APPENDIX A Air Quality Supporting Documentation

Construction

Construction Emissions - May 2018

Tasks

Tasks, Durations, and Construction Emissions by Task

						Max	c. Daily C	onstruct	ion Emiss	ions	
		Duration	Approx. Start	Approx. End				(lb/day)			
ID	Task Name	(days)	Date	Date	NOx	voc	со	PM10	PM2.5	SO2	GHG
1	DRAFT Pier 400 Project Construction S	chedule									
2	Mobilization	1	4/1/2020	4/2/2020	2.6	0.2	2.3	0.4	0.2	0.0	1,467
3	Site Removals	60	4/2/2020	6/1/2020	24.6	1.1	9.9	9.7	1.7	0.1	10,843
4	Abutment #1 Excavation	7	6/1/2020	6/8/2020	4.4	0.3	5.1	0.6	0.3	0.0	2,281
5	Abutment #1 Pile Driving	3	6/8/2020	6/11/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
6	Abutment #1 Final Construction		6/11/2020	6/18/2020	41.9	1.1	5.7	2.3	1.5	0.2	16,288
7	Bent #1 Pile Driving	2	6/18/2020	6/20/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
8	Bent #1 Pile Cap Forming	7	6/20/2020	6/27/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
9	Bent #1 Pile Cap Pour & Curing	7	6/27/2020	7/4/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
10	Bent #1 Pile Cap Forming Removal	7	7/4/2020	7/11/2020	1.6	0.3	3.9	0.4	0.2	0.0	1,248
11	Girder Set #1 Placement	7	7/11/2020	7/18/2020	2.5	0.3	4.0	0.4	0.3	0.0	1,529
12	Bent #2 Pile Driving	2	7/18/2020	7/20/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
13	Bent #2 Pile Cap Forming	7	7/20/2020	7/27/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
14	Bent #2 Pile Cap Pour & Curing	7	7/27/2020	8/3/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
15	Bent #2 Pile Cap Forming Removal	7	8/3/2020	8/10/2020	1.6	0.3	3.9	0.4	0.2	0.0	1,248
16	Girder Set #2 Placement	7	8/10/2020	8/17/2020	2.5	0.3	4.0	0.4	0.3	0.0	1,529
17	Bent #3 Pile Driving	2	8/17/2020	8/19/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
18	Bent #3 Pile Cap Forming	7	8/19/2020	8/26/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
19	Bent #3 Pile Cap Pour & Curing	7	8/26/2020	9/2/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
20	Bent #3 Pile Cap Forming Removal	7	9/2/2020	9/9/2020	1.6	0.3	3.9	0.4	0.2	0.0	1,248
21	Girder Set #3 Placement	7	9/9/2020	9/16/2020	2.5	0.3	4.0	0.4	0.3	0.0	1,529
22	Bent #4 Pile Driving	2	9/16/2020	9/18/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
23	Bent #4 Pile Cap Forming	7	9/18/2020	9/25/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
24	Bent #4 Pile Cap Pour & Curing	7	9/25/2020	10/2/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
25	Bent #4 Pile Cap Forming Removal	7	10/2/2020	10/9/2020	1.6	0.3	3.9	0.4	0.2	0.0	1,248
26	Girder Set #4 Placement	7	10/9/2020	10/16/2020	2.5	0.3	4.0	0.4	0.3	0.0	1,529
27	Bent #5 Pile Driving	2	10/16/2020	10/18/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686

Construction Emissions - May 2018

Tasks

Tasks, Durations, and Construction Emissions by Task

						Max	. Daily C	onstruct	ion Emiss	ions	
ID	Task Name	Duration (days)	Approx. Start Date	Approx. End Date	NOx	voc	со	PM10	PM2.5	SO2	GHG
28	Bent #5 Pile Cap Forming	7	10/18/2020	10/25/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
29	Bent #5 Pile Cap Pour & Curing	7	10/25/2020	11/1/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
30	Bent #5 Pile Cap Forming Removal	7	11/1/2020	11/8/2020	1.6	0.3	3.9	0.4	0.2	0.0	1,248
31	Girder Set #5 Placement	7	11/8/2020	11/15/2020	2.5	0.3	4.0	0.4	0.3	0.0	1,529
32	Bent #6 Pile Driving	2	11/15/2020	11/17/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
33	Bent #6 Pile Cap Forming	7	11/17/2020	11/24/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
34	Bent #6 Pile Cap Pour & Curing	7	11/24/2020	12/1/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
35	Bent #6 Pile Cap Forming Removal	7	12/1/2020	12/8/2020	1.6	0.3	3.9	0.4	0.2	0.0	1,248
36	Girder Set #6 Placement	7	12/8/2020	12/15/2020	2.5	0.3	4.0	0.4	0.3	0.0	1,529
37	Bent #7 Pile Driving	2	12/15/2020	12/17/2020	18.6	1.9	9.8	1.3	1.0	0.0	3,686
38	Bent #7 Pile Cap Forming	7	12/17/2020	12/24/2020	3.3	0.4	8.1	0.4	0.3	0.0	1,969
39	Bent #7 Pile Cap Pour & Curing	7	12/24/2020	12/31/2020	5.6	0.2	1.9	0.6	0.3	0.0	2,604
40	Bent #7 Pile Cap Forming Removal	7	12/31/2020	1/7/2021	1.6	0.3	3.9	0.4	0.2	0.0	1,248
41	Girder Set #7 Placement	7	1/7/2021	1/14/2021	2.5	0.3	4.0	0.4	0.3	0.0	1,529
42	Bent #8 Pile Driving	2	1/14/2021	1/16/2021	18.6	1.9	9.8	1.3	1.0	0.0	3,686
43	Bent #8 Pile Cap Forming	7	1/16/2021	1/23/2021	3.3	0.4	8.1	0.4	0.3	0.0	1,969
44	Bent #8 Pile Cap Pour & Curing	7	1/23/2021	1/30/2021	5.6	0.2	1.9	0.6	0.3	0.0	2,604
45	Bent #8 Pile Cap Forming Removal	7	1/30/2021	2/6/2021	1.6	0.3	3.9	0.4	0.2	0.0	1,248
46	Girder Set #8 Placement	7	2/6/2021	2/13/2021	2.5	0.3	4.0	0.4	0.3	0.0	1,529
47	Bent #9 Pile Driving	2	2/13/2021	2/15/2021	18.6	1.9	9.8	1.3	1.0	0.0	3,686
48	Bent #9 Pile Cap Forming	7	2/15/2021	2/22/2021	3.3	0.4	8.1	0.4	0.3	0.0	1,969
49	Bent #9 Pile Cap Pour & Curing	7	2/22/2021	3/1/2021	5.6	0.2	1.9	0.6	0.3	0.0	2,604
50	Bent #9 Pile Cap Forming Removal	7	3/1/2021	3/8/2021	1.6	0.3	3.9	0.4	0.2	0.0	1,248
51	Girder Set #9 Placement	7	3/8/2021	3/15/2021	2.5	0.3	4.0	0.4	0.3	0.0	1,529
52	Abutment #2 Excavation	7	3/15/2021	3/22/2021	4.4	0.3	5.1	0.6	0.3	0.0	2,281
53	Abutment #2 Pile Driving	3	3/22/2021	3/25/2021	18.6	1.9	9.8	1.3	1.0	0.0	3,686
54	Abutment #2 Final Construction	7	3/25/2021	4/1/2021	41.9	1.1	5.7	2.3	1.5	0.2	16,288

Construction Emissions - May 2018

Tasks

Tasks, Durations, and Construction Emissions by Task

						Max	c. Daily C	onstruct (Ib/day)	ion Emiss	sions	
ID	Task Name	Duration (days)	Approx. Start Date	Approx. End Date	NOx	voc	со	PM10	PM2.5	SO2	GHG
55	Girder Set #10 Placement	7	4/1/2021	4/8/2021	2.5	0.3	4.0	0.4	0.3	0.0	1,529
56	Crane Demobilization	3	4/8/2021	4/11/2021	1.1	0.1	1.8	0.4	0.2	0.0	911
57	Railroad Track Construction	90	3/12/2021	6/10/2021	18.7	1.0	15.3	1.3	0.9	0.1	7,925
58	Railroad Track Turnout and Crossover Construction	60	6/10/2021	8/9/2021	5.5	0.7	14.0	0.2	0.2	0.0	2,924
59	Asphalt Paving and Fencing	45	8/9/2021	9/23/2021	7.7	6.3	6.4	0.7	0.5	0.0	2,674
	Max. Daily Construction Emissions (reflects overlapping tasks) 60.7 6.3 25.1 9.7 2.3 0.2 24,214										

Max. Annual GHG Construction Emissions

	Max. Annual GHG Construction Emissions (metric tons/year)
Max. Annual GHG Construction Emissions	< 685
Total Project GHG Construction Emissions	< 1,127

Notes:

Task ID, Task Name, Equipment, and Duration (Days) from draft 1/29/18 project construction schedule. Start/end dates estimated from Gantt chart.

Task 57 overlaps with Tasks 51-56; all other tasks do not overlap.

Construction duration = ~18 months (2020 - 2021)

Construction Emissions - May 2018

Mobilization

Mobilization

								Max	α. Daily C	onstructi (lb/day)	on Emiss	ions	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi/ day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Large crawler crane	Offroad	1	0.5	300	0.29	-	0.1	0.0	0.1	0.0	0.0	0.0	51
40-ton crane	Offroad	1	0.5	164	0.29	-	0.1	0.0	0.2	0.0	0.0	0.0	28
Excavator	Offroad	1	0.5	164	0.38	-	0.1	0.0	0.2	0.0	0.0	0.0	37
Loader	Offroad	1	0.5	250	0.36	-	0.1	0.0	0.1	0.0	0.0	0.0	53
Grader	Offroad	1	0.5	183	0.41	-	0.1	0.0	0.1	0.0	0.0	0.0	44
Flatbed truck	Onroad	5		•	-	40	2.2	0.1	0.3	0.0	0.0	0.0	705
Worker commute	Onroad	20		•	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust						-				0.4	0.2		
Total							2.6	0.2	2.3	0.4	0.2	0.0	1,466.9

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Construction Emissions - May 2018

Site Removals

Site Removals

								Ma	x. Daily C	onstructi (lb/day)	on Emissi	ons	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi/ day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Excavator	Offroad	1	8	164	0.38	-	1.3	0.1	3.4	0.1	0.1	0.0	585
Loader	Offroad	1	8	250	0.36	-	1.1	0.2	1.7	0.1	0.1	0.0	844
Grader	Offroad	1	8	183	0.41	-	0.9	0.2	1.4	0.0	0.0	0.0	704
Haul truck (10-wheel)	Onroad	54	-	-	-	40	19.9	0.5	1.9	0.1	0.1	0.1	7,737
Flatbed truck	Onroad	3	-	-	-	40	1.3	0.0	0.2	0.0	0.0	0.0	423
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust						-				9.5	1.5		
Total							24.6	1.1	9.9	9.7	1.7	0.1	10,843

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes grading, soil/material handling, onroad vehicle travel on paved roads, brake and tire wear.

<u>Parameter</u>	Value	Basis/Assumption
Task duration:	60 days	POLA staff
Excavated quantity:	38,000 CY total	POLA staff (3/8/18 estimate): 37,387 CY. CY = cubic yard.
Soil density:	1.26 ton/CY	CalEEMod default (~1.5 g/m3 = approx. density of silty loam soil).
Excavation rate:	798 ton/day	
	634 CY/day	
Haul trucks:	54 trucks/day	max. 15 tons per 10-wheel haul truck.

Fugitive dust from soil handling/drop operations:

AP42, Section 13.2.4 (Aggregate Handling and Storage Piles, 11/2006):

PM10 (lb/ton) = 0.35 * (0.0032) * ((u / 5)^(1.3) / (M / 2)^(1.4))

PM2.5 (lb/ton) = 0.053 * (0.0032) * ((u / 5)^(1.3) / (M / 2)^(1.4))

where u = mean wind speed and M = material moisture content

<u>Parameter</u>	Value		Basis/Assumption
u:	6.4	mph	Long Beach avg wind speed = 6.4 mi/hr (AP42, Ch 7.1 (11/2006), Table 7.1-9)
M:	12	%	CalEEMod default, "Cover" material. (Range: Dry = 2%, Moist = 15%, Wet = 50%)
PM10:	0.00013	lb/tor	1
PM2.5:	0.00002	lb/tor	1

Fugitive dust from grading:

 AP42, Ch 11.9 (Western Surface Coal Mining, 11/2006), Table 11.9-1:

 PM10 (lb/mile) = 0.60 * 0.051 (S)^2.0

 PM2.5 (lb/mile) = 0.031 * 0.040 (S)^2.5

 where S = mean vehicle speed (mph)

 Parameter
 Value

 S:
 Value

 Massi / A mph
 Estimated mean speed during grading (blade down). Est. range: 2-5 mph for finishing.

 PM10 EF:
 0.490 lb/mi

Construction Emissions - May 2018

Site Removals

PM2.5 EF:	0.040 lb/mi	
job efficiency:	50%	estimate (ie. 50% means during 8 hr of operation only 4 hr is grading with blade down)
PM10:	7.83 lb/day	(Grading speed [mi/hr]) * (job efficiency [%]) * (Operation [hr/day])
PM2.5:	0.63 lb/day	

Construction Emissions - May 2018

Abutment (Excavating, Pile Driving, Finishing)

Abutment Excavation

								Max	. Daily C	onstructi (lb/day)	on Emissi	ions	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi/ day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Excavator	Offroad	1	8	164	0.38	-	1.3	0.1	3.4	0.1	0.1	0.0	585
Haul truck (10-wheel)	Onroad	8	-	-	-	40	2.9	0.1	0.3	0.0	0.0	0.0	1,146
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust										0.5	0.3		
Total							4.4	0.3	5.1	0.6	0.3	0.0	2,281

Emissions estimates are for one abutment.

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes soil/material handling, onroad vehicle travel on paved roads, brake and tire wear.

Parameter	Value	Basis/Assumption
Task duration:	7 days	POLA staff
Excavated quantity:	784 ton	POLA staff (3/3/18 project design): 1,568 tons total for both abutments.
	622 CY	
Soil density:	1.26 ton/CY	CalEEMod default (~1.5 g/m3 = approx. density of silty loam soil).
Excavation rate:	112 ton/day	
	89 CY/day	
Total trucks	8 trucks/day	15 ton capacity per 10-wheel haul truck.

