benzo (a) Pyrene		ND	78		1		
Benzo (b) Fluoranthene		ND	78		1		
Benzo (e) Pyrene		ND	78		1		
Benzo (g,h,i) Perylene		ND	78		1		
Benzo (k) Fluoranthene		ND	78		1		
Biphenyl		ND	78		1		
Chrysene		ND	78		1		
Dibenz (a,h) Anthracene		ND	78		1		
2,6-Dimethylnaphthalene		ND	78		1		
Fluoranthene		ND	78		1		
Fluorene		ND	78		1		
Indeno (1,2,3-c,d) Pyrene		ND	78		1		
2-Methylnaphthalene		ND	78		1		
1-Methylnaphthalene		ND	78		1		
1-Methylphenanthrene		ND	78		1		
Naphthalene		ND	78		1		
Perylene		ND	78		1		
Phenanthrene		ND	78		1		
Pyrene		ND	78		1		
1,6,7-Trimethylnaphthalene		ND	78		1		
Dibenzothiophene		ND	78		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		96	14-	146			
Nitrobenzene-d5		97	18-	162			
p-Terphenyl-d14		114	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 5 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5C	13-08-0936-5-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 15:12	130816L01
Comment(s): - Results are reported or	n a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	72		1		
Acenaphthylene		ND	72		1		
Anthracene		ND	72		1		
Benzo (a) Anthracene		89	72		1		
Benzo (a) Pyrene		210	72		1		
Benzo (b) Fluoranthene		300	72		1		
Benzo (e) Pyrene		200	72		1		
Benzo (g,h,i) Perylene		ND	72		1		
Benzo (k) Fluoranthene		200	72		1		
Biphenyl		ND	72		1		
Chrysene		130	72		1		
Dibenz (a,h) Anthracene		ND	72		1		
2,6-Dimethylnaphthalene		ND	72		1		
Fluoranthene		460	72		1		
Fluorene		ND	72		1		
Indeno (1,2,3-c,d) Pyrene		ND	72		1		
2-Methylnaphthalene		ND	72		1		
1-Methylnaphthalene		ND	72		1		
1-Methylphenanthrene		ND	72		1		
Naphthalene		ND	72		1		
Perylene		ND	72		1		
Phenanthrene		ND	72		1		
Pyrene		1300	72		1		
1,6,7-Trimethylnaphthalene		ND	72		1		
Dibenzothiophene		ND	72		1		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		81	18-	162			
p-Terphenyl-d14		107	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg
Page 6 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C	13-08-0936-6-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 15:39	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	68		1		
Acenaphthylene		ND	68		1		
Anthracene		ND	68		1		
Benzo (a) Anthracene		ND	68		1		
Benzo (a) Pyrene		ND	68		1		
Benzo (b) Fluoranthene		ND	68		1		
Benzo (e) Pyrene		ND	68		1		
Benzo (g,h,i) Perylene		ND	68		1		
Benzo (k) Fluoranthene		ND	68		1		
Biphenyl		ND	68		1		
Chrysene		ND	68		1		
Dibenz (a,h) Anthracene		ND	68		1		
2,6-Dimethylnaphthalene		ND	68		1		
Fluoranthene		ND	68		1		
Fluorene		ND	68		1		
Indeno (1,2,3-c,d) Pyrene		ND	68		1		
2-Methylnaphthalene		ND	68		1		
1-Methylnaphthalene		ND	68		1		
1-Methylphenanthrene		ND	68		1		
Naphthalene		ND	68		1		
Perylene		ND	68		1		
Phenanthrene		ND	68		1		
Pyrene		ND	68		1		
1,6,7-Trimethylnaphthalene		ND	68		1		
Dibenzothiophene		ND	68		1		
Surrogate		Rec. (%)	Col	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		111	14-	146			
Nitrobenzene-d5		103	18-	162			
p-Terphenyl-d14		128	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units:

ug/kg Page 7 of 32

08/13/13

Project: Berths 212-224 YTI Terminal

Nitrobenzene-d5

p-Terphenyl-d14

110,000. 2010 212 221 111 101							.go 1 01 02
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C	13-08-0936-7-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 18:09	130816L01
Comment(s): - Results are reported	on a dry weight basis.				•		
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		180	73		1		
Acenaphthylene		ND	73		1		
Anthracene		ND	73		1		
Benzo (a) Anthracene		95	73		1		
Benzo (a) Pyrene		240	73		1		
Benzo (b) Fluoranthene		340	73		1		
Benzo (e) Pyrene		230	73		1		
Benzo (g,h,i) Perylene		ND	73		1		
Benzo (k) Fluoranthene		250	73		1		
Biphenyl		ND	73		1		
Chrysene		150	73		1		
Dibenz (a,h) Anthracene		ND	73		1		
2,6-Dimethylnaphthalene		ND	73		1		
Fluoranthene		510	73		1		
Fluorene		ND	73		1		
Indeno (1,2,3-c,d) Pyrene		ND	73		1		
2-Methylnaphthalene		ND	73		1		
1-Methylnaphthalene		ND	73		1		
1-Methylphenanthrene		ND	73		1		
Naphthalene		ND	73		1		
Perylene		ND	73		1		
Phenanthrene		ND	73		1		
Pyrene		1500	73		1		
1,6,7-Trimethylnaphthalene		ND	73		1		
Dibenzothiophene		ND	73		1		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		102	14-	146			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

96

125

18-162

34-148

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg
Page 8 of 32

Project: Berths 212-224 YTI Terminal

2-Fluorobiphenyl

Nitrobenzene-d5

p-Terphenyl-d14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8C	13-08-0936-8-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 18:35	130816L01
Comment(s): - Results are reported	ed on a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	63		1		
Acenaphthylene		ND	63		1		
Anthracene		ND	63		1		
Benzo (a) Anthracene		ND	63		1		
Benzo (a) Pyrene		140	63		1		
Benzo (b) Fluoranthene		220	63		1		
Benzo (e) Pyrene		140	63		1		
Benzo (g,h,i) Perylene		ND	63		1		
Benzo (k) Fluoranthene		160	63		1		
Biphenyl		ND	63		1		
Chrysene		ND	63		1		
Dibenz (a,h) Anthracene		ND	63		1		
2,6-Dimethylnaphthalene		ND	63		1		
Fluoranthene		ND	63		1		
Fluorene		ND	63		1		
Indeno (1,2,3-c,d) Pyrene		ND	63		1		
2-Methylnaphthalene		ND	63		1		
1-Methylnaphthalene		ND	63		1		
1-Methylphenanthrene		ND	63		1		
Naphthalene		ND	63		1		
Perylene		ND	63		1		
Phenanthrene		ND	63		1		
Pyrene		95	63		1		
1,6,7-Trimethylnaphthalene		ND	63		1		
Dibenzothiophene		ND	63		1		
Surrogate		Rec. (%)	Con	trol Limits	Qualifiers		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

14-146 18-162

34-148

95

86

115

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units:

ug/kg

08/13/13

Project: Berths 212-224 YTI Terminal

Page 9 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C	13-08-0936-9-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 19:02	130816L01
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Acenaphthene		ND	65		1		
Acenaphthylene		ND	65		1		
Anthracene		ND	65		1		
Benzo (a) Anthracene		ND	65		1		
Benzo (a) Pyrene		ND	65		1		
Benzo (b) Fluoranthene		ND	65		1		
Benzo (e) Pyrene		ND	65		1		
Benzo (g,h,i) Perylene		ND	65		1		
Benzo (k) Fluoranthene		ND	65		1		
Biphenyl		ND	65		1		
Chrysene		ND	65		1		
Dibenz (a,h) Anthracene		ND	65		1		
2,6-Dimethylnaphthalene		ND	65		1		
Fluoranthene		ND	65		1		
Fluorene		ND	65		1		
Indeno (1,2,3-c,d) Pyrene		ND	65		1		
2-Methylnaphthalene		ND	65		1		
1-Methylnaphthalene		ND	65		1		
1-Methylphenanthrene		ND	65		1		
Naphthalene		ND	65		1		
Perylene		ND	65		1		
Phenanthrene		ND	65		1		
Pyrene		ND	65		1		
1,6,7-Trimethylnaphthalene		ND	65		1		
Dibenzothiophene		ND	65		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		103	14-	146			
Nitrobenzene-d5		119	18-	162			
p-Terphenyl-d14		115	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 10 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 19:28	130816L01
Comment(s): - Results are reported on a	dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>	1	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Acenaphthene		ND	69		1		
Acenaphthylene		ND	69		1		
Anthracene		ND	69		1		
Benzo (a) Anthracene		ND	69		1		
Benzo (a) Pyrene		ND	69		1		
Benzo (b) Fluoranthene		ND	69		1		
Benzo (e) Pyrene		ND	69		1		
Benzo (g,h,i) Perylene		ND	69		1		
Benzo (k) Fluoranthene		ND	69		1		
Biphenyl		ND	69		1		
Chrysene		ND	69		1		
Dibenz (a,h) Anthracene		ND	69		1		
2,6-Dimethylnaphthalene		ND	69		1		
Fluoranthene		ND	69		1		
Fluorene		ND	69		1		
Indeno (1,2,3-c,d) Pyrene		ND	69		1		
2-Methylnaphthalene		ND	69		1		
1-Methylnaphthalene		ND	69		1		
1-Methylphenanthrene		ND	69		1		
Naphthalene		ND	69		1		
Perylene		ND	69		1		
Phenanthrene		ND	69		1		
Pyrene		ND	69		1		
1,6,7-Trimethylnaphthalene		ND	69		1		
Dibenzothiophene		ND	69		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		106	14-	-146			
Nitrobenzene-d5		114	18-	-162			
p-Terphenyl-d14		120	34-	-148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 11 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11C	13-08-0936-11-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 19:54	130816L01
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	71		1		
Acenaphthylene		ND	71		1		
Anthracene		100	71		1		
Benzo (a) Anthracene		150	71		1		
Benzo (a) Pyrene		350	71		1		
Benzo (b) Fluoranthene		480	71		1		
Benzo (e) Pyrene		330	71		1		
Benzo (g,h,i) Perylene		ND	71		1		
Benzo (k) Fluoranthene		360	71		1		
Biphenyl		ND	71		1		
Chrysene		240	71		1		
Dibenz (a,h) Anthracene		ND	71		1		
2,6-Dimethylnaphthalene		ND	71		1		
Fluoranthene		830	71		1		
Fluorene		ND	71		1		
Indeno (1,2,3-c,d) Pyrene		ND	71		1		
2-Methylnaphthalene		ND	71		1		
1-Methylnaphthalene		ND	71		1		
1-Methylphenanthrene		ND	71		1		
Naphthalene		ND	71		1		
Perylene		94	71		1		
Phenanthrene		ND	71		1		
Pyrene		2200	71		1		
1,6,7-Trimethylnaphthalene		ND	71		1		
Dibenzothiophene		ND	71		1		
Surrogate		Rec. (%)	Con	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		122	14-1	146			
Nitrobenzene-d5		120	18-1	162			
p-Terphenyl-d14		143	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 12 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12C	13-08-0936-12-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 20:21	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	73		1		
Acenaphthylene		ND	73		1		
Anthracene		ND	73		1		
Benzo (a) Anthracene		ND	73		1		
Benzo (a) Pyrene		ND	73		1		
Benzo (b) Fluoranthene		ND	73		1		
Benzo (e) Pyrene		ND	73		1		
Benzo (g,h,i) Perylene		ND	73		1		
Benzo (k) Fluoranthene		ND	73		1		
Biphenyl		ND	73		1		
Chrysene		ND	73		1		
Dibenz (a,h) Anthracene		ND	73		1		
2,6-Dimethylnaphthalene		ND	73		1		
Fluoranthene		ND	73		1		
Fluorene		ND	73		1		
Indeno (1,2,3-c,d) Pyrene		ND	73		1		
2-Methylnaphthalene		ND	73		1		
1-Methylnaphthalene		ND	73		1		
1-Methylphenanthrene		ND	73		1		
Naphthalene		ND	73		1		
Perylene		ND	73		1		
Phenanthrene		ND	73		1		
Pyrene		ND	73		1		
1,6,7-Trimethylnaphthalene		ND	73		1		
Dibenzothiophene		ND	73		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		96	14-	146			
Nitrobenzene-d5		80	18-	162			
p-Terphenyl-d14		112	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 13 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C	13-08-0936-13-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 20:47	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Acenaphthene		ND	73		1		
Acenaphthylene		ND	73		1		
Anthracene		88	73		1		
Benzo (a) Anthracene		130	73		1		
Benzo (a) Pyrene		320	73		1		
Benzo (b) Fluoranthene		450	73		1		
Benzo (e) Pyrene		310	73		1		
Benzo (g,h,i) Perylene		ND	73		1		
Benzo (k) Fluoranthene		330	73		1		
Biphenyl		ND	73		1		
Chrysene		200	73		1		
Dibenz (a,h) Anthracene		ND	73		1		
2,6-Dimethylnaphthalene		ND	73		1		
Fluoranthene		790	73		1		
Fluorene		ND	73		1		
Indeno (1,2,3-c,d) Pyrene		ND	73		1		
2-Methylnaphthalene		ND	73		1		
1-Methylnaphthalene		ND	73		1		
1-Methylphenanthrene		ND	73		1		
Naphthalene		ND	73		1		
Perylene		90	73		1		
Phenanthrene		ND	73		1		
Pyrene		2200	73		1		
1,6,7-Trimethylnaphthalene		ND	73		1		
Dibenzothiophene		ND	73		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		117	14-	146			
Nitrobenzene-d5		112	18-	162			
p-Terphenyl-d14		136	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 14 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14C	13-08-0936-14-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 21:13	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Acenaphthene		ND	67		1		
Acenaphthylene		ND	67		1		
Anthracene		ND	67		1		
Benzo (a) Anthracene		93	67		1		
Benzo (a) Pyrene		240	67		1		
Benzo (b) Fluoranthene		340	67		1		
Benzo (e) Pyrene		230	67		1		
Benzo (g,h,i) Perylene		ND	67		1		
Benzo (k) Fluoranthene		250	67		1		
Biphenyl		ND	67		1		
Chrysene		150	67		1		
Dibenz (a,h) Anthracene		ND	67		1		
2,6-Dimethylnaphthalene		ND	67		1		
Fluoranthene		550	67		1		
Fluorene		ND	67		1		
Indeno (1,2,3-c,d) Pyrene		ND	67		1		
2-Methylnaphthalene		ND	67		1		
1-Methylnaphthalene		ND	67		1		
1-Methylphenanthrene		ND	67		1		
Naphthalene		ND	67		1		
Perylene		69	67		1		
Phenanthrene		ND	67		1		
Pyrene		1500	67		1		
1,6,7-Trimethylnaphthalene		ND	67		1		
Dibenzothiophene		ND	67		1		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		111	14-1	146			
Nitrobenzene-d5		109	18-1	162			
p-Terphenyl-d14		127	34-1	148			

RL: Reporting Limit. DF

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg Page 15 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C	13-08-0936-15-B	08/10/13 15:00	Tissue	GC/MS AAA	08/16/13	08/23/13 21:40	130816L01
Comment(s): - Results are reported or	n a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	71		1		
Acenaphthylene		ND	71		1		
Anthracene		ND	71		1		
Benzo (a) Anthracene		ND	71		1		
Benzo (a) Pyrene		150	71		1		
Benzo (b) Fluoranthene		230	71		1		
Benzo (e) Pyrene		150	71		1		
Benzo (g,h,i) Perylene		ND	71		1		
Benzo (k) Fluoranthene		180	71		1		
Biphenyl		ND	71		1		
Chrysene		ND	71		1		
Dibenz (a,h) Anthracene		ND	71		1		
2,6-Dimethylnaphthalene		ND	71		1		
Fluoranthene		ND	71		1		
Fluorene		ND	71		1		
Indeno (1,2,3-c,d) Pyrene		ND	71		1		
2-Methylnaphthalene		ND	71		1		
1-Methylnaphthalene		ND	71		1		
1-Methylphenanthrene		ND	71		1		
Naphthalene		ND	71		1		
Perylene		ND	71		1		
Phenanthrene		ND	71		1		
Pyrene		98	71		1		
1,6,7-Trimethylnaphthalene		ND	71		1		
Dibenzothiophene		ND	71		1		
Surrogate		Rec. (%)	Coi	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		102	14-	146			
Nitrobenzene-d5		89	18-	162			
p-Terphenyl-d14		119	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units:

ug/kg

Page 16 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1W	13-08-0936-16-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 22:06	130816L01
Comment(s): - Results are reported on a	a dry weight basis.						
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	62		1		
Acenaphthylene		ND	62		1		
Anthracene		ND	62		1		
Benzo (a) Anthracene		ND	62		1		
Benzo (a) Pyrene		ND	62		1		
Benzo (b) Fluoranthene		ND	62		1		
Benzo (e) Pyrene		ND	62		1		
Benzo (g,h,i) Perylene		ND	62		1		
Benzo (k) Fluoranthene		ND	62		1		
Biphenyl		ND	62		1		
Chrysene		ND	62		1		
Dibenz (a,h) Anthracene		ND	62		1		
2,6-Dimethylnaphthalene		ND	62		1		
Fluoranthene		ND	62		1		
Fluorene		ND	62		1		
Indeno (1,2,3-c,d) Pyrene		ND	62		1		
2-Methylnaphthalene		ND	62		1		
1-Methylnaphthalene		ND	62		1		
1-Methylphenanthrene		ND	62		1		
Naphthalene		ND	62		1		
Perylene		ND	62		1		
Phenanthrene		ND	62		1		
Pyrene		ND	62		1		
1,6,7-Trimethylnaphthalene		ND	62		1		
Dibenzothiophene		ND	62		1		
Surrogate		Rec. (%)	Cont	rol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		98	14-1	46			
Nitrobenzene-d5		81	18-1	62			
p-Terphenyl-d14		112	34-1	48			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg

Project: Berths 212-224 YTI Terminal

Page 17 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2W	13-08-0936-17-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 22:32	130816L01
Comment(s): - Results are reported or	n a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	58		1		
Acenaphthylene		ND	58		1		
Anthracene		ND	58		1		
Benzo (a) Anthracene		ND	58		1		
Benzo (a) Pyrene		ND	58		1		
Benzo (b) Fluoranthene		ND	58		1		
Benzo (e) Pyrene		ND	58		1		
Benzo (g,h,i) Perylene		ND	58		1		
Benzo (k) Fluoranthene		ND	58		1		
Biphenyl		ND	58		1		
Chrysene		ND	58		1		
Dibenz (a,h) Anthracene		ND	58		1		
2,6-Dimethylnaphthalene		ND	58		1		
Fluoranthene		ND	58		1		
Fluorene		ND	58		1		
Indeno (1,2,3-c,d) Pyrene		ND	58		1		
2-Methylnaphthalene		ND	58		1		
1-Methylnaphthalene		ND	58		1		
1-Methylphenanthrene		ND	58		1		
Naphthalene		ND	58		1		
Perylene		ND	58		1		
Phenanthrene		ND	58		1		
Pyrene		ND	58		1		
1,6,7-Trimethylnaphthalene		ND	58		1		
Dibenzothiophene		ND	58		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		70	18-	162			
p-Terphenyl-d14		105	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg
Page 18 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3W	13-08-0936-18-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 22:59	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	58		1		
Acenaphthylene		ND	58		1		
Anthracene		ND	58		1		
Benzo (a) Anthracene		ND	58		1		
Benzo (a) Pyrene		ND	58		1		
Benzo (b) Fluoranthene		ND	58		1		
Benzo (e) Pyrene		ND	58		1		
Benzo (g,h,i) Perylene		ND	58		1		
Benzo (k) Fluoranthene		ND	58		1		
Biphenyl		ND	58		1		
Chrysene		ND	58		1		
Dibenz (a,h) Anthracene		ND	58		1		
2,6-Dimethylnaphthalene		ND	58		1		
Fluoranthene		ND	58		1		
Fluorene		ND	58		1		
Indeno (1,2,3-c,d) Pyrene		ND	58		1		
2-Methylnaphthalene		ND	58		1		
1-Methylnaphthalene		ND	58		1		
1-Methylphenanthrene		ND	58		1		
Naphthalene		ND	58		1		
Perylene		ND	58		1		
Phenanthrene		ND	58		1		
Pyrene		ND	58		1		
1,6,7-Trimethylnaphthalene		ND	58		1		
Dibenzothiophene		ND	58		1		
Surrogate		Rec. (%)	Col	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		116	14-	146			
Nitrobenzene-d5		105	18-	162			
p-Terphenyl-d14		132	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 19 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W	13-08-0936-19-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 23:25	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	57		1		
Acenaphthylene		ND	57		1		
Anthracene		ND	57		1		
Benzo (a) Anthracene		ND	57		1		
Benzo (a) Pyrene		ND	57		1		
Benzo (b) Fluoranthene		ND	57		1		
Benzo (e) Pyrene		ND	57		1		
Benzo (g,h,i) Perylene		ND	57		1		
Benzo (k) Fluoranthene		ND	57		1		
Biphenyl		ND	57		1		
Chrysene		ND	57		1		
Dibenz (a,h) Anthracene		ND	57		1		
2,6-Dimethylnaphthalene		ND	57		1		
Fluoranthene		ND	57		1		
Fluorene		ND	57		1		
Indeno (1,2,3-c,d) Pyrene		ND	57		1		
2-Methylnaphthalene		ND	57		1		
1-Methylnaphthalene		ND	57		1		
1-Methylphenanthrene		ND	57		1		
Naphthalene		ND	57		1		
Perylene		ND	57		1		
Phenanthrene		ND	57		1		
Pyrene		ND	57		1		
1,6,7-Trimethylnaphthalene		ND	57		1		
Dibenzothiophene		ND	57		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		110	14-	146			
Nitrobenzene-d5		79	18-	162			
p-Terphenyl-d14		124	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 20 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5W	13-08-0936-20-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/23/13 23:51	130816L01
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	61		1		
Acenaphthylene		ND	61		1		
Anthracene		ND	61		1		
Benzo (a) Anthracene		ND	61		1		
Benzo (a) Pyrene		ND	61		1		
Benzo (b) Fluoranthene		ND	61		1		
Benzo (e) Pyrene		62	61		1		
Benzo (g,h,i) Perylene		ND	61		1		
Benzo (k) Fluoranthene		ND	61		1		
Biphenyl		ND	61		1		
Chrysene		ND	61		1		
Dibenz (a,h) Anthracene		ND	61		1		
2,6-Dimethylnaphthalene		ND	61		1		
Fluoranthene		230	61		1		
Fluorene		ND	61		1		
Indeno (1,2,3-c,d) Pyrene		ND	61		1		
2-Methylnaphthalene		ND	61		1		
1-Methylnaphthalene		ND	61		1		
1-Methylphenanthrene		ND	61		1		
Naphthalene		ND	61		1		
Perylene		ND	61		1		
Phenanthrene		ND	61		1		
Pyrene		470	61		1		
1,6,7-Trimethylnaphthalene		ND	61		1		
Dibenzothiophene		ND	61		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14-	146			
Nitrobenzene-d5		72	18-	162			
p-Terphenyl-d14		103	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg
Page 21 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6W	13-08-0936-21-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 00:18	130816L02
Comment(s): - Results are reported on a	dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		ND	65		1		
Acenaphthylene		ND	65		1		
Anthracene		ND	65		1		
Benzo (a) Anthracene		ND	65		1		
Benzo (a) Pyrene		ND	65		1		
Benzo (b) Fluoranthene		ND	65		1		
Benzo (e) Pyrene		ND	65		1		
Benzo (g,h,i) Perylene		ND	65		1		
Benzo (k) Fluoranthene		ND	65		1		
Biphenyl		ND	65		1		
Chrysene		ND	65		1		
Dibenz (a,h) Anthracene		ND	65		1		
2,6-Dimethylnaphthalene		ND	65		1		
Fluoranthene		ND	65		1		
Fluorene		ND	65		1		
Indeno (1,2,3-c,d) Pyrene		ND	65		1		
2-Methylnaphthalene		ND	65		1		
1-Methylnaphthalene		ND	65		1		
1-Methylphenanthrene		ND	65		1		
Naphthalene		ND	65		1		
Perylene		ND	65		1		
Phenanthrene		ND	65		1		
Pyrene		ND	65		1		
1,6,7-Trimethylnaphthalene		ND	65		1		
Dibenzothiophene		ND	65		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		104	14-	146			
Nitrobenzene-d5		76	18-	162			
p-Terphenyl-d14		117	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg Page 22 of 32

