Appendix G-2 Contaminated Sediment BMP Selection Table | | Technical Limitations/ | | | | | |---|---|---|--|--|---| | BMP Option | Site Constraints | Potential Advantages | Potential Disadvantages | Effective Applications | Ineffective Applications | | Mechanical Dred | lging, Equipment Selection | | | • | | | Use
environmental
bucket (aka
closed bucket) | Typically effective only in loose, unconsolidated material Ineffective at removing debris | Some studies have
shown that they can
reduce sediment
resuspension levels | Variable results on previous projects Significantly slower production rate Effectiveness dependent upon sediment characteristics | Typically used for loose,
unconsolidated sediment or
for contaminated sediments | New work dredging Dredging debris Dredging medium to highly consolidated sediment | | Select appropriate
size and type of
bucket when
using standard
bucket | Dependent upon site conditions and sediment physical characteristics Requires dredging experience | Can reduce bucket overfill Can reduce excessive water in bucket Can reduce need to take multiple bites | • None | Any mechanical dredging projects | None | | Use Real Time
Kinematic (RTK)
positioning | DGPS coverage
area/accuracy Not all contractors may
have equipment | Better control over dredging location and bucket depth Can reduce duration of dredging | More expensive to purchase and operate | Projects requiring precise
vertical and horizontal
control during dredging | Projects where tight positioning
control is not required, such as
beach nourishment | | Mechanical Dred | ging, Operational Controls | | | • | | | Use experienced operator (i.e., prequalify contractor) | • None | Experienced dredge operator will be significantly better than inexperienced operator at minimizing resuspended sediments and maintaining an effective production rate | Experienced dredge operators are not always available and are often employed by the larger dredging companies. Low bidders at times may not be qualified in working with contaminated sediment. Specifying experienced operators may result in no bids. | Any mechanical dredging project | None | | Avoid tidal
extremes | Site location may have
high current velocities at
all times | May reduce the horizontal
extent that resuspended
sediment travels | Depending upon season, could
significantly increase project
duration and cost | Consider when tidal extremes cause high current velocities that impact water quality Typically used as contingency measure | Project schedule is tight and slowing production is not an option (e.g., emergency dredging events) | | BMP Option Slow down production rate (e.g., slow bucket near bottom when lowering and near surface when | Technical Limitations/ Site Constraints None | Potential Advantages May reduce sediment loading to water column May reduce sediment resuspended from bucket impact on bottom and | Potential Disadvantages Slower production rate means increased project duration and increased project cost | Effective Applications Typically used as a contingency measure when water quality criteria can not be achieved during standard dredging | Ineffective Applications Project schedule is tight and slowing production is not an option (e.g., emergency dredging events) | |--|--|--|--|---|---| | raising) Do not allow derrick repositioning using clamshell | • None | drainage at the water surface Minimizes resuspension during relocating derrick | May slow down production since a secondary vessel is required to move the derrick Increased project cost due to secondary vessel | Any mechanical dredging project | • None | | Mechanical Dred | ging, Site Containment Op | tions | , | | | | Install silt curtain | Does not extend to bottom of water column Typically not effective in higher current velocities (>2 knots) Need to be anchored, causing difficulty in relocating curtain Interferes with navigation | Provides visible control measure Limits and defines potential impact area on the surface Can reduce resuspended sediment concentrations outside of curtained area, generally limited to surface concentrations | Typically ineffective in containing dissolved chemicals Can become fouled with marine organisms and sink Significant additional cost to project Awkward to deploy and manage Increased resuspended sediment concentrations within contained area Ineffective in areas exposed to wave attack | Non-navigation locations with infrequent equipment movement and low to moderate current Nearshore areas where dredge area can be isolated | Open water areas with deep water, and exposure to waves and high currents Areas with active navigation Projects requiring frequent equipment movement | | Install Gunderboom (i.e., a type of silt curtain that is designed to extend to the sediment bed) | Typically not feasible in high current velocities Need to be anchored, causing difficulty in relocating curtain Interferes with navigation | Provides visible control measure Limits and defines potential impact area Can reduce resuspended sediment concentrations outside of curtained area throughout water column | Typically not effective in containing dissolved chemical release Significant additional cost to project Awkward to deploy and manage Increased resuspended sediment concentrations within contained area Ineffective in areas exposed to wave attack | Non-navigation locations with infrequent equipment movement and low to moderate current Nearshore areas where dredge area can be isolated | Open water areas with deep water, and exposure to waves and high currents Areas with active navigation Projects requiring frequent equipment movement | | BMP Option | Technical Limitations/
Site Constraints | Potential Advantages | Potential Disadvantages | Effective Applications | Ineffective Applications | |--|--|--|--|---|--| | | ging Barge Disposal, Opera | | | <u> </u> | _ | | Use experienced operator (i.e., pre-
qualify contractor) | See previous description | | Control rate of discharge | Dependent upon barge capability Difficult to control | Less impact on bottom,
reducing near bottom
resuspended sediment | May increase dispersion within water column May increase project duration | Use when controlling bottom impact | When schedule is critical | | Move barge
during discharge | Disposal site boundaries
may be limited | May help reduce impact
on bottom | May increase dispersion within water column May increase project duration | Use when controlling bottom impact | When precise disposal placement is required When schedule is critical | | Mechanical Dred | ging Barge Transport and C | Offloading, Equipment Selec | tion | | | | Select appropriate
type of barge
(contractor
responsibility) | Select appropriate barge
to meet project
objectives, and
environmental concerns | Maximize production,