Fugitive dust from soil handling/drop operations:

AP42, Section 13.2.4 (Aggregate Handling and Storage Piles, 11/2006):

PM10 (lb/ton) = 0.35 * (0.0032) * ((u / 5)^(1.3) / (M / 2)^(1.4))

PM2.5 (lb/ton) = 0.053 * (0.0032) * ((u / 5)^(1.3) / (M / 2)^(1.4))

where u = mean wind speed and M = material moisture content

<u>Parameter</u>	Value	Basis/Assumption
u:	6.4 mph	Long Beach avg wind speed = 6.4 mi/hr (AP42, Ch 7.1 (11/2006), Table 7.1-9)
M:	12 %	CalEEMod default 12%, "Cover" material. (Range: Dry = 2%, Moist = 15%, Wet = 50%)
PM10:	0.00013 lb/ton	
PM2.5:	0.00002 lb/ton	

Construction Emissions - May 2018

Abutment (Excavating, Pile Driving, Finishing)

Abutment Pile Driving

							Max. Daily Construction Emissions (Ib/day)							
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG	
Large crawler crane	Offroad	1	8	300	0.29	-	1.3	0.2	1.6	0.1	0.1	0.0	816	
Pile driver	Offroad	1	4	196	1	-	13.1	1.5	4.8	0.7	0.6	0.0	920	
Shuttlelift carrydeck crane	Offroad	1	8	100	0.29	-	0.6	0.1	1.6	0.0	0.0	0.0	272	
Flatbed truck	Onroad	8	-	-	-	40	3.5	0.1	0.4	0.0	0.0	0.0	1,128	
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550	
Fugitive dust										0.4	0.3			
Total							18.6	1.9	9.8	1.3	1.0	0.0	3,686	

Emissions estimates are for <u>one</u> abutment.

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Parameter	Value	Basis/Assumption
Pile driving:	0.5 hr/pile	POLA staff: 0.25 hr/pile. Use 0.5 hr/pile for calcs.
Piles daily:	8 piles/day	POLA staff: 8 piles/day (1 hr/pile including setup)
Piles per truck:	1 piles/truck	18 ton/pile (600 lb/ft * 60 ft), 25-ton flatbed truck capacity.
Flatbed trucks daily:	8 trucks/day	

Abutment Finishing

							Max. Daily Construction Emissions (lb/day)							
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG	
Concrete boom truck	Onroad	1	-	-	-	30	0.3	0.0	0.0	0.0	0.0	0.0	113	
Concrete boom pump	-	-	-	-	-	-	3.7	0.1	0.3	0.0	0.0	0.0	1,443	
Concrete mixer truck	Onroad	128	-	•	-	30	37.6	0.9	3.6	0.2	0.2	0.1	14,139	
Roller	Offroad	1	2	49	0.38	-	0.3	0.0	0.3	0.0	0.0	0.0	44	
Worker commute	Onroad	20	-	•	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550	
Fugitive dust										2.0	1.3			
Total							41.9	1.1	5.7	2.3	1.5	0.2	16,288	

Emissions estimates are for <u>one</u> abutment.

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

<u>Parameter</u>	Value	Basis/Assumption
Concrete total:	7133 CY	POLA staff (3/8/18 estimate): 14,265 CY total for superstructure.
Pour duration:	7 days	task duration is 7 days
Concrete daily:	1019 CY/day	
Mixer truck capacity:	8 CY/truck	standard concrete mixer truck capacity is 8 CY

Construction Emissions - May 2018 Abutment (Excavating, Pile Driving, Finishing)

Mixer trucks daily: 128 trucks/day

Concrete boom truck pump:	Concrete pumping emission factors (grams/CY)										
	NOx	VOC	CO	PM10	PM2.5	SO2	GHG				
Concrete pumping emission factors	1.6	0.0	0.2	0.0	0.0	0.0	642.1				

Factors derived from EMFAC2014 and boom truck pumping fuel use data (41.34-52.1 gal diesel to pump ~825 CY over 5 hours). Ref:http://concretepumping.com/topic/schwing-runs-fuel-efficiency-test-4-pumps-pumping-into-each-other-for-5-hours

Construction Emissions - May 2018

Bent (Pile Driving, Cap Forming, Cap Pouring, Cap Forming Removal)

Bent Pile Driving

							Max. Daily Construction Emissions (lb/day)								
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG		
Large crawler crane	Offroad	1	8	300	0.29	-	1.3	0.2	1.6	0.1	0.1	0.0	816		
Pile driver	Offroad	1	4	196	1	-	13.1	1.5	4.8	0.7	0.6	0.0	920		
Shuttlelift carrydeck crane	Offroad	1	8	100	0.29	-	0.6	0.1	1.6	0.0	0.0	0.0	272		
Flatbed truck	Onroad	8	-	-	-	40	3.5	0.1	0.4	0.0	0.0	0.0	1,128		
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550		
Fugitive dust										0.4	0.3				
Total							18.6	1.9	9.8	1.3	1.0	0.0	3,686		

Emissions estimates are for <u>one</u> bent.

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes onroad vehicle travel on paved roads, brake and tire wear.

Parameter	Value	Basis/Assumption
Pile driving:	0.5 hr/pile	POLA staff: 0.25 hr/pile. Use 0.5 hr/pile for calcs.
Piles daily:	8 piles/day	POLA staff: 8 piles/day (1 hr/pile including setup)
Piles per bent:	16 piles/bent	POLA staff
Piles per truck	1 piles/truck	18 ton/pile (600 lb/ft * 60 ft), 25-ton flatbed truck capacity.
Flatbed trucks daily:	8 trucks/day	

Bent Cap Forming

							Max. Daily Construction Emissions (lb/day)							
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG	
Large crawler crane	Offroad	1	4	300	0.29	-	0.7	0.1	0.8	0.0	0.0	0.0	408	
Compressor	Offroad	4	4	122	0.42	-	2.2	0.2	5.5	0.1	0.1	0.0	962	
Welder	Offroad	1	4	25	0.42	-	0.3	0.0	0.4	0.0	0.0	0.0	49	
Worker commute	Onroad	20	-	•	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550	
Fugitive dust										0.3	0.2			
Total							3.3	0.4	8.1	0.4	0.3	0.0	1,969	

Emissions estimates are for one bent.

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Construction Emissions - May 2018

Bent (Pile Driving, Cap Forming, Cap Pouring, Cap Forming Removal)

Bent Cap Pouring

							Max. Daily Construction Emissions (lb/day)						
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Concrete boom truck	Onroad	1	-	-	-	30	0.3	0.0	0.0	0.0	0.0	0.0	113
Concrete boom pump	-	1	-	•	-	-	0.4	0.0	0.0	0.0	0.0	0.0	174.1
Concrete mixer truck	Onroad	16	-		-	30	4.7	0.1	0.5	0.0	0.0	0.0	1,767
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust										0.5	0.3		
Total							5.6	0.2	1.9	0.6	0.3	0.0	2,604

Emissions estimates are for <u>one</u> bent.

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes onroad vehicle travel on paved roads, brake and tire wear.

Parameter	Value	Basis/Assumption
Task duration:	7 days	POLA staff
Concrete total:	860 CY/bent	POLA staff (3/8/18): 7,684 CY total for piles. Split evenly over 9 bents.
Concrete daily:	123 CY/day	
Mixer truck capacity:	8 CY/truck	estimate
Mixer trucks daily:	16 trucks/day	

Boom truck concrete pump:

Boom truck concrete pump emission factors

Concrete pumping emission factors (grams/CY)												
NOX VOC CO PM10 PM2.5 SO2 GHG												
1.6	0.0	0.2	0.0	0.0	0.0	642.1						

Factors derived from EMFAC2014 and fuel use by two 61-meter boom trucks while pumping (41.34-52.1 gal diesel to pump ~825 CY over 5 hours). Ref:http://concretepumping.com/topic/schwing-runs-fuel-efficiency-test-4-pumps-pumping-into-each-other-for-5-hours

Bent Cap Forming Removal

			Max	. Daily C	onstructi (lb/day)	on Emissi	ions						
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Large crawler crane	Offroad	1	4	300	0.29	-	0.7	0.1	0.8	0.0	0.0	0.0	408
Compressor	Offroad	1	4	122	0.42	-	0.5	0.1	1.4	0.0	0.0	0.0	240
Welder	Offroad	1	4	25	0.42	-	0.3	0.0	0.4	0.0	0.0	0.0	49
Worker commute	Onroad	20	-		-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust										0.3	0.2		
Total							1.6	0.3	3.9	0.4	0.2	0.0	1,248

Emissions estimates are for <u>one</u> bent.

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Construction Emissions - May 2018

Girder Set Placement

Girder Set Placement

				-	-	-		Max	k. Daily C	onstructi (lb/day)	on Emiss	ons	-
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Large crawler crane	Offroad	1	4	300	0.29	-	0.7	0.1	0.8	0.0	0.0	0.0	408
Compressor	Offroad	1	4	122	0.42	-	0.5	0.1	1.4	0.0	0.0	0.0	240
Welder	Offroad	1	4	25	0.42	•	0.3	0.0	0.4	0.0	0.0	0.0	49
Flatbed truck	Onroad	2	-	-	-	40	0.9	0.0	0.1	0.0	0.0	0.0	282
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust						-				0.3	0.2		
Total							2.5	0.3	4.0	0.4	0.3	0.0	1,529.5

Emissions estimates are for <u>one</u> girder set placement.

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Construction Emissions - May 2018

Crane Demobilization

Crane Demobilization

								Max	c. Daily C	onstructi (lb/day)	on Emissi	ions	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Large crawler crane	Offroad	1	0.5	300	0.29	-	0.1	0.0	0.1	0.0	0.0	0.0	51
40-ton crane	Offroad	1	0.5	164	0.29	-	0.1	0.0	0.2	0.0	0.0	0.0	28
Flatbed truck	Onroad	2		ŀ	-	40	0.9	0.0	0.1	0.0	0.0	0.0	282
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust						-				0.3	0.2		
Total							1.1	0.1	1.8	0.4	0.2	0.0	910.6

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Construction Emissions - May 2018

Rail Track, Rail Track Turnout and Crossover

Rail Track

								Ma	x. Daily C	Construct (lb/day)	ion Emiss	ions	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi/ day	NOx	voc	со	PM10	PM2.5	SO2	GHG
10k forklift	Offroad	1	6	110	0.4	-	0.7	0.1	1.8	0.0	0.0	0.0	310
20k forklift	Offroad	1	6	160	0.2	•	0.5	0.1	1.3	0.0	0.0	0.0	225
40k forklift	Offroad	1	6	230	0.2	-	0.4	0.1	0.6	0.0	0.0	0.0	324
Compressor	Offroad	4	6	122	0.42	-	3.3	0.4	8.3	0.1	0.1	0.0	1,442
Welder	Offroad	1	6	25	0.42	-	0.5	0.1	0.6	0.0	0.0	0.0	74
Flatbed truck	Onroad	6	-	-	-	40	2.6	0.1	0.3	0.0	0.0	0.0	846
Haul truck (10-wheel)	Onroad	29	-	-	-	40	10.7	0.3	1.0	0.1	0.0	0.0	4,155
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust						-				1.0	0.6		
Total							18.7	1.0	15.3	1.3	0.9	0.1	7,925

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes material handling, onroad vehicle travel on paved roads and brake and tire wear.

Parameter	Value	Basis/Assumption
Task duraction:	90 days	POLA staff
Rail track:	30,000 trackfeet	POLA staff (conceptual design): 30,079 TF.
Track daily:	333 TF/day	
	160 TF/truck	136 lb/ft/rail, 40 ft/rail lengths, max. 50,000 lb/truck
Flatbed trucks:	3 trucks/day	
Rail ties:	20,000 ties	1 tie every ~1.5 TF.
Ties daily:	222 ties/day	
Ties per truck:	83 ties/truck	600 lb/tie, max. 50,000 lb/truck
Flatbed trucks:	3 trucks/day	
Ballast:	9,700 CY	~1,700 CY ballast per track-mile.
Bulk density:	1.07 ton/CY	~79 lb/CF loose weight for railroad ballast.
Ballast daily:	115 tons/day	
Haul trucks:	8 trucks/day	max. ~15 tons per 10-wheel haul truck.
Subballast:	21,700 CY	POLA staff (conceptual design): 21,700 CY. Typicallly 12" below ballast.
Bulk density:	1.28 ton/CY	~95 lb/CF loose weight for dry gravel.
Subballast daily:	309 tons/day	
Haul trucks:	21 trucks/day	max. ~15 tons per 10-wheel haul truck.

Negligible fugitive PM10/PM2.5 from Ballast (ballast is washed rock)

Fugitive dust from subballast placement:

AP42, Section 13.2.4 (Aggregate Handling and Storage Piles, 11/2006):

Construction Emissions - May 2018 Rail Track, Rail Track Turnout and Crossover

$$\begin{split} & \mathsf{PM10}\;(\mathsf{lb/ton}) = 0.35\;*\;(0.0032)\;*\;((\mathsf{u}\;/\;5)^{(}1.3)\;/\;(\mathsf{M}\;/\;2)^{(}1.4))\\ & \mathsf{PM2.5}\;(\mathsf{lb/ton}) = 0.053\;*\;(0.0032)\;*\;((\mathsf{u}\;/\;5)^{(}1.3)\;/\;(\mathsf{M}\;/\;2)^{(}1.4))\\ & \mathsf{where}\;\mathsf{u} = \mathsf{mean}\;\mathsf{wind}\;\mathsf{speed}\;\mathsf{and}\;\mathsf{M} = \mathsf{material}\;\mathsf{moisture\;content} \end{split}$$

Parameter	Value	Basis/Assumption
u:	6.4 mph	Long Beach avg wind speed = 6.4 mi/hr (AP42, Ch 7.1 (11/2006), Table 7.1-9)
M:	12 %	CalEEMod default 12%, "Cover" material. (Range: Dry = 2%, Moist = 15%, Wet = 50%)
PM10:	0.00013 lb/ton	
PM2.5:	0.00002 lb/ton	

Rail Track Turnout and Crossover

								Ma	x. Daily C	onstructi (lb/day)	ion Emiss	ions	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi /day	NOx	voc	со	PM10	PM2.5	SO2	GHG
10k forklift	Offroad	1	6	110	0.4	-	0.7	0.1	1.8	0.0	0.0	0.0	310
20k forklift	Offroad	1	6	160	0.2	-	0.5	0.1	1.3	0.0	0.0	0.0	225
40k forklift	Offroad	1	6	230	0.2	-	0.4	0.1	0.6	0.0	0.0	0.0	324
Compressor	Offroad	4	6	122	0.42	-	3.3	0.4	8.3	0.1	0.1	0.0	1,442
Welder	Offroad	1	6	25	0.42	-	0.5	0.1	0.6	0.0	0.0	0.0	74
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Total							5.5	0.7	14.0	0.2	0.2	0.0	2,924

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes material handling, onroad vehicle travel on paved roads and brake and tire wear.