Project: Berths 212-224 YTI Terminal

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7W	13-08-0936-22-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 00:44	130816L02
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Acenaphthene		59	51		1		
Acenaphthylene		ND	51		1		
Anthracene		ND	51		1		
Benzo (a) Anthracene		ND	51		1		
Benzo (a) Pyrene		ND	51		1		
Benzo (b) Fluoranthene		ND	51		1		
Benzo (e) Pyrene		ND	51		1		
Benzo (g,h,i) Perylene		ND	51		1		
Benzo (k) Fluoranthene		ND	51		1		
Biphenyl		ND	51		1		
Chrysene		ND	51		1		
Dibenz (a,h) Anthracene		ND	51		1		
2,6-Dimethylnaphthalene		ND	51		1		
Fluoranthene		98	51		1		
Fluorene		ND	51		1		
Indeno (1,2,3-c,d) Pyrene		ND	51		1		
2-Methylnaphthalene		ND	51		1		
1-Methylnaphthalene		ND	51		1		
1-Methylphenanthrene		ND	51		1		
Naphthalene		ND	51		1		
Perylene		ND	51		1		
Phenanthrene		ND	51		1		
Pyrene		190	51		1		
1,6,7-Trimethylnaphthalene		ND	51		1		
Dibenzothiophene		ND	51		1		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		101	14-	146			
Nitrobenzene-d5		70	18-	162			
p-Terphenyl-d14		113	34-	148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 23 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
8W	13-08-0936-23-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 01:10	130816L02
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	58		1		
Acenaphthylene		ND	58		1		
Anthracene		ND	58		1		
Benzo (a) Anthracene		ND	58		1		
Benzo (a) Pyrene		ND	58		1		
Benzo (b) Fluoranthene		ND	58		1		
Benzo (e) Pyrene		ND	58		1		
Benzo (g,h,i) Perylene		ND	58		1		
Benzo (k) Fluoranthene		ND	58		1		
Biphenyl		ND	58		1		
Chrysene		ND	58		1		
Dibenz (a,h) Anthracene		ND	58		1		
2,6-Dimethylnaphthalene		ND	58		1		
Fluoranthene		ND	58		1		
Fluorene		ND	58		1		
Indeno (1,2,3-c,d) Pyrene		ND	58		1		
2-Methylnaphthalene		ND	58		1		
1-Methylnaphthalene		ND	58		1		
1-Methylphenanthrene		ND	58		1		
Naphthalene		65	58		1		
Perylene		ND	58		1		
Phenanthrene		ND	58		1		
Pyrene		ND	58		1		
1,6,7-Trimethylnaphthalene		ND	58		1		
Dibenzothiophene		ND	58		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		136	14-	146			
Nitrobenzene-d5		101	18-	162			
p-Terphenyl-d14		147	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units:

ug/kg

Page 24 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9W	13-08-0936-24-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 01:36	130816L02
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	RL		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Acenaphthene		ND	61		1		
Acenaphthylene		ND	61		1		
Anthracene		ND	61		1		
Benzo (a) Anthracene		ND	61		1		
Benzo (a) Pyrene		ND	61		1		
Benzo (b) Fluoranthene		ND	61		1		
Benzo (e) Pyrene		ND	61		1		
Benzo (g,h,i) Perylene		ND	61		1		
Benzo (k) Fluoranthene		ND	61		1		
Biphenyl		ND	61		1		
Chrysene		ND	61		1		
Dibenz (a,h) Anthracene		ND	61		1		
2,6-Dimethylnaphthalene		ND	61		1		
Fluoranthene		ND	61		1		
Fluorene		ND	61		1		
Indeno (1,2,3-c,d) Pyrene		ND	61		1		
2-Methylnaphthalene		ND	61		1		
1-Methylnaphthalene		ND	61		1		
1-Methylphenanthrene		ND	61		1		
Naphthalene		ND	61		1		
Perylene		ND	61		1		
Phenanthrene		ND	61		1		
Pyrene		ND	61		1		
1,6,7-Trimethylnaphthalene		ND	61		1		
Dibenzothiophene		ND	61		1		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		107	14-	-146			
Nitrobenzene-d5		78	18-	-162			
p-Terphenyl-d14		120	34-	-148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units: ug/kg

Project: Berths 212-224 YTI Terminal

Page 25 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W	13-08-0936-25-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 02:03	130816L02
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Acenaphthene		ND	65		1		
Acenaphthylene		ND	65		1		
Anthracene		ND	65		1		
Benzo (a) Anthracene		ND	65		1		
Benzo (a) Pyrene		ND	65		1		
Benzo (b) Fluoranthene		ND	65		1		
Benzo (e) Pyrene		ND	65		1		
Benzo (g,h,i) Perylene		ND	65		1		
Benzo (k) Fluoranthene		ND	65		1		
Biphenyl		ND	65		1		
Chrysene		ND	65		1		
Dibenz (a,h) Anthracene		ND	65		1		
2,6-Dimethylnaphthalene		ND	65		1		
Fluoranthene		ND	65		1		
Fluorene		ND	65		1		
Indeno (1,2,3-c,d) Pyrene		ND	65		1		
2-Methylnaphthalene		ND	65		1		
1-Methylnaphthalene		ND	65		1		
1-Methylphenanthrene		ND	65		1		
Naphthalene		ND	65		1		
Perylene		ND	65		1		
Phenanthrene		ND	65		1		
Pyrene		ND	65		1		
1,6,7-Trimethylnaphthalene		ND	65		1		
Dibenzothiophene		ND	65		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		126	14-	-146			
Nitrobenzene-d5		101	18-	-162			
p-Terphenyl-d14		141	34-	-148			

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

Units:

ug/kg Page 26 of 32

08/13/13

Project: Berths 212-224 YTI Terminal

OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11W	13-08-0936-26-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 02:29	130816L02
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
Acenaphthene		68	59		1		
Acenaphthylene		ND	59		1		
Anthracene		ND	59		1		
Benzo (a) Anthracene		ND	59		1		
Benzo (a) Pyrene		ND	59		1		
Benzo (b) Fluoranthene		80	59		1		
Benzo (e) Pyrene		89	59		1		
Benzo (g,h,i) Perylene		ND	59		1		
Benzo (k) Fluoranthene		69	59		1		
Biphenyl		ND	59		1		
Chrysene		86	59		1		
Dibenz (a,h) Anthracene		ND	59		1		
2,6-Dimethylnaphthalene		ND	59		1		
Fluoranthene		410	59		1		
Fluorene		ND	59		1		
Indeno (1,2,3-c,d) Pyrene		ND	59		1		
2-Methylnaphthalene		ND	59		1		
1-Methylnaphthalene		ND	59		1		
1-Methylphenanthrene		ND	59		1		
Naphthalene		ND	59		1		
Perylene		ND	59		1		
Phenanthrene		ND	59		1		
Pyrene		850	59		1		
1,6,7-Trimethylnaphthalene		ND	59		1		
Dibenzothiophene		ND	59		1		
Surrogate		Rec. (%)	<u>Cont</u>	rol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		113	14-14	46			
Nitrobenzene-d5		84	18-10	62			
p-Terphenyl-d14		122	34-14	48			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal

Page 27 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12W	13-08-0936-27-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 02:55	130816L02
Comment(s): - Results are reported on a	dry weight basis.						•
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Acenaphthene		ND	62		1		
Acenaphthylene		ND	62		1		
Anthracene		ND	62		1		
Benzo (a) Anthracene		ND	62		1		
Benzo (a) Pyrene		ND	62		1		
Benzo (b) Fluoranthene		ND	62		1		
Benzo (e) Pyrene		ND	62		1		
Benzo (g,h,i) Perylene		ND	62		1		
Benzo (k) Fluoranthene		ND	62		1		
Biphenyl		ND	62		1		
Chrysene		ND	62		1		
Dibenz (a,h) Anthracene		ND	62		1		
2,6-Dimethylnaphthalene		ND	62		1		
Fluoranthene		ND	62		1		
Fluorene		ND	62		1		
Indeno (1,2,3-c,d) Pyrene		ND	62		1		
2-Methylnaphthalene		ND	62		1		
1-Methylnaphthalene		ND	62		1		
1-Methylphenanthrene		ND	62		1		
Naphthalene		ND	62		1		
Perylene		ND	62		1		
Phenanthrene		ND	62		1		
Pyrene		ND	62		1		
1,6,7-Trimethylnaphthalene		ND	62		1		
Dibenzothiophene		ND	62		1		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		91	14-	-146			
Nitrobenzene-d5		77	18-	-162			
p-Terphenyl-d14		103	34-	-148			

RL: Reporting Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 28 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13W	13-08-0936-28-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 03:21	130816L02
Comment(s): - Results are reported on a	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Acenaphthene		ND	60		1		
Acenaphthylene		ND	60		1		
Anthracene		62	60		1		
Benzo (a) Anthracene		ND	60		1		
Benzo (a) Pyrene		ND	60		1		
Benzo (b) Fluoranthene		62	60		1		
Benzo (e) Pyrene		77	60		1		
Benzo (g,h,i) Perylene		ND	60		1		
Benzo (k) Fluoranthene		66	60		1		
Biphenyl		ND	60		1		
Chrysene		69	60		1		
Dibenz (a,h) Anthracene		ND	60		1		
2,6-Dimethylnaphthalene		60	60		1		
Fluoranthene		290	60		1		
Fluorene		ND	60		1		
Indeno (1,2,3-c,d) Pyrene		ND	60		1		
2-Methylnaphthalene		ND	60		1		
1-Methylnaphthalene		ND	60		1		
1-Methylphenanthrene		ND	60		1		
Naphthalene		ND	60		1		
Perylene		ND	60		1		
Phenanthrene		ND	60		1		
Pyrene		530	60		1		
1,6,7-Trimethylnaphthalene		ND	60		1		
Dibenzothiophene		ND	60		1		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		113	14-	146			
Nitrobenzene-d5		88	18-	162			
p-Terphenyl-d14		130	34-	148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Project: Berths 212-224 YTI Terminal

ug/kg Page 29 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14W	13-08-0936-29-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 03:48	130816L02
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Acenaphthene		ND	58		1		
Acenaphthylene		ND	58		1		
Anthracene		ND	58		1		
Benzo (a) Anthracene		ND	58		1		
Benzo (a) Pyrene		ND	58		1		
Benzo (b) Fluoranthene		ND	58		1		
Benzo (e) Pyrene		71	58		1		
Benzo (g,h,i) Perylene		ND	58		1		
Benzo (k) Fluoranthene		ND	58		1		
Biphenyl		ND	58		1		
Chrysene		64	58		1		
Dibenz (a,h) Anthracene		ND	58		1		
2,6-Dimethylnaphthalene		ND	58		1		
Fluoranthene		270	58		1		
Fluorene		ND	58		1		
Indeno (1,2,3-c,d) Pyrene		ND	58		1		
2-Methylnaphthalene		ND	58		1		
1-Methylnaphthalene		ND	58		1		
1-Methylphenanthrene		ND	58		1		
Naphthalene		ND	58		1		
Perylene		ND	58		1		
Phenanthrene		ND	58		1		
Pyrene		560	58		1		
1,6,7-Trimethylnaphthalene		ND	58		1		
Dibenzothiophene		ND	58		1		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		113	14-	-146			
Nitrobenzene-d5		102	18-	-162			
p-Terphenyl-d14		126	34-	-148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 30 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15W	13-08-0936-30-B	08/10/13 13:00	Tissue	GC/MS AAA	08/16/13	08/24/13 04:14	130816L02
Comment(s): - Results are reported on	a dry weight basis.						
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Acenaphthene		ND	59		1		
Acenaphthylene		ND	59		1		
Anthracene		ND	59		1		
Benzo (a) Anthracene		ND	59		1		
Benzo (a) Pyrene		ND	59		1		
Benzo (b) Fluoranthene		ND	59		1		
Benzo (e) Pyrene		ND	59		1		
Benzo (g,h,i) Perylene		ND	59		1		
Benzo (k) Fluoranthene		ND	59		1		
Biphenyl		ND	59		1		
Chrysene		ND	59		1		
Dibenz (a,h) Anthracene		ND	59		1		
2,6-Dimethylnaphthalene		ND	59		1		
Fluoranthene		ND	59		1		
Fluorene		ND	59		1		
Indeno (1,2,3-c,d) Pyrene		ND	59		1		
2-Methylnaphthalene		ND	59		1		
1-Methylnaphthalene		ND	59		1		
1-Methylphenanthrene		ND	59		1		
Naphthalene		ND	59		1		
Perylene		ND	59		1		
Phenanthrene		ND	59		1		
Pyrene		ND	59		1		
1,6,7-Trimethylnaphthalene		ND	59		1		
Dibenzothiophene		ND	59		1		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
2-Fluorobiphenyl		103	14-	-146			
Nitrobenzene-d5		89	18-	-162			
p-Terphenyl-d14		117	34-	-148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Benzo (e) Pyrene

Benzo (g,h,i) Perylene

Benzo (k) Fluoranthene

Date Received: Work Order: Preparation: Method:

10

10

10

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs

ug/kg

Units: ug
Page 31 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-943-5	N/A	Soil	GC/MS AAA	08/16/13	08/23/13 11:15	130816L01
Parameter	·	Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	lifiers
Acenaphthene		ND	10)	1		
Acenaphthylene		ND	10)	1		
Anthracene		ND	10)	1		
Benzo (a) Anthracene		ND	10)	1		
Benzo (a) Pyrene		ND	10)	1		
Benzo (b) Fluoranthene		ND	10)	1		

ND

ND

ND

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PAHs ug/kg

Project: Berths 212-224 YTI Terminal

Page 32 of 32

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-943-6	N/A	Soil	GC/MS AAA	08/16/13	08/23/13 16:05	130816L02
Parameter		Result	RL	=	<u>DF</u>	Qua	alifiers
Acenaphthene		ND	10		1		
Acenaphthylene		ND	10		1		
Anthracene		ND	10		1		
Benzo (a) Anthracene		ND	10		1		
Benzo (a) Pyrene		ND	10		1		
Benzo (b) Fluoranthene		ND	10		1		
Benzo (e) Pyrene		ND	10		1		
Benzo (g,h,i) Perylene		ND	10		1		
Benzo (k) Fluoranthene		ND	10		1		
Biphenyl		ND	10		1		
Chrysene		ND	10		1		
Dibenz (a,h) Anthracene		ND	10		1		
2,6-Dimethylnaphthalene		ND	10		1		
Fluoranthene		ND	10		1		
Fluorene		ND	10		1		
Indeno (1,2,3-c,d) Pyrene		ND	10		1		
2-Methylnaphthalene		ND	10		1		
1-Methylnaphthalene		ND	10		1		
1-Methylphenanthrene		ND	10		1		
Naphthalene		ND	10		1		
Perylene		ND	10		1		
Phenanthrene		ND	10		1		
Pyrene		ND	10		1		
1,6,7-Trimethylnaphthalene		ND	10		1		
Dibenzothiophene		ND	10		1		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
2-Fluorobiphenyl		94	14	-146			
Nitrobenzene-d5		84	18	-162			
p-Terphenyl-d14		106	34	-148			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 1 of 64

Project: Berths 212-224 YTI Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
1C		13-08-0936-1-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 14:18	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	3.5		1		
PCB008			ND	3.5		1		
PCB018			ND	3.5		1		
PCB028			3.6	3.5		1		
PCB031			ND	3.5		1		
PCB033			ND	3.5		1		
PCB037			ND	3.5		1		
PCB044			ND	3.5		1		
PCB049			7.5	3.5		1		
PCB052			5.6	3.5		1		
PCB056			ND	3.5		1		
PCB060			ND	3.5		1		
PCB066			5.7	3.5		1		
PCB070			5.3	3.5		1		
PCB074			ND	3.5		1		
PCB077			ND	3.5		1		
PCB081			ND	3.5		1		
PCB087			3.9	3.5		1		
PCB095			8.4	3.5		1		
PCB097			5.1	3.5		1		
PCB099			5.9	3.5		1		
PCB101			12	3.5		1		
PCB105			4.1	3.5		1		
PCB110			12	3.5		1		
PCB114			ND	3.5		1		
PCB118			11	3.5		1		
PCB119			ND	3.5		1		
PCB123			ND	3.5		1		
PCB126			ND	3.5		1		
PCB128			4.0	3.5		1		
PCB132			ND	3.5		1		
PCB138/158			14	7.0		1		
PCB141			ND	3.5		1		
PCB149			10	3.5		1		
. 02.70			. •	3.0		•		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

<u>RL</u>

3.5

3.5

3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

08/13/13 13-08-0936 **EPA 3540C** EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 2 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
PCB151
PCB153
PCB156
PCB157

<u>Parameter</u>		
PCB151		
PCB153		
PCB156		
PCB157		
PCB167		
PCB168		
PCB169		
PCB170		
PCB174		
PCB177		
PCB180		
PCB183		
PCB184		
PCB187		
PCB189		
PCB194		
PCB195		
PCB200		
PCB201		
PCB203		
PCB206		
PCB209		

1 00203		
PCB206		
PCB209		
<u>Surrogate</u>		
2-Fluorobiphenyl		
p-Terphenyl-d14		

Result
4.8
17
ND
4.8
ND

ND ND ND ND

Rec. (%)

100 117

3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
3.5	
Control L	imit

14-146

34-148

•	1
•	1
•	1
•	1
•	1
•	1
•	1
9	<u>Qualifiers</u>

<u>DF</u>

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 3 of 64

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2C		13-08-0936-2-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 14:48	130816F03
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	3.5		1		
PCB008			ND	3.5		1		
PCB018			ND	3.5		1		
PCB028			ND	3.5		1		
PCB031			ND	3.5		1		
PCB033			ND	3.5		1		
PCB037			ND	3.5		1		
PCB044			ND	3.5		1		
PCB049			6.0	3.5		1		
PCB052			4.4	3.5		1		
PCB056			ND	3.5		1		
PCB060			ND	3.5		1		
PCB066			4.3	3.5		1		
PCB070			4.1	3.5		1		
PCB074			ND	3.5		1		
PCB077			ND	3.5		1		
PCB081			ND	3.5		1		
PCB087			ND	3.5		1		
PCB095			6.8	3.5		1		
PCB097			4.2	3.5		1		
PCB099			4.8	3.5		1		
PCB101			9.8	3.5		1		
PCB105			3.9	3.5		1		
PCB110			10	3.5		1		
PCB114			ND	3.5		1		
PCB118			8.7	3.5		1		
PCB119			ND	3.5		1		
PCB123			ND	3.5		1		
PCB126			ND	3.5		1		
PCB128			ND	3.5		1		
PCB132			ND	3.5		1		
PCB138/158			10	7.0		1		
PCB141			ND	3.5		1		
PCB149			8.1	3.5		1		

RL: Reporting Limit.

DF: Dilution Factor.