minimize potential
sediment loss | Specifying type of barge to
be used may limit available
contractors | Any mechanical dredging project | None | | Mechanical Dred | ging Barge Transport and C | Offloading, Operational Cont | rols | | | | Avoid barge overfilling | None | May reduce spillage from barge | Potentially requires either
more barges or more
barge trips, increasing
costs | Any mechanical dredging project | None | | Use spill plate/apron during offloading | Wharf configuration/design may preclude this option | Reduce potential for
spillage into water at
offload site | Minimal increased cost | When mechanically
off-loading barges
for upland or
nearshore confined
disposal | When the elevation difference
between the barge and the
offloading top of deck are large | | Use filter material
on barge drainage
ports | Deep hulled barges
typically are not used to
dewater sediment Typically used to reduce
loss of sediment during
dewatering from flat
deck barges | Reduces loss of sediment
when free water drains
from barge | Minimal increased costs May slow down dewatering process | When using flat deck
barges for transport
to offload area When controlled
dewatering is
preferred | Bottom dump or split hull barges When objective is to rapidly dewater the sediment | | Mechanical Dredging Barge Transport and Offloading, Site Containment Options | | | | | | | Install silt curtain | See previous description | | Install
Gunderboom | See previous description | | BMP Option | Technical Limitations/ | Potential Advantages | Potential Disadvantages | Effective Applications | Ineffective Applications | | |---|--|---|--|---|---|--| | BIMIF Option | Site Constraints | Potential Advantages | Potential Disauvantages | Lifective Applications | menective Applications | | | | ing, Equipment Selection | | • | | | | | Select appropriate
type of hydraulic
dredge (suction,
cutterhead,
dustpan, toyo,
etc.) | Dependent upon site conditions and sediment physical characteristics Requires dredging experience | Maximize production,
minimize potential
sediment loss | Specifying hydraulic
equipment to be used may
limit available contractors | Any hydraulic dredging project | None | | | Use Real Time
Kinematic (RTK)
positioning | See previous description | | | | ing, Operational Controls | | | | | | | Use experienced operator (i.e., prequality contractor) | See previous description | | | Avoid tidal extremes | See previous description | | | Slow down
impeller speed | Need to understand system limitations (e.g., potential for plugging or cavitation) Depends on hydraulic pump capability | Reduces flow rate which
may reduce resuspended
sediment at point of
dredging | Reduces production rate, increasing cost May require higher maintenance due to plugging | Any hydraulic dredging project | None | | | Slow down or
speed up swing
rate | Thin cuts require faster
swing rates to maximize
slurry solids
concentration | May reduce resuspended
sediment by slowing or
speeding up swing rate
depending upon cut
thickness | Slowing down swing rate reduces production rate, increasing duration and costs Potential to plug the discharge line | Typically used as a contingency measure when water quality criteria can not be achieved during dredging | Project schedule is tight and slowing production is not an option (e.g., emergency dredging events) | | | | ing, Site Containment Optio | | | | | | | Install silt curtain | See previous description | | | Install
Gunderboom | See previous description | | | Hydraulic Discha | Hydraulic Discharge, Equipment Selection | | | | | | | Use diffuser | Suitable for open water
discharge, but not
typically used in settling
basins | Slows down discharge
velocity, limiting
resuspension impact area | Higher turbid plume within discharge area Slightly higher maintenance costs | Disposal site bathymetry and currents sufficient for adequate dispersal Dredge material does not contain debris which could clog the diffuser | Some beach replenishment projects may not support use of diffusers Large amounts of debris Projects requiring screening for UXO | | | BMP Option | Technical Limitations/
Site Constraints
arge, Operational Controls | Potential Advantages | Potential Disadvantages | Effective Applications | Ineffective Applications | | |---|---|---|--|--|----------------------------|--| | Adjust flow rate | Need to understand system limitations (e.g., potential for plugging or cavitation) Depends on hydraulic pump capability | Slowing flow rate typically reduces sediment load being discharged, and increases retention time within settling basin | Increases duration and costs Potential to plug the discharge line May required higher maintenance due to plugging | Any hydraulic dredging project | • None | | | Adjust slurry solids concentration | Need to understand system limitations (e.g., potential for plugging or cavitation) Depends on hydraulic pump capability | In settling basins, higher solids concentration in slurry may result in less overall resuspended sediment concentration at the effluent discharge location due to higher settling rates associated with higher solids concentration | In open water discharge,
higher solids concentration
may result in higher
resuspended sediment
concentrations | Settling basin discharge sites Open water discharge sites Increasing or decreasing slurry concentration may have variable results at different sites. Laboratory settling tests can assess how a site specific sediment will behave. | • None | | | Move discharge point to maximize retention time | Discharge site boundaries limit discharge point location Hydraulic discharge pipe length is dependent upon pump capability | Increasing retention time in settling basin will allow more resuspended sediment to settle | Locating discharge point to
maximize retention time
may require additional
pipeline and booster
pumps, increasing cost | Settling basin
discharge sites | Open water discharge sites | | | Hydraulic Discharge, Discharge Site Controls | | | | | | | | Size appropriate overflow weir | Dependent upon flow rate | Prevents resuspension of settled sediments within settling basin | None | Settling basin discharge sites | Open water discharge sites | | | Install baffles or other site flow diversion(s) | Site storage capacity Site configuration and flow rate | Increases retention time | Increased costs for structure(s) Reduced storage capacity | Settling basin
discharge sites | Open water discharge sites | | | Increase ponding depth | Site storage capacity Dependent upon flow rate | Increases retention time Reduces potential for resuspending settled sediment | Requires larger containment berms Potentially reduced storage capacity Increased costs | Settling basin
discharge sites | Open water discharge sites | |