Construction Emissions - May 2018

Asphalt Paving and Fencing

Asphalt Paving and Fencing

								Max	α. Daily C	onstructi (lb/day)	on Emiss	ions	
Equipment/Activity	Vehicle Type	#	Hr/ day	Нр	Load Factor	mi/ day	NOx	voc	со	PM10	PM2.5	SO2	GHG
Paver	Offroad	1	8	75	0.42	-	1.6	0.1	1.9	0.1	0.1	0.0	296
Roller	Offroad	1	8	49	0.38	•	1.1	0.1	1.3	0.0	0.0	0.0	175
Skid Steer Loader (Auger)	Offroad	1	8	61	0.37	-	1.1	0.1	1.4	0.0	0.0	0.0	212
Haul truck (10-wheel)	Onroad	7	-	-	-	40	2.6	0.1	0.2	0.0	0.0	0.0	1,003
Concrete mixer truck	Onroad	3	-	-	-	30	0.9	0.0	0.1	0.0	0.0	0.0	331
Water truck	Onroad	1	-	-	-	30	0.3	0.0	0.0	0.0	0.0	0.0	108
Worker commute	Onroad	20	-	-	-	40	0.1	0.1	1.4	0.0	0.0	0.0	550
Fugitive dust						-				0.5	0.3		
Paving Fugitive VOC						-		0.2					
Striping Fugitive VOC						-		5.7					
Total							7.7	6.3	6.4	0.7	0.5	0.0	2,674

Offroad equipment emissions = (#) * (Hr/day) * (Hp) * (Load Factor) * (Emission Factor [g/hp-hr])

See Offroad Equipment Details and Onroad Vehicle Details sections for more info.

Fugitive dust includes material handling, onroad vehicle travel on paved roads and brake and tire wear.

Parameter	Value	Basis/Assumption
Task duration:	45 days	POLA staff
Asphalt total:	4,513 tons	POLA staff (11/1/16 Class "C" cost estimate): 4,513 ton.
Asphalt paving rate:	100.3 tons/day	
Haul trucks:	7 truck/day	15-ton max. per 10-wheel haul truck.

Fugitive dust from soil handling/drop operations:

AP42, Section 13.2.4 (Aggregate Handling and Storage Piles, 11/2006):

PM10 (lb/ton) = 0.35 * (0.0032) * ((u / 5)^(1.3) / (M / 2)^(1.4))

PM2.5 (lb/ton) = 0.053 * (0.0032) * ((u / 5)^(1.3) / (M / 2)^(1.4))

where u = mean wind speed and M = material moisture content

Parameter	Value	Basis/Assumption
u:	6.4 mph	Long Beach avg wind speed = 6.4 mi/hr (AP42, Ch 7.1 (11/2006), Table 7.1-9)
M:	12 %	CalEEMod default 12%, "Cover" material. (Range: Dry = 2%, Moist = 15%, Wet = 50%)
PM10 :	0.00013 lb/ton	
PM2.5:	0.00002 lb/ton	

Emissions estimates conservatively assume no mitigation from watering.

Construction Emissions - May 2018 Asphalt Paving and Fencing

Asphalt Faving and Felicing

Paving fugitive VOC:

Parameter	Value	B	asis/Assumption
VOC EF	2.62 lb/a	cre Ca	alEEMod default.
Asphalt quantity:	4513 tons	se	ee above
Paving depth:	0.5 ft	P	OLA staff.
Asphalt density:	2 ton/	CY 14	45 lb/cf typical
Paved area:	2.80 acres	s	
Paving days:	45 days	ta	ask duration
Paving rate:	0.06 acres	s/day	
VOC daily:	0.16 lb/da	ау	

Striping VOC:

Parameter	Value	Basis/Assumption
VOC content:	100 g/L	SCAQMD VOC limit for traffic coatings is 100 g/L.
Coating usage:	12 gal/mile	estimate, per stripe.
Stripes:	2 stripes	estimate
Stripe length:	2 mi./stripe	estimate
Coating usage:	48 gal	
VOC:	40.1 lb	
Striping rate:	7 days	estimate
VOC daily:	5.73 lb/day	

Fencing:

Parameter	Value	Basis/Assumption
Duration	10 days	estimate
Fence length:	7000 ft	Estimate
Fence posts:	1168 posts	6 ft apart
Concrete:	0.18 CY/post	4' deep x 1.25' dia. Every 6 ft
	210.2 CY	
	21.0 CY/day	
Mixer truck capacity:	8 CY/truck	8 CY standard capacity truck
Mixer trucks daily:	3 trucks/day	

Construction Emissions - May 2018

Offroad Diesel Equipment Details

Offroad Diesel Equipment Details

										Exhaust	Emissio	n Factor		
Equipment Description	CARB Off-Road Category (for Load Factor)	Load Factor	Engine Rating (hp)	Fuel	Engine Model Year	CHrs (hr)	Fuel Use (gal/hr)	NOx	voc	со	PM10	PM2.5	SO2	GHG
Loader	Rubber Tired Loaders	0.36	250	DSL	2015	5,000	4.65	0.69	0.13	1.04	0.036	0.033	5.0E-03	532
Excavator	Excavators	0.38	164	DSL	2015	5,000	3.22	1.20	0.13	3.06	0.055	0.051	5.0E-03	532
Grader	Graders	0.41	183	DSL	2015	5,000	3.88	0.69	0.13	1.04	0.036	0.033	5.0E-03	532
Large crawler crane	Cranes	0.29	300	DSL	2015	5,000	4.50	0.87	0.13	1.01	0.042	0.039	5.0E-03	532
Pile driver	None (pile driver, assume 100% load factor)	1.00	196	DSL	1995	1,250	11	7.55	0.87	2.79	0.404	0.371	5.0E-03	532
40-ton crane	Cranes	0.29	164	DSL	2015	5,000	2.46	1.20	0.13	3.06	0.055	0.051	5.0E-03	532
Compressor	Other Construction Equipment	0.42	122	DSL	2015	5,000	2.65	1.20	0.13	3.06	0.055	0.051	5.0E-03	532
Welder	Other Construction Equipment	0.42	25	DSL	2015	5,000	0.54	3.44	0.36	4.10	0.112	0.103	5.0E-03	532
Office trailer generator	Rough Terrain Forklifts	0.40	25	DSL	2015	5,000	0.52	3.44	0.36	4.10	0.112	0.103	5.0E-03	532
Paver	Pavers	0.42	75	DSL	2015	5,000	1.63	2.90	0.13	3.46	0.225	0.207	5.0E-03	532
Roller	Rollers	0.38	49	DSL	2015	5,000	0.96	3.44	0.36	4.10	0.112	0.103	5.0E-03	532
Skid Steer Loader (Auger)	Skid Steer Loaders	0.37	61	DSL	2015	5,000	1.17	2.87	0.27	3.46	0.052	0.048	5.0E-03	532
10k forklift	Rough Terrain Forklifts	0.40	110	DSL	2015	5,000	2.27	1.20	0.13	3.06	0.055	0.051	5.0E-03	532
20k forklift	Forklifts	0.20	160	DSL	2015	5,000	1.65	1.20	0.13	3.06	0.055	0.051	5.0E-03	532
40k forklift	Forklifts	0.20	230	DSL	2015	5,000	2.38	0.69	0.13	1.04	0.036	0.033	5.0E-03	532
Shuttlelift carrydeck crane	Cranes	0.29	100	DSL	2015	5,000	1.50	1.20	0.13	3.06	0.055	0.051	5.0E-03	532

Notes:

Load factors from CARB's 2010 OFFROAD model (Table D-7: https://www.arb.ca.gov/regact/2010/offroadlsi10/offroadappd.pdf)

All offroad diesel construction equipment assumed to be 5 years old or newer at start of construction in 2020 (exception: pile driver conservatively modeled as a 25-year old engine).

NOx, THC, CO, and PM10 diesel emission factors from CARB's "2017 Off-road Diesel Emission Factors" (https://www.arb.ca.gov/msei/ordiesel/ordas_ef_fcf_2017_v7.xlsx)

VOC (ROG) calculated from THC assuming VOC = 1.21 * THC for diesel (CARB, https://www.arb.ca.gov/msei/ordiesel/rog_tog_hcratio.xls).

PM2.5 calculated from PM10 assuming PM2.5 = 0.92 * PM10 for diesel (CARB, https://www.arb.ca.gov/msei/ordiesel/pm25_pm10reference.pdf).

SO2 EF calculated from fuel sulfur content and engine BSFC. Details below.

CO2 EF calculated from EPA CO2 EF for mobile diesel sources and engine BSFC. Details below.

CH4 and N2O calculated from EPA CH4 and N2O factors for diesel construction equipment and engine BSFC. Details below.

Fuel used estimated based on GHG emission factor or equipment specs.

Construction Emissions - May 2018

Offroad Diesel Equipment Details

CHrs = operating hours accumulated on the equipment. Used to estimate emission factor deterioration rates (for NOx, VOC, CO, PM10) due to equipment wear/aging. EF = Zh + Dr * CHrs, where:

Zh = Zero-hour emission rate, when equipment is new (g/hp-hr) - from CARB's "2017 Off-road Diesel Emission Factors" ("ordas_ef_fcf_2017_v7.xlsx") Dr = Deterioration rate or increase in Zh emission rate (g/hp-hr2) - from CARB's "2017 Off-road Diesel Emission Factors" ("ordas_ef_fcf_2017_v7.xlsx") CHrs = cumulative hours or total number of hours accumulated on the equipment (hr)

Parameter

Value Basis Annual usage: 1000 hr/yr all equipment except pile driver (which assumes 2 hr/day, 125 days/yr usage for 5 years) CHrs total = CHrs * (2020 - Engine Model Year) Deterioration rates vary by engine size (hp).

SO2 emission factor calculated from sulfur content of fuel and estimated engine BSFC:

<u>Parameter</u>	Value	Basis
Engine BSFC:	0.367 lb/hp-hr	CARB OFFROAD2011 model. Assumes same BSFC across all HP ranges.
Diesel max. sulfur content:	15 ppmw as S	ULSD max. is 15 ppmw as S.
SO2 EF:	0.005 g/hp-hr	Calc

GHG emission factor:

<u>Parameter</u>	Value	Basis
Engine BSFC:	0.367 lb/hp-hr	CARB OFFROAD2011 model. Assumes same BSFC across all HP ranges.
CO2 EF for diesel:	10.21 kg/gal	Table A-1, EPA Mobile Combustion CO2 Emission Factors, https://www.epa.gov ("emission-factors_nov_2015_v2.pdf")
CO2 EF:	527.8 g/hp-hr	diesel density = 7.1 lb/gal.
CH4 EF	0.57 g/gal	Table 5, EPA Mobile Combustion CH4 and N2O Emission Factors for Non-Road Vehicles
	0.0295 g/hp-hr	diesel density= 7.1 lb/gal, BSFC=0.367 lb/hp-hr
N2O EF:	0.26 g/gal	Table 5, EPA Mobile Combustion CH4 and N2O Emission Factors for Non-Road Vehicles
	0.0134 g/hp-hr	diesel density 7.1 lb/gal, BSFC=0.367 lb/hp-hr
CO2 GWP	1	2014 IPCC Fifth Assessment Report (AR5), http://www.ipcc.ch/report/ar5/
CH4 GWP:	28	2014 IPCC Fifth Assessment Report (AR5), http://www.ipcc.ch/report/ar5/
N2O GWP:	265	2014 IPCC Fifth Assessment Report (AR5), http://www.ipcc.ch/report/ar5/
GHG EF:	532 g/hp-hr	GHG = CO2e = (CO2 GWP)*CO2 + (CH4 GWP)*CH4 + (N2O GWP)*N2O
Diesel pile hammer:		
Diesel fuel usage:	11 gal/hr	Delmag spec sheet (11 gal/hr for 15,000 kg Delmag D150).
BSFC:	0.4 lb/hp-hr	estimate. Assumes lower fuel efficiency than typical 4-stroke diesel engine.
Hp estimate:	196 hp	hp = (Diesel usage [gal/hr]) * (7.1 [lb/gal]) / (BSFC [lb/hp-hr])

Construction Emissions - May 2018

Onroad Vehicle Details

Onroad Vehicle Details

								Daily Emissionsm, excluding Fugitive Dust (lb/day/vehicle)					Fugitive dust (lb/day/veh)			
Vehicle Description	EMFAC Vehicle Class	Engine Model Year	Fuel	Fuel Use (gal/day)	Distance (mile/ day)	Idling (min/ day)	NOX VOC CO PM10 PM2.5 SO2 GHG						PM10	PM2.5		
Haul truck (10- wheel)	T7 Single	Aggregat ed	DSL	6.36	40	10	0.368	0.009	0.035	0.002	0.002	0.001	143.3	0.01808	0.01131	
Flatbed truck	T7 tractor	Aggregat ed	DSL	6.26	40	10	0.432	0.013	0.052	0.002	0.002	0.001	141.0	0.01808	0.01131	
Concrete boom truck	T7 Single	Aggregat ed	DSL	5.02	30	40	0.308	0.007	0.030	0.001	0.001	0.001	113.0	0.01356	0.00848	
Concrete mixer truck	T7 Single	Aggregat ed	DSL	4.91	30	25	0.294	0.007	0.028	0.001	0.001	0.001	110.5	0.01356	0.00848	
Water truck	T7 Single	Aggregat ed	DSL	4.79	30	10	0.279	0.007	0.027	0.001	0.001	0.001	107.9	0.01356	0.00848	
Worker commute	LDA	Aggregat ed	GAS	1.42	40	0	0.006	0.003	0.070	0.000	0.000	0.000	27.5	0.01499	0.00816	