08/13/13

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 4 of 64

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB151	3.7	3.5	1	
PCB153	13	3.5	1	
PCB156	ND	3.5	1	
PCB157	ND	3.5	1	
PCB167	ND	3.5	1	
PCB168	ND	3.5	1	
PCB169	ND	3.5	1	
PCB170	ND	3.5	1	
PCB174	ND	3.5	1	
PCB177	ND	3.5	1	
PCB180	3.9	3.5	1	
PCB183	ND	3.5	1	
PCB184	ND	3.5	1	
PCB187	ND	3.5	1	
PCB189	ND	3.5	1	
PCB194	ND	3.5	1	
PCB195	ND	3.5	1	
PCB200	ND	3.5	1	
PCB201	ND	3.5	1	
PCB203	ND	3.5	1	
PCB206	ND	3.5	1	
PCB209	ND	3.5	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	77	14-146		
p-Terphenyl-d14	98	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C EPA 8270C SIM PCB Congeners

Method:

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 5 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3C		13-08-0936-3-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 15:18	130816F03
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	3.5		1		
PCB008			ND	3.5		1		
PCB018			ND	3.5		1		
PCB028			ND	3.5		1		
PCB031			ND	3.5		1		
PCB033			ND	3.5		1		
PCB037			ND	3.5		1		
PCB044			ND	3.5		1		
PCB049			4.5	3.5		1		
PCB052			3.7	3.5		1		
PCB056			ND	3.5		1		
PCB060			ND	3.5		1		
PCB066			4.1	3.5		1		
PCB070			3.7	3.5		1		
PCB074			ND	3.5		1		
PCB077			ND	3.5		1		
PCB081			ND	3.5		1		
PCB087			ND	3.5		1		
PCB095			5.7	3.5		1		
PCB097			ND	3.5		1		
PCB099			3.6	3.5		1		
PCB101			8.0	3.5		1		
PCB105			ND	3.5		1		
PCB110			8.1	3.5		1		
PCB114			ND	3.5		1		
PCB118			7.4	3.5		1		
PCB119			ND	3.5		1		
PCB123			ND	3.5		1		
PCB126			ND	3.5		1		
PCB128			3.6	3.5		1		
PCB132			ND	3.5		1		
PCB138/158			9.8	7.1		1		
PCB141			ND	3.5		1		
PCB149			7.1	3.5		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg Page 6 of 64

Project: Berths 212-224 YTI Terminal

				1 3.9 5 5 7 5 1
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	3.8	3.5	1	
PCB153	11	3.5	1	
PCB156	ND	3.5	1	
PCB157	ND	3.5	1	
PCB167	ND	3.5	1	
PCB168	ND	3.5	1	
PCB169	ND	3.5	1	
PCB170	ND	3.5	1	
PCB174	ND	3.5	1	
PCB177	ND	3.5	1	
PCB180	3.8	3.5	1	
PCB183	ND	3.5	1	
PCB184	ND	3.5	1	
PCB187	ND	3.5	1	
PCB189	ND	3.5	1	
PCB194	ND	3.5	1	
PCB195	ND	3.5	1	
PCB200	ND	3.5	1	
PCB201	ND	3.5	1	
PCB203	ND	3.5	1	
PCB206	ND	3.5	1	
PCB209	ND	3.5	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	77	14-146		
p-Terphenyl-d14	103	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13

Preparation:

13-08-0936 **EPA 3540C**

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 7 of 64

Project: Berths 212-224 YTI Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4C		13-08-0936-4-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 15:48	130816F03
Comment(s):	- Results are reported	on a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	3.9		1		
PCB008			ND	3.9		1		
PCB018			ND	3.9		1		
PCB028			ND	3.9		1		
PCB031			ND	3.9		1		
PCB033			ND	3.9		1		
PCB037			ND	3.9		1		
PCB044			ND	3.9		1		
PCB049			ND	3.9		1		
PCB052			ND	3.9		1		
PCB056			ND	3.9		1		
PCB060			ND	3.9		1		
PCB066			ND	3.9		1		
PCB070			ND	3.9		1		
PCB074			ND	3.9		1		
PCB077			ND	3.9		1		
PCB081			ND	3.9		1		
PCB087			ND	3.9		1		
PCB095			ND	3.9		1		
PCB097			ND	3.9		1		
PCB099			ND	3.9		1		
PCB101			ND	3.9		1		
PCB105			ND	3.9		1		
PCB110			ND	3.9		1		
PCB114			ND	3.9		1		
PCB118			ND	3.9		1		
PCB119			ND	3.9		1		
PCB123			ND	3.9		1		
PCB126			ND	3.9		1		
PCB128			ND	3.9		1		
PCB132			ND	3.9		1		
PCB138/158			ND	7.8		1		
PCB141			ND	3.9		1		
PCB149			ND	3.9		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C A 8270C SIM PCB Congeners

Method: Units: EPA 8270C SIM PCB Congeners

Page 8 of 64

Project: Berths 212-224 YTI Terminal

Result	RL	<u>DF</u>	Qualifiers
ND	3.9	1	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
84	14-146		
111	34-148		
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 3.9 ND 3.9 <td< td=""><td>ND 3.9 1 ND 3.9 1</td></td<>	ND 3.9 1 ND 3.9 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 9 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5C		13-08-0936-5-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 16:17	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	RL	=	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
PCB003			ND	3.6	6	1		
PCB008			ND	3.6	6	1		
PCB018			ND	3.6	6	1		
PCB028			ND	3.6	6	1		
PCB031			ND	3.6	6	1		
PCB033			ND	3.6	6	1		
PCB037			ND	3.6	5	1		
PCB044			ND	3.6	5	1		
PCB049			6.4	3.6	5	1		
PCB052			5.5	3.6	3	1		
PCB056			ND	3.6	3	1		
PCB060			ND	3.6	3	1		
PCB066			4.6	3.6	6	1		
PCB070			4.8	3.6	6	1		
PCB074			ND	3.6	6	1		
PCB077			ND	3.6	6	1		
PCB081			ND	3.6	3	1		
PCB087			ND	3.6	6	1		
PCB095			5.5	3.6	3	1		
PCB097			ND	3.6	3	1		
PCB099			ND	3.6	3	1		
PCB101			6.8	3.6	6	1		
PCB105			ND	3.6	6	1		
PCB110			7.2	3.6		1		
PCB114			ND	3.6		1		
PCB118			5.5	3.6		1		
PCB119			ND	3.6		1		
PCB123			ND	3.6		1		
PCB126			ND	3.6		1		
PCB128			ND	3.6		1		
PCB132			ND	3.6		1		
PCB138/158			ND	7.2		1		
PCB141			ND	3.6		1		
PCB149			3.7	3.6		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

Units:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Project: Berths 212-224 YTI Terminal

Page 10 of 64

ug/kg

			<u> </u>
<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
ND	3.6	1	
6.5	3.6	1	
ND	3.6	1	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
77	14-146		
99	34-148		
	ND 6.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 3.6 6.5 3.6 ND 3.6 <t< td=""><td>ND 3.6 1 6.5 3.6 1 ND 3.6 1</td></t<>	ND 3.6 1 6.5 3.6 1 ND 3.6 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 11 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6C		13-08-0936-6-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 16:47	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB003			ND	3.4		1		
PCB008			ND	3.4		1		
PCB018			ND	3.4		1		
PCB028			ND	3.4		1		
PCB031			ND	3.4		1		
PCB033			ND	3.4		1		
PCB037			ND	3.4		1		
PCB044			ND	3.4		1		
PCB049			ND	3.4		1		
PCB052			ND	3.4		1		
PCB056			ND	3.4		1		
PCB060			ND	3.4		1		
PCB066			ND	3.4		1		
PCB070			ND	3.4		1		
PCB074			ND	3.4		1		
PCB077			ND	3.4		1		
PCB081			ND	3.4		1		
PCB087			ND	3.4		1		
PCB095			ND	3.4		1		
PCB097			ND	3.4		1		
PCB099			ND	3.4		1		
PCB101			ND	3.4		1		
PCB105			ND	3.4		1		
PCB110			ND	3.4		1		
PCB114			ND	3.4		1		
PCB118			ND	3.4		1		
PCB119			ND	3.4		1		
PCB123			ND	3.4		1		
PCB126			ND	3.4		1		
PCB128			ND	3.4		1		
PCB132			ND	3.4		1		
PCB138/158			ND	6.8		1		
PCB141			ND	3.4		1		
PCB149			ND	3.4		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners ug/kg

Units:

Page 12 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.4	1	
PCB153	ND	3.4	1	
PCB156	ND	3.4	1	
PCB157	ND	3.4	1	
PCB167	ND	3.4	1	
PCB168	ND	3.4	1	
PCB169	ND	3.4	1	
PCB170	ND	3.4	1	
PCB174	ND	3.4	1	
PCB177	ND	3.4	1	
PCB180	ND	3.4	1	
PCB183	ND	3.4	1	
PCB184	ND	3.4	1	
PCB187	ND	3.4	1	
PCB189	ND	3.4	1	
PCB194	ND	3.4	1	
PCB195	ND	3.4	1	
PCB200	ND	3.4	1	
PCB201	ND	3.4	1	
PCB203	ND	3.4	1	
PCB206	ND	3.4	1	
PCB209	ND	3.4	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	69	14-146		
p-Terphenyl-d14	92	34-148		

Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

0111101

Page 13 of 64

Project: Berths 212-224 YTI Terminal

Project: Berl	ths 212-224 YTI Te	rminal					Page 13 of 64	
Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7C		13-08-0936-7-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 17:18	130816F03
Comment(s):	- Results are reported	d on a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
PCB003			ND	3.6		1		
PCB008			ND	3.6		1		
PCB018			ND	3.6		1		
PCB028			4.0	3.6		1		
PCB031			ND	3.6		1		
PCB033			ND	3.6		1		
PCB037			ND	3.6		1		
PCB044			ND	3.6		1		
PCB049			7.5	3.6		1		
PCB052			4.9	3.6		1		
PCB056			ND	3.6		1		
PCB060			ND	3.6		1		
PCB066			4.6	3.6		1		
PCB070			5.2	3.6		1		
PCB074			ND	3.6		1		
PCB077			ND	3.6		1		
PCB081			ND	3.6		1		
PCB087			ND	3.6		1		
PCB095			4.7	3.6		1		
PCB097			ND	3.6		1		
PCB099			ND	3.6		1		
PCB101			7.4	3.6		1		
PCB105			4.2	3.6		1		
PCB110			7.6	3.6		1		
PCB114			ND	3.6		1		
PCB118			6.7	3.6		1		
PCB119			ND	3.6		1		
PCB123			ND	3.6		1		
PCB126			ND	3.6		1		
PCB128			ND	3.6		1		
PCB132			ND	3.6		1		
				_				

RL: Reporting Limit.

PCB138/158

PCB141

PCB149

DF: Dilution Factor.

MDL: Method Detection Limit.

7.3

3.6

3.6

ND

ND

4.2

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

Page 14 of 64

1 Toject: Bertilo 2 12 22+ 1 11 Tellillilai				1 age 14 01 04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.6	1	
PCB153	6.9	3.6	1	
PCB156	ND	3.6	1	
PCB157	ND	3.6	1	
PCB167	ND	3.6	1	
PCB168	ND	3.6	1	
PCB169	ND	3.6	1	
PCB170	ND	3.6	1	
PCB174	ND	3.6	1	
PCB177	ND	3.6	1	
PCB180	ND	3.6	1	
PCB183	ND	3.6	1	
PCB184	ND	3.6	1	
PCB187	ND	3.6	1	
PCB189	ND	3.6	1	
PCB194	ND	3.6	1	
PCB195	ND	3.6	1	
PCB200	ND	3.6	1	
PCB201	ND	3.6	1	
PCB203	ND	3.6	1	
PCB206	ND	3.6	1	
PCB209	ND	3.6	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	78	14-146		
p-Terphenyl-d14	114	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Ullits.

Page 15 of 64

Project: Berths 212-224 YTI Terminal

Time OC Batch ID

15:00 17:48	Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL DF Qualifiers PCB003 ND 3.1 1 PCB018 ND 3.1 1 PCB018 ND 3.1 1 PCB028 ND 3.1 1 PCB031 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 5.2 3.1 1 PCB052 4.0 3.1 1 PCB066 ND 3.1 1 PCB067 ND 3.1 1 PCB070 3.4 3.1 1 PCB077 ND 3.1 1 PCB087 ND 3.1 1 PCB0897 ND 3.1 1 PCB098 4.2 3.1 1 PCB109 4.2 3.1 1 PCB109 9	8C		13-08-0936-8-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 17:48	130816F03
PCB003 PCB008 ND 3.1 1 PCB008 ND 3.1 1 PCB028 ND 3.1 1 PCB028 ND 3.1 1 PCB031 ND 3.1 1 PCB031 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 S.2 3.1 1 PCB052 4.0 3.1 1 PCB056 ND 3.1 1 PCB0666 ND 3.1 1 PCB0666 ND 3.1 1 PCB067 ND 3.1 1 PCB070 RCB070 R	Comment(s):	- Results are reporte	ed on a dry weight basis.						
PCB008 PCB018 ND 3.1 1 PCB028 ND 3.1 1 PCB028 ND 3.1 1 PCB033 ND 3.1 1 PCB033 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 S.2 3.1 1 PCB0562 4.0 3.1 1 PCB0660 ND 3.1 1 PCB0666 ND 3.1 1 PCB0666 ND 3.1 1 PCB0666 ND 3.1 1 PCB0677 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB078 ND 3.1 1 PCB099 3.4 3.1 1 PCB097 ND 3.1 1 PCB0961 ND 3.1 1 PCB097 PCB096 5.0 3.1 1 PCB097 PCB096 5.0 3.1 1 PCB097 PCB097 ND 3.1 1 PCB097 PCB098 5.0 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0999 4.2 3.1 1 PCB0106 ND 3.1 1 PCB0110 9.5 3.1 1 PCB114 ND 3.1 1 PCB119 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB138 PCB139 ND 3.1 1 PCB1301 ND 3.1	<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB018 PCB028 ND 3.1 1 PCB031 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 5.2 3.1 1 1 PCB0662 4.0 3.1 1 PCB0666 ND 3.1 1 PCB0666 ND 3.1 1 PCB067 ND 3.1 1 PCB070 3.4 3.1 1 PCB070 ND 3.1 1 PCB071 ND 3.1 1 PCB071 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB0881 ND 3.1 1 PCB081 PCB099 4.2 3.1 1 1 PCB081 PCB099 4.2 3.1 1 1 PCB091 PCB091 1 1 1 1 PCB091 1 1 1 1 PCB091 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PCB003			ND	3.1		1		
PCB028 ND ND 3.1 1 PCB033 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 5.2 3.1 1 PCB056 ND 3.1 1 PCB066 ND 3.1 1 PCB066 ND 3.1 1 PCB0660 ND 3.1 1 PCB067 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB078 ND 3.1 1 PCB079 ND 3.1 1 PCB079 ND 3.1 1 PCB079 ND 3.1 1 PCB097 ND 3.1 1 PCB098 PCB099 4.2 3.3 3.1 1 PCB097 9.2 3.1 1 PCB097 PCB101 9.2 3.1 1 PCB101 9.2 3.1 1 PCB101 9.2 3.1 1 PCB118 PCB119 ND 3.1 1 PCB119 ND 3.1 1 PCB119 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB139/158 8.7 6.3 1 PCB130/158 8.7 6.3 1 PCB1315 PCB1315 RT RT RT RT RT RT RT RT RT R	PCB008			ND	3.1		1		
PCB031 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 5.2 3.1 1 PCB0562 4.0 3.1 1 PCB0666 ND 3.1 1 PCB0666 ND 3.1 1 PCB070 3.4 3.1 1 PCB070 3.4 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB081 ND 3.1 1 PCB081 PCB099 4.2 3.1 1 PCB099 4.2 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB101 9.2 3.1 1 PCB101 PCB101 9.2 3.1 1 PCB118 PCB118 PCB118 PCB18 PCB18 PCB19 ND 3.1 1 PCB119 ND 3.1 1 PCB118 PCB118 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB138/FS 8.7 6.3 1 PCB138/FS 8.7 6.3 1 1 PCB138/FS 8.7 6.3 1 PCB138/FS 8.7 6.3 1 PCB138/FS 8.7 6.3 1 PCB138/FS 8.7 6.3 1 PCB138/FS 8.7 6.3 1 PCB144 PCB144 PCB144 PCB144 PCB144 PCB145 PCB145 PCB145 PCB145 PCB146 PCB147 PCB147 PCB148	PCB018			ND	3.1		1		
PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 5.2 3.1 1 PCB052 4.0 3.1 1 PCB056 ND 3.1 1 PCB0606 ND 3.1 1 PCB070 3.4 3.1 1 PCB074 ND 3.1 1 PCB075 ND 3.1 1 PCB076 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB095 5.0 3.1 1 PCB0969 4.2 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1	PCB028			ND	3.1		1		
PCB037 PCB044 PCB049 PCB049 PCB049 PCB056 PCB056 ND 3.1 1 PCB056 ND 3.1 1 PCB056 ND 3.1 1 PCB0606 ND 3.1 1 PCB070 ND 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB089 PCB087 ND 3.1 1 PCB0986 PCB099 4.2 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB101 9.5 3.1 1 PCB101 PCB101 9.5 3.1 1 PCB110 PCB101 PCB102 PCB103 PCB103 PCB104 PCB105 PCB105 PCB106 PCB107 PCB108	PCB031			ND	3.1		1		
PCB044 PCB049 5.2 3.1 1 PCB052 4.0 3.1 1 PCB056 ND 3.1 1 PCB0600 ND 3.1 1 PCB066 ND 3.1 1 PCB066 PCB066 4.0 3.1 1 1 PCB070 3.4 3.1 1 PCB077 ND 3.1 1 PCB077 ND 3.1 1 PCB087 ND 3.1 1 PCB087 ND 3.1 1 PCB0887 ND 3.1 1 PCB087 ND 3.1 1 PCB0887 ND 3.1 1 PCB0899 4.2 3.1 1 PCB095 9.2 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB106 ND 3.1 1 PCB101 9.2 3.1 1 PCB106 PCB099 1.2 3.1 1 PCB106 PCB099 1.2 3.1 1 PCB110 9.5 3.1 1 1 PCB110 9.0 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	PCB033			ND	3.1		1		
PCB049 5.2 3.1 1 PCB052 4.0 3.1 1 PCB056 ND 3.1 1 PCB0600 ND 3.1 1 PCB070 3.4 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB082 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB0989 4.2 3.1 1 PCB1010 9.2 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB129 ND 3.1 1 PCB138/15	PCB037			ND	3.1		1		
PCB052 4.0 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB0766 4.0 3.1 1 PCB070 3.4 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB0985 5.0 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB129 ND 3.1 1 PCB128 <td>PCB044</td> <td></td> <td></td> <td>ND</td> <td>3.1</td> <td></td> <td>1</td> <td></td> <td></td>	PCB044			ND	3.1		1		
PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB066 4.0 3.1 1 PCB070 3.4 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB129 ND 3.1 1 PCB120 ND 3.1 1 PCB132	PCB049			5.2	3.1		1		
PCB060 PCB070 RCB070 RCB070 RCB071 RCB070 RCB077 RCB077 RCB071 RC	PCB052			4.0	3.1		1		
PCB066 4.0 3.1 1 PCB070 3.4 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB082 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB098 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB120 ND 3.1 1 PCB121 ND 3.1 1 PCB122 ND 3.1 1 PCB132 ND 3.1 1 PCB134 ND 3.1 1 PCB135/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB056			ND	3.1		1		
PCB070 3.4 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB139 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB060			ND	3.1		1		
PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB128 ND 3.1 1 PCB138 8.7 6.3 1 PCB141 ND 3.1 1	PCB066			4.0	3.1		1		
PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB138 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB070			3.4	3.1		1		
PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB074			ND	3.1		1		
PCB087 ND 3.1 1 PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB077			ND	3.1		1		
PCB095 5.0 3.1 1 PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB081			ND	3.1		1		
PCB097 3.3 3.1 1 PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB087			ND	3.1		1		
PCB099 4.2 3.1 1 PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB095			5.0	3.1		1		
PCB101 9.2 3.1 1 PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB097			3.3	3.1		1		
PCB105 ND 3.1 1 PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB099			4.2	3.1		1		
PCB110 9.5 3.1 1 PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB101			9.2	3.1		1		
PCB114 ND 3.1 1 PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB105			ND	3.1		1		
PCB118 7.6 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB110			9.5	3.1		1		
PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB114			ND	3.1		1		
PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB118			7.6	3.1		1		
PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB119						1		
PCB126 ND 3.1 1 PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB123								
PCB128 ND 3.1 1 PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB126						1		
PCB132 ND 3.1 1 PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB128								
PCB138/158 8.7 6.3 1 PCB141 ND 3.1 1	PCB132						1		
PCB141 ND 3.1 1									
	PCB149			6.3	3.1		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

<u>RL</u>

3.1

3.1

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Qualifiers

Units: ug/kg
Page 16 of 64

<u>DF</u>

1

1

1

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB151 PCB153 PCB156 PCB157 **PCB167** PCB168 PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206

PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

Result 3.4 11 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

ND

ND

74

109

Rec. (%)

3.1 **Control Limits**

14-146

34-148

Qualifiers

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 17 of 64

Project: Berths 212-224 YTI Terminal

Project: Ber	ths 212-224 YTI Ter	minal					Page 17 of 64	
Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9C		13-08-0936-9-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 18:17	130816F03
Comment(s):	- Results are reported	on a dry weight basis.	•	•		•		
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
PCB003			ND	3.2		1		
PCB008			ND	3.2		1		
PCB018			ND	3.2		1		
PCB028			ND	3.2		1		
PCB031			ND	3.2		1		
PCB033			ND	3.2		1		
PCB037			ND	3.2		1		
PCB044			ND	3.2		1		
PCB049			ND	3.2		1		
PCB052			ND	3.2		1		
PCB056			ND	3.2		1		
PCB060			ND	3.2		1		
PCB066			ND	3.2		1		
PCB070			ND	3.2		1		
PCB074			ND	3.2		1		
PCB077			ND	3.2		1		
PCB081			ND	3.2		1		
PCB087			ND	3.2		1		
PCB095			ND	3.2		1		
PCB097			ND	3.2		1		
PCB099			ND	3.2		1		
PCB101			ND	3.2		1		
PCB105			ND	3.2		1		
PCB110			ND	3.2		1		
PCB114			ND	3.2		1		
PCB118			ND	3.2		1		
PCB119			ND	3.2		1		
PCB123			ND	3.2		1		
PCB126			ND	3.2		1		
PCB128			ND	3.2		1		

RL: Reporting Limit.