_								Fugitive Dust						
	Exhaust Emission Factors (grams/mile)								Brake and Tire Wear Factors (grams/mile) (g					
Vehicle Description	NOx	voc	со	PM10	PM2.5	SO2	GHG	PM10- Tire Wear	PM10- Brake Wear	PM2.5- Tire Wear	PM2.5- Brake Wear	PM10	PM2.5	
Haul truck (10- wheel)	4.066	0.095	0.387	0.020	0.019	0.015	1605	0.036	0.062	0.009	0.026	0.16	0.04	
Flatbed truck	4.782	0.141	0.574	0.023	0.022	0.015	1578	0.036	0.062	0.009	0.026	0.16	0.04	
Concrete boom truck	4.066	0.095	0.387	0.020	0.019	0.015	1605	0.036	0.062	0.009	0.026	0.16	0.04	
Concrete mixer truck	4.066	0.095	0.387	0.020	0.019	0.015	1605	0.036	0.062	0.009	0.026	0.16	0.04	
Water truck	4.066	0.095	0.387	0.020	0.019	0.015	1605	0.036	0.062	0.009	0.026	0.16	0.04	
Worker commute	0.061	0.015	0.729	0.002	0.002	0.003	309	0.008	0.037	0.002	0.016	0.16	0.04	

		Idling Emission Factors						Startup/Hotsoak/Runloss Emission Factors						
				(g/hr)				(g/trip/vehicle)						
Vehicle Description	NOx	VOC	СО	PM10	PM2.5	SO2	GHG	NOx	VOC	со	PM10	PM2.5	SO2	GHG
Haul truck (10- wheel)	26.86	0.739	2.940	0.015	0.014	0.045	4669	0	0	0	0	0	0	0
Flatbed truck	29.17	0.864	3.448	0.010	0.009	0.049	5090	0	0	0	0	0	0	0
Concrete boom truck	26.86	0.739	2.940	0.015	0.014	0.045	4669	0	0	0	0	0	0	0
Concrete mixer truck	26.86	0.739	2.940	0.015	0.014	0.045	4669	0	0	0	0	0	0	0
Water truck	26.86	0.74	2.940	0.015	0.014	0.045	4669	0	0	0	0	0	0	0
Worker commute	0	0	0	0	0	0	0	0.091	0.449	1.398	0.0024	0.0022	0.0007	63.0

Construction Emissions - May 2018 Onroad Vehicle Details

Notes:

NOx, VOC, CO, PM10, PM2.5, SO2, and CO2 emission factors (except road dust) from CARB's EMFAC2014 (v1.0.7) model for calendar year 2020 and assume aggregated speeds and model years. Road dust emission factors calculated using EPA's AP42 entrained road dust equation (see below). Daily emissions (DSL vehicles) = (miles/day) * (EF [g/mile]) + (idling time [min/day]) / (60 [min/hr]) * (Idling EF [g/hr]) Daily emissions (GAS vehicles) = (miles/day) * (EF [g/mile]) + (2 [trips/day]) * (EF [g/trip/vehicle]) For worker commute vehicles, 2 trips/day assumed for startup/hotsoak/runloss emissions. LDA = Light-duty automobile CalEEMod default Home-Work trip length in South Coast Air Basin is 19.8 miles (Rural) and 14.7 miles (Urban). Emissions estimates assume 20 miles (40 miles roundtrip). Fue use estimated from GHG emissions. Fugitive dust for PAVED roads: EPA's AP42, Chapter 13.2.1 (Paved Roads, 1/2011): PM10 EF (g/mile) = 1 * (sL)^(0.91) * (W)^(1.02) PM2.5 EF (g/mile) = 0.25 * (sL)^(0.91) * (W)^(1.02)

where sL = surface silt loading (g/m2), W = average vehicle weight (ton)

Parameter	Value	Basis/Assumption
sL:	0.050 g/m2	Road mix estimate for Los Angeles Co.: 20% Freeway @ 0.015 g/m2 , 50% Major/Collector @ 0.013 g/m2. 30% Local @ 0.135 g/m2.
		sL from CARB, Methodology 7.9 (Entrained Road Travel, Paved Road Dust) Nov 2016, Table 3, https://www.arb.ca.gov/ei/areasrc/fullpdf/full7-9_2016.pdf
W:	2.4 tons	CalEEMod v2016.3.2 default. Estimated avg weight of ALL vehicles traveling on roads.
PM10:	0.160 g/mile	
PM2.5:	0.040 g/mile	
Dev AD42 second used EE to evolte	d using floot oug wa	isht of ALL unbigles traveling on road (not enabled by unbigle unight class)

Per AP42, paved road EF Is applied using fleet avg weight of ALL vehicles traveling on road (not applied by vehicle weight class). Road dust emissions assume no credit/reduction for precipitation.

Fugitive dust for UNPAVED roads:

None for South Coast Air Basin, per CalEEMod Appendix D (Table 4.1 Road Characteristics): South Coast Air Basin default is 100% paved roads for Construction Worker, Construction Hauling, and Construction Vendor trips.

GHG EF:

GHG = CO2e = (CO2 GWP)*CO2 + (C	CH4 GWP)*CH4 + (N2O GWP)*N2O
---------------------------------	------------------------------

GWP = Global Warming Potential

	Value	Basis
CO2 GWP	1	2014 IPCC Fifth Assessment Report (AR5), http://www.ipcc.ch/report/ar5/
CH4 GWP:	28	2014 IPCC Fifth Assessment Report (AR5), http://www.ipcc.ch/report/ar5/
N2O GWP:	265	2014 IPCC Fifth Assessment Report (AR5), http://www.ipcc.ch/report/ar5/

CH4 and N2O:

Vahiela tura	CH4	N2O
venicie type	(g/mile)	(g/mile)
DSL	0.0051	0.0048
GAS	0.0358	0.0473

Table B-1, https://www.epa.gov/sites/production/files/2016-03/documents/mobileemissions_3_2016.pdf

DSL EFs are for Medium and Heavy Duty Diesel and assumed to apply to all on-road diesel vehicles identified above.

GAS EFs are for 1995 model year gasoline passenger car (25-year old vehicle is conservative assumption) and are assumed to apply to all on-road gasoline vehicles identified above.

Construction Emissions - May 2018 Onroad Vehicle Details

CO2 emission factor:

Gasoline CO2 EF: Diesel CO2 EF: <u>Value</u> 8.78 kg/gal 10.21 kg/gal Basis Table 2, EPA Mobile Combustion CO2 Emission Factors, https://www.epa.gov/sites/production/files/2016-09/documents/emission-factors_nov_2015_v2.pdf Table A-1, EPA Mobile Combustion CO2 Emission Factors, https://www.epa.gov/sites/production/files/2016-09/documents/emission-factors_nov_2015_v2.pdf Operation

Terminal and Rail Capacity Analyses

A container terminal capacity analysis was conducted for the Pier 400 container terminal as a whole (including APMT terminal and former CUT terminal). To estimate terminal capacity, the POLA and most ports in the world use a methodology that relies on two capacity models, one that analyzes the terminals' container yard (CY) capacity and one that analyzes the terminals' berth capacity (a terminal could be berth constrained or backlands constrained or evenly balanced between the two). Key model variables include: the length of berth, number/size of berth cranes, size of vessels, berth crane productivity, size of the storage area, how the containers are stored (i.e., chassis vs. grounded) and how long the containers remain in storage (container dwell time), and operating hours for the berth and the yard. This analysis determined that the wharf capacity is less than the CY capacity, and thus is the governing capacity. The terminal capacity is estimated to be 4.852 million twenty-foot equivalent (TEU) per year.

An analysis was also conducted to estimate the increase in capacity and commensurate use of the APMT ondock railyard. The on-dock railyard as a whole is comprised of the existing loading/working tracks in the APMT terminal, and the storage tracks located on the Pier 400 Transportation Corridor, in which the expansion of the latter component (by 31,000 lineal feet of track) is the proposed Terminal Island (TI) Railyard Enhancement project. The proposed improvements will increase the railyard capacity and ultimately commensurate use by approximately 525,200 TEU/year, under year 2040 conditions. Hence, these same amount of containers will shift from off-dock railyards to the on-dock railyard. This shifting of off-dock to on-dock use potentially reduces the dwell time of these same containers in the APMT terminal, by a day or so, which theoretically could increase the container yard capacity a nominal amount. However, since the APMT terminal limiting capacity is that of the wharf, the increased on-dock railyard use will not increase the total terminal volume. Thus, the net effect of the proposed storage tracks is the shifting about 525,200 TEU/year from off-dock yards to the APMT on-dock yard (by the year 2040). The following table summarizes the resultant terminal and on-dock volumes analyzed for two horizon years.

	Total Volume	On-dock Volume
Year 2021 w/o project	2,879,500	730,300
Year 2021 w/project	2,879,500	891,000
Year 2040 w/o project	4,852,200	1,037,400
Year 2040 w/project	4,852,200	1,562,600

Truck Traffic Analysis

The capacity/use increase of the Pier 400 on-dock railyard will result in the shifting of 525,250 TEU/year from the following three off-dock railyards: Union Pacific Railroad (UP) Intermodal Container Transfer Facility (ICTF); UP East Los Angeles (ELA) yard on East Washington Boulevard in the City of Commerce; and the Burlington Northern-Santa Fe Railway (BNSF) Hobart yard located on Washington Boulevard in the City of Vernon. Using Year 2021 and Year 2040 container volume projections on-dock railyard capacity increases/utilization, the truck trip estimates and reductions have been quantified using the Ports of Los Angeles and Long Beach container trip generation model, called "QuickTrip." This model has been used on all POLA environmental documents since 2002, and is constantly updated and enhanced. The trip generation model and direct output is also used by the Southern California Association of Governments (SCAG) in their federally-required Regional Transportation Plan (RTP).

Using comprehensive port-specific truck trip generation and the POLA's travel demand model (Port Area Travel Demand Model, PortTAM), the TI Railyard Enhancement project truck volumes on the regional roadway system were produced for year 2021 and 2040 conditions, without and with the expanded TI Railyard. The PortTAM is a detailed, focus model of SCAG's RTP model, and includes truck and/or auto trips for: all container terminals in the POLA and Port of Long Beach (POLB); all other cargo terminals and facilities within the POLA/POLB boundaries; off-dock intermodal railyards owned and operated by the UPRR and BNSF railroads; ILWU labor dispatch halls; Port of Los Angeles World Cruise Center; Ports 'O Call; the Carnival Cruise terminal; and the Queen Mary. Since its inception, POLA/POLB have constantly updated PortTAM to account for: updated POLA/POLB cargo forecasts and resultant truck and auto trips; land use changes/forecasts and specific development projects within a 3-5 mile radius of the Ports; constant logistics operations research that affects

truck trips, such as on-dock and of-dock rail mode splits, empty container management, chassis management, dual transactions in the terminals, street-turns, and terminal operating hours; roadway system changes; and of course SCAG RTP model updates every four years, when they are released publically. The logistics elements represent the structure of the aforementioned "Quicktrip model. SCAG also updates their RTP model to incorporate the POLA/POLB PortTAM updates. The POLA's' models are also contained in other agency models and project, such as (but not limited to) the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP), the Gateway Cities Council of Governments' Strategic Transportation Plan, and the ongoing Caltrans/Los Angeles County Metropolitan Transportation Authority I-710 Corridor Project I-710 Corridor Project Recirculated Draft Environmental Impact Report/Supplemental Draft Environmental Impact Statement (State of California, July 2017).

The difference in the PortTAM model results for the two analysis scenarios represents the shifting of containers from the off-dock railyards to the on-dock railyards. The shifted amounts from the three railyards were computed using detailed historical shares of off-dock volumes between the UP and BNSF. This data yielded the following shares for the shitted containers: BNSF - 50%, UP ICTF - 45%, UP ELA - 5%. These shares have been used for many years, including recent POLA environmental documents, the I-710 EIR/EIS, and the SCAG RTP. This shifting of containers will remove truck trips and reduce truck-miles traveled (TMT), which in turn reduces delay and increases vehicle-hours traveled (VHT) for all other motorists, as follows:

TI Railyard Enhancement Daily Reductions Truck Trips, Truck Miles-Traveled &					
Ho	urs-Traveled	d (for all moto	rists)		
Year	Trips	Miles	Hours		
2021	-560	-7,220	-350		
2040	-1,520	-19,720	-7,980		

To yield reasonable and conservative results, an increment of only 161,000 TEU/year in on-dock volume was assumed under year 2021 conditions. This value was estimated considering intermodal growth and actual volumes at the AMPT railyard over the last ten years. The PortTAM model was then used to produce the TMT and VHT results.

<u>Rail Analysis</u>. The shift in containers being moved via off-dock yards to the APMT on-dock railyard will result in a small increase in on-dock rail volumes moving to/from the APMT railyard and the northern end of the Alameda Corridor, just east of both the UP ELA yard and the BNSF Hobart yard. There will be no net increase rail volumes easterly of these locations on the UPRR and BNSF rail lines because these shifted containers would have been otherwise loaded/unloaded onto trains in the ELA and Hobart railyards without the proposed TI railyard project. Similarly, there will also be a small increase in train volumes between the UP ICTF and the APMT railyard, (in addition to the shift from the ELA and Hobart yards).

The shift in containers being moved via from off-dock yards to the APMT on-dock railyard will result in a small increase in on-dock rail volumes and resulting locomotive emissions, between the Terminal Island Railyard The rail volumes were estimated for year 2021 and year 2040 conditions using the following basic factors:

- Total on-dock volumes, not just the estimated increment
- average rail car length (depends on mix of cars of varying lengths that make up the trains)
- locomotive length
- number of locomotives per train for different train lengths
- slot utilization (percentage of rail car capacity actually used by containers); e.g.; a five-well railcar can hold 10 double-stacked containers; typical utilization is about 95% on average for eastbound trains
- market-wise distribution of trains by length (percentage of trains that are 6,000 feet, 8,000 feet, 10,000 feet, and 12,000 feet long, including locomotives);
- switching movements (less than full unit trains) to/from the TI Railyard storage/staging yard (only uses one locomotive).

• proportion of shifting from ELA yard, ICTF, & Hobart yard

There are no at-grade rail-roadway crossings between the POLA and the ELA and Hobart yards. Thus, the small number of additional on-dock train movements will not have any traffic impacts. The TI Railyard project will also improve the movement of trains on Terminal Island, thus reducing train delays (operating hours), but this particular benefit has not been quantified.

<u>Emissions and Noise</u>. The reduced VMT was used to compute reduced emissions. The net emission reductions also account for the low amount of increased train emissions due to the shifting from use of off-dock to on-dock trains discussed above. The emission reductions are understated as they only account for the reduced truck trips and increased locomotives, but not the reduced emissions attributable to the reduced travel time of all other motorists. The TI Railyard Enhancement also reduces freeway noise as a result of fewer truck trips to off-dock facilities.

The emissions analysis includes criteria pollutants and GHGs, for peak day and annual time periods, for 2021 and 2040, for the four scenarios above. Emission factors for exhaust, tire wear, and brake wear by speed and were generated by the California Air Resources Board EMFAC2014 model. The truck emissions account for the future truck mix (truck age distribution), accounting for turnover of existing trucks over 20 years, as estimated by the Ports and their consultants. These detailed truck mix forecasts account for actual, existing truck information annual collected via the Ports' emissions inventorv (EI) work (https://www.portoflosangeles.org/pdf/2016_Air_Emissions_Inventory.pdf) and these emission calculation methodologies were also used in the POLA/POLB's recently approved 2017 Clean Air Action Plan (http://www.cleanairactionplan.org). Such fleet forecasts were developed in concert with the Ports' El working group that includes EPA, CARB, and SCAQMD. The PM10 and PM2.5 emissions also include the contribution from re-entrained road dust, based on emission factors derived from the CARB Emission Inventory Chapter 7.9, "Miscellaneous Process Methodology, Entrained Road Travel, Paved Road Dust" (November 2016). Moving emissions also depend on the estimated VMT and average daily speed on each analyzed roadway segment that have reduced truck trips between the APMT terminal and the off-dock railyards.

The locomotive emission estimates utilized detailed train speeds generated via the POLA's "Rail Traffic Controller" (RTC) simulation model, for the years 2021 and 2040 conditions. This model is utilized universally by Class I railroads, ports, and commuter passenger rail agencies throughout North America. Varying train speeds generated by the RTC model were used for various segments inside and outside the POLA, including along the Alameda Corridor.