PCB132

PCB141

PCB149

PCB138/158

DF: Dilution Factor.

MDL: Method Detection Limit.

3.2

6.5

3.2

3.2

1

1

ND

ND

ND

ND

08/13/13

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg Page 18 of 64

Qualifiers

Project: Berths 212-224 YTI Termin	al
------------------------------------	----

•
Parameter
PCB151
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209
Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

	Un
Result	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	

ND

79

105

Rec. (%)

<u>RL</u>
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
Control Limits
14-146

34-148

1
1
1
1
1
1
1
1
1
1
1
1
1
1
<u>Qualifiers</u>

<u>DF</u>

1 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13

Preparation:

13-08-0936 EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 19 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10C	13-08-0936-10-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 18:48	130816F03
Comment(s): - Results are repo	orted on a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
PCB003		ND	3.4		1		
PCB008		ND	3.4		1		
PCB018		ND	3.4		1		
PCB028		ND	3.4		1		
PCB031		ND	3.4		1		
PCB033		ND	3.4		1		
PCB037		ND	3.4		1		
PCB044		ND	3.4		1		
PCB049		ND	3.4		1		
PCB052		ND	3.4		1		
PCB056		ND	3.4		1		
PCB060		ND	3.4		1		
PCB066		ND	3.4		1		
PCB070		ND	3.4		1		
PCB074		ND	3.4		1		
PCB077		ND	3.4		1		
PCB081		ND	3.4		1		
PCB087		ND	3.4		1		
PCB095		ND	3.4		1		
PCB097		ND	3.4		1		
PCB099		ND	3.4		1		
PCB101		ND	3.4		1		
PCB105		ND	3.4		1		
PCB110		ND	3.4		1		
PCB114		ND	3.4		1		
PCB118		ND	3.4		1		
PCB119		ND	3.4		1		
PCB123		ND	3.4		1		
PCB126		ND	3.4		1		
PCB128		ND	3.4		1		
PCB132		ND	3.4		1		
PCB138/158		ND	6.9		1		
PCB141		ND	3.4		1		
PCB149		ND	3.4		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 20 of 64

Project: Berths 212-224 YTI Terminal

Page 20

<u> </u>				
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.4	1	
PCB153	ND	3.4	1	
PCB156	ND	3.4	1	
PCB157	ND	3.4	1	
PCB167	ND	3.4	1	
PCB168	ND	3.4	1	
PCB169	ND	3.4	1	
PCB170	ND	3.4	1	
PCB174	ND	3.4	1	
PCB177	ND	3.4	1	
PCB180	ND	3.4	1	
PCB183	ND	3.4	1	
PCB184	ND	3.4	1	
PCB187	ND	3.4	1	
PCB189	ND	3.4	1	
PCB194	ND	3.4	1	
PCB195	ND	3.4	1	
PCB200	ND	3.4	1	
PCB201	ND	3.4	1	
PCB203	ND	3.4	1	
PCB206	ND	3.4	1	
PCB209	ND	3.4	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	75	14-146		
p-Terphenyl-d14	103	34-148		

Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

01....

Page 21 of 64

Project: Berths 212-224 YTI Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11C		13-08-0936-11-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 19:17	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	3.6		1		
PCB008			ND	3.6		1		
PCB018			ND	3.6		1		
PCB028			4.4	3.6		1		
PCB031			4.5	3.6		1		
PCB033			ND	3.6		1		
PCB037			ND	3.6		1		
PCB044			ND	3.6		1		
PCB049			9.5	3.6		1		
PCB052			6.3	3.6		1		
PCB056			ND	3.6		1		
PCB060			ND	3.6		1		
PCB066			6.4	3.6		1		
PCB070			5.4	3.6		1		
PCB074			ND	3.6		1		
PCB077			ND	3.6		1		
PCB081			ND	3.6		1		
PCB087			3.7	3.6		1		
PCB095			6.0	3.6		1		
PCB097			4.6	3.6		1		
PCB099			ND	3.6		1		
PCB101			8.9	3.6		1		
PCB105			ND	3.6		1		
PCB110			11	3.6		1		
PCB114			ND	3.6		1		
PCB118			7.4	3.6		1		
PCB119			ND	3.6		1		
PCB123			ND	3.6		1		
PCB126			ND	3.6		1		
PCB128			ND	3.6		1		
PCB132			ND	3.6		1		
PCB138/158			ND	7.1		1		
PCB141			ND	3.6		1		
PCB149			5.5	3.6		1		
-								

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

Project: Berths 212-224 YTI Terminal

Page 22 of 64

Project: Berths 212-224 YTT Terminal				Page 22 of 64
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.6	1	
PCB153	8.2	3.6	1	
PCB156	ND	3.6	1	
PCB157	ND	3.6	1	
PCB167	ND	3.6	1	
PCB168	ND	3.6	1	
PCB169	ND	3.6	1	
PCB170	ND	3.6	1	
PCB174	ND	3.6	1	
PCB177	ND	3.6	1	
PCB180	ND	3.6	1	
PCB183	ND	3.6	1	
PCB184	ND	3.6	1	
PCB187	ND	3.6	1	
PCB189	ND	3.6	1	
PCB194	ND	3.6	1	
PCB195	ND	3.6	1	
PCB200	ND	3.6	1	
PCB201	ND	3.6	1	
PCB203	ND	3.6	1	
PCB206	ND	3.6	1	
PCB209	ND	3.6	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	73	14-146		
p-Terphenyl-d14	106	34-148		

rn to Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 23 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
12C		13-08-0936-12-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 19:46	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB003			ND	3.6		1		
PCB008			ND	3.6		1		
PCB018			ND	3.6		1		
PCB028			ND	3.6		1		
PCB031			ND	3.6		1		
PCB033			ND	3.6		1		
PCB037			ND	3.6		1		
PCB044			ND	3.6		1		
PCB049			ND	3.6		1		
PCB052			ND	3.6		1		
PCB056			ND	3.6		1		
PCB060			ND	3.6		1		
PCB066			ND	3.6		1		
PCB070			ND	3.6		1		
PCB074			ND	3.6		1		
PCB077			ND	3.6		1		
PCB081			ND	3.6		1		
PCB087			ND	3.6		1		
PCB095			ND	3.6		1		
PCB097			ND	3.6		1		
PCB099			ND	3.6		1		
PCB101			ND	3.6		1		
PCB105			ND	3.6		1		
PCB110			ND	3.6		1		
PCB114			ND	3.6		1		
PCB118			ND	3.6		1		
PCB119			ND	3.6		1		
PCB123			ND	3.6		1		
PCB126			ND	3.6		1		
PCB128			ND	3.6		1		
PCB132			ND	3.6		1		
PCB138/158			ND	7.3		1		
PCB141			ND	3.6		1		
PCB149			ND	3.6		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

<u>RL</u>

Page 24 of 64

Qualifiers

08/13/13

ug/kg

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
PCB151
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206

PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

	Un
Result	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	

Rec. (%)

64

87

3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
Control Limits
14-146

34-148

Qualifiers

<u>DF</u>

1 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936

Preparation: Method:

EPA 3540C EPA 8270C SIM PCB Congeners

ug/kg

Units:

Project: Berths 212-224 YTI Terminal

Page 25 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
13C		13-08-0936-13-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 20:14	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	3.6		1		
PCB008			ND	3.6		1		
PCB018			ND	3.6		1		
PCB028			ND	3.6		1		
PCB031			4.7	3.6		1		
PCB033			ND	3.6		1		
PCB037			ND	3.6		1		
PCB044			ND	3.6		1		
PCB049			7.5	3.6		1		
PCB052			7.4	3.6		1		
PCB056			ND	3.6		1		
PCB060			ND	3.6		1		
PCB066			6.3	3.6		1		
PCB070			5.8	3.6		1		
PCB074			ND	3.6		1		
PCB077			ND	3.6		1		
PCB081			ND	3.6		1		
PCB087			ND	3.6		1		
PCB095			6.3	3.6		1		
PCB097			ND	3.6		1		
PCB099			ND	3.6		1		
PCB101			9.2	3.6		1		
PCB105			3.7	3.6		1		
PCB110			10	3.6		1		
PCB114			ND	3.6		1		
PCB118			7.5	3.6		1		
PCB119			ND	3.6		1		
PCB123			ND	3.6		1		
PCB126			ND	3.6		1		
PCB128			ND	3.6		1		
PCB132			ND	3.6		1		
PCB138/158			ND	7.3		1		
PCB141			ND	3.6		1		
PCB149			5.3	3.6		1		
				0.0		•		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/kg

Project: Berths 212-224 YTI Terminal

Page 26 of 64

Trojood Bortilo 212 221 111 Tollilling				1 ago 20 01 01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.6	1	
PCB153	7.9	3.6	1	
PCB156	ND	3.6	1	
PCB157	ND	3.6	1	
PCB167	ND	3.6	1	
PCB168	ND	3.6	1	
PCB169	ND	3.6	1	
PCB170	ND	3.6	1	
PCB174	ND	3.6	1	
PCB177	ND	3.6	1	
PCB180	ND	3.6	1	
PCB183	ND	3.6	1	
PCB184	ND	3.6	1	
PCB187	ND	3.6	1	
PCB189	ND	3.6	1	
PCB194	ND	3.6	1	
PCB195	ND	3.6	1	
PCB200	ND	3.6	1	
PCB201	ND	3.6	1	
PCB203	ND	3.6	1	
PCB206	ND	3.6	1	
PCB209	ND	3.6	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	74	14-146		
p-Terphenyl-d14	107	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

0111101

Page 27 of 64

Project: Berths 212-224 YTI Terminal

Project: Ber	Project: Berths 212-224 YTI Terminal						Pag	Page 27 of 64		
Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
14C		13-08-0936-14-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 20:43	130816F03		
Comment(s):	- Results are reported	on a dry weight basis.	•							
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>		
PCB003			ND	3.3		1				
PCB008			ND	3.3		1				
PCB018			ND	3.3		1				
PCB028			ND	3.3		1				
PCB031			ND	3.3		1				
PCB033			ND	3.3		1				
PCB037			ND	3.3		1				
PCB044			ND	3.3		1				
PCB049			7.0	3.3		1				
PCB052			5.1	3.3		1				
PCB056			ND	3.3		1				
PCB060			ND	3.3		1				
PCB066			4.4	3.3		1				
PCB070			4.5	3.3		1				
PCB074			ND	3.3		1				
PCB077			ND	3.3		1				
PCB081			ND	3.3		1				
PCB087			ND	3.3		1				
PCB095			4.8	3.3		1				
PCB097			ND	3.3		1				
PCB099			ND	3.3		1				
PCB101			7.2	3.3		1				
PCB105			3.4	3.3		1				
PCB110			7.1	3.3		1				
PCB114			ND	3.3		1				
PCB118			5.6	3.3		1				
PCB119			ND	3.3		1				
PCB123			ND	3.3		1				
PCB126			ND	3.3		1				
PCB128			ND	3.3		1				
PCB132			ND	3.3		1				

RL: Reporting Limit.

PCB138/158

PCB141

PCB149

DF: Dilution Factor.

MDL: Method Detection Limit.

6.7

3.3

3.3

1

ND

ND

4.6

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

08/13/13 13-08-0936 **EPA 3540C**

Method: Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 28 of 64

Project: Berths 212-224 YTI Terminal

<u>RL</u> <u>DF</u> Qualifiers 3.3 1 3.3 1

Parameter
PCB151
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206
PCB209
Surrogate
2-Fluorobiphenyl

<u>Result</u>
ND
6.2
ND

2-Fluorobiphenyl p-Terphenyl-d14

Rec. (%) 14-146 72 105 34-148 Qualifiers

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Offits.

Page 29 of 64

Project: Berths 212-224 YTI Termin

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15C		13-08-0936-15-B	08/10/13 15:00	Tissue	GC/MS HHH	08/16/13	08/23/13 21:12	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	3.6	i	1		
PCB008			ND	3.6	i	1		
PCB018			ND	3.6	i	1		
PCB028			ND	3.6	i	1		
PCB031			ND	3.6	;	1		
PCB033			ND	3.6	;	1		
PCB037			ND	3.6	;	1		
PCB044			ND	3.6	i	1		
PCB049			5.2	3.6	i	1		
PCB052			4.0	3.6	i	1		
PCB056			ND	3.6	i	1		
PCB060			ND	3.6	i	1		
PCB066			4.2	3.6	i	1		
PCB070			ND	3.6	i	1		
PCB074			ND	3.6	i	1		
PCB077			ND	3.6	i	1		
PCB081			ND	3.6	i	1		
PCB087			ND	3.6	i	1		
PCB095			6.3	3.6	i	1		
PCB097			ND	3.6	i	1		
PCB099			4.3	3.6	i	1		
PCB101			9.0	3.6	i	1		
PCB105			ND	3.6	i	1		
PCB110			9.2	3.6	i	1		
PCB114			ND	3.6	i	1		
PCB118			7.6	3.6	i	1		
PCB119			ND	3.6	i	1		
PCB123			ND	3.6	i	1		
PCB126			ND	3.6	i	1		
PCB128			ND	3.6	i	1		
PCB132			ND	3.6	i	1		
PCB138/158			9.6	7.1		1		
PCB141			ND	3.6		1		
PCB149			7.1	3.6		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 30 of 64

Project: Berths 212-224 YTI Terminal

Troject. Bertins 212 224 111 Terminal				1 age 30 01 04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.6	1	
PCB153	11	3.6	1	
PCB156	ND	3.6	1	
PCB157	ND	3.6	1	
PCB167	ND	3.6	1	
PCB168	ND	3.6	1	
PCB169	ND	3.6	1	
PCB170	ND	3.6	1	
PCB174	ND	3.6	1	
PCB177	ND	3.6	1	
PCB180	ND	3.6	1	
PCB183	ND	3.6	1	
PCB184	ND	3.6	1	
PCB187	ND	3.6	1	
PCB189	ND	3.6	1	
PCB194	ND	3.6	1	
PCB195	ND	3.6	1	
PCB200	ND	3.6	1	
PCB201	ND	3.6	1	
PCB203	ND	3.6	1	
PCB206	ND	3.6	1	
PCB209	ND	3.6	1	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
2-Fluorobiphenyl	70	14-146		
p-Terphenyl-d14	102	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Office

Page 31 of 64

Project: Berths 212-224 YTI Terminal

Project: Berths 212-224 YTI Terminal							Page 31 of 64		
Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II	
1W		13-08-0936-16-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 02:51	130816F03	
Comment(s):	- Results are reporte	ed on a dry weight basis.		•					
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>	
PCB003			ND	3.1		1			
PCB008			ND	3.1		1			
PCB018			ND	3.1		1			
PCB028			ND	3.1		1			
PCB031			ND	3.1		1			
PCB033			ND	3.1		1			
PCB037			ND	3.1		1			
PCB044			ND	3.1		1			
PCB049			3.1	3.1		1			
PCB052			5.5	3.1		1			
PCB056			ND	3.1		1			
PCB060			ND	3.1		1			
PCB066			3.6	3.1		1			
PCB070			ND	3.1		1			
PCB074			ND	3.1		1			
PCB077			ND	3.1		1			
PCB081			ND	3.1		1			
PCB087			ND	3.1		1			
PCB095			7.8	3.1		1			
PCB097			ND	3.1		1			
PCB099			3.8	3.1		1			
PCB101			9.0	3.1		1			
PCB105			3.3	3.1		1			
PCB110			6.7	3.1		1			
PCB114			ND	3.1		1			
PCB118			5.8	3.1		1			
PCB119			ND	3.1		1			
PCB123			ND	3.1		1			
PCB126			ND	3.1		1			
PCB128			ND	3.1		1			
PCB132			ND	3.1		1			
CB132			ND	3.1		1			

RL: Reporting Limit.

PCB138/158

PCB141

PCB149

DF: Dilution Factor.

MDL: Method Detection Limit.

6.2

3.1

3.1

1

10

ND

7.6

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 32 of 64

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	4.0	3.1	1	
PCB153	13	3.1	1	
PCB156	ND	3.1	1	
PCB157	ND	3.1	1	
PCB167	ND	3.1	1	
PCB168	ND	3.1	1	
PCB169	ND	3.1	1	
PCB170	ND	3.1	1	
PCB174	ND	3.1	1	
PCB177	ND	3.1	1	
PCB180	4.6	3.1	1	
PCB183	ND	3.1	1	
PCB184	ND	3.1	1	
PCB187	4.0	3.1	1	
PCB189	ND	3.1	1	
PCB194	ND	3.1	1	
PCB195	ND	3.1	1	
PCB200	ND	3.1	1	
PCB201	ND	3.1	1	
PCB203	ND	3.1	1	
PCB206	ND	3.1	1	
PCB209	ND	3.1	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	55	14-146		
p-Terphenyl-d14	86	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Ornito.

Page 33 of 64

Project: Berths 212-224 YTI Terminal

Date Prepared 08/16/13	Date/Time Analyzed 08/26/13 16:43	QC Batch ID
S HHH 08/16/13	08/26/13 16:43	130816F03
<u>DF</u>	Qua	<u>alifiers</u>
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RL: Reporting Limit.

PCB138/158

PCB141

PCB149

DF: Dilution Factor.

MDL: Method Detection Limit.

5.8

2.9

2.9

1

1

14

ND

10

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

08/13/13 13-08-0936 **EPA 3540C**

Method: Units:

EPA 8270C SIM PCB Congeners

Page 34 of 64

Project: Berths 212-224 YTI Terminal

Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
3.2	2.9	1	
17	2.9	1	
ND	2.9	1	
3.2	2.9	1	
ND	2.9	1	
ND	2.9	1	
6.8	2.9	1	
ND	2.9	1	
ND	2.9	1	
5.9	2.9	1	
ND	2.9	1	
Rec. (%)	Control Limits	<u>Qualifiers</u>	
76	14-146		
88	34-148		
	3.2 17 ND ND ND ND ND 3.2 ND ND 6.8 ND ND 5.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	3.2 2.9 17 2.9 ND 2.9	3.2 2.9 1 17 2.9 1 ND 2.9 1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Offics.

Page 35 of 64

Project: Berths 212-224 YTI Terminal

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
3W		13-08-0936-18-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 03:47	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	2.9		1		
PCB008			ND	2.9		1		
PCB018			ND	2.9		1		
PCB028			ND	2.9		1		
PCB031			ND	2.9		1		
PCB033			ND	2.9		1		
PCB037			ND	2.9		1		
PCB044			ND	2.9		1		
PCB049			ND	2.9		1		
PCB052			3.8	2.9		1		
PCB056			ND	2.9		1		
PCB060			ND	2.9		1		
PCB066			3.4	2.9		1		
PCB070			ND	2.9		1		
PCB074			ND	2.9		1		
PCB077			ND	2.9		1		
PCB081			ND	2.9		1		
PCB087			ND	2.9		1		
PCB095			6.8	2.9		1		
PCB097			ND	2.9		1		
PCB099			3.5	2.9		1		
PCB101			8.5	2.9		1		
PCB105			ND	2.9		1		
PCB110			5.5	2.9		1		
PCB114			ND	2.9		1		
PCB118			5.1	2.9		1		
PCB119			ND	2.9		1		
PCB123			ND	2.9		1		
PCB126			ND	2.9		1		
PCB128			ND	2.9		1		
PCB132			ND	2.9		1		
PCB138/158			9.4	5.8		1		
PCB141			ND	2.9		1		
PCB149			6.6	2.9		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C 270C SIM PCB Congeners

Qualifiers

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 36 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB151 PCB153 PCB156 PCB157 **PCB167** PCB168 PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203

PCB206

PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

Result 3.4 12 ND ND ND ND ND ND ND ND 3.5 ND ND 3.9 ND ND ND ND ND ND ND

ND

64

102

Rec. (%)

<u>RL</u> 2.9 **Control Limits**

14-146

34-148

1 Qualifiers

<u>DF</u>

1

1

1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 37 of 64

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
4W		13-08-0936-19-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 04:15	130816F03
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB003			ND	2.8		1		
PCB008			ND	2.8		1		
PCB018			ND	2.8		1		
PCB028			ND	2.8		1		
PCB031			ND	2.8		1		
PCB033			ND	2.8		1		
PCB037			ND	2.8		1		
PCB044			ND	2.8		1		
PCB049			ND	2.8		1		
PCB052			ND	2.8		1		
PCB056			ND	2.8		1		
PCB060			ND	2.8		1		
PCB066			ND	2.8		1		
PCB070			ND	2.8		1		
PCB074			ND	2.8		1		
PCB077			ND	2.8		1		
PCB081			ND	2.8		1		
PCB087			ND	2.8		1		
PCB095			ND	2.8		1		
PCB097			ND	2.8		1		
PCB099			ND	2.8		1		
PCB101			ND	2.8		1		
PCB105			ND	2.8		1		
PCB110			ND	2.8		1		
PCB114			ND	2.8		1		
PCB118			ND	2.8		1		
PCB119			ND	2.8		1		
PCB123			ND	2.8		1		
PCB126			ND	2.8		1		
PCB128			ND	2.8		1		
PCB132			ND	2.8		1		
PCB138/158			ND	5.7		1		
PCB141			ND	2.8		1		
PCB149			ND	2.8		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Qualifiers

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 38 of 64

<u>DF</u>

1

1

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
PCB151
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206