Assumptions Used in the Locomotive Emission Calculations

Line Hauf Consumption Relate 2028 PpHylat Inventory of AF Entistients CY 2016, Page 452, April 2009. Called Worming Polential, CH2 1 [milless] PFA, Inventory of VA Entistients CY 2016, Page 452, April 2007. Called Worming Polential, CH4 25 [milless] PFA, Inventory of U.S. Guenchause Gas Emissions and Sinis: 1990-2015, April 2017. Called Worming Polential, CH4 22 [milless] PFA, Inventory of AF Entistics CY 2017, Page 140 Average PCLA Train Composition 424 [FLI.S Inventory of AF Entistics CY 2017, Page 140 Average PCLA Train Composition 420 [FLI.S Inventory of AF Entistics CY 2017, Page 140 Average PCLA Train Weight PCLA 12.0 gross tors Inventory of AF Entistics CY 2017, Page 140 Average PCLA Train Weight PCLA 10.3 (millss) IPA Consortion Factors for Composition Audits of the Weight PCLA Train Weight PCLA 10.4 (mills PCLA PCLA) Conversion Factor Fun Dics of Engines, PMIN to PM2 5 0.92 (mills PCLA PCLA) IPA (Page PCLA PCLA) Conversion Factor Fun Dics of Engines, PMIN to PM2 5 0.92 (mills PCLA) IPA (PCLA PCLA) Conversion Factor Fun Dics of Engines, PMIN to PM2 5 0.92 (mills PCLA) PPA (Page PCLA) PPA (Page PCLA) </th <th>Parameter</th> <th>Value</th> <th>Unit of Measure</th> <th>Reference</th>	Parameter	Value	Unit of Measure	Reference
Global Warning Potential, CO2 Image: PAI Autors of Loss of PAI, Inventory of LS, Genohuse, Gas Emissions and Sins. 1990-2015. April 2017 Global Warning Potential, LO2 296 Unitiess) EPA. Inventory of LS. Genohuse, Gas Emissions and Sins. 1990-2015. April 2017 Accrage FOA Train Compusition 274 curstaines Inventory of AF Emissions CV 2013. Repart 10:00 Accrage FOA Train Compusition 274 curstaines Inventory of AF Emissions CV 2013. Repart 10:00 Accrage FOA Train Weight 277 curstaines Inventory of AF Emissions CV 2013. Repart 10:00 Desel engine conversion factor, MC or Desel 1055 Unitiess) EPA. Conversion Factor for Dressel Engines. PM110 PM2.5 OC 0.92 Unitiess) Carteria Mendation 274 curstaines Dised fact dorshy 710 big.d POLA 201 aF Emissions CV 2013. Repart 10:00 Dised fact dorshy 710 big.d POLA 201 aF Emissions Functory, EL 13:00 Dised fact dorshy 710 big.d POLA 201 aF Emissions Functory, EL 13:00 Dised fact dorshy 710 big.d POLA 201 aF Emissions Functory, EL 13:00 Dised fact dorshy 720 funitess) Carteria Sin Sin Sin Sin 2012 aprile Sin Sin Si	Line Haul Fuel Consumption Rate	20.8	hp-hr/gal	Inventory of Air Emissions CY 2016, Page 46; EPA Office of Transportation and Air Quality, "Emission
Global Warming Putential, CO22 11 Imilies3 IPA, Investory of U.S. Greenbouse Gas Emissions and Sinis: 1990-2015, April 2017 Global Warming Putential, LHA 29 [unities3] IPA, Investory of U.S. Greenbouse Gas Emissions and Sinis: 1990-2015, April 2017 Global Warming Putential, LHA 274 [unities3] IPA, Investory of ALE. Greenbouse Gas Emissions and Sinis: 1990-2015, April 2017 Message POLA Train Composition 274 [unities3] IPA Investory of ALE. Greenbouse Gas Emissions and Sinis: 1990-2015, April 2017 Message POLA Train Composition 274 Gataliated from Average Total Arconge Total Average Total Average Total Arconge Total Weight 2726 gross: torns Investory of ALE Emissions CX 2017 April 100 Beast engine Conversion Factor for Disesil Engines, PM10 to PM25 0.92 [unitiess] CALMMUNG Updated CEDMAS Table with PM25 Fractorn Appendix A of PM25 Significance Thresholds and Calculation Methodology. This Average Total Arconge Stematics. Train Home Engines (Stematics. Email from Engines) and Significance Thresholds and Calculation Methodology. This Average Total Arconge Stematics. Train Home Engines (Stematics. Email Total Message Stematics. Email Total Message Stematics. Train Home Engines (Stematics. Email Total Message Stematics. Email Total Message Stematics. Train Home Engines (Stematics. Email Total Message Stematics. Train Total Message Stematics. Train Message Stematics. Email Message	·			Factors for Locomotives", EPA-420-F-09-025, April 2009.
Cited Warning Putential, CH4 25. (unities) FPA, Inventary of U.S. Creanboase Gas. Emissions and Sinks 1990-2015, April 2017 Asterage POLA Train Composition 444 TUs. Inventary of U.S. Creanboase Gas. Emissions and Sinks 1990-2015, April 2017 Average POLA Train Composition 274 Containers Inventary of AF Emissions CY 2013, Page 160 Average POLA Train Weight per TU 1.7 agress tomsTU Calculated from Average TRA Train Composition and Average Train Weight Ones implie conversion leader, HC II VIC 1.035 (unities) EPA. Conversion Factors for Polices I Emission. Report No. NR-0224 EPA-420-R-10- Offers factor for Dicsel Engines, PM1010 FM2.5 0.02 (unities) EPA. Conversion Factors for Polices Insigner. Charles Average TOLA Train Weight Act VIC 1.03 (unities) EPA. Conversion Factors for Polices Insigner. Charles Average ToLA Train Weight Act VIC Calculated Calculated from Average ToLA Train Weight Act VIC 1.02 (unities) Calculated from Average ToLA Train Weight Act VIC N. NR-0224 EPA-420-R-10- Calculated Calculated from Average ToLA Train Weight Act VIC 2.02 (unities) Calculated from Average ToLA Train Weight Act VIC N. NR-0224 EPA-420-R-10- Calculated Act Act VIC 2.02 (unities) Calculated from Average ToLA Train Weight Act Act VIC N. NR-0220 EPA 420-R-10-	Global Warming Potential, CO2	1	(unitless)	EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, April 2017
Global Warning Potontial, N2:0 296 junitics.) [PA Inventory of U.S. Gronohusce Gas U.S. Since Missions and Sints. 1990-2015, April 2017 Average PDA I Train Composition 274 junitables Inventory of AF Insistons. CY 2013, Page 140 Average PDA Train Composition 274 junitables Inventory of AF Insistons. CY 2013, Page 160 Average PDA Train Weight 17276 junits Calculated from Average Train Composition and Average. Train No. Bysel engine conversion factor, IC to VOC 1.055 junities Calculated from Average Train Composition and Average. Train No. Dissel engine conversion factor, IC to VOC 1.055 junities SCACMWU updated CEDINKS Table with PM2.5 Fraction. Appendix. A of PM2.5 Significance Thresholds and Calculation Mathematics. Calculation Mathematics 202 junities.) Calculation Mathematics. 2021 APR.2 Sintini. Ratio AnnualPeak Day for Tracks, 2021 & 2041 227.01 Calculation Mathematics. 2017 Appendix Bit Mathematics. Ratio AnnualPeak Day for Tracks, 2021 & 2041 227.01 Calculation Mathematics. 2017 Appendix Bit Mathematics. Ratio AnnualPeak Day for Tracks, 2021 & 2041 227.01 Calculated. Calculated. Calculated. Ratio AnnualPeak Day for Tracks, 2021 & 2041 226.0 (milless) Calculated.<	Global Warming Potential, CH4	25	(unitless)	EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, April 2017
Accraze 20LA Train Composition 444 ITUs Inventory of AF Emissions CY 2013 Page 140 Accraze 20LA Train Wolph I 7216 containers Inventory of AF Emissions CY 2013 Page 160 Accraze 20LA Train Wolph I 7276 gorss tims Inventory of AF Emissions CY 2013 Page 160 Accraze 20LA Train Wolph I 7276 gorss tims Inventory of AF Emissions CY 2013 Page 160 Accraze 20LA Train Wolph I 7276 gorss tims Inventory of AF Emissions CY 2013 Page 160 Carwerston Factor For Discol Engines, PMI0 to PM2 5 0.92 (unitess) EPA. Conversion Factor for Hydrocarbon Emission Components. Report No. NR 0024. EPA 420 R-10 Offset United Hensity 7.05 Hydra SCAOMD. Updated CEIDARS Table with PM2 5 Fraction. Apportability APM2 5 Institution. The Hydrocarbon Emission Components. Report No. NR 0024. EPA 420 R-10 Offset United Hensity 7.05 Hydra PDLA 2013 AF Emissions Thereitary DAT 10 Order AnnualPeak Day for Rail, 2021 & 2011 2017 (unitess) Christ Shydro PA 201 Stratemental FLR. 2017. Append Rel 122, 2017. The Hual Fuel Productivity Factor, 2011 696 gorss tim milestal Source: ARB Loconomble Inventory Update: Line Head Activity (2014). Sourt: Cast ARB Loconomble Inventory Update: Line Head Activity (2014). Sourt: Cast ARB Loconomble Inventory Update: Line Head Activity (2014). Sourt: Cast ARB Loconomble Inventory Update: Line Head Activity (2014). Sourt: Cast ARB Loconomble Inventory U	Global Warming Potential, N2O	298	(unitless)	EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, April 2017
Avcrage PDL ATmic Composition 274 (containers Inverting vAr Emissions CV 2013, Page 160 Average PDLA Train Weight 1726 (gross torn TEU Calculated from Average Train Composition and Average Train Weight Desit engine conversion factor, PC to VOC 1033 (millss) EPA. Conversion Factor for Diess/Engines, PM10 to PM2.5 Desit engine conversion factor, PC to VOC 1033 (millss) EPA. Conversion Factor for Diess/Engines, PM10 to PM2.5 Desit biol density 705 [bipd] PDL 2013 & Emission Intendory, pp. 151 (conversion 4 and pw0/eaphandbock/PM2.5/PM2.5, html. Desit biol density 705 [bipd] PDL 2013 & Emission Intendory, pp. 151 (conversion 4 and pw0/eaphandbock/PM2.5/PM2.5, html. Desit biol density 705 [bipd] PDL APMIT.IRFA. Const Biol Torney B Brandigabi. Tie Desit biol density 707 [bipd] PDL APMIT.IRFA. Const Biol Torney B Brandigabi. Tie The Haul Public Mily Factor, 2011 646 (gross ton-milesigal Conversion 6 and/or torney B Brandigabi. Tie Ine Haul Fuel Productivity Factor, 2013 710 (gross ton-milesigal Structs. ARG, Loconcider, Immunu/LS, Listopa Conversion, 9/12/14. Ine Haul Fuel Productivity Factor, 2013 710 gross ton-milesigal Structs. ARG, Loconcider, Immunu/LS, Listopa Conversion, 9/12/14. Ine Haul Fuel Productivity Factor, 2013 <	Average POLA Train Composition	494	TEUs	Inventory of Air Emissions CY 2013, Page 149
Average PCIA Train Weight PTU 1720 gross tons Inventory of AF Emissions CX 2013, Page 160 Werage PCIA Train Weight PTU 14.7 gross tons FEU Claudated from Average Train Composition and Average Train Weight Desel engine conversion Factor, HC to VOC 10.53 (unities) EFA. Conversion Factors for Hydrocarbon Emission Components. Report No. NP.0026. EPA.420-R-10- 015. July 2010. Conversion Factor for Dissel Engines, PM10 to PM2.5 0.02 (unities) SCACMM, Updated CFLINARS Table with PM2.5 Fraction, Appendix A of PM2.5 Stipuficance Thresholds and Calculation Methodobics. Final Method Science Science 2015. Desel fuel density 7.05 [total PD1.4.2013 AV Emissions Inventory, D111 (expressed as 3.200 global). Ratio AnnualPeak Day for Trucks, 2021 & 2011 247.0 [unities) Centro Chrisoph Bennifolds. File DRI: APMT.INTRA. Geni LatiTrucks. Ine Hauf Fuel Productivity Factor, 2011 0.42 ross ton-milesopial Calculated Average Train Weighter Table Average Train Weight Ine Hauf Fuel Productivity Factor, 2013 271.0 [unities) Calculated Average Train Weighter Table Average Train Weight Ine Hauf Fuel Productivity Factor, 2013 271.0 [unities) Calculated Average Train Weighter Table	Average POLA Train Composition	274	containers	Inventory of Air Emissions CY 2013, Page 160
Average PDLA Trait Weight per TLU 14.7 gross torsTEU Calculated from Average Trait Composition and Average Traital Weight Desel ongine conversion factor, PLC to VOC 10.53 (miless) EPA Conversion factors for Hydrocarbon Fluctson Components. Report No. NR-00:d. EPA-420-R-10-0. Obesel fuel econversion factor, PLC to VOC 10.53 (miless) EPA Conversion factors for Hydrocarbon Fluctson K. of PM2 5. Spring/fleave Thresholds and Calculated Methodology. Http://www.amd.gov/cegahandhox/PM2.5. Fluct. Deset fuel density 7.05 [b/pail PDLA 2013 AF Circitosen Internet for graphic sectors and graphic seconversition and graphic sectors and graphic sectors and	Average POLA Train Weight	7276	gross tons	Inventory of Air Emissions CY 2013, Page 160
Desci orgine conversion factor, HC to VOC. 1.053 (unlifess) IFPA. Conversion Factors from Protection Appendix A or MA2 5 Spatificance Treveholds and Caluation Methodory. Interviews and covescinal address/MA2 5 Fixed to A or MA2 5 Spatificance Treveholds and Caluation Methodory. Interviews and covescinal address/MA2 5 Ma1. Dess field density 7.05 logical POLA 2013 AF Emissions Inventions. Exercise of the Appendix A or MA2 5 Spatificance Thresholds and Caluation Methodory. Intel Annual Peak Day for Trucks, 2021 & 2041 327.1 (unliess) Conversion Factor (M2 5 Ma2 5 Ma1. Ratio AnnualPeak Day for Trucks, 2021 & 2041 327.1 (unliess) Conversion Factor (M2 5 Ma2 5 Ma1. EVENT Ratio AnnualPeak Day for Trucks, 2021 & 2041 247.0 (unliess) Conversion Factor (M2 5 Ma2. Spatient EX, 2017. Appendix B1, 730. Appendix B1. Appen	Average POLA Train Weight per TEU	14.7	gross tons/TEU	Calculated from Average Train Composition and Average Train Weight
OIS_U/U2 2010. OVE_COMPLETER Conversion Factor for Diese Engines, PM10 to PM2.5 0.92 (unitless) SchodMD, Updated CEIDARS Table with PM2.5 Fraction. Appendix A of PM2.5 Significance Thresholds and Calculation Methodology. http://www.acmd.ou/ceganabadtook/PM2_5M42_5.html. Desid fiel density 7.05 logical Ratio AnnualPeak Day for Rail, 2021 & 2011 327.1 (unitiess) Cambridge Systematics. Email from Chironiyi Bhamidipati. File Then APMT_IMFRA_Cont_Rationation. CSM7_2017022Xist." Segtember 22, 2017. Ratio AnnualPeak Day for Trucks, 2021 & 2041 247.0 (unitiess) Chironis Spapemental EIR, 2017. Appendix B1-148 and B1-244. Assume the peaking factors. in 2021 and 2015. Continued by Ramesh ThammingLIGS, Likephne canversation, 79/177. Line Hauf Productivity Factor, 2013 710 orss ton-miles/gall Calculated. Line Hauf Productivity Factor, 2013 710 orss ton-miles/gall Calculated. Line Hauf Productivity Factor, 2013 710 orss ton-miles/gall Calculated Line Hauf Productivity Factor, 2016 732 pross ton-miles/gall Calculated Line Hauf Productivity Factor, 2017 729 pross ton-miles/gall Calculated Line Hauf Productivity Factor, 2018 740 orss ston-miles/gall Calculated Line Hauf Productivity Factor, 2018 740 orss ston-mil	Diesel engine conversion factor, HC to VOC	1.053	(unitless)	EPA. Conversion Factors for Hydrocarbon Emission Components. Report No. NR-002d. EPA-420-R-10-
Conversion Factor for Diesel Engines, PM10 to PM2.5 0.92 (unitless) SCACM0, Updated CEIDARS Table with PM2.5 Factor, Appendix A of PM2.5 Significance Thresholds and Cacuatian Methodology. http://www.andi.oc/main/scatuatian/scatua				015. July 2010.
Calculation Methodology, Turpityowa and govicesphandbook/PM2_SPM2_5.html. Desified density 7.05 lbgal POLA2013 APL Ensistons Inventory, pol. 51 (expressed as 3.200 g/apl) Ratio Annual/Peak Day for Rail, 2021 & 2041 327.1 (unitiess) Cambridge Systematics. Emissions Inventory, pol. 516 (expressed as 3.200 g/apl) Ratio Annual/Peak Day for Trucks, 2021 & 2041 327.1 (unitiess) Cambridge Systematics. Emissions Inventory, pol. 2023 and 2045. Confirmed by Ramsbi Inter Hauf Fuel Productivity Factor, 2011 696 gross ton-milessigal Source: RRB, Locomotive Inventory Update: Line Hauf Activity (2014). South Cass Ar Basin. Line Hauf Fuel Productivity Factor, 2012 703 gross ton-milessigal Calculated. Assume that the productivity factor (2014). South Cass Ar Basin. Line Hauf Fuel Productivity Factor, 2013 710 gross ton-milessigal Calculated. Calculated. Line Hauf Fuel Productivity Factor, 2013 710 gross ton-milessigal Calculated Calculated. Line Hauf Fuel Productivity Factor, 2013 710 gross ton-milessigal Calculated Calculated. Line Hauf Fuel Productivity Factor, 2017 729 gross ton-milessigal Calculated Calculated. Line Hauf Fuel Productivity Factor, 2017 729 gross ton-milessigal Calculated Calculated <t< td=""><td>Conversion Factor for Diesel Engines, PM10 to PM2.5</td><td>0.92</td><td>(unitless)</td><td>SCAQMD, Updated CEIDARS Table with PM2.5 Fraction, Appendix A of PM2.5 Significance Thresholds and</td></t<>	Conversion Factor for Diesel Engines, PM10 to PM2.5	0.92	(unitless)	SCAQMD, Updated CEIDARS Table with PM2.5 Fraction, Appendix A of PM2.5 Significance Thresholds and
Description 7.65 [blgal POLA 2013 AIr Emissions Inventory, pp. 151 (expressed as 3.200 g/pa) Railo Annual/Peak Day for Ral, 2021 & 2041 32.71 (unities) Cantridge Systematics. Email from Chamip Mandinghain. File "DRI AvpMT. INFRA. Carn. Rail Traffic. CSBV7. 20170922 xiss.". September 22, 2017. Railo Annual/Peak Day for Trucks, 2021 & 2041 247.0 (unitiess) China Shipping Draff Supplemental EIR, 2017. Appendix B1. 148 and B1.244. Assume the peaking factors in 2021 and 2041 are the same as years 2023 and 2045. Confirmed by Ramesh InforminauCSJ, telephone conversation, 9/12/17. Line Haul Fuel Productivity Factor, 2012 703 gross ton-miles/gal Calculated. Assume that heure horducity factor will increase by 1% oach year unit 2050. Source: ARB, Locomolite Inventory Update: Line Haul Activity (2014). Source: ARB Locomolite Inventory Update: Line Haul Activity (2014). Line Haul Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2014 724 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 724 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 724 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 724 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 724 gross ton-miles/gal Calculated				Calculation Methodology. http://www.aqmd.gov/ceqa/handbook/PM2_5/PM2_5.html.
Ratio Annual/Peak Day for Rail, 2021 & 2041 327.1 [unitless) Cambridge Systematics: Rail from Chiranjuk Bhamidipati. File Ratio Annual/Peak Day for Trucks, 2021 & 2041 247.0 [unitless) Combridge Systematics: CSBP, 2070922 x/sc. "Spelmebr 22, 2017. Ratio Annual/Peak Day for Trucks, 2021 & 2041 247.0 [unitless) Combridge Systematics: CSBP, 2070922 x/sc. "Spelmebr 22, 2017. Ine Haaf Fuel Productivity Factor, 2011 666 gross ton-miles/gal Calculated. Nammiralu/CSI, lelephone conversation, 9/12/17. Line Haaf Fuel Productivity Factor, 2012 703 gross ton-miles/gal Calculated. Nammiralu/CSI, lelephone conversation, 9/12/17. Line Haaf Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated Calculated Line Haaf Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated Calculated Line Haaf Fuel Productivity Factor, 2013 716 gross ton-miles/gal Calculated Calculated Line Haaf Fuel Productivity Factor, 2017 728 gross ton-miles/gal Calculated Calculated Line Haaf Fuel Productivity Factor, 2017 736 gross ton-miles/gal Calculated Calculated Line Haaf Fuel Productivity Factor, 2021 766 gross ton-miles/gal Calculated Calculated	Diesel fuel density	7.05	lb/gal	POLA 2013 Air Emissions Inventory, pg. 151 (expressed as 3,200 g/gal)
Control DBI APMI INFERG CERRITERIC CSBN 2017022 xtsr. September 22, 2017. Ratio Annual/Peak Day for Trucks, 2021 & 2041 247.0 (unitless) China Shipping Daft Supplemental LIR, 2017. Apendia BI. Tables BI. 148 and BI.244. Assume the packing factors in 2021 and 2041 are the same as years 2023 and 2045. Confirmed by Ramesh Thammitauk/SI. Lelephone conversation, 9/12/17. Line Haul Fuel Productivity Factor, 2011 666 gross ton-miles/gal Source: ARB, Locomotive Inventory Ugdate: Line Haul Activity (2014). South Coast Air Basin Line Haul Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated. Assume that the productivity factor will Increase by Yee ach year until 2050. Source: ARB, Locomotive Inventory Ugdate: Line Haul Activity (2014). South Coast Air Basin Line Haul Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2014 771 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2014 772 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 729 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 729 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 729 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 729 gross ton-miles/g	Ratio Annual/Peak Day for Rail, 2021 & 2041	327.1	(unitless)	Cambridge Systematics. Email from Chiranjivi Bhamidipati. File
Ratio Annual/Peak Day for Trucks, 2021 & 2041 247.0 [unifiess] China Shipping Darta's supplemental EIR, 2017. Appendix B1:148 and B1:244. Assume the peaking factors in 2021 and 2014 are the same as years 2023 and 2045. Confirmed by Ramesh Thammiraiu/CSI, telephone conversation, 9/12/17. Line Hau Fuel Productivity Factor, 2011 696 gross ton-miles/gal Calculated. Assume that the productivity factor, 2013. T/10 gross ton-miles/gal Calculated. Assume that the productivity factor, 2013. T/10 gross ton-miles/gal Calculated. Assume that the productivity factor, 2013. T/10 gross ton-miles/gal Calculated Line Hauf Fuel Productivity Factor, 2013 T/10 gross ton-miles/gal Calculated Calculated Line Hauf Fuel Productivity Factor, 2013 T/10 gross ton-miles/gal Calculated Calculated Line Hauf Fuel Productivity Factor, 2013 T/10 gross ton-miles/gal Calculated Calculated Line Hauf Fuel Productivity Factor, 2016 T/32 gross ton-miles/gal Calculated Calculated Line Hauf Fuel Productivity Factor, 2020 T/61 gross ton-miles/gal Calculated Calculated Line Hauf Fuel Productivity Factor, 2020 T/61 gross ton-miles/gal Calculated Calculated Line Hauf Fuel Productivity Factor, 2023 T/78 gross ton-miles/gal Calculated				"DR1_APMT_INFRA_Grant_RailTraffic_CSBv7_20170922.xlsx". September 22, 2017.
peaking factors in 2021 and 2041 are the same as years 2023 and 2045. Confirmed by Ramesh Thammifau/CS1 Jelephone conversation. 9/12/17. Line Haul Fuel Productivity Factor, 2011 696 gross ton miles/gal Source: ARB, Locomotive Inventory Update: Line Haul Activity (2014). South Coast Air Basin. Line Haul Fuel Productivity Factor, 2013 710 gross ton miles/gal Calculated. Assume that the productivity factor will increase by 1% each year until 2050. Source: ARB, Locomotive Inventory Update: Line Haul Activity (2014). Line Haul Fuel Productivity Factor, 2013 710 gross ton miles/gal Calculated Line Haul Fuel Productivity Factor, 2014 772 gross ton miles/gal Calculated Line Haul Fuel Productivity Factor, 2016 723 gross ton miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 730 gross ton miles/gal Calculated Line Haul Fuel Productivity Factor, 2010 774 gross ton miles/gal Calculated Line Haul Fuel Productivity Factor, 2010 776 gross ton miles/gal Calculated Line Haul Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2021 769 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2023 778 gross ton miles/gal Calculated Line Haul Fuel	Ratio Annual/Peak Day for Trucks, 2021 & 2041	247.0	(unitless)	China Shipping Draft Supplemental EIR, 2017. Appendix B1, Tables B1-148 and B1-244. Assume the
Inertail The mining/CS, 14, 16, 16, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10				peaking factors in 2021 and 2041 are the same as years 2023 and 2045. Confirmed by Ramesh
Line Haul Fuel Productivity Factor, 2011 696 gross ton-miles/gal Source: ARB, Locomotive Inventory Update: Line Haul Activity (2014). South Coast Air Basin. Line Haul Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated Assume that the productivity (2014). Source: ARB, Locomotive Inventory Update: Line Haul Activity (2014). Line Haul Fuel Productivity Factor, 2015 724 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2015 724 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2016 723 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2017 739 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2018 746 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2021 777 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2022 777 gross ton-miles/gal Calculated Calculated Line Haul Fuel Productivity Factor, 2023 784 gross ton-miles/gal Calculated				Thammiraju/CSI, telephone conversation, 9/12/17.
Line Haul Fuel Productivity Factor, 2012 703 gross ton-miles/gal Calculated. Assume that the productivity factor will increase by 1% each year until 2050. Source: ARB, Located Fuel Fuel Productivity Factor, 2013 Line Haul Fuel Productivity Factor, 2013 710 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2014 717 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2015 724 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2016 723 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2016 724 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2017 739 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2018 744 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2022 777 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2023 778 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2025 800 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2025 800 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2027 816	Line Haul Fuel Productivity Factor, 2011	696	gross ton-miles/gal	Source: ARB, Locomotive Inventory Update: Line Haul Activity (2014). South Coast Air Basin.
Locemotiv Locemotiv Locemotiv Line Haui Fuel Productivity Factor, 2013 T10 gross ton-miles/gal Calculated Line Haui Fuel Productivity Factor, 2014 717 gross ton-miles/gal Calculated	Line Haul Fuel Productivity Factor, 2012	703	gross ton-miles/gal	Calculated. Assume that the productivity factor will increase by 1% each year until 2050. Source: ARB,
Line Hau Fuel Productivity Factor, 2013 170 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2015 171 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2016 722 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2017 1739 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2018 176 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2019 176 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2010 176 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2020 176 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2021 179 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2022 177 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2023 1784 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2024 1792 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2025 800 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2026 808 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2027 816 gross t				Locomotive Inventory Update: Line Haul Activity (2014).
Line Hau Fuel Productivity Factor, 2014 712 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2015 724 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2017 739 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2017 739 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2017 739 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2019 754 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2022 777 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2023 784 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2023 784 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2025 800 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2026 808 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2028 824 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2028 824 gross ton-	Line Haul Fuel Productivity Factor, 2013	710	gross ton-miles/gal	Calculated
Line Hau Fuel Productivity Factor, 2015 724 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2016 732 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2017 739 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2018 746 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2020 761 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2021 769 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2022 777 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2023 784 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2024 779 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2025 800 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2026 808 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2026 808 gross ton-miles/gal Calculated Line Hau Fuel Productivity Factor, 2028 824 gross ton-	Line Haul Fuel Productivity Factor, 2014	717	gross ton-miles/gal	Calculated
Line Hauf Fuel Productivity Factor, 2016732 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2018746 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2019754 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2019754 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2020761 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2021769 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2022777 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2022777 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Hauf Fuel Productivity Factor, 2033866 gross ton-miles	Line Haul Fuel Productivity Factor, 2015	724	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2017739 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2018746 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2020761 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2021769 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2022777 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024792 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 (gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 20338	Line Haul Fuel Productivity Factor, 2016	732	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2018746 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2019754 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2020761 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2021769 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2022777 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024772 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031846 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034878 gross ton-miles	Line Haul Fuel Productivity Factor, 2017	739	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2019754 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2020761 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2021769 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2022777 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031844 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles	Line Haul Fuel Productivity Factor, 2018	746	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2020761 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2021777 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2022777 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles	Line Haul Fuel Productivity Factor, 2019	754	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2021769 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2020833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2020833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles	Line Haul Fuel Productivity Factor, 2020	761	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2022777 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles	Line Haul Fuel Productivity Factor, 2021	769	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2023784 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles	Line Haul Fuel Productivity Factor, 2022	777	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2024792 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles	Line Haul Fuel Productivity Factor, 2023	784	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2025800 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles	Line Haul Fuel Productivity Factor, 2024	792	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2026808 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles	Line Haul Fuel Productivity Factor, 2025	800	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2027816 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041929 gross ton-miles	Line Haul Fuel Productivity Factor, 2026	808	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2028824 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041928 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041928 gross ton-miles	Line Haul Fuel Productivity Factor, 2027	816	gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2029833 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculated	Line Haul Fuel Productivity Factor, 2028	824	gross ton-miles/gal	
Line Haul Fuel Productivity Factor, 2030841 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculated	Line Haul Fuel Productivity Factor, 2029	833	gross ton-miles/gal	
Line Haul Fuel Productivity Factor, 2031849 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculated	Line Haul Fuel Productivity Factor, 2030	841	gross ton-miles/gai	
Line Haul Fuel Productivity Factor, 2032858 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculated	Line Haul Fuel Productivity Factor, 2031	849	gross ton-miles/gai	
Line Haul Fuel Productivity Factor, 2033866 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculated	Line Haul Fuel Productivity Factor, 2032	858	gross ton-miles/gal	
Line Haul Fuel Productivity Factor, 2034875 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2035884 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/galCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/galCalculated	Line Haul Fuel Productivity Factor, 2033	866	gross ton-miles/gai	
Line Haul Fuel Productivity Factor, 2035884 gross ton-miles/gaiCalculatedLine Haul Fuel Productivity Factor, 2036893 gross ton-miles/gaiCalculatedLine Haul Fuel Productivity Factor, 2037901 gross ton-miles/gaiCalculatedLine Haul Fuel Productivity Factor, 2038911 gross ton-miles/gaiCalculatedLine Haul Fuel Productivity Factor, 2039920 gross ton-miles/gaiCalculatedLine Haul Fuel Productivity Factor, 2040929 gross ton-miles/gaiCalculatedLine Haul Fuel Productivity Factor, 2041938 gross ton-miles/gaiCalculated	Line Haul Fuel Productivity Factor, 2034	8/5	gross ton-miles/gai	
Line Haul Fuel Productivity Factor, 2037 901 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2038 911 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2038 911 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2039 920 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2040 929 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2040 929 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2041 938 gross ton-miles/gal Calculated	Line Haul Fuel Productivity Factor, 2035	884	gross ton miles/gal	
Line Haul Fuel Productivity Factor, 2038 911 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2039 920 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2039 920 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2040 929 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2041 938 gross ton-miles/gal Calculated	Line Haul Fuel Productivity Factor, 2027	<u>۵</u> 93	gross ton miles/gal	
Line Haul Fuel Productivity Factor, 2039 920 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2040 929 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2040 929 gross ton-miles/gal Calculated Line Haul Fuel Productivity Factor, 2041 938 gross ton-miles/gal Calculated	Line Haul Fuel Productivity Factor, 2020	901	gross ton miles/gal	
Line Haul Fuel Productivity Factor, 2040 929 gross ton-miles/gal Calculated	Line Haul Fuel Productivity Factor, 2020	911	gross ton miles/gal	
Line Haul Fuel Productivity Factor 2041 938 gross ton-miles/gal Calculated	Line Haul Fuel Productivity Factor 2040	920	aross ton milos/gal	Calculated
	Line Haul Fuel Productivity Factor 20/1	929 020	aross ton-miles/yai	Calculated

Line Haul Fuel Productivity Factor, 2042	947 gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2043	957 gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2044	967 gross ton-miles/gal	Calculated
Line Haul Fuel Productivity Factor, 2045	976 gross ton-miles/gal	Calculated

Loco Route Nodes (from BEEST)

385434.8

385428.5

3738972.6

3739123.8

64.1

151.3

Segment Length (meters):	28548.6
Segment Length (miles):	17.74

385661.03761858.9385638.83762266.1

157.2 407.8

Segmer	it Length (miles):	1.14		Segment Lei	igth (miles):	17.74	
Train Route for UTM X (m)	Segment 1: AF UTM Y (m)	PMT On-dock Yard to ICT Distance (m)	FF Jct. (South of ICTF Yard)	Train Route UTM X (m)	e for Segment UTM Y (m) Dis	2: ICTF Jo tance (m)	ct. to L.A. Downtown (North of
384518.0	3735169.8			387286.6	3746698.2		
384500.4	3735226.7	59.5		387306.6	3746790.9	94.9	
384489.1	3735271.3	46.0		387332.9	3746960.3	171.5	
384482.3	3735306.8	36.1		387371.5	3747225.6	268.0	
384477.5	3735351.7	45.2		387377.4	3747255.3	30.2	
384471.9	3735382.0	30.8		387391.7	3747302.3	49.1	
384463.1	3735407.9	27.4		387419.7	3747369.3	72.6	
384385.9	3735638.2	242.9		387456.6	3747455.2	93.5	
384373.4	3735676.6	40.4		387471.8	3747496.3	43.8	
384369.2	3735695.9	19.7		387483.4	3747538.4	43.6	
384366.8	3735733.9	38.1		387498.2	3747631.6	94.4	
384371.7	3735773.6	40.1		387534.6	3747840.9	212.4	
384383.9	3735812.5	40.7		387550.0	3747944.5	104.8	
384406.2	3735852.5	45.7		387557.8	3748042.8	98.7	
384437.3	3735886.7	46.3		387559.9	3748166.9	124.1	
384472.9	3735911.9	43.6		387553.2	3748278.3	111.6	
384514.5	3735937.0	48.6		387542.8	3748376.9	99.1	
384672.9	3736034.3	185.9		387517.9	3748523.3	148.5	
384766.2	3736096.0	111.9		387496.3	3748654.0	132.5	
384883.2	3736168.2	137.4		387458.6	3748954.1	302.5	
384962.4	3736221.6	95.5		387414.6	3749350.9	399.3	
385047.9	3736291.9	110.7		387378.8	3749635.0	286.3	
385073.8	3736319.5	37.9		387296.9	3750312.4	682.3	
385128.2	37363841	84.5		387242.8	37507727	463.5	
385153.6	37364221	45.8		387187.6	3751240.6	471 1	
385174.2	37364701	52.1		387138.9	3751654.6	416.8	
385183.6	3736522.6	53.4		387086.3	3752129.8	478 1	
385180.7	3736630.6	108.0		387032.0	37525537	127.3	
385178.6	3736698 /	67.8		386070 1	3753006.0	455 5	
385166.0	3736818 5	120.7		386020 3	3753000.0	400.0	
385154.0	2726080 1	171 1		386841.0	275/171 7	751.6	
2051/0 0	2727011 2	55 5		396743.9	3754171.7	225.6	
205121 /	3737044.3 2727101 1	1/1 2		206645.6	2755010 2	023.0	
205110 5	2727450 0	141.Z 275.2		206524.0	2754624 5	033.3	
205002 4	3/3/400.9	270.2		300334.U 204472 E	3730034.3	022.9	
303093.0	3/3/007.0	211.0		300472.3	3737001.4	372.0	
303003.4 305007.2	3/3/093.9	224.3 E1 0		300402.7	3737390.4	403.1 404 E	
385087.3	3/3/944.9	51.2		380321.2	3/5/8/0.0	484.5	
385102.1	3/38027.5	83.8		380223.1	3758448.8	581.2	
385147.8	3/38234.5	212.0		386134.2	3/38900.8	525.6	
385165.2	3/38299.1	00.9		386051./	3/59445.2	485.4	
385223.1	3/38411.1	126.1		385981.0	3/598/8.9	439.5	
385306.7	3/38546.3	159.0		385937.7	3/60164.5	288.8	
385381.2	3/38666.9	141./		385874.9	3/60536.5	311.2	
385412.4	3/38743.5	82.7		385793.7	3/61009.4	4/9.8	
385431.3	3738830.4	89.0		385718.3	3/61446.0	443.0	
385436.5	3738908.5	78.3		385676.2	3761702.5	259.9	

of ICTF Yard)

385420.2	3739288.8	165.2	385611.3 376	62732.6 467.3
385408.7	3739563.5	275.0	385587.9 376	53116.4 384.5
385394.1	3739829.3	266.2	385559.3 376	53567.8 452.3
385387.2	3739898.0	69.0	385535.8 376	54147.2 579.9
385371.7	3739950.3	54.6	385537.1 376	54250.7 103.5
385352.9	3739989.6	43.5	385562.8 376	64330.2 83.5
385319.0	3740042.5	62.8	385601.0 376	54399.5 79.2
385251.1	3740146.4	124.1	385653.2 376	54458.6 78.9
385218.9	3740200.9	63.3	385754.7 376	64530.5 124.3
385202.6	3740238.3	40.8	385962.9 376	54670.0 250.6
385194.1	3740281.9	44.4	386130.1 376	64783.1 201.8
385195.1	3740323.5	41.6	386227.5 376	64829.6 108.0
385205.5	3740374.0	51.5	386312.1 376	64852.1 87.5
385230.6	3740428.1	59.6	386405.2 376	64857.5 93.3
385280.8	3740524.7	108.9	386535.0 376	54858.4 129.7
385323.8	3740599.9	86.6	386625.0 376	64861.0 90.1
385352.1	3740658.7	65.3	386817.9 376	54863.3 193.0
385372.4	3740709.9	55.1	387003.0 376	54860.6 185.0
385396.0	3740780.8	74.7	387111.0 376	54861.6 108.0
385424.7	3740877.2	100.6	387162.7 376	54865.7 51.9
385440.1	3740925.9	51.0	387210.1 376	54878.4 49.1
385461.6	3741001.7	78.9	387298.1 376	54911.4 94.0
385510.0	3741154.4	160.1	387342.4 376	54921.1 45.3
385544.4	3741261.0	112.1	387382.2 376	54923.7 39.8
385560.3	3741303.6	45.4	387419.8 376	54920.1 37.8
385580.5	3741354.0	54.3	387558.5 376	54899.6 140.3
385599.7	3741411.0	60.1	387691.3 376	54873.4 135.4
385653.8	3741583.5	180.8	387768.8 376	54850.3 80.8
385686.2	3741694.4	115.5	387836.5 376	54819.1 74.5
385720.9	3741818.6	129.0	387978.0 376	54753.3 156.1
385758.9	3741937.4	124.7	388186.5 376	54654.9 230.5
385805.4	3742084.1	153.9	388476.9 376	54519.2 320.6
385867.4	3742274.2	200.0	388660.5 376	54434.7 202.1
385933.4	3742481.6	217.7	388773.2 376	54391.3 120.8
385992.2	3742659.3	187.1	388977.6 376	54331.9 212.8
386038.5	3742796.6	144.9	389123.2 376	54306.6 147.8
386096.8	3742967.3	180.4	389376.9 376	64277.1 255.5
386167.1	3743178.0	222.1	389653.1 376	54245.7 278.0
386194.7	3743273.1	99.0	389961.4 376	54211.0 310.2
386193.6	3743261.5	11.6	390253.3 376	54177.0 293.8
386203.2	3743302.1	41.7	390571.6 376	54141.0 320.3
386209.7	3743340.5	39.0	390876.4 376	34105.7 306.8
386211.6	3743364.3	23.8	391198.4 376	34069.3 324.1
386214.2	3743415.3	51.1	391532.6 376	34030.3 336.5
386216.0	3743474.3	59.0	391806.4 376	64000.5 275.4
386219.3	3743537.4	63.2	392078.6 376	53968.1 274.1
386224.0	3743581.1	43.9	392402.9 376	53930.2 326.6
386229.3	3743611.1	30.5	392699.7 376	53897.1 298.6
386236.2	3743639.4	29.2	392879.0 37	53876.8 180.5
386244.5	3743669.1	30.8	393152.5 37	53849.2 274.9
386252.5	3743693.3	25.5	393186.7 37/	53844.9 34.5
386288.2	3743803.0	115.3	393533 1 37	53805.0 348.6
386306.2	3743856.0	56.0	393990 5 37	53752.5 460 4
386324.3	3743900 2	47.8	394490 6 37/	53695.0 503.4
386344.5	3743940.7	45.3	395003 1 37	53636.7 515.9
			5.000011 010	0.017