Result ND

<u>RL</u> 2.8

Qualifiers

Surrogate
2-Fluorobiphenyl
p-Terphenyl-d14

PCB209

Rec. (%) 67 103

ND

ND

14-146 34-148

Control Limits

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 39 of 64

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
5W	13-08-0936-20-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 04:42	130816F03
Comment(s): - Results are repo	orted on a dry weight basis.						
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND	3.1		1		
PCB008		ND	3.1		1		
PCB018		ND	3.1		1		
PCB028		ND	3.1		1		
PCB031		ND	3.1		1		
PCB033		ND	3.1		1		
PCB037		ND	3.1		1		
PCB044		ND	3.1		1		
PCB049		ND	3.1		1		
PCB052		9.2	3.1		1		
PCB056		ND	3.1		1		
PCB060		ND	3.1		1		
PCB066		3.8	3.1		1		
PCB070		ND	3.1		1		
PCB074		ND	3.1		1		
PCB077		ND	3.1		1		
PCB081		ND	3.1		1		
PCB087		ND	3.1		1		
PCB095		7.5	3.1		1		
PCB097		ND	3.1		1		
PCB099		ND	3.1		1		
PCB101		8.0	3.1		1		
PCB105		ND	3.1		1		
PCB110		5.8	3.1		1		
PCB114		ND	3.1		1		
PCB118		5.4	3.1		1		
PCB119		ND	3.1		1		
PCB123		ND	3.1		1		
PCB126		ND	3.1		1		
PCB128		ND	3.1		1		
PCB132		ND	3.1		1		
PCB138/158		ND	0.1				
					1		
PCB141		7.8 ND	6.1 3.1				

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation: Method:

13-08-0936 **EPA 3540C** EPA 8270C SIM PCB Congeners ug/kg

Units:

Page 40 of 64

08/13/13

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB151	ND	3.1	1	
PCB153	10	3.1	1	
PCB156	ND	3.1	1	
PCB157	ND	3.1	1	
PCB167	ND	3.1	1	
PCB168	ND	3.1	1	
PCB169	ND	3.1	1	
PCB170	ND	3.1	1	
PCB174	ND	3.1	1	
PCB177	ND	3.1	1	
PCB180	3.4	3.1	1	
PCB183	ND	3.1	1	
PCB184	ND	3.1	1	
PCB187	3.1	3.1	1	
PCB189	ND	3.1	1	
PCB194	ND	3.1	1	
PCB195	ND	3.1	1	
PCB200	ND	3.1	1	
PCB201	ND	3.1	1	
PCB203	ND	3.1	1	
PCB206	ND	3.1	1	
PCB209	ND	3.1	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	60	14-146		
p-Terphenyl-d14	90	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13

Preparation:

13-08-0936 EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 41 of 64

Project: Berths 212-224 YTI Terminal

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
6W		13-08-0936-21-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 05:10	130816F04
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	3.3		1		
PCB008			ND	3.3		1		
PCB018			ND	3.3		1		
PCB028			ND	3.3		1		
PCB031			ND	3.3		1		
PCB033			ND	3.3		1		
PCB037			ND	3.3		1		
PCB044			ND	3.3		1		
PCB049			ND	3.3		1		
PCB052			ND	3.3		1		
PCB056			ND	3.3		1		
PCB060			ND	3.3		1		
PCB066			ND	3.3		1		
PCB070			ND	3.3		1		
PCB074			ND	3.3		1		
PCB077			ND	3.3		1		
PCB081			ND	3.3		1		
PCB087			ND	3.3		1		
PCB095			ND	3.3		1		
PCB097			ND	3.3		1		
PCB099			ND	3.3		1		
PCB101			ND	3.3		1		
PCB105			ND	3.3		1		
PCB110			ND	3.3		1		
PCB114			ND	3.3		1		
PCB118			ND	3.3		1		
PCB119			ND	3.3		1		
PCB123			ND	3.3		1		
PCB126			ND	3.3		1		
PCB128			ND	3.3		1		
PCB132			ND	3.3		1		
PCB138/158			ND	6.5		1		
PCB141			ND	3.3		1		
PCB149			ND	3.3		1		
3= : :0				0.0		•		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

08/13/13 13-08-0936 EPA 3540C

Method: Units:

EPA 8270C SIM PCB Congeners

ug/kg Page 42 of 64

Project: Berths 212-224 YTI Terminal

<u>RL</u> <u>DF</u> Qualifiers 3.3 1 1

<u>Parameter</u>	
PCB151	
PCB153	
PCB156	
PCB157	
PCB167	
PCB168	
PCB169	
PCB170	
PCB174	
PCB177	
PCB180	
PCB183	
PCB184	
PCB187	
PCB189	
PCB194	
PCB195	
PCB200	
PCB201	
PCB203	
PCB206	
PCB209	
Surrogate	
2-Fluorobiphenyl	

Result
ND

3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
3.3	1
Control Limits	Qualifiers
14-146	

1	
1	
1	
1	
1	
1	
1	
1	

2-Fluorobiphenyl p-Terphenyl-d14

Rec. (%) 65 95

ND

34-148

to Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 43 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
7W		13-08-0936-22-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 05:38	130816F04
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	2.6		1		
PCB008			ND	2.6		1		
PCB018			ND	2.6		1		
PCB028			ND	2.6		1		
PCB031			ND	2.6		1		
PCB033			ND	2.6		1		
PCB037			2.6	2.6		1		
PCB044			2.7	2.6		1		
PCB049			ND	2.6		1		
PCB052			9.3	2.6		1		
PCB056			ND	2.6		1		
PCB060			3.4	2.6		1		
PCB066			3.8	2.6		1		
PCB070			ND	2.6		1		
PCB074			ND	2.6		1		
PCB077			ND	2.6		1		
PCB081			ND	2.6		1		
PCB087			ND	2.6		1		
PCB095			7.7	2.6		1		
PCB097			2.9	2.6		1		
PCB099			3.4	2.6		1		
PCB101			9.0	2.6		1		
PCB105			2.7	2.6		1		
PCB110			8.0	2.6		1		
PCB114			ND	2.6		1		
PCB118			5.1	2.6		1		
PCB119			ND	2.6		1		
PCB123			ND	2.6		1		
PCB126			ND	2.6		1		
PCB128			ND	2.6		1		
PCB132			ND	2.6		1		
PCB138/158			8.6	5.1		1		
PCB141			ND	2.6		1		
PCB149			5.2	2.6		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

Page 44 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	2.6	1	
PCB153	11	2.6	1	
PCB156	ND	2.6	1	
PCB157	ND	2.6	1	
PCB167	ND	2.6	1	
PCB168	ND	2.6	1	
PCB169	ND	2.6	1	
PCB170	ND	2.6	1	
PCB174	ND	2.6	1	
PCB177	ND	2.6	1	
PCB180	3.5	2.6	1	
PCB183	ND	2.6	1	
PCB184	ND	2.6	1	
PCB187	3.7	2.6	1	
PCB189	ND	2.6	1	
PCB194	ND	2.6	1	
PCB195	ND	2.6	1	
PCB200	ND	2.6	1	
PCB201	ND	2.6	1	
PCB203	ND	2.6	1	
PCB206	ND	2.6	1	
PCB209	ND	2.6	1	
Currencete	Dag (0/)	Committee Limite	Ovalitia na	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	72	14-146		
p-Terphenyl-d14	109	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Page 45 of 64

Project: Berths 212-224 YTI Terminal

Project: Berths 212-224 YTI Terminal							Page 45 of 64		
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
8W		13-08-0936-23-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 06:05	130816F04	
Comment(s):	- Results are reported	on a dry weight basis.	•						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>alifiers</u>	
PCB003			ND	2.9		1			
PCB008			ND	2.9		1			
PCB018			ND	2.9		1			
PCB028			ND	2.9		1			
PCB031			ND	2.9		1			
PCB033			ND	2.9		1			
PCB037			ND	2.9		1			
PCB044			ND	2.9		1			
PCB049			ND	2.9		1			
PCB052			6.5	2.9		1			
PCB056			ND	2.9		1			
PCB060			ND	2.9		1			
PCB066			3.0	2.9		1			
PCB070			ND	2.9		1			
PCB074			ND	2.9		1			
PCB077			ND	2.9		1			
PCB081			ND	2.9		1			
PCB087			ND	2.9		1			
PCB095			6.8	2.9		1			
PCB097			ND	2.9		1			
PCB099			4.1	2.9		1			
PCB101			10	2.9		1			
PCB105			ND	2.9		1			
PCB110			6.9	2.9		1			
PCB114			ND	2.9		1			
PCB118			4.8	2.9		1			
PCB119			ND	2.9		1			
PCB123			ND	2.9		1			
PCB126			ND	2.9		1			
PCB128			ND	2.9		1			
PCB132			ND	2.9		1			

RL: Reporting Limit.

PCB138/158

PCB141

PCB149

DF: Dilution Factor.

MDL: Method Detection Limit.

5.8

2.9

2.9

9.4

ND

6.1

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

D- -- 40 -f 64

Project: Berths 212-224 YTI Terminal

Page 46 of 64

Project. Bertiis 212-224 f 11 Terminal				Page 40 01 04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB151	3.2	2.9	1	
PCB153	13	2.9	1	
PCB156	ND	2.9	1	
PCB157	ND	2.9	1	
PCB167	ND	2.9	1	
PCB168	ND	2.9	1	
PCB169	ND	2.9	1	
PCB170	ND	2.9	1	
PCB174	ND	2.9	1	
PCB177	ND	2.9	1	
PCB180	3.6	2.9	1	
PCB183	ND	2.9	1	
PCB184	ND	2.9	1	
PCB187	3.8	2.9	1	
PCB189	ND	2.9	1	
PCB194	ND	2.9	1	
PCB195	ND	2.9	1	
PCB200	ND	2.9	1	
PCB201	ND	2.9	1	
PCB203	ND	2.9	1	
PCB206	ND	2.9	1	
PCB209	ND	2.9	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	68	14-146		
p-Terphenyl-d14	101	34-148		

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 47 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
9W		13-08-0936-24-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 06:34	130816F04
Comment(s):	- Results are reported	on a dry weight basis.	_					
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	3.0		1		
PCB008			ND	3.0		1		
PCB018			ND	3.0		1		
PCB028			ND	3.0		1		
PCB031			ND	3.0		1		
PCB033			ND	3.0		1		
PCB037			ND	3.0		1		
PCB044			ND	3.0		1		
PCB049			ND	3.0		1		
PCB052			ND	3.0		1		
PCB056			ND	3.0		1		
PCB060			ND	3.0		1		
PCB066			ND	3.0		1		
PCB070			ND	3.0		1		
PCB074			ND	3.0		1		
PCB077			ND	3.0		1		
PCB081			ND	3.0		1		
PCB087			ND	3.0		1		
PCB095			ND	3.0		1		
PCB097			ND	3.0		1		
PCB099			ND	3.0		1		
PCB101			ND	3.0		1		
PCB105			ND	3.0		1		
PCB110			ND	3.0		1		
PCB114			ND	3.0		1		
PCB118			ND	3.0		1		
PCB119			ND	3.0		1		
PCB123			ND	3.0		1		
PCB126			ND	3.0		1		
PCB128			ND	3.0		1		
PCB132			ND	3.0		1		
PCB138/158			ND	6.1		1		
PCB141			ND	3.0		1		
PCB149			ND	3.0		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C PA 8270C SIM PCB Congeners

Method: Units:

RΙ

EPA 8270C SIM PCB Congeners ug/kg

Page 48 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal
<u>Parameter</u>
PCB151
PCB153
PCB156
PCB157
PCB167
PCB168
PCB169
PCB170
PCB174
PCB177
PCB180
PCB183
PCB184
PCB187
PCB189
PCB194
PCB195
PCB200
PCB201
PCB203
PCB206

	,
Result	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	
ND	

1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
	1 1 1 1 1 1 1

Qualifiers

<u>DF</u>

1 1

Surrogate
2-Fluorobiphenyl
p-Terphenyl-d14

PCB209

Rec. (%) 61 91

ND

14-146 34-148

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

.....

Page 49 of 64

Project: Berths 212-224 YTI Terminal

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
10W		13-08-0936-25-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 07:01	130816F04
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	3.2		1		
PCB008			ND	3.2		1		
PCB018			ND	3.2		1		
PCB028			ND	3.2		1		
PCB031			ND	3.2		1		
PCB033			ND	3.2		1		
PCB037			ND	3.2		1		
PCB044			ND	3.2		1		
PCB049			ND	3.2		1		
PCB052			ND	3.2		1		
PCB056			ND	3.2		1		
PCB060			ND	3.2		1		
PCB066			ND	3.2		1		
PCB070			ND	3.2		1		
PCB074			ND	3.2		1		
PCB077			ND	3.2		1		
PCB081			ND	3.2		1		
PCB087			ND	3.2		1		
PCB095			ND	3.2		1		
PCB097			ND	3.2		1		
PCB099			ND	3.2		1		
PCB101			ND	3.2		1		
PCB105			ND	3.2		1		
PCB110			ND	3.2		1		
PCB114			ND	3.2		1		
PCB118			ND	3.2		1		
PCB119			ND	3.2		1		
PCB123			ND	3.2		1		
PCB126			ND	3.2		1		
PCB128			ND	3.2		1		
PCB132			ND	3.2		1		
PCB138/158			ND	6.5		1		
PCB141			ND	3.2		1		
PCB149			ND	3.2		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

<u>RL</u>

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2

3.2 3.2

3.2

08/13/13 13-08-0936 EPA 3540C

Qualifiers

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

<u>DF</u>

1

1

1

Page 50 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB151 PCB153 PCB156 PCB157 **PCB167** PCB168 PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206

 PCB194
 ND

 PCB195
 ND

 PCB200
 ND

 PCB201
 ND

 PCB203
 ND

 PCB206
 ND

 PCB209
 ND

 Surrogate
 Rec. (%)

 2-Fluorobiphenyl
 63

 p-Terphenyl-d14
 90

Result ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

3.2 3.2 3.2 Control Limits 14-146 34-148

Qualifiers

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 51 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
11W		13-08-0936-26-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 07:29	130816F04
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
PCB003			ND	3.0		1		
PCB008			ND	3.0		1		
PCB018			ND	3.0		1		
PCB028			3.4	3.0		1		
PCB031			ND	3.0		1		
PCB033			ND	3.0		1		
PCB037			4.4	3.0		1		
PCB044			3.7	3.0		1		
PCB049			3.3	3.0		1		
PCB052			13	3.0		1		
PCB056			ND	3.0		1		
PCB060			4.1	3.0		1		
PCB066			4.7	3.0		1		
PCB070			ND	3.0		1		
PCB074			ND	3.0		1		
PCB077			ND	3.0		1		
PCB081			ND	3.0		1		
PCB087			ND	3.0		1		
PCB095			7.8	3.0		1		
PCB097			3.1	3.0		1		
PCB099			4.2	3.0		1		
PCB101			12	3.0		1		
PCB105			3.4	3.0		1		
PCB110			9.9	3.0		1		
PCB114			ND	3.0		1		
PCB118			4.8	3.0		1		
PCB119			ND	3.0		1		
PCB123			ND	3.0		1		
PCB126			ND	3.0		1		
PCB128			ND	3.0		1		
PCB132			ND	3.0		1		
PCB138/158			7.9	5.9		1		
PCB141			ND	3.0		1		
PCB149			5.4	3.0		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

p-Terphenyl-d14

Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners

ug/k

Page 52 of 64

				9
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.0	1	
PCB153	11	3.0	1	
PCB156	ND	3.0	1	
PCB157	ND	3.0	1	
PCB167	ND	3.0	1	
PCB168	ND	3.0	1	
PCB169	ND	3.0	1	
PCB170	ND	3.0	1	
PCB174	ND	3.0	1	
PCB177	ND	3.0	1	
PCB180	ND	3.0	1	
PCB183	ND	3.0	1	
PCB184	ND	3.0	1	
PCB187	3.5	3.0	1	
PCB189	ND	3.0	1	
PCB194	ND	3.0	1	
PCB195	ND	3.0	1	
PCB200	ND	3.0	1	
PCB201	ND	3.0	1	
PCB203	ND	3.0	1	
PCB206	ND	3.0	1	
PCB209	ND	3.0	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	61	14-146		

91

34-148

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Units.

Page 53 of 64

Project: Berths 212-224 YTI Terminal

Cilient Sample Number Lab Sample Number Date Time Vumber Matrix Collected Instrument Prepared Date Prepared Analyzed QC Batch In Analyzed 12W 13-08-0936-27-8 (minus) 08/10/13 (minus) Tissue GC/MS Hith 08/16/13 (minus) 130816F04 Comment(s): - Results are reported on a vieweight basis Result RL DE Qualifiers PCB003 ND 3.1 1 1 PCB008 ND 3.1 1 1 PCB018 ND 3.1 1 1 1 PCB028 ND 3.1 1	Project: Berths 212-224 YTI Terminal							Pag	e 53 of 64
Comment(s): - Results are reported on a dry weight basis. Result RL DF Qualifiers PCB003 ND 3.1 1 PCB008 ND 3.1 1 PCB018 ND 3.1 1 PCB028 ND 3.1 1 PCB028 ND 3.1 1 PCB033 ND 3.1 1 PCB049 ND 3.1 1 PCB0409 ND 3.1 1 PCB044 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB060 ND 3.1 1 PCB070 ND 3.1 1 PCB071 ND 3.1 1 PCB072 ND 3.1 1 PCB073 ND 3.1 1 PCB094 ND 3.1 1 </th <th>Client Sample</th> <th>Number</th> <th>Lab Sample Number</th> <th>Date/Time Collected</th> <th>Matrix</th> <th>Instrument</th> <th>Date Prepared</th> <th>Date/Time Analyzed</th> <th>QC Batch ID</th>	Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL DE Qualifiers PCB003 ND 3.1 1	12W		13-08-0936-27-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/26/13 14:10	130816F04
PCB003 ND 3.1 1 PCB008 ND 3.1 1 PCB018 ND 3.1 1 PCB028 ND 3.1 1 PCB031 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB067 ND 3.1 1 PCB070 ND 3.1 1 PCB071 ND 3.1 1 PCB072 ND 3.1 1 PCB073 ND 3.1 1 PCB074 ND 3.1 1 PCB087 ND 3.1 1 PCB098 ND 3.1 1 PCB101 ND 3.1 1	Comment(s):	- Results are reported or	n a dry weight basis.	•					
PCB008 ND 3.1 1 PCB018 ND 3.1 1 PCB028 ND 3.1 1 PCB021 ND 3.1 1 PCB033 ND 3.1 1 PCB0403 ND 3.1 1 PCB044 ND 3.1 1 PCB049 ND 3.1 1 PCB049 ND 3.1 1 PCB062 ND 3.1 1 PCB063 ND 3.1 1 PCB064 ND 3.1 1 PCB065 ND 3.1 1 PCB070 ND 3.1 1 PCB071 ND 3.1 1 PCB072 ND 3.1 1 PCB073 ND 3.1 1 PCB084 ND 3.1 1 PCB095 ND 3.1 1 PCB096 ND 3.1	<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
PCB018 ND 3.1 1 PCB028 ND 3.1 1 PCB031 ND 3.1 1 PCB032 ND 3.1 1 PCB033 ND 3.1 1 PCB044 ND 3.1 1 PCB044 ND 3.1 1 PCB056 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB067 ND 3.1 1 PCB070 ND 3.1 1 PCB071 ND 3.1 1 PCB072 ND 3.1 1 PCB073 ND 3.1 1 PCB084 ND 3.1 1 PCB085 ND 3.1 1 PCB097 ND 3.1 1 PCB108 ND 3.1 1 PCB109 ND 3.1 1	PCB003			ND	3.1		1		
PCB028 ND 3.1 1 PCB031 ND 3.1 1 PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB049 ND 3.1 1 PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB066 ND 3.1 1 PCB0600 ND 3.1 1 PCB0601 ND 3.1 1 PCB070 ND 3.1 1 PCB071 ND 3.1 1 PCB072 ND 3.1 1 PCB073 ND 3.1 1 PCB0801 ND 3.1 1 PCB0802 ND 3.1 1 PCB0803 ND 3.1 1 PCB0909 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1	PCB008			ND	3.1		1		
PCB031 ND 3.1 1 PCB033 ND 3.1 1 PCB047 ND 3.1 1 PCB044 ND 3.1 1 PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB066 ND 3.1 1 PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB075 ND 3.1 1 PCB076 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB082 ND 3.1 1 PCB093 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB110 ND 3.1 1 PCB112 ND 3.1 1	PCB018			ND	3.1		1		
PCB033 ND 3.1 1 PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB075 ND 3.1 1 PCB076 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB082 ND 3.1 1 PCB093 ND 3.1 1 PCB096 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB114 ND 3.1 1	PCB028			ND	3.1		1		
PCB037 ND 3.1 1 PCB044 ND 3.1 1 PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB076 ND 3.1 1 PCB070 ND 3.1 1 PCB077 ND 3.1 1 PCB087 ND 3.1 1 PCB0881 ND 3.1 1 PCB099 ND 3.1 1 PCB0997 ND 3.1 1 PCB1099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB111 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 <t< td=""><td>PCB031</td><td></td><td></td><td>ND</td><td>3.1</td><td></td><td>1</td><td></td><td></td></t<>	PCB031			ND	3.1		1		
PCB044 ND 3.1 1 PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB099 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB119 ND 3.1 1	PCB033			ND	3.1		1		
PCB049 ND 3.1 1 PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB115 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB119 ND 3.1 1	PCB037			ND	3.1		1		
PCB052 ND 3.1 1 PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB110 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB044			ND	3.1		1		
PCB056 ND 3.1 1 PCB060 ND 3.1 1 PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1	PCB049			ND	3.1		1		
PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1	PCB052			ND	3.1		1		
PCB066 ND 3.1 1 PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB126 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB129 <t< td=""><td>PCB056</td><td></td><td></td><td>ND</td><td>3.1</td><td></td><td>1</td><td></td><td></td></t<>	PCB056			ND	3.1		1		
PCB070 ND 3.1 1 PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB101 ND 3.1 1 PCB102 ND 3.1 1 PCB110 ND 3.1 1 PCB110 ND 3.1 1 PCB110 ND 3.1 1 PCB110 ND 3.1 1 PCB111 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB060			ND	3.1		1		
PCB074 ND 3.1 1 PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB126 ND 3.1 1	PCB066			ND	3.1		1		
PCB077 ND 3.1 1 PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB070			ND	3.1		1		
PCB081 ND 3.1 1 PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB074			ND	3.1		1		
PCB087 ND 3.1 1 PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1 PCB127 ND 3.1 1 PCB128 ND 3.1 1 PCB129 ND 3.1 1 PCB129 <t< td=""><td>PCB077</td><td></td><td></td><td>ND</td><td>3.1</td><td></td><td>1</td><td></td><td></td></t<>	PCB077			ND	3.1		1		
PCB095 ND 3.1 1 PCB097 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB081			ND	3.1		1		
PCB097 ND 3.1 1 PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB087			ND	3.1		1		
PCB099 ND 3.1 1 PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB095			ND	3.1		1		
PCB101 ND 3.1 1 PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB097			ND	3.1		1		
PCB105 ND 3.1 1 PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB099			ND	3.1		1		
PCB110 ND 3.1 1 PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB101			ND	3.1		1		
PCB114 ND 3.1 1 PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB105			ND	3.1		1		
PCB118 ND 3.1 1 PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB110			ND	3.1		1		
PCB119 ND 3.1 1 PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB114			ND	3.1		1		
PCB123 ND 3.1 1 PCB126 ND 3.1 1	PCB118			ND	3.1		1		
PCB126 ND 3.1 1	PCB119			ND	3.1		1		
	PCB123			ND	3.1		1		
PCB128 ND 3.1 1	PCB126			ND	3.1		1		
	PCB128			ND	3.1		1		

RL: Reporting Limit.