386366.4	3743977.9	43.1
386390.5	3744013.6	43.1
386445.3	3744096.2	99.1
386470.5	3744139.6	50.2
386492.0	3744184.7	49.9
386510.2	3744236.0	54.5
386537.9	3744325.3	93.5
386575.9	3744443.6	124.3
386653.2	3744685.3	253.7
386720.1	3744892.7	218.0
386785.3	3745094.8	212.3
386840.1	3745264.5	178.3
386913.0	3745493.7	240.5
386969.1	3745676.8	191.5
387010.6	3745805.2	134.9
387076.7	3746000.3	206.0
387126.8	3746150.3	158.1
387172.9	3746295.2	152.1
387223.5	3746450.2	163.0
387286.6	3746698.2	255.9

395471.8	3763580.4	472.0
395950.0	3763524.0	481.6

[this page left blank intentionally]

Source: ARB 2016 Vision 2.1 Locomotive Module. Current Control Programs Scenario. Table "b_TierDist_Sc0".

СҮ	Tier	Tier_Share	Air Basin
1990	Pre-Tier	100.0%	SC
1990	Tier 0	0.0%	SC
1990	Tier Or	0.0%	SC
1990	Tier 1	0.0%	SC
1990	Tier 1r	0.0%	SC
1990	Tier 2	0.0%	SC
1990	Tier 2r	0.0%	SC
1990	Tier 3	0.0%	SC
1990	Tier 4	0.0%	SC
1990	Tier4+AT	0.0%	SC
1990	LNG	0.0%	SC
1990	Catenary	0.0%	SC
1990	Battery	0.0%	SC
1990	FuelCell	0.0%	SC
1990	MagLev	0.0%	SC
1991	Pre-Tier	100.0%	SC
1991	Tier 0	0.0%	SC
1991	Tier Or	0.0%	SC
1991	Tier 1	0.0%	SC
1991	Tier 1r	0.0%	SC
1991	Tier 2	0.0%	SC
1991	Tier 2r	0.0%	SC
1991	Tier 3	0.0%	SC
1991	Tier 4	0.0%	SC
1991	Tier4+AT	0.0%	SC
1991	LNG	0.0%	SC
1991	Catenary	0.0%	SC
1991	Battery	0.0%	SC
1991	FuelCell	0.0%	SC
1991	MagLev	0.0%	SC
1992	Pre-Tier	100.0%	SC
1992	Tier 0	0.0%	SC
1992	Tier Or	0.0%	SC
1992	Tier 1	0.0%	SC
1992	Tier 1r	0.0%	SC
1992	Tier 2	0.0%	SC

Line Haul Locomotive Projected Fleet Mix in the South Coast Air Basin

2019	Catenary	0.0%	SC
2019	Battery	0.0%	SC
2019	FuelCell	0.0%	SC
2019	MagLev	0.0%	SC
2020	Pre-Tier	0.0%	SC
2020	Tier 0	0.0%	SC
2020	Tier Or	33.9%	SC
2020	Tier 1	0.0%	SC
2020	Tier 1r	11.9%	SC
2020	Tier 2	0.0%	SC
2020	Tier 2r	20.6%	SC
2020	Tier 3	17.7%	SC
2020	Tier 4	15.9%	SC
2020	Tier4+AT	0.0%	SC
2020	LNG	0.0%	SC
2020	Catenary	0.0%	SC
2020	Battery	0.0%	SC
2020	FuelCell	0.0%	SC
2020	MagLev	0.0%	SC
2021	Pre-Tier	0.0%	SC
2021	Tier 0	0.0%	SC
2021	Tier Or	30.5%	SC
2021	Tier 1	0.0%	SC
2021	Tier 1r	11.8%	SC
2021	Tier 2	0.0%	SC
2021	Tier 2r	20.3%	SC
2021	Tier 3	17.5%	SC
2021	Tier 4	19.9%	SC
2021	Tier4+AT	0.0%	SC
2021	LNG	0.0%	SC
2021	Catenary	0.0%	SC
2021	Battery	0.0%	SC
2021	FuelCell	0.0%	SC
2021	MagLev	0.0%	SC
2022	Pre-Tier	0.0%	SC
2022	Tier 0	0.0%	SC
2022	Tier Or	27.3%	SC
2022	Tier 1	0.0%	SC
2022	Tier 1r	11.6%	SC
0000			
2022	Tier 2	0.0%	SC

2038	FuelCell	0.0%	SC
2038	MagLev	0.0%	SC
2039	Pre-Tier	0.0%	SC
2039	Tier 0	0.0%	SC
2039	Tier Or	0.4%	SC
2039	Tier 1	0.0%	SC
2039	Tier 1r	1.8%	SC
2039	Tier 2	0.0%	SC
2039	Tier 2r	6.3%	SC
2039	Tier 3	9.9%	SC
2039	Tier 4	81.6%	SC
2039	Tier4+AT	0.0%	SC
2039	LNG	0.0%	SC
2039	Catenary	0.0%	SC
2039	Battery	0.0%	SC
2039	FuelCell	0.0%	SC
2039	MagLev	0.0%	SC
2040	Pre-Tier	0.0%	SC
2040	Tier 0	0.0%	SC
2040	Tier Or	0.1%	SC
2040	Tier 1	0.0%	SC
2040	Tier 1r	1.3%	SC
2040	Tier 2	0.0%	SC
2040	Tier 2r	5.5%	SC
2040	Tier 3	9.1%	SC
2040	Tier 4	84.0%	SC
2040	Tier4+AT	0.0%	SC
2040	LNG	0.0%	SC
2040	Catenary	0.0%	SC
2040	Battery	0.0%	SC
2040	FuelCell	0.0%	SC
2040	MagLev	0.0%	SC
2041	Pre-Tier	0.0%	SC
2041	Tier 0	0.0%	SC
2041	Tier Or	0.0%	SC
2041	Tier 1	0.0%	SC
2041	Tier 1r	0.9%	SC
2041	Tier 2	0.0%	SC
2041	Tier 2r	4.6%	SC
2041	Tier 3	8.3%	SC
2041	Tier 4	86.3%	SC

2041	Tier4+AT	0.0%	SC
2041	LNG	0.0%	SC
2041	Catenary	0.0%	SC
2041	Battery	0.0%	SC
2041	FuelCell	0.0%	SC
2041	MagLev	0.0%	SC
2042	Pre-Tier	0.0%	SC
2042	Tier 0	0.0%	SC
2042	Tier Or	0.0%	SC
2042	Tier 1	0.0%	SC
2042	Tier 1r	0.4%	SC
2042	Tier 2	0.0%	SC
2042	Tier 2r	3.8%	SC
2042	Tier 3	7.5%	SC
2042	Tier 4	88.3%	SC
2042	Tier4+AT	0.0%	SC
2042	LNG	0.0%	SC
2042	Catenary	0.0%	SC
2042	Battery	0.0%	SC
2042	FuelCell	0.0%	SC
2042	MagLev	0.0%	SC
2043	Pre-Tier	0.0%	SC
2043	Tier 0	0.0%	SC
2043	Tier Or	0.0%	SC
2043	Tier 1	0.0%	SC
2043	Tier 1r	0.1%	SC
2043	Tier 2	0.0%	SC
2043	Tier 2r	3.0%	SC
2043	Tier 3	6.7%	SC
2043	Tier 4	90.1%	SC
2043	Tier4+AT	0.0%	SC
2043	LNG	0.0%	SC
2043	Catenary	0.0%	SC
2043	Battery	0.0%	SC
2043	FuelCell	0.0%	SC
2043	MagLev	0.0%	SC
2044	Pre-Tier	0.0%	SC
2044	Tier 0	0.0%	SC
2044	Tier Or	0.0%	SC
2044	Tier 1	0.0%	SC
2044	Tier 1r	0.0%	SC

Assumptions Used in the Traffic Emission Calculations

Parameter	Value	Unit of Measure	Reference						
Global Warming Potential, CO2	1	(unitless)	EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, April 2017						
Global Warming Potential, CH4	25	(unitless)	EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, April 2017						
Global Warming Potential, N2O	298	(unitless)	EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015, April 2017						
Ratio Annual/Peak Day for Trucks, 2021 & 2041	247.0	(unitless)	China Shipping Draft Supplemental EIR, 2017. Appendix B1, Tables B1-148 and B1-244. Assume the						
			peaking factors in 2021 and 2041 are the same as years 2023 and 2045. Confirmed by Ramesh						
			Thammiraju/CSI, telephone conversation, 9/12/17.						
Ratio 2021/2041 APMT Truck VMT	0.366	(unitless)	Email from Kerry Cartwright/POLA, 9/21/17.						

			SumOfEmis_	SumOfEmis_	SumOfEmis_	SumOfEmis_	SumOfEmis_	SumOfEmis_										
Scenario	CY	TimePeriod	ROG	CO	NOx	PM10EX	PM25EX	PM10TW	PM10BW	PM25TW	PM25BW	SOx	CO2	CH4	N2O	DPM	PM10Dust	PM25Dust
NoProj	202	1 AM	2931.20152	10847.5227	164829.147	864.196445	826.811689	826.125763	1416.80568	206.531441	607.202435	384.888931	37853664.94	159.756814	1444.14625	796.875542	1333.08434	200.020966
NoProj	202	1 MD	7171.05026	26578.408	392167.727	2050.20238	1961.51153	1956.36729	3355.1699	489.091822	1437.92996	911.464269	90136615.43	393.391146	3419.91573	1890.49162	3161.35473	474.341502
NoProj	202	1 NTEV	4474.03673	16553.1533	270655.233	1428.7199	1366.91411	1376.3086	2360.36925	344.07715	1011.58682	641.217075	62126035.31	240.876438	2405.91808	1317.42262	2232.82726	335.021763
NoProj	202	1 PM	3136.53349	11631.9821	170768.281	892.327336	853.725651	851.333367	1460.03672	212.833342	625.730024	396.63306	39251777.6	172.3233	1488.21154	822.815037	1378.59651	206.849783
NoProj	204	1 AM	9312.16589	128550.958	235968.369	445.214792	425.954997	2247.50016	3854.46277	561.87504	1651.91262	863.278082	110491516.1	1271.11673	3428.95338	410.53256	3638.50798	545.935361
NoProj	204	1 MD	25437.2384	348766.221	638352.202	1100.68092	1053.06595	5322.35646	9127.84133	1330.58912	3911.932	2044.34855	272148996.6	3444.78824	8120.18282	1014.93788	8628.57215	1294.66328
NoProj	204	1 NTEV	5919.8026	53440.945	95950.4742	619.50301	592.703584	3744.28923	6421.45603	936.072307	2752.05258	1438.2036	151152333.1	488.923095	5712.56609	571.243726	6094.25792	914.405279
NoProj	204	1 PM	10977.0694	141229.332	263851.446	478.627121	457.921924	2316.07821	3972.07413	579.019552	1702.31748	889.619316	117098058.1	1381.46223	3533.58115	441.342069	3762.72848	564.57387
Proj	202	1 AM	2743.83724	10145.7134	155608.449	816.626395	781.299499	780.95189	1339.33249	195.237972	573.999639	363.842591	35727020.81	149.157	1365.17804	753.011199	1253.56809	188.09005
Proj	202	1 MD	6709.43734	24842.4252	370016.909	1936.35563	1852.58975	1848.30635	3169.84539	462.076587	1358.50517	861.119078	85022634.41	367.032777	3231.01495	1785.51353	2969.96482	445.624643
Proj	202	1 NTEV	4204.87664	15534.3609	257741.422	1362.48822	1303.54759	1313.05829	2251.89497	328.264573	965.097843	611.748991	59139706.79	225.356618	2295.35053	1256.35039	2118.48838	317.86593
Proj	202	1 PM	2971.48908	11011.494	162885.393	851.824193	814.974656	812.927898	1394.17134	203.231974	597.502005	378.740095	37432275.15	162.899127	1421.07513	785.467089	1309.3811	196.464444
Proj	204	1 AM	8648.39132	118627.11	217747.712	418.896645	400.775362	2124.60327	3643.69461	531.150817	1561.5834	816.072661	103888390.5	1171.91599	3241.45274	386.264596	3421.47707	513.371231
Proj	204	1 MD	23614.0533	320981.219	584809.313	1035.37393	990.584115	5028.37341	8623.66039	1257.09335	3695.85445	1931.42792	255631839.2	3166.3754	7671.66041	954.718303	8106.1943	1216.28375
Proj	204	1 NTEV	5508.09504	49112.7385	89517.9752	588.935442	563.458356	3572.21485	6126.34846	893.053712	2625.57791	1372.10882	143703726	448.041164	5450.03662	543.057371	5782.18245	867.580306
Proj	204	1 PM	10271.65	131320.811	244089.513	454.610731	434.944472	2211.59497	3792.88537	552.898742	1625.5223	849.486686	111125290.8	1283.29838	3374.17375	419.196555	3573.81258	536.228222

Source: Exported from Microsoft Access.