PCB132

PCB141

PCB149

PCB138/158

DF: Dilution Factor.

MDL: Method Detection Limit.

3.1

6.2

3.1

3.1

ND

ND

ND

ND

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 54 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
PCB151	ND	3.1	1	
PCB153	ND	3.1	1	
PCB156	ND	3.1	1	
PCB157	ND	3.1	1	
PCB167	ND	3.1	1	
PCB168	ND	3.1	1	
PCB169	ND	3.1	1	
PCB170	ND	3.1	1	
PCB174	ND	3.1	1	
PCB177	ND	3.1	1	
PCB180	ND	3.1	1	
PCB183	ND	3.1	1	
PCB184	ND	3.1	1	
PCB187	ND	3.1	1	
PCB189	ND	3.1	1	
PCB194	ND	3.1	1	
PCB195	ND	3.1	1	
PCB200	ND	3.1	1	
PCB201	ND	3.1	1	
PCB203	ND	3.1	1	
PCB206	ND	3.1	1	
PCB209	ND	3.1	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	72	14-146		
p-Terphenyl-d14	99	34-148		

to Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C EPA 8270C SIM PCB Congeners

Method:

, to 2, to 0 mill of 0 congenera

Units:

ug/kg Page 55 of 64

Project: Berths 212-224 YTI Terminal

Comment(s): - Results are reported on a dry weight basis. Result RL DF Qualifiers	Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Parameter Result RL DE Qualifiers PCB003 ND 3.0 1 PCB008 ND 3.0 1 PCB018 ND 3.0 1 PCB028 3.8 3.0 1 PCB031 ND 3.0 1 PCB033 ND 3.0 1 PCB037 ND 3.0 1 PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB056 ND 3.0 1 PCB067 ND 3.0 1 PCB068 ND 3.0 1 PCB070 ND 3.0 1 PCB071 ND 3.0 1 PCB072 ND 3.0 1 PCB073 ND 3.0 1 PCB084 ND 3.0 1 PCB097 ND <th>13W</th> <th></th> <th>13-08-0936-28-B</th> <th>08/10/13 13:00</th> <th>Tissue</th> <th>GC/MS HHH</th> <th>08/16/13</th> <th>08/24/13 08:25</th> <th>130816F04</th>	13W		13-08-0936-28-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 08:25	130816F04
PCB003 ND 3.0 1 PCB008 ND 3.0 1 PCB018 ND 3.0 1 PCB028 3.8 3.0 1 PCB031 ND 3.0 1 PCB033 ND 3.0 1 PCB04037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB049 ND 3.0 1 PCB049 ND 3.0 1 PCB065 ND 3.0 1 PCB066 ND 3.0 1 PCB070 ND 3.0 1 PCB071 ND 3.0 1 PCB072 ND 3.0 1 PCB087 ND 3.0 1 PCB0887 ND 3.0 1 PCB099 3.0 1 1 PCB090 3.0 1 <th< td=""><td>Comment(s):</td><td>- Results are reporte</td><td>ed on a dry weight basis.</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Comment(s):	- Results are reporte	ed on a dry weight basis.						
PCB008 ND 3.0 1 PCB018 ND 3.0 1 PCB028 3.8 3.0 1 PCB031 ND 3.0 1 PCB033 ND 3.0 1 PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB052 9.6 3.0 1 PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB070 ND 3.0 1 PCB071 ND 3.0 1 PCB072 ND 3.0 1 PCB073 ND 3.0 1 PCB074 ND 3.0 1 PCB075 ND 3.0 1 PCB086 ND 3.0 1 PCB095 7.4 3.0 1 PCB096 3.8 3.0	<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB018 ND 3.0 1 PCB028 3.8 3.0 1 PCB031 ND 3.0 1 PCB033 ND 3.0 1 PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB066 ND 3.0 1 PCB066 ND 3.0 1 PCB070 ND 3.0 1 PCB071 ND 3.0 1 PCB072 ND 3.0 1 PCB073 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB098 7.4 3.0 1 PCB099 3.8 3.0 1 PCB105 3.5 3.0 1 PCB116 7.2 3.0	PCB003			ND	3.0		1		
PCB028 3.8 3.0 1 PCB031 ND 3.0 1 PCB033 ND 3.0 1 PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB066 ND 3.0 1 PCB066 4.3 3.0 1 PCB070 ND 3.0 1 PCB071 ND 3.0 1 PCB072 ND 3.0 1 PCB073 ND 3.0 1 PCB074 ND 3.0 1 PCB075 ND 3.0 1 PCB0807 ND 3.0 1 PCB098 7.4 3.0 1 PCB099 3.8 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0	PCB008			ND	3.0		1		
PCB031 ND 3.0 1 PCB033 ND 3.0 1 PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB075 ND 3.0 1 PCB081 ND 3.0 1 PCB082 ND 3.0 1 PCB083 ND 3.0 1 PCB084 ND 3.0 1 PCB095 7.4 3.0 1 PCB096 3.8 3.0 1 PCB101 9.0 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0	PCB018			ND	3.0		1		
PCB033 ND 3.0 1 PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB060 ND 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB081 ND 3.0 1 PCB082 ND 3.0 1 PCB083 ND 3.0 1 PCB084 ND 3.0 1 PCB095 7.4 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0	PCB028			3.8	3.0		1		
PCB037 ND 3.0 1 PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB066 4.3 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB075 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.0 1 PCB114 ND 3.0 1 PCB115 ND 3.0 1 PCB118 4.7 3.0 1 PCB118 4.7 3.0 1 <td>PCB031</td> <td></td> <td></td> <td>ND</td> <td>3.0</td> <td></td> <td>1</td> <td></td> <td></td>	PCB031			ND	3.0		1		
PCB044 ND 3.0 1 PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB076 ND 3.0 1 PCB077 ND 3.0 1 PCB078 ND 3.0 1 PCB081 ND 3.0 1 PCB082 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB0980 7.4 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB116 7.2 3.0 1 PCB118 4.7 3.0 1 PCB118 4.7 3.0 1 PCB119 3.0 1 1	PCB033			ND	3.0		1		
PCB049 ND 3.0 1 PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB066 4.3 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB098 3.8 3.0 1 PCB101 9.0 3.0 1 PCB116 7.2 3.0 1 PCB118 4.7 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB037			ND	3.0		1		
PCB052 9.6 3.0 1 PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB066 4.3 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB044			ND	3.0		1		
PCB056 ND 3.0 1 PCB060 ND 3.0 1 PCB066 4.3 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB049			ND	3.0		1		
PCB060 ND 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB052			9.6	3.0		1		
PCB066 4.3 3.0 1 PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB056			ND	3.0		1		
PCB070 ND 3.0 1 PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB060			ND	3.0		1		
PCB074 ND 3.0 1 PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB066			4.3	3.0		1		
PCB077 ND 3.0 1 PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB070			ND	3.0		1		
PCB081 ND 3.0 1 PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB074			ND	3.0		1		
PCB087 ND 3.0 1 PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB077			ND	3.0		1		
PCB095 7.4 3.0 1 PCB097 ND 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB081			ND	3.0		1		
PCB097 ND 3.0 1 PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB087			ND	3.0		1		
PCB099 3.8 3.0 1 PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB095			7.4	3.0		1		
PCB101 9.0 3.0 1 PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB097			ND	3.0		1		
PCB105 3.5 3.0 1 PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB099			3.8	3.0		1		
PCB110 7.2 3.0 1 PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB101			9.0	3.0		1		
PCB114 ND 3.0 1 PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB105			3.5	3.0		1		
PCB118 4.7 3.0 1 PCB119 ND 3.0 1	PCB110			7.2	3.0		1		
PCB119 ND 3.0 1	PCB114			ND	3.0		1		
PCB119 ND 3.0 1							1		
							1		
1 05 120	PCB123			ND	3.0		1		
PCB126 ND 3.0 1							1		
PCB128 ND 3.0 1									
PCB132 ND 3.0 1							1		
PCB138/158 7.0 6.0 1									
PCB141 ND 3.0 1									
PCB149 5.4 3.0 1									

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: 08/13/13 13-08-0936 EPA 3540C

Method: Units: EPA 8270C SIM PCB Congeners ug/kg

Page 56 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB151	ND	3.0	1	
PCB153	10	3.0	1	
PCB156	ND	3.0	1	
PCB157	ND	3.0	1	
PCB167	ND	3.0	1	
PCB168	ND	3.0	1	
PCB169	ND	3.0	1	
PCB170	ND	3.0	1	
PCB174	ND	3.0	1	
PCB177	ND	3.0	1	
PCB180	ND	3.0	1	
PCB183	ND	3.0	1	
PCB184	ND	3.0	1	
PCB187	3.1	3.0	1	
PCB189	ND	3.0	1	
PCB194	ND	3.0	1	
PCB195	ND	3.0	1	
PCB200	ND	3.0	1	
PCB201	ND	3.0	1	
PCB203	ND	3.0	1	
PCB206	ND	3.0	1	
PCB209	ND	3.0	1	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	60	14-146		
p-Terphenyl-d14	84	34-148		

to Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: 08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 57 of 64

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14W		13-08-0936-29-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 08:52	130816F04
Comment(s):	- Results are reported on	a dry weight basis.						
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
PCB003			ND	2.9		1		
PCB008			ND	2.9		1		
PCB018			4.0	2.9		1		
PCB028			3.6	2.9		1		
PCB031			ND	2.9		1		
PCB033			ND	2.9		1		
PCB037			3.3	2.9		1		
PCB044			3.2	2.9		1		
PCB049			ND	2.9		1		
PCB052			9.7	2.9		1		
PCB056			ND	2.9		1		
PCB060			3.7	2.9		1		
PCB066			4.5	2.9		1		
PCB070			ND	2.9		1		
PCB074			ND	2.9		1		
PCB077			ND	2.9		1		
PCB081			ND	2.9		1		
PCB087			ND	2.9		1		
PCB095			8.3	2.9		1		
PCB097			ND	2.9		1		
PCB099			4.0	2.9		1		
PCB101			10	2.9		1		
PCB105			3.3	2.9		1		
PCB110			9.7	2.9		1		
PCB114			ND	2.9		1		
PCB118			5.1	2.9		1		
PCB119			ND	2.9		1		
PCB123			ND	2.9		1		
PCB126			ND	2.9		1		
PCB128			ND	2.9		1		
PCB132			ND	2.9		1		
PCB138/158			7.8	5.8		1		
PCB141			ND	2.9		1		
PCB149			5.9	2.9		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

Units:

ug/kg Page 58 of 64

Qualifiers

Projec	t: Berth	s 212-22	4 YTI 7	Terminal

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>
PCB151	3.0	2.9	1
PCB153	11	2.9	1
PCB156	ND	2.9	1
PCB157	ND	2.9	1
PCB167	ND	2.9	1
PCB168	ND	2.9	1
PCB169	ND	2.9	1
PCB170	ND	2.9	1
PCB174	ND	2.9	1
PCB177	ND	2.9	1
PCB180	ND	2.9	1
PCB183	ND	2.9	1
PCB184	ND	2.9	1
PCB187	3.4	2.9	1
PCB189	ND	2.9	1
PCB194	ND	2.9	1
PCB195	ND	2.9	1
PCB200	ND	2.9	1
PCB201	ND	2.9	1
PCB203	ND	2.9	1
PCB206	ND	2.9	1
PCB209	ND	2.9	1
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers
2-Fluorobiphenyl	73	14-146	
p-Terphenyl-d14	102	34-148	

to Contents

Analytical Report

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Offics.

Page 59 of 64

Project: Berths 212-224 YTI Terminal

Client Sample Nu	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
15W		13-08-0936-30-B	08/10/13 13:00	Tissue	GC/MS HHH	08/16/13	08/24/13 09:20	130816F04
Comment(s):	- Results are reported on a	a dry weight basis.						
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
PCB003			ND	3.0		1		
PCB008			ND	3.0		1		
PCB018			ND	3.0		1		
PCB028			ND	3.0		1		
PCB031			ND	3.0		1		
PCB033			ND	3.0		1		
PCB037			ND	3.0		1		
PCB044			ND	3.0		1		
PCB049			3.9	3.0		1		
PCB052			8.1	3.0		1		
PCB056			ND	3.0		1		
PCB060			ND	3.0		1		
PCB066			3.7	3.0		1		
PCB070			ND	3.0		1		
PCB074			ND	3.0		1		
PCB077			ND	3.0		1		
PCB081			ND	3.0		1		
PCB087			ND	3.0		1		
PCB095			9.2	3.0		1		
PCB097			4.1	3.0		1		
PCB099			7.2	3.0		1		
PCB101			22	3.0		1		
PCB105			5.0	3.0		1		
PCB110			8.8	3.0		1		
PCB114			ND	3.0		1		
PCB118			7.0	3.0		1		
PCB119			ND	3.0		1		
PCB123			ND	3.0		1		
PCB126			ND	3.0		1		
PCB128			ND	3.0		1		
PCB132			ND	3.0		1		
PCB138/158			13	5.9		1		
PCB141			ND	3.0		1		
PCB149			9.9	3.0		1		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

<u>RL</u>

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

08/13/13 13-08-0936 **EPA 3540C**

Method: Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 60 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>

PCB151 PCB153 PCB156 PCB157 **PCB167** PCB168 PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206 PCB209

Surrogate 2-Fluorobiphenyl p-Terphenyl-d14

Result 4.3 33 ND ND ND ND ND ND ND ND 4.0 ND ND 6.2

ND ND ND ND ND ND ND ND Rec. (%)

64

90

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 **Control Limits**

14-146

34-148

Qualifiers

<u>DF</u>

1

1

1

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order:

08/13/13 13-08-0936 EPA 3540C

Preparation: Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 61 of 64

Client Sample Number	mple Number Lab Sample Date/Time Matrix Number Collected		Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank	099-14-318-35	N/A	Soil	GC/MS HHH	08/16/13	08/23/13 13:49	130816F03
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
PCB003		ND		0.50	1		
PCB008		ND		0.50	1		
PCB018		ND		0.50	1		
PCB028		ND		0.50	1		
PCB031		ND		0.50	1		
PCB033		ND		0.50	1		
PCB037		ND		0.50	1		
PCB044		ND		0.50	1		
PCB049		ND		0.50	1		
PCB052		ND		0.50	1		
PCB056		ND		0.50	1		
PCB060		ND		0.50	1		
PCB066		ND		0.50	1		
PCB070		ND		0.50	1		
PCB074		ND		0.50	1		
PCB077		ND		0.50	1		
PCB081		ND		0.50	1		
PCB087		ND		0.50	1		
PCB095		ND		0.50	1		
PCB097		ND		0.50	1		
PCB099		ND		0.50	1		
PCB101		ND		0.50	1		
PCB105		ND		0.50	1		
PCB110		ND		0.50	1		
PCB114		ND		0.50	1		
PCB118		ND		0.50	1		
PCB119		ND		0.50	1		
PCB123		ND		0.50	1		
PCB126		ND		0.50	1		
PCB128		ND		0.50	1		
PCB132		ND		0.50	1		
PCB138/158		ND		1.0	1		
PCB141		ND		0.50	1		
PCB149		ND		0.50	1		
PCB151		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation:

<u>RL</u>

0.50

13-08-0936 **EPA 3540C**

08/13/13

Method: Units:

EPA 8270C SIM PCB Congeners ug/kg

Page 62 of 64

Qualifiers

Project: Berths 212-224 YTI Terminal

<u>Parameter</u> PCB153 PCB156 PCB157 PCB167 **PCB168** PCB169 PCB170 PCB174 PCB177 PCB180 PCB183 PCB184 PCB187 PCB189 PCB194 PCB195 PCB200 PCB201 PCB203 PCB206 PCB209

Surrogate

2-Fluorobiphenyl

p-Terphenyl-d14

Result ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

ND

ND

93

102

Rec. (%)

0.50 **Control Limits**

14-146

34-148

1 Qualifiers

<u>DF</u>

1

1

1

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order:

08/13/13 13-08-0936

Preparation:

EPA 3540C

Method:

EPA 8270C SIM PCB Congeners

Units:

ug/kg

Project: Berths 212-224 YTI Terminal

Page 63 of 64

Client Sample Number	ample Number Lab Sample Date/Time Matrix Number Collected		Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-318-36	N/A	Soil	GC/MS HHH	08/16/13	08/23/13 23:35	130816F04
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
PCB003		ND		0.50	1		
PCB008		ND		0.50	1		
PCB018		ND		0.50	1		
PCB028		ND		0.50	1		
PCB031		ND		0.50	1		
PCB033		ND		0.50	1		
PCB037		ND		0.50	1		
PCB044		ND		0.50	1		
PCB049		ND		0.50	1		
PCB052		ND		0.50	1		
PCB056		ND		0.50	1		
PCB060		ND		0.50	1		
PCB066		ND		0.50	1		
PCB070		ND		0.50	1		
PCB074		ND		0.50	1		
PCB077		ND		0.50	1		
PCB081		ND		0.50	1		
PCB087		ND		0.50	1		
PCB095		ND		0.50	1		
PCB097		ND		0.50	1		
PCB099		ND		0.50	1		
PCB101		ND		0.50	1		
PCB105		ND		0.50	1		
PCB110		ND		0.50	1		
PCB114		ND		0.50	1		
PCB118		ND		0.50	1		
PCB119		ND		0.50	1		
PCB123		ND		0.50	1		
PCB126		ND		0.50	1		
PCB128		ND		0.50	1		
PCB132		ND		0.50	1		
PCB138/158		ND		1.0	1		
PCB141		ND		0.50	1		
PCB149		ND		0.50	1		
PCB151		ND		0.50	1		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3540C EPA 8270C SIM PCB Congeners

08/13/13

Units:

ug/kg

Page 64 of 64

Project: Berths 212-224 YTI Terminal

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
PCB153	ND	0.50	1	
PCB156	ND	0.50	1	
PCB157	ND	0.50	1	
PCB167	ND	0.50	1	
PCB168	ND	0.50	1	
PCB169	ND	0.50	1	
PCB170	ND	0.50	1	
PCB174	ND	0.50	1	
PCB177	ND	0.50	1	
PCB180	ND	0.50	1	
PCB183	ND	0.50	1	
PCB184	ND	0.50	1	
PCB187	ND	0.50	1	
PCB189	ND	0.50	1	
PCB194	ND	0.50	1	
PCB195	ND	0.50	1	
PCB200	ND	0.50	1	
PCB201	ND	0.50	1	
PCB203	ND	0.50	1	
PCB206	ND	0.50	1	
PCB209	ND	0.50	1	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>	
2-Fluorobiphenyl	83	14-146		
p-Terphenyl-d14	117	34-148		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 3050B EPA 6020

08/13/13

Project: Berths 212-224 YTI Terminal

Page 1 of 7

Quality Control Sample ID		Matrix		Instrument	Date Pr	epared	Date Analyzed	MS	/MSD Batch	Number
1C		Tissue		ICP/MS 03	08/15/1	3	08/16/13 20:08	130	815S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Arsenic	3.207	12.50	16.17	104	16.36	105	80-120	1	0-20	
Cadmium	ND	12.50	13.83	111	13.20	106	80-120	5	0-20	
Chromium	1.059	12.50	14.79	110	13.61	100	80-120	8	0-20	
Copper	2.189	12.50	15.04	103	15.60	107	80-120	4	0-20	
Lead	0.4390	12.50	13.72	106	13.48	104	80-120	2	0-20	
Nickel	0.9137	12.50	14.61	110	13.49	101	80-120	8	0-20	
Selenium	0.3260	12.50	14.61	114	13.46	105	80-120	8	0-20	
Silver	ND	6.250	6.810	109	6.703	107	80-120	2	0-20	
Zinc	14.08	12.50	27.45	107	29.40	123	80-120	7	0-20	3

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 2 of 7

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-08-0763-6		Tissue		ICP/MS 03	08/15/1	3	08/20/13 13:18	130	815 S 02	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Arsenic	36.17	12.50	49.47	106	46.88	86	80-120	5	0-20	
Cadmium	5.945	12.50	19.18	106	17.52	93	80-120	9	0-20	
Chromium	0.5405	12.50	13.27	102	12.71	97	80-120	4	0-20	
Copper	46.61	12.50	57.94	91	54.80	66	80-120	6	0-20	3
Lead	0.1250	12.50	13.44	106	12.34	98	80-120	9	0-20	
Nickel	1.428	12.50	14.69	106	14.07	101	80-120	4	0-20	
Selenium	0.7356	12.50	14.36	109	14.11	107	80-120	2	0-20	
Silver	2.163	6.250	9.815	122	8.306	98	80-120	17	0-20	3
Zinc	157.3	12.50	165.8	4X	154.2	4X	80-120	4X	0-20	Q

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 7

Quality Control Sample ID		Matrix		Instrument	Date Pi	repared	Date Analyzed	MS	/MSD Batch	Number
1C		Tissue		Mercury	08/15/1	3	08/19/13 17:30	130	815 S 05	
<u>Parameter</u>	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.5000	0.3196	64	0.1800	36	76-136	56	0-16	3,4

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 4 of 7

Quality Control Sample ID		Matrix		Instrument	Date Pr	repared	Date Analyzed	MS	/MSD Batch	Number
6W		Tissue		Mercury	08/15/1	3	08/19/13 18:28	130	815 S 06	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.5000	0.3870	77	0.4000	80	76-136	3	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3545 EPA 8081A

Project: Berths 212-224 YTI Terminal

Page 5 of 7

Quality Control Sample ID		Matrix	In	strument	Date Pre	epared	Date Analyzed	MS	/MSD Batch	Number
12C		Tissue	Tissue GC 51 08/16/13 08/24/13 15:14		08/16/13		130	816S05		
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
4,4'-DDD	ND	5.000	4.722	94	4.821	96	50-135	2	0-25	
4,4'-DDE	4.323	5.000	10.86	131	11.02	134	50-135	2	0-25	
4,4'-DDT	ND	5.000	4.250	85	4.311	86	50-135	1	0-25	
Aldrin	ND	5.000	3.791	76	3.864	77	50-135	2	0-25	
Alpha Chlordane	ND	5.000	3.939	79	4.013	80	50-135	2	0-25	
Alpha-BHC	ND	5.000	3.815	76	3.909	78	50-135	2	0-25	
Beta-BHC	ND	5.000	4.226	85	4.393	88	50-135	4	0-25	
Delta-BHC	ND	5.000	4.243	85	4.326	87	50-135	2	0-25	
Dieldrin	ND	5.000	4.117	82	4.184	84	50-135	2	0-25	
Endosulfan I	ND	5.000	4.111	82	4.202	84	50-135	2	0-25	
Endosulfan II	ND	5.000	1.888	38	1.910	38	50-135	1	0-25	3
Endosulfan Sulfate	ND	5.000	1.191	24	1.207	24	50-135	1	0-25	3
Endrin	ND	5.000	4.030	81	4.073	81	50-135	1	0-25	
Endrin Aldehyde	ND	5.000	0.09250	2	0.07030	1	50-135	27	0-25	3,4
Endrin Ketone	ND	5.000	1.239	25	1.282	26	50-135	3	0-25	3
Gamma Chlordane	ND	5.000	3.643	73	3.633	73	50-135	0	0-25	
Gamma-BHC	ND	5.000	3.779	76	3.848	77	50-135	2	0-25	
Heptachlor	ND	5.000	3.912	78	3.957	79	50-135	1	0-25	
Heptachlor Epoxide	ND	5.000	4.320	86	4.406	88	50-135	2	0-25	
Methoxychlor	ND	5.000	3.329	67	3.404	68	50-135	2	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received: Work Order: Preparation:

13-08-0936 EPA 3540C

08/13/13

Method: EPA 8270C SIM PAHs

Page 6 of 7

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	n Number
7C		Tissue		GC/MS AAA	08/16/1	13	08/23/13 20:47	130	0816S01	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Acenaphthene	24.22	100.0	90.36	66	92.61	68	40-160	2	0-20	
Acenaphthylene	ND	100.0	89.52	90	91.35	91	40-160	2	0-20	
Anthracene	ND	100.0	81.37	81	82.32	82	40-160	1	0-20	
Benzo (a) Anthracene	13.02	100.0	103.9	91	104.4	91	40-160	0	0-20	
Benzo (a) Pyrene	33.30	100.0	124.2	91	125.6	92	40-160	1	0-20	
Benzo (b) Fluoranthene	46.22	100.0	139.7	93	127.5	81	40-160	9	0-20	
Benzo (g,h,i) Perylene	ND	100.0	81.35	81	84.64	85	40-160	4	0-20	
Benzo (k) Fluoranthene	34.45	100.0	112.5	78	114.0	80	40-160	1	0-20	
Chrysene	21.20	100.0	102.2	81	101.6	80	40-160	1	0-20	
Dibenz (a,h) Anthracene	ND	100.0	90.76	91	92.85	93	40-160	2	0-20	
Fluoranthene	70.28	100.0	163.9	94	153.9	84	40-160	6	0-20	
Fluorene	ND	100.0	95.20	95	95.53	96	40-160	0	0-20	
Indeno (1,2,3-c,d) Pyrene	ND	100.0	109.3	109	111.1	111	40-160	2	0-20	
2-Methylnaphthalene	ND	100.0	97.15	97	98.38	98	40-160	1	0-20	
1-Methylnaphthalene	ND	100.0	88.22	88	96.03	96	40-160	8	0-20	
Naphthalene	ND	100.0	87.99	88	90.13	90	40-160	2	0-20	
Phenanthrene	ND	100.0	89.77	90	98.07	98	40-160	9	0-20	
Pyrene	201.5	100.0	304.7	103	275.4	74	40-160	10	0-46	

Method:

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:

EPA 3540C EPA 8270C SIM PCB Congeners

08/13/13

13-08-0936

Project: Berths 212-224 YTI Terminal

Page 7 of 7

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
4C		Tissue		GC/MS HHH	08/16/1	13	08/24/13 01:27	130	816S03	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
PCB008	ND	50.00	44.79	90	44.26	89	50-150	1	0-30	
PCB018	ND	50.00	43.27	87	43.85	88	50-150	1	0-30	
PCB028	ND	50.00	43.77	88	43.90	88	50-150	0	0-30	
PCB044	ND	50.00	44.94	90	45.44	91	50-150	1	0-30	
PCB052	ND	50.00	40.74	81	41.14	82	50-150	1	0-30	
PCB066	ND	50.00	46.97	94	47.20	94	50-150	0	0-30	
PCB077	ND	50.00	45.51	91	45.95	92	50-150	1	0-30	
PCB101	ND	50.00	44.56	89	44.93	90	50-150	1	0-30	
PCB105	ND	50.00	44.75	90	44.92	90	50-150	0	0-30	
PCB118	ND	50.00	47.40	95	47.12	94	50-150	1	0-30	
PCB126	ND	50.00	43.51	87	43.83	88	50-150	1	0-30	
PCB128	ND	50.00	49.13	98	49.17	98	50-150	0	0-30	
PCB153	ND	50.00	44.28	89	44.49	89	50-150	0	0-30	
PCB170	ND	50.00	37.05	74	36.74	73	50-150	1	0-30	
PCB180	ND	50.00	43.91	88	43.67	87	50-150	1	0-30	
PCB187	ND	50.00	42.95	86	43.29	87	50-150	1	0-30	
PCB195	ND	50.00	44.34	89	43.37	87	50-150	2	0-30	
PCB206	ND	50.00	39.26	79	38.91	78	50-150	1	0-30	
PCB209	ND	50.00	44.41	89	43.36	87	50-150	2	0-30	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 1 of 3

Quality Control Sample ID	Matrix	Instrument	Date Prepare	ed Date Analy	zed PDS/P	DSD Batch Number
1C	Tissue	ICP/MS 03	08/15/13 00:	00 08/16/13 2	0:14 13081	5 S 01
Parameter	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	%Rec. CL	Qualifiers
Arsenic	3.207	12.50	15.76	100	75-125	
Cadmium	ND	12.50	13.02	104	75-125	
Chromium	1.059	12.50	14.02	104	75-125	
Copper	2.189	12.50	14.85	101	75-125	
Lead	0.4390	12.50	13.35	103	75-125	
Nickel	0.9137	12.50	14.19	106	75-125	
Selenium	0.3260	12.50	13.45	105	75-125	
Silver	ND	6.250	5.745	92	75-125	
Zinc	14.08	12.50	27.26	105	75-125	

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 2 of 3

Quality Control Sample ID	Matrix	Instrument	Date Prepare	ed Date Analy	zed PDS/P	DSD Batch Number
13-08-0763-6	Tissue	ICP/MS 03	08/15/13 00:	00 08/19/13 1	4:24 13081	5S02
<u>Parameter</u>	Sample Conc.	Spike Added	PDS Conc.	PDS %Rec.	%Rec. CL	Qualifiers
Arsenic	36.17	12.50	45.75	77	75-125	
Cadmium	5.945	12.50	18.25	98	75-125	
Chromium	0.5405	12.50	13.49	104	75-125	
Copper	46.61	12.50	55.17	68	75-125	5
Lead	0.1250	12.50	13.02	103	75-125	
Nickel	1.428	12.50	15.11	109	75-125	
Selenium	0.7356	12.50	13.77	104	75-125	
Silver	2.163	6.250	7.465	85	75-125	
Zinc	157.3	12.50	137.5	4X	75-125	Q

Quality Control - PDS/PDSD

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 3

Quality Control Sample ID		Matrix		Instrumen	Instrument Date Prepared		Date Analyzed		PDS/PDSD Bat	ch Number
1C		Tis	sue	Mercury		08/15/13 00:00	08/20/13	13:39	130815S05	
Parameter	Sample Conc.	<u>Spike</u> Added	PDS Conc.	PDS %Rec.	PDSD Conc.	PDSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.5000	0.4606	92	0.4326	87	75-125	6	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 N/A

08/13/13

SM 2540 B (M) Page 1 of 4

Project: Berths 212-224 YTI Terminal

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
1C	Tissue	N/A	08/17/13 00:00	08/17/13 16:45	D0817TSD3
<u>Parameter</u>	Sample Cond	c. DUP Conc.	RPD	RPD CL	Qualifiers
Solids, Total	14.30	15.50	8	0-10	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 N/A

08/13/13

SM 2540 B (M)

Project: Berths 212-224 YTI Terminal

Page 2 of 4

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
6W	Tissue	N/A	08/17/13 00:00	08/17/13 16:45	D0817TSD4
<u>Parameter</u>	Sample Cond	DUP Conc.	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Solids, Total	15.30	14.30	7	0-10	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation:

Method:

08/13/13 13-08-0936 N/A

MeCl2 Ext. (NOAA 1993a)

Page 3 of 4

Project: Berths 212-224 YTI Terminal

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
4C	Tissue	N/A	N/A	08/22/13 12:00	130822D01
Parameter	Sample Cond	DUP Conc.	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
% Lipids	0.7100	0.7300	3	0-25	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received:
Work Order:
Preparation:

13-08-0936 N/A

08/13/13

MeCl2 Ext. (NOAA 1993a)

Page 4 of 4

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
13W	Tissue	N/A	N/A	08/22/13 12:00	130822D02
Parameter	Sample Con	nc. <u>DUP Conc.</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
% Lipids	1.340	1.300	3	0-25	

Method:

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 1 of 10

Quality Control Sample ID	Matrix		Instrument		d Date A	Analyzed	LCS/LCSD Ba	tch Number
099-15-258-20	Soil	IC	CP/MS 03	08/15/13	08/16/	13 20:05	130815L01T	
Parameter Spike Added	<u>LCS</u> Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Arsenic 12.50	11.95	96	12.32	99	80-120	3	0-20	
Cadmium 12.50	12.54	100	12.41	99	80-120	1	0-20	
Chromium 12.50	12.40	99	12.54	100	80-120	1	0-20	
Copper 12.50	12.54	100	13.37	107	80-120	6	0-20	
Lead 12.50	12.32	99	12.55	100	80-120	2	0-20	
Nickel 12.50	12.60	101	13.26	106	80-120	5	0-20	
Selenium 12.50	11.84	95	12.23	98	80-120	3	0-20	
Silver 6.250	5.612	90	5.777	92	80-120	3	0-20	
Zinc 12.50	13.18	105	13.41	107	80-120	2	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method: 08/13/13 13-08-0936 EPA 3050B EPA 6020

Project: Berths 212-224 YTI Terminal

Page 2 of 10

Quality Control Sample ID		Matrix Instrument		Date Prepare	d Date A	Analyzed	LCS/LCSD Ba	tch Number	
099-15-258-21		Soil	IC	CP/MS 03	08/15/13	08/19/	13 20:46	130815L02T	
Parameter	<u>Spike</u> <u>Added</u>	<u>LCS</u> Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Arsenic	12.50	12.95	104	12.85	103	80-120	1	0-20	
Cadmium	12.50	12.77	102	12.48	100	80-120	2	0-20	
Chromium	12.50	13.44	108	12.53	100	80-120	7	0-20	
Copper	12.50	13.06	104	13.83	111	80-120	6	0-20	
Lead	12.50	13.19	106	12.65	101	80-120	4	0-20	
Nickel	12.50	13.72	110	13.52	108	80-120	1	0-20	
Selenium	12.50	13.48	108	12.07	97	80-120	11	0-20	
Silver	6.250	5.528	88	5.637	90	80-120	2	0-20	
Zinc	12.50	12.87	103	14.19	114	80-120	10	0-20	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 3 of 10

Quality Control Sample ID		Matrix		Instrument	ument Date Prepared		nalyzed	LCS/LCSD Batch Number	
099-12-409-46		Soil		Mercury	08/15/13	08/15/	13 15:53	130815L05T	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.8350	0.9197	110	0.8176	98	82-124	12	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: Work Order: Preparation: Method:

13-08-0936 EPA 7471A Total EPA 7471A

08/13/13

Project: Berths 212-224 YTI Terminal

Page 4 of 10

Quality Control Sample ID		Matrix In:		nstrument	Date Prepa	ared Date A	Analyzed	LCS/LCSD Ba	tch Number
099-12-409-47		Soil	1	Mercury	08/15/13	08/15/	13 15:56	130815L06T	
<u>Parameter</u>	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.8350	0.9270	111	0.7970	95	82-124	15	0-16	

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 **EPA 8081A**

Project: Berths 212-224 YTI Terminal

Page 5 of 10

Quality Control Sample ID		M	atrix	Instrumer	nt D	ate Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-294-22		Sc	oil	GC 51	08	3/16/13	08/24/13	3 17:28	130816F05	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
4,4'-DDD	5.000	4.391	88	4.396	88	50-135	36-149	0	0-25	
4,4'-DDE	5.000	4.522	90	4.544	91	50-135	36-149	0	0-25	
4,4'-DDT	5.000	4.422	88	4.451	89	50-135	36-149	1	0-25	
Aldrin	5.000	4.273	85	4.319	86	50-135	36-149	1	0-25	
Alpha Chlordane	5.000	4.316	86	4.345	87	50-135	36-149	1	0-25	
Alpha-BHC	5.000	4.086	82	4.188	84	50-135	36-149	2	0-25	
Beta-BHC	5.000	3.975	80	4.119	82	50-135	36-149	4	0-25	
Delta-BHC	5.000	4.175	84	4.228	85	50-135	36-149	1	0-25	
Dieldrin	5.000	4.418	88	4.450	89	50-135	36-149	1	0-25	
Endosulfan I	5.000	4.396	88	4.423	88	50-135	36-149	1	0-25	
Endosulfan II	5.000	4.404	88	4.393	88	50-135	36-149	0	0-25	
Endosulfan Sulfate	5.000	4.282	86	4.266	85	50-135	36-149	0	0-25	
Endrin	5.000	4.383	88	4.454	89	50-135	36-149	2	0-25	
Endrin Aldehyde	5.000	4.575	91	4.565	91	50-135	36-149	0	0-25	
Endrin Ketone	5.000	4.631	93	4.613	92	50-135	36-149	0	0-25	
Gamma Chlordane	5.000	4.189	84	4.208	84	50-135	36-149	0	0-25	
Gamma-BHC	5.000	4.220	84	4.240	85	50-135	36-149	0	0-25	
Heptachlor	5.000	4.308	86	4.373	87	50-135	36-149	2	0-25	
Heptachlor Epoxide	5.000	4.323	86	4.356	87	50-135	36-149	1	0-25	
Methoxychlor	5.000	4.712	94	4.704	94	50-135	36-149	0	0-25	

Total number of LCS compounds: 20 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Date Received: Work Order: Preparation: Method:

08/13/13 13-08-0936 EPA 3545 **EPA 8081A**

Project: Berths 212-224 YTI Terminal

Page 6 of 10

Quality Control Sample ID		M	atrix	Instrumer	nt D	ate Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-294-23		Soil		GC 51	GC 51 08/16/13		08/24/13 17:56		130816F06	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
4,4'-DDD	5.000	5.680	114	5.585	112	50-135	36-149	2	0-25	
4,4'-DDE	5.000	5.753	115	5.652	113	50-135	36-149	2	0-25	
4,4'-DDT	5.000	5.756	115	5.665	113	50-135	36-149	2	0-25	
Aldrin	5.000	5.520	110	5.438	109	50-135	36-149	2	0-25	
Alpha Chlordane	5.000	5.497	110	5.414	108	50-135	36-149	2	0-25	
Alpha-BHC	5.000	5.240	105	5.169	103	50-135	36-149	1	0-25	
Beta-BHC	5.000	5.236	105	5.186	104	50-135	36-149	1	0-25	
Delta-BHC	5.000	5.338	107	5.283	106	50-135	36-149	1	0-25	
Dieldrin	5.000	5.688	114	5.600	112	50-135	36-149	2	0-25	
Endosulfan I	5.000	5.621	112	5.535	111	50-135	36-149	2	0-25	
Endosulfan II	5.000	5.609	112	5.509	110	50-135	36-149	2	0-25	
Endosulfan Sulfate	5.000	5.553	111	5.474	109	50-135	36-149	1	0-25	
Endrin	5.000	5.631	113	5.547	111	50-135	36-149	2	0-25	
Endrin Aldehyde	5.000	5.903	118	5.816	116	50-135	36-149	1	0-25	
Endrin Ketone	5.000	6.083	122	6.002	120	50-135	36-149	1	0-25	
Gamma Chlordane	5.000	5.416	108	5.252	105	50-135	36-149	3	0-25	
Gamma-BHC	5.000	5.398	108	5.314	106	50-135	36-149	2	0-25	
Heptachlor	5.000	5.588	112	5.516	110	50-135	36-149	1	0-25	
Heptachlor Epoxide	5.000	5.530	111	5.451	109	50-135	36-149	1	0-25	
Methoxychlor	5.000	6.164	123	6.075	121	50-135	36-149	1	0-25	

Total number of LCS compounds: 20 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Method:

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302

Project: Berths 212-224 YTI Terminal

Date Received:
Work Order:
Preparation:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Page 7 of 10

		•							90	
Quality Control Sample ID		M	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Ba	tch Number
099-15-943-5		Sc	oil	GC/MS	AAA	08/16/13	08/23/13 16:06		130816L01	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec		ME CL	RPD	RPD CL	Qualifiers
Acenaphthene	100.0	117.6	118	115.9	116	48-108	38-118	1	0-11	ME
Acenaphthylene	100.0	92.32	92	89.31	89	40-160	20-180	3	0-20	
Anthracene	100.0	94.03	94	87.86	88	40-160	20-180	7	0-20	
Benzo (a) Anthracene	100.0	119.0	119	118.1	118	40-160	20-180	1	0-20	
Benzo (a) Pyrene	100.0	82.80	83	82.15	82	40-160	20-180	1	0-20	
Benzo (b) Fluoranthene	100.0	126.9	127	127.0	127	40-160	20-180	0	0-20	
Benzo (g,h,i) Perylene	100.0	108.2	108	106.9	107	40-160	20-180	1	0-20	
Benzo (k) Fluoranthene	100.0	137.1	137	135.9	136	40-160	20-180	1	0-20	
Chrysene	100.0	125.5	125	126.6	127	40-160	20-180	1	0-20	
Dibenz (a,h) Anthracene	100.0	122.9	123	123.7	124	40-160	20-180	1	0-20	
Fluoranthene	100.0	132.3	132	124.2	124	40-160	20-180	6	0-20	
Fluorene	100.0	129.7	130	126.2	126	40-160	20-180	3	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	154.2	154	149.8	150	40-160	20-180	3	0-20	
2-Methylnaphthalene	100.0	131.8	132	134.2	134	40-160	20-180	2	0-20	
1-Methylnaphthalene	100.0	123.5	124	134.4	134	40-160	20-180	8	0-20	
Naphthalene	100.0	119.2	119	124.3	124	40-160	20-180	4	0-20	
Phenanthrene	100.0	128.0	128	119.2	119	40-160	20-180	7	0-20	

123.7

124

40-160

20-180

2

0-16

Total number of LCS compounds: 18 Total number of ME compounds: 1

Pyrene

Total number of ME compounds allowed: 1

100.0

121.6

122

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received:
Work Order:
Preparation:
Method:

13-08-0936 EPA 3540C EPA 8270C SIM PAHs

08/13/13

Project: Berths 212-224 YTI Terminal

Page 8 of 10

Quality Control Sample ID		Ma	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-15-943-6		Sc	oil	GC/MS	AAA	08/16/13	08/26/13	3 13:12	130816L02	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acenaphthene	100.0	107.1	107	104.3	104	48-108	38-118	3	0-11	
Acenaphthylene	100.0	81.02	81	80.37	80	40-160	20-180	1	0-20	
Anthracene	100.0	75.37	75	73.43	73	40-160	20-180	3	0-20	
Benzo (a) Anthracene	100.0	104.2	104	101.6	102	40-160	20-180	3	0-20	
Benzo (a) Pyrene	100.0	72.43	72	69.39	69	40-160	20-180	4	0-20	
Benzo (b) Fluoranthene	100.0	115.0	115	106.6	107	40-160	20-180	8	0-20	
Benzo (g,h,i) Perylene	100.0	96.98	97	91.54	92	40-160	20-180	6	0-20	
Benzo (k) Fluoranthene	100.0	121.4	121	113.6	114	40-160	20-180	7	0-20	
Chrysene	100.0	107.9	108	106.3	106	40-160	20-180	1	0-20	
Dibenz (a,h) Anthracene	100.0	111.9	112	106.6	107	40-160	20-180	5	0-20	
Fluoranthene	100.0	109.8	110	106.4	106	40-160	20-180	3	0-20	
Fluorene	100.0	113.0	113	105.9	106	40-160	20-180	6	0-20	
Indeno (1,2,3-c,d) Pyrene	100.0	138.1	138	127.0	127	40-160	20-180	8	0-20	
2-Methylnaphthalene	100.0	118.7	119	117.2	117	40-160	20-180	1	0-20	
1-Methylnaphthalene	100.0	117.7	118	111.0	111	40-160	20-180	6	0-20	
Naphthalene	100.0	107.0	107	105.6	106	40-160	20-180	1	0-20	
Phenanthrene	100.0	107.8	108	98.35	98	40-160	20-180	9	0-20	
Pyrene	100.0	104.6	105	105.4	105	40-160	20-180	1	0-16	

Total number of LCS compounds: 18 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: 08/13/13
Work Order: 13-08-0936
Preparation: EPA 3540C

Method: EPA 8270C SIM PCB Congeners

Project: Berths 212-224 YTI Terminal Page 9 of 10

Quality Control Sample ID		Ma	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-318-35		Sc	oil	GC/MS I	ннн	08/16/13	08/23/13	3 21:41	130816F03	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
PCB008	50.00	34.39	69	32.58	65	50-150	33-167	5	0-30	
PCB018	50.00	32.76	66	31.15	62	50-150	33-167	5	0-30	
PCB028	50.00	33.54	67	32.09	64	50-150	33-167	4	0-30	
PCB044	50.00	34.24	68	32.94	66	50-150	33-167	4	0-30	
PCB052	50.00	31.66	63	30.58	61	50-150	33-167	3	0-30	
PCB066	50.00	35.70	71	34.71	69	50-150	33-167	3	0-30	
PCB077	50.00	35.60	71	34.82	70	50-150	33-167	2	0-30	
PCB101	50.00	33.94	68	33.17	66	50-150	33-167	2	0-30	
PCB105	50.00	33.02	66	32.57	65	50-150	33-167	1	0-30	
PCB118	50.00	35.33	71	34.82	70	50-150	33-167	1	0-30	
PCB126	50.00	31.94	64	32.12	64	50-150	33-167	1	0-30	
PCB128	50.00	28.88	58	28.39	57	50-150	33-167	2	0-30	
PCB153	50.00	33.17	66	32.71	65	50-150	33-167	1	0-30	
PCB170	50.00	27.61	55	26.54	53	50-150	33-167	4	0-30	
PCB180	50.00	31.36	63	31.11	62	50-150	33-167	1	0-30	
PCB187	50.00	32.64	65	32.36	65	50-150	33-167	1	0-30	
PCB195	50.00	32.75	66	31.17	62	50-150	33-167	5	0-30	
PCB206	50.00	28.77	58	27.91	56	50-150	33-167	3	0-30	
PCB209	50.00	31.23	62	30.39	61	50-150	33-167	3	0-30	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 9210 Sky Park Court, Suite 200 San Diego, CA 92123-4302 Date Received: 08/13/13
Work Order: 13-08-0936
Preparation: EPA 3540C

Method: EPA 8270C SIM PCB Congeners

Project: Berths 212-224 YTI Terminal Page 10 of 10

Quality Control Sample ID		Ma	atrix	Instrume	ent	Date Prepared	Date An	alyzed	LCS/LCSD Bat	ch Number
099-14-318-36		Sc	oil	GC/MS	ннн	08/16/13	08/23/13	3 22:38	130816F04	
Parameter	<u>Spike</u> Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
PCB008	50.00	53.95	108	55.66	111	50-150	33-167	3	0-30	
PCB018	50.00	51.60	103	52.79	106	50-150	33-167	2	0-30	
PCB028	50.00	52.61	105	54.20	108	50-150	33-167	3	0-30	
PCB044	50.00	53.92	108	54.68	109	50-150	33-167	1	0-30	
PCB052	50.00	49.98	100	50.99	102	50-150	33-167	2	0-30	
PCB066	50.00	57.17	114	58.29	117	50-150	33-167	2	0-30	
PCB077	50.00	57.27	115	58.49	117	50-150	33-167	2	0-30	
PCB101	50.00	54.42	109	54.88	110	50-150	33-167	1	0-30	
PCB105	50.00	54.24	108	54.95	110	50-150	33-167	1	0-30	
PCB118	50.00	57.48	115	58.81	118	50-150	33-167	2	0-30	
PCB126	50.00	52.97	106	53.55	107	50-150	33-167	1	0-30	
PCB128	50.00	47.95	96	48.69	97	50-150	33-167	2	0-30	
PCB153	50.00	54.36	109	55.18	110	50-150	33-167	1	0-30	
PCB170	50.00	44.45	89	45.12	90	50-150	33-167	2	0-30	
PCB180	50.00	53.20	106	54.64	109	50-150	33-167	3	0-30	
PCB187	50.00	53.92	108	55.17	110	50-150	33-167	2	0-30	
PCB195	50.00	52.32	105	52.86	106	50-150	33-167	1	0-30	
PCB206	50.00	47.19	94	48.21	96	50-150	33-167	2	0-30	
PCB209	50.00	50.82	102	52.54	105	50-150	33-167	3	0-30	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order: 13-08-0936 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.

% Recovery and/or RPD out-of-range.

Χ Ζ

Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

DATE:

08/12/13

PAGE:	1	OF	3

	LABORATORY CLIENT: AMEC ADDRESS:						CLIE	NTPRO	DJECT	NAME	/ NUMI	BEH:							P.O.	NO.:					
		The Market of the Control of the Con					В	erths	21	2-22	4 Y1	1 Te	rmir	al					10	1510	0192	9			
	Sky Park Ct # 200							JECT C											QU	N atc	O.:				
CITY:							Ва	arry	Sny	der,	Tyle	er Hu	uff												
San D	iego, CA 92123						SAM	PLER(S	(SIC	NATUF	RE)	*****************	-	÷.					L AE	USE	ONLY				
TEL: (858) :	300-4322	E-Mail tyler.huff@amec.com		E-MAIL barry.si	nyder@ame	ec.cor		(A (· V		_)					15		15.	. U:	! 5	6]
	OUND TIME	Tevior.monies annocioons	Name of the second		***************************************					-		ALL DESCRIPTION OF THE PARTY OF							leinimineiae -		administration			e de la constitución de la const	
	AME DAY 🔲 24 HR		5	DAYS 5	10 DAYS								H	EQUI	ESII	=D A	NAL	-YSI	5		***************************************				
SPECIAL	. REQUIREMENTS (ADDITIONAL	COSTS MAY APPLY)															T								
	WQCB REPORTING	ARCHIVE SAMPLE	S UNTIL	- <u> </u>	/		þ∈																		
	INSTRUCTIONS Felle Gonsman is PM	; see attached sheet fo	r addio	nal inform	ation		required					ides									.				ı
	ort results in wet and		. aaa.o.	, , , , , , , , , , , , , , , , , , ,			s re					stic	ω.												
		open cooler at Calscier	nce Sar	nple Rece	ivina.		ests					Pe	ner												
		ole totals (i.e. PCBs, PA			J		list t	Total Solids		Total Lipids		Chlorinated Pesticides	Congeners												
LAB	se report an applicat	LOCATION/		MPLING	1.	Je.	60	l So	<u>s</u>	<u> [</u>	s	rine													
USE	SAMPLE ID	DESCRIPTION	DATE	TIME	Watrix	*Cont	Please	rota	Metals	Tota	PAHs	Chlc	PCB												
7	1C	POLA - YTI Terminal	8/14/2	1500	Tissue	1		χ.	Х	Х	X	Х	Х												1
2	2C	POLA - YTI Terminal	, , , , ,	1	Tissue	1		Х	Х	Х	Х	Х	Х												
3	3C	POLA - YTI Terminal			Tissue	1		Х	Х	Х	Х	Х	Х												
4	4C	POLA - YTI Terminal			Tissue	1		Х	Х	Х	Х	Х	Х												
5	5C	POLA - YTI Terminal			Tissue	1		x	Х	Х	Х	Х	Х												
Ĉ.	6C	POLA - YTI Terminal		·	Tissue	1		Х	X	Х	Х	х	X				_	1							
-7	7C	POLA - YTI Terminal			Tissue	1		Х	Х	Х	X	X	Х				<u> </u>		<u></u>			\dashv			_
કિ	8C	POLA - YTI Terminal			Tissue	1		Х	Х	X	X	X	Х												_
9	9C	POLA - YTI Terminal			Tissue	1		Х	Х	Х	Х	Х	Х				<u> </u>								_
10	10C	POLA - YTI Terminal	V	<u> </u>	Tissue	1		Х	Х	Х	Х	Х	Х												
Relinge	istyed by: (Signature)	iber 8/13/13	i 4	35	Received b	A SOL	ture)									ć	I	Date	કો \	31	13	Time	13	2	
Religio	shed by: (Signature)		vv		Received by	/: (Gigna	ature)				- Company	<u> </u>						Date	-			Time			\exists
M						Original (* * * * * * * * * * * * * * * * * * *				Market Control	Market State of the State of th	approximate the second	زع	R					<u> </u>	/13	<u> </u>		89	, 0	- [
Relinqu	ished by: (Signature)			•	Received by	y: (Signa	ature)	-										Date	э:	/		Time:			9
			7.000 (100 (100 (100 (100 (100 (100 (100		***************************************	NECESSORY OF STREET		o november and a	-microsomonis			ALCONOMIC CONTROL	COST OFFI E SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF SANGE OF	******************	200000000000000000000000000000000000000				A1000000000000000000000000000000000000					MONTH CONTRACTOR	

Calscience . Environmental aboratories, Inc.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

DATE:

08/12/13

PAGE:	2	OF	3

LABORA	TORY CLIENT:		ola nicesca kiselani	enikalan katika				•	NT PR					J. 100 100 100 100 100 100 100 100 100 10			***********				P.O.			53 1070 Homeo			
ADDRES	SS:		**************						erth:			4 Y1	TI Te	rmi	nal)151 OTE N	0192	29			
CITY:	Sky Park Ct # 200								arry			Tvl	er H	uff							QU	JIEN	.0				
	iego, CA 92123							SAM	PLEK(s): (SIC	NATU	(E)					T				1920900000	10/01/2005	ONLY	450,000,00			
TEL: (858)	300-4322	E-Mail tyler.huff@amec.com			E-MAIL barry.sny	der@ame	c.cor	r (L												0	<u> </u>	3-[4	2	ZĽ	3 (الك
	ROUND TIME			_				, ,	4					Ç	REQU	IFS	TEI	λ Δ Λ	ΙΔΙ	VSI	9						
	AME DAY 24 HR			5 D/	AYS X	10 DAYS									· · · · · ·			, AI	477	. 1 01							
	RWQCB REPORTING		e i init	ru	,	,																					
SPECIA	L INSTRUCTIONS				/			ired					ş														
		; see attached sheet fo	r addi	ional	l informat	ion.		required					Pesticides												l		
	ort results in wet and	l dry weight. 'open cooler at Calscier	2 00	amn	le Receiv	ina							Pest	ers													
ŀ	•	ole totals (i.e. PCBs, PA		•	ie receiv	mg.		Please list tests	Solids		Lipids			Congeners													
LAB	ase report an applicat	LOCATION/		SAMP	LING	4-		se li	So	S	Lip I	s	Chlorinated														
USE ONLY	SAMPLE ID	DESCRIPTION	DA	TE	TIME	Matrix	*Cone	Plea	Total	Metals	Total	PAHs	Chic	PCB		ļ											
11	11C	POLA - YTI Terminal	8/1	0/13	1500	Tissue	1		Х	Х	Х	Х	Х	X													
12	12C	POLA - YTI Terminal	1		1500	Tissue	1		Х	Х	Х	Х	Х	X													
13	13C	POLA - YTI Terminal			1500	Tissue	1		Х	Х	Х	Х	X	X													
14	14C	POLA - YTI Terminal			1500	Tissue	1		Х	Х	Х	Х	X	X													
15	15C	POLA - YTI Terminal			1500	Tissue	1		Х	X	Х	Х	Х	X													
ما	1W	POLA - YTI Terminal			1300	Tissue	1		X	X	Х	X	X	Х													
17	2W	POLA - YTI Terminal			1300	Tissue	1		Х	Х	Х	Х	X	X													
18	3W	POLA - YTI Terminal			1300	Tissue	1		Х	X	X	X	Х	X													
19	4W	POLA - YTI Terminal			1300	Tissue	1		Х	Х	Х	Х	Х	Х													
70	5W	POLA - YTI Terminal		9	1300		1		Х	Х	Х	Х	Х	Х												ĺ	
	ished by: (Signature) UUNNE (SibOY 8/13/13		14	35	Received by	Signa	(Ace)			· variable de la constantina de la constantina de la constantina de la constantina de la constantina de la cons								क्रा	Date	:: 211:	31	13	Time	4:	3($\overline{}$
Pello	ished by: (Signature)	011413		v (• -	Received by	: (S igna	ture)	-									<u></u>		Date		<u>·</u>	<u> </u>	Time	a:		\neg
M	uished by: (Signature)	National Control of the Control of t				Received by	(Signa	turo		- Secretary	2	CONSTRUCTION OF THE PERSON NAMED IN	-			0	7	anar		18	//	<u> </u>	<u>></u>	Tim		30	_
Kemidi	lished by. (Signature)					received by	, toigna	ui e)												Dale	· /	,	ļ	Time:			

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

DATE:

08/12/13

PAGE: _____3 ___OF ____3

LABORA AMEC	ATORY CLIENT:					CANAN SARA (SARA AS AND A		NT PRO									***************************************	communica		P.O.		**************************************	THE PARTY OF THE PARTY OF	<i>Personal</i>	Communication	
ADDRE								erth:			4 YT	I Te	rmiı	nal							151	<u>0192</u>	29			_
CITY:	Sky Park Ct # 200							arry			Tyle	er H	uff							QUC) I E IN	0.;				
San E	iego, CA 92123							PLERG				7								\$600000000	USE	un seguiros de				
TEL: (858)	300-4322	E-Mail tyler.huff@amec.com		E-MAIL barry.sny	/der@ame	c.cor		4	L)											0	[8]-[0[Z E	3 (3
	ROUND TIME						de:			-				EQL	IEG.	TEI) A N	IAI	Vei							٦
	AME DAY 24 HR		<u> </u>	DAYS X	10 DAYS			γγ					-	LWC	JES	1 5 5	<i>,</i> An	47.L	1 31	<u> </u>						4
	RWQCB REPORTING	·	3 UNTIL	1	,																		ĺ			l
SPECIA	L INSTRUCTIONS						Jirec					es														
		; see attached sheet for	r addiona	al informat	ion.		required					licid														
	ort results in wet and on frozen. Only count/	ory weight. open cooler at Calscier	ice Sami	ole Receiv	vina							Pesticides	ers													
	•	ole totals (i.e. PCBs, PA					Please list tests	Total Solids		Total Lipids		Chlorinated	Congeners													
LAB		LOCATION/		PLING	4	*-	əsı	II Sc	als	ıl Li	ş	orina											l			
USE ONLY	SAMPLE ID	DESCRIPTION	DATE	TIME	Matrix	*CONT	Plez	Tota	Metals	Tota	PAHs	Chi	PCB													
21	6W	POLA - YTI Terminal	8/10/13	1300	Tissue	1		Х	Х	Х	Х	Х	Х													
22	7W	POLA - YTI Terminal		1	Tissue	1		Х	Х	Х	Х	Х	Х													
2-3	8W	POLA - YTI Terminal			Tissue	1		Х	Х	Х	X	Х	Х													
>4	9W	POLA - YTI Terminal			Tissue	1		Х	Х	X	X	X	X													
72	10W	POLA - YTI Terminal			Tissue	1		Х	X	X	Х	X	X													
26	11W	POLA - YTI Terminal			Tissue	1		Х	Х	X	Х	Х	X													
27	12W	POLA - YTI Terminal			Tissue	1		Х	X	Х	Х	Х	X													
28	13W	POLA - YTI Terminal			Tissue	1		X	Х	Х	X	X	X					***************************************								
29	14W	POLA - YTI Terminal			Tissue	1		Х	X	Х	Х	X	Х													
30	15W	POLA - YTI Terminal	4	4	Tissue	u x		X	Х	Х	X	Х	Х													
Relinqu	ujertied by: (Signature)	CLOUN 8/13/13	3 142	35	Received by	A TOTAL	ture)			-		_					Œ	7	Date	311	3	13	Time:	4:	35	,~
Religion	held by: (Signature)	<u> </u>	- • •	1 -7	Received by	Signa	ture)											· ·	Date		 v	2	Time:	:		\exists
	uished by: (Signature)	F-County-Southern County-			Pagaluad b								50	_												
Reindr	noneu by. (olynature)				received by	. (oigna	ure)												Date	; .			Time:			

Table 4-2.
Chemical Analyses for Elutriate, Sediment and Tissue Samples

Analyte	Analysis Method	Elutriate Target Detection Limits ^{a, b}	Sediment Target Detection Limits ^{a, b}	Tissue Target Detection Limits ^{a, b}
Total Solids	160.3/SM 2540 B	N/A	0.1 %	0.100 %
Total Organic Carbon	9060	N/A	0.1 %	N/A
Total Ammonia	SM 4500-NH3 B/C (M)/350.2M°	N/A	0.2 mg/kg	N/A
Total Sulfides	376.2M°	N/A	0.5 mg/kg	N/A
Soluble Sulfides	SM 4500 S2 - D°	N/A	0.5 mg/kg	N/A
Arsenic	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Cadmium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Chromium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.02 mg/kg
Copper	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Lead	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Mercury	7471A ^d	0.0002 mg/L	0.02 mg/kg	0.02 mg/kg
Nickel	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Selenium	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Silver	6020/6010B ^d	0.001 mg/L	0.1 mg/kg	0.1 mg/kg
Zinc	6020/6010B ^d	0.005 mg/L	1.0 mg/kg	1.0 mg/kg
Total Lipids	NOAA 1993a	N/A	N/A	0.1 %
TRPH	418.1M ^d	N/A	10 mg/kg	N/A
TPH (C6-C44)	8015B(M)/8015B ^d	N/A	5.0 mg/kg	N/A
⁻ PAHs ^e	8270C SIM/ GC/TQd	0.2 μg/L	10 μg/kg	10 μg/kg
Chlorinated Pesticides	8081A ^d	0.1 µg/L	1.0 – 20 μg/kg	0.5 - 20 μg/kg
PCB Congeners ⁹	8270C SIM PCB ^d	0.02 μg/L	0.5 μg/kg	0.5 μg/kg
Phenols	8270C SIM ^d	N/A	20 – 100 μg/kg	N/A
Pyrethroids	GC/MS/MS ^I	N/A	0.5 – 1.0 μg/kg	N/A
Phthalates	8270C SIM d	N/A	10 μg/kg	N/A
Organotins	Rice/Krone ^h	3.0 ng/L	3.0 μg/kg	N/A

Notes:

- ^a Sediment minimum detection limits are on a wet-weight basis. Tissue minimum levels are on a wet-weight basis.
- ^b Reporting limits provided by Calscience Environmental Laboratories, Inc.
- Standard Methods for the Examination of Water and Wastewater, 19th Edition American Public Health Association et al. 1995.
- d USEPA 1986-1996. SW-846. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.
- Includes naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene.
- Includes aldrin, α-benzene hexachloride (BHC), β-BHC, γ-BHC (lindane), δ-BHC, chlordane, 2,4- and 4,4-dichlorodiphenyldichloroethane (DDD), 2,4- and 4,4-dichlorodiphenyldichloroethylene (DDE), 2,4- and 4,4-dichlorodiphenyltrichloroethane (DDT), dieldrin, endosulfan I and II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, and toxaphene.
- PCBs (sum of 41 congeners: 18, 28, 37, 44, 49, 52, 66, 70, 74, 77, 81, 87, 99, 101, 105, 110, 114, 118, 119, 123, 126, 128, 138, 149, 151, 153, 156, 157, 158, 167, 168, 169, 170, 177, 180, 183, 187, 189, 194,201, and 206)
- h Rice, C.D. et al. 1987, or similar (e.g. Krone et al. 1989)
- NOAA 1993
- Allethrin (Bioallethrin), Bifenthrin, Cyfluthrin-beta (Baythroid), Cyhalothrin-Lamba, Cypermethrin, Deltamethrin (Decamethrin), Esfenvalerate, Fenpropathrin (Danitol), Fenvalerate (sanmarton), Fluvalinate, Permethrin (cis and trans), Resmethrin (Bioresmethrin), Resmethrin, Sumithrin (Phenothrin), Tetramethrin, and Tralomethrin

polycyclic aromatic hydrocarbon micrograms per kilogram (parts per billion) μg/kg micrograms per liter PC8 polychlorinated biphenyl μg/L milligrams per kilogram (parts per million) SM Standard Methods mg/kg SOP standard operating procedure milligrams per liter mg/L nanograms per liter TPH total petroleum hydrocarbons ng/L

N/A - not applicable TRPH - total recoverable petroleum hydrocarbons

WORK ORDER #: 13-08-

18-	0	9	3	6

SAMPLE RECEIPT FORM

Cooler 1 of 1

CLIENT: AMEC	DATE: _	08/13	/ 13
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not frozen of temperature	Blank of samp	☐ Sampl	e V
CUSTODY SEALS INTACT: Cooler	□ N/A	Initia Initia	Zic
Chain-Of-Custody (COC) document(s) received with samples	_	No	N/A
□ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC			
Proper containers and sufficient volume for analyses requested	3		
Proper preservation noted on COC or sample container □ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace	8/12/13		
Tedlar bag(s) free of condensation		□ aCores [®]	Z Z
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □ □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ Air: □Tedlar® □Canister Other: □ Trip Blank Lot#:	□1PB □_	□1PB na □]500PB
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envel			

Preservative: h: HCL n: HNO $_3$ na $_2$:Na $_2$ S $_2$ O $_3$ na: NaOH p: H $_3$ PO $_4$ s: H $_2$ SO $_4$ u: Ultra-pure znna: ZnAc $_2$ +NaOH f: Filtered Scanned by: