3.2

AIR QUALITY AND METEOROLOGY

2 **3.2.1** Introduction

1

3

4

5

6

7

Emissions from construction and operation of the proposed Project and alternatives would affect air quality in the immediate proposed project area and the surrounding region. This section includes a description of the affected air quality environment, predicted impacts of the proposed Project and alternatives, and mitigation measures that would reduce significant impacts.

8 3.2.2 Environmental Setting

9The proposed project site is located in the Harbor District of the City of Los Angeles,10within the South Coast Air Basin (SCAB). The SCAB consists of the nondesert11portions of Los Angeles, Riverside, and San Bernardino Counties and all of Orange12County. The air basin covers an area of approximately 6,000 square miles and is13bounded on the west by the Pacific Ocean; on the north and east by the San Gabriel,14San Bernardino, and San Jacinto Mountains; and on the south by the San Diego15County line.

3.2.2.1 Regional Climate and Meteorology

17The climate of the proposed project region is classified as Mediterranean,18characterized by warm, rainless summers and mild, wet winters. The major19influences on the regional climate are the Eastern Pacific High (a strong persistent20area of high atmospheric pressure over the Pacific Ocean), topography, and the21moderating effects of the Pacific Ocean. Seasonal variations in the position and22strength of the Eastern Pacific High are a key factor in the weather changes in the23area.

2

3

4

5

6

7

8

9

10

11 12

13

14

The Eastern Pacific High attains its greatest strength and most northerly position during the summer, when it is centered west of northern California. In this location, it effectively shelters southern California from the effects of polar storm systems. Large-scale atmospheric subsidence associated with the Eastern Pacific High produces an elevated temperature inversion along the West Coast. The base of this subsidence inversion is generally from 1,000 to 2,500 feet (300 to 800 meters) above mean sea level (msl) during the summer. Vertical mixing is often limited to the base of the inversion, and air pollutants are trapped in the lower atmosphere. The mountain ranges that surround the Los Angeles Basin constrain the horizontal movement of air and also inhibit the dispersion of air pollutants out of the region. These two factors, combined with the air pollution sources of over 15 million people, are responsible for the high pollutant concentrations that can occur in the SCAB. In addition, the warm temperatures and high solar radiation during the summer months promote the formation of ozone, which has its highest levels during the summer.

- 15 The proximity of the Eastern Pacific High and a thermal low pressure system in the desert interior to the east produce a sea breeze regime that prevails within the 16 17 proposed project region for most of the year, particularly during the spring and summer months. Sea breezes at the Port typically increase during the morning hours 18 19 from the southerly direction and reach a peak in the afternoon as they blow from the southwest. These winds generally subside after sundown. During the warmest 20 21 months of the year, however, sea breezes could persist well into the nighttime hours. 22 Conversely, during the colder months of the year, northerly land breezes increase by 23 sunset and into the evening hours. Sea breezes transport air pollutants away from the 24 coast and toward the interior regions in the afternoon hours for most of the year.
- 25During the fall and winter months, the Eastern Pacific High can combine with high26pressure over the continent to produce light winds and extended inversion conditions27in the region. These stagnant atmospheric conditions often result in elevated28pollutant concentrations in the SCAB. Excessive buildup of high pressure in the29Great Basin region northeast of the SCAB can produce a Santa Ana condition,30characterized by warm, dry, northeast winds in the basin and offshore regions. Santa31Ana winds often ventilate the SCAB of air pollutants.
- The Palos Verdes Hills have a major influence on wind flow in the Port. For example, during afternoon southwest sea breeze conditions, the Palos Verdes Hills often block this flow and create a zone of lighter winds in the Port's Inner Harbor area. During strong sea breezes, this flow can bend around the north side of the Palos Verdes Hills and end up as a northwest breeze in the Inner Harbor area. This topographic feature also deflects northeasterly land breezes that flow from the coastal plains to a more northerly direction through the Port.

3.2.2.2 Criteria Pollutants and Air Monitoring

2 3.2.2.2.1 Criteria Pollutants

3

9

10

Air quality at a given location can be characterized by the concentration of various pollutants in the air. Units of concentration are generally expressed as parts per million by volume (ppmv) or micrograms per cubic meter ($\mu g/m^3$) of air. The significance of a pollutant concentration is determined by comparing the concentration to an appropriate national or state ambient air quality standard. These standards represent the allowable atmospheric concentrations at which the public health and welfare are protected. They include a reasonable margin of safety to protect the more sensitive individuals in the population.

- 11 EPA establishes the National Ambient Air Quality Standards (NAAOS). For most 12 pollutants, maximum concentrations must not exceed an NAAQS more than once per 13 year, and they must not exceed the annual standards. The California Air Resources 14 Board (CARB) establishes the California Ambient Air Quality Standards (CAAQS), 15 which are generally more stringent and include more pollutants than the NAAQS. 16 California standards for ozone (O_3) , carbon monoxide (CO), nitrogen dioxide (NO₂), 17 particulate matter less than 10 microns (µm) in diameter (PM10), and particulate matter less than 2.5 µm in diameter (PM2.5) are values not to be exceeded. Maximum 18 19 pollutant concentrations must not equal or exceed the CAAOS.
- 20 Pollutants that have corresponding national or state ambient air quality standards are known as criteria pollutants. These pollutants can harm human health and the 21 22 environment, and cause property damage. These pollutants are called "criteria" air 23 pollutants because they are regulated by developing human health-based and/or 24 environmentally based criteria (science-based guidelines) for setting permissible 25 levels. The set of limits based on human health is called the primary standards. Another set of limits intended to prevent environmental and property damage is the 26 27 secondary standards. The criteria pollutants of greatest concern in this air quality 28 assessment are O₃, CO, NO₂, SO₂, PM10, and PM2.5. NO_X and SO_X are the generic 29 terms for NO₂ and SO₂, respectively, because NO₂ and SO₂ are naturally highly 30 reactive and may change composition when exposed to oxygen, other pollutants, 31 and/or sunlight in the atmosphere. These oxides are produced during combustion. 32
- 32As discussed above, one of the main concerns with criteria pollutants is that they33contribute directly to regional human health problems. The known adverse effects34associated with these criteria pollutants are shown in Table 3.2-1.
- 35 **Table 3.2-1.** Adverse Effects Associated with the Criteria Pollutants

Pollutant	Adverse Effects
Ozone	(a) Short-term exposures: (1) pulmonary function decrements and localized lung edema in humans and animals and (2) risk to public health implied by alterations in pulmonary morphology and host defense in animals; (b) long-term exposures: risk to public health implied by altered connective tissue metabolism and altered pulmonary

Pollutant	Adverse Effects
	morphology in animals after long-term exposures and pulmonary function decrements in chronically exposed humans; (c) vegetation damage; and (d) property damage.
Carbon monoxide (CO)	(a) Aggravation of angina pectoris and other aspects of coronary heart disease; (b) decreased exercise tolerance in persons with peripheral vascular disease and lung disease; (c) impairment of central nervous system functions; and (d) possible increased risk to fetuses.
Nitrogen dioxide (NO ₂)	(a) Potential to aggravate chronic respiratory disease and respiratory symptoms in sensitive groups; (b) risk to public health implied by pulmonary and extra-pulmonary biochemical and cellular changes and pulmonary structural changes; and (c) contribution to atmospheric discoloration.
Sulfur dioxide (SO ₂)	(a) Broncho-constriction accompanied by symptoms that may include wheezing, shortness of breath, and chest tightness during exercise or physical activity in persons with asthma
Suspended particulate matter (PM10)	 (a) Excess deaths from short-term and long-term exposures; (b) excess seasonal declines in pulmonary function, especially in children; (c) asthma exacerbation and possibly induction; (d) adverse birth outcomes including low birth weight; (e) increased infant mortality; (f) increased respiratory symptoms in children such as cough and bronchitis; and (g) increased hospitalization for both cardiovascular and respiratory disease (including asthma)^a
Suspended particulate matter (PM2.5)	(a) Excess deaths from short-term and long-term exposures; (b) excess seasonal declines in pulmonary function, especially in children; (c) asthma exacerbation and possibly induction; (d) adverse birth outcomes, including low birth weight; (e) increased infant mortality; (f) increased respiratory symptoms in children, such as cough and bronchitis; and (g) increased hospitalization for both cardiovascular and respiratory disease, including asthma. ^a
Lead ^b	(a) Increased body burden and (b) impairment of blood formation and nerve conduction, and neurotoxin.
Sulfates ^c	(a) Decrease in ventilatory function; (b) aggravation of asthmatic symptoms; (c) aggravation of cardiopulmonary disease; (d) vegetation damage; (e) degradation of visibility; and (f) property damage.

^a More detailed discussions on the health effects associated with exposure to suspended particulate matter can be found in the following documents: Office of Environmental Health Hazard Assessment 2002 and EPA 2004.

^b Lead emissions were evaluated in the health risk assessment of this study. Screening calculations have shown that lead emissions would be below the SCAQMD emission thresholds for the proposed and its alternatives. ^c Sulfate emissions were evaluated in the health risk assessment of this study. The SCAQMD has not established an emissions threshold for sulfates, nor does it require dispersion modeling against the localized significance thresholds.

^d CAAQSs have also been established for hydrogen sulfide, vinyl chloride, and visibility reducing particles. They are not shown in this table because they are not pollutants of concern for the proposed Project.

Of the criteria pollutants of concern, ozone is unique because it is not directly emitted from proposed project-related sources. Rather, ozone is a secondary pollutant, formed from the precursor pollutants volatile organic compounds (VOC) and nitrogen oxides (NO_X). VOC and NO_X react to form ozone in the presence of

¹ 2 3 4 5

2

3

4

5

6

7

8

25

26

27

28 29

30 31

32

33

sunlight through a complex series of photochemical reactions. As a result, unlike inert pollutants, ozone levels usually peak several hours after the precursors are emitted and many miles downwind of the source. Because of the complexity and uncertainty in predicting photochemical pollutant concentrations, ozone impacts are indirectly addressed in this study by comparing proposed project-generated emissions of VOC and NO_x to daily emission thresholds set by the South Coast Air Quality Management District (SCAQMD). These emission thresholds are discussed in Section 3.2.4.2, Significance Criteria.

- 9 Generally, concentrations of photochemical pollutants, such as ozone, are highest 10 during the summer months and coincide with the season of maximum solar 11 insolation. Concentrations of inert pollutants, such as CO, tend to be the greatest during the winter months and are a product of light wind conditions and surface-12 13 based temperature inversions that are frequent during that time of year. These 14 conditions limit atmospheric dispersion. However, in the case of PM10 impacts from fugitive dust sources, maximum concentrations may occur during high wind events 15 16 or near man-made ground-disturbing activities, such as vehicular activities on roads 17 and earth moving during construction activities.
- 18Because most of the proposed project-related emission sources would be diesel-19powered, diesel particulate matter (DPM) is a key pollutant evaluated in this analysis.20DPM is one of the components of ambient PM10 and PM2.5. DPM is also classified21as a toxic air contaminant by the CARB. As a result, DPM is evaluated in this study22both as a criteria pollutant (as a component of PM10 and PM2.5) and as a toxic air23contaminant.

24 **3.2.2.2.2** Local Air Monitoring Levels

EPA designates all areas of the U.S. according to whether they meet the NAAQS. A nonattainment designation means that a primary NAAQS has been exceeded more than the number of times allowed by the standard in a given area. EPA currently designates the SCAB as an "extreme" nonattainment area for 1-hour ozone, a nonattainment area for 8-hour ozone, a nonattainment area for PM10, and a nonattainment area for PM2.5, and a maintenance area for CO.¹ The SCAB is in attainment of the NAAQS for SO₂, NO₂, and lead (EPA 2005). States with nonattainment areas must prepare a State Implementation Plan (SIP) that demonstrates how those areas will come into attainment.

CARB also designates areas of the state according to whether they meet the CAAQS. A nonattainment designation means that a CAAQS has been exceeded more than the number of times allowed by the standard. CARB currently designates the SCAB as an "extreme" nonattainment area for 1-hour ozone and a nonattainment area for both PM10 and PM2.5. The air basin is in attainment of the CAAQS for CO, SO₂, NO₂,

¹ The SCAB has been achieving the federal 1-hour CO air quality standard since 1990, and the federal 8-hour CO standard since 2002. Effective June 11, 2007, the U.S. EPA redesignated SCAB as in attainment for CO. A redesignation to attainment has already been made for the state CO standards.

1 sulfates, and lead and is unclassified for hydrogen sulfide and visibility-reducing 2 particles. (CARB 2008.) 3 LAHD has been conducting its own air quality monitoring program since February 2005. The main objective of the program is to estimate ambient levels of DPM near 4 5 the Port. The secondary objective of the program is to estimate ambient particulate 6 matter levels within adjacent communities due to Port emissions. To achieve these 7 objectives, the program measures ambient concentrations of PM10, PM2.5, and 8 elemental carbon PM2.5 (which indicates fossil fuel combustion sources) at four 9 locations in the Port vicinity (Port of Los Angeles 2006). The station locations are: 10 Wilmington Station-Located at the Saints Peter and Paul School. This station measures aged urban emissions during offshore flows and a combination 11 12 of marine aerosols, aged urban emissions, and fresh emissions from Port operations during onshore flows. This station also provides information on the 13 relative strengths of these source combinations. 14 15 Coastal Boundary Station—Located at Berth 47 in the Outer Harbor. This 16 station measures aged urban and Port emissions and marine aerosols during onshore flows and aged urban emissions and fresh Port emissions during offshore 17 18 flows. Meteorological data from this station and the San Pedro Station, located 19 at Liberty Hill (described below) were used in this air quality analysis to model 20 human health risks and criteria pollutant impacts associated with the proposed 21 Project. 22 Source-Dominated Station—Located at the Terminal Island Treatment 23 **Plant.** This station is surrounded by three terminals and has a potential to 24 receive emissions from offroad equipment, onroad trucks, and rail. During 25 onshore flows, this station measures marine aerosols and fresh emissions from several nearby diesel-fired sources (trucks, trains, and ships). During offshore 26 27 flows, this station measures aged urban emissions and Port emissions. 28 San Pedro Station—Located at the Liberty Hill Plaza Building, Adjacent to 29 the Port Administrative Property on Palos Verdes Street. This location is 30 near the western edge of Port operational emission sources and adjacent to 31 residential areas in San Pedro. During onshore flows, aged urban emissions, 32 marine aerosols, and fresh Port emissions have the potential to affect this site. 33 During nighttime offshore flows, this station measures aged urban emissions and Port emissions. Meteorological data from this station and the Coastal Boundary 34 35 Station, located at Berth 47 (described above) were used in this air quality 36 analysis to model human health risks and criteria pollutant impacts associated 37 As discussed below, for 2 years LAHD has collected PM10 data with the proposed 38 Project at its Wilmington Station and PM2.5 data at all four of its stations. However, 39 to show trends in pollutant concentrations over periods longer than 2 years, and for 40 criteria pollutants other than PM10 and PM2.5, it was necessary to use data from the 41 network of monitoring stations operated by SCAQMD. 42 Of the SCAQMD monitoring stations, the most representative station for the proposed project vicinity is the North Long Beach Station because it is the closest 43

1 2 3 4 5 6 7 8	SCAQMD station to the proposed project site. Table 3.2-2 shows the highest pollutant concentrations recorded at the North Long Beach Station for 2005 to 2007, the most recent complete 3-year period of data available. As shown in the table, the following standards were exceeded at the North Long Beach Station over the 3-year period: ozone (state 1-hour standards), PM10 (state 24-hour and annual standards), and PM2.5 (national 24-hour standard and national and state annual standards). No standards were exceeded for CO, NO ₂ , SO ₂ , lead, and sulfates, although some data were not available for SO ₂ , lead, and sulfates between 2005 and 2007.
9	Pollutant sampling data are available for February 2006 through January 2007 from
10	the Port monitoring program at the time of this assessment. Samples were collected
11	as 24-hour averages every 3 days. The data are summarized in Table 3.2-3. Data
12	collected concurrently at the SCAQMD North Long Beach Station are also presented
13	for comparison. The table shows that PM10, concentrations at the Wilmington
14	Station are lower than those at the North Long Beach Station. For PM2.5,
15	concentrations at the Port monitoring sites are lower than those at the North Long
16	Beach Station for maximum 24-hour averages and are comparable to concentrations
17	at the North Long Beach Station for period averages. For elemental carbon PM2.5,
18	the Source-Dominated Station has the highest concentrations, and the Coastal
19	Boundary Station has the lowest concentrations. Elemental carbon PM2.5 was not
20	measured at the North Long Beach Station.

21 Table 3.2-2 . Maximum Pollutant Concentrations Measured at the North Long Beach Monitori
--

	Averaging	National	State	Highest Monitored Concentration				
Pollutant	Period	Standard	Standard	2005	2006	2007		
Ozone	1 hour	NA	0.09	0.091	0.081	0.099		
(ppm)	8 hours	0.08	0.07	0.069	0.058	0.073		
CO (ppm)	1 hour	35	20	4.2	4.2	3.3		
	8 hours	9	9	3.51	3.36	2.59		
NO ₂	1 hour	NA	0.18	0.136	0.102	0.107		
(ppm)	Annual	0.053	0.030	0.024	0.022	0.020		
SO ₂	1 hour	NA	0.25	0.041	0.027	0.037		
(ppm)	24 hours	0.14	0.04	0.010	0.010	0.010		
	Annual	0.03	NA	0.002	0.002	0.003		
PM10	24 hours	150	50	66 ^b	78.0	232.0		
$(\mu g/m^3)$	Annual	NA	20	29.7	30.9	33.5		
PM2.5	24 hours	35	NA	53.8	58.5	82.8		
$(\mu g/m^3)$	Annual	15	12	16.0	14.1	14.6		
Lead	30 days	NA	1.5	Not available	Not available	Not available		
$(\mu g/m^3)$	Calendar quarter	1.5	NA	0.01	0.01	0.01		

Sulfates $(\mu g/m^3)$	24 hours	NA	25	Not available	Not available	Not available
Note:						
Station for	CO and PM10 fr	rom 2004 to 200	6, EPA has cla	nough the NAAQS wer ssified the SCAB being ons in the SCAB.		
µg/m ³ m	icrograms per c	ubic meter				
ppm: pa	arts per million					
NA: N	ot applicable					
	hour ozone stan 1 8-hour ozone s		-	n 2004, 1 day in 2005, a	and 0 days in 2006, and	d 1 day in 2007.
	4-hour PM10 sta as exceeded once		ded 4 days in	2005, 5 days in 2006, a	nd 6 days in 2007. The	e national PM10
The nationa	l 24-hour PM2.5	5 standard was e	xceeded on 0 d	lays in 2005, 0 days in	2006, and 1 day in 200	7.
	AQMD (www.a/www.epa.gov/a		B (http://www	arb.ca.gov/adam/welc/	ome.html);	

2 **Table 3.2-3**. Maximum Pollutant Concentrations Measured for the Port of Los Angeles Air Quality

3 Monitoring Program

		Porte	SCAQMD Monitoring Station			
Pollutant	Averaging Period	Wilmington Community Station	Coastal Boundary Station	San Pedro Station	Source- Dominated Station	North Long Beach Station
PM10 (μg/m ³)	24 hours	60.5				78
	Period average	27.8				30.9
PM2.5	24 hours	36.2	25.9	23.8	31.4	58.5
$(\mu g/m^3)$	Period average	12.4	9.8	10.7	13.5	14.1
Elemental	24 hours	5.2	4.6	6.7	9.3	
carbon PM2.5 (µg/m ³)	Period average	1.5	1.1	1.5	2.5	

Notes:

For PM10, the SCAQMD North Long Beach Station measures a 24-hour sample every 6 days, compared to every 3 days for the Port monitoring stations. Therefore, only one-half of the Port monitoring station samples (every other sample) has a corresponding sample from the North Long Beach Station. For PM2.5, all monitoring sites measure a 24-hour sample every 3 days.

The Port PM10 and PM2.5 data were collected between February 2006 and January 2007. The Port's elemental carbon PM2.5 data were collected between February 2005 and January 2006. Data from the SCAQMD North Long Beach Station were collected between February 2006 and December 2006.

PM10 is not measured at the Coastal Boundary, San Pedro, or Source-Dominated Stations.

Elemental carbon PM2.5 is not measured at the SCAQMD North Long Beach Station.

Source: Port of Los Angeles 2006.

1

2

3

4

5

6

Air quality within the SCAB has generally improved since the inception of air pollutant monitoring in 1976. This improvement is mainly due to lower-polluting onroad motor vehicles, more stringent regulation of industrial sources, and SCAQMD's implementation of emission reduction strategies. This trend towards cleaner air has occurred in spite of continued population growth.

7 3.2.2.2.3 Toxic Air Contaminants

8 Toxic air contaminants (TACs) are identified and their toxicity is studied by the 9 California Office of Environmental Health Hazard Assessment (OEHHA). TACs 10 include air pollutants that can produce adverse human health effects, including 11 carcinogenic effects, after short-term (acute) or long-term (chronic) exposure. 12 Examples of TAC sources within the SCAB include industrial processes, dry 13 cleaners, gasoline stations, paint and solvent operations, and fossil fuel combustion 14 sources.

- 15The SCAQMD determined in the Multiple Air Toxics Exposure Study II (MATES II)16that about 70 percent of the background airborne cancer risk in the SCAB is due to17particulate emissions from diesel-powered on- and offroad motor vehicles18(SCAQMD 2000). The higher risk levels were found in the urban core areas in south19central Los Angeles County, in Wilmington adjacent to the Port, and near freeways.
- 20In January 2008, the SCAQMD released the draft MATES III study (SCAQMD212008). MATES III determined that diesel exhaust remains the major contributor to22air toxics risk, accounting for approximately 84 percent of the total risk. Compared23to the MATES II study, the MATES III study found a decreasing risk for air toxics24exposure, with the population-weighted risk down by 17 percent from the analysis in25MATES II.
- 26Furthermore, CARB released a report titled Diesel Particulate Matter Exposure27Assessment Study for the Ports of Los Angeles and Long Beach (CARB 2006) which28indicates that the two ports contributed approximately 21 percent of the total diesel29PM emissions in the air basin during 2002. These emissions are reported to result in30elevated cancer risk levels over the entire 20-mile by 20-mile study area.
- 31As discussed in Section 1.6.2.1, the Port of Los Angeles, in conjunction with the Port32of Long Beach, has developed the San Pedro Bays Clean Air Action Plan (CAAP)33that targets all emissions, but is focused primarily on TACs (the CAAP is also34discussed further in Section 3.2.4.4). The Port of Los Angeles has also developed the35Sustainable Construction Guidelines as discussed in Section 3.2.3.4 to reduce36emissions, including TACs, from construction. Additionally, all major development

4

5

6

7

8

9

10

11

12 13

14

15

projects will include a health risk assessment to further assess TAC emissions and to target mitigation to reduce the impact on public health.

3 3.2.2.2.4 Secondary PM2.5 Formation

Within the SCAB, PM2.5 particles both are directly emitted into the atmosphere (i.e., primary particles) and are formed through atmospheric chemical reactions from precursor gases (i.e., secondary particles). Primary PM2.5 includes diesel soot, combustion products, road dust, and other fine particles. Secondary PM2.5, which includes products such as sulfates, nitrates, and complex carbon compounds, are formed from reactions with directly emitted NO_X, SO_X, VOCs, and ammonia (SCAQMD et al. 2006). Proposed Project-generated emissions of NO_X, SO_X, and VOCs would contribute toward secondary PM2.5 formation some distance downwind of the emission sources. However, the air quality analysis in this EIR/EIS focuses on the effects of direct PM2.5 emissions generated by the proposed Project and their ambient impacts. This approach is consistent with the recommendations of the SCAQMD (SCAQMD 2006d).

16 **3.2.2.5** Ultrafine Particles

17 Although EPA and the State of California currently monitor and regulate PM10 and 18 PM2.5, new research is being done on ultrafine particles (UFPs), particles classified 19 as less than 0.1 micron in diameter. UFPs are formed usually by a combustion cycle, 20 independent of fuel type. With diesel fuel, UFPs can be formed directly from the fuel 21 during combustion. With gasoline and natural gas (liquefied or compressed), the 22 UFPs are derived mostly from the lubricant oil. UFPs are emitted directly from the 23 tailpipe as solid particles (soot-elemental carbon and metal oxides) and semivolatile 24 particles (sulfates and hydrocarbons) that coagulate to form particles.

- 25 The research regarding UFPs is at its infancy but suggests the UFPs might be more dangerous to human health than the larger PM10 and PM2.5 particles (termed fine 26 27 particles) due to size and shape. Because of the smaller size, UFPs are able to travel 28 more deeply into the lung (the alveoli) and are deposited in the deep lung regions 29 more efficiently than fine particles. UFPs are inert; therefore, normal bodily defense does not recognize the particle. UFPs might have the ability to travel across cell 30 31 layers and enter into the bloodstream and/or into individual cells. With a large 32 surface area-to-volume ratio, other entities might attach to the particle and travel into 33 the cell as a kind of "hitchhiker."
- 34Current UFP research primarily involves roadway exposure. Preliminary studies35suggest that over 50 percent of an individual's daily exposure is from driving on36highways. Levels appear to drop off rapidly as one moves away from major37roadways. Little research has been done directly on ships and offroad vehicles.38CARB is currently measuring and studying UFPs at the San Pedro Bay Ports. Work39is being done on filter technology, including filters for ships, which appears40promising. LAHD began collecting UFP data at its four air quality monitoring

5

6

7

8

9

10

11

12

23

24 25

26

27

28

29

stations in late 2007 and early 2008, and it actively participates in the CARB testing at the Port and will comply with all future regulations regarding UFPs. In addition, measures included in the CAAP aim to reduce all emissions throughout the Port.

4 3.2.2.2.6 Atmospheric Deposition

- The fallout of air pollutants to the surface of the earth is known as atmospheric deposition. Atmospheric deposition occurs in both a wet and dry form. Wet deposition occurs in the form of precipitation or cloud water and is associated with the conversion in the atmosphere of directly emitted pollutants into secondary pollutants such as acids. Dry deposition occurs in the form of directly emitted pollutants or the conversion of gaseous pollutants into secondary PM. Atmospheric deposition can produce watershed acidification, aquatic toxic pollutant loading, deforestation, damage to building materials, and respiratory problems.
- 13 CARB and the State Water Resources Control Board are in the process of examining 14 the need to regulate atmospheric deposition for the purpose of protecting both fresh and saltwater bodies from pollution. Port emissions deposit into both local 15 waterways and regional land areas. Emission sources from the proposed alternatives 16 17 would produce DPM, which contains trace amounts of toxic chemicals. Through the 18 CAAP, the Port will reduce air pollutants from its future operations, which will work toward the goal of reducing atmospheric deposition for purposes of water quality 19 20 protection. The CAAP will reduce air pollutants that generate both acidic and toxic 21 compounds, including emissions of NO_X, SO_X, and DPM.

22 **3.2.2.7** Greenhouse Gas Emissions

- Gases that trap heat in the atmosphere are often called greenhouse gases (GHGs). GHGs are emitted by natural processes and human activities. Examples of GHGs that are produced both by natural processes and industry include carbon dioxide (CO_2), methane (CH₄), and nitrous oxide (N_2O). Examples of GHGs created and emitted primarily through human activities include fluorinated gases (hydrofluorocarbons [HFCs] and perfluorocarbons [PFCs]) and sulfur hexafluoride (SF₆).
- 30 The accumulation of GHGs in the atmosphere regulates the earth's temperature. Without these natural GHGs, the earth's surface would be about 61°F cooler 31 (AEP 2007). However, emissions from fossil fuel combustion for activities such as 32 33 electricity production and vehicular transportation have elevated the concentration of GHGs in the atmosphere above natural levels. According to the Intergovernmental 34 35 Panel on Climate Change (IPCC 2007), the atmospheric concentration of CO₂ in 2005 was 379 ppm compared to the pre-industrial levels of 280 ppm. In addition, the 36 Fourth U.S. Climate Action Report concluded, in assessing current trends, that CO₂ 37 emissions increased by 20% from 1990 to 2004, while methane and nitrous oxide 38 39 emissions decreased by 10% and 2%, respectively.

2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

18 19

20 21

23

24

25

26

27

28

29

30

31

32

33

34 35

36

37

38 39

40

41 42 There appears to be a close relationship between the increased concentration of GHGs in the atmosphere and global temperatures. Scientific evidence indicates a trend of increasing global temperatures near the earth's surface over the past century due to increased human-induced levels of GHGs.

GHGs differ from criteria pollutants in that GHG emissions do not cause direct adverse human health effects. Rather, the direct environmental effect of GHG emissions is the increase and/or change in global temperatures, which in turn has numerous indirect effects on the environment and humans. For example, some observed changes include shrinking glaciers, thawing permafrost, later freezing and earlier break-up of ice on rivers and lakes, a lengthened growing season, shifts in plant and animal ranges, and earlier flowering of trees (IPCC 2001). Other, longerterm environmental impacts of global warming may include sea level rise, changing weather patterns with increases in the severity of storms and droughts, changes to local and regional ecosystems including the potential loss of species, and a significant reduction in winter snow pack (for example, estimates include a 30 to 90% reduction in snow pack in the Sierra Nevada mountain range). Current data suggest that in the next 25 years, in every season of the year, California could experience unprecedented heat, longer and more extreme heat waves, greater intensity and frequency of heat waves, and longer dry periods. More specifically, the California Climate Change Center (Roland-Holst 2006) predicted that California could witness the following events:

- Temperature rises between 3 to 10.5°F.
 - 6 to 20 inches or more of sea level rise.
 - 2 to 4 times as many heat-wave days in major urban centers.
 - 2 to 6 times as many heat-related deaths in major urban centers.
 - 1 to 1.5 times more critically dry years.
 - 10 to 55 percent increase in the risk of wildfires.

Currently, there are no federal standards for GHGs emissions. Recently, the U.S. Supreme Court ruled that the harms associated with climate change are serious and well recognized, that the EPA must regulate GHGs as pollutants, and that, unless the agency determines that GHGs do not contribute to climate change, the EPA must promulgate regulations for GHG emissions from new motor vehicles (*Massachusetts et al. v. Environmental Protection Agency*, 549 U.S. 497 (2007). Additionally, in November 2007 and August 2008, the Ninth Circuit U.S. Court of Appeals ruled that a NEPA document must contain a detailed GHG analysis. (*Center for Biological Diversity v. National Highway Safety Administration* 508 F. 3d 508 [2007] was vacated and replaced by *Center for Biological Diversity v. National Highway Safety Administration* 2008 DJDAR 12954 [August 18, 2008].) However, no federal regulations have been set at this time. Currently, control of GHGs is generally regulated at the state level and approached by setting emission reduction targets for existing sources of GHGs, setting policies to promote renewable energy and increase energy efficiency, and developing statewide action plans.

1 2 3 4 5 6 7 8 9 10	To date, 12 states, including California, have set state GHG emission targets. Executive Order S-3-05 and the passage of Assembly Bill (AB) 32, the California Global Warming Solutions Act of 2006, promulgated the California target to achieve 1990 GHG levels by the year 2020. The target-setting approach allows progress to be made in addressing climate change and is a forerunner to the setting of emission limits. A companion bill, Senate Bill (SB) 1368, similarly addresses global warming, but from the perspective of electricity generators selling power into the state. The legislation requires that imported power meet the same greenhouse gas standards that power plants in California meet. SB 1368 also sets standards for CO ₂ for any long- term power production of electricity at 1,000 pounds per megawatt hour.
11 12 13	The World Resources Institute's GHG Protocol Initiative identifies six GHGs generated by human activity that are believed to be contributors to global warming (WRI/WBCSD 2007): CO ₂ , CH ₄ , N ₂ O, HFCs, PFCs, and SF ₆ .
14 15 16	These are the same six GHGs that are identified in AB 32 and by EPA. Appendix D4 contains descriptions of the natural and human-made sources of emissions for each of these GHGs.
17 18 19 20 21 22 23 24 25 26	The different GHGs have varying global warming potential (GWP). The GWP is the ability of a gas or aerosol to trap heat in the atmosphere. By convention, CO_2 is assigned a GWP of 1. By comparison, CH_4 has a GWP of 21, which means that it has a global warming effect 21 times greater than CO_2 on an equal-mass basis. N ₂ O has a GWP of 310, which means that it has a global warming effect 310 times greater than CO_2 on an equal-mass basis (IPCC 1996). To account for their GWPs, GHG emissions are often reported as a CO_2 equivalent (CO_2e). The CO_2e is calculated by multiplying the emission of each GHG by its GWP, and adding the results together to produce a single, combined emission rate representing all GHGs. Appendix D4 lists the GWP for each GHG.
27 28 29 30 31 32 33	The air quality analysis for the proposed Project and alternatives includes estimates of GHG emissions generated by the proposed Project and alternatives for existing and future conditions, as presented in Sections 3.2.2.3 and 3.2.4.3, respectively. Of the six major GHGs, the analysis includes CO_2 , CH_4 , and N_2O . HFCs, PFCs, and SF_6 are not included because they are not pollutants of concern for the proposed Project or alternatives. To be consistent with international convention, the GHG emissions in this report are expressed in metric units (metric tons [tonnes] of CO_2 e in this case).
34	Port's Climate Action Plan and Sustainability Plan
35 36 37 38 39 40 41	LAHD is an active participant in a number of GHG plans and programs. LAHD has been a member of the California Climate Action Registry (CCAR) since March 29, 2006, and has submitted GHG inventories of LAHD-controlled activities for 2006 and 2007 as discussed in Section 3.2.3.2.14. In addition, LAHD, as a department of the City of Los Angeles and as a port associated with a major city, is a participant in the Clinton Climate Initiative as a C40 City and has developed a Climate Action Plan (described below) consistent with city policy.

2

3

4

5

6

7

23

24

25

26 27

28

In May 2007, the City of Los Angeles Mayor's Office released the Green LA initiative, which is an action plan to lead the nation in fighting global warming. The Green LA Plan presents a citywide framework for confronting global climate change to create a cleaner, greener, more sustainable Los Angeles. The Green LA Plan directs LAHD to develop an individual Climate Action Plan, consistent with the goals of Green LA, to examine opportunities to reduce GHG emissions from operations.

- 8 In accordance with this directive, LAHD's Climate Action Plan covers all currently 9 listed GHG emissions related to Port activities (such as Port buildings and Port 10 workforce operations). LAHD would complete annual GHG inventories of the Port 11 and its customers and report these to the Climate Action Registry. The first of these 12 inventories would be reported in 2008 for the year 2006.
- 13 In addition to the Climate Action Plan, LAHD is also active in integrating GHG reductions into sustainability planning efforts. LAHD has adopted a Sustainability 14 15 Assessment and Plan Formulation (LAHD 2008) in accordance with the mayor's 16 office directive that will incorporate environmental programs and reports, including 17 LAHD's Climate Action Plan (LAHD 2007). LAHD is also a signatory to the 18 California Sustainable Goods Movement Program and is participating in the 19 University of Southern California's Sustainable Cities Program, which is looking at 20 GHGs associated with international goods movement.

21**3.2.2.3**San Pedro Waterfront CEQA Baseline22Emissions

- This section discusses the CEQA baseline conditions, sources, and activities; the NEPA baseline is discussed in Section 3.2.4.1.15. The CEQA baseline for determining the significance of potential proposed project impacts is December 2006. In December 2006, the proposed project area included cruise terminal operations, bulk cargo operations, Ports O'Call, recreational ferries and passenger boat operations, tug operations, fishing fleets, and marine gas docks.
- 29 Marine emission sources from water uses include cruise ships, the Catalina Express 30 ferries at Berth 96, tugboats, commercial bulk ships, commercial fishing boats, 31 crewboats, excursion vessels, and Port Police and fire boats. Cruise operations were 32 the largest source of emissions. In the baseline year, two permanent berths operated 33 at the Inner Harbor Cruise Terminal at Berths 91-92 and 93. In addition, cruise 34 vessels occasionally docked at a temporary location at Berth 87. A total of 258 35 cruise vessels docked at the three berths in 2006 (Port of Los Angeles 2008). In 36 addition to cruise operations, Berth 87 was also occasionally used to berth cargo and 37 bulk carrier vessels. In 2006, one cargo vessel and four bulk carrier vessels berthed 38 and unloaded their cargo at Berth 87.

1 2 3	Land-based emission sources included terminal equipment (forklifts and trucks) and onroad motor vehicles associated with the cruise terminals and Ports O'Call (passenger cars, trucks, busses, and shuttles).
4 5	The following assumptions were made in calculating baseline emissions from marine sources:
6 7	 Baseline emissions from marine sources were based on the total number of engine operating hours as reported by Starcrest (Starcrest 2008).
8 9	 Vessel emissions were calculated based on engine size defaults, loads, and emission factors specified in the 2005 Port inventory (Starcrest 2007).
10 11	 Fifty-nine percent of cruise ships complied with the Vessel Speed Reduction Program (VSRP) to 20 nautical miles (nm).
12 13 14 15	Tugboats were used to assist cargo and bulk carrier ships destined for Berth 87 as part of the baseline. Therefore, the tugboat emissions associated with these ship assists were included in the baseline emissions. Tugboats were not used to assist cruise ships at Berths 91–92, 93, and 87.
16 17 18 19 20 21 22 23 24 25	Tugboats based within the proposed project site were also used to assist ships destined for other berths at the Port. Baseline emissions for these tugboats were calculated for that portion of travel between the tugboats' homebase and the Angels Gate on their way to or from assisting these ships. These emissions were included because the proposed Project would change the location of the tugboats' homebase and therefore change the distance traveled by the tugboats to and from the assisted ship. However, tugboat emissions during the actual ship assist were not included in the baseline emissions because the ships destined for other berths are not part of the proposed Project, and the associated tugboat emissions would not be affected by the proposed Project.
26	 Tugboats used 15 parts per million (ppm) sulfur fuel.
27 28	The average tugboat auxiliary engine was a Tier 1 standard engine, and the average tugboat propulsion engine was a Tier 0 standard engine (Starcrest 2008).
29 30 31	 Catalina Express ferries plugged into an electrical power system overnight. Auxiliary engines were not turned on until just before passenger loading. Main engines were not turned on until just after all passengers had boarded.
32 33 34	Baseline emissions from land-based sources were based on model runs of the CARB URBEMIS 2007 model, Version 9.2.4, and OFFROAD2007. The following assumptions were made in calculating baseline emissions from land-based sources:
35 36 37	 All motor vehicles (including fleet mix) were estimated based on the trip generation rates for each proposed project component provided in the traffic study (Fehr & Peers 2008). Default trip lengths from URBEMIS2007 were used.
38 39	The average age of delivery trucks was assumed to be the average fleet age in the URBEMIS2007 model.

1 2	 Terminal equipment included 11 diesel forklifts, 25 propane forklifts, and 2 fuel trucks at the cruise terminals.
3	 Terminal equipment included 10 diesel forklifts at Berth 87.
4 5 6 7	Table 3.2-4 summarizes the peak daily emissions associated with baseline year operations. Baseline peak daily emissions are compared to future proposed project peak daily emissions to determine CEQA significance for the proposed Project and alternatives.
8 9 10 11 12 13 14 15 16 17 18	Table 3.2-5 summarizes the average daily emissions associated with operation of the cruise terminals in the 2006 baseline year. The average daily emissions represent annual emissions divided by 365 days per year (the Port operates 365 days of the year) and are a good indicator of operations over the long term since terminal operations can vary from day-to-day depending on ship arrivals. Peak daily emissions, in contrast, represent theoretical upper-bound estimates of activity levels at the terminal. Therefore, peak daily emissions would occur infrequently and are based upon a lesser-known and therefore more theoretical set of conservative assumptions. However, peak daily operational emissions were used in the significance determination for Impact AQ-3 consistent with SCAQMD guidance. The average daily emissions are provided for informational purposes and are not used for significance determination.

19 **Table 3.2-4.** Baseline (2006) Peak Daily Operational Emissions (CEQA Baseline)

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	CO	NO_X	SO_X	PM10	PM2.5
Cruise vessel transit	497	1,039	13,213	18,514	1,897	1,517
Cruise vessel hotelling	291	607	7,693	12,487	1,173	938
Berth 87 Cargo and Bulk Carrier vessel transit	21	48	620	767	92	74
Berth 87 Cargo and Bulk Carrier vessel hotelling	7	18	233	315	37	30
Harbor craft	53	480	1,721	1	62	57
Motor vehicles	229	2,286	401	3	297	62
Terminal equipment	6	25	54	0.4	3	3
Total	1,105	4,503	23,935	32,088	3,562	2,682

Notes:

Emissions assume maximum theoretical daily activity levels, such as all three Inner Harbor berths being occupied at the same time. Such levels would rarely occur during day-to-day terminal operations.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Cruise vessels do not require turboat assistance. Operation of other barbor graft in the Port is relatively uniform from day to						

Cruise vessels do not require tugboat assistance. Operation of other harbor craft in the Port is relatively uniform from day to day. Therefore, harbor craft peak and average daily emissions were assumed to be equivalent.

Motor vehicles include passenger cars, trucks, busses, and shuttles. Motor vehicle activity is assumed to relatively uniform from day to day. Therefore, motor vehicle peak and average daily emissions were assumed to be equivalent.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

1

2 **Table 3.2-5.** Baseline (2006) Average Daily Operational Emissions (CEQA Baseline)

		Average Daily Emissions (lb/day)				
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
Cruise vessel transit emissions	98	204	2,517	2,196	281	225
Cruise vessel hoteling emissions	69	143	1,756	1,765	205	164
Berth 87 Cargo and Bulk Carrier vessel transit emissions	0.6	1.4	18.1	11.0	1.5	1.2
Bert 87 Cargo and Bulk Carrier vessel hotelling emissions	0.3	0.7	9.4	11.1	1.1	0.9
Harbor craft	53	480	1,721	1	62	57
Motor vehicles	229	2,286	401	3	297	62
Terminal equipment	2	7	14	0.1	1	1
Total	452	3,123	6,437	3,987	849	511

Notes:

Emissions represent annual emissions divided by 365 days per year of operation.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

Motor vehicles include passenger cars, trucks, busses, and shuttles. Motor vehicle activity is assumed to relatively uniform from day to day. Therefore, motor vehicle peak and average daily emissions were assumed to be equivalent.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

Operation of other harbor craft in the Port is relatively uniform from day to day. Therefore, harbor craft peak and average daily emissions were assumed to be equivalent.

3

3

4 5

6

7

8

3.2.2.3.1 Greenhouse Gas Emissions

Table 3.2-6 presents an estimate of the GHG emissions generated within California borders from the 2006 baseline operations.² As discussed further in Section 3.2.3.2, the analysis of GHG emissions within the State of California is consistent with the goals of the CCAR. The emission sources for which baseline GHG emissions were calculated include motor vehicles, cruise terminal equipment, ship and harbor craft emissions, on-terminal electricity usage, and the Waterfront Red Car Line³. The GHG emission calculation methodology is described in Appendix D4.

9 Table 3.2-6. Annual Operational GHG Emissions—CEQA Baseline (2006)	
---	--

Project Scenario/		Metric To	ns Per Year	
Source Type	CO_2	CH_4	N_2O	CO ₂ e
Vessel transit and maneuvering	34,994	0.2	1.6	35,488
Vessel hoteling	17,461	0.1	0.8	17,710
Harbor craft	25,571	0.1	1.2	25,934
Motor vehicles	29,681	5.6	5.7	31,578
Terminal equipment	180	0.0	0.0	181
AMP electricity usage	NA	NA	NA	NA
On-terminal electricity usage	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	21,383	0.2	0.1	21,417
Year 2006 Total	129,270	6.3	9.4	132,308

Notes:

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 , 21 for CH_4 , and 310 for N_2O .

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

² In the case of electricity consumption, the GHG emissions may also be generated by out-of-state power plants.
³ For purposes of this analysis, GHG emissions for Red Car vehicle operations were calculated for electricity consumption while operating within the project area, defined as Swinford St. (Cruise Ship Terminal) southward.

Project Scenario/	Metric Tons Per Year			
Source Type	CO_2	CH_4	N_2O	CO ₂ e
Motor vehicles include passenger cars, trucks, busses, and shuttles.				
Terminal equipment includes equipment at the Cruise Terminal and Berth 87.				
Ships include cruise vessels plus Berth 87 calls.				

2 3.2.2.4 Sensitive Receptors

3 4	The impact of air emissions on sensitive members of the population is a special
4 5	concern. Sensitive land uses are defined as locations where particularly pollutant- sensitive members of the population may reside or where the presence of air pollutant
6	emissions could adversely affect use of the land. Sensitive members of the
7	population include those that may be more negatively impacted by poor air quality
8	than other members of the population, such as children, the elderly, or the infirmed.
9 10	Schools, hospitals, and convalescent homes are considered relatively sensitive land uses because children, the elderly, and the infirmed are more susceptible to
11	respiratory distress and other air-quality related health problems than the general
12	public. Sensitive land uses known to exist that could be affected by the heavy
13	construction or operation at the Inner Harbor and Outer Harbor Cruise Ship Terminal
14	areas (where the largest concentration of emissions would occur) are shown in Figure
15	3.2-1. The closest sensitive receptors to the proposed project site are as follows:
16	 closest sensitive receptors to Inner Harbor Cruise Terminal:
17	residential receptor located 0.25 mile west of the Inner Harbor Cruise
18	Terminal;
19 20	 recreational receptor—promenade, located directly west and adjacent to the terminal;
21	□ Barton Hill Elementary School, located 0.7 mile west of terminal;
22	□ Toberman Child Care Center, located 0.8 mile southwest of terminal;
23	□ Crow Flora Boarding, located 1 mile southwest of terminal; and
24	□ San Pedro Peninsula Hospital, located 1.9 miles southwest of terminal; and
25	 closest sensitive receptors to Outer Harbor Cruise Terminal:
26 27	 residential and recreational receptor—marina, located directly north and adjacent to the terminal;
28	Point Fermin Elementary School, located 0.8 mile north;
29	□ Carmen's Cry Baby Care, located 1 mile northwest;
30	□ Crow Flora Boarding, located 1.8 mile southwest of terminal; and
31	□ San Pedro Peninsula Hospital, located 2.4 miles southwest of terminal.

9

3.2.3 Applicable Regulations

- The federal Clean Air Act of 1969 (CAA) and its subsequent amendments established air quality regulations and the NAAQS, and delegated enforcement of these standards to the states. In California, CARB is responsible for enforcing air pollution regulations. CARB has, in turn, delegated the responsibility of regulating stationary emission sources to the local air agencies. In the SCAB, the local air agency is the SCAQMD.
 - The following is a summary of the key federal, state, and local air quality rules, policies, and agreements that apply to the proposed Project and its related activities.
- 10 3.2.3.1 Federal Regulations

3.2.3.1.1 State Implementation Plan

12 In federal nonattainment areas, the CAA requires preparation of a State Implementation Plan that details how the state will attain the NAAOS within 13 14 mandated timeframes. In response to this requirement, the SCAQMD and SCAG 15 have jointly developed the 2007 Air Quality Management Plan (AQMP). The 2007 AQMP addresses several federal planning requirements and incorporates significant 16 17 new scientific data, primarily in the form of updated emissions inventories, ambient 18 measurements, new meteorological episodes, and new air quality modeling tools. 19 The 2007 AQMP builds upon the approaches taken in the 2003 AQMP for the SCAB 20 for the attainment of federal air quality standards. The SCAOMD and SCAG, in 21 cooperation with the CARB and EPA, have developed the 2007 AQMP for purposes of 22 demonstrating compliance with the new NAAQS for PM2.5 and 8-hour ozone and other 23 planning requirements, including compliance with the NAAQS for PM10 (SCAQMD et 24 al. 2007). Additionally, the plan highlights the significant amount of reductions 25 necessary and the urgent need to identify additional strategies, especially in the area 26 of mobile sources, to meet federal criteria pollutant standards within the timeframes 27 allowed under the federal CAA (SCAOMD et al. 2007). Since it will be more difficult 28 to achieve the 8-hour ozone NAAQS compared to the one-hour NAAQS, the 2007 29 AQMP contains substantially more emission reduction measures compared to the 2003 30 AQMP. The SCAQMD released the Draft Program Environmental Impact Report for the 2007 AQMP in March 2007 (SCAQMD 2007a). The 2007 AQMP has been submitted 31 32 as part of the SIP to the EPA for approval.

33 3.2.3.1.2 IMO MARPOL Annex VI

34The International Maritime Organization (IMO) MARPOL Annex VI, which came35into force in May 2005, set new international NOx emission limits on Category 336(>30 liters per cylinder displacement) marine engines installed on new vessels37retroactive to the year 2000. For oceangoing vessel main propulsion engines

SOURCE: USA Imagery (05-15-06; 0.5m)

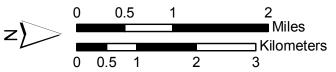


Figure 3.2-1 Sensitive Receptor Locations San Pedro Waterfront Project

5

6

7

8

9

10

11

12

(<130 revolutions-per-minute [rpm] engine speed), the NO_X limits are about 6% lower than the average emissions from pre-Annex VI ships used in the *Port of Los Angeles Inventory of Air Emissions 2005* (Starcrest 2007).

4 3.2.3.1.3 Emission Standards for Nonroad Diesel Engines

To reduce emissions from offroad diesel equipment, EPA established a series of increasingly strict emission standards for new offroad diesel engines. Tier 1 standards were phased in from 1996 to 2000 (year of manufacture), depending on the engine horsepower category. Tier 2 standards were phased in from 2001 to 2006. Tier 3 standards were phased in from 2006 to 2008. Tier 4 standards, which likely will require add-on emission control equipment to attain them, will be phased in from 2008 to 2015. These standards apply to construction equipment and terminal equipment. Locomotives and marine vessels are exempt. (DieselNet 2005a.)

13 **3.2.3.1.4** Emission Standards for Marine Diesel Engines

14To reduce emissions from Category 1 (at least 50 horsepower [hp] but < 5 liters per</th>15cylinder displacement) and Category 2 (5 to 30 liters per cylinder displacement)16marine diesel engines, EPA established emission standards for new engines, referred17to as Tier 2 marine engine standards. The Tier 2 standards have been phased in from182004 to 2007 (year of manufacture), depending on the engine size. (EPA 1999.)

3.2.3.1.5 Emission Standards for Onroad Trucks

20 To reduce emissions from onroad, heavy-duty diesel trucks, EPA established a series 21 of increasingly strict emission standards for new engines, starting in 1988. The EPA 22 promulgated the final and cleanest standards with the 2007 Heavy-Duty Highway 23 Rule (EPA 2001). The PM emission standard of 0.01 gram per horsepower-hour 24 (g/hp-hr) is required for new vehicles beginning with model year 2007. Also, the 25 NO_x and nonmethane hydrocarbon (NMHC) standards of 0.20 g/hp-hr and 0.14 g/hp-26 hr, respectively, would be phased in together between 2007 and 2010 on a percent of 27 sales basis: 50% from 2007 to 2009 and 100% in 2010. Currently, the strictest standards will be phased in starting in 2007 (EPA 2001). 28

29 **3.2.3.1.6** Highway Diesel Fuel Rule

30With this rule, EPA set sulfur limitations for onroad diesel fuel to 15 ppm starting31June 1, 2006 (EPA 2006).

3

4

5

6

7

8

9

10

11 12

13

14 15

16

3.2.3.1.7 General Conformity Rule

Section 176(c) of the CAA states that a federal agency cannot support an activity unless the agency determines that the activity will conform to the most recent EPA-approved State Implementation Plan. This means that projects using federal funds or requiring federal approval must not:

- cause or contribute to any new violation of a NAAQS;
 - increase the frequency or severity of any existing violation; or
 - delay the timely attainment of any standard, interim emission reduction, or other milestone.

Based on the present attainment status of the SCAB, a federal action would conform to the State Implementation Plan if its annual emissions remain below 100 tons of CO or PM2.5, 70 tons of PM10, or 10 tons of NO_X or VOC (40 CFR Part 93). These *de minimis* thresholds apply to the federal project, which may include construction and/or operation, depending on the Federal authority. If the proposed action exceeds one or more of the *de minimis* thresholds, a more rigorous conformity determination is the next step in the conformity evaluation process.

17 On December 20, 2007, the EPA proposed revisions to the General Conformity 18 Regulations. The proposed revisions would clarify, streamline, and improve 19 conformity determination and review processes, and would provide transition tools 20 for making conformity determinations for new NAAQS standards. The proposed 21 revisions would also allow federal facilities to negotiate a facility-wide emission budget with the applicable air pollution control agencies and to allow the emissions 22 23 of one precursor pollutant to be offset by the emissions of another precursor 24 pollutant. These revisions have not yet been promulgated.

25 **3.2.3.1.8 Conformity Statement**

26 LAHD regularly provides SCAG with its Port-wide cargo forecasts for development 27 of the AQMP. The 1997 passenger vessel calls projections are used to estimate the 28 passenger vehicles, hired vehicles, and delivery trucks emissions from Port activities. These activities are included in the Regional Transportation Plan (RTP) of the 29 30 Metropolitan Planning Organization (MPO) and, thus, were included in the most 31 recent EPA-approved 1997/1999 SIP and the 2007 SIP, should the EPA approve the 32 2007 SIP. Pursuant to Section 176(c) of the Federal Clean Air Act, the conformity 33 analysis and findings will be made outside of this document and will be finalized 34 before the federal agency, in this case the USACE, issues a Record of Decision 35 (ROD) on the EIS. A more detailed conformity statement will be included in the Final EIS to support the ROD depending on potential changes to the federal 36 components proposed Project and/or alternatives developed in response to public 37 38 comment on the draft EIS/EIR.

3.2.3.2 State Regulations and Agreements

2 3.2.3.2.1 California Clean Air Act

The California Clean Air Act of 1988, as amended in 1992 (CCAA), outlines a program to attain the CAAQS by the earliest practical date. Because the CAAQS are more stringent than the NAAQS, attainment of the CAAQS will require more emissions reductions than what would be required to show attainment of the NAAQS. Consequently, the main focus of attainment planning in California has shifted from the federal to state requirements. Similar to the federal system, the state requirements and compliance dates are based on the severity of the ambient air quality standard violation within a region.

11 **3.2.3.2.2** AB 2650

3

4

5

6

7

8

9

10

12 AB 2650 (Lowenthal) was signed into law by Governor Davis and became effective 13 on January 1, 2003. Under AB 2650, shipping terminal operators are required to limit truck-waiting times to no more than 30 minutes at the Ports of Los Angeles, 14 15 Long Beach, and Oakland, or face fines of \$250 per violation. Collected fines are to 16 be used to provide grants to truck drivers to replace and retrofit their vehicles with cleaner engines and pollution-control devices. A companion piece of pending 17 legislation (AB 1971) would ensure that the intent of AB 2650 is not circumvented 18 19 by moving trucks with appointments inside the terminal gates to wait.

20 **3.2.3.2.3 AB 471**

21	In October 2004, AB 471 was passed by the California Legislature and codified in
22	Health and Safety Code (HSC) sections 39630-39632. AB 471 prohibited cruise
23	ships from conducting onboard incineration while operating within 3 miles of the
24	California coast. On November 17, 2005, CARB adopted the Airborne Toxic
25	Control Measure for Cruise Ship Onboard Incineration as title 17, CCR, 93113. This
26	measure implements AB 471 by clarifying the limit for incineration along the
27	California coast as 3 nm and establishing recordkeeping and reporting requirements.
28 29 30 31	In October 2005, the California Legislature enacted SB 771, which amended HSC sections 39630-39632. SB 771 expands the requirements of AB 471 to include all oceangoing ships of 300 gross registered tons or more. This law became effective November 28, 2007.
32	In accordance with the methodology developed by Starcrest in the 2005 Port
33	Inventory, incinerators are not included in estimating emissions because incinerators
34	were reportedly not used within the study area. Starcrest reported that interviews
35	with the vessel operators and marine industry indicated that vessels do not use
36	incinerators while at berth or near coastal waters (Starcrest 2007).

4

5

6

20 21

22

23

24

25

13.2.3.2.4Heavy Duty Diesel Truck Idling Regulation Heavy2Duty Diesel Truck Idling Regulation

This CARB rule affected heavy-duty diesel trucks in California starting February 1, 2005. The rule requires that heavy-duty trucks do not idle for longer than 5 minutes at a time. However, truck idling for longer than 5 minutes while queuing is allowed if the queue is located beyond 100 feet of any homes or schools.

7 3.2.3.2.5 California Diesel Fuel Regulations

8 With this rule, CARB set sulfur limitations for diesel fuel sold in California for use in 9 onroad and offroad motor vehicles (CARB 2004a). Harbor craft were originally 10 excluded from the rule but were later included by a 2004 rule amendment (CARB 2005d). Under this rule, diesel fuel used in motor vehicles except harbor craft has 11 12 been limited to 500 ppm sulfur since 1993. The sulfur limit was reduced to 15 ppm 13 on September 1, 2006. The phase-in period was from June 1, 2006, to September 1, 2006. (A federal diesel rule similarly limited sulfur content nationwide to 15 ppm by 14 October 15, 2006.) Diesel fuel used in harbor craft in the SCAQMD was limited to 15 16 500 ppm sulfur starting January 1, 2006, and 15-ppm sulfur starting September 1, 17 2006.

3.2.3.2.6 Measures to Reduce Emissions from Goods Movement Activities

- In April 2006, the CARB approved the *Emission Reduction Plan for Ports and Goods Movement in California* (CARB 2006e). This plan proposes measures that would reduce emissions from the main sources associated with port cargo-handling activities, including ships, harbor craft, terminal equipment, and delivery trucks. Although these measures were designed for activities associated with goods movement, they also apply to the heavy-duty delivery trucks at the cruise terminals.
- 26 In December 2005, CARB approved the Ocean-Going Vessel Auxiliary Diesel Engine Regulation (Title 13, CCR, Section 2299.1), which required ship auxiliary 27 28 engines operating in California waters beginning on January 1, 2007 to use marine 29 diesel oil with a maximum sulfur content of 0.5% or use marine gas oil. By January 30 1, 2010, these source activities were required to meet a marine gas oil sulfur limit of 31 0.1% (CARB 2006e). The rule was challenged, and on August 30, 2007, CARB 32 ceased enforcement of the rule pursuant to an injunction ordered by a federal district 33 court. CARB filed an appeal and requested a stay of the injunction pending the 34 appeal. This stay was granted on October 23, 2007, and CARB again began 35 enforcing the rule. A federal appeals court rejected the rule on February 27, 2008. This ruling means that the state must seek federal approval before imposing pollution 36 limits on the ocean-going vessels visiting the ports. On March 10, 2008, CARB 37 38 decided to continue to enforce the Ocean-Going Vessel Auxiliary Diesel Engine

1Regulation while litigation involving the regulation remains active. Due to these2recent developments and the future uncertainty of the regulation, the impacts of this3regulation were conservatively not assumed in the unmitigated emission calculations4for the future conditions of the proposed Project and alternatives.

5 In December 2006, CARB approved the Regulation for Mobile Cargo-Handling Equipment (CHE) at Ports and Intermodal Rail Yards (Title 13, CCR, Section 2479), 6 which is designed to use best available control technology (BACT) to reduce diesel 7 8 PM and NO_x emissions from mobile cargo-handling equipment at ports. Since 9 January 1, 2007, the regulation has imposed emission performance standards on new 10 and in-use terminal equipment that vary by equipment type. The regulation also includes recordkeeping and reporting requirements. The effects of this regulation are 11 accounted for in the unmitigated OFFROAD2007 emission factors used in this study. 12

3.2.3.2.7 Statewide Portable Equipment Registration Program

14	The Statewide Portable Equipment Registration Program establishes a uniform
15	program to regulate portable engines and portable engine-driven equipment units
16	(CARB 2005c). Once registered in this program, engines and equipment units may
17	operate throughout California without the need to obtain individual permits from
18	local air districts. The PERP generally would apply to proposed dredging and barge
19	equipment.

203.2.3.2.8AB 1493—Vehicular Emissions of Greenhouse21Gases

- AB 1493 (Pavley), enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce greenhouse gases emitted by passenger vehicles and light duty trucks. Regulations adopted by CARB will apply to 2009 and later model year vehicles. CARB estimates that the regulation will reduce climate change emissions from light duty passenger vehicle fleet by 18% in 2020 and 27 percent in 2030. (CARB 2004.)
- 28 **3.2.3.2.9 Executive Order S-3-05**
- 29California Governor Arnold Schwarzenegger announced on June 1, 2005 through30Executive Order S-3-05, state-wide GHG emission reduction targets as follows:
 - by 2010, reduce GHG emissions to 2000 levels;
 - by 2020, reduce GHG emissions to 1990 levels; and
 - by 2050, reduce GHG emissions to 80% below 1990 levels (CA 2005).
- 34 Some literature equates these reductions to 11% by 2010 and 25% by 2020.

31

32

33

13.2.3.2.10AB 32—California Global Warming Solutions Act of22006

3	The purpose of AB 32 is to reduce statewide GHG emissions to 1990 levels by 2020.
4	This act instructs CARB to adopt regulations that reduce emissions from significant
5	sources of GHGs and establish a mandatory GHG reporting and verification program
6	by January 1, 2008. AB 32 requires CARB to adopt GHG emission limits and
7	emission reduction measures by January 1, 2011, both of which are to become
8	effective on January 1, 2012. CARB must also evaluate whether to establish a
9	market-based cap and trade system. AB 32 does not identify a significance level of
10	GHG for CEQA/NEPA purposes, nor has CARB adopted such a significance
11	threshold.

12 **3.2.3.2.11** Senate Bill 97 Chapter 185, Statutes of 2007

13	SB 97 requires the Office of Planning and Research (OPR) to prepare guidelines to
14	submit to the California Resources Agency regarding feasible mitigation of
15	greenhouse gas emissions or the effects of greenhouse gas emissions as required by
16	CEQA. The California Resources Agency is required to certify and adopt these
17	revisions to the State CEQA Guidelines by January 1, 2010. The Guidelines will
18	apply retroactively to any incomplete environmental impact report, negative
19	declaration, mitigated negative declaration, or other related document. In the interim,
20	on June 19, 2008, the OPR issued a Technical Advisory on CEQA and Climate
21	Change (OPR 2008).

22 **3.2.3.2.12** Executive Order S-01-07

23Executive Order S-01-07 was enacted by the Governor on January 18, 2007.24Essentially, the order mandates the following: 1) that a statewide goal be established25to reduce the carbon intensity of California's transportation fuels by at least 10% by262020; and 2) that a Low Carbon Fuel Standard for transportation fuels be established27for California.

28 **3.2.3.2.13** SB 1368 GHG Standard for Electrical Generation

29SB 1368 authorizes the California Public Utilities Commission (CPUC), in30consultation with the California Energy Commission (CEC) and CARB, to establish31GHG emissions standards for baseload generation for investor-owned utilities. It32requires the CEC to adopt a similar standard for local publicly owned or municipal33utilities. The CPUC adopted rulemaking implementing the legislation in January342007. The California Energy Commission adopted similar regulations in June 2007.35The standard for both is 1,000 pounds of CO2 per megawatt (MWh).

3.2.3.2.14 California Climate Action Registry

2	Established by the California Legislature in 2000, the California Climate Action
3	Registry (CCAR) is a nonprofit public-private partnership that maintains a voluntary
4	registry for GHG emissions. The purpose of the CCAR is to help companies,
5	organizations, and local agencies establish GHG emissions baselines for purposes of
6	complying with future GHG emission reduction requirements. LAHD is a voluntary
7	member of the CCAR and has made the following commitments:
8	 Identify sources of GHG emissions, including direct emissions from vehicles,
9	onsite combustion, fugitive and process emissions, and indirect emissions from
10	electricity, steam, and co-generation
11	 Calculate GHG emissions using the CCAR's General Reporting Protocol
12	(Version 3.0, April 2008).
13	 Report final GHG emissions estimates on the CCAR website.
14 15 16	LAHD has been a member of CCAR since March 29, 2006, and has submitted GHG inventories of Harbor Department controlled activities for 2006 and 2007. Organizations that join the CCAR are specifically recognized by AB 32. As a result,
17 18 19	LAHD is assured that CARB will incorporate emissions reporting protocols developed by the CCAR into the state's new mandatory GHG emissions reporting program to the maximum extent feasible.

3.2.3.2.15 May 2008 Attorney General GHG CEQA Guidance Memo

22Although not considered a regulation, the California State Attorney General's Office23released a CEQA guidance memo related to GHG analysis and mitigation measures24(California State Attorney General's Office 2008). The memo provides examples of25mitigation measures that could be used in a diverse range of projects. Measures26identified in the memo have been incorporated as GHG mitigation measures in this27analysis.

28 **3.2.3.3** Local Regulations and Agreements

29 Through the attainment planning process, SCAQMD develops the SCAQMD Rules 30 and Regulations to regulate sources of air pollution in the SCAB. The SCAQMD 31 rules most pertinent to the proposed Project and alternatives are listed below. With 32 the possible exception of dredging equipment during construction, the emission 33 sources associated with the proposed Project and alternatives are considered mobile 34 sources. Therefore, the sources are not subject to the SCAQMD rules that apply to stationary sources, such as Regulation XIII (New Source Review), Rule 1401 (New 35 36 Source Review of Toxic Air Contaminants), or Rule 431.2 (Sulfur Content of Liquid 37 Fuels).

1 2	 SCAQMD Rule 402—Nuisance. This rule prohibits discharge of air contaminants or other material that
3	 cause injury, detriment, nuisance, or annoyance to any considerable number
4	of persons or to the public;
5	 endanger the comfort, repose, health, or safety of any such persons or the
6	public; or
7	cause, or have a natural tendency to cause, injury, or damage to business or
8	property.
9 10 11 12 13 14 15 16 17 18 19 20 21	SCAQMD Rule 403— Fugitive Dust. This rule prohibits emissions of fugitive dust from any active operation, open storage pile, or disturbed surface area that remains visible beyond the emission source property line. During construction of the proposed Project or one of the alternatives, best available control measures identified in the rule would be required to minimize fugitive dust emissions from proposed earth-moving and grading activities. These measures would include site prewatering and rewatering as necessary to maintain sufficient soil moisture content. Additional requirements apply to construction projects on property with 50 or more acres of disturbed surface area, or for any earth-moving operation with a daily earth-moving or throughput volume of 5,000 cubic yards or more three times during the most recent 365-day period. These requirements include submittal of a dust control plan, maintaining dust control records, and designating a SCAQMD-certified dust control supervisor.
22	SCAQMD Rule 1403 —Asbestos Emissions from Demolition/Renovation
23	Activities. The purpose of this rule is to limit emissions of asbestos, a toxic air
24	contaminant, from structural demolition/renovation activities. The rule requires
25	people to notify the SCAQMD of proposed demolition/renovation activities and
26	to survey these structures for the presence of asbestos-containing materials. The
27	rule also includes notification requirements for any intent to disturb asbestos-
28	containing materials; emission control measures; and asbestos-containing
29	material removal, handling, and disposal techniques. All proposed structural
30	demolition activities associated with proposed project construction would need to
31	comply with the requirements of Rule 1403.
32	Port of Los Angeles/Port of Long Beach Vessel Speed Reduction Program
33	(VSRP). Under this voluntary program, LAHD has requested that ships coming
34	into the Port reduce their speed to 12 knots or less within 20 nm of the Point
35	Fermin Lighthouse. This reduction of 3 to 10 knots per ship (depending on the
36	ship's cruising speed) can substantially reduce emissions from the main
37	propulsion engines of the ships. The program started in May 2001. The CAAP
38	adopted the VSRP as control measure OGV-1, and it expands the program out to
39	40 nm from the Point Fermin Lighthouse.

4

5

6

7

8 9

13.2.3.4Los Angeles Harbor Department Clean Air2Policy

LAHD has had a Clean Air Program in place since 2001 and began monitoring and measuring air quality in surrounding communities in 2004. Through the 2001 Air Emissions Inventory, LAHD has been able to identify emission sources and relative contributions in order to develop effective emissions reduction strategies. LAHD's Clean Air Program has included progressive programs such as alternative maritime power (AMP), use of emulsified fuel and diesel oxidation catalysts (DOCs) in yard equipment, alternative fuel testing, and the VSRP.

- 10 In late 2004, LAHD developed a plan to reduce air emissions through a number of 11 near-term measures. The measures were primarily focused on decreasing NO_x, but 12 also PM and SO_x. In August 2004, a policy shift occurred, and Mayor James K. 13 Hahn established the No Net Increase Task Force to develop a plan that would 14 achieve the goal of No Net Increase (NNI) in air emissions at the Port relative to 2001 levels. The plan identified 68 measures to be applied over the next 25 years 15 16 that would reduce PM and NO_x emissions to the baseline year of 2001. The 68 measures included near-term measures; local, state, and federal regulatory efforts; 17 18 technological innovations; and longer-term measures still in development.
- 19 LAHD, in conjunction with the Port of Long Beach and with guidance from SCAQMD, 20 CARB, and EPA, has adopted the CAAP to expand upon existing and develop new 21 emission-reduction strategies. The CAAP was initiated in response to a new mayor and Board of Harbor Commissioners. The CAAP was released as a draft plan for public 22 23 review on June 28, 2006, and was approved by both the Los Angeles and Long Beach 24 Boards of Harbor Commissioners on November 20, 2006. The CAAP focuses on 25 reducing emissions with two main goals: (1) reduce port-related air emissions in the interest of public health and (2) accommodate growth in trade. The plan includes near-26 27 term measures implemented largely through the CEQA/NEPA process, tariffs, and new 28 leases at both ports.
- 29This EIS/EIR analysis assumes that the proposed Project and alternatives would comply30with the CAAP. Proposed mitigation measures applied to reduce air emissions and31public health impacts are largely consistent with, and in some cases exceed, the CAAP's32emission-reduction strategies. These measures also would extend beyond the 5-year33CAAP timeframe to the end of the lease period in 2038. Table 3.2-23 details how34mitigation measures for the proposed Project and the alternatives compare to measures35identified in the CAAP.

36 **3.2.3.4.1** LAHD Sustainable Construction Guidelines

37	In February 2008, the LAHD Board of Harbor Commissioners adopted the Los
38	Angeles Harbor Department Sustainable Construction Guidelines for Reducing Air
39	Emissions (LAHD Construction Guidelines). These guidelines will be used to
40	establish air emission criteria for inclusion in construction bid specifications. The

1 2 3 4 5 6	LAHD Construction Guidelines reinforce and require sustainability measures during performance of the contracts, balancing the need to protect the environment, be socially responsible, and provide for the economic development of the Port. Future Board resolutions will expand the guidelines to cover other aspects of construction, as well as planning and design. These guidelines support the forthcoming Port Sustainability Program.
7 8 9 10 11	The intent of the LAHD Construction Guidelines is to facilitate the integration of sustainable concepts and practices into all capital projects at the Port and to phase in the implementation of these procedures in a practical yet aggressive manner. Significant features of the LAHD Construction Guidelines include, but are not limited to:
12 13 14	1. All ships and barges used primarily to deliver construction-related materials for LAHD construction contracts will comply with the Vessel Speed Reduction Program and use low-sulfur fuel within 40 nautical miles of Point Fermin.
15 16	2. Harbor craft will meet EPA Tier 2 engine emission standards. This requirement will increase to EPA Tier 3 engine emission standards by January 1, 2011.
17	3. All dredging equipment will be electric.
18 19 20 21	 Onroad heavy-duty trucks will comply with EPA 2004 onroad emission standards for PM10 and NO_x and will be equipped with a CARB-verified Level 3 device. Emission standards will increase to EPA 2007 onroad emission standards for PM10 and NO_x by January 1, 2012.
22 23 24 25 26	5. Construction equipment (excluding onroad trucks, derrick barges, and harbor craft) will meet EPA Tier-2 nonroad standards. The requirement will increase to Tier 3 by January 1, 2012, and Tier 4 by January 1, 2015. In addition, construction equipment will be retrofitted with a CARB-certified Level 3 diesel emissions control device.
27 28	6. Comply with SCAQMD Rule 403 regarding fugitive dust and other fugitive dust control measures.
29 30 31	7. Additional best management practices, based largely on best available control technology (BACT), will be required on construction equipment (including onroad trucks) to further reduce air emissions.
32 33 34 35 36	This EIR analysis assumes that the proposed Project and its alternatives would adopt all applicable Sustainable Construction Guidelines as mitigations. These measures are incorporated into the emission calculations for the mitigated proposed Project and alternatives scenarios. Table 3.2-141 identifies the mitigation and monitoring requirements for these measures.

3.2.4 Impacts and Mitigation Measures

2 3

4

This section presents a discussion of the potential air quality impacts associated with the construction and operation of the proposed Project and alternatives. Mitigation measures are provided where feasible for impacts found to be significant.

5 3.2.4.1 Methodology

- Air pollutant emissions of VOC, CO, NO_x, SO_x, PM10, and PM2.5 were estimated
 for construction and operations of the proposed Project and alternatives. To
 determine their significance, the emissions were compared to Significance Criteria
 AQ-1 and AQ-3 identified in Section 3.2.4.2. The criteria pollutant emission
- 10 calculations are presented in Appendix D1.
- 11Dispersion modeling of CO, NO_X, PM10, and PM2.5 emissions was performed to12estimate maximum offsite pollutant concentrations in the air from emission sources13attributed to the proposed Project and alternatives. The predicted ambient14concentrations associated with construction and operations of the proposed Project15and alternatives were compared to Significance Criteria AQ-2 and AQ-4,16respectively. The complete dispersion modeling report is presented in Appendix D2.
- 17Dispersion modeling of vehicle traffic also was performed at high traffic volume18roadway intersections affected by truck trips generated by the proposed Project and19alternatives. The maximum predicted CO "hot spot" concentrations near the20intersection were compared to Significance Criterion AQ-5.
- 21The potential for odors generated by the proposed Project and alternatives at sensitive22receptors in the vicinity was assessed qualitatively and compared to Significance23Criterion AQ-6.
- 24 A health risk assessment (HRA) of toxic air contaminant emissions associated with 25 construction and operations of the proposed Project and alternatives was conducted in 26 accordance with a protocol that the LAHD prepared and SCAQMD reviewed (Port of 27 Los Angeles 2008). Maximum predicted health risk values in the communities 28 adjacent to the proposed project site were compared to Significance Criterion AQ-7. 29 The HRA analyzed proposed project emissions and human exposure to the emissions 30 during the 70-year period from 2009 to 2078. The complete HRA is presented in Appendix D3. 31
- 32The consistency of the proposed Project and alternatives with the AQMP was33addressed in accordance with Significance Criterion AQ-8. GHG emissions were34addressed in AQ-9.
- Finally, mitigation measures were applied to the proposed activities that would exceed a significance criterion, and then evaluated as to their effectiveness in reducing impacts of the proposed Project and alternatives.

2

3

4

5

25

The emission estimates, dispersion modeling, and health risk estimates presented in this document were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available for this study.

The numerical results presented in the tables of this report were rounded, often to the 6 nearest whole number, for presentation purposes. As a result, the sum of tabular data 7 8 in the tables could differ slightly from the reported totals. For example, if emissions 9 from Source A equal 1.2 lb/day and emissions from Source B equal 1.4 lb/day, the 10 total emissions from both sources would be 2.6 lb/day. However, in a table, the 11 emissions would be rounded to the nearest lb/day, such that Source A would be 12 reported as 1 lb/day, Source B would be reported as 1 lb/day, and the total emissions 13 from both sources would be reported as 3 lb/day. Although the rounded numbers 14 create an apparent discrepancy in the table, the underlying addition is accurate.

15**3.2.4.1.1**Methodology for Determining Construction16Emissions

exhaust and paved road dust emissions.

- 17 Proposed construction activities for the proposed Project and alternatives would 18 involve the use of offroad construction equipment, dredging equipment, cranes, pile 19 drivers, onroad trucks, tugboats, and heavy duty haul trucks. Because these sources 20 would primarily use diesel fuel, they would generate emissions of diesel exhaust in 21 the form of VOC, CO, NO_x SO_x, PM10, and PM2.5 In addition, offroad construction equipment traveling over unpaved surfaces and performing earthmoving activities 22 23 such as site clearing or grading would generate fugitive dust emissions in the form of PM10 and PM2.5. Worker commute vehicles and haul trucks would generate vehicle 24
- 26 Construction emissions include exhaust emissions from heavy equipment used during 27 the construction phase of the proposed Project and alternatives. These emissions 28 were estimated using the following methodology. LAHD supplied the equipment 29 usage and scheduling data needed to calculate emissions for the proposed 30 construction activities (LAHD 2007). A worst-case day was identified based on the 31 time period during which the maximum amount of construction activity would take 32 place at a particular proposed project component. The construction schedule analysis was used to identify the type and number of equipment that would be operating in an 33 34 8-hour day during the period of maximum activity. The number of each type of equipment was entered into a spreadsheet. Emission factors from the CARB's 35 36 OFFROAD2007, EMFAC2007, and LAHD Inventory of Air Emissions were 37 identified for each type of equipment, heavy-duty trucks, and marine vessels, respectively. In some cases, the horsepower rating of the equipment was required in 38 39 order to estimate emissions.
- 40To estimate peak daily construction emissions for comparison to SCAQMD emission41thresholds, emissions were first calculated for the individual construction activities42(e.g., cruise terminals, parking lots, promenade, red car trolley extensions, etc.). Peak

2

3

4

5

6

7 8

9

10

11

12

13

daily emissions then were determined by summing emissions from overlapping construction activities as indicated in the proposed construction schedule (Table 2-5). Figure 3.2-2 presents the layout of the 40 construction components along the proposed project site. The SCAQMD emission thresholds are discussed in Section 3.2.4.2.

The 54-month period in which the bulk of the construction activities would simultaneously occur was broken down on a project-by-project component basis in order to evaluate the construction activities that would occur during a calendar year period. The proposed project components for which each individual construction activity would occur were grouped into each calendar year. Once the 12-month period was identified, all construction activities that would occur at that location were included in the emission calculations. Table 2-5 shows the 12-month/calendar year period that was evaluated for each proposed project component for each alternative.

- 14In many cases, some activities would be completed within the 12-month calendar15activity period and other activities would begin. Because construction activities vary16substantially from day to day and construction is expected to spread into several17phases over a 6-year period (2009 to 2014), an estimate of peak daily construction18emissions was conducted. Based on the estimated construction schedule, material19transport needs, construction employment, and travel distances were quantified.
- 20 The LAHD has provided the number and type of equipment that would be used 21 during each month, along with the estimated number of hours per day that the 22 equipment would be operation. Once the emission had been estimated for each 23 emitting process, the worst-case daily emissions were evaluated relative to the 24 significant criteria and significant impacts identified. For the heavy-duty 25 construction equipment activities, the maximum emissions would occur in 2010. 26 However, it should be noted that the maximum number of construction crews for 27 building assembly and renovations would occur in 2011. Because of the predicted 28 high number of vehicle activities associated with the construction worker vehicle 29 trips, material/supply delivery trucks, and cruise ship tourist activities, the maximum 30 emission year for the combined construction and operational activities would be expected to occur in 2011. The other milestone years included in the air quality 31 32 analysis are 2015, 2022, and 2037.
- The specific approaches to calculating emissions for the various emission sources during construction of the proposed Project are discussed below. Table 3.2-7 includes a synopsis of the regulations and agreements that were assumed as part of the proposed Project and alternatives in the construction calculations. The construction emission calculations are presented in Appendix D1.
- 38LAHD Construction Guideline measures are included as mitigation in this study39consistent with the guidelines. Mitigation measures would be incorporated into40proposed project construction bid specifications.

for Nonroad Diesel Engines—Tier 1, 2, 3, and 4 standards gradually phased in over all years due to normal construction equipment fleet turnover.Onroad Trucks—Tiered standards gradually phased in over all years due to normal truck fleet turnover.Die Reg 15	lifornia esel Fuel gulations— ppm sulfur l.	No regulations or agreements are assumed to affect unmitigated general cargo ship emissions	SCAQMD Rule 403 Compliance— 75% reduction in fugitive dust due to watering three times per day.
California Diesel Fuel Regulations—15-ppm sulfur fuel.Airborne Toxic Control Measure to Limit Diesel- Fueled Commercial Motor Vehicle Idling— Diesel trucks subject to idling limits.		during proposed project construction.	

1 Table 3.2-7. Regulations and Agreements Assumed in the Unmitigated Construction Emissions

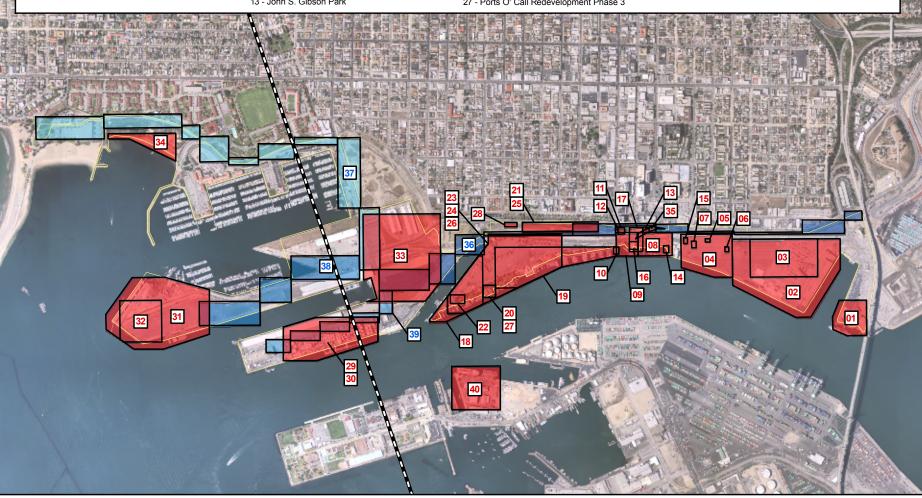
substantially affect the emission calculations for the proposed Project. A description of each regulation or agreement is provided in Section 3.2.3.

3.2.4.1.2 **Offroad Construction Equipment** 3

4 Emissions of VOC, CO, NO_X, SO₂, PM10, and PM2.5 from diesel-powered 5 construction equipment were calculated using emission factors derived from the 6 CARB OFFROAD 2007 Emissions Model (CARB 2007). Using the SCAB fleet 7 information, the OFFROAD model was run for each of the construction years of 8 2009 through 2014. Emission factors were calculated based on each type of 9 equipment, horsepower rating of the equipment, and the corresponding equipment 10 activity levels. The OFFROAD model output shows that, on a per-horsepower-hour basis, emission factors will steadily decline in future years as older equipment is 11 12 replaced with newer, cleaner equipment that meets the already adopted future state and federal offroad engine emission standards. 13

Onroad Trucks Used during Construction 3.2.4.1.3 14

15	Emissions from onroad, heavy-duty diesel trucks during construction were calculated
16	using emission factors generated by the EMFAC2007 onroad mobile source emission
17	factor model for a truck fleet representative of the SCAB (CARB 2007). The
18	EMFAC2007 model output shows that, on a per-mile basis, emission factors will


Project Area

- Construction Components
- Red Car Line Extension 22nd St. to Cabrillo Beach
- Red Car Line Extension City Dock No. 1
- Red Car Line Extension Outer Harbor
- Red Car Line Extension Sampson Way to 22nd St. Harbor Break Line
- for Air Dispersion Model

- **Project Elements**
- 01 Catalina Express and Island Express Terminal
- 02 Cruise Ship Terminal, Berths 91/92 and 93 A/B
- 03 Cruise Ship Terminal Parking Facilites
- 04 North Harbor
- 05 Maritime Office Building (Crowley Maritime)
- 06 Maritime Office Building (Millenium Maritime)
- 07 Maritime Office Building (Lane Victory)
- 08 Downtown Harbor
- 09 7th Street Harbor
- 10 7th Street Pier
- 11 Downtown Square
- 12 Downtown Water Feature
- 13 John S. Gibson Park

- 14 Ralph J. Scott Fireboat Museum
- 15 Maritime Museum Renovation
- 16 Maritime Office Building (LA Maritime Institute)
- 17 Maritime Office Building
- 18 Ports O' Call Promenade Phase 1
- 19 Ports O' Call Promenade Phase 2
- 20 Ports O' Call Promenade Phase 3
- 21 Southern Pacific Railyard Demolition
- 22 Fistherman's Park
- 23 Ports O' Call Redevelopment without Restaurant
- 24 Ports O' Call Redevelopment Phase 1
- 25 Ports O' Call Redevelopment Phase 2
- 26 Ports O' Call Redevelopment with Restaurant
- 27 Ports O' Call Redevelopment Phase 3

- 28 Red Car Maintenance Facility
- 29 Westway Terminal Demolition
- 30 City Dock No. 1 Promenade
- 31 Outer Harbor Cruise Ship Facility Berth 45-50
- 32 Outer Harbor Park and Promenade
- 33 San Pedro Park
- 34 Salinas De San Pedro/Youth Camp Promenade
- 35 Sampson Way Road Improvements
- 36 Red Car Line Extension Sampson Way to 22nd St.
- 37 Red Car Line Extension 22nd St. to Cabrillo Beach
- 38 Red Car Line Extension Outer Harbor
- 39 Red Car Line Extension City Dock No. 1
- 40 New Berth 240 Fueling Station

SOURCE: ICF Jones & Stokes

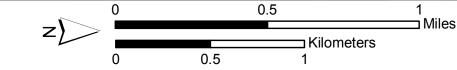


Figure 3.2-2 **Construction and Trolley Components** San Pedro Waterfront Project

1 2		steadily decline in future years, as older trucks are replaced with newer, cleaner trucks that meet the required state and federal onroad engine emission standards.
3		Other assumptions regarding onroad trucks during construction are as follows:
4 5 6 7		Trucks hauling debris or fill materials would travel 90% of the trip distance on site at 25 miles per hour (mph), and 10% at 10 mph. All other construction-related trucks would travel off site with a trip distance of 40 miles at 55 mph, 25 mph for 0.5 mile, and at 10 mph for 0.25 mile.
8 9		 Nonincidental truck idling times would be 20 minutes for concrete truck trips and 5 minutes for all other truck trips.
10	3.2.4.1.4	Tugboats Used during Construction
11 12 13 14		During construction, tugboats would be used to haul dredge sediment in barges off site for disposal at sea (e.g., LA-2). Figure 3.2-3 presents route of the tugboats hauling dredged and excavated materials from the harbor cuts to the LA-2 disposal site.
15 16 17 18 19 20 21 22		Emissions from tugboat main and auxiliary engines were calculated using Entec (Entec 2002) emission factors for medium- and high-speed diesel marine engines, respectively, as reported by Starcrest (Starcrest 2007). Although many tugboats at the Port have been repowered with Tier 2 marine engines as part of the ongoing Tugboat Retrofit Project, the emission calculations conservatively used uncontrolled Entec emission factors for all construction phases, both with and without mitigation, because a tugboat used for construction may come from outside the tugboat fleet currently serving the Port.
23 24 25		The diesel fuel used in tugboats is assumed to have an average sulfur content of 15 ppm, which is the sulfur content limit for California harbor craft, in accordance with California Diesel Fuel Regulations (CARB 2004a).
26		Other assumptions regarding tugboats during construction are as follows:
27 28 29		 During dredging activities, a tugboat would operate at 8 hours per day hauling a barge off site for sediment disposal at sea. The round-trip distance would be 2 nm.
30 31		 Crew survey boats would operate for a maximum 2 hours per day during construction of the new harbors.
32	3.2.4.1.5	Fugitive Dust
33 34		The evaluation of fugitive dust incorporates all sources of dust (e.g., demolition and grading) that might be produced during the construction phase. The SCAQMD

1	factors were used to determine the fugitive dust generated by heavy-duty equipment,
2	trucks, and automobiles travelling both on site and off site. Fugitive dust emissions
3	(PM10) from loading, dumping, and construction equipment traveling over unpaved
4	surfaces were estimated using the emissions factors in the Western Regional Air
5	Partnership's Fugitive Dust Handbook (WRAP 2006). A general emission factor for
6	all types of construction activity is 0.11 ton of PM10/acre/month and is based on a
7	1996 best available control measure study conducted by Midwest Research Institute
8	(MRI) for the SCAQMD. The single composite factor of 0.11 ton of
9	PM10/acre/month assumes that all construction activity produces the same amount of
10	dust on a per-acre basis. In other words, the amount of dust produced is not
11	dependent on the type of construction but merely on the area of land being disturbed
12	by the construction activity. A second assumption is that most land affected by
13	construction activity does not involve large-scale cut and fill operations. For the
14	large-scale excavation and dredging operations for the new harbors, a worst-case
15	composite emission factor of 0.42 ton of PM10/acre/month was used for the
16	construction of the three new harbors. Unmitigated grading emissions were reduced
17	by 75% from uncontrolled levels to reflect required compliance with SCAQMD Rule
18	403. According to SCAQMD guidance, watering the site three times per day
19	pursuant to Rule 403 would reduce fugitive dust emissions by 75% (SCAQMD
20	2005f). The dust-control methods for the proposed Project and alternatives would be
21	specified in the dust-control plan that must be submitted to the SCAQMD per Rule
22	403.
23	Fugitive dust emissions from earth-moving activities are proportional to the surface

Fugitive dust emissions from earth-moving activities are proportional to the surface area of the land being disturbed. Peak daily emissions for construction activities were calculated assuming that the total surface area of each proposed project component would be disturbed at any one time during construction.

27 3.2.4.1.6 Worker Commute Trips during Construction 28 Activities

29Emissions from worker trips during construction were calculated using the30URBEMIS2007 land use emission model. LAHD's construction estimates provided31detailed information about the number of crew and manhours required for each32proposed project component. The number of vehicle trips was determined based on33the URBEMIS2007 default average commute distance for passenger vehicles in the34SCAB (SCAQMD 2007).

35 **3.2.4.1.7** Methodology for Determining Operational Emissions

36	Operational emission sources include cruise ships, harbor craft, terminal equipment,
37	and motor vehicles. The sources would generate emissions of diesel exhaust in the
38	form of VOC, CO, NO _x , SO _x , PM10, and PM2.5. Onroad motor vehicles would
39	generate vehicle exhaust and paved road dust emissions. These sources plus
40	electricity usage at Ports O'Call, the cruise ship terminals, and other non-industrial

SOURCE: ICF Jones & Stokes

Figure 3.2-3 Tugboat Construction Haul Route San Pedro Waterfront Project

1 2	sources also generate GHG emissions. Figure 3.2-4 presents the locations of operational emission sources at the proposed Project and alternatives sites.
3 4 5 6	Information on proposed operational emission sources was obtained from LAHD staff, the traffic study conducted as part of this draft EIS/EIR (see Section 3.11 and Appendix M.1), and the <i>Port of Los Angeles Inventory of Air Emissions 2005</i> (Starcrest 2007).
7 8 9 10 11 12	Table 3.2-8 includes a synopsis of the regulations that were assumed in the unmitigated emissions calculations. Current in-place regulations are treated as proposed project elements rather than mitigation because they represent enforceable rules with or without approval of the proposed Project or one of the alternatives. Only current regulations and agreements were assumed as part of the unmitigated emissions of the proposed Project and alternatives for the various analysis years.
13 14 15 16 17	CAAP measures planned for future implementation at a project level are treated as mitigation in this study consistent with the CAAP's implementation plan. Mitigation measures would be incorporated into proposed project leases as enforceable lease measures. Therefore, the unmitigated emissions of the proposed Project and alternatives assume no future CAAP measure implementation.

- 18 **Table 3.2-8.** Regulations and Agreements Assumed as Part of the Unmitigated Emissions for the
- 19 Proposed Project and Alternatives

Cruise Vessels	Harbor Craft	Terminal Equipment	Trucks
Vessel Speed Reduction Program— 80% compliance in 2009, 2011, 2015, 2022, and 2037 AB 471 / SB 771— Prohibits waste incineration.	California Diesel Fuel Regulations—15-ppm sulfur fuel. Engine Standards for Marine Diesel Engines—Tier 2 standards gradually phased in due to normal tugboat fleet turnover.	Emission Standards for Nonroad Diesel Engines—Tier 1, 2, 3, and 4 standards gradually phased in over all years due to normal terminal equipment fleet turnover. California Diesel Fuel Regulations—15 ppm sulfur fuel.	 Emission Standards for Onroad Trucks—Tiered standards gradually phased in over all years due to normal truck fleet turnover. California Diesel Fuel Regulations—15-ppm sulfur fuel. AB 2650—On-terminal trucks are subject to idling limits. Airborne Toxic Control Measure to Limit Diesel- Fueled Commercial Motor Vehicle Idling—Diesel trucks are subject to idling limits.

Note: This table is not a comprehensive list of all applicable regulations; rather, the table lists key regulations and agreements that substantially affect the emission calculations for the emissions of the proposed Project and alternatives. A description of each regulation or agreement is provided in Section 3.2.3.

20

21 22 The specific approaches to calculating emissions for the various emission sources during operation of the proposed Project and alternatives are discussed below.

3

4

5

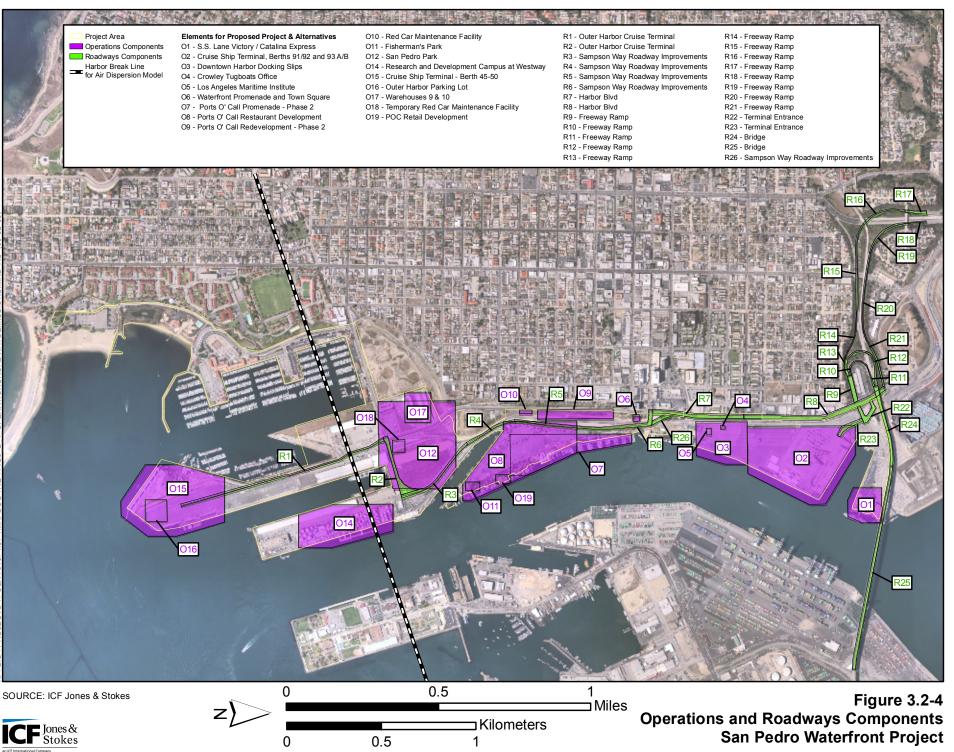
6 7

8

9

10

11 12


13

The operational emission calculations are presented in Appendix D1.

2 **3.2.4.1.8 Cruise Ships**

- Emissions from the main engines, auxiliary engines, and boilers on cruise ships were calculated using Entec emission factors (Entec 2002), as reported in the *Port of Los Angeles Inventory of Air Emissions 2005* (Starcrest 2007).
- Most cruise ships are fitted with diesel engine generators, also known as dieselelectric engines. In the electric drive arrangement, the diesel engine is directly coupled to a generator, and the electricity produced drives an electric motor. Since power for the propulsion and ship service support is provided by the same diesel engine generators and since the propulsion and ship service support are integrated through a common electric distribution system, the terms "main" and "auxiliary" engines that are often used in describing container or cargo vessel engines are not used in describing diesel-electric configurations.
- 14 To estimate annual or average daily unmitigated emissions, the ship engines were 15 assumed to use residual fuel with an average sulfur content of 2.7% (27,000 ppm). A 16 sulfur content of 2.7% represents a worldwide average for residual fuel (Entec 2002). 17 LAHD has completed a study regarding low sulfur fuel availability and has verified that the ships calling at the Port are consistent with the worldwide average of 2.7% 18 19 sulfur content (Starcrest 2005). Ship boilers were assumed to operate between the 20 fairway and the berth, and at berth. Peak daily emissions were estimated assuming 21 that vessels burning 4.5% sulfur fuel would call at the cruise terminals.
- 22Without mitigation, the emission factors and fuels for cruise ships were assumed to23remain unchanged in future years, except for NO_X emission factors, which are24affected by IMO MARPOL Annex VI NO_X limits. In estimating annual or average25daily unmitigated emissions, cruise ships were assumed to be compliant with IMO26MARPOL Annex VI NO_X limits based on a 45% compliance rate in 2006 (Starcrest272007) and based on a fleet turnover rate of 4% (Wahlström 2006).
- 28 The methodology in the Port of Los Angeles Inventory of Air Emissions 2005 was 29 used to calculate ship emissions during transit and hoteling (Starcrest 2007). This 30 methodology uses assumptions regarding engine load factors and associated energy output during each trip segment. During transit, engine load factors were determined 31 32 using the propeller law, which states that the engine load factor is proportional to the 33 speed of the ship cubed. A true low-load scenario would not occur in a diesel-34 electric configuration because one or more engines would be automatically turned off 35 as the vessel reduces speed, to maintain optimum engine operation and load distribution. Therefore, the diesel-electric configuration does not require that 36 37 emission factors for main engines be adjusted, on a per kWh basis, to account for 38 low-load.
- 39

Other assumptions regarding cruise ships are as follows:

1 2 3	 Emissions from ships in transit were calculated from the berth to the edge of SCAQMD waters (roughly a 50-mile, one-way trip) for the air emissions. Figure 3.2-5 presents the cruise ships transit in inner and outer harbors and the ocean.
4 5 6	The VSRP compliance rate in 2006 would be 80% to 20 nautical miles, without mitigation (Port of Los Angeles 2008). The unmitigated compliance rate for all future analysis years was assumed to remain at the 2006 level of 80%.
7 8 9 10	 During hoteling (without AMP), ships would redistribute engine load to continue to provide only the power required for services (e.g., lighting, comfort heating/cooling). Boilers were also assumed to continue operating during hoteling. With AMP, only boilers would operate.
11 12	 A hoteling duration of 12 hours would apply to all scenarios and years (Fehr & Peers 2008).
13 14	 Most cruise ships would proceed directly to the berth and would not spend time in anchorage (Starcrest 2008a).
15 16	 Cruise vessels would maneuver through the harbor without the use of assist tugboats (Starcrest 2008).
17 18 19 20 21 22	The vessels with the activities and sizes listed in Table 3.2-9 would call at the Inner and Outer Harbor Cruise Terminals. Figure 3.2-5 presents the estimated cruise vessel emission sources at the hoteling points and along the routes of the cruise vessels between the Inner and Outer Harbors to 40 nm out to sea. The vessel sizes are based on actual data for year 2006 and a LAHD-projected fleet mix for future years. The vessel activity is based on berth size and availability
23	projected for the proposed Project and alternatives.

24	Table 3.2-9. Activities and Sizes of Vessels That Would Call at the Inner and Outer Harbor Cruise
25	Terminals—Proposed Project

Years	Vessel Activities and Sizes	
Peak Scenarios		
Years 2009 through 2013	All vessels calling at the Inner Harbor Cruise Terminal would be 57,000-kW vessels. Each of the three Inner Harbor berths would be occupied.	
	The Outer Harbor Cruise Terminal would not be built until 2013. Therefore, no vessel calls are associated with that terminal prior to the end of 2013.	
Years 2013 through 2037	Half of the vessels calling at the Inner Harbor Cruise Terminal would be 57,000-kW vessels and half would be 73,800-kW vessels. This assumption is based on the proposed berth size at the Inner Harbor Cruise Terminal. Each of the two Inner Harbor berths would be occupied.	
	All vessels calling at the Outer Harbor Cruise Terminal would be 73,800-kW vessels. This assumption is based on the proposed berth size at the Outer Harbor Cruise Terminal. Each of the two Outer Harbor berths would be occupied.	
Average Scenarios		
Years 2009 through 2013	All vessels calling at the Inner Harbor Cruise Terminal would be 57,000-kW vessels. Berth occupation is based on the number of vessels expected during the course of the	

Years	Vessel Activities and Sizes
	year.
	The Outer Harbor Cruise Terminal would not be built until 2013. Therefore, no vessel calls are associated with that terminal prior to the end of 2013.
Years 2013 through 2037	Half of the vessels calling at the Inner Harbor Cruise Terminal would be 57,000-kW vessels, and half would be 73,800-kW vessels. This assumption is based on the proposed berth size at the Inner Harbor Cruise Terminal. Berth occupation is based on the number of vessels expected during the course of the year.
	Half of the vessels calling at the Outer Harbor Cruise Terminal would be 57,000-kW vessels, and half would be 73,800 kW vessels. Berth occupation was based on the number of vessels expected during the course of the year.

2 **3.2.4.1.9** Tugboats, Catalina Express, and Other Harbor Craft

3	The analysis of the proposed Project and alternatives considered emissions associated
4	with harbor craft, including assist tugboats, ferries, commercial fishing, crew boats,
5	excursion boats, and government boats. It was assumed that the number of harbor
6	craft trips would not change from the CEQA or NEPA baseline due to the proposed
7	Project and alternatives.
8 9 10 11 12	Although tugboats are not used to assist cruise ships in most operations, the proposed Project includes the relocation of Crowley and Millennium tugboat operations to the North Harbor. Therefore, although the number of tugboats would not change due to the proposed Project, the location of base tugboat operations and therefore transit times to the harbor gates would change.
13 14 15	The proposed Project includes the relocation of the Catalina Express Terminal berthing facilities from Berth 96 to the existing location of the S.S. Lane Victory at Berth 94. This change of location would not affect ferry emissions.
16	Other assumptions regarding harbor craft are as follows:
17	 Emission factors for harbor craft are based on emission factors reported in the
18	2005 Port inventory (Starcrest 2007).
19	 Older harbor craft engines would gradually be replaced with new engines
20	meeting EPA Tier 2 standards (EPA 1999), based on default marine engine
21	lifetimes developed by CARB (CARB 2004c).
22	 The diesel fuel used in harbor craft would have average sulfur content of 15 ppm,
23	as is required for California harbor craft in accordance with California Diesel
24	Fuel Regulations (CARB 2004a).
25	The relocation of tugboats to the North Harbor Cut in the Inner Harbor would
26	result in a reduced transit time for the tugboats to the harbor gate.

Figure 3.2-5 Cruise Vessel Travel San Pedro Waterfront Project

1 2 3 4 5 6 7 8		Tugboat activity includes trips made between the tugboat home base and Angels Gate on their way to or from assisting ships destined for other berths at the Port. These emissions were included because the proposed Project would change the location of the tugboats' homebase and therefore change the distance traveled by the tugboats to and from the assisted ship. However, tugboat emissions during the actual ship assist were not included in the proposed Project emissions because the ships destined for other berths are not part of the proposed Project, and the associated tugboat emissions would not be affected by the proposed Project.
9 10 11		 Catalina Express ferries are plugged into an electrical power system overnight, and their auxiliary engines are not turned on until just prior to passenger loading. Main engines are turned on after passenger boarding is completed.
12	3.2.4.1.10	Terminal Equipment
13 14 15		Terminal equipment includes forklifts and diesel fuel trucks used at the Cruise terminals and the Berth 87 cargo terminal. The following assumptions were made in calculating emissions from terminal equipment without mitigation:
16		Cruise Terminal:
17		□ 11 diesel forklifts,
18		□ 25 propane forklifts, and
19		□ 2 diesel fuel trucks
20		■ Berth 87 cargo terminal:
21		□ 10 diesel forklifts.
22 23 24 25 26 27 28 29 30		Emissions of VOC, CO, NO _x , PM10, and PM2.5 from terminal equipment were calculated using emission factors derived from the CARB OFFROAD2007 Emissions Model (CARB 2007). The OFFROAD model was run using the terminal equipment population at the Berths 87–93 Inner Harbor Cruise Terminal in 2006. With each future analysis year, the equipment population was allowed to age in the OFFROAD 2007 model until reaching its CARB-defined useful lifetime, at which point the equipment would be assumed to be replaced by new equipment meeting current emission standards. The new replacement equipment would then age in a similar manner.
31 32 33 34		Emission factors for SO_X were determined from the fuel consumption rate of the terminal equipment and the sulfur content of the diesel fuel used in the equipment. The sulfur content in diesel fuel was assumed to be 15 ppm, which represents the maximum allowable sulfur content in diesel fuel sold in California (CARB 2004a).
35 36 37		To calculate emissions, the predicted terminal equipment usage for each future year was multiplied by the OFFROAD emission factors. The terminal equipment usage for both Inner Harbor and Outer Harbor Cruise Terminals in each analysis year was

scaled from the year 2006 usage in proportion to the annual predicted number of cruise ships.

3 3.2.4.1.11 Motor Vehicles

 Emissions from onroad passenger vehicles, shared ride vehicles (i.e., taxi/limo/shuttle buses), full size coach buses, and heavy-duty diesel delivery trucks during operations for the proposed Project and alternatives were calculated using the URBEMIS2007 model, using emission factors generated by the EMFAC2007 onroad mobile source emission factor model (CARB 2007a). Figure 3.2-4 presents the locations of operational and roadway vehicle emission sources. The motor vehicle fleet age distribution representative of the SCAB was incorporated into EMFAC2007. Other assumptions regarding motor vehicles during operations are as follows:

- Emission calculations are based on the daily trip generation data and vehicle fleet mix provided by Fehr & Peers (2008).
- The URBEMIS2007 model was used to calculate the PM10 and PM2.5 emissions from vehicle exhaust, tire wear, brake wear, and paved road dust.

The vehicle fleet age distribution provided by Fehr & Peers and used in EMFAC2007 was based on the California Vehicle Registration Program. To estimate future year emission factors, the age distribution of the baseline motor vehicle fleet was increased by the time step between year 2006 and each future project year to determine the vehicle fleet age distribution for each project year. The EMFAC2007 model output shows that, on a per-mile basis, emission factors will steadily decline in future years, as older trucks are replaced with newer, cleaner trucks that meet the required state and federal onroad engine emission standards.

- Other assumptions regarding onroad trucks during operations are as follows:
 - The average one-way truck trip distances from the proposed project boundaries would be 20 miles.
 - Trucks would travel at a trip distance of 0.25 mile at 10 mph, 0.5 mile at 25 mph, and 40 miles at 55 mph.
 - Truck idling time would be 20 minutes for concrete trucks and 5 minutes for all other trucks.

Roadway Intersection Modeling

32The roadway intersection modeling for the proposed Project and alternatives was33conducted using CALINE4. In general, the *Transportation Project-Level Carbon*34*Monoxide Protocol* (University of California Davis 1997) was followed for the CO35air quality assessment. This document, commonly referred to as the Caltrans36Protocol, was developed for use by Caltrans. The model input data, set-up, and37modeling results are briefly described in this section.

1	Modeled Intersection Selection and Traffic Volume
2 3 4 5 6	Traffic volume is a primary project-related input to the CO model. For 2015 and 2037, carbon monoxide concentrations were estimated for the following three intersections with the highest traffic volumes. The numbers in parenthesis refer to the identification numbers of intersections analyzed in Section 3.11, "Transportation an Circulation (Ground)," as shown on Figure 3.11-1.
7	■ Gaffey Street and 1 st Street (9),
8	■ Gaffey Street and I-110 ramps (10), and
9	■ Harbor Boulevard and O'Farrell Street (29);
10 11 12 13	Additional intersections that had lower traffic volumes than those listed above were also selected for analysis in order to provide greater geographic distribution of locations analyzed along the main traffic corridors, Gaffey Street and Harbor Boulevard, as follows:
14	 additional 2015 intersections:
15	□ Harbor Boulevard and Swinford Street/SR-47 ramps (26), and
16	$\Box Gaffey \text{ Street and } 5^{\text{th}} \text{ Street } (8).$
17	 additional 2037 intersections:
18	$\Box \text{Harbor Boulevard and 7}^{\text{th}} \text{ Street (22)}.$
19 20 21	The traffic volumes are provided for each intersection for the proposed Project and alternatives. The highest traffic volumes for each intersection were used in the modeling.
22	Meteorology Inputs
23 24 25 26 27	The AM, PM, and weekend peak hours were modeled for the intersections with the worst-case meteorology per the guidance. Specifically, either the morning or early evening (which has the same meteorology for coastal locations) winter period with a ground-based inversion was considered with low wind speed and temperature, as specified in the Caltrans Protocol.
28	Modeled CO Concentration
29 30 31 32 33 34 35	The CALINE4 model predicts 1-hour CO concentrations at each receptor location. The 8-hour CO concentrations were estimated using a persistence factor of 0.7, recommended in the guidance for the urban location. The background 1-hour and 8-hour CO concentrations for the 2004–2006 period at the North Long Beach CO monitoring station were obtained from the EPA air website. The second highest maximum 1-hour and 8-hour CO concentrations at the monitoring site within the 3-year period are 4.0 ppm and 3.3 ppm, respectively.

5

6

7 8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Traffic volumes were based on the traffic study and the projected changes in traffic volumes in future years for both with and without the proposed Project and alternatives.

4 3.2.4.1.12 Greenhouse Gases

Greenhouse gas emissions associated with the proposed Project and alternatives were calculated based on methodologies provided in the CCAR General Reporting Protocol, version 3.0 (CCAR 2008). This protocol is the guidance document that LAHD and other CCAR members must use to prepare annual Port-wide GHG inventories for the CCAR. Therefore, for consistency, the CCAR General Reporting Protocol also was used in this study. However, to adapt the protocol for NEPA/CEQA purposes, a modification to the protocol's operational and geographical boundaries was necessary.

- 13 The construction sources for which GHG emissions were calculated include:
 - offroad diesel construction equipment,
 - onroad trucks,
 - other motor vehicles,
 - marine cargo vessels used to deliver equipment to the site,
 - tugboats assisting cargo vessels, and
 - crane/derrick barges.
 - The operational emission sources for which GHG emissions were calculated include:
 - cruise vessels,
 - cargo vessels calling at Berth 87 (applies to 2006 CEQA baseline only),
 - tugboats,
 - Catalina Express ferries,
 - other harbor craft,
 - cruise terminal equipment,
 - onroad trucks,
 - other motor vehicles,
 - electricity consumption by terminal and commercial activates related to the proposed Project, such as Ports O'Call,
 - AMP electricity consumption (for the mitigated proposed Project),
 - on-terminal electricity consumption by loading equipment (replaces diesel- and propane-fueled equipment for the mitigated proposed Project), and

1 Waterfront Red Car Line electricity consumption. 2 The adaptation of the CCAR General Reporting Protocol methodologies to these 3 proposed emission sources for the proposed Project and alternatives is described in 4 Appendix D1. **GHG Operational and Geographical Boundaries** 5 6 Under the CCAR General Reporting Protocol, emissions associated with construction and operation of the proposed Project and alternatives would be divided into three 7 8 categories: 9 Scope 1: direct emissions from sources owned or operated by LAHD, 10 Scope 2: indirect emissions from purchased and consumed electricity, and 11 Scope 3: indirect emissions from sources not owned or operated by LAHD. 12 Examples of Scope 1 sources are terminal equipment, LAHD vehicles, and Port-13 based tugboats. An example of Scope 2 emissions would be indirect GHG emissions from electricity consumption on the terminal. Because LAHD generally does not 14 15 own ships, trucks, or construction equipment, these mobile sources would be 16 considered Scope 3 emissions. 17 CCAR does not require Scope 3 emissions to be reported because they are considered 18 to belong to another reporting entity (i.e., whoever owns, leases, or operates the 19 sources), and that entity would report these emissions as Scope 1 emissions in its own 20 GHG inventory. Virtually all trucks, ships, tugboats, and construction equipment fall 21 under this category. As a result, when used for NEPA and CEQA purposes, the 22 CCAR definition of operational boundaries would omit a large portion of the GHG 23 emission sources associated with the proposed Project and alternatives. Therefore, 24 the operational and geographical boundaries were determined differently from those 25 used in the CCAR General Reporting Protocol to make the GHG analysis more consistent with CEQA and to avoid the omission of a significant number of mobile 26 27 sources. 28 For the purposes of this NEPA/CEQA document, GHG emissions were calculated for 29 all proposed Project-related sources (Scopes 1, 2, and 3). Because CCAR does not 30 require reporting of Scope 3 emissions, CCAR has not developed a protocol for 31 determining the operational or geographical boundaries for some Scope 3 emissions sources, such as ships. Therefore, for those sources that travel beyond California 32 33 borders (for the proposed Project and alternatives, ships), GHG emissions were based 34 on the following routes: 35 • For cruise and cargo ships, ocean transit along the shipping routes within California state borders between the Port and the California 3-mile jurisdictional 36 boundary west of Point Conception (northern route) and the California-Mexico 37

1 border extended westward (southern route). The analysis assumed that all 2 proposed project ships would follow these routes. 3 This approach is consistent with the CCAR goal of reporting all GHG emissions 4 within California (CCAR 2007). 5 This document acknowledges that GHG emissions from ships visiting the proposed 6 Project berths would extend beyond state borders. However, for the purposes of this 7 NEPA/CEQA document, and after consulting CCAR (Camp pers. comm.), the Port 8 elected to address GHG emissions quantitatively within state borders and 9 qualitatively outside of state borders. Emissions outside of state borders are also 10 discussed qualitatively in the Cumulative Analysis (Section 4.2.2.10). This 11 methodology is also consistent with other types of air quality analyses, which address 12 emissions within the area of which the regulating agency has control. For example, while the document discloses that criteria pollutants are emitted from ships outside 13 state boundaries and that these pollutants contribute to worldwide pollution rates, the 14 15 scope of analysis is limited to the South Coast Air Basin to be consistent with 16 thresholds established by the SCAQMD. 17 In the case of electricity consumption, all GHG emissions were calculated regardless 18 of whether they are generated by in-state or out-of-state power plants because the 19 consumption of electricity would occur within California borders. This approach is 20 consistent with CCAR guidance. Electricity usage by the Waterfront Red Car Line 21 was calculated only for vehicle operations in the proposed project area, defined as 22 Swinford Street (Cruise Ship Terminal) southward. Electricity usage was not 23 calculated for potential Waterfront Red Car Line services that are not components of 24 the proposed Project and that might extend outside of the proposed project area. 25 This overall approach for assessing the impacts of GHG emissions is consistent with 26 the CCAR goal of reporting all GHG emissions within the state of California and 27 emissions for electricity used within the state even if generated outside the state 28 boundaries. (CCAR 2007.) 29 Mitigation to address GHG emissions is included in this study as mitigation 30 measures. Like CAAP measures, GHG mitigation measures would be incorporated 31 into proposed project leases as enforceable lease measures. Mitigation measures were developed using AB-32 Guidelines (Section 3.2.3.2.10) and the May 2008 32 33 Memo from the California State Attorney General's Office (Section 3.2.3.2.15).

34 3.2.4.1.13 CEQA Impact Determination

35Section 15125 of the CEQA Guidelines requires EIRs to include a description of the36physical environmental conditions in the proposed project vicinity that exist at the37time of the NOP. These environmental conditions would normally constitute the38baseline physical conditions by which the CEQA lead agency determines whether an39impact is significant. For purposes of this draft EIS/EIR, the CEQA baseline for

2

determining the significance of potential impacts of the proposed Project and alternatives is 2006.

The CEQA baseline for the proposed Project and alternatives includes cruise vessels, vessels calling at Berth 87, Crawley and Millennium tugboats, Catalina Express ferries, commercial fishing vessels, crew boats, excursion vessels, government vessels, terminal equipment, delivery trucks, and motor vehicles associated with passenger and worker transport.

8 The CEQA baseline represents the setting at a fixed point in time (2006) and differs 9 from the No-Project Alternative (Alternative 6—discussed in Section 2.5.1.6) in that 10 the No-Project Alternative addresses what is likely to happen at the site over time, 11 starting from the existing conditions. The No-Project Alternative allows for growth 12 at the proposed project site that would occur without additional approvals.

13 **3.2.4.1.14** NEPA Impact Determination

- 14The evaluation of significance under NEPA typically is defined by comparing the15proposed Project and alternatives to the NEPA baseline, which discusses the16construction of site improvements and operations that could occur without federal17action and without permits from the USACE.
- 18 The NEPA baseline for this proposed Project is the No-Federal-Action Alternative 19 (Alternative 5), which would allow construction and operation of upland elements 20 without any improvements within the Los Angeles Harbor waters. Therefore, the 21 NEPA baseline does not include any dredging or filling of the North Harbor, Downtown Harbor, or 7th Street Harbor; berth development in the Outer Harbor; or 22 23 any other wharf construction or upgrades that would require permits from the 24 USACE under Section 10 of the RHA, Section 404 of the CWA, or-for any 25 transportation of dredged material for ocean dumping—Section 103 of the MPRSA. 26 It also does not include terminal development in the Outer Harbor, which would 27 directly depend on in-water activities requiring a Corps permit. Similar to the CEQA 28 No-Project Alternative (Alternative 6), the NEPA No-Federal-Action Alternative 29 (Alternative 5) allows for growth at the proposed project site that would occur 30 without additional federal approvals.
- 31 The peak daily construction emissions associated with the NEPA baseline, which 32 includes emissions associated with the landside construction equipment, construction 33 truck trips, and workers vehicle trips, are presented in Table 3.2-10. The average 34 daily and peak daily operational emissions associated with the NEPA baseline are 35 presented in Tables 3.2-11 and 3.2-12, respectively. The construction and operational emissions include the same mitigation measures that are described for 36 37 Alternative 5. For this reason, the NEPA baseline operational emissions are in some 38 cases lower than the CEQA baseline emissions discussed in Section 3.2.4.1.14.
- 39The average daily emissions in Table 3.2-11 represent the annual emissions divided40by 365 days per year. Average daily emissions are a good indicator of terminal

1 operations over the long term since terminal operations can vary substantially from 2 day to day depending on ship arrivals. The average daily emissions are provided for 3 informational purposes only and are not considered in the significance determination. 4 The peak daily emissions in Table 3.2-12 are compared to future project peak daily 5 emissions to determine NEPA significance for the proposed Project and alternatives 6 with the same corresponding milestone calendar year. Peak daily emissions represent 7 theoretical upper-bound estimates of activity levels at the proposed project site. 8 Therefore, in contrast to average daily emissions, peak daily emissions would occur 9 infrequently and are based upon a more theoretical set of conservative assumptions.

10	Table 3.2-10.	Peak Daily	Construction	Emissions-	-NEPA Baseline
----	---------------	------------	--------------	------------	----------------

		Daily Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5		
Project Year 2009	49	332	971	2	65	22		
Project Year 2010	315	2,173	6,023	10	305	127		
Project Year 2011	300	2,057	5,709	10	295	122		
Project Year 2012	164	1,107	3,044	5	158	69		
Project Year 2013	82	542	1,447	2	106	43		
Project Year 2014	62	396	1,038	1	37	24		
Notes:	·	•				•		

NEPA baseline emissions include as project elements the same mitigation measures identified for Alternative 5.

Emissions assume maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

11

12 **Table 3.2-11.** Average Daily Operational Emissions—NEPA Baseline

		Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Cruise vessels	184	383	4,541	3,139	432	346		
Harbor craft	53	533	1,639	1	62	57		
Motor vehicles	126	1,013	166	1	166	33		
Terminal equipment	0.1	0.4	1	0.01	0.1	0.1		
Total—Project Year 2011	363	1,929	6,348	3,141	660	436		

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2015	·				·		
Cruise vessels	118	245	2,714	486	148	118	
Harbor craft	44	617	1,191	1	50	40	
Motor vehicles	157	1,745	357	3	553	112	
Terminal equipment	0.1	0.3	1	0.0	0.03	0.03	
Total—Project Year 2015	319	2,608	4,263	490	750	276	
Project Year 2022							
Cruise vessels	118	245	2,693	486	148	118	
Harbor craft	40	770	1,008	1	42	39	
Motor vehicles	127	1,320	235	4	577	11:	
Terminal equipment	0.10	0.3	0.4	0.0	0.01	0.0	
Total—Project Year 2022	285	2,336	3,937	491	766	272	
Project Year 2037							
Cruise vessels	118	245	2,676	486	148	118	
Harbor craft	40	770	1,008	1	42	3	
Motor vehicles	71	749	119	4	607	12	
Terminal equipment	0.0	0.3	0.1	0.0	0.0	0.0	
Total—Project Year 2037	229	1,765	3,803	491	796	27	

Notes:

NEPA baseline emissions include as project elements the same mitigation measures identified for Alternative 5.

Emissions represent annual emissions divided by 365 days per year of operation.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

Motor vehicles include passenger cars, trucks, busses, and shuttles.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

1

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Cruise vessels	929	1,938	24,621	36,087	3,598	2,879
Harbor craft	53	533	1,639	1	62	5
Motor vehicles	126	1,013	166	1	166	3.
Terminal equipment	0.2	1	3	0.0	0.1	0.
Total—Project Year 2011	1,108	3,485	26,429	36,088	3,826	2,969
Project Year 2015						
Cruise vessels	677	1,413	17,514	20,006	2,151	1,72
Harbor craft	44	617	1,191	1	50	4
Motor vehicles	157	1,745	357	3	553	11
Terminal equipment	0.2	1	2	0.0	0.1	0.
Total—Project Year 2015	879	3,776	19,064	20,010	2,754	1,87
Project Year 2022	·			·	·	
Cruise vessels	677	1,413	17,514	20,006	2,151	1,72
Harbor craft	40	770	1,008	1	42	3
Motor vehicles	127	1,320	235	4	577	11
Terminal equipment	0.10	1	1	0.0	0.03	0.0
Total—Project Year 2022	844	3,504	18,758	20,011	2,770	1,87
Project Year 2037						
Cruise vessels	677	1,413	17,514	20,006	2,151	1,72
Harbor craft	40	770	1,008	1	42	3
Motor vehicles	71	749	119	4	607	12
Terminal equipment	0.1	1	0.2	0.0	0.01	0.0
Total—Project Year 2037	788	2,933	18,641	20,011	2,800	1,88

1 Table 3.2-12. Peak Daily Operational Emissions—NEPA Baseline

Notes:

NEPA baseline emissions include as project elements the same mitigation measures identified for Alternative 5.

Emissions assume maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

Motor vehicles include passenger cars, trucks, busses, and shuttles.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

1

3

4 5

6

7

8

16

17

18

19

20

21

22

23

24

25

26

27

2 **3.2.4.2** Thresholds of Significance

The following thresholds were used in this study to determine the significance of the air quality impacts of the proposed Project and alternatives, both from a CEQA and NEPA perspective. The thresholds were primarily based on standards established by the City of Los Angeles in the *L.A. CEQA Thresholds Guide* (City of Los Angeles 2006), except for AQ-9 (Greenhouse Gas Emissions), which is separately defined and evaluated.

9 **3.2.4.2.1** Construction Thresholds

10The L.A. CEQA Thresholds Guide (City of Los Angeles 2006) references the11SCAQMD CEQA Air Quality Handbook (SCAQMD 1993) and EPA AP-42 for12calculating and determining the significance of construction emissions. Each lead13city department has the responsibility to determine the appropriate standards. The14following factors are to be used in a case-by-case evaluation of impact significance15for a proposed Project and its alternatives:

- combustion emissions from construction equipment;
 - type, number of pieces, and usage for each type of construction equipment;
 - estimated fuel usage and type of fuel (diesel, gasoline, natural gas) for each type of equipment;
 - emission factors for each type of equipment;
- fugitive dust;
 - for grading, excavation, and hauling:
 - □ amount of soil to be disturbed on site or moved off site;
 - emission factors for disturbed soil;
 - □ duration of grading, excavation, and hauling activities; and
 - □ type and number of pieces of equipment to be used;
- other mobile source emissions;

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

- number and average length of construction worker trips to the proposed project site, per day; and
- duration of construction activities.

For the purposes of this study, the air quality thresholds of significance for construction activities are based on emissions and concentration thresholds established by the SCAQMD (2007). The following factors are used to determine significance for construction-related air emissions.

AQ-1: A project would have a significant impact if its construction-related emissions would exceed any of the SCAQMD thresholds of significance in Table 3.2-13.

Table 3.2-13. SCAQMD Thresholds for Construction Emissions

Air Pollutant	Emission Threshold (pounds/day)
Volatile organic compounds (VOCs)	75
Carbon monoxide (CO)	550
Nitrogen oxides (NO _X)	100
Sulfur oxides (SO _X)	150
Particulates (PM10)	150
Particulates (PM2.5)	55
Lead	3

AQ-2: A project would have a significant impact if its construction would result in offsite ambient air pollutant concentrations that exceed the SCAQMD thresholds of significance in Table $3.2-14.^4$ However, to evaluate project impacts to ambient NO₂ levels, the analysis in this draft EIS/EIR replaced the use of the current SCAQMD NO₂ thresholds with the revised and more stringent 1-hour CAAQS of 338 µg/m³.

Table 3.2-14. SCAQMD Thresholds for Ambient Air Quality Concentrations

 Associated with Project Construction

Air Pollutant	Ambient Concentration Threshold
Nitrogen dioxide (NO ₂)	

⁴ These ambient concentration thresholds target those pollutants the SCAQMD has determined are most likely to cause or contribute to an exceedance of the NAAQS or CAAQS. Although the thresholds represent the levels at which the SCAQMD considers the impacts to be significant, the thresholds are not necessarily the same as the NAAQS or CAAQS.

	Air Pollutant	Ambient Concentration Threshold			
	1-hour average	0.18 ppm (338 µg/m ³)			
	annual average	0.03 ppm			
	Particulates (PM10 or PM2.5)				
	24-hour average	10.4 µg/m ³			
	Sulfate				
	24-hour average	1.0 µg/m ³			
	Carbon monoxide (CO)				
	1-hour average	20 ppm (23,000 μg/m ³)			
	8-hour average	9.0 ppm (10,000 μg/m ³)			
	Notes:				
	The NO ₂ and CO thresholds are absolute thresholds; the maximum predicted impact from construction activities is added to the background concentration for the project vicinity and co to the threshold. The PM10 and PM2.5 threshold is an incremental threshold; the maximum predicted impact is construction activities (without adding the background concentration) is compared to the three				
	The SCAQMD has also established a threshold for sulfates, but it is currently not requiring quantitative comparison to these thresholds (SCAQMD 2007). Because construction emissions vary from day-to-day and move from location-to-location course of a year, SCAQMD does not currently require an analysis of annual PM10 or NO ₂ concentrations from construction activities (Port of Los Angeles 2006c). Therefore, this st analyzed 24-hour PM10 and 1-hour NO ₂ concentrations.				
	Source: SCAQMD 2008.				
	course of the construction phase, it is Harbor and 7^{th} Street Harbor would the calendar year 2010 (See Table 3. of harbor activity in 2010, the year 2 NO _X , as well as VOC and CO. Then	construction would occur in 2010. During the s expected that the construction of both Downtown use the same equipment at different months during 2-18 below). With the subtraction of one peak day 011 would be the peak daily construction period for refore, 2011 is considered to be the year with the as compared with the other scenario years.			
3.2.4.2.2	Operation Thresholds				
	operational air quality impacts that	provides specific significance thresholds for also are based on SCAQMD standards. The nine significance for operations-related air			

in Table 3.2-15. For determining CEQA significance in this draft EIS/EIR, these thresholds are compared to the net change in emissions of the proposed Project and alternatives relative to CEQA baseline (2006) conditions. For determining NEPA significance, these thresholds are compared to the net change in emissions of the proposed Project and alternatives relative to NEPA baseline emissions.

Table 3.2-15. SCAQMD Thresholds for Operational Emissions

Air Pollutant	Emission Threshold (pounds/day)
Volatile organic compounds (VOCs)	55
Carbon monoxide (CO)	550
Nitrogen oxides (NO _X)	55
Sulfur oxides (SO _X)	150
Particulates (PM10)	150
Particulates (PM2.5)	55
Lead	3
Source: SCAQMD 2008	

7

14

15

1

2

3

4

5

6

8 AQ-4: A project would have a significant impact if its operations would result in 9 offsite ambient air pollutant concentrations that would exceed any of the SCAQMD 10 thresholds of significance in Table 3.2-16.⁵ However, to evaluate project impacts to 11 ambient NO₂ levels, the analysis replaced the use of the current SCAQMD NO₂ 12 thresholds with the more stringent revised 1-hour and annual CAAQSs of 338 and 13 56 μ g/m³, respectively.

Table 3.2-16. SCAQMD Thresholds for Ambient Air Quality Concentrations

 Associated with Project Operations

Air Pollutant	Ambient Concentration Threshold
Nitrogen dioxide (NO ₂)	
1-hour average	0.18 ppm (338 µg/m ³)
annual average	0.03 ppm (56 μg/m ³)
Particulates	
24-hour average (PM10 and PM2.5)	2.5 μg/m ³
annual average (PM10)	1.0 µg/m ³

⁵ These ambient concentration thresholds target those pollutants the SCAQMD has determined are most likely to cause or contribute to an exceedance of the NAAQS or CAAQS. Although the thresholds represent the levels at which the SCAQMD considers the impacts to be significant, the thresholds are not necessarily the same as the NAAQS or CAAQS.

Air Pollutant	Ambient Concentration Threshold
Carbon monoxide (CO)	
1-hour average	20 ppm (23,000 µg/m ³)
8-hour average	9.0 ppm (10,000 μg/m ³)
Notes:	
	esholds; the maximum predicted impact from project ntration for the project vicinity and compared to the
concentration relative to the CEQA baseline	hold. For CEQA significance, the maximum increase in is compared to the threshold. For NEPA significance, tive to the NEPA baseline is compared to the threshold.
Source: SCAQMD 2008.	
vithin 0.25 mile of a sensitive receptor	
the project would cause or contril or 8-hour CO standards of 20 or 9	bute to an exceedance of the California 1-hour 9.0 ppm, respectively, or
	e project would be equal to or greater than CO standard or 0.45 ppm for the 8-hour CO
AQ-6: A project would have a signifold of at the nearest sensitive receptor.	icant impact if it would create an objectionable
	icant impact if it would expose receptors to nants. Impacts would be significant if:
the maximum incremental cancer than or equal to 10 in 1 million, or	risk for residential receptors would be greater
 the noncancer hazard index is gree 3.0 (facilitywide). 	eater than or equal to 1.0 (project increment) or
AQ-8: A project would have a signifing implementation of an applicable AQM	icant impact if it would conflict with or obstruct MP.
state, or federal regulations to establis project-specific impacts of GHG emis has not established such a threshold.	here is little guidance and no local, regional, sh a threshold of significance to determine the ssions on global warming. In addition, the City Therefore, LAHD, for purposes of the proposed following as its CEQA threshold of significance:

1 2	 A project would result in a significant CEQA impact if CO₂e emissions would exceed CEQA baseline emissions.
3 4	In absence of further guidance, this threshold is thought to be the most conservative, as any increase over baseline is designated as significant.
5	NEPA Threshold. The USACE has established the following position under NEPA.
6	There are no science-based GHG significance thresholds, nor has the federal
7	government or the state adopted any by regulations. In the absence of an adopted or
8	science-based GHG standard, the USACE will not use the LAHD's proposed AQ-9
9	CEQA standard, propose a new GHG standard, or make a NEPA impact
10	determination for GHG emissions anticipated to result from the proposed Project or
11	any of the alternatives. Rather, in compliance with the CEQ and Corps NEPA
12	implementing regulations, the anticipated emissions relative to the NEPA baseline
13	will be disclosed for the proposed Project and each alternative without expressing a
14	judgment as to their significance.

15 **3.2.4.3** Impacts and Mitigation

16 **3.2.4.3.1 Proposed Project**

17Impact AQ-1: The proposed Project would result in18construction-related emissions that exceed an SCAQMD19threshold of significance in Table 3.2-13.

- 20 Construction of the proposed Project would result in the temporary generation of emissions of CO, ROG, NO_X, SO_X, PM10, and PM2.5. Emissions would originate 21 22 from mobile and stationary construction equipment exhaust, tugboat and small boat exhaust. delivery truck exhaust, employee vehicle exhaust, dust from clearing the 23 land, exposed soil eroded by wind, VOCs from architectural coatings, and asphalt 24 25 paving materials. Construction-related emissions would vary substantially depending 26 on the level of activity, length of the construction period, specific construction 27 operations, types of equipment, number of personnel, wind and precipitation 28 conditions, and soil moisture content.
- 29 Overall, a 54-month active construction period is anticipated, starting in the third 30 quarter of 2009 and concluding around the fourth quarter of 2014. (The construction schedule was estimated by the LAHD's construction management and engineering 31 32 teams. The actual construction schedule will not be known until the construction 33 contractors submit their workplan after the completion of the final EIS/EIR.) The total 34 amount of construction, the duration of construction, and the intensity of construction 35 activity could have a substantial effect on the amount and concentration of construction emissions and the resulting impacts occurring at any one time. As such, the emission 36 37 forecasts provided herein reflect a specific set of conservative assumptions based on the 38 expected construction scenario wherein a relatively large amount of construction is

1 2 3 4 5 6 7	occurring in a relatively intensive manner. Because of this conservative assumption, actual emissions could be less than those forecast. If construction is delayed or occurs over a longer time period, emissions could be reduced because of 1) a more modern and cleaner burning construction equipment fleet mix, and/or 2) a less-intensive buildout schedule (i.e., fewer daily emissions occurring over a longer time interval). The construction equipment mix and duration for each construction stage is detailed in the construction spreadsheets provided in the Appendix D1.
8	Table 3.2-17 presents a summary of the peak daily criteria pollutant emissions
9	associated with construction of the proposed Project without mitigation. This table
10	contains peak daily construction emissions for each project year, as well as CEQA
11	and NEPA significance determinations. Maximum emissions for each construction
12	phase were determined by totaling the daily emissions from those construction
13	activities that occur simultaneously in the proposed construction schedule
14	(Table 2-5). Detailed tables of emissions for each proposed project activity can be
15	found in Appendix D1. In addition, Appendix D6 contains data on emission levels
16	for each construction equipment type in each proposed project activity.

17 **Table 3.2-17.** Summary of Peak Daily Construction Emissions—Proposed Project without Mitigation

Peak Daily Construction Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
2009 Peak Daily Construction Emissions	423	1,666	5,411	4	797	323
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	49	332	971	2	65	22
NEPA Emissions (Proposed Project minus non-Federal emissions)	374	1,334	4,440	2	732	301
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2010 Peak Daily Construction Emissions	1,224	5,444	16,393	14	3,220	1,136
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127
NEPA Emissions (Proposed Project minus non-Federal emissions)	909	3,271	10,370	4	2,915	1,009
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2011 Peak Daily Construction Emissions	929	4,397	12,779	12	2,836	948
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122
NEPA Emissions (Proposed Project minus non-Federal emissions)	629	2,340	7,070	2	2,541	826

	Peak Daily Construction Emissions (lb/day)					
Project Year	VOC	CO	NO_X	SO_X	PM10	PM2.5
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2012 Peak Daily Construction Emissions	694	3,080	9,129	8	1,867	646
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69
NEPA Emissions (Proposed Project minus non-Federal emissions)	530	1,973	6,085	3	1,709	577
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2013 Peak Daily Construction Emissions	319	1,275	3,892	3	1,045	329
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	82	542	1,447	2	106	43
NEPA Emissions (Proposed Project minus non-Federal emissions)	237	733	2,445	1	939	286
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2014 Peak Daily Construction Emissions	267	1,018	3,166	3	373	170
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	62	396	1,038	1	37	24
NEPA Emissions (Proposed Project minus non-Federal emissions)	205	622	2,128	2	336	146
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes

Notes:

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction associated with the Federal project.. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

In a case where more than one possible combination of activities occurred during the course of a construction phase, total daily emissions were calculated for all possible combinations, and the combination producing the greatest emissions was reported in

2

Table 3.2-17. The emissions shown in the tables represent the construction activities that combine to produce the peak daily emissions for each construction phase.

3 CEQA Impact Determination

- Peak daily construction emissions associated with the proposed Project would exceed
 the daily construction emission thresholds for VOC, CO, NO_X, PM10, and PM2.5
 during the construction period from 2009 through 2014. The peak daily SO_X
 emissions would be less than significant in all construction years. Therefore,
 significant impacts under CEQA would occur for VOC, CO, NO_X, PM10, and
 PM2.5.
- 10 Mitigation Measures
- 11Mitigation measures for proposed project construction were derived, where feasible,12from the proposed NNI measures, PCAC-recommended measures, LAHD's13Construction Guidelines, and consultation with LAHD. Table 3.2-18 summarizes all14construction mitigation measures and regulatory requirements assumed in the15mitigated emission calculations.

Table 3.2-18. Regulations, Agreements, and Mitigation Measures Assumed in the Construction Emissions with Mitigation

Offroad Construction Equipment	Onroad Trucks	Tugboats	Fugitive Dust
Part 1. Regulations and Ag	greements Included in the M	itigated Emission Calcula	tions
Emission Standards for Nonroad Diesel Engines—Tier 1, 2, 3, and 4 standards gradually phased in over all years due to normal construction equipment fleet turnover. California Diesel Fuel Regulations—15 ppm sulfur starting September 1, 2006.	Emission Standards for Onroad Trucks—Tiered standards gradually phased in over all years due to normal truck fleet turnover. California Diesel Fuel Regulations—15 ppm sulfur starting September 1, 2006. Airborne Toxic Control Measure to Limit Diesel- Fueled Commercial Motor Vehicle Idling— Diesel trucks are subject to idling limits.	California Diesel Fuel Regulations—500 ppm sulfur starting January 1, 2006 and 15 ppm sulfur starting September 1, 2006.	SCAQMD Rule 403 Compliance— 75% reduction in fugitive dust due to watering three times per day.
Part 2. Mitigation Measur	es Included in the Mitigated	Emission Calculations	
MM AQ-2: Dredging Equipment Electrification. MM AQ-4: Fleet	MM AQ-3: Fleet Modernization for Onroad Trucks — This measure is more stringent than Emission Standards	MM AQ-1: Harbor Craft Engine Standards —Cleanest existing marine engine emission standards or	MM AQ-5: Additional Fugitive Dust Controls—90% reduction.

San Pedro Waterfront Project EIS/EIR

Offroad Construction Equipment	Onroad Trucks	Tugboats	Fugitive Dust	
Modernization for Construction Equipment—This measure is more stringent than Emission Standards for Nonroad Diesel Engines (above).	for Onroad Trucks (above).	EPA Tier 2 or Tier 3, where available.		
Part 3. Mitigation Measur	Part 3. Mitigation Measures Not Included in the Mitigated Emission Calculations ^a			
MM AQ-6: Best Management Practices.				
MM AQ-7: General Mitigation Measure.				
MM AQ-8: Special Precautions near Sensitive Sites.				
^a These mitigation measures were not included in the calculations because their effectiveness has not been established.				

1	
2	The following mitigation measures would reduce criteria pollutant emissions
3	associated with proposed project construction. These mitigation measures would be
4	implemented by the responsible parties identified in Section 3.2.4.5.
5	MM AQ-1. Harbor Craft Used During Construction.
6	All harbor craft used during the construction phase of the proposed Project shall,
7	at a minimum, be repowered to meet the cleanest existing marine engine
8	emission standards or EPA Tier 2. Additionally, where available, harbor craft
9	shall meet the proposed EPA Tier 3 (which are proposed to be phased-in
10	beginning 2009) or cleaner marine engine emission standards.
11	The above harbor craft measure shall be met unless one of the following
12	circumstances exists and the contractor is able to provide proof that any of these
13	circumstances exists:
14	• A piece of specialized equipment is unavailable in a controlled form within the
15	state of California, including through a leasing agreement;
16	• A contractor has applied for necessary incentive funds to put controls on a piece
17	of uncontrolled equipment planned for use on the proposed Project, but the
18	application process is not yet approved, or the application has been approved, but
19	funds are not yet available; or
20	• A contractor has ordered a control device for a piece of equipment planned for
21	use on the proposed Project, or the contractor has ordered a new piece of
22	controlled equipment to replace the uncontrolled equipment, but that order has
23	not been completed by the manufacturer or dealer. In addition, for this

1 2 3	exemption to apply, the contractor must attempt to lease controlled equipment to avoid using uncontrolled equipment, but no dealer within 200 miles of the proposed Project has the controlled equipment available for lease.
4	MM AQ-2. Dredging Equipment Electrification.
5	All dredging equipment shall be electric.
6	MM AQ-3. Fleet Modernization for Onroad Trucks.
7 8	1. Trucks hauling materials such as debris or fill shall be fully covered while operating off Port property.
9	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
10	3. Standards/Specifications:
11 12 13 14 15 16 17 18 19 20	 January 1, 2009 to December 31, 2011: All onroad heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with EPA 2004 onroad PM emission standards and be the cleanest available with respect to NO_x (0.10g/bhp-hr PM10 and 2.0 g/bhp-hr NO_x). In addition, all onroad trucks shall be outfitted with the BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
21 22 23 24 25 26 27 28	 <u>Post-January 2011:</u> All onroad heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with 2010 emission standards, where available. In addition, all onroad trucks shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
29 30 31	A copy of each unit's certified EPA rating, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment
32 33 34	The above standards/specifications shall be met unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:
35 36	 A piece of specialized equipment is unavailable in a controlled form within the state of California, including through a leasing agreement;
37 38 39 40	A contractor has applied for necessary incentive funds to put controls on a piece of uncontrolled equipment planned for use on the proposed Project, but the application process is not yet approved, or the application has been approved, but funds are not yet available; or

2 3 4 5 6 7	use or contro not be exemp avoid propo	ntractor has ordered a control device for a piece of equipment planned for n the proposed Project, or the contractor has ordered a new piece of olled equipment to replace the uncontrolled equipment, but that order has een completed by the manufacturer or dealer. In addition, for this option to apply, the contractor must attempt to lease controlled equipment to I using uncontrolled equipment, but no dealer within 200 miles of the osed Project has the controlled equipment available for lease.
8	MM	AQ-4. Fleet Modernization for Construction Equipment.
9 10 11	1.	Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.
12	2.	Idling shall be restricted to a maximum of 5 minutes when not in use.
13	3.	Tier Specifications:
14 15 16 17 18 19 20 21		 January 1, 2009, to December 31, 2011: All offroad diesel-powered construction equipment greater than 50 hp, except derrick barges and marine vessels, shall meet Tier 2 offroad emissions standards. In addition, all construction equipment shall be outfitted with the BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 2 or Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
22 23 24 25 26 27 28 29		 January 1, 2012, to December 31, 2014: All offroad diesel-powered construction equipment greater than 50 hp, except derrick barges and marine vessels, shall meet Tier 3 offroad emissions standards. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
30 31 32 33 34 35 36 37		 <u>Post-January 1, 2015:</u> All offroad diesel-powered construction equipment greater than 50 hp shall meet the Tier 4 emission standards, where available. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
38 39 40 41		A copy of each unit's certified tier specification, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment.

1 2 3	The above standards/specifications shall be met unless one of the following circumstances exists and the contractor is able to provide proof that any of these circumstances exists:
4	 A piece of specialized equipment is unavailable in a controlled form within the
5	state of California, including through a leasing agreement;
6	 A contractor has applied for necessary incentive funds to put controls on a piece
7	of uncontrolled equipment planned for use on the proposed Project, but the
8	application process is not yet approved, or the application has been approved, but
9	funds are not yet available; or
10	 A contractor has ordered a control device for a piece of equipment planned for
11	use on the proposed Project, or the contractor has ordered a new piece of
12	controlled equipment to replace the uncontrolled equipment, but that order has
13	not been completed by the manufacturer or dealer. In addition, for this
14	exemption to apply, the contractor must attempt to lease controlled equipment to
15	avoid using uncontrolled equipment, but no dealer within 200 miles of the
16	proposed Project has the controlled equipment available for lease.
17	MM AQ-5. Additional Fugitive Dust Controls.
18	The calculation of fugitive dust (PM10) from unmitigated proposed project earth-
19	moving activities assumes a 75% reduction from uncontrolled levels to simulate
20	rigorous watering of the site and use of other measures (listed below) to ensure
21	proposed project compliance with SCAQMD Rule 403.
22 23 24 25 26	The construction contractor shall further reduce fugitive dust emissions to 90% from uncontrolled levels. The construction contractor shall designate personnel to monitor the dust control program and to order increased watering or other dust control measures, as necessary, to ensure a 90% control level. Their duties shall include holiday and weekend periods when work may not be in progress.
27 28	The following measures, at minimum, must be part of the contractor Rule 403 dust control plan:
29	 Active grading sites shall be watered one additional time per day
30	beyond that required by Rule 403;
31	 Contractors shall apply approved nontoxic chemical soil stabilizers to
32	all inactive construction areas or replace groundcover in disturbed
33	areas;
34	 Construction contractors shall provide temporary wind fencing around
35	sites being graded or cleared;
36	 Trucks hauling dirt, sand, or gravel shall be covered or shall maintain
37	at least 2 feet of freeboard in accordance with Section 23114 of the
38	California Vehicle Code;

1 2 3	 Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads or wash off tires of vehicles and any equipment leaving the construction site;
4 5 6	The grading contractor shall suspend all soil disturbance activities when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction is delayed; and
7 8	 Trucks hauling materials such as debris or fill shall be fully covered while operating off LAHD property.
9	MM AQ-6. Best Management Practices.
10 11	The following types of measures are required on construction equipment (including onroad trucks):
12	1. Use diesel oxidation catalysts and catalyzed diesel particulate traps.
13	2. Maintain equipment according to manufacturers' specifications.
14 15	3. Restrict idling of construction equipment to a maximum of 5 minutes when not in use.
16	4. Install high-pressure fuel injectors on construction equipment vehicles.
17 18 19	LAHD shall implement a process by which to select additional BMPs to further reduce air emissions during construction. The LAHD shall determine the BMPs once the contractor identifies and secures a final equipment list.
20 21	Because the effectiveness of the above measure has not been established, it is not quantified in this study.
22	MM AQ-7. General Mitigation Measure.
23 24 25 26	For any of the above mitigation measures (MM AQ-1 through AQ-6), if a CARB-certified technology becomes available and is shown to be as good as or better in terms of emissions performance than the existing measure, the technology could replace the existing measure pending approval by the LAHD.
27 28	Because the effectiveness of the above measure has not been established, it is not quantified in this study.
29	MM AQ-8. Special Precautions near Sensitive Sites.
30 31 32 33	When construction activities are planned within 1,000 feet of sensitive receptors (defined as schools, playgrounds, day care centers, and hospitals), the construction contractor shall notify each of these sites in writing at least 30 days before construction activities begin.
34 35	Because the effectiveness of the above measure has not been established, it is not quantified in this study.

1	Residual Impacts
2	Table 3.2-19 presents a summary of the peak daily criteria pollutant emissions
3	associated with construction of the proposed Project after the application of
4	Mitigation Measures MM AQ-1 through MM AQ-5. This table contains peak daily
5	construction emissions for each project year, as well as CEQA and NEPA
6	significance determinations. Maximum emissions for each construction year were
7	determined by totaling the daily emissions from those construction activities that
8	occur simultaneously in the proposed construction schedule (Table 2-5). Detailed
9	tables of emissions for each proposed project activity can be found in Appendix D1.
10	In addition, data on emissions by equipment type and proposed project activity can
11	be found in Appendix D6.
12	During construction, Mitigation Measures MM AQ-1 through MM AQ-5 would
13	lower the peak daily construction emissions of all analyzed pollutants. However,
14	VOC, CO, NO _x , and PM2.5 emissions would remain significant under CEQA for all
15	construction years, and PM10 emissions would be significant in years $2009-13$. SO _x
16	would remain less than significant for all construction years.
17	Mitigation Measures MM AQ-6 through MM AQ-8, which were not included in the
18	mitigated emissions calculations, could further reduce construction emissions,
19	depending on their effectiveness. However, emissions of VOC, NO _X , CO, PM10,
20	and PM2.5 would likely remain significant.

	Peak Daily Construction Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5	
2009 Peak Daily Construction Emissions	256	1,404	3,538	4	194	119	
Thresholds	75	550	100	150	150	5:	
CEQA Significant?	Yes	Yes	NO_X SO_X $PM10$ 404 $3,538$ 4 194 550 100 150 150 Yes Yes No Yes 332 971 2 65 072 $2,567$ 2 129 Yes Yes No No 343 $10,142$ 15 494 550 100 150 150 Yes Yes No Yes 73 $6,023$ 10 305 570 $4,119$ 5 189 Yes Yes No Yes	Ye			
Non-Federal Construction Emissions	49	332	971	2	65	2	
NEPA Emissions (Proposed Project minus non-Federal emissions)	207	1,072	2,567	2	129	9	
NEPA Significant?	Yes	Yes	Yes	No	No	Ye	
2010 Peak Daily Construction Emissions	618	3,843	10,142	15	494	26	
Thresholds	75	550	100	150	150	5	
CEQA Significant?	Yes	Yes	Yes	No	PM10 194 150 Yes 65 129 No 494 150 Yes 305 189 Yes	Ye	
Non-Federal Construction Emissions	315	2,173	6,023	10	305	12	
NEPA Emissions (Proposed Project minus non-Federal emissions)	303	1,670	4,119	5	189	14	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye	
2011 Peak Daily Construction Emissions	415	2,782	7.614	12	374	17	

21 **Table 3.2-19.** Summary of Peak Daily Construction Emissions—Proposed Project with Mitigation

	Peak Daily Construction Emissions (lb/day)					
Project Year	VOC	CO	NO_X	SO_X	PM10	PM2.5
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122
NEPA Emissions (Proposed Project minus non-Federal emissions)	115	725	1,905	2	79	52
NEPA Significant?	Yes	Yes	Yes	No	No	No
2012 Peak Daily Construction Emissions	346	2,127	5,706	8	276	143
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69
NEPA Emissions (Proposed Project minus non-Federal emissions)	182	1,020	2,662	3	118	74
NEPA Significant?	Yes	Yes	Yes	No	No	Yes
2013 Peak Daily Construction Emissions	191	1,057	2,708	3	164	87
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	82	542	1,447	2	106	43
NEPA Emissions (Proposed Project minus non-Federal emissions)	109	515	1,261	1	58	44
NEPA Significant?	Yes	No	Yes	No	No	No
2014 Peak Daily Construction Emissions	170	911	2,299	3	94	69
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	No	Yes
Non-Federal Construction Emissions	62	396	1,038	1	37	24
NEPA Emissions (Proposed Project minus non-Federal emissions)	108	515	1,261	2	57	45
NEPA Significant?	Yes	No	Yes	No	No	No

Notes:

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions associated with the Federal project. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for

			Peak Daily Construction Emissions (lb/day)							
	Project Year		VOC	СО	NO_X	SO_X	PM10	PM2.5		
1	Alternative 5.									
1										
2		NEPA Impact Determ	nination							
3		The NEPA incremental	construct	tion emissi	ions for the	proposed	l Project	are		
4		calculated by subtracting the NEPA baseline construction emissions from the proposed project construction emissions. The resulting NEPA increment would								
5 6		exceed the emission thresholds for VOC, CO, NO _x , PM10, and PM2.5 during one or								
7		more construction years. Therefore, significant impacts under NEPA would occur								
8 9		for proposed project construction. The NEPA increment for SO_X would be less than significant.								
10		Mitigation Measures								
11		Implement MM AQ-1 through MM AQ-8.								
12		Residual Impacts								
13		Table 3.2-19 above presents the peak daily criteria pollutant emissions associated								
14 15		with construction of the proposed Project after the application of Mitigation Measures MM AQ-1 through MM AQ-5.								
16		During construction, Mitigation Measures MM AQ-1 through MM AQ-5 would								
17		lower the peak daily construction emissions of all analyzed pollutants. However,								
18 19		emissions would remain significant under NEPA for VOC, CO, NO _x , PM10, and PM2.5. Emissions of SO_x would remain less than significant in all analyzed years.								
20		Mitigation Measures M								
21 22		mitigated emissions calculations, could further reduce construction emissions,								
22		depending on their effectiveness. However, emissions of VOC, CO, NO_X , PM10, and PM2.5 would likely remain significant.								
24		Impact AQ-2: Pro	posed	project	t constru	ction	would	result in		
25		offsite ambient air pollutant concentrations that exceed a								
26		SCAQMD thresho	old of s	significa	ance in T	able 3	.2-14.			
27		Dispersion modeling of								
28 29		impact of the proposed I the dispersion modeling								
29 30		report is included in App			1 11010, UIC C	ompiete	uspersio	n mouening		
31		Table 3.2-20 presents the								
32		PM10, and PM2.5 from								
33		maximum offsite 1-hour	and 8-ho	our CO co	ncentrations	s would r	iot excee	a SCAQMD		

thresholds. The maximum offsite 24-hour increment increase in PM10 and PM2.5 concentrations as well as the 1-hour NO2 concentration would exceed the SCAQMD significance thresholds for both CEQA and NEPA.

4 Table 3.2-20. Maximum Offsite Ambient Concentrations—Proposed Project Construction without 5 Mitigation

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without Background) (µg/m ³)	CEQA Impact (µg/m³)	NEPA Impact (µg/m³)	SCAQMD Threshold (µg/m ³)
NO ₂	1 hour	263	2,680	2,943	2,943	338
СО	1 hour	4,809	10,797	15,606	15,606	23,000
	8 hours	4,008	2,083	6,091	6,091	10,000
PM10	24 hours	_	198.8	198.8	163.3	10.4
PM2.5	24 hours	-	92.0	92.0	61.7	10.4

Notes:

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO₂ and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO2 and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

NO₂ concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

6

and

1	Residual Impacts
2	Table 3.2-21 presents the maximum offsite ground-level concentrations of NO ₂ , CO,
3	PM10, and PM2.5 from all construction phases after mitigation. With
4	implementation of mitigation measures, offsite ambient concentrations from
5	construction activities would be temporary over the life of construction activities but
6	significant for NO ₂ , PM10, and PM2.5; however, they would be less than significant
7	for CO.

8	Table 3.2-21.	Maximum Offsite	Ambient Concentratio	ons—Proposed Project	ct Construction with Mitigation

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without background) (µg/m ³)	CEQA Impact (µg/m ³)	NEPA Impact (µg/m ³)	SCAQMD Threshold ^a $(\mu g/m^3)$
NO ₂	1 hour	263	2,585	2,848	2,848	338
СО	1 hour	4,809	10,231	15,040	15,040	23,000
	8 hours	4,008	1,994	6,002	6,002	10,000
PM10	24 hours	-	58.0	58.0	36.7	10.4
PM2.5	24 hours	-	48.3	48.3	30.4	10.4

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO₂ and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

11	Maximum offsite ambient pollutant concentrations associated with construction
12	would be significant for NO_2 (1-hour average) as well as for 24-hour PM10 and
13	PM2.5. Therefore, significant impacts under NEPA would occur.

1	Mitigation Measures
2	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
3	Residual Impacts
4 5 6 7 8 9	Table 3.2-21 above presents the maximum offsite ground-level concentrations of NO ₂ , CO, PM10, and PM2.5 from all construction phases after mitigation. With implementation of these mitigation measures, offsite ambient concentrations from construction activities would be temporary over the life of construction activities but significant for NO ₂ , PM10, and PM2.5; however, they would be less than significant for CO.
10	Impact AQ-3: The proposed Project would result in
11	operational emissions that exceed 10 tons per year of VOCs
12	or an SCAQMD threshold of significance in Table 3.2-15.
13 14	Table 3.2-22 presents the unmitigated average daily criteria pollutant emissions associated with operation of the proposed Project. The average daily emissions
15	represent the annual emissions divided by 365 days per year. Average daily emissions
16	are a good indicator of terminal operations over the long term since terminal operations
17 18	can vary substantially from day to day depending on ship arrivals. Emissions were estimated for four proposed project study years: 2011, 2015, 2022, and 2037.
19	Comparisons of average daily emissions to the CEQA baseline (2006) and the NEPA
20	baseline emissions are presented for informational purposes only; CEQA and NEPA
21 22	significance are determined by subtracting CEQA and NEPA baselines from peak daily emissions (Table 3.2-23) and comparing to CEQA and NEPA thresholds.
23 24	The operational emissions associated with the proposed Project assume the following activity levels:
25 26	Annual cruise ship calls are estimated to be 269 in 2011, 275 in 2015, 282 in 2022, and 287 in 2037.
27 28	Three Inner Harbor berths would be available in 2011; two Inner Harbor berths and two Outer Harbor berths would be available in 2015 and thereafter.
29	 Harbor vessel trips, other than cruise ship vessel trips, would not change from
30	2006 operations as a result of the proposed Project. However, the Crowley and
31 32	Millennium tugboats would be relocated to the North Harbor, thereby reducing their transit distance to Angels Gate.
33	• Without mitigation, the VSRP compliance rate for cruise ships was assumed to
34 35	be 80% for all project years (to 20 nm). This represents the actual cruise vessel compliance rate in 2006 (Port of Los Angeles 2008).
36	The proposed Project would generate 488, 744, 852, and 1,118 peak daily truck
37	trips to the cruise terminals, Ports O'Call, and other small proposed project sites
38	in 2011, 2015, 2022, and 2037, respectively.

1 **Table 3.2-22.** Average Daily Operational Emissions without Mitigation—Proposed Project

		Avera	age Daily En	issions (lb/d	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	144	300	3,670	3,195	411	329
Vessel hoteling	78	162	1,978	1,975	231	185
Harbor craft	53	480	1,719	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	1	12	11	0.01	0.5	0.4
Total—Project Year 2011	401	1,967	7,544	5,172	871	604
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Proposed Project minus CEQA baseline	-51	-1,156	1,107	1,185	22	93
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Ye
<u>NEPA Impacts</u>		·				
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Proposed Project minus NEPA baseline	38	37	1,195	2,031	211	168
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Ye
Project Year 2015						
Vessel transit and maneuvering	143	299	3,644	3,179	410	328
Vessel hoteling	79	166	2,014	2,019	236	189
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	193	1,974	405	4	627	127
Terminal equipment	0.8	12	8	0.01	0.4	0.3
Total—Project Year 2015	462	2,990	7,415	5,203	1,325	692
CEQA Impacts	· · ·	·				
CEQA baseline emissions	452	3,123	6,437	3,987	849	51
Proposed Project minus CEQA baseline	10	-133	978	1,216	476	18
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Ye

		Aver	age Daily En	nissions (lb/d	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
<u>NEPA Impacts</u>						
NEPA baseline emissions	319	2,608	4,263	490	750	276
Proposed Project minus NEPA baseline	143	382	3,152	4,713	575	416
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
Project Year 2022						
Vessel transit and maneuvering	147	307	3,713	3,260	420	336
Vessel hoteling	82	170	2,052	2,071	242	194
Harbor craft	45	759	1,065	1	49	45
Motor vehicles	161	1,508	269	4	660	13
Terminal equipment	0.5	12	5	0.01	0.2	0.2
Total—Project Year 2022	435	2,755	7,104	5,335	1,372	700
CEQA Impacts	· · ·		·			
CEQA baseline emissions	452	3,123	6,437	3,987	849	51
Proposed Project minus CEQA baseline	-17	-368	667	1,348	523	195
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Ye
NEPA Impacts	· · ·		·			
NEPA baseline emissions	285	2,335	3,937	491	766	27
Proposed Project minus NEPA baseline	150	420	3,168	4,844	606	434
Thresholds	55	550	55	150	150	5:
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2037	· ·					
Vessel transit and maneuvering	149	312	3,757	3,293	424	339
Vessel hoteling	83	173	2,076	2,107	247	19
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	99	920	146	5	747	14′
Terminal equipment	0.3	12	3	0.01	0.1	0.
Total—Project Year 2037	377	2,176	7,047	5,406	1,467	72
CEQA Impacts	<u> </u>					
CEQA baseline emissions	452	3,123	6,437	3,987	849	51

	Average Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Proposed Project minus CEQA baseline	-75	-947	610	1,419	618	218
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	229	1,765	3,803	491	796	277
Proposed Project minus NEPA baseline	148	411	3,244	4,915	671	452
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes

Emissions represent annual emissions divided by 365 days per year of operation.

Ship and motor vehicle emissions include transport within the SCAB.

Motor vehicles include passenger cars, trucks, busses, and shuttles.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

For the NEPA significance determination in this table, NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

8

Table 3.2-23 summarizes peak daily unmitigated emissions estimated for the proposed project operations in 2011, 2015, 2022, and 2037. Peak daily emissions represent theoretical upper-bound estimates of activity levels at the terminal. Therefore, in contrast to average daily emissions, peak daily emissions would occur infrequently and would be based upon a lesser known and therefore more theoretical set of conservative assumptions. Comparisons to the CEQA baseline (2006) and the NEPA baseline emissions are presented to determine CEQA and NEPA significance, respectively.

9 **Table 3.2-23.** Peak Daily Operational Emissions without Mitigation—Proposed Project

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101	
Vessel hoteling	304	633	8,022	12,937	1,220	976	

		Pea	k Daily Emi	ssions (lb/da	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Harbor craft	53	480	1,719	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	2	22	19	0.02	0.9	0.8
Total—Project Year 2011	1,175	3,590	28,267	38,473	4,075	3,167
CEQA Impacts			·			
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Proposed Project minus CEQA baseline	70	-913	4,332	6,384	513	485
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969
Proposed Project minus NEPA baseline	67	105	1,838	2,385	249	199
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
Project Year 2015			·			
Vessel transit and maneuvering	950	2,096	25,257	35,062	3,612	2,890
Vessel hoteling	431	897	11,374	18,177	1,723	1,378
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	193	1,974	405	4	627	127
Terminal equipment	1.4	22	15	0.02	0.7	0.6
Total—Project Year 2015	1,621	5,528	38,395	53,245	6,015	4,444
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Proposed Project minus CEQA baseline	516	1,025	14,460	21,157	2,453	1,762
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879
Proposed Project minus NEPA baseline	743	1,753	19,331	33,235	3,261	2,565
Thresholds	55	550	55	150	150	55

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
Project Year 2022	<u> </u>		·			
Vessel transit and maneuvering	950	2,096	25,257	35,062	3,612	2,890
Vessel hoteling	431	897	11,374	18,177	1,723	1,378
Harbor craft	45	759	1,065	1	49	45
Motor vehicles	161	1,508	269	4	660	131
Terminal equipment	0.8	22	9	0.02	0.3	0.3
Total—Project Year 2022	1,588	5,282	37,974	53,245	6,044	4,444
CEQA Impacts	· · ·	·	·			
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Proposed Project minus CEQA baseline	483	779	14,039	21,157	2,482	1,762
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
NEPA Impacts	· · ·	·	·			
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875
Proposed Project minus NEPA baseline	744	1,779	19,216	33,234	3,274	2,569
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
Project Year 2037						
Vessel transit and maneuvering	950	2,096	25,257	35,062	3,612	2,890
Vessel hoteling	431	897	11,374	18,177	1,723	1,378
Harbor craft	45	759	1,065	1	49	45
Motor vehicles	99	920	146	5	747	147
Terminal equipment	0.5	22	5	0.02	0.1	0.1
Total—Project Year 2037	1,525	4,694	37,847	53,246	6,131	4,460
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Proposed Project minus CEQA baseline	420	191	13,912	21,158	2,569	1,778
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880
Proposed Project minus NEPA baseline	737	1,762	19,206	33,235	3,331	2,580
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Ship and motor vehicle emissions include transport within the SCAB.

Motor vehicles include passenger cars, trucks, busses, and shuttles.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

For the NEPA significance determination in this table, NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5. Most NEPA baseline emissions are lower than CEQA baseline emissions because NEPA baseline includes mitigation measures.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1	
2 3 4	The peak daily emission estimates for proposed project operations include the following assumptions, which were chosen to identify a maximum theoretical activity scenario:
5 6 7 8 9	Ships at Berth: The peak-day scenario assumes that the largest combination of ships in the proposed project's fleet that could be simultaneously accommodated at the wharf would call at each terminal. The peak scenario also assumes that each available berth would be occupied. The time each vessel is assumed to hotel equals 12 hours. Without mitigation, the peak emissions also assume that each ship uses residual fuel with a worst-case sulfur content of 4.5%.
1	• Cruise Ships: 80% of cruise ships are assumed to comply with VSRP to 20 nm.
12 13 14 15 16 17 18 19 20 21	Motor Vehicles: The number of vehicle trips generated by the proposed Project was provided by the traffic study for each analysis year. The traffic study divided the trip generation rates for the proposed Project into two scenarios, weekday trips and weekend trips, because most cruise ships arrive or depart on Friday, Saturday, Sunday, or Monday (the cruise terminals, Ports O'Call, and other businesses are open both weekdays and weekends). Given the trip generation analysis, the peak number of vehicles trips and delivery truck trips would occur on weekdays with the highest traffic volumes (Friday or Monday). The peak day represents the highest weekday trip generation rates during the peak cruise season.

1 2 3 4	Terminal Equipment: Terminal equipment data were provided by LAHD. It was assumed that approximately 38 pieces of terminal equipment (11 diesel forklifts, 25 propane forklifts, and two fuel trucks) would operate during the peak period (i.e., when cruise ships are hoteling at the port).
5	Due to the lengthy construction period, from 2009 to 2014, operational activities
6	would overlap with construction activities. SCAQMD has requested that total
7	proposed project emissions be estimated during a year when construction and
8	operational activities substantially overlap. The year 2011 was chosen as a
9	representative year during which construction and operation activities would overlap.
10	Table 3.2-24 shows the combined total of peak daily construction and operational
11	emissions for 2011.
12	The net changes in combined (construction plus operational) emissions relative to the
13	CEQA baseline and NEPA baseline operational emissions are compared with
14	SCAQMD operational thresholds.

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Maximum daily construction emissions	929	4,397	12,779	12	2,836	948	
Maximum daily operational emissions	1,175	3,590	28,267	38,473	4,075	3,16	
Total: Construction and Operation— Project Year 2011	2,104	7,987	41,046	38,485	6,911	4,11	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Project Year 2011 minus CEQA baseline	999	3,484	17,111	6,396	3,349	1,433	
Thresholds	55	550	55	150	150	5:	
Significant?	Yes	Yes	Yes	Yes	Yes	Ye	
NEPA Impacts	· · ·	·					
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,09	
Project Year 2011 minus NEPA baseline	696	2,445	8,908	2,387	2,790	1,025	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	Yes	Yes	Yes	Yes	Ye	

15 **Table 3.2-24.** Peak Daily Construction and Operational Emissions without Mitigation—Proposed Project

	Peak Daily Emissions (lb/day)							
Emission Source		VOC	СО	NO_X	SO_X	PM10	PM2.5	
Ship and motor vehic	cle emissions include tra	ansport within th	he SCAB.					
	icance determination in sures identified for Alte		A baseline en	nissions inclue	le as proposed	l project elem	ents the	
Emissions might not	precisely add due to rot	unding. For fur	ther explanati	on, refer to th	e discussion i	n Section 3.2.	4.1.	
emission factors at	nates presented in this the time this docume at are not currently a	ent was prepare						
	CEQA Impact	Determinat	ion					
	Proposed project be above CEQA project analysis y	thresholds ar	nd thus sign	nificant und	er CEQA f	or all pollut		
	The year 2011 was chosen as the year that best represents a time when construction and operation activities would overlap. During this year, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant under CEQA for all pollutants.							
	Mitigation Meas	sures						

CAAP Measure Number	CAAP Measure Name	CAAP Measure Description	EIS/EIR Mitigation Measure (MM)	Discussion
HDV-1	Performance Standards for Onroad Heavy-Duty Vehicles (HDVs)	All frequent-caller trucks and semi-frequent-caller container trucks, model year (MY) 1992 and older, shall meet or be cleaner than EPA's 2007 onroad emissions standard (0.015 g/bhp-hr for PM) and the cleanest available NO _X standard at time of	MM AQ-15. Truck Emission Standards. Onroad heavy-duty diesel trucks (above 14,000 pounds) entering the cruise terminal building shall achieve EPA's 2007 Heavy-Duty Highway Diesel Rule emission	The CAAP Truck Plan [Clean Truck Program (CTP)] specifically exempts delivery trucks at the cruise terminal. MM AQ-15 incorporates the Clean Truck Program provisions at these locations and therefore exceeds CTP

CAAP Measure Number	CAAP Measure Name	<i>CAAP Measure Description</i> replacement. Semi- frequent-caller container trucks, MY1993–2003, shall be equipped with the maximum CARB-verified emissions-reduction technologies currently available.	<i>EIS/EIR Mitigation</i> <i>Measure (MM)</i> standards for onroad heavy-duty diesel engines (EPA 2001a) in the following percentages: 20% in 2009, 40% in 2012, and 80% in 2015 and thereafter.	Discussion requirements.
HDV-2	Alternative- Fuel Infrastructure for Heavy- Duty Natural Gas Vehicles	Construct liquefied natural gas (LNG) or compressed natural gas (CNG) refueling stations.	No applicable measure.	This measure shall be implemented directly by the ports of Los Angeles and Long Beach. The Port of Long Beach, in conjunction with the Port of Los Angeles, recently released an RFP seeking proposals to design, construct, and operate a public LNG fueling and maintenance facility on Port of Los Angeles property.
OGV-1	Ocean Going Vessel (OGV) Vessel Speed Reduction (VSR)	OGVs that call at the ports of Los Angeles and Long Beach shall not exceed 12 knots (kts) within 20 nm of Point Fermin (extending to 40 nm in future).	MM AQ-11. Vessel Speed-Reduction Program. Ships calling at the Inner Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule: 30% of all calls in 2009 and 100% of all calls in 2013 and thereafter.	MM AQ-11 complies with OGV-1.
			Outer Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following	

CAAP Measure	CAAP Measure		EIS/EIR Mitigation	
Number	Name	CAAP Measure Description	Measure (MM) implementation schedule: 100% of all calls in 2013 and thereafter.	Discussion
OGV-2	Reduction of At-berth OGV Emissions	Each port shall develop the infrastructure required to provide shore-power capabilities to all container and cruise ship berths. On a case-by-case basis, other vessel types, like specially outfitted tankers or reefer terminals, shall be evaluated for the application of shore power.	MM AQ-9. Alternative Maritime Power (AMP) for Cruise Vessels. Cruise vessels calling at the Inner Harbor Cruise Terminal shall use AMP at the following percentages while hoteling in the Port: 30% of all calls in 2009 and 80% of all calls in 2013 and thereafter. Ships calling at the Outer Harbor Cruise Terminal shall use AMP while hoteling at the Port as follows	MM AQ-9 complies with OGV-2.
			(minimum percentage): 97% of all calls in 2013 and thereafter. Additionally, by 2013, all ships retrofitted for AMP shall be required to use AMP while hoteling, with a compliance rate of 100%, with the exception of circumstances when an AMP-capable berth	
			is unavailable due to utilization by another AMP-capable ship.	
OGV-3, OGV-4	OGV-3: Auxiliary Engine Fuel Standards OGV-4: OGV Main Engine Fuel Standards	Require ship's main and auxiliary engines to operate using marine gas oil (MGO) fuels with sulfur content $\leq 0.2\%$ in their auxiliary engines, while inside the VSR zone (described in OGV-1). The program shall	MM AQ-10. Low- Sulfur Fuel. All ships (100%) calling at the Inner and Outer Harbor Cruise Terminals shall use low-sulfur fuel	MM AQ-10 complies with OGV-3 and OGV- 4. The CAAP assumes full compliance of OGV- 4 pending technical feasibility and fuel availability.

CAAP	CAAP			
Measure	Measure		EIS/EIR Mitigation	
Number	Name	CAAP Measure Description	Measure (MM)	Discussion
Number	Name	CAAP Measure Description start out at 20 nm from Point Fermin and be extended to 40 nm from Point Fermin.	Measure (MM) (maximum sulfur content of 0.2 percent) in auxiliary engines, main engines, and boilers within 40 nm of Point Fermin (including hoteling for non-AMP ships) beginning on Day 1 of operation. Ships with mono-tank systems or having technical issues prohibiting use of low sulfur fuel would be exempt from this requirement. The tenant shall notify the Port of such vessels prior to arrival and	Discussion
			shall make every effort to retrofit such ships within one year. The following minimum annual	
			participation rates were assumed in the air quality analysis: Inner Harbor	
			• 30% of all calls in 2009, and	
			• 90% of all calls in 2013 and thereafter.	
			Outer Harbor:	
			• 90% of all calls in 2013.	
			Low-sulfur fuel requirements shall apply independently of AMP participation.	
OGV-5	OGV-5 OGV Main and Auxiliary Engine	Requires implementation of emission-reduction engine technologies, such as sea water scrubbers, slide valves, and selective	MM AQ-12. New Vessel Builds. All new vessel builds shall incorporate NO _X , PM and GHG control	MM AQ-12 complies with OGV-5. OGV engine standards have not kept pace with other engine standards, such

CAAP	CAAP			
Measure	Measure		EIS/EIR Mitigation	
Number	Name	CAAP Measure Description	Measure (MM)	Discussion
	Emission Improvements	catalytic reduction (SCR) technology, as well as establishment of a Technology Advancement Program. Implementation shall be via leases and voluntary.	devices on ships' engines. These control devices include, but are not limited to, the following technologies, where appropriate: (1) SCR technology, (2) exhaust gas recirculation, (3) in- line fuel emulsification technology, (4) DPFs or exhaust scrubbers, (5) common rail direct fuel injection, (6) low- NO _X burners for boilers, (7) implementation of fuel economy standards by vessel class and engine, and (8) diesel- electric pod- propulsion systems.	as those for trucks and terminal equipment. New vessels destined for California service should be built with these technologies.
CHE-1	CHE-1 Performance Standards for CHE	Beginning in 2007, all yard tractor purchases shall meet: Cleanest available NO _X engine and 0.01 g/bhp-hr PM (fuel neutral), By the end of 2010, all yard tractors shall meet EPA's 2007 onroad standards, By the end of 2012, all pre- 2007 onroad or Tier 4 offroad CHE \leq 750 hp shall meet 2007/Tier 4 engine standards, By the end of 2012, all CHE > 750 hp shall meet Tier 4 standards, and Implementation: leases.	MM AQ-13. Clean Terminal Equipment. All terminal equipment shall be electric, where available. All terminal equipment other than electric forklifts at the cruise terminal building shall implement the following measures: Beginning in 2009, all non-yard tractor purchases shall be either (1) the cleanest available NO _X alternative-fueled engine meeting 0.015 g/bhp-hr for PM or (2) the cleanest available NO _X diesel-fueled	MM AQ-13 will meet or exceed CAAP measure CHE-1.

CAAP	CAAP		EIS/EID Mitigation	
Measure Number	Measure Name	CAAP Measure Description	EIS/EIR Mitigation Measure (MM)	Discussion
			engine meeting 0.015 g/bhp-hr for PM. If there are no engines available that meet 0.015 g/bhp-hr for PM, the new engines shall be the cleanest available (either fuel type) and shall have the cleanest VDEC;	
			By the end of 2012, all non-yard tractor terminal equipment less than 750 hp shall meet the EPA Tier 4 nonroad engine standards; and	
			By the end of 2014, all terminal equipment shall meet EPA Tier 4 nonroad engine standards.	
HC-1	Performance Standards for Harbor Craft	This measure shall focus on harbor craft that have not already been repowered/retrofitted (including construction- related harbor craftlike dredges and support vessels). When candidate vessels are identified, the ports of Los Angeles and Long Beach shall assist/require the owner/operator to repower or retrofit propulsion and auxiliary engines. For nonconstruction-related candidates, port of Los Angeles and Long Beach staff members shall assist the owners in applying for Carl Moyer Program incentive funding for the cleanest available engine that meets the emissions and cost effectiveness requirements. It should be	MM AQ-18. Engine Standards for Tugboats. Tugboats calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages): 30% in 2010 and 100% in 2014. Tugs calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 3 as follows (minimum percentages): 20% in 2015, 50% in 2018, and 100% in 2020.	MM AQ-17 and MM AQ-18 are consistent with HC-1.

CAAP Measure Number	CAAP Measure Name	CAAP Measure Description	EIS/EIR Mitigation Measure (MM)	Discussion
		noted that several tugs operating at the Port of Long Beach are home ported on private property (not port property) and therefore shall not be affected by this measure.	MM AQ-17. AMP for Tugboats. Crowley and Millennium tugboats calling at the North Harbor cut shall use AMP while hoteling at the Port as follows (minimum percentage): 100% compliance in 2014.	

2 3

Table 3.2-26. Regulations, Agreements, and Mitigation Measures Assumed as Part of the Proposed Project with Mitigation Emissions

		Terminal		Shuttle
Cruise Ships	Tugboats and Ferries	Equipment	Trucks	Busses
Part 1. Regulations and Agre	eements			
Vessel Speed Reduction Program—80% compliance with VSR assumed to 20 nm. Assembly Bill (AB) 471/Senate Bill (SB) 771— Prohibits waste incineration within 3 miles of coast.	California Diesel Fuel Regulations—100% compliance with 15- ppm sulfur fuel. Engine Standards for Marine Diesel Engines—Tier 2 standards gradually phased in due to normal tugboat fleet turnover.	Emission Standards for Nonroad Diesel Engines—Tier 1, 2, 3, and 4 standards gradually phased in over all years due to normal terminal equipment fleet turnover. California Diesel Fuel Regulations —15-ppm sulfur fuel.	Emission Standards for Onroad Trucks — Tiered standards gradually phased in over all years due to normal truck fleet turnover. California Diesel Fuel Regulations—15 ppm sulfur regulations starting September 1, 2006. AB 2650—On-terminal trucks are subject to idling limits. Airborne Toxic Control Measure to Limit Diesel- Fueled Commercial Motor Vehicle Idling—Diesel trucks are subject to idling limits.	No applicable regulations.
Part 2. Mitigation Measures				[
MM AQ-9. Alternative Maritime Power (AMP) for Cruise Vessels. Cruise vessels calling at the Inner Harbor Cruise Terminal shall use AMP at the following percentages while hoteling in	MM AQ-17. AMP for Tugboats. Crowley and Millennium tugboats calling at the North Harbor cut shall use AMP while hoteling at	MM AQ-13. Clean Terminal Equipment. All terminal equipment shall be electric, where available	MM AQ-15. Truck Emission Standards. Onroad heavy-duty diesel trucks (above 14,000 pounds) entering the cruise terminal building shall achieve EPA's 2007 Heavy-	MM AQ- 14. LNG- Powered Shuttle Busses. All shuttle buses shall

a a .		Terminal		Shuttle
-		Equipment		
Ships calling at the Otter Harbor Cruise Terminal shall use AMP while hoteling at the Port as follows (minimum percentage): 97% of all calls in 2013 and thereafter. Additionally, by 2013, all ships retrofitted for AMP shall be required to use AMP while hoteling, with a compliance rate of 100%, with the exception of circumstances when an AMP-capable berth is unavailable due to utilization by another AMP-capable ship. This portion of the mitigation measure is not quantified. Use of AMP shall enable ships to turn off the engines they require for ship service loads during hoteling, leaving the boiler as the only source of direct emissions. An increase in regional power plant emissions associated with AMP electricity generation is also assumed. Including emissions from ships' boilers and regional power plants, ships hoteling with AMP reduce their criteria pollutant emissions by 70% to 90%,	Tugboats and Ferriesthe Port as follows (minimum percentage): 100% compliance in 2014.MM AQ-18. Engine Standards for Tugboats. Tugboats calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages): 30% in 2010 and 100% in 2014.Tugs calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages): 30% in 2010 and 100% in 2014.Tugs calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 3 as follows (minimum percentages): 20% in 2015, 50% in 2018, and 100% in 2020.MM AQ-21. Catalina Express Ferry Engine Standards. Ferries calling at the Catalina Express Terminal	<i>Equipment</i> All terminal equipment other than electric forklifts at the cruise terminal building shall implement the following measures: Beginning in 2009, all non- yard tractor purchases shall be either (1) the cleanest available NO _X alternative- fueled engine meeting 0.015 g/bhp-hr for PM or (2) the cleanest available NO _X diesel-fueled engine meeting 0.015 g/bhp-hr for PM. If there are no engines available that meet 0.015 g/bhp- hr for PM, the new engines shall be the cleanest available (either fuel type) and shall have the cleanest VDEC; By the end of	<i>Trucks</i> Duty Highway Diesel Rule emission standards for onroad heavy-duty diesel engines (EPA 2001a) in the following percentages: 20% in 2009, 40% in 2012, and 80% in 2015 and thereafter.	Shuttle Busses be LNG powered.
reduce their criteria pollutant emissions by 70% to 90%, depending on the pollutant, compared with ships hoteling without AMP and burning	Standards. Ferries calling at the Catalina Express Terminal shall be repowered to meet the cleanest	shall have the cleanest VDEC;		
MM AQ-10. Low-Sulfur Fuel. All ships (100%) calling at the Inner and Outer Harbor Cruise Terminals shall use low sulfur fuel (maximum	existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages): 30% in 2010 and 100% in 2014.	equipment less than 750 hp shall meet the EPA Tier 4 nonroad engine standards; and By the end of 2014, all terminal equipment shall meet EPA Tier 4		

Cruise Ships	Tugboats and Ferries	Terminal Equipment	Trucks	Shuttle Busses
beginning on Day 1 of operation. Ships with mono- tank systems or having technical issues prohibiting use of low sulfur fuel would be exempt from this requirement. The tenant shall notify the Port of such vessels prior to arrival and shall make every effort to retrofit such ships within one year.		nonroad engine standards.		
The following minimum annual participation rates were assumed in the air quality analysis:				
Inner Harbor				
• 30% of all calls in 2009, and				
• 90% of all calls in 2013 and thereafter.				
• Outer Harbor:				
• 90% of all calls in 2013.				
Low-sulfur fuel requirements shall apply independently of AMP participation.				
MM AQ-11. Vessel Speed- Reduction Program. Ships calling at the Inner Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule: 30% of all calls in 2009 and 100% of all calls in 2013 and thereafter.				
Ships calling at the Outer Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule: 100% of all calls in 2013 and thereafter.				

Cruise Ships	Tugboats and Ferries	Terminal Equipment	Trucks	Shuttle Busses
Currently, the VSR program is a voluntary program. This mitigation measure requires cruise vessels to participate in the VSR program at higher rates than those currently being achieved. The cruise speed for a cruise vessel ranges from about 18 to 24 knots, depending on the size of the ship (larger ships generally cruise at higher speeds). For a ship with a 23-knot cruising speed, for example, a reduction in speed to 12 knots reduces the main engine load factor from 83% to 14% due to the cubic relationship of load factor to speed.				
Part 3. Mitigation Measures	Not Included in the Er	nission Calculatio	ns	1
MM AQ-12. New Vessel Builds. New vessel builds shall incorporate NO _X and PM control devices on auxiliary and main engines. MM AQ-22. Periodic Review of New Technology and Regulations.	 MM AQ-19. Tugboats Idling Reduction. The tug companies shall ensure that tug idling is reduced at the cruise terminal building. This measure is not quantified. MM AQ-20 Catalina Express Ferry Idling Reduction Measure. Catalina Express shall ensure that ferry idling is reduced at the cruise terminal building. This measure is not quantified. MM AQ-22: Periodic Review of New Technology and Regulations. LAHD shall require the cruise ship companies to review, in terms of feasibility, any LAHD- identified or other new emissions-reduction technology, and report 		MM AQ-16. Truck Idling- Reduction Measure. The cruise terminal building operator will ensure that heavy-duty truck idling is reduced at both the Inner and Outer Harbor Cruise Terminal. Potential methods to reduce idling include, but are not limited to, the following: (1) operator shall maximize the times when the gates are left open, including during off-peak hours, (2) operator shall implement an appointment- based truck delivery and pick-up system to minimize truck queuing, and (3) operator shall design gate to exceed truck-flow capacity to ensure queuing is minimized. This measure is not quantified.	

Cruise Ships	Tugboats and Ferries	Terminal Equipment	Trucks	Shuttle Busses
	to LAHD. This measure is not quantified.			

MM AQ-23. Throughput Tracking. If the proposed Project exceeds project throughput assumptions/projections (in terms of cruise terminal passenger numbers) anticipated through the years 2011, 2015, 2022, or 2037, staff shall evaluate the effects of this on the emissions sources (ship calls, and truck calls) relative to the EIS/EIR. If it is determined that these emissions sources exceed EIS/EIR assumptions, staff would evaluate actual air emissions for comparison with the EIS/EIR and if the criteria pollutant emissions exceed those in the EIS/EIR, then new or additional mitigations would be applied.

MM AQ-24. General Mitigation Measure. For any of the above mitigation measures, if a CARB-certified technology becomes available and is shown to be as good as or better, in terms of emissions performance, than the existing measure, the technology could replace the existing measure pending approval by LAHD.

Notes:

These mitigation measures were not included in the calculations because their effectiveness has not been established.

1	
2 3 4	The following mitigation measures would reduce criteria pollutant emissions associated with proposed project operations. These mitigation measures would be implemented by the responsible parties identified in Section 3.2.4.5.
5	Cruise Ships and Cruise Terminal
6	MM AQ-9. Alternative Maritime Power (AMP) for Cruise Vessels.
7 8	Cruise vessels calling at the Inner Harbor Cruise Terminal shall use AMP at the following percentages while hoteling in the Port:
9	■ 30% of all calls in 2009, and
10 11 12	 80% of all calls in 2013 and thereafter to accommodate existing lease agreements and home ported vessels. This portion of the mitigation measure is not quantified.
13 14	Ships calling at the Outer Harbor Cruise Terminal shall use AMP while hoteling at the Port as follows (minimum percentage):
15	■ 97% of all calls in 2013 and thereafter.
16 17 18 19	Additionally, by 2013, all ships retrofitted for AMP shall be required to use AMP while hoteling, with a compliance rate of 100%, with the exception of circumstances when an AMP-capable berth is unavailable due to utilization by another AMP-capable ship.
20 21	Use of AMP shall enable ships to turn off the engines they require for ship service loads during hoteling, leaving the boiler as the only source of direct emissions. An

1 2	increase in regional power plant emissions associated with AMP electricity generation is also assumed. Including emissions from ships' boilers and regional
3 4 5	power plants, ships hoteling with AMP reduce their criteria pollutant emissions by 70% to 90%, depending on the pollutant, compared with ships hoteling without AMP and burning residual fuel in the boilers.
6	MM AQ-10. Low-Sulfur Fuel.
7	All ships (100%) calling at the Inner and Outer Harbor Cruise Terminals shall use
8	low-sulfur fuel (maximum sulfur content of 0.2 percent) in auxiliary engines,
9	main engines, and boilers within 40 nm of Point Fermin (including hoteling for
10	non-AMP ships) beginning on Day 1 of operation. Ships with mono-tank systems or
11	having technical issues prohibiting use of low sulfur fuel would be exempt from this
12 13	requirement. The tenant shall notify the Port of such vessels prior to arrival and shall make every effort to retrofit such ships within one year.
14	The following minimum annual participation rates were assumed in the air quality
15	analysis:
16	Inner Harbor:
17	■ 30% of all calls in 2009, and
18	■ 90% of all calls in 2013 and thereafter.
19	Outer Harbor:
20	■ 90% of all calls in 2013.
21	Low-sulfur fuel requirements shall apply independently of AMP participation.
22	MM AQ-11. Vessel Speed-Reduction Program.
23	Ships calling at the Inner Harbor Cruise Terminal shall comply with the
24	expanded VSRP of 12 knots between 40 nm from Point Fermin and the
25	Precautionary Area in the following implementation schedule:
26	• 30% of all calls in 2009, and
27	■ 100% of all calls in 2013 and thereafter.
28	Ships calling at the Outer Harbor Cruise Terminal shall comply with the
29	expanded VSRP of 12 knots between 40 nm from Point Fermin and the
30	Precautionary Area in the following implementation schedule:
31	■ 100% of all calls in 2013 and thereafter.
32	Currently, the VSR program is a voluntary program. This mitigation measure
33	requires cruise vessels to participate in the VSR program at higher rates than those

1 2 3 4 5 6	currently being achieved. The cruise speed for a cruise vessel ranges from about 18 to 24 knots, depending on the size of the ship (larger ships generally cruise at higher speeds). For a ship with a 23-knot cruising speed, for example, a reduction in speed to 12 knots reduces the main engine load factor from 83% to 14% due to the cubic relationship of load factor to speed. In addition, this mitigation measure expands the VSRP zone from 20 nm to 40 nm from Point Fermin.
7	MM AQ-12. New Vessel Builds.
8 9 10 11 12 13	The purchaser shall confer with the ship designer and engine manufacture to determine the feasibility of incorporating all emission reduction technology and/or design options and when ordering new ships bound for the Port of Los Angeles. Such technology shall be designed to reduce criteria pollutant emissions (NO _X , SO _X , and PM) and GHG emission (CO, CH ₄ , N ₂ O, and HFCs). Design considerations and technology shall include, but is not limited to:
14	1. Selective Catalytic Reduction Technology
15	2. Exhaust Gas Recirculation
16	3. In-line fuel emulsification technology
17	4. Diesel Particulate Filters (DPFs) or exhaust scrubbers
18	5. Medium Speed Marine Engine (Common Rail) Direct Fuel Injection
19	6. Low NO_X Burners for Boilers
20	7. Implement fuel economy standards by vessel class and engine
21	8. Diesel-electric pod propulsion systems.
22 23 24 25 26	OGV engine standards have not kept pace with other engine standards, such as those for trucks and terminal equipment. New vessels destined for California service should be built with these technologies. As new orders for ships are placed, LAHD believes it is essential that the following elements be incorporated into future vessel design and construction:
27 28 29	 Work with engine manufacturers to incorporate all emissions-reduction technologies/options when ordering main and auxiliary engines, such as slide valves, common rail direct fuel injection, and exhaust gas recirculation;
30 31	 Design in extra fuel storage tanks and appropriate piping to run engines on a separate/cleaner fuel; and
32 33 34 35	 Incorporate SCR or an equally effective combination of engine controls. If SCR systems are not commercially available at the time of engine construction, design in space and access for main and auxiliary engines to facilitate installation of SCR or other retrofit devices at a future date.
36 37	In addition, this measure shall also incorporate design changes and technology to reduce GHG emissions, where available. Because some of these systems are not yet

1 2	available but are expected to be available within the next few years, this measure was not quantified.
3	MM AQ-13. Clean Terminal Equipment.
4	All terminal equipment shall be electric, where available.
5 6	All terminal equipment other than electric forklifts at the cruise terminal building shall implement the following measures:
7 8 9 10 11 12	 Beginning in 2009, all non-yard tractor purchases shall be either (1) the cleanest available NO_x alternative-fueled engine meeting 0.015 g/bhp-hr for PM or (2) the cleanest available NO_x diesel-fueled engine meeting 0.015 g/bhp-hr for PM. If there are no engines available that meet 0.015 g/bhp-hr for PM, the new engines shall be the cleanest available (either fuel type) and shall have the cleanest VDEC;
13 14	 By the end of 2012, all non-yard tractor terminal equipment less than 750 hp shall meet the EPA Tier 4 nonroad engine standards; and
15 16	 By the end of 2014, all terminal equipment shall meet EPA Tier 4 nonroad engine standards.
17	MM AQ-14. LNG-Powered Shuttle Busses.
18 19	All shuttle buses from parking lots to cruise ship terminals shall be LNG powered.
20	Delivery Trucks
21	MM AQ-15. Truck Emission Standards.
22 23 24 25 26	Onroad heavy-duty diesel trucks (above 14,000 pounds) entering the cruise terminal building shall achieve EPA's 2007 Heavy-Duty Highway Diesel Rule emission standards for onroad heavy-duty diesel engines (EPA 2001a) in the following percentages: 20% in 2009, 40% in 2012, and 80% in 2015 and thereafter.
27	MM AQ-16. Truck Idling-Reduction Measure.
28 29 30 31 32 33 34	The cruise terminal building operator shall ensure that heavy-duty truck idling is reduced at both the Inner and Outer Harbor Cruise Terminal. Potential methods to reduce idling include, but are not limited to, the following: (1) operator shall maximize the times when the gates are left open, including during off-peak hours, (2) operator shall implement an appointment-based truck delivery and pick-up system to minimize truck queuing, and (3) operator shall design gate to exceed truck-flow capacity to ensure queuing is minimized.
35	This mitigation measure is not quantified.

1	Tugboat Operations
2	MM AQ-17. AMP for Tugboats.
3 4	Crowley and Millennium tugboats calling at the North Harbor cut shall use AMP while hoteling at the Port as follows (minimum percentage):
5	■ 100% compliance in 2014.
6	MM AQ-18. Engine Standards for Tugboats.
7 8 9	Tugboats calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages):
10	■ 30% in 2010, and
11	■ 100% in 2014.
12 13 14	Tugs calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 3 as follows (minimum percentages):
15	■ 20% in 2015,
16	■ 50% in 2018, and
17	■ 100% in 2020.
18	MM AQ-19. Tugboats Idling Reduction.
19 20	The tug companies shall ensure that tug idling is reduced at the cruise terminal building.
21	This measure is not quantified.
22	Catalina Express
23	MM AQ-20. Catalina Express Ferry Idling Reduction Measure.
24 25	Catalina Express shall ensure that ferry idling is reduced at the cruise terminal building.
26	This measure is not quantified.
27	MM AQ-21. Catalina Express Ferry Engine Standards.
28 29 30	Ferries calling at the Catalina Express Terminal shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages):

1	■ 30% in 2010, and
2	■ 100% in 2014.
3	New/Alternative Technology
4	The following measures are lease measures that will be included in the lease for the
5	cruise terminal operations and tug operations due to projected future emissions
6	levels. The measures do not meet all of the criteria for CEQA or NEPA mitigation
7	measures but are considered important lease measures to reduce future emissions.
8	This lease obligation is distinct from the requirement of further CEQA or NEPA
9	mitigation measures to address impacts of potential subsequent discretionary
10	proposed project approvals.
11	MM AQ-22. Periodic Review of New Technology and Regulations.
12	LAHD shall require the cruise terminal and tug company tenants to review, in
13	terms of feasibility, any LAHD-identified or other new emissions-reduction
14	technology, and report to LAHD. Such technology feasibility reviews shall take
15	place at the time of LAHD's consideration of any lease amendment or facility
16	modification for the cruise terminal and tug company property. If the technology
17	is determined by LAHD to be feasible in terms of cost, technical, and operational
18	feasibility, the tenant shall work with LAHD to implement such technology.
19	Potential technologies that may further reduce emission and/or result in cost-savings
20	benefits for the tenant may be identified through future work on the CAAP. Over the
21	course of the lease, the tenant and LAHD shall work together to identify potential
22	new technology. Such technology shall be studied for feasibility, in terms of cost,
23	technical, and operational feasibility.
24	As partial consideration for LAHD agreement to issue the permit to the tenant, the
25	tenant shall implement not less frequently than once every 7 years following the
26	effective date of the permit, new air quality technological advancements, subject to
27	mutual agreement on operational feasibility and cost sharing, which shall not be
28	unreasonably withheld.
29	The effectiveness of this measure depends on the advancement of new technologies
30	and the outcome of future feasibility or pilot studies. As discussed in Section 3.2.4.1,
31	if the tenant requests future project changes that would require environmental
32	clearance and a lease amendment, future CAAP mitigation measures would be
33	incorporated into the new lease at that time.
34	MM AQ-23. Throughput Tracking.
35	If the proposed Project exceeds project throughput assumptions/projections (in
36	terms of cruise terminal passenger numbers) anticipated through the years 2011,
37	2015, 2022, or 2037, LAHD staff shall evaluate the effects of this on the
38	emissions sources (ship and truck calls) relative to the EIS/EIR. If it is
39	determined that these emissions sources exceed EIS/EIR assumptions, staff shall

evaluate actual air emissions for comparison with the EIS/EIR and if the criteria pollutant emissions exceed those in the EIS/EIR, then new or additional mitigations would be applied.

4

1

2

3

5

6

7

8

9

10

11

13

14

15

16 17

18

19

20

21

22

23

24

25

MM AQ-24. General Mitigation Measure.

For any of the above mitigation measures (MM AQ-9 through MM AQ-21), if any kind of technology becomes available and is shown to be as good or as better in terms of emissions reduction performance than the existing measure, the technology could replace the existing measure pending approval by LAHD. The technology's emissions reductions must be verifiable through EPA, CARB, or other reputable certification and/or demonstration studies to LAHD's satisfaction.

12 Residual Impacts

Tables 3.2-27 and 3.2-28 present the mitigated average and peak daily criteria pollutant emissions associated with operation of the proposed Project after the application of Mitigation Measures MM AQ-9 through MM AQ-11, MM AQ-13 through MM AQ-15, MM AQ-17, MM AQ-18, and MM AQ-21. The following mitigation measures are not quantified because their effectiveness has not been established: MM AQ-12, MM AQ-16, MM AQ-19, MM AQ-20, MM AQ-22, MM AQ-23, and MM AQ-24.

- Mitigation Measures MM AQ-9 (AMP) and MM AQ-10 (Low Sulfur Fuel) require at least 80% and 100% compliance starting in 2013 for AMP and Day 1 for low sulfur fuel, respectively. The high compliance requirements ensure that even during worst-case peak activity, some mitigation would be in place. Therefore, in the 2015, 2022, and 2037 analysis years, it was conservatively assumed that half of the cruise vessels would comply with the mitigation measures during a worst case peak day scenario.
- 26 As shown in Table 3.2-27, the combination of Mitigation Measures MM AQ-9 27 through MM AQ-11, MM AQ-17, MM AQ-18, and MM AQ-21 would reduce 28 average daily emissions of all criteria pollutants associated with marine vessels 29 relative to unmitigated proposed project emissions. Although these mitigation 30 measures are effective in reducing CO, the reduction appears inhibited because 31 emission factors for CO for harbor vessels increase as Tier 2 engines replace Tier 0 32 and Tier 1 engines. CO is the only pollutant for which emission factors increase with 33 engine replacement.
- 34Table 3.2-28 presents the mitigated peak daily criteria pollutant emissions associated35with operation of the proposed Project after the application of Mitigation Measures36MM AQ-9 through MM AQ-11, MM AQ-13 through MM AQ-15, MM AQ-17, MM37AQ-18, and MM AQ-21. The mitigated peak daily emissions minus the CEQA38baseline would exceed CEQA thresholds and would thus be significant under CEQA39for NO_X, SO_X, PM10, and PM2.5 in 2011; VOC, NO_X, and PM10 in 2015 and 2022;40and NO_X and PM10 in 2037.

3

4

5

Table 3.2-29 shows the combined total of peak daily construction and operational emissions for 2011 after the application of mitigation measures. The table shows that with the inclusion of construction emissions, peak daily combined emissions would exceed CEQA thresholds for all pollutants and would therefore be significant under CEQA.

6 **Table 3.2-27.** Average Daily Operational Emissions with Mitigation—Proposed Project

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM25	
Project Year 2011							
Vessel transit and maneuvering	138	288	3,424	2,221	320	256	
Vessel hoteling	57	119	1,402	1,098	139	111	
Harbor craft	53	533	1,639	1	62	57	
Motor vehicles	126	1,013	166	1	166	33	
Terminal equipment	0.1	0.4	1	0	0.04	0.04	
Total—Project Year 2011	374	1,953	6,632	3,321	687	457	
CEQA Impacts	· · ·	·					
CEQA baseline emissions	452	3,123	6,437	3,987	849	511	
Proposed Project minus CEQA baseline	-78	-1,170	195	-666	-162	-54	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	No	No	No	
<u>NEPA Impacts</u>		·					
NEPA baseline emissions	363	1,929	6,348	3,141	660	436	
Proposed Project minus NEPA baseline	11	24	284	180	27	21	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	No	No	
Project Year 2015							
Vessel transit and maneuvering	98	205	2,272	366	119	95	
Vessel hoteling	17	35	377	108	24	20	
Harbor craft	44	617	1,191	1	50	46	
Motor vehicles	193	1,974	405	4	627	127	
Terminal equipment	0.1	0.3	1	0	0.03	0.03	
Total—Project Year 2015	352	2,831	4,246	479	820	288	
CEQA Impacts		.	i				
CEQA baseline emissions	452	3,123	6,437	3,987	849	511	

San Pedro Waterfront Project EIS/EIR

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM25		
Proposed Project minus CEQA baseline	-100	-292	-2,191	-3,508	-29	-223		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
<u>NEPA Impacts</u>								
NEPA baseline emissions	319	2,608	4,263	490	750	276		
Proposed Project minus NEPA baseline	33	224	-17	-11	70	12		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
Project Year 2022								
Vessel transit and maneuvering	101	210	2,315	375	122	98		
Vessel hoteling	17	35	384	111	25	20		
Harbor craft	40	770	1,008	1	42	39		
Motor vehicles	161	1,508	269	4	660	131		
Terminal equipment	0.1	0.3	0.4	0	0.01	0.01		
Total—Project Year 2022	319	2,523	3,976	491	849	288		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	511		
Proposed Project minus CEQA baseline	-133	-600	-2,461	-3,496	0	-223		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
NEPA Impacts								
NEPA baseline emissions	285	2,335	3,937	491	766	272		
Proposed Project minus NEPA baseline	34	188	40	_	83	16		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
Project Year 2037								
Vessel transit and maneuvering	102	214	2,342	382	124	100		
Vessel hoteling	17	36	389	113	26	20		
Harbor craft	40	770	1,008	1	42	39		
Motor vehicles	99	920	146	5	747	147		

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM25	
Terminal equipment	0	0.3	0.1	0	0	0	
Total—Project Year 2037	258	1,940	3,885	501	939	306	
CEQA Impacts			·				
CEQA baseline emissions	452	3,123	6,437	3,987	849	511	
Proposed Project minus CEQA baseline	-194	-1,183	-2,552	-3,486	90	-205	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	No	No	No	No	
NEPA Impacts			·				
NEPA baseline emissions	229	1,765	3,803	491	796	277	
Proposed Project minus NEPA baseline	29	176	82	10	143	29	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	No	No	No	

Emissions represent annual emissions divided by 365 days per year of operation.

Ship and motor vehicle emissions include transport within the SCAB.

Motor vehicles include passenger cars, trucks, busses, and shuttles.

Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

For the NEPA significance determination in this table, NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

2 Table 3.2-28. Peak Daily Operational Emissions with Mitigation—Proposed Project

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	625	1,305	16,599	23,150	2,378	1,903
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	53	533	1,639	1	62	57
Motor vehicles	126	1,013	166	1	166	33

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Terminal equipment	0.2	0.7	3	0	0.1	0.1		
Total—Project Year 2011	1,108	3,485	26,429	36,089	3,826	2,969		
CEQA Impacts		•			L			
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Proposed Project minus CEQA baseline	3	-1,018	2,494	4,001	264	287		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>	<u> </u>	·		·				
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969		
Proposed Project minus NEPA baseline	-	_	1	1	_]		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
Project Year 2015								
Vessel transit and maneuvering	730	1,525	18,859	19,350	2,184	1,748		
Vessel hoteling	238	496	6,211	9,298	901	720		
Harbor craft	44	617	1,191	1	50	40		
Motor vehicles	193	1,974	405	4	627	12		
Terminal equipment	0.2	0.6	2	0	0.1	0.		
Total—Project Year 2015	1,205	4,613	26,668	28,653	3,762	2,64		
CEQA Impacts								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Proposed Project minus CEQA baseline	100	110	2,733	-3,435	200	-4		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	No	Yes	N		
<u>NEPA Impacts</u>								
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,87		
Proposed Project minus NEPA baseline	327	837	7,604	8,643	1,008	762		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Ye		

		Pec	ık Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Vessel transit and maneuvering	730	1,525	18,859	19,350	2,184	1,748
Vessel hoteling	238	496	6,211	9,298	901	720
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	161	1,508	269	4	660	131
Terminal equipment	0.1	0.5	0.8	0	0.03	0.02
Total—Project Year 2022	1,169	4,300	26,348	28,653	3,787	2,638
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Proposed Project minus CEQA baseline	64	-204	2,413	-3,435	225	-44
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	No	Yes	No
<u>NEPA Impacts</u>						
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875
Proposed Project minus NEPA baseline	325	796	7,590	8,642	1,017	763
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
Project Year 2037						
Vessel transit and maneuvering	730	1,525	18,859	19,350	2,184	1,748
Vessel hoteling	238	496	6,211	9,298	901	720
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	99	920	146	5	747	147
Terminal equipment	0.1	0.5	0.2	0	0.01	0.01
Total—Project Year 2037	1,107	3,712	26,224	28,654	3,874	2,654
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Proposed Project minus CEQA baseline	2	-792	2,289	-3,434	312	-28
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	No	Yes	No
<u>NEPA Impacts</u>			_			
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880
Proposed Project minus NEPA	319	779	7,583	8,643	1,074	774

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
baseline						
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Ship and motor vehicle emissions include transport within the SCAB.

Motor vehicles include passenger cars, trucks, busses, and shuttles.

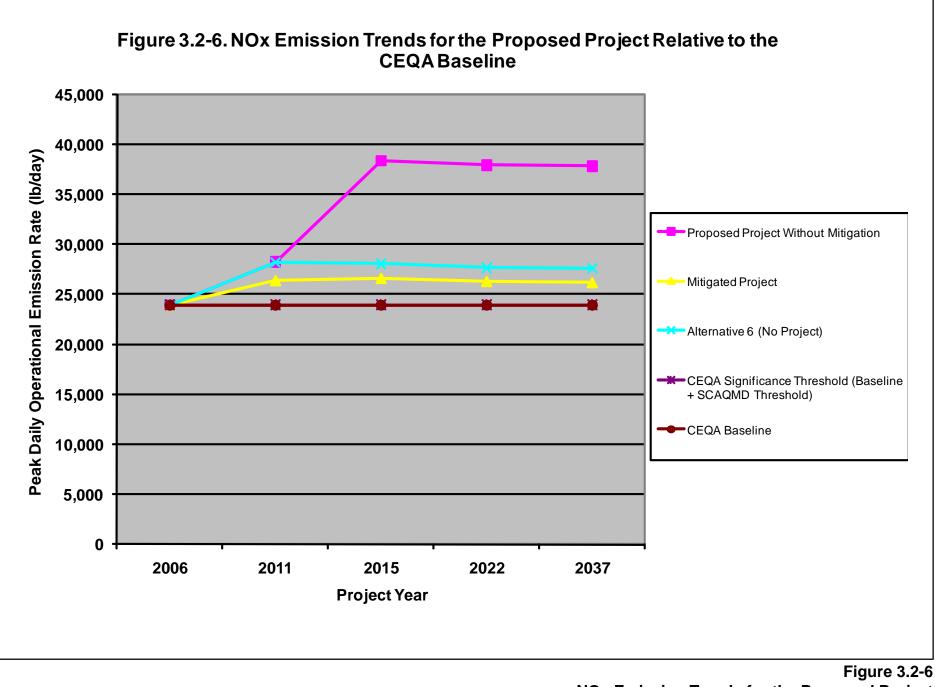
Terminal equipment includes equipment at the Cruise Terminal and Berth 87.

For the NEPA significance determination in this table, NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

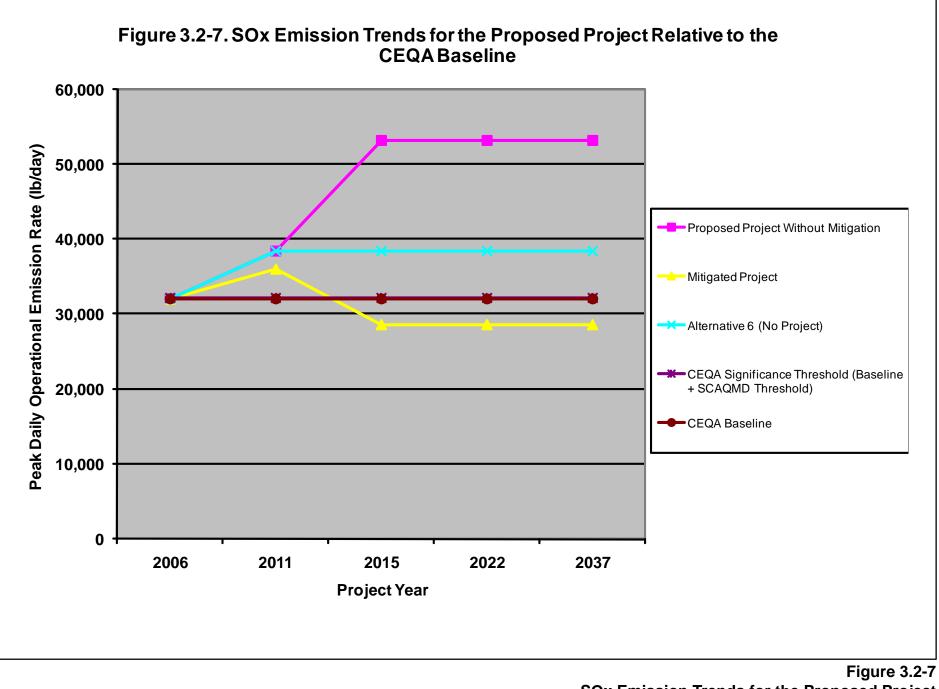
The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

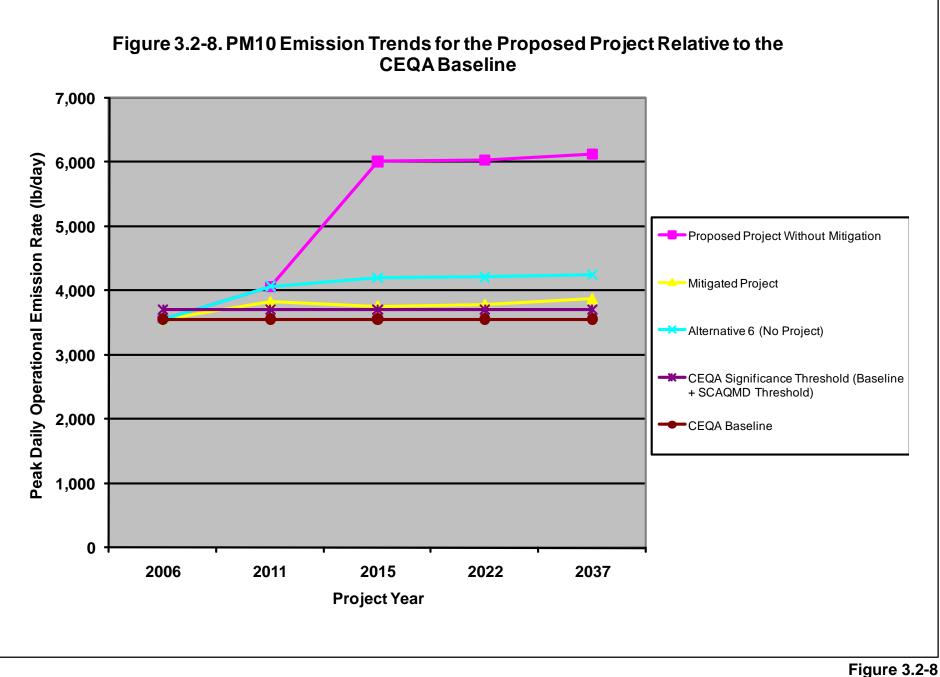

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5		
Project Year 2011	· · ·							
Maximum daily construction emissions	415	2,782	7,614	12	374	174		
Maximum daily operational emissions	1,108	3,485	26,429	36,089	3,826	2,969		
Total—Construction and Operation Project Year 2011	1,523	6,267	34,043	36,101	4,200	3,143		
CEQA Impacts	· · ·							
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Project Year 2011 minus CEQA Baseline	418	1,764	10,108	4,013	638	461		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>								
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091		
Project Year 2011 minus NEPA	115	725	1,906	3	79	53		

2 **Table 3.2-29.** Peak Daily Construction and Operational Emissions with Mitigation—Proposed Project

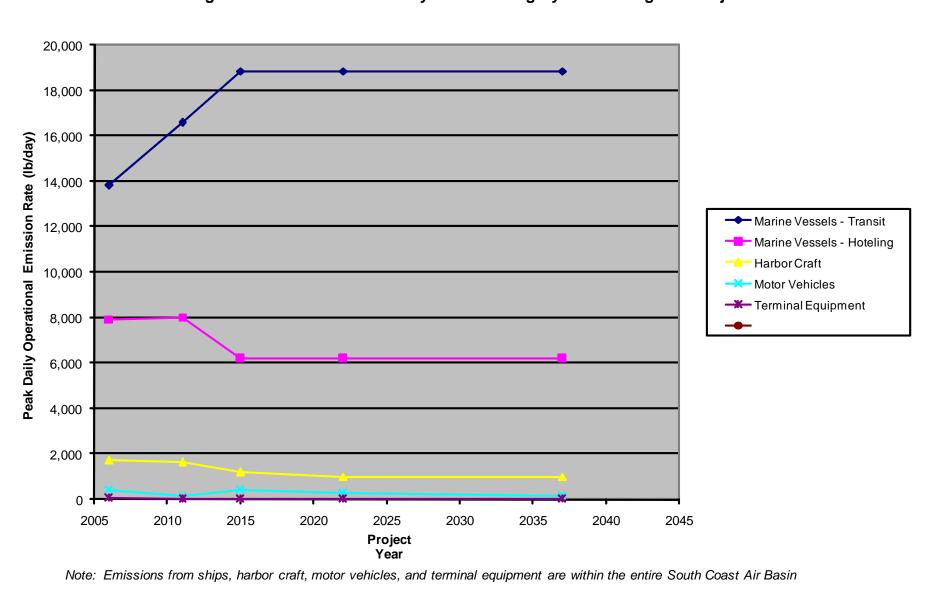
	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Baseline						
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	No	No	No


2 3 4 5 6	Implementation of Mitigation Measures AQ-12, AQ-16, AQ-19, AQ-20, AQ-22, AQ-23, and AQ-24 although not quantified, could further reduce criteria pollutant emissions from marine vessels, trucks, and terminal equipment. However, these measures are unlikely to reduce the remaining significant emissions to less-than-significant levels because of the magnitude of the emissions.
7 8 9 10 11	Figures 3.2-6, 3.2-7, and 3.2-8 plot the emission trends of NO_X , SO_X , and PM10, respectively, for the proposed Project in relation to the CEQA baseline, both with and without mitigation. For comparison, Alternative 6 (the No-Project Alternative), the CEQA baseline, and the CEQA significance threshold (baseline plus the SCAQMD emission threshold) are shown in the figures.
12 13 14 15 16	Figures 3.2-9, 3.2-10, and 3.2-11 show the emissions of NO_X , SO_X , and PM10, respectively, by source category for the proposed Project after mitigation. Because the emissions for ships and motor vehicles are total emissions within the entire SCAB, much of the emissions from these sources would occur away from the Port along the travel routes.
17	NEPA Impact Determination
18	Proposed project unmitigated peak daily emissions minus the NEPA baseline would
19 20 21	exceed NEPA thresholds and would therefore be significant under NEPA for all criteria pollutants in all four proposed project study years, with the exception of CO in 2011.
20	criteria pollutants in all four proposed project study years, with the exception of CO
20 21 22 23	criteria pollutants in all four proposed project study years, with the exception of CO in 2011.In 2011, the combined construction and operational emissions minus the NEPA baseline would exceed NEPA emission thresholds and would therefore be significant
20 21 22 23 24 25 26 27 28	 criteria pollutants in all four proposed project study years, with the exception of CO in 2011. In 2011, the combined construction and operational emissions minus the NEPA baseline would exceed NEPA emission thresholds and would therefore be significant under NEPA for all criteria pollutants. Figures 3.2-12, 3.2-13, and 3.2-14 plot the emission trends of NO_x, SO_x, and PM10, respectively, for the proposed Project in relation to NEPA baseline, both with and without mitigation. For comparison, Alternative 6 (the No-Project Alternative), the NEPA baseline, and the NEPA significance threshold (NEPA baseline plus the

1	Residual Impacts
2 3 4	Following mitigation, peak daily emissions minus the NEPA baseline would exceed NEPA thresholds and would therefore be significant under NEPA for all pollutants in analysis years 2015, 2022, and 2037.
5 6 7 8	The 2011 was chosen as the year that best represents a time when construction and operation activities would overlap. During this year, the combined construction and operational emissions minus the NEPA baseline would exceed NEPA emission thresholds and would therefore be significant under NEPA for VOC, CO, and NO _X .
9 10 11	Impact AQ-4: Proposed project operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-16.
12 13 14 15 16 17	Dispersion modeling of onsite and offsite proposed project operational emissions was performed to assess the impact of the proposed Project on local ambient air concentrations. The EPA dispersion model AERMOD, version 07026, was used to predict maximum ambient pollutant concentrations in the vicinity of the proposed Project. A summary of the dispersion modeling results is presented here, and the complete dispersion modeling report is included in Appendix D2.
18 19 20 21 22 23 24	The analysis modeled peak 1-hour and annual NO_X emissions, peak 1-hour and 8-hour CO emissions, peak daily (24-hour) PM10 emissions, annual average PM10 emissions, and peak daily (24-hour) PM2.5 emissions. Emissions from marine vessels, ship hoteling, terminal equipment, delivery vehicles, and passenger vehicles were modeled. Emissions were estimated for the milestone years 2015, 2022, and 2037; and the highest emission rate for each source category from each milestone year was used in the dispersion modeling to determine maximum impact.
25 26 27 28 29 30 31 32 33 34 35	Table 3.2-30 shows the maximum offsite NO ₂ and CO concentrations predicted from the operation of the proposed Project without mitigation. The table indicates that the maximum 1-hour NO ₂ concentration of 2,006 μ g/m ³ would exceed the SCAQMD significance threshold of 338 μ g/m ³ . The annual NO ₂ concentration of 127 μ g/m ³ would exceed the SCAQMD significance threshold of 56.4 μ g/m ³ . The maximum 1- hour and 8-hour CO concentrations from operational emissions of the proposed Project would be well below the SCAQMD significance thresholds. Total concentrations (proposed Project plus background) were calculated for NO ₂ and CO rather than incremental concentrations (proposed Project minus baseline) because the significance thresholds for these pollutants are absolute thresholds rather than incremental thresholds.
36 37 38 39 40	Table 3.2-31 shows the maximum offsite PM10 and PM2.5 concentrations predicted for the proposed Project without mitigation. The maximum CEQA increment (proposed Project minus CEQA baseline), and NEPA increment (proposed Project minus NEPA baseline) are also shown. Increments of PM10 concentrations were obtained by subtracting the CEQA baseline or NEPA baseline concentrations from



NOx Emission Trends for the Proposed Project Relative to the CEQA Baseline San Pedro Waterfront Project



SOx Emission Trends for the Proposed Project Relative to the CEQA Baseline San Pedro Waterfront Project

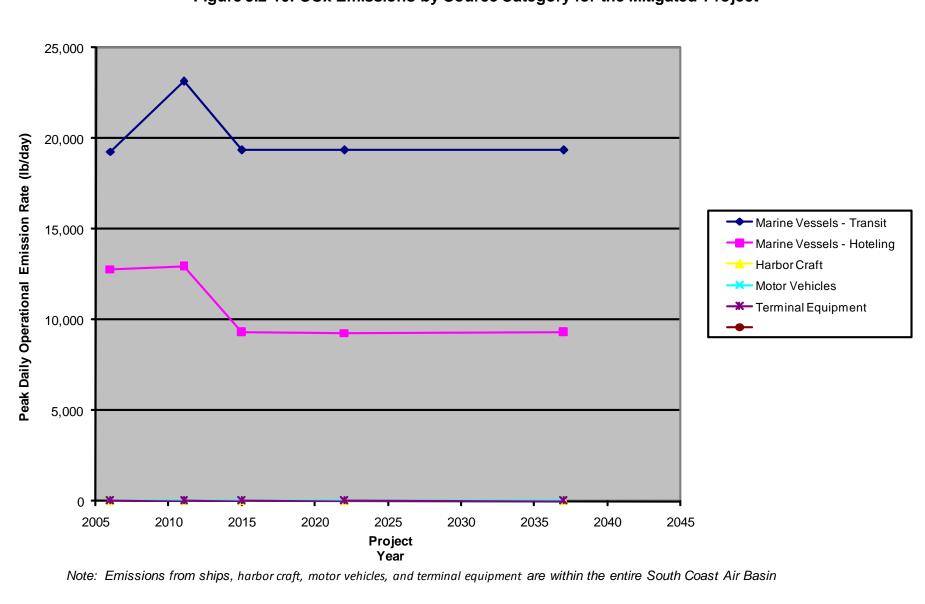

PM10 Emission Trends for the Proposed Project Relative to the CEQA Baseline San Pedro Waterfront Project

Figure 3.2-9. NOx Emissions by Source Category for the Mitigated Project

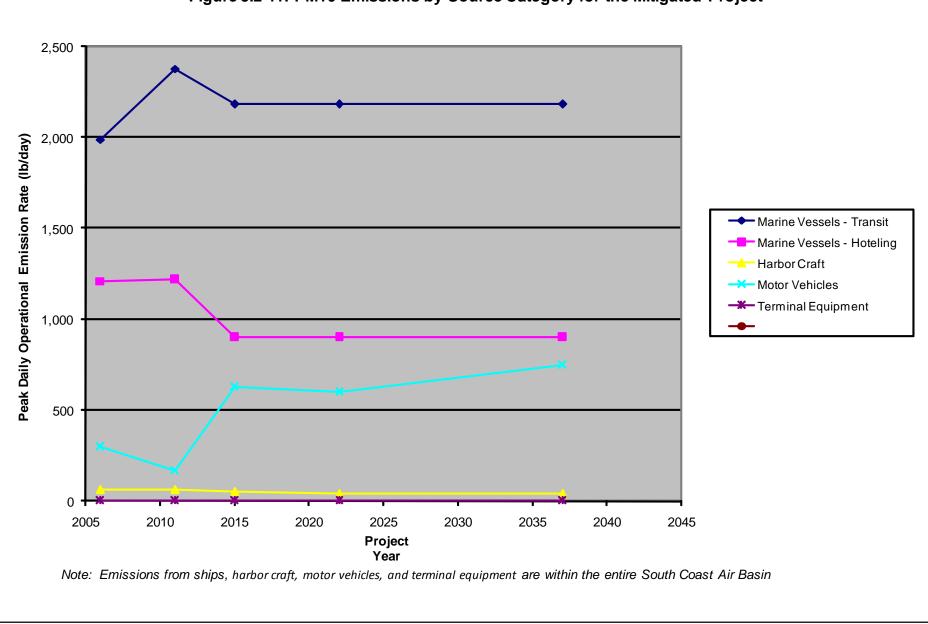

Figure 3.2-9 NOx Emissions by Source Category for the Mitigated Project San Pedro Waterfront Project

Figure 3.2-10. SOx Emissions by Source Category for the Mitigated Project

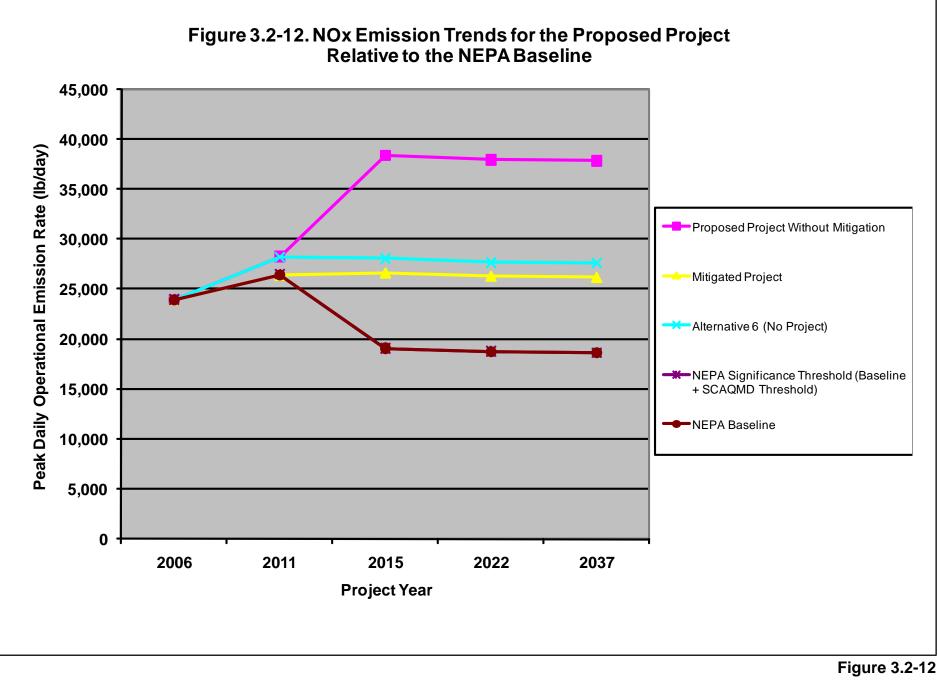

Figure 3.2-10 SOx Emissions by Source Category for the Mitigated Project San Pedro Waterfront Project

Figure 3.2-11. PM10 Emissions by Source Category for the Mitigated Project

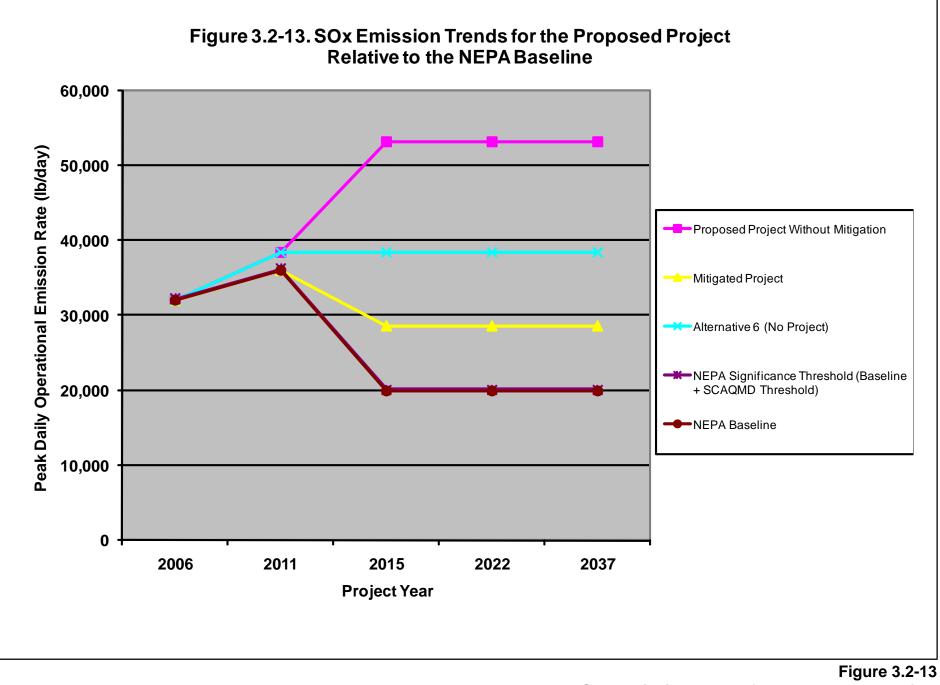
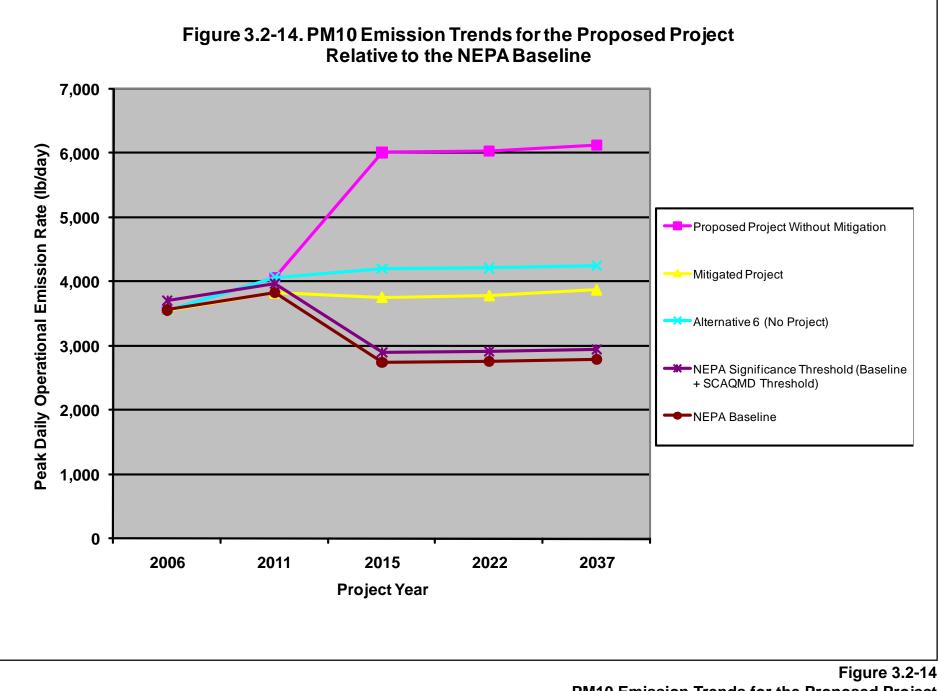


Figure 3.2-11 PM10 Emissions by Source Category for the Mitigated Project San Pedro Waterfront Project



NOx Emission Trends for the Proposed Project Relative to the NEPA Baseline San Pedro Waterfront Project

SOx Emission Trends for the Proposed Project Relative to the NEPA Baseline San Pedro Waterfront Project

PM10 Emission Trends for the Proposed Project Relative to the NEPA Baseline San Pedro Waterfront Project

1 2 3	the proposed Project concentrations at each common receptor. The maximum increment among all receptors was then used for comparison with the SCAQMD threshold. The thresholds for PM10 and PM2.5 are incremental thresholds.
4	The CEQA and NEPA increments for 24-hour PM10 concentrations are predicted to
5	be 15.5 and 15.4 μ g/m ³ , respectively. Both of the increments would exceed the
6	SCAQMD PM10 threshold of 2.5 μ g/m ³ for the proposed project operations.
7	The CEQA and NEPA increments for 24-hour PM2.5 are predicted to be 12.3 and
8	12.3 μ g/m ³ , respectively. Both of the increments would exceed the SCAQMD
9	PM2.5 threshold of 2.5 μ g/m ³ for the proposed project operations.
10	The CEQA and NEPA increments for annual PM10 are predicted to be 3.0 and
11	$1.8\mu g/m^3$, respectively. Both of the increments would exceed the SCAQMD PM10
10	

12 threshold of $1.0 \ \mu g/m^3$ for the proposed project operations.

Table 3.2-30. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of the Proposed Project without Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Proposed Project (µg/m³)	Background Concentration $(\mu g/m^3)$	Total Ground-Level Concentration (µg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1 hour	1,559	263	2,006	338
	Annual	74	53	127	56.4
СО	1 hour	6,229	4,809	11,038	23,000
	8 hours	2,362	4,008	6,370	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

1	Table 3.2-31. Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of the
2	Proposed Project without Mitigation

	Maximum Modeled Concentration of Proposed Project (µg/m3)	Maximum Modeled Concentration of CEQA Baseline (µg/m3)	Maximum Modeled Concentration of NEPA Baseline (µg/m3)	Ground-Level Concentration CEQA Increment (µg/m3)	Ground-Level Concentration NEPA Increment (µg/m3)	SCAQMD Threshold (µg/m3)
PM10 24-hour period	26.9	32.3	22.8	15.5	15.4	2.5
PM10 annual average	7.3	4.3	6.5	3.0	1.8	1.0
PM2.5 24-hour period	20.0	25.8	17.1	12.3	12.3	2.5

Notes:

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 below describes how the increments are calculated.

The CEQA increment represents the proposed Project minus the CEQA baseline. The NEPA increment represents the proposed Project minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

3

4

CEQA Impact Determination

5Maximum offsite ambient pollutant concentrations associated with the proposed6project operations would be significant for NO2 (1-hour average and annual average),7PM10 and PM2.5 (24-hour average), and annual PM10. Therefore, significant8impacts under CEQA would occur.9Mitigation Measures

10 Implement Mitigation Measures MM AQ-9 through MM AQ-24.

11 Residual Impacts

12	Table 3.2-32 presents the maximum offsite ground-level concentrations of NO ₂ and
13	CO for the proposed Project after mitigation. Table 3.2-33 shows the maximum
14	PM10 and PM2.5 concentration increments after mitigation. Impacts would be

significant for NO₂ and 24-hour PM10 and PM2.5 as well as annual PM10, although offsite ambient concentrations of PM10 and PM2.5 would be reduced.

Table 3.2-32. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of the Proposed Project after Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Mitigated Project (µg/m ³)	Background Concentration $(\mu g/m^3)$	Total Ground- Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m³)
NO ₂	1 hour	772	263	1,035	338
	Annual	55	53	108	56.4
СО	1 hour	6,182	4,809	10,991	23,000
	8 hours	2,355	4,008	6,363	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

5

Table 3.2-33. Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of the Proposed Project after Mitigation

	Maximum Modeled Concentration of Mitigated Project (µg/m ³)	Maximum Modeled Concentratio n of CEQA Baseline (µg/m ³)	Maximum Modeled Concentration of NEPA Baseline (µg/m ³)	Ground- Level Concentratio n CEQA Increment (µg/m ³)	Ground- Level Concentratio n NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour period	18.9	32.3	22.8	8.3	8.2	2.5
PM10 annual average	6.6	4.3	6.5	2.4	1.1	1.0
PM2.5 24-hour period	13.5	25.8	17.1	6.5	6.5	2.5
Notes:	64 4 1 11					

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore,

the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 below describes how the increments are calculated.

The CEQA increment represents the mitigated proposed Project minus the CEQA baseline. The NEPA increment represents the mitigated proposed Project minus the NEPA baseline. NEPA baseline emissions include as project elements the same mitigation measures identified for Alternative 5.

2 **NEPA Impact Determination** 3 Maximum offsite ambient pollutant concentrations associated with the proposed project operations would be significant for NO₂ (1-hour average and annual) and 4 5 PM10 and PM2.5 (24-hour average) as well as annual average PM10. Therefore, significant impacts under NEPA would occur. 6 7 Mitigation Measures 8 Implement Mitigation Measures MM AQ-9 through MM AQ-24. 9 **Residual Impacts** 10 Table 3.2-32 above presents the maximum offsite ground-level concentrations of 11 NO_2 and CO for the proposed Project after mitigation. Table 3.2-33 above shows the 12 maximum PM10 and PM2.5 concentration increments after mitigation. Impacts would be significant for NO₂ and 24-hour PM10 and PM2.5 as well as annual 13 14 average PM10, although offsite ambient concentrations of PM10 and PM2.5 would 15 be reduced. Impact AQ-5: The proposed Project would not generate 16 onroad traffic that would contribute to an exceedance of the 17 1-hour or 8-hour CO standards. 18 19 20 21 22 23 24

1

Motor vehicle trips generated by the proposed Project would affect intersections predicted to operate at high traffic volumes in future years. During periods of nearcalm winds, heavily congested intersections can produce elevated levels of CO in their immediate vicinity. Therefore, a CO microscale modeling analysis was conducted to determine whether the proposed Project would contribute to a violation of the ambient air quality standards for CO at a local intersection.

25 Table 3.2-34 presents maximum 1-hour and 8-hour CO concentrations predicted at locations approximately 10 feet outside the roadway shoulder from the edge of the 26 27 intersections at the standard breathing height of 1.8 meters. The results show that 28 CO concentrations would not exceed the CO standards during any proposed project 29 study year, either with or without the proposed Project. Despite increasing traffic 30 volumes in the future, the results show a declining trend in CO concentrations. This

2

3

4

5

6 7 declining trend is due to the phasing in of cleaner fuels, tighter vehicle emissions standards, and the gradual replacement of older vehicles with newer, cleaner vehicles.

The input data and CALINE4 output files for the CO intersection analysis are presented in Appendix D5.

Table 3.2-34. Maximum CO Concentrations at High Traffic Volume Intersections—

 Proposed Project without Mitigation (intersection numbers in parenthesis)

	1-Hour Concentration (ppm)	8-Hour Concentration (ppm)
Project Year 2015	•	
Gaffey Street and 1 st Street (9)	5.9	4.63
Gaffey Street and I-110 ramps (10)	6.4	4.98
Harbor Boulevard and O'Farrell Street (29)	6.1	4.77
Harbor Boulevard and Swinford Street/SR-47 ramp (26)	6.4	4.98
Gaffey Street and 5 th Street (8)	5.6	4.42
Maximum in 2015	6.4	4.98
Project Year 2037	•	
Gaffey Street and 1 st Street (9)	4.8	3.86
Gaffey Street and I-110 ramps (10)	5.0	4.00
Harbor Boulevard and O'Farrell Street (29)	4.9	3.93
Harbor Boulevard and 7 th Street (22)	4.7	3.79
Maximum in 2037	5.0	4.00
	20	9

8-Hour concentrations include a background concentration of 3.3 ppm for both 2015 and 2037. A persistence factor of 0.7 was used to convert the 1-hour modeled concentration to an 8-hour concentration.

CALINE4 was run with weekend meteorological conditions of 1.0 meters per second (m/s) wind speed, stability D, 14.8 °C temperature, and 25° standard deviation of wind direction. It was also run with morning and evening weekday meteorological conditions of 0.5 m/s wind speed, stability G, 12.0 °C temperature, and 10° standard deviation of wind direction.

8

2

3

4

5

6 7

8 9

10

11 12

13

14

15

16

17

18 19

Parking Structure Modeling

Emission source locations for the proposed 3-level (2-story) parking structure and alternatives were determined from the proposed parking maps. The parking structure was modeled as a volume source using the dimensions of the proposed structure.

Emissions for departing vehicles (assuming all cold starts) were assumed to occur from 9:00 a.m. until noon. Emissions from arriving vehicles were assumed to occur from noon to 3:00 p.m. The parking structure was assumed to operate at maximum predicted parking demand levels and at full parking capacity. Vehicles within the parking structure were assumed to travel on average one and half times the longest length of the structure before exiting as well as entering. Also, the additional emissions associated with the parking vehicles as they move along the contiguous portion of Harbor Boulevard were included as extended area sources.

When modeling emissions from parking activities, receptors were placed in a grid with 50-meter spacing. Initial tests using SCREEN3 were used to determine the appropriate extent of the domain. Nearby sensitive receptors were included in the analysis. The short-term 1-hour and 8-hour CO concentrations were evaluated from the modeling of the parking garage activities. The results of this analysis are presented in Table 3.2-35. The results show that CO concentrations would not exceed the CO standards during any proposed project study years.

20Table 3.2-35. Maximum CO Concentrations at the Proposed Parking Structure—21Proposed Project without Mitigation

Project Year	1-Hour Concentration (ppm)	8-Hour Concentration (ppm)
Modeled CO at Predicted Parking D	emand	
2011	4.1	3.36
2015	4.1	3.35
2022	4.0	3.35
2037	4.0	3.34
Modeled CO at Full Parking Utiliza	tion	
2011	4.2	3.43
2015	4.1	3.40
2022	4.1	3.37
2037	4.0	3.35
Most Stringent Standard	20	9
Notes:	· · ·	
1-hour concentrations include a backgroun	d concentration of 4.0 ppm for	all modeled years.
8-hour concentrations include a backgroun	d concentration of 3.3 ppm for	all modeled years.

1	
2	CEQA Impact Determination
3	Significant impacts would not occur because CO standards would not be exceeded.
4	Mitigation Measures
5	No mitigation is required.
6	Residual Impacts
7	Impacts would be less than significant.
8	NEPA Impact Determination
9	Significant impacts would not occur because CO standards would not be exceeded.
10	Mitigation Measures
11	No mitigation is required.
12	Residual Impacts
13	Impacts would be less than significant.
14 15	Impact AQ-6: The proposed Project would not create an objectionable odor at the nearest sensitive receptor.
16 17 18 19 20 21 22 23	Operation of the proposed Project would increase air pollutants due to the combustion of diesel fuel. Some individuals might find diesel combustion emissions to be objectionable in nature, although quantifying the odorous impacts of these emissions on the public is difficult. The mobile nature of most proposed project emission sources would help to disperse proposed project emissions, and the distance between proposed project emission sources and the nearest residents is expected to be far enough to not only disperse these emissions adequately but reduce their impact to below objectionable odor levels.
24	CEQA Impact Determination
25 26 27	As a result of the above, the potential is low for the proposed Project to produce objectionable odors that would affect a sensitive receptor. Significant odor impacts under CEQA, therefore, are not anticipated.
28	Mitigation Measures
29	No mitigation is required.

1	Residual Impacts
2	Impacts would be less than significant.
3	NEPA Impact Determination
4 5 6	As a result of the above, the potential is low for the proposed Project to produce objectionable odors that would affect a sensitive receptor. Significant odor impacts under NEPA, therefore, are not anticipated.
7	Mitigation Measures
8	No mitigation is required.
9	Residual Impacts
10	Impacts would be less than significant.
11 12	Impact AQ-7: The proposed Project would expose receptors to significant levels of TACs.
13 14 15 16 17 18 19 20 21 22 23 24	Proposed project operations would emit TACs that could affect public health. An HRA spanning the years 2009–2078 was conducted consistent with both CARB and SCAQMD policies (Port of Los Angeles 2008). The HRA was used to evaluate possible health impacts from the emissions of TACs associated with proposed project operations. The HRA was conducted following the methodology as developed in <i>The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments (OEHHA 2003)</i> and <i>Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics Hot Spots Information and Assessment Act</i> (SCAQMD 2005). The approach is consistent with the Hotspots Analysis and Reporting Program (HARP), version 1.3 (CARB 2006). The approach used the modeled output from the AERMOD dispersion model. The complete HRA report is included in Appendix D3 of this EIS/EIR.
25 26 27 28 29 30 31 32 33 34 35	The main sources of TACs from proposed project operations would be DPM emissions from cruise vessels, terminal equipment, and motor vehicles. Also included in the HRA analysis are the construction related emissions spanning the construction period. For health effects resulting from long-term exposure, CARB considers DPM as representative of the total health risks associated with the combustion of diesel fuel. TAC emissions from non-diesel sources (such as gasoline engines) and non-internal combustion sources (such as auxiliary boilers) were also evaluated in the HRA, although their impacts were minor for long-term exposure in comparison with DPM. Since the proposed Project would generate emissions of DPM, Impact AQ-7 also discusses the effects of ambient PM on increased mortality and morbidity.

2

3

4

5

The HRA evaluated three different types of health effects: individual lifetime cancer risk, chronic non-cancer hazard index, and acute non-cancer hazard index. Individual lifetime cancer risk is the additional chance for a person to contract cancer after a lifetime of exposure to proposed project emissions. The "lifetime" exposure duration assumed in this HRA is 70 years for a residential receptor.

- 6 The chronic hazard index is a ratio of the long-term average concentrations of TACs 7 in the air to established reference exposure levels. A chronic hazard index below 1.0 8 indicates that adverse non-cancer health effects from long-term exposure are not 9 expected. Similarly, the acute hazard index is a ratio of the short-term average 10 concentrations of TACs in the air to established reference exposure levels. An acute 11 hazard index below 1.0 indicates that adverse non-cancer health effects from short-12 term exposure are not expected.
- 13 For the determination of significance from a CEQA standpoint, the HRA determined 14 the incremental increase in health effect values due to the proposed Project by 15 estimating the net change in impacts between the proposed Project and CEQA 16 baseline conditions. For the determination of significance from a NEPA standpoint, 17 the HRA determined the incremental increase in health effect values due to the 18 proposed Project by estimating the net change in impacts between the proposed 19 Project and NEPA baseline. Both of these incremental health effect values (proposed 20 Project minus CEQA baseline and proposed Project minus NEPA baseline) were compared to the significance thresholds for health risk described in Section 3.2.4.2. 21
- 22To estimate cancer risk impacts, VOC and DPM emissions were projected over a2370-year period, from 2009 through 2078. This 70-year projection of emissions was24done for the proposed Project, CEQA baseline, and NEPA baseline to enable a proper25calculation of the CEQA and NEPA cancer risk increments. To calculate the 70-year26emissions for vessels, emissions were calculated for each segment of transit and27hoteling for each analysis year; the emissions were then interpolated for intermediate28years and held constant at 2037 levels for years beyond 2037.
- 29 For landside operations, estimates of activity levels and emission factors were made for each year from 2009 through 2078. Yearly equipment activity levels for the years 30 between the proposed project analysis years were interpolated for the proposed 31 Project and NEPA baseline. Activity levels after 2037 were held constant at their 32 2037 values. For the CEOA baseline, activity levels were held constant at their 2006 33 34 values for all years. Where applicable, yearly emission factors were allowed to change with time in accordance with normal fleet turnover rates (for terminal 35 36 equipment, harbor craft, and motor vehicles) and the existing regulations and 37 agreements listed in Table 3.2-8.
- 38Table 3.2-37 presents the maximum predicted health impacts associated with the39proposed Project without mitigation. The table includes estimates of individual40lifetime cancer risk, chronic non-cancer hazard index, and acute non-cancer hazard41index at the maximally exposed residential, occupational, sensitive, student, and42recreational receptors. Results are presented for the proposed Project, CEQA

1 2	baseline, NEPA baseline, CEQA increment (proposed Project minus CEQA baseline), and NEPA increment (proposed Project minus NEPA baseline).
2 3 4 5 6 7 8 9 10 11 12	For each receptor type, the various health values in Table 3.2-37 often occur at different locations. This means that the CEQA increment cannot necessarily be determined by subtracting the CEQA baseline result from the proposed Project result in the table. Likewise, the NEPA increment cannot necessarily be determined by subtracting the NEPA increment cannot necessarily be determined by subtracting the NEPA baseline result from the proposed Project result in the table. Instead, the increments must be subtracted at each of the hundreds of modeled receptors, and the receptor with the highest difference is selected as the maximum increment. The example in Table 3.2-36 shows how the maximum residential CEQA cancer risk increment of 112 in a million in Table 3.2-37 was determined by examining the predicted risks at two modeled receptors.

Table 3.2-36. Example Calculation of CEQA Cancer Risk Increment

Fine Grid Receptor No. 82							
Proposed Project cancer risk impact 196.1 in a million							
CEQA baseline cancer risk impact	84.6 in a million						
CEQA increment	196.1 -84.6=111.5 in a million						
This receptor is not the location of the maximum proposed project impact or the maximum CEQA baseline impact. Nevertheless, the CEQA increment of 111.5 in a million (rounded to 112 in a million) is the highest increment of any modeled residential receptor. Therefore, this receptor is the location of the maximum CEQA increment.							
Coarse Receptor No. 711 Proposed Project cancer risk impact 341 in a million							
CEQA baseline cancer risk impact	361 in a million						
CEQA increment 341 – 361= -20 in a million							
This receptor is the location of the maximum proposed project impact of 341 in a million shown in Table 3.2-37. However, the CEQA increment of -20 in a million is less than the CEQA increment at Receptor No. 82. Therefore, this receptor is not the location of the maximum CEQA increment.							

Although the example in Table 3.2-36 above shows the CEQA cancer risk increment being calculated at two modeled receptors, the complete determination of the maximum increment involves this same type of calculation at hundreds of modeled receptors. The calculation of the NEPA increment, the increments for the chronic and acute noncancer hazard indices, and the PM10 increments addressed in Impact AQ-4 are also done this way.

		Maximum Predicted Impact					
Health Impact	Receptor Type	Proposed Project	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Cancer	Residential	341 x 10 ⁻⁶	379 x 10 ⁻⁶	112 x 10 ⁻⁶	139 x 10 ⁻⁶	202 x 10 ⁻⁶	10×10^{-6}
Risk		(341 in a million)	(379 in a million)	(112 in a million)	(139 in a million)	(202 in a million)	(10 in a million)
	Occupational	387 x 10 ⁻⁶	992 x 10 ⁻⁶	176 x 10 ⁻⁶	171 x 10 ⁻⁶	251 x 10 ⁻⁶	
		(387 in a million)	(992 in a million)	(176 in a million)	(171 in a million)	(251 in a million)	
	Recreational	594 x 10 ⁻⁶	1,522 x 10 ⁻⁶	270 x 10 ⁻⁶	263 x 10 ⁻⁶	385 x 10 ⁻⁶	
		(594 in a million)	(1,522 in a million)	(270 in a million)	(263 in a million)	(385 in a million)	
	Sensitive	97 x 10 ⁻⁶	120 x 10 ⁻⁶	12 x 10 ⁻⁶	52 x 10 ⁻⁶	58 x 10 ⁻⁶	
		(97 in a million)	(120 in a million)	(12 in a million)	(52 in a million)	(58 in a million)	
	Student	6 x 10 ⁻⁶	8 x 10 ⁻⁶	1 x 10 ⁻⁶	2 x 10 ⁻⁶	4 x 10 ⁻⁶	
		(6 in a million)	(8 in a million)	(1 in a million)	(2 in a million)	(4 in a million)	
Chronic	Residential	0.53	0.69	0.09	0.44	0.13	
Hazard Index	Occupational	1.16	1.72	0.38	1.04	0.42	
	Recreational	1.16	1.72	0.38	1.04	0.42	1.0
	Sensitive	0.13	0.13	0.02	0.11	0.03	
	Student	0.13	0.11	0.02	0.10	0.03	
Acute	Residential	1.64	2.40	1.42	1.36	1.26	
Hazard Index	Occupational	2.56	3.07	2.51	1.76	1.46	
	Recreational	2.56	3.07	2.51	1.76	1.46	1.0
	Sensitive	0.86	0.51	0.73	0.44	0.68	
	Student	0.54	0.42	0.41	0.29	0.34	

1 **Table 3.2-37.** Maximum Health Impacts Associated with the Proposed Project without Mitigation

Notes:

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents the proposed Project minus the CEQA baseline. The NEPA increment represents the proposed Project minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same

			Maxin	num Predicted	Impact		
Health Impact	Receptor Type	Proposed Project	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
		ed for Alternative 5	5.				
	sent the receptor l vould be less than	ocations with the n these values.	naximum impac	ets or increments.	. The impacts o	r increments at a	all other
The cancer	risk values repor	ted in this table for	the residential	receptor are base	ed on the 80th p	ercentile breathin	ng rate.
		half the ships were			with a 4.5% sul	fur content and t	the other half
were assun	ned to use the ave	erage residual fuel of	oil of 2.7% sulfu	ir content			
		OA Impost Da	torminatio	-			
	CE	QA Impact De	eterminatio	n			
	Tab	le 3.2-37 shows	that the max	kimum CEOA	cancer risk i	increment ass	ociated with
		unmitigated pro					
	recr	eational recepto	or. This risk	value exceeds	the significa	ance criterion	of 10 in a
		ion and would					
		kimum recreatio					
		meters northea cer risk increme					· ·
		dential receptor					
		e-aboards). The					
	The	maximum chro	onic hazard ir	ndex CEOA ir	ncrement asso	ociated with t	he
		nitigated propos					
	• •	es. The acute ha		· ·			
		ificance thresh				pes, but signi	ficant for
	resi	dential, occupat	ional, and re	creational rec	eptors.		
	<u>Miti</u>	gation Measu	res				
	Imp	lement Mitigati	on Measures	MM AQ-9 th	nrough MM A	AQ-24.	
	Res	sidual Impacts					
	Tab	le 3.2-38 preser	nts a summar	y of the maxin	mum health i	mpacts that w	vould occur
		n operation of th					
		ild reduce the m					
		ject by about 67 aced by about 1					
		iced by about 1					ould be
	The	data in Table 3	.2-38 show t	hat the maxim	num CEOA c	ancer risk inc	crement after
		gation is predic					
	The	maximum resid	dential CEQA	A cancer risk i	increment aft	er mitigation	is predicted
		e less than 1 in					
	thre	shold. The CE	QA cancer ris	sk increment a	also exceeds	the threshold	at the

- occupational receptor. These exceedances are considered significant impacts under CEQA.
 The maximum chronic hazard index CEQA increment would remain less than
- 4 5

The maximum chronic hazard index CEQA increment would remain less than significant for all receptor types. The acute hazard index CEQA increment is predicted to remain significant at occupational, residential, and recreational receptors.

6 **Table 3.2-38.** Maximum Health Impacts Associated With the Proposed Project with Mitigation

Health Impact		Maximum Predicted Impact					
	Receptor Type	Proposed Project	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	
Cancer Risk	Residential	111 x 10 ⁻⁶	379 x 10 ⁻⁶	<1 x 10 ⁻⁶	139 x 10 ⁻⁶	15 x 10 ⁻⁶	10 × 10 ⁻⁶
		(111 in a million)	(379 in a million)	(<1 in a million)	(139 in a million)	(15 in a million)	(10 in a million)
	Occupational	86 x 10 ⁻⁶	992 x 10 ⁻⁶	16 x 10 ⁻⁶	171 x 10 ⁻⁶	25 x 10 ⁻⁶	
		(86 in a million)	(992 in a million)	(16 in a million)	(171 in a million)	(25 in a million)	
	Recreational	132 x 10 ⁻⁶	1,522 x 10 ⁻	25 x 10 ⁻⁶	263 x 10 ⁻⁶	38 x 10 ⁻⁶	
		(132 in a million)	⁶ (1,522 in a million)	(25 in a million)	(263 in a million)	(38 in a million)	
	Sensitive	47 x 10 ⁻⁶	120 x 10 ⁻⁶	<1 x 10 ⁻⁶	52 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(47 in a million)	(120 in a million)	(<1 in a million)	(52 in a million)	(<1 in a million)	
	Student	2 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(2 in a million)	(8 in a million)	(<1 in a million)	(2 in a million)	(<1 in a million)	
Chronic	Residential	0.44	0.69	0.04	0.44	0.07	1.0
Hazard Index	Occupational	1.04	1.72	0.20	1.04	0.16	
	Recreational	1.04	1.72	0.20	1.04	0.16	
	Sensitive	0.11	0.13	0.00	0.11	0.00	
	Student	0.10	0.11	0.00	0.10	0.00	
Acute	Residential	1.55	2.40	1.10	1.36	0.94	1.0
Hazard Index	Occupational	1.97	3.07	1.74	1.76	1.07	
	Recreational	1.97	3.07	1.74	1.76	1.07	
	Sensitive	0.73	0.51	0.60	0.44	0.55	
	Student	0.42	0.42	0.29	0.29	0.23	

Health Impact			Maxim	um Predicted I	mpact		Significanc Threshold	
	Receptor Type	Proposed Project	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment		
Exceedand only.	ces of the signific	ance criteria are in	bold. The signif	icance threshold	s apply to the Cl	EQA and NEPA	increments	
the increm	ents cannot neces	night not necessari sarily be determin 2.2-36 illustrates	ed by simply sub	tracting the base	line impacts from			
minus the		sents the proposed NEPA baseline en						
	esent the receptor would be less that	locations with the these values.	maximum impac	ts or increments.	The impacts or	increments at a	ll other	
The cance	r risk values repo	rted in this table fo	or the residential i	receptor are base	d on the 80th pe	rcentile breathin	g rate.	
		half the ships were erage residual fuel			with a 4.5% sulf	fur content and the	he other half	
	the rec: mil ma 250	ble 3.2-37 show unmitigated pr reational recept lion and would ximum recreati meters west o	oposed Projec or. This risk be considered onal incremen f Berths 91–92	t is predicted value exceeds l a significant t is in the Inne	to be 385 in a the significat impact. The er Harbor Par	a million (385 nce criterion receptor loca king area, ap	5×10^{-6}), at a of 10 in a string of the for the	
		exceed the threshold at occupational, sensitive, and residential receptors. These exceedances are considered significant impacts under NEPA.						
		eedances are co		onal, sensitive	e, and residen	tial receptors	uld also	
	unr typ sigi	eedances are co e maximum chr nitigated propo es. The acute h nificance thresh dential, occupa	onsidered sign onic hazard in sed Project is nazard index N nold for sensiti	onal, sensitive ificant impact dex NEPA in predicted to b IEPA increme ive and studer	e, and residen is under NEP crement asso e less than signation of the predicte	tial receptors A. ciated with th gnificant for a d to be lower	ald also These These all receptor than the	
	unr typ sign resi	e maximum chr nitigated propo es. The acute h nificance thresh	onsidered sign onic hazard in sed Project is hazard index N hold for sensiti ational, and rea	onal, sensitive ificant impact dex NEPA in predicted to b IEPA increme ive and studer	e, and residen is under NEP crement asso e less than signation of the predicte	tial receptors A. ciated with th gnificant for a d to be lower	ald also These These all receptor than the	
	unr typ sign resi <u>Mit</u>	e maximum chr nitigated propo es. The acute h nificance thresh dential, occupa	onsidered sign onic hazard in sed Project is hazard index N hold for sensiti titional, and rec <u>ires</u>	onal, sensitive ificant impact dex NEPA in predicted to b IEPA increme ive and studer creational.	e, and residen s under NEP crement asso e less than sig ent is predicte it receptor typ	tial receptors A. ciated with th gnificant for a d to be lower bes, but signif	ald also These These all receptor than the	
	unr typ sign resi <u>Mit</u> Imj	e maximum chr nitigated propo es. The acute h nificance thresh dential, occupa igation Measu	onsidered sign onic hazard in sed Project is hazard index N hold for sensiti ational, and rea <u>tres</u> tion Measures	onal, sensitive ificant impact dex NEPA in predicted to b IEPA increme ive and studer creational.	e, and residen s under NEP crement asso e less than sig ent is predicte it receptor typ	tial receptors A. ciated with th gnificant for a d to be lower bes, but signif	ald also These These all receptor than the	

2

3

4

5

6

NEPA cancer risk increment would also exceed the threshold at the occupational receptor. These exceedances are considered significant impacts under NEPA.

The maximum chronic hazard index NEPA increment would remain less than significant for all receptor types. The acute hazard index NEPA increment is predicted to be significant for occupational and recreational receptors.

Particulates: Morbidity and Mortality

- 7 Health risk assessments are not diagnostic studies; they are an estimate of the 8 potential for current or future exposures to result in health risks to a broad population. 9 Alternatively, epidemiological studies look at past exposure and try to link that 10 exposure, often in a population, to a disease. Mortality is a measure of the number of deaths in a population, scaled to the size of that population, per unit time. Morbidity 11 12 refers to the number of individuals who have contracted a disease during a given time 13 period (the incidence rate) or the number who currently have that disease (the 14 prevalence rate), scaled to the size of the population.
- 15Of great concern to public health are the particles small enough to be inhaled into the16deepest parts of the lung. Respirable particles (particulate matter less than 1017micrometers in diameter) can accumulate in the respiratory system and aggravate18health problems such as asthma, bronchitis, and other lung diseases. Children, the19elderly, exercising adults, and those suffering from asthma are especially vulnerable20to adverse health effects of both PM10 and PM2.5.
- 21The proposed Project would emit DPM during construction and operation. This22discussion looks at potential health effects caused by the PM2.5 portion of DPM23emissions as well as existing standards and thresholds developed by regulatory24agencies to address health impacts.
- 25 <u>Health Effects of DPM Emissions</u>
- 26 Epidemiological studies substantiate the correlation between the inhalation of 27 ambient PM and increased mortality and morbidity (CARB 2002, 2007c). In 2006, 28 CARB conducted a study to assess potential health effects associated with exposure 29 to air pollutants arising from ports and goods movement in the state (CARB 2006a, 30 2006b). CARB's assessment evaluated numerous studies and research efforts and 31 focused on PM and ozone, which represent a large portion of known risk associated with exposure to outdoor air pollution. CARB's analysis of various studies allowed 32 33 large-scale quantification of health effects associated with emission sources as well 34 as premature deaths and increased cases of disease linked to exposure to PM and ozone from ports and goods movement. Table 3.2-39 presents the statewide PM and 35 36 ozone health effects identified by CARB (CARB 2006b).

1	
2	

Table 3.2-39. Annual 2005 Statewide PM and Ozone Health Effects Associated withPorts and Goods Movement in California^a

Health Outcome	Cases Per Year	Uncertainty Range (cases per year) ^b
Premature Death	2,400	720 to 4,100
Hospital Admissions (respiratory causes)	2,000	1,200 to 2,800
Hospital Admissions (cardiovascular causes)	830	530 to 1,300
Asthma and Other Lower Respiratory Symptoms	62,000	24,000 to 99,000
Acute Bronchitis	5,100	-1,200 to 11,000
Lost Days of Work	360,000	310,000 to 420,000
Minor Restricted Activity Days	3,900,000	2,200,000 to 5,800,000
School Absence Days	1,100,000	460,000 to 1,800,000
Notes: ^a Does not include contributions from partic	le sulfate formed from SO	wemissions which are being

^a Does not include contributions from particle sulfate formed from SO_X emissions, which are being addressed with several ongoing emissions, measurement, and modeling studies.

^b Range reflects uncertainty in health concentration-response functions but not in emissions or exposure estimates. A negative value as a lower bound of the uncertainty range is not meant to imply that exposure to pollutants is beneficial; rather, it is a reflection of the adequacy of the data used to develop these uncertainty range estimates.

3

4

5

6

7

8

9

10

11 12

13

14

15

16

It should be noted that PM in ambient air is a complex mixture that varies in size and chemical composition; it also varies spatially and temporally. Different types of particles may cause different effects and with different time courses (perhaps only in susceptible individuals). The interaction between PM and gaseous copollutants adds additional complexity because, in ambient air pollution, a number of pollutants tend to co-occur and have strong interrelationships with each other (e.g., PM, SO₂, NO₂, CO, and ozone) (AQMD 2007; CARB 2006a, 2006b).

Nevertheless, various studies have been published over the past 10 years that substantiate the correlation between the inhalation of ambient PM and increased cases of premature death from heart and/or lung diseases (Pope et al. 1995, 2002; Jerrett et al. 2005; Krewski et al. 2001). Studies such as these serve as the fundamental basis for PM air quality standards promulgated by AQMD, CARB, EPA, and the World Health Organization.

17Although epidemiologic studies are numerous, few toxicology studies have18investigated the responses of human subjects specifically exposed to DPM, and the19available epidemiologic studies have not measured the DPM content of the outdoor20pollution mix. CARB has made quantitative estimates of the public health impacts of

3

4

5

6

7

8

9

10 11

12

13

14 15

16

17

18 19

21

22 23

24

25

26

27 28

29

DPM based on the assumption that DPM is as toxic as the general ambient particulate matter mixture (CARB 2006c).

CARB's 2006 study concluded that there are significant uncertainties involved in quantitatively estimating the health effects of exposure to outdoor air pollution. Uncertain elements include emission and population exposure estimates, concentration-response (C-R) functions, baseline rates of mortality and morbidity that are entered into concentration response functions, and the occurrence of additional non-quantified adverse health effects (CARB 2006d). Many of these elements have a factor-of-two uncertainty. Numerous new studies, ongoing and proposed, would likely increase scientific knowledge and provide better estimates of DPM health effects.

In 2008, CARB prepared a staff report for a draft methodology to estimate premature deaths associated with long-term exposure to PM2.5 (CARB 2008). The document reevaluated the relative risk of premature death due to PM2.5 exposure based on relevant scientific literature. The methodology developed a new relative risk factor of a 10% increase in premature death per 10 μ g/m³ increase in PM2.5 exposures (with an uncertainty of 3% to 20%). Using this new factor, CARB staff estimated that PM contributes 3,900 premature deaths statewide on an annual basis (CARB 2008).

20 Existing CEQA Thresholds

Concentration Thresholds. Regulatory agencies set protective health-based shortand long-term ambient concentration standards designed "in consideration of public health, safety, and welfare, including, but not limited to, health, illness, irritation to the senses, aesthetic value, interference with visibility, and effects on the economy" (Health and Safety Code Section 39606(a)(2)). Ambient Air Quality Standards (AAQS) specify concentrations and durations of exposure to air pollutants that reflect the relationships between the intensity and composition of air pollution and undesirable effects. The fundamental objective of an AAQS is to provide a basis for preventing or abating the adverse health or welfare effects of air pollution.

30In developing the AAQS, federal, state, and local air quality regulatory agencies31consider existing health science literature and recommendations from the OEHHA.32Standards are set to ensure that sensitive population subgroups are protected from33exposure to levels of pollutants that may cause adverse health effects. In the case of34PM, CAAQS are peer reviewed by the Air Quality Advisory Committee (AQAC), an35external scientific peer review committee composed of world-class scientists in the36PM field.

Within the SCAB, SCAQMD further identifies localized ambient significance
thresholds. These ambient concentration thresholds target those pollutants that
SCAQMD has determined are most likely to cause or contribute to an exceedance of
the NAAQS or CAAQS. The localized standards for PM are more stringent than
either the NAAQS or the CAAQS. SCAQMD's localized significance threshold for
PM10 and PM2.5 is 10.4 micrograms per cubic meter (µg/m³) and 2.5 µg/m³ for

2

3

4

5

6

7 8

9

10 11

12

13

14

15

16 17 construction and operation, respectively. These values are based on CARB guidance and epidemiological studies showing significant toxicity (resulting in mortality and morbidity) related to exposure to fine particles. The proposed Project conducted dispersion analysis to determine ambient air concentrations and determined localized significance (Section 3.2.4.4).

Emission Thresholds. PM emissions also affect air quality on a regional basis. When fugitive dust enters the atmosphere, the larger particles of dust typically fall quickly to the ground, but smaller particles, less than 10 microns in diameter, may remain suspended for longer periods, giving the particles time to travel across a regional area, affecting receptors at some distance from the original emissions source. For this reason, SCAQMD established mass daily thresholds for construction and operational activities for PM. The mass daily thresholds are emissions-based thresholds used to assess the potential significance of criteria air pollutants at the regional level. Emissions that exceed the regional significance thresholds are mass daily emissions that may have significant adverse regional effects. The proposed Project quantified mass daily emissions and determined significance (Section 3.2.4.3).

- 18 HRA Thresholds. SCAQMD specifies thresholds for cancer risk and non-cancer 19 chronic and acute hazard impacts. The cancer risk calculation methodology accounts 20 for the cancer potency of a pollutant and the expected dose for exposure pathways. 21 For chronic non-cancer and acute exposures, maximum annual concentrations and 22 peak daily concentrations, respectively, are compared with the OEHHA Reference 23 Exposure Levels (REL), which are used as indicators of potential adverse non-cancer 24 health effects. The RELs are concentrations at or below which no adverse health 25 effects are anticipated in the general human population and based on the most 26 sensitive relevant adverse health effect reported in the medical and toxicological 27 literature. RELs are designed to protect the most sensitive individuals in the 28 population by the inclusion of margins of safety.
- 29 Risk assessment and health impact determination methodologies rely on risk 30 assessment health values published by OEHHA, which in turn are based on results of 31 numerous toxicology and epidemiology studies. For DPM, OEHHA has established 32 health values for cancer and non-cancer chronic effects to be used in quantification of 33 health impacts. The proposed Project quantified both cancer risk and non-cancer chronic impacts from DPM exposure, per OEHHA risk assessment methodology. In 34 35 addition, LAHD adopted SCAQMD's CEQA threshold of 10 in a million for excess 36 cancer risk and a 1.0 hazard index in evaluating new projects (Section 3.2.4.3). The 37 thresholds set by EPA, CARB, and SCAQMD for localized, regional, and toxic 38 impacts are designed to account for health impacts, such as premature deaths, cardiac 39 and respiratory hospitalizations, asthma, and lost work/school days. The proposed 40 Project has quantified the localized, regional, and toxic impacts of DPM (Section 41 3.2.4.3).

1	Quantifying Morbidity and Mortality
2 3 4 5 6 7 8 9 10	CARB's study (CARB 2006a, 2006b) used a health effects model, based on multiple epidemiological studies, that quantified the expected non-cancer impacts of mortality and morbidity from ambient PM exposure (e.g., premature deaths, cardiac and respiratory hospitalizations, asthma and other lower respiratory symptoms, and lost work/school days). The study focused on large-scale applications such as the benefits of attaining the state air quality standard for PM2.5, the impacts of goods movement emissions on a statewide and broad regional level, and the impacts of combined operations at the ports of Los Angeles and Long Beach (CARB 2006a, 2006b).
11 12 13 14 15 16 17 18	CARB staff members have stated that it would be neither appropriate nor meaningful to apply the health effects model used in the 2006 study to quantify the mortality and morbidity impacts of PM on a project the size of the proposed Project because values quantified for a specific location would fall within the margin of error for the methodology (CARB 2007). Because CARB's methodology was designed for large-scale projects that affect a much larger population, the methodology may not be sensitive enough to provide accurate results for projects that affect much smaller populations.
19 20 21 22 23 24	In 2008, CARB staff developed a draft methodology to estimate premature deaths associated with long-term exposure to PM2.5 in California. The 2008 draft methodology focused on statewide annual impacts, but also included a brief section that discussed a project-specific methodology (CARB 2008) for long-term mortality. The methodology outlined in CARB's 2008 staff report was used to evaluate long-term mortality for the proposed Project.
25 26 27 28 29 30 31	Per CARB's 2008 draft methodology, C-R functions to determine long-term mortality impacts. C-R functions are equations that relate the change in the number of adverse health effect incidences in a population to a change in pollutant concentration experienced by that population. Normally, epidemiological studies are used to estimate the relationship between a pollutant and a particular health endpoint at different locations. Most common C-R functions are represented in log-linear form.
32	This is the basic form of a C-R function:
33	$\Delta y = y_0 (e^{g\Delta_{PM-1}}) * population$
34	where:
35 36	Δy = changes in the incidence of a health endpoint corresponding to a particular change in PM;
37	y_0 = baseline incidence rate per person;

1 2	β = coefficient; this coefficient is based on the relative risk that is associated with a particular concentration and varies from one study to another; and
3	ΔPM = change in PM concentration.
4 5 6 7 8	Using the guidance presented in CARB's draft 2008 documents and a coefficient based on a 1.1 relative risk that is associated with a mean change of 10 μ g/m ³ (CARB 2008), the following represents the result of a sample calculation for long-term mortality due to PM2.5 for the proposed Project (with mitigation). The calculation is dependent on the following:
9	 Population.
10 11	Change in annual mitigated PM2.5 concentration for each census block in µg/m ³ (mitigated proposed Project minus CEQA baseline, as shown in Figure 3.2-15).
12 13	The increase in incidence of long-term mortality corresponding to a change in PM2.5 concentration for each analysis year would be as follows:
14	 Analysis year 2011—0.073 increase in incidence relative to CEQA baseline.
15	 Analysis year 2015—0.025 increase in incidence relative to CEQA baseline.
16	 Analysis year 2022—0.024 increase in incidence relative to CEQA baseline.
17	 Analysis year 2037—0.048 increase in incidence relative to CEQA baseline.
 18 19 20 21 22 23 24 25 26 27 28 29 30 	It is important to note that parameters in C-R functions can vary widely, depending on the study. For example, some studies exclude accidental deaths from their mortality counts, while others include all deaths. Furthermore, some studies consider only members of a particular subgroup of the population, e.g., individuals 30 and older, while other studies consider the entire population in the study location. When applying a C-R function from an epidemiological study to estimate changes in the incidence of a health endpoint corresponding to a particular change in PM in a location, it is important to use the appropriate value of the parameters for the C-R function. That is, the measure of PM, the type of population, and the characterization of the health endpoint should be the same, or as close as possible, as those used in the study that estimated the C-R function. The sample analysis presented here used parameters specified in CARB's 2008 draft methodology that derived an average and therefore conserving β coefficient.
31 32 33 34 35 36 37 38 39	Among the uncertainties in the risk estimates is the degree of transferability of the C- R functions from one geographical area to another. Many of the epidemiologic studies used by CARB/OEHHA include several California cities but not all. Another uncertainty stems from the issue of co-pollutants. Specifically, it is possible that some of the estimated health effects include the effects of both PM and other correlated pollutants. Finally, the studies used in developing the C-R functions do not usually take into consideration estimates of averting behaviors. Examples of averting behaviors include measures that prevent symptoms from occurring in the first place, such as avoiding strenuous exertion on days with high PM, staying

1 indoors, the use of filters, etc. However, perhaps the most compelling limitation to 2 use of C-R functions for site-specific projects is the consideration of whether it is 3 valid to apply the C-R functions to changes in ambient PM concentrations that are far below the thresholds used to develop the C-R functions. For example, the 4 5 CARB/OEHHA 2006 analysis applied a threshold of 18 µg/m³ for the long-term mortality C-R function because this was the lowest concentration level observed in 6 7 the long-term mortality studies evaluated. In other words, CARB/OEHHA assumed 8 that the C-R functions were continuous and differentiable down to threshold levels. 9 In the case of trying to quantify proposed Project-specific impacts, it may not be 10 appropriate to use C-R functions that were developed with a threshold significantly 11 higher than the change in PM due to the proposed Project.

Impact AQ-8: The proposed Project would not conflict with or obstruct implementation of an applicable AQMP.

- 14 Proposed project operations would produce emissions of nonattainment pollutants, 15 primarily in the form of diesel exhaust. The 2007 AQMP proposes emission 16 reduction measures that are designed to bring the SCAB into attainment of the state and national AAOS. The attainment strategies in these plans include mobile-source 17 control measures and clean fuel programs that are enforced at the state and federal 18 19 level on engine manufacturers and petroleum refiners and retailers; as a result, 20 proposed project operations would comply with these control measures. SCAQMD 21 also adopts AQMP control measures into SCAQMD rules and regulations, which are 22 then used to regulate sources of air pollution in the SCAB. Therefore, compliance 23 with these requirements would ensure that the proposed Project would not conflict 24 with or obstruct implementation of the AQMP.
- LAHD regularly provides SCAG with its Port-wide commercial forecasts for development of the AQMP. Therefore, the attainment demonstrations included in the 2007 AQMP account for the emissions generated by projected future growth at the Port. Because one objective of the proposed Project is to accommodate growth in the commercial cruise ship business at the Port, the AQMP accounts for the proposed 30 Project.
- 31 CEQA Impact Determination
 - The proposed Project would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under CEQA are not anticipated.
- 34 <u>Mitigation Measures</u>

32

33

- 35 No mitigation is required.
- 36 Residual Impacts
- 37 Impacts would be less than significant.

1		NEPA Impact Determination
2 3		The proposed Project would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under NEPA are not anticipated.
4		Mitigation Measures
5		No mitigation is required.
6		Residual Impacts
7		Impacts would be less than significant.
8		Impact AQ-9: The proposed Project would produce GHG
9		emissions that would exceed CEQA and NEPA baseline
10		levels.
11		Climate change, as it relates to man-made GHG emissions, is by nature a global
12		impact. An individual project may not generate enough GHG emissions to
13		significantly influence global climate change by itself (AEP 2007). The issue of
14		global climate change is, therefore, primarily a cumulative impact. Nevertheless, for
15		the purposes of this EIS/EIR, LAHD has opted to address GHG emissions as a
16		project-level impact as well as through a cumulative analysis as part of the larger
17		cumulative analysis in Chapter 6. In actuality, an appreciable impact on global
18		climate change would occur only when the proposed project GHG emissions
19		combine with GHG emissions from other man-made activities on a global scale.
20		Table 3.2-40 summarizes the total GHG construction emissions associated with the
20		proposed Project. The emissions are totaled over the entire multiple-year
22		construction period. The construction sources for which GHG emissions were
23		calculated include offroad construction equipment, onroad trucks, and workers'
24		commute vehicles.
25	Table 3.2-40. Tota	I GHG Emissions from Construction Activities—Proposed Project

25 **Table 3.2-40.** Total GHG Emissions from Construction Activities—Proposed Project

Total Emissions (Metric			s (Metric Ton	ns)
Emission Source	CO_2	CH_4	N_2O	CO_2e
Catalina Express Terminal	387.96	0.05	0.00	390.31
Cruise ship terminal Berths 91–93	0.00	0.00	0.00	0.00
Cruise ship parking facilities	1,565.24	0.22	0.02	1,574.73
North Harbor	4,213.91	0.59	0.04	4,239.47
Maritime Office Building—Crowley	234.81	0.03	0.00	236.23
Maritime Office Building—Millennium	235.05	0.03	0.00	236.47
Maritime Office Building—Lane Victory	235.05	0.03	0.00	236.47

San Pedro Waterfront Project EIS/EIR

	Total Emissions (Metric Tons)			s)
Emission Source	CO_2	CH_4	N_2O	CO ₂ e
Downtown Harbor	1,886.65	0.27	0.02	1,898.09
7 th Street Harbor	1,319.76	0.19	0.01	1,327.76
7 th Street Pier	1,159.91	0.16	0.01	1,166.94
Downtown Square	167.73	0.02	0.00	168.74
Downtown water feature	117.95	0.02	0.00	118.66
John S. Gibson Jr. Park	173.87	0.02	0.00	174.92
Ralph J. Scott Fireboat Museum	372.10	0.05	0.00	374.35
Los Angeles Maritime Museum renovation	0.00	0.00	0.00	0.00
Los Angeles Maritime Institute	252.83	0.04	0.00	254.36
Maritime Office Building	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 1	2,189.22	0.31	0.02	2,202.49
Ports O' Call Promenade—Phase 2	2,386.10	0.34	0.02	2,400.57
Ports O' Call Promenade—Phase 3	2,194.86	0.31	0.02	2,208.17
Southern Pacific Railyard demolition	282.14	0.04	0.00	283.85
Fishermen's Park	722.81	0.10	0.01	727.19
Ports O' Call redevelopment without restaurant	0.00	0.00	0.00	0.00
Ports O' Call Redevelopment Phase 1	2,163.88	0.30	0.02	2,177.00
Ports O' Call Redevelopment Phase 2	3,325.88	0.47	0.03	3,346.05
Ports O' Call Redevelopment with Restaurant	589.54	0.08	0.01	593.12
Ports O' Call Redevelopment Phase 3	1,701.85	0.24	0.02	1,712.18
Waterfront Red Car Maintenance Facility	615.44	0.09	0.01	619.17
Westway Terminal demolition	857.21	0.12	0.01	862.41
City Dock No. 1 promenade	2,448.96	0.34	0.02	2,463.82
Outer Harbor Cruise Terminal	7,390.55	1.04	0.07	7,435.37
Outer Harbor Park and promenade	1,090.88	0.15	0.01	1,097.50
San Pedro Park	1,111.59	0.16	0.01	1,118.33
Salinas De San Pedro/Youth Camp promenade	2,576.76	0.36	0.03	2,592.39
Sampson Way road improvements	886.34	0.12	0.01	891.72
Waterfront Red Car Line extension—Sampson Way	988.00	0.14	0.01	993.99
Waterfront Red Car Line extension—Cabrillo Beach	1,064.12	0.15	0.01	1,070.58
Waterfront Red Car Line extension—Outer Harbor	589.03	0.08	0.01	592.60
Waterfront Red Car Line extension—City Dock No. 1	601.82	0.08	0.01	605.47

	Total Emissions (Metric Tons)			
Emission Source	CO_2	CH_4	N_2O	CO ₂ e
Berth 240 fueling station	224.64	0.03	0.00	226.01
Total Emissions	48,324.43	6.79	0.49	48,617.48
NEPA Baseline	23,845.99	3.35	0.24	23,990.60
Proposed Project minus NEPA Baseline	24,478.44	3.44	0.25	24,626.88

Notes:

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

Emissions may not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 3 4 5 6	Table 3.2-41 summarizes the annual unmitigated GHG emissions that would occur in California from proposed project operations. The emission sources for which GHG emissions were calculated include cruise vessels, harbor craft, onroad trucks and other motor vehicles, terminal equipment, and electricity usage. The table also shows the net change in the proposed Project's GHG emissions relative to both the CEQA
7	and NEPA baselines.
8	CEQA Impact Determination
9	Table 3.2-40 shows that the total CO ₂ e emissions during proposed project
10	construction would be greater than the CEQA baseline (which is zero for
11	construction), and therefore is considered a significant impact under the CEQA
12	threshold of significance applied for this proposed project. Table 3.2-41 shows that
13	in each future project year, annual operational CO ₂ e emissions would increase
14	relative to the CEQA baseline. These increases are considered a significant impact

16 **Table 3.2-41.** Annual Operational GHG Emissions—Unmitigated Proposed Project

	Metric Tons Per Year			
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Project Year 2011				
Vessel transit and maneuvering	52,118	0.3	2.4	52,858
Vessel hoteling	18,464	0.1	0.8	18,726
Harbor craft	25,571	0.1	1.2	25,934

	Metric Tons Per Year			
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO ₂ e
Motor vehicles	16,661	3.1	3.4	17,773
Terminal equipment—fossil fueled	240	0.1	0.0	241
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,650
Total for Project Year 2011	138,669	3.9	7.9	141,188
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	9,399	-2.4	-1.5	8,880
NEPA baseline	114,668	3.7	6.8	116,85
Proposed Project minus NEPA baseline	24,001	0.2	1.1	24,334
Project Year 2015				
Vessel transit and maneuvering	52,451	0.3	2.4	53,190
Vessel hoteling	18,876	0.1	0.9	19,144
Harbor craft	23,083	0.1	1.0	23,41
Motor vehicles	67,755	8.6	9.8	70,977
Terminal equipment—fossil fueled	240	0.1	0.0	24
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,650
Total for Project Year 2015	188,020	9.4	14.2	192,624
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	58,750	3.1	4.8	60,312
NEPA baseline	170,307	8.3	12.0	174,215
Proposed Project minus NEPA baseline	17,713	1.1	2.2	18,409
Project Year 2022				
Vessel transit and maneuvering	53,786	0.3	2.4	54,550
Vessel hoteling	19,356	0.1	0.9	19,63
Harbor craft	22,659	0.1	1.0	22,98
Motor vehicles	71,663	7.3	8.8	74,549

	Metric Tons Per Year			
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO ₂ e
Terminal equipment—fossil fueled	240	0.0	0.0	241
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,656
Total for Project Year 2022	193,320	8.1	13.3	197,607
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	64,051	1.8	3.9	65,299
NEPA baseline	173,145	7.1	11.1	176,731
Proposed Project minus NEPA baseline	20,175	1.0	2.2	20,876
Project Year 2037				
Vessel transit and maneuvering	54,471	0.3	2.5	55,244
Vessel hoteling	19,699	0.1	0.9	19,979
Harbor craft	22,659	0.1	1.0	22,981
Motor vehicles	81,202	8.3	10.0	84,480
Terminal equipment—fossil fueled	240	0.0	0.0	241
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,656
Total for Project Year 2037	203,887	9.1	14.5	208,581
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	74,617	2.8	5.2	76,273
NEPA baseline	176,482	7.5	11.5	180,209
Proposed Project minus NEPA baseline	27,405	1.6	3.0	28,372

Notes:

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

		Metric Tons Per Year			
Project Scenario/Source Type		CO_2	CH_4	N_2O	CO ₂ e
Motor vehicles includ	e passenger cars, trucks,	busses, and shuttles.			
Terminal equipment i	ncludes equipment at the	Cruise Terminal and	Berth 87.		
	es presented in this table document was prepared able.				
NEPA baseline emiss	ions include as proposed	project elements the s	ame mitigation mea	asures identified for	Alternative 5.
	Measures that redu project emission so				m proposed
	proposed GHG em MM AQ-13, and M pollutant operation emissions.	issions. Mitigatio IM AQ-16 throug	n Measures MM n MM AQ-20, a	I AQ-9, MM AQ	would reduce Q-11 through d for criteria

Table 3.2-42. Proposed Project Applicability Review of Potential GHG Emission Reduction Strategies

Operational Strategy	Applicability to Proposed Project
Commercial and Industrial Design Features	
Vehicle Climate-Change Standards	Regulatory measure implemented by CARB
Diesel Anti-Idling	MM AQ-16 (trucks); also a regulatory measure implemented by CARB
Other Light-Duty Vehicle Technology	Regulatory measure implemented by CARB (standards will phase in starting 2009)
HFCs Reduction	Future regulatory measure planned by CARB
Transportation Refrigeration Units, Off Road Electrification, Port Electrification	MM AQ-9 (AMP for ships); also a future regulatory measure is planned by CARB
Alternative Fuels: Biodiesel blends	Future regulatory measure planned by CARB
Alternative Fuels: Ethanol or enhanced ethanol/gasoline blends	Future regulatory measure planned by CARB

Operational Strategy	Applicability to Proposed Project
Heavy-Duty Vehicle Emissions Reduction Measures	MM AQ-11 (VSRP for ships) and MM AQ-15 (truck emission restriction); Port-wide CAAP measure HDV2 (trucks); also a regulatory measure implemented by CARB
Reduced Venting in Gas Systems	Not applicable to the proposed Project
Building Operations Strategy	
Recycling	MM AQ-25; also a regulatory measure implemented by the Integrated Waste Management Board
Building Energy Efficiency	MM AQ-26 through MM AQ-29; also a regulatory measure implemented by the California Energy Commission
Green Buildings Initiative	Future regulatory measure planned by the State and Consumer Services and Cal/EPA
California Solar Initiative	MM AQ-29; also a future regulatory measure is planned by the California Public Utilities Commission
Note:	
These strategies are found in the California Climate A 2006) and CARB's Proposed Early Actions to Mitiga	Action Team's report to the Governor (State of California ate Climate Change in California (CARB 2007).

2 3 4 5	In addition, proposed project elements and mitigation measures were also developed in response to the Attorney Generals' May 2008 memo. Applicable mitigation measures include MMAQ-9, MMAQ-11 through MMAQ-13, and MM AQ-16 through MM AQ-20.
6	MM AQ-25. Recycling.
7 8	The terminal buildings shall achieve a minimum recycling rate of 40% by 2012 and 60% by 2015. Recycled materials shall include:
9	 white and colored paper;
10	 Post-it notes;
11	■ magazines;
12	■ newspaper;
13	■ file folders;
14	 all envelopes, including those with plastic windows;
15	 all cardboard boxes and cartons;
16	 all metal and aluminum cans;
17	 glass bottles and jars; and
18	■ all plastic bottles.

1 2 3 4 5	In general, products made with recycled materials require less energy and raw materials to produce than products made with unrecycled materials. This savings in energy and raw material use translates into GHG emission reductions. The effectiveness of this mitigation measure was not quantified due to the lack of a standard emission estimation approach.
6	MM AQ-26. Leadership in Energy and Environmental Design.
7 8 9 10 11 12	The cruise terminal building shall obtain the Leadership in Energy and Environmental Design (LEED) gold certification level. LEED certification is made at one of the following four levels, in ascending order of environmental sustainability: certified, silver, gold, and platinum. The certification level is determined on a point-scoring basis where various points are given for design features that address the following areas (U.S. Green Building Council 2005):
13	■ sustainable sites,
14	 water efficiency,
15	 energy and atmosphere,
16	 materials and resources,
17	 indoor environmental quality, and
18	 innovation and design process.
19 20 21 22 23	As a result of the above design guidelines, a LEED-certified building will be more energy efficient, thereby reducing GHG emissions compared with conventional building design. Electricity consumption at the on-terminal buildings represents about 7% of on-terminal electrical consumption and about 0.1% of overall proposed project GHG emissions.
24 25	Although not quantified in this analysis, implementation of this measure is expected to reduce the proposed Project's GHG emissions by less than 0.1%.
26	MM AQ-27. Compact Fluorescent Light Bulbs.
27	All interior terminal buildings shall use compact fluorescent light bulbs.
28 29 30 31	Fluorescent light bulbs produce less waste heat and use substantially less electricity than incandescent light bulbs. Although not quantified in this analysis, implementation of this measure is expected to reduce the proposed Project's GHG emissions by less than 0.1%.
32	MM AQ-28: Energy Audit.
33 34 35	The tenant shall conduct a third-party energy audit every 5 years and install innovative power-saving technology where feasible, such as power-factor correction systems and lighting power regulators. Such systems help maximize

1 2	usable electric current and eliminate wasted electricity, thereby lowering overall electricity use.
3 4 5	This mitigation measure targets primarily large on-terminal electricity demands, such as on-terminal lighting and shoreside electric gantry cranes, which consume the majority of on-terminal electricity and account for about 1% of overall proposed
6 7 8	project GHG emissions. Therefore, implementation of power-saving technology at the terminal could reduce overall proposed project GHG emissions by a fraction of 1%.
0	1 /0.
9	MM AQ-29. Solar Panels.
10	Solar panels shall be installed on the cruise terminal building.
11	Solar panels will provide the cruise terminal building with a clean source of
12	electricity and replace some of its fossil-fuel-generated electricity use. Although not
13	quantified in this analysis, implementation of this measure is expected to reduce the
14	proposed Project's GHG emissions by less than 0.1%.
15	MM AQ-30. Tree Planting.
16	Shade trees shall be planted around the cruise terminal building.
17	Trees act as insulators from weather, thereby decreasing energy requirements. Onsite
18	trees also provide carbon storage (AEP 2007). Although not quantified,
19	implementation of this measure is expected to reduce the proposed Project's GHG
20	emissions by less than 0.1%. Future Port-wide GHG emission reductions are also
21	anticipated through AB 32 rule promulgation. However, such reductions have not
22	yet been quantified because AB 32 implementation is still under development by
23	CARB.
24	Residual Impacts
25	Table 3.2-43 summarizes the annual GHG emissions that would occur within
26	California from operation of the proposed Project after mitigation. The effects of
27	Mitigation Measures MM AQ-9, MM AQ-11, MM AQ-13, and MM AQ-17 were
28	included in the emission estimates. The potential effects of the remaining mitigation
29	measures are described qualitatively under each measure's heading in the proposed
30	project analysis (above).
21	Table 2.2.42 Annual Operational CLIC Emissions Mitigated Dranged Draiget

31 Table 3.2-43. Annual Operational GHG Emissions—Mitigated Proposed Project

	Metric Tons Per Year										
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e							
Project Year 2011											
Vessel transit and maneuvering	42,599	0.2	1.9	43,203							

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	23,399	0.1	1.1	23,731
Motor vehicles	16,661	3.1	3.4	17,773
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	0	0.0	0.0	0
Terminal equipment - electric	340	0.0	0.0	341
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,656
Total for Project Year 2011	118,746	3.7	7.0	120,980
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	-10,524	-2.6	-2.4	-11,328
NEPA baseline	114,668	3.7	6.8	116,853
Proposed Project minus NEPA baseline	4,078	0.0	0.2	4,126
Project Year 2015				
Vessel transit and maneuvering	43,065	0.3	2.0	43,676
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	67,755	8.6	9.8	70,977
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,229	0.1	0.1	11,247
Terminal equipment - electric	340	0.0	0.0	341
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,656
Total for Project Year 2015	178,747	9.3	13.3	183,076
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	49,478	3.0	4.0	50,769
NEPA baseline	170,307	8.3	12.0	174,215
Proposed Project minus NEPA baseline	8,440	1.0	1.3	8,861
Project Year 2022				
Vessel transit and maneuvering	43,609	0.3	2.0	44,228
Vessel hoteling	10,106	0.1	0.5	10,249

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	71,663	7.3	8.8	74,549
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,487	0.1	0.1	11,506
Terminal equipment - electric	340	0.0	0.0	34
Electricity usage from commercial uses and Waterfront Red Car Line	25,615	0.2	0.1	25,650
Total for Project Year 2022	183,458	8.1	12.4	187,459
CEQA baseline	129,270	6.3	9.4	132,308
Proposed Project minus CEQA baseline	54,189	1.8	3.0	55,151
NEPA baseline	173,145	7.1	11.1	176,73
Proposed Project minus NEPA baseline	10,313	0.9	1.3	10,72
Project Year 2037				
Vessel transit and maneuvering	43,972	0.3	2.0	44,590
Vessel hoteling	10,106	0.1	0.5	10,24
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	81,202	8.3	10.0	84,48
Terminal equipment—fossil fueled	25	0.0	0.0	2:
AMP electricity usage	11,672	0.1	0.1	11,69
Electricity usage from commercial uses and Waterfront Red Car Line	340	0.0	0.0	34
Terminal equipment - electric	25,615	0.2	0.1	25,650
Total for Project Year 2037	193,544	9.1	13.6	197,94
CEQA baseline	129,270	6.3	9.4	132,30
Proposed Project minus CEQA baseline	64,275	2.8	4.2	65,63.
NEPA baseline	176,482	7.5	11.5	180,20
Proposed Project minus NEPA baseline	17,063	1.6	2.1	17,734

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

			Metric Tor	ns Per Year	
Project Scenario/S	Source Type	CO ₂	CH_4	N_2O	CO ₂ e
Motor vehicles inclu	de passenger cars, trucks,	busses, and shuttles.			
Terminal equipment	includes equipment at the	Cruise Terminal and	Berth 87.		
Emissions may not a N ₂ O, are rounded to	add precisely due to roundi zero. For more explanation	ing. Values less than on, refer to the discus	0.5 for CO_2 and CO_2 sion in Section 3.2.	D_2 e, and less than 0. 4.1.	05 for CH_4 and
	tes presented in this table is document was prepared v available.				
NEPA baseline emis	ssions include as proposed	project elements the	same mitigation me	easures identified fo	r Alternative 5.
	emissions of CO ₂ e 2037. The use of end during hoteling bec power plants rather Table 3.2-43 shows increase relative to mitigation, the prop CEQA.	lectricity from the ause electricity ca than auxiliary en that the mitigate CEQA baseline i posed project GH0	e power grid wo an be produced i gines on ships o d proposed proj n 2015, 2022, an	uld reduce GHC more efficiently or renewable ger ect CO ₂ e emissi nd 2037. Theref	emissions at centralized heration source ons would fore, after
	Table 3.2-40 shows construction would shows that in each increase relative to	exceed NEPA ba future project yea	seline construct r, annual operat	tion emissions.	Table 3.2-41
	Mitigation Measur	res			
	Implement Mitigati MM AQ-16 throug				
	Residual Impacts				
	Table 3.2-43 summ				

1 Alternatives: Impacts and Mitigation

2	The construction impacts described below for the each of the alternatives focus on
3	anticipated construction activities. Construction and operational emissions associated
4	with the alternatives were directly quantified for Alternatives 1 through 6.
5	To assist in comparing the alternatives to one another, Table 3.2-44 provides a
6	summary of the air quality significance determinations for the proposed Project and
7	each alternative. The table shows the results by type of impact and pollutant, both
8	before and after mitigation. The discussions of the impacts for each alternative are
9	provided in the following sections.

			With	hout Mitig	ation						Wi	ith Mitigat	tion		
Air Quality Impact	PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6		PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
			L		L	CEQA	A Impacts			L					
AQ-1 Construction I	Emissior	ıs													
VOC	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
СО	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
NO _X	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
SO _X	-	-	-	-	-	-	NA		-	-	-	-	-	-	NA
PM10	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
PM2.5	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
AQ-2 Construction	Concent	rations													
СО	-	-	-	-	-	-	NA		-	-	-	-	-	-	NA
NO _X	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
PM10	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
PM2.5	S	S	S	S	S	S	NA		S	S	S	S	S	S	NA
AQ-3 Operational E	missions	5													
VOC	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
СО	S	S	S	S	S	S	-		S	S	S	S	S	S	NA
NO _X	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
SO _X	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
PM10	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
PM2.5	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
AQ-4 Operational C	oncentra	ations						•							
СО	-	-	-	-	-	-	-		-	-	-	-	-	-	NA
NO _X	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
PM10	S	S	S	S	S	S	S		S	S	S	S	S	S	NA
PM2.5	S	S	S	S	S	S	S		S	S	S	S	-	S	NA

Table 3.2-44. Comparison of Air Quality Impacts Associated with Project Alternatives

Los Angeles Harbor Department

			With	out Mitig	ation					Wi	th Mitigat	tion		
Air Quality Impact	PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6	PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
AQ-5 CO Hot Spots														
СО	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
AQ-6 Odors														
	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
AQ-7 Toxic Air Cor	ntaminar	nts		L	L					L	L			
Cancer Risk – Residential	S	S	S	S	S	S	S	-	-	-	-	-	-	NA
Chronic Hazard Index – Residential	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
Acute Hazard Index – Residential	S	S	S	S	S	-	-	S	S	S	S	S	-	NA
AQ-8 AQMP Consi	stency													
	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
AQ-9 GHG Emissio	ons													
	S	S	S	S	S	S	S	S	S	S	S	S	S	NA
						NEPA	Impacts							
AQ-1 Construction	Emissior	ıs	1	r	r	T	, , , , , , , , , , , , , , , , , , , ,		T	r	r			n
VOC	S	S	S	S	S	NI	NA	S	S	S	S	S	NI	NA
СО	S	S	S	S	S	NI	NA	S	S	S	S	S	NI	NA
NO _X	S	S	S	S	S	NI	NA	S	S	S	S	S	NI	NA
SO_X	-	-	-	-	-	NI	NA	-	-	-	-	-	NI	NA
PM10	S	S	S	S	S	NI	NA	S	S	S	-	S	NI	NA
PM2.5	S	S	S	S	S	NI	NA	S	S	S	S	S	NI	NA
AQ-2 Construction	Concent	rations												
СО	-	-	-	-	-	NI	NA	-	-	-	-	-	NI	NA

			With	nout Mitig	ation			With Mitigation							
Air Quality Impact	PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6		PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
NO _X	S	S	S	S	S	NI	NA		S	S	S	S	S	NI	NA
PM10	S	S	S	S	S	NI	NA		S	S	S	S	S	NI	NA
PM2.5	S	S	S	S	S	NI	NA		S	S	S	S	S	NI	NA
AQ-3 Operational E	missions	6													
VOC	S	S	S	S	S	NI	NA		S	S	S	-	S	NI	NA
СО	S	S	S	S	S	NI	NA		S	S	S	-	-	NI	NA
NO _X	S	S	S	S	S	NI	NA		S	S	S	S	S	NI	NA
SO_X	S	S	S	S	S	NI	NA		S	S	S	S	-	NI	NA
PM10	S	S	S	S	S	NI	NA		S	S	S	-	-	NI	NA
PM2.5	S	S	S	S	S	NI	NA		S	S	S	S	-	NI	NA
AQ-4 Operational C	oncentra	tions													
СО	-	-	-	-	-	NI	NA		-	-	-	-	-	NI	NA
NO _X	S	S	S	S	S	NI	NA		S	S	S	S	S	NI	NA
PM10	S	S	S	S	S	NI	NA		S	S	S	S	-	NI	NA
PM2.5	S	S	S	S	S	NI	NA		S	S	S	S	-	NI	NA
AQ-5 CO Hot Spots															
СО	-	-	-	-	-	NI	NA		-	-	-	-	-	NI	NA
AQ-6 Odors															
	-	-	-	-	-	NI	NA		-	-	-	-	-	NI	NA
AQ-7 Toxic Air Cor	ntaminar	its													
Cancer Risk – Residential	S	S	S	S	S	NI	NA		S	S	S	S	-	NI	NA
Chronic Hazard Index – Residential	-	-	-	-	-	NI	NA		-	-	-	-	-	NI	NA
Acute Hazard Index – Residential	S	S	S	S	S	NI	NA		-	-	-	-	-	NI	NA

			With	out Mitig	ation						Wi	th Mitigat	ion		
Air Quality Impact	PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6		PP	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5	Alt 6
AQ-8 AQMP Consis	stency						-			-			-		-
	-	-	-	-	-	NI	NA		-	-	-	-	-	NI	NA
AQ-9 GHG Emissio	ns														
	NA	NA	NA	NA	NA	NI	NA		NA	NA	NA	NA	NA	NI	NA
S Significant in	mpact														
- Less than sig	gnificant i	mpact													
PP Proposed Pro	oject														
NI No Impact															
NA Not Applical	ole														
Impact AQ-3 (operation	onal emiss	ions) sumn	naries inclu	de construc	tion emissi	ons for ye	ar 2011.								
Alternative 5 is the No	-Federal-	Action alter	rnative and	therefore h	as no NEP.	A impact.									
Alternative 6 (No Proj	ect Altern	ative) does	not require	federal act	ion; theref	ore, a NEP	A significa	nce	evaluation	n is not appl	licable.				
There are no construct	ion activit	ties for Alte	ernative 6; t	herefore, co	onstruction	impacts a	re not appli	cabl	e.						
Alternative 6 operation	ns would i	not have mi	tigation; th	erefore, mit	igated ope	rational in	pacts are n	ot ap	oplicable.						
NEPA significance eva	aluations	were not pe	erformed for	r GHG emi	ssions.										

3

4

5

6

7

8 9

3.2.4.3.2 Alternative 1—Alternative Development Scenario 1

Alternative 1 is an alternative development scenario that reduces the number of cruise berths (two in the Inner Harbor and one in the Outer Harbor); changes the location of the Red Car Museum and Maintenance Facility to Warehouse No. 1; and reduces Harbor Boulevard to one lane southbound, cul-de-sacking northbound Harbor Boulevard at 13th Street, constructing a roadway with one lane in each direction from Crescent Street to Sampson Way ("Viaduct"), and making other minor modifications. The majority of the proposed project elements are the same under this alternative as the proposed Project.

10Impact AQ-1: Alternative 1 would result in construction-11related emissions that exceed an SCAQMD threshold of12significance in Table 3.2-13.

- 13Although this alternative has more construction activities than the proposed Project,14the majority of the construction activities required for the proposed Project would15also be required for this alternative.
- 16 Table 3.2-45 presents a summary of the peak daily criteria pollutant emissions 17 associated with construction of Alternative 1 without mitigation. This table contains 18 peak daily construction emissions for each project year, as well as CEQA and NEPA 19 significance determinations. Maximum emissions for each construction phase were 20 determined by totaling the daily emissions from those construction activities that occur simultaneously in the proposed construction schedule (Table 2-5). Detailed 21 22 tables of emissions for each proposed project activity can be found in Appendix D1. 23 In addition, Appendix D6 contains data on emission levels for each construction 24 equipment type in each proposed project activity.
- 25 Table 3.2-45. Summary of Peak Daily Construction Emissions—Alternative 1 without Mitigation

	Peak Daily Construction Emissions (lb/day)									
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5				
2009 Peak Daily Construction Emissions	423	1,666	5,411	4	797	323				
Thresholds	75	550	100	150	150	55				
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes				
Non-Federal Construction Emissions	49	332	971	2	65	22				
NEPA Emissions (Alternative 1 minus non-Federal emissions)	374	1,334	4,440	2	732	301				
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes				
2010 Peak Daily Construction Emissions	1,209	5,362	16,099	14	3,425	1,170				
Thresholds	75	550	100	150	150	55				

	Peak Daily Construction Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes	
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127	
NEPA Emissions (Alternative 1 minus non-Federal emissions)	894	3,189	10,076	4	3,120	1,043	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes	
2011 Peak Daily Construction Emissions	877	4,130	11,935	11	2,944	947	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye	
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122	
NEPA Emissions (Alternative 1 minus non-Federal emissions)	577	2,073	6,226	1	2,649	823	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye	
2012 Peak Daily Construction Emissions	597	2,586	7,663	7	1,610	552	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye	
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69	
NEPA Emissions (Alternative 1 minus non-Federal emissions)	433	1,479	4,619	2	1,452	483	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye	
2013 Peak Daily Construction Emissions	319	1,275	3,892	3	1,045	329	
Thresholds	75	550	100	150	150	5:	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye	
Non-Federal Construction Emissions	82	542	1,447	2	106	4.	
NEPA Emissions (Alternative 1 minus non-Federal emissions)	237	733	2,445	1	939	280	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye	
2014 Peak Daily Construction Emissions	267	1,018	3,166	3	373	170	
Thresholds	75	550	100	150	150	5:	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye	
Non-Federal Construction Emissions	62	396	1,038	1	37	24	
NEPA Emissions (Alternative 1 minus non-Federal emissions)	205	622	2,128	2	336	14	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye	

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

	Peak Daily Construction Emissions (lb/day)					
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

23

24

1	
2	CEQA Impact Determination
3 4 5 6 7	Alternative 1 would exceed the daily construction emission thresholds for VOC, CO, NO_X , PM10, and PM2.5 during the construction period from 2009 through 2014. The peak daily SO_X emissions would be less than significant in all construction years. Therefore, significant impacts under CEQA would occur for VOC, CO, NO_X , PM10, and PM2.5 in one or more construction years.
8	Mitigation Measures
9	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
10	Residual Impacts
11 12 13 14	The residual air quality impacts would be temporary but significant. Despite implementation of mitigation and compliance with SCAQMD Rule 403, emissions from the construction of Alternative 1 would exceed the SCAQMD daily thresholds for VOC, CO, NO _X , PM10, and PM2.5.
15 16 17 18 19 20 21	Table 3.2-46 presents a summary of the peak daily criteria pollutant emissions associated with construction of Alternative 1 after the application of Mitigation Measures MM AQ-1 through MM AQ-5. This table contains peak daily construction emissions for each project year, as well as CEQA and NEPA significance determinations. Maximum emissions for each construction phase were determined by totaling the daily emissions from those construction activities that occur simultaneously in the proposed construction schedule (Table 2-5). Detailed tables of
22	emissions for each proposed project activity can be found in Appendix D1. In

equipment type in each proposed project activity.

addition, Appendix D6 contains data on emission levels for each construction

1	Table 3.2-46.	Summary of Peak Daily Construction Emissions—Alternative 1 with Mitigation
1		Cuminary of reak Daily Construction Emissions - Alternative r with Mitgation

	Peak Daily Construction Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5	
2009 Peak Daily Construction Emissions	256	1,404	3,538	4	194	119	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes	
Non-Federal Construction Emissions	49	332	971	2	65	22	
NEPA Emissions (Alternative 1 minus non- Federal emissions)	207	1,072	2,567	2	129	97	
NEPA Significant?	Yes	Yes	Yes	No	No	Yes	
2010 Peak Daily Construction Emissions	612	3,801	10,016	14	510	269	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes	
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127	
NEPA Emissions (Alternative 1 minus non- Federal emissions)	297	1,628	3,993	4	205	142	
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye	
2011 Peak Daily Construction Emissions	395	2,634	7,196	11	377	169	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes	
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122	
NEPA Emissions (Alternative 1 minus non- Federal emissions)	95	577	1,487	1	82	47	
NEPA Significant?	Yes	Yes	Yes	No	No	No	
2012 Peak Daily Construction Emissions	307	1,843	4,927	7	240	126	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye	
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69	
NEPA Emissions (Alternative 1 minus non- Federal emissions)	143	736	1,883	2	82	57	
NEPA Significant?	Yes	Yes	Yes	No	No	Ye	
2013 Peak Daily Construction Emissions	191	1,057	2,708	3	164	87	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye	
Non-Federal Construction Emissions	82	542	1,447	2	106	43	
NEPA Emissions (Alternative 1 minus non-	109	515	1,261	1	58	44	

	Peak Daily Construction Emissions (lb/day)					
Project Year	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
Federal emissions)						
NEPA Significant?	Yes	No	Yes	No	No	No
2014 Peak Daily Construction Emissions	170	911	2,299	3	94	69
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	No	Yes
Non-Federal Construction Emissions	62	396	1,038	1	37	24
NEPA Emissions (Alternative 1 minus non- Federal emissions)	108	515	1,261	2	57	45
NEPA Significant?	Yes	No	Yes	No	No	No

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

- NEPA Impact Determination
- 3The NEPA incremental emissions for Alternative 1 are calculated by subtracting the4NEPA baseline emissions. Alternative 1 would exceed the emission thresholds for5VOC, CO, NO_X, PM10, and PM2.5 during construction. Therefore, significant6impacts under NEPA would occur.
- 7 Mitigation Measures
- 8 Implement Mitigation Measures MM AQ-1 through MM AQ-8.
- 9 <u>Residual Impacts</u>
- 10The residual air quality impacts would be temporary but significant. Despite11implementation of mitigation and compliance with SCAQMD Rule 403, emissions12from the construction of Alternative 1 would exceed the SCAQMD daily thresholds13for VOC, CO, NO_X, PM10, and PM2.5.
- 14Table 3.2-46 presents a summary of the peak daily criteria pollutant emissions15associated with construction of Alternative 1 after the application of Mitigation16Measures MM AQ-1 through MM AQ-5.

2

3

Impact AQ-2: Alternative 1 construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.

Dispersion modeling of onsite Alternative 1 construction emissions was performed to
assess the impact of this alternative on local ambient air concentrations. A summary
of the dispersion modeling results is presented here; the complete dispersion
modeling report is included in Appendix D2.

8Table 3.2-47 presents the maximum offsite ground-level concentrations of NO2, CO,9PM10, and PM2.5 from construction without mitigation. The table shows that the10maximum 1-hour and 8-hour CO concentrations would not exceed the SCAQMD11thresholds. The maximum offsite 1-hour NO2 concentration and maximum offsite1224-hour increment increases of PM10 and PM2.5 concentrations would exceed the13SCAQMD significance threshold for both CEQA and NEPA impacts.

14	Table 3.2-47.	Maximum Offsite Ambient Concentrations—Alternative 1 Construction without Mitig	ation
			adon

Pollutant	Averaging Time	Background Concentration (µg/m3)	Maximum Concentration (without Background) (µg/m3)	CEQA Impact (µg/m3)	NEPA Impact (µg/m3)	SCAQMD Threshold (µg/m3)
NO ₂	1-hour	263	2,677	2,940	2,940	338
CO	1-hour	4,809	10,794	15,603	15,603	23,000
СО	8-hour	4,008	2,085	6,093	6,093	10,000
PM10	24-hour	-	233.1	233.1	224.5	10.4
PM2.5	24-hour	-	91.6	91.6	61.2	10.4

Notes:

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO_2 thresholds represent the 2007 adopted CAAQS values.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and

hourly NO_X emission rates.

1

1	
2	CEQA Impact Determination
3 4 5	Maximum offsite ambient pollutant concentrations associated with construction would be significant for NO ₂ (1-hour average) as well as for 24-hour PM10 and PM2.5. Therefore, significant impacts under CEQA would occur.
6	Mitigation Measures
7	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
8	Residual Impacts
9 10 11 12 13	Table 3.2-48 presents the maximum offsite ground-level concentrations of NO ₂ , CO, PM10, and PM2.5 from all construction phases after mitigation. With implementation of mitigation measures, offsite ambient concentrations would be temporary but significant for NO ₂ , PM2.5, and PM10; however, they would be less than significant for CO.

14 **Table 3.2-48.** Maximum Offsite Ambient Concentrations—Alternative 1 Construction with Mitigation

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without background) (µg/m ³)	CEQA Impact $(\mu g/m^3)$	NEPA Impact (µg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	263	2,580	2,843	2,843	338
60	1-hour	4,809	10,230	15,039	15,039	23,000
СО	8-hour	4,008	1,995	6,003	6,003	10,000
PM10	24-hour	-	57.9	57.9	36.5	10.4
PM2.5	24-hour	-	48.3	48.3	30.4	10.4

Notes:

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite

emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

1

2

3

4

5

24

25

26

27

28

29

30

31

NEPA Impact Determination

- Maximum offsite ambient pollutant concentrations associated with construction would be significant for NO_2 (1-hour average) as well as for 24-hour PM10 and PM2.5. Therefore, significant impacts under NEPA would occur.
- 6 <u>Mitigation Measures</u>
- 7 Implement Mitigation Measures MM AQ-1 through MM AQ-8.
- 8 Residual Impacts
- 9Table 3.2-48 above presents the maximum offsite ground-level concentrations of10NO2, CO, PM10, and PM2.5 from all construction phases after mitigation. With11implementation of mitigation measures, offsite ambient concentrations would be12temporary but significant for NO2, PM2.5, and PM10; however, they would be less13than significant for CO.

14Impact AQ-3: Alternative 1 would result in operational15emissions that exceed 10 tons per year of VOCs or an16SCAQMD threshold of significance in Table 3.2-15.

17Tables 3.2-49 and 3.2-50 present the unmitigated average and peak daily criteria18pollutant emissions associated with operation of this alternative. Emissions were19estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to20the CEQA baseline (2006) and the NEPA baseline emissions are presented for21informational purposes in Table 3.2-49; actual CEQA and NEPA significance is22determined by the comparison of peak daily impacts to CEQA and NEPA thresholds23in Table 3.2-50.

The operational emissions associated with this alternative assume the operation of berths at both the Inner and Outer Harbor Cruise Terminals and the following activity levels:

- Operation of three berths in 2011 at the Inner Harbor Cruise Terminal.
- Operation of two berths in 2015, 2022, and 2037 at the Inner Harbor Cruise Terminal.
- Operation of one berth in 2015, 2022, and 2037 at the Outer Harbor Cruise Terminal.

1 2	Annual ship calls under this alternative are estimated to be 269 calls in 2011 and 275 calls thereafter.
3	• Average emissions from cruise ships assume the use of 2.7% sulfur fuel.
4	 Peak emissions from cruise ships assume the use of 4.5% sulfur fuel.
5 6	 Peak daily emissions assume that all available berths would be occupied on any given day.
7 8 9	 Harbor craft activity levels would not change from 2006 operations. However, since the Crawley and Millennium tugboats would be relocated to the Outer Harbor, their transit time to the harbor gate would be reduced.
10 11 12	 Environmental measures for cruise ships and harbor craft that are considered part of this alternative would be the same as those considered for the proposed Project (listed in Table 3.2-8).
13 14 15 16	Tables 3.2-49 and 3.2-50 show that operational activities associated with this alternative prior to mitigation would be similar to the proposed Project in 2011, and slightly less than the proposed Project for VOC, CO, SO_X , PM10, and PM2.5 in 2015, 2022, and 2037.

			.	
17	Table 3.2-49.	Average Daily	Operational Emissions	without Mitigation—Alternative 1

		Aver	age Daily En	nissions (lb/d	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	144	300	3,670	3,195	411	329
Vessel hoteling	78	162	1,978	1,975	231	185
Harbor craft	53	480	1,719	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	0.8	9	9	0.01	0.4	0.4
Total—Project Year 2011	402	1,964	7,542	5,172	870	604
CEQA Impacts			·			
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 1 minus CEQA baseline	-50	-1,159	1,105	1,185	21	93
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Yes
NEPA Impacts			·			
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Alternative 1 minus NEPA baseline	39	35	1,194	2,031	210	168

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Yes	
Project Year 2015		·					
Vessel transit and maneuvering	144	301	3,675	3,208	413	331	
Vessel hoteling	79	166	2,014	2,019	236	189	
Harbor craft	46	539	1,344	1	52	48	
Motor vehicles	164	1781	365	4	565	114	
Terminal equipment	0.6	9	7	0.01	0.3	0.3	
Total—Project Year 2015	434	2,796	7,405	5,232	1,266	682	
CEQA Impacts							
CEQA baseline emissions	452	3,123	6,437	3,987	849	511	
Alternative 1 minus CEQA baseline	-18	-327	968	1,245	417	171	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Yes	
<u>NEPA Impacts</u>		·					
NEPA baseline emissions	319	2,608	4,263	490	750	276	
Alternative 1 minus NEPA baseline	115	188	3,142	4,742	516	406	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Yes	
Project Year 2022							
Vessel transit and maneuvering	144	301	3,647	3,208	413	331	
Vessel hoteling	79	166	1,998	2,019	236	189	
Harbor craft	45	759	1,065	1	49	45	
Motor vehicles	135	1349	240	4	590	117	
Terminal equipment	0.4	9	4	0.01	0.2	0.1	
Total—Project Year 2022	403	2,584	6,954	5,232	1,288	682	
CEQA Impacts							
CEQA baseline emissions	452	3,123	6,437	3,987	849	511	
Alternative 1 minus CEQA baseline	-49	-539	517	1,245	439	171	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Yes	

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
NEPA Impacts	<u> </u>							
NEPA baseline emissions	285	2,335	3,937	491	766	272		
Alternative 1 minus NEPA baseline	118	249	3,017	4,741	522	41(
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Ye		
Project Year 2037	<u> </u>	·						
Vessel transit and maneuvering	144	301	3,623	3,208	413	33		
Vessel hoteling	79	166	1,986	2,019	236	189		
Harbor craft	45	759	1,065	1	49	4		
Motor vehicles	81	808	129	4	656	129		
Terminal equipment	0.2	9	2	0.01	0.1	0.		
Total—Project Year 2037	349	2,043	6,805	5,232	1,354	694		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	51		
Alternative 1 minus CEQA baseline	-103	-1,080	368	1,245	505	183		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	Yes	Ye		
NEPA Impacts								
NEPA baseline emissions	229	1,765	3,803	491	796	27		
Alternative 1 minus NEPA baseline	120	278	3,002	4,741	558	417		
Thresholds	55	550	55	150	150	5:		
Significant?	Yes	No	Yes	Yes	Yes	Ye		

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1	
2 3 4	Table 3.2-50 shows the peak daily operational emissions for Alternative 1. The peak daily emission estimates for operations include the following assumptions that were chosen to identify a maximum theoretical activity scenario:
5 6 7	Ships at berth: The peak day scenario assumes that the largest combination of ships in the proposed project fleet that could be simultaneously accommodated at each berth.
8 9	 Trucks: Peak day truck trips generated by Alternative 1 were provided by the traffic study for each analysis year.
10 11 12 13	Terminal equipment: The terminal equipment data was provided by LAHD. It was assumed that approximately 38 pieces of terminal equipment (i.e., 11 diesel forklifts, 25 propane forklifts, and 2 fuel trucks) would operate during the peak period when all cruise ships are hoteling at the Port.

		Pea	k Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,10
Vessel hoteling	304	633	8,022	12,937	1,220	97
Harbor craft	53	480	1,719	1	62	5
Motor vehicles	126	1,013	166	1	166	3
Terminal equipment	1.5	17	16	0.02	0.7	0.
Total—Project Year 2011	1,175	3,585	28,264	38,473	4,075	3,16
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,68
Alternative 1 minus CEQA baseline	70	-918	4,329	6,385	513	48
Thresholds	55	550	55	150	150	5
Significant?	Yes	No	Yes	Yes	Yes	Ye
<u>NEPA Impacts</u>			·			
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,96
Alternative 1 minus NEPA baseline	66	100	1,836	2,385	249	19
Thresholds	55	550	55	150	150	5
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2015						
Vessel transit and maneuvering	714	1,564	18,964	26,346	2,713	2,17

14 **Table 3.2-50.** Peak Daily Operational Emissions without Mitigation—Alternative 1

		Pea	k Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Vessel hoteling	321	669	8,474	13,556	1,284	1,027
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	164	1781	365	4	565	114
Terminal equipment	1.2	17	13	0.02	0.6	0.5
Total—Project Year 2015	1,246	4,570	29,160	39,907	4,615	3,360
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 1 minus CEQA baseline	141	67	5,225	7,819	1,053	678
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879
Alternative 1 minus NEPA baseline	368	794	10,096	19,897	1,861	1,480
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
Project Year 2022						
Vessel transit and maneuvering	714	1,564	18,964	26,346	2,713	2,170
Vessel hoteling	321	669	8,474	13,556	1,284	1,027
Harbor craft	45	759	1,065	1	49	45
Motor vehicles	135	1349	240	4	590	117
Terminal equipment	0.7	17	7	0.02	0.3	0.3
Total—Project Year 2022	1,216	4,358	28,750	39,907	4,636	3,359
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 1 minus CEQA baseline	111	-145	4,815	7,819	1,074	677
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875
Alternative 1 minus NEPA baseline	372	855	9,992	19,896	1,866	1,484
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes

		Pec	ak Daily Emi	issions (lb/de	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2037						
Vessel transit and maneuvering	714	1,564	18,964	26,346	2,713	2,170
Vessel hoteling	321	669	8,474	13,556	1,284	1,027
Harbor craft	45	759	1,065	1	49	45
Motor vehicles	81	808	129	4	656	129
Terminal equipment	0.4	17	4	0.02	0.1	0.1
Total—Project Year 2037	1,161	3,817	28,636	39,907	4,702	3,371
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 1 minus CEQA baseline	56	-686	4,701	7,819	1,140	689
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880
Alternative 1 minus NEPA baseline	373	885	9,995	19,896	1,902	1,491
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Ye

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

3

4

5

Due to the lengthy construction period, operational activities would overlap with construction. Table 3.2-51 shows the combined total of construction and operational emissions for year 2011 during which construction and operation activities would occur simultaneously.

		Pea	k Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Peak Daily Construction Emissions	877	4,130	11,935	11	2,944	947
Peak Daily Operational Emissions	1,175	3,585	28,264	38,473	4,075	3,168
Total—Construction and Operation—Project Year 2011	2,052	7,715	40,199	38,484	7,019	4,115
CEQA Impacts						
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682
Project Year 2011 minus CEQA Baseline	947	3,212	16,264	6,396	3,457	1,433
Thresholds	55	550	55	150	150	5:
Significant?	Yes	Yes	Yes	Yes	Yes	Ye
<u>NEPA Impacts</u>			I.			
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,09
Project Year 2011 minus NEPA Baseline	643	2,173	8,062	2,386	2,898	1,024
Thresholds	55	550	55	150	150	5:
Significant?	Yes	Yes	Yes	Yes	Yes	Ye

1 **Table 3.2-51.** Peak Daily Construction and Operational Emissions without Mitigation—Alternative 1

2

3

4

5

6

7

8

9

10

11

CEQA Impact Determination

Alternative 1 unmitigated peak daily emissions minus the CEQA baseline would exceed CEQA thresholds and would therefore be significant under CEQA for VOC, NO_X , SO_X , PM10, and PM2.5 in 2011, 2015, 2022, and 2037. CO impacts would not be significant for any analysis year.

The year 2011 was chosen as the year that best represents a time when construction and operation activities would overlap. During this year, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would thus be significant under CEQA for all pollutants.

12 <u>Mitigation Measures</u>

13 Implement Mitigation Measures MM AQ-9 through MM AQ-24.

14 Residual Impacts

15Tables 3.2-52 and 3.2-53 show that that mitigated operational activities associated16with this alternative would be similar to the proposed Project in 2011, and slightly

1 2	less than the proposed Project for VOC, CO, NO_X , SO_X , PM10, and PM2.5 in 2015, 2022, and 2037.
3 4 5	Tables 3.2-52 and 3.2-53 present average daily and peak daily mitigated emissions associated with Alternative 1. The comparison of average daily emissions to thresholds is provided in Table 2.2.52 for informational surrages; the actual
5 6 7	thresholds is provided in Table 3.2-52 for informational purposes; the actual significance determinations are made by comparison of peak daily emissions to thresholds in Tables 3.2-53 and 3.2-54.
8 9 10 11 12	Alternative 1 peak daily emissions after mitigation minus the CEQA baseline would exceed CEQA thresholds and would therefore be significant under CEQA for NO_X , SO_X , PM10, and PM2.5 in 2011. Impacts would be below CEQA thresholds for VOC and CO in all analysis years; NO_X , SO_X , PM10, and PM2.5 in 2015, 2022, and 2037.
13 14 15	In 2011, the combined total of construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant under CEQA for all analyzed pollutants.

16 **Table 3.2-52.** Average Daily Operational Emissions with Mitigation—Alternative 1

		Aver	age Daily Em	issions (lb/d	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	138	288	3,424	2,221	320	256
Vessel hoteling	57	119	1,402	1,098	139	111
Harbor craft	53	533	1,639	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	0.1	0.4	1	0.01	0.05	0.05
Total—Project Year 2011	374	1,953	6,632	3,321	687	457
CEQA Impacts	· · ·			·		
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 1 minus CEQA baseline	-78	-1,170	195	-666	-162	-54
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	No	No	No
NEPA Impacts	· · ·			·		
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Alternative 1 minus NEPA baseline	11	24	284	180	27	21
Thresholds	55	550	55	150	150	55

		Aver	age Daily Em	issions (lb/d	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Significant?	No	No	Yes	Yes	No	No
Project Year 2015						
Vessel transit and maneuvering	99	207	2,299	371	121	97
Vessel hoteling	17	35	377	108	24	20
Harbor craft	44	617	1,191	1	50	46
Motor vehicles	164	1,781	365	4	565	114
Terminal equipment	0.1	0.3	1	0	0.03	0.03
Total—Project Year 2015	324	2,640	4,233	484	760	277
CEQA Impacts				·		
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 1 minus CEQA baseline	-128	-483	-2,204	-3,503	-89	-234
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
NEPA Impacts				·		
NEPA baseline emissions	319	2,608	4,263	490	750	276
Alternative 1 minus NEPA baseline	5	33	-30	-6	10	1
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2022						
Vessel transit and maneuvering	99	207	2,282	371	121	97
Vessel hoteling	17	35	374	108	25	20
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	135	1,349	240	4	590	117
Terminal equipment	0.1	0.3	0.4	0	0.01	0.01
Total—Project Year 2022	291	2,361	3,904	484	778	273
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 1 minus CEQA baseline	-161	-762	-2,533	-3,503	-71	-238
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No

	Average Daily Emissions (lb/day)								
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5			
NEPA Impacts		·							
NEPA baseline emissions	285	2,335	3,937	491	766	272			
Alternative 1 minus NEPA baseline	6	26	-32	-7	12	-			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	No	No	No	N			
Project Year 2037		·		·					
Vessel transit and maneuvering	99	207	2,267	371	121	97			
Vessel hoteling	17	35	372	108	25	20			
Harbor craft	40	770	1,008	1	42	39			
Motor vehicles	81	808	129	4	656	129			
Terminal equipment	0	0.3	0.1	0	0	(
Total—Project Year 2037	237	1,820	3,776	484	844	285			
CEQA Impacts									
CEQA baseline emissions	452	3,123	6,437	3,987	849	51			
Alternative 1 minus CEQA baseline	-215	-1,303	-2,661	-3,503	-5	-226			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	No	No	No	No			
NEPA Impacts		·		·					
NEPA baseline emissions	229	1,765	3,803	491	796	27			
Alternative 1 minus NEPA baseline	8	56	-27	-7	48	8			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	No	No	No	N			

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

1 **Table 3.2-53.** Peak Daily Operational Emissions with Mitigation—Alternative 1

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Vessel transit and maneuvering	625	1,305	16,599	23,150	2,378	1,903		
Vessel hoteling	304	633	8,022	12,937	1,220	976		
Harbor craft	53	533	1,639	1	62	57		
Motor vehicles	126	1,013	166	1	166	33		
Terminal equipment	0.2	0.7	3	0	0.1	0.1		
Total—Project Year 2011	1,108	3,485	26,429	36,088	3,826	2,969		
CEQA Impacts								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 1 minus CEQA baseline	3	-1,018	2,494	4,000	264	287		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	Yes	Yes		
NEPA Impacts								
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969		
Alternative 1 minus NEPA baseline	-1	0	0	0	0	C		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
Project Year 2015								
Vessel transit and maneuvering	547	1,142	14,116	14,461	1,633	1,306		
Vessel hoteling	178	369	4,628	6,934	671	537		
Harbor craft	44	617	1,191	1	50	46		
Motor vehicles	164	1781	365	4	565	114		
Terminal equipment	0.2	0.6	2	0	0.1	0.1		
Total—Project Year 2015	933	3,910	20,301	21,401	2,919	2,004		
<u>CEQA Impacts</u>								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 1 minus	-172	-593	-3,634	-10,688	-643	-678		

San Pedro Waterfront Project EIS/EIR

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
CEQA baseline							
Thresholds	55	550	55	150	150	5:	
Significant?	No	No	No	No	No	N	
NEPA Impacts							
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879	
Alternative 1 minus NEPA baseline	54	134	1,238	1,391	165	124	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Ye	
Project Year 2022							
Vessel transit and maneuvering	547	1,142	14,116	14,461	1,633	1,306	
Vessel hoteling	178	369	4,628	6,934	671	537	
Harbor craft	40	770	1,008	1	42	39	
Motor vehicles	135	1349	240	4	590	11′	
Terminal equipment	0.1	0.5	0.8	0	0.03	0.02	
Total—Project Year 2022	899	3,631	19,992	21,401	2,936	1,999	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 1 minus CEQA baseline	-206	-872	-3,943	-10,688	-626	-683	
Thresholds	55	550	55	150	150	5:	
Significant?	No	No	No	No	No	N	
<u>NEPA Impacts</u>							
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875	
Alternative 1 minus NEPA baseline	55	127	1,234	1,390	166	124	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Ye	
Project Year 2037							
Vessel transit and maneuvering	547	1,142	14,116	14,461	1,633	1,300	
Vessel hoteling	178	369	4,628	6,934	671	53′	

		Pe	ak Daily Emis	sions (lb/day)		
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	81	808	129	4	656	129
Terminal equipment	0.1	0.5	0.2	0	0.01	0.01
Total—Project Year 2037	845	3,090	19,881	21,401	3,002	2,01
CEQA Impacts			·		·	
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 1 minus CEQA baseline	-260	-1,413	-4,054	-10,688	-560	-67
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	N
NEPA Impacts						
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880
Alternative 1 minus NEPA baseline	57	157	1,239	1,390	202	13
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 Table 3.2-54. Peak Daily Construction and Operational Emissions with Mitigation—Alternative 1

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Peak Daily Construction Emissions	395	2,634	7,196	11	377	169		
Peak Daily Operational Emissions	1,108	3,485	26,429	36,088	3,826	2,969		

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5	
Total—Construction & Operation—Project Year 2011	1,503	6,119	33,625	36,099	4,203	3,138	
CEQA Impacts							
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Project Year 2011 minus CEQA Baseline	398	1,616	9,690	4,011	641	456	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	Yes	Yes	Yes	Yes	Yes	
<u>NEPA Impacts</u>							
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091	
Project Year 2011 minus NEPA Baseline	94	577	1,487	1	82	47	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	Yes	Yes	No	No	No	

2 **NEPA Impact Determination** 3 Alternative 1 unmitigated peak daily emissions minus the NEPA baseline would 4 exceed NEPA thresholds and would therefore be significant under NEPA for all 5 pollutants in all analyzed years with the exception of CO in 2011. 6 In 2011, the combined total of construction and operational emissions minus the 7 NEPA baseline would exceed NEPA emission thresholds and would therefore be 8 significant under NEPA for all pollutants. 9 **Mitigation Measures** Implement Mitigation Measures MM AQ-9 through MM AQ-24. 10 11 **Residual Impacts** 12 Alternative 1 mitigated peak daily emissions minus the NEPA baseline would exceed 13 NEPA thresholds and would therefore be significant under NEPA for NO_X, SO_X, PM10, and PM2.5 in 2015; and VOC, NO_X, SO_X, PM10, and PM2.5 in 2022 and 14 15 2037. 16 In 2011, the combined construction and operational emissions minus the NEPA 17 baseline would exceed NEPA emission thresholds and would therefore be significant 18 under NEPA for VOC, CO, and NO_X.

1Impact AQ-4: Alternative 1 operations would result in offsite2ambient air pollutant concentrations that exceed a SCAQMD3threshold of significance in Table 3.2-16.

4Dispersion modeling of onsite and offsite operational emissions for Alternative 1 was5performed to assess the impact of this alternative on local ambient air concentrations.6A summary of the dispersion modeling results is presented here; the complete7dispersion modeling report is included in Appendix D2. Table 3.2-55 presents the8maximum offsite ground-level concentrations of NO2 and CO for this alternative9without mitigation. Table 3.2-56 shows the maximum CEQA and NEPA PM10 and10PM2.5 concentration increments without mitigation.

Table 3.2-55. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 1
 without Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 1 (µg/m ³)	Background Concentration $(\mu g/m^3)$	Total Ground- Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	1,150	263	1,413	338
	Annual	59	53	111	56.4
СО	1-hour	5,633	4,809	10,442	23,000
	8-hour	2,134	4,008	6,142	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

13

14 **Table 3.2-56.** Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of

15 Alternative 1 without Mitigation

PM10	Maximum Modeled Concentration of Alternative 1 (µg/m ³) 25.5	Maximum Modeled Concentration of CEQA Baseline (µg/m ³) 32.3	Maximum Modeled Concentration of NEPA Baseline (µg/m ³) 22.8	Ground-Level Concentration CEQA Increment (µg/m ³) 7.8	Ground-Level Concentration NEPA Increment (µg/m ³) 7.7	$SCAQMD$ Threshold $(\mu g/m^{3})$ 2.5
24-hour						
PM10 annual	6.6	4.3	6.5	2.3	1.0	1.0

	Maximum Modeled Concentration of Alternative 1 $(\mu g/m^3)$	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Maximum Modeled Concentration of NEPA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
average						
PM2.5 24-hour	19.5	25.8	17.1	6.2	6.2	2.5

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.

The CEQA increment represents Alternative 1 minus the CEQA baseline. The NEPA increment represents the Alternative 1 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

CEQA Impact	Determination
-------------	---------------

3	Maximum offsite ambient pollutant concentrations associated with Alternative 1
4	operations would be significant for NO ₂ (1-hour average and annual average) and
5	PM10 and PM2.5 (24-hour average) and annual PM10. Therefore, significant
6	impacts under CEQA would occur.

- 7 <u>Mitigation Measures</u>
- 8 Implement Mitigation Measures MM AQ-9 through MM AQ-24.
- 9 <u>Residual Impacts</u>

10Table 3.2-57 presents the maximum offsite ground-level concentrations of NO2 and11CO for this alternative after mitigation. Table 3.2-58 shows the maximum PM10 and12PM2.5 concentration increments after mitigation. Maximum offsite concentrations13would be significant for NO2 (1-hour average and annual average), 24-hour PM1014and 24-hour PM2.5, and annual average PM10.

Table 3.2-57. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 1 with Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 1 (µg/m ³)	Background Concentration $(\mu g/m^3)$	Total Ground- Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	770	263	1,033	338
	Annual	41	53	94	56.4
СО	1-hour	5,591	4,809	10,400	23,000
	8-hour	2,128	4,008	6,136	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

3

4 **Table 3.2-58.** Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of 5 Alternative 1 with Mitigation

	Maximum Modeled Concentration of Alternative 1 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Maximum Modeled Concentration of NEPA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour	17.6	32.3	22.8	4.4	4.1	2.5
PM10 annual average	5.8	4.3	6.5	1.6	0.3	1.0
PM2.5 24-hour	12.7	25.8	17.1	3.3	3.2	2.5

Notes:

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.

The CEQA increment represents Alternative 1 minus the CEQA baseline. The NEPA increment represents the Alternative 1

minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

2	NEPA Impact Determination
3 4 5 6	Maximum offsite ambient pollutant concentrations associated with Alternative 1 operations would be significant for NO_2 (1-hour average and annual average), PM10 and PM2.5 (24-hour average), and PM10 (annual average). Therefore, significant impacts under NEPA would occur.
7	Mitigation Measures
8	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
9	Residual Impacts
10 11 12 13 14	Table 3.2-57 presents the maximum offsite ground-level concentrations of NO_2 and CO for this alternative after mitigation. Table 3.2-58 shows the maximum PM10 and PM2.5 concentration increments after mitigation. Maximum offsite concentrations would be significant for NO_2 (1-hour average and annual average), 24-hour PM10 and PM2.5 (24-hour average), but below significance for annual PM10.
15 16 17	Impact AQ-5: Alternative 1 would not generate onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.
18 19 20 21	Alternative 1 would generate traffic levels comparable to or less than traffic generated by the proposed Project. As discussed in the proposed project analysis, CO concentrations related to onroad traffic would not exceed state CO standards for any project study year.
22	CEQA Impact Determination
23 24	Significant impacts under CEQA are not anticipated because CO standards would not be exceeded.
25	Mitigation Measures
26	No mitigation is required.
27	Residual Impacts
28	Impacts would be less than significant.

1

2

3

NEPA Impact Determination

- Significant impacts under NEPA are not anticipated because CO standards would not be exceeded.
- 4 <u>Mitigation Measures</u>
- 5 No mitigation is required.
- 6 Residual Impacts
- 7 Impacts would be less than significant.

8 Impact AQ-6: Alternative 1 would not create an objectionable 9 odor at the nearest sensitive receptor.

- 10Similar to the proposed Project, the mobile nature of the emission sources associated11with this alternative would help to disperse emissions. Additionally, the distance12between this alternative's emission sources and the nearest residents would be far13enough to allow for adequate dispersion of these emissions to below objectionable14odor levels. Thus, the potential is low for this alternative to produce objectionable15odors that would affect a sensitive receptor.
- 16 CEQA Impact Determination
- 17The potential is low for this alternative to produce objectionable odors that would18affect a sensitive receptor; significant odor impacts under CEQA, therefore, are not19anticipated.
- 20 <u>Mitigation Measures</u>
- 21 No mitigation is required.
- 22 Residual Impacts
- 23 Impacts would be less than significant.
- 24 NEPA Impact Determination
- The potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor; and, therefore, significant odor impacts under NEPA are not anticipated.
- 28 <u>Mitigation Measures</u>
- 29 No mitigation is required.

1	Residual Impacts
2	Impacts would be less than significant.
3 4	Impact AQ-7: Alternative 1 would expose receptors to significant levels of toxic air contaminants.
5 6 7 8 9	The main sources of TACs from Alternative 1 operations would be DPM emissions from ships, harbor craft, terminal equipment, and motor vehicles. Similar to the HRA for the proposed Project, DPM, PM10, and VOC emissions were projected over a 70-year period, from 2009 through 2078. An HRA was performed over this 70-year exposure period.
10 11 12 13 14 15	Table 3.2-59 presents the maximum predicted health impacts associated with this alternative without mitigation. The table includes estimates of individual lifetime cancer risk, chronic noncancer hazard index, and acute noncancer hazard index at the maximally exposed receptors. Results are presented for this alternative, CEQA baseline, NEPA baseline, CEQA increment (alternative minus CEQA baseline), and NEPA increment (alternative minus the NEPA baseline).
16	CEQA Impact Determination
17 18 19 20 21 22 23 24 25	Alternative 1 would result in fewer available berths in the Outer Harbor and fewer total ship calls after year 2015 than the proposed Project, and therefore, it would have lower DPM emissions and lower health risk impacts in the Outer Harbor. However, Table 3.2-59 shows that the maximum CEQA cancer risk increment associated with the unmitigated Alternative 1 is predicted to be 120 in a million (120×10^{-6}) , at a recreational receptor. This risk value would exceed the significance criterion of 10 in a million. The CEQA cancer risk increment would also exceed the threshold at residential and occupational receptors. These exceedances are considered significant impacts under CEQA.
26 27 28 29	The maximum chronic hazard index CEQA increment is predicted to be below significance for all receptor types. However, the acute hazard index CEQA increment is predicted to exceed the significance threshold of 1.0 for the residential, occupational, and recreational receptors.
20	Table 2.0.50 Maximum Llashib Immedia Associated With Alternative 4 without Mitigation 2000, 2070

30 Table 3.2-59. Maximum Health Impacts Associated With Alternative 1 without Mitigation, 2009–2078

			Maximum Predicted Impact					
Health Impact	Receptor Type	Alternative 1	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold	
Cancer Risk	Residential	360 x 10 ⁻⁶ (360 in a million)	379 x 10 ⁻⁶ (379 in a million)	45 x 10 ⁻⁶ (45 in a million)	139 x 10 ⁻⁶ (139 in a million)	221 x 10 ⁻⁶ (221 in a million)	10 × 10 ⁻⁶ (10 in a million)	

Health Impact	Receptor Type	Alternative 1	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
	Occupational	477 x 10 ⁻⁶	992 x 10 ⁻⁶	78 x 10 ⁻⁶	171 x 10 ⁻⁶	306 x 10 ⁻⁶	
		(477 in a million)	(992 in a million)	(78 in a million)	(171 in a million)	(306 in a million)	
	Recreational	732 x 10 ⁻⁶	1,522 x 10 ⁻⁶	120 x 10 ⁻⁶	263 x 10 ⁻⁶	469 x 10 ⁻⁶	
		(732 in a million)	(1,522 in a million)	(120 in a million)	(263 in a million)	(469 in a million)	
	Sensitive	99 x 10 ⁻⁶	120 x 10 ⁻⁶	3 x 10 ⁻⁶	52 x 10 ⁻⁶	60 x 10 ⁻⁶	
		(99 in a million)	(120 in a million)	(3 in a million)	(52 in a million)	(60 in a million)	
	Student	6 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶	4 x 10 ⁻⁶	
		(6 in a million)	(8 in a million)	(<1 in a million)	(2 in a million)	(4 in a million)	
Chronic	Residential	0.53	0.69	0.09	0.44	0.11	
Hazard Index	Occupational	1.17	1.72	0.24	1.04	0.43	
	Recreational	1.17	1.72	0.24	1.04	0.43	1.0
	Sensitive	0.13	0.13	0.02	0.11	0.03	
	Student	0.13	0.11	0.02	0.10	0.03	
Acute	Residential	1.64	2.40	1.42	1.36	1.26	
Hazard Index	Occupational	2.56	3.07	2.51	1.76	1.46	
	Recreational	2.56	3.07	2.51	1.76	1.46	1.0
	Sensitive	0.86	0.51	0.73	0.44	0.68	
	Student	0.57	0.42	0.44	0.29	0.37	

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents the proposed Project minus the CEQA baseline. The NEPA increment represents the proposed Project minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Data represent the receptor locations with the maximum impacts or increments. The impacts or increments at all other receptors would be less than these values.

The cancer risk values reported in this table for the residential receptor are based on the 80th percentile breathing rate.

For the acute hazard index, half the ships were assumed to use residual fuel oil with a 4.5% sulfur content and the other half

		Maximum Predicted Impact								
	Health Impact	Receptor Type	Alternative 1	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold		
	-		rage residual fuel o	il of 2.7% sulfu	ir content					
1										
2		<u>Miti</u>	gation Measur	es						
2		т	1	м		1 104	• • • •			
3		Imp	lement Mitigati	on Measures	MM AQ-9 tr	rougn MM A	AQ-24.			
4		Res	sidual Impacts							
•										
5			le 3.2-60 presen							
6			sidential recepto							
7			gation measures							
8 9			this alternative							
9 10			Id be reduced b Id be reduced b			um residentia	ai acute nazai	a maex		
10		wor		y uoout 1770	•					
11										
12	The data show that the maximum residential CEQA cancer risk increment after mitigation is predicted to be <1 in a million ($<1 \times 10^{-6}$). This risk value is well below									
13		the significance threshold of 10 in a million. The CEQA cancer risk increment would								
14			be exceeded at			onal receptor	s. These exc	eedances are		
15		con	sidered significa	ant impacts u	nder CEQA.					
16		The	maximum chro	nic hazard ir	dex CEOA ir	ocrement is n	redicted to be	below the		
17			ificance thresho							
18			e above the sign							
19		for	the occupational	l residential	and recreation	nal recentors	•			

20	Table 2 2 60	Maximum Hoalth Impacts	Accoriated With Alternative	1 with Mitigation, 2009–2078
20	Table 3.2-00.	Maximum nealth impacts	Associated with Alternative	1 with with yation, $2009-2070$

Health Impact	Receptor Type	Alternative 1	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Cancer Risk	Residential	115 x 10 ⁻⁶ (115 in a million)	379 x 10 ⁻⁶ (379 in a million)	<1 x 10 ⁻⁶ (<1 in a million)	139 x 10 ⁻⁶ (139 in a million)	19 x 10 ⁻⁶ (19 in a million)	10 × 10 ⁻⁶ (10 in a million)
	Occupational	96 x 10 ⁻⁶ (96 in a million)	992 x 10 ⁻⁶ (992 in a million)	21 x 10 ⁻⁶ (21 in a million)	171 x 10 ⁻⁶ (171 in a million)	30 x 10 ⁻⁶ (30 in a million)	
	Recreational	147 x 10 ⁻⁶ (147 in a million)	1,522 x 10 ⁻⁶ (1,522 in a million)	32 x 10 ⁻⁶ (32 in a million)	263 x 10 ⁻⁶ (263 in a million)	46 x 10 ⁻⁶ (46 in a million)	

Health Impact	Receptor Type	Alternative 1	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
	Sensitive	48 x 10 ⁻⁶	120 x 10 ⁻⁶	<1 x 10 ⁻⁶	52 x 10 ⁻⁶	1 x 10 ⁻⁶	
		(48 in a million)	(120 in a million)	(<1 in a million)	(52 in a million)	(1 in a million)	
	Student	2 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(2 in a million)	(8 in a million)	(<1 in a million)	(2 in a million)	(<1 in a million)	
Chronic	Residential	0.44	0.69	0.04	0.44	0.02	
Hazard Index	Occupational	1.04	1.72	0.17	1.04	0.06	
	Recreational	1.04	1.72	0.17	1.04	0.06	1.0
	Sensitive	0.11	0.13	0.00	0.11	0.00	
	Student	0.10	0.11	0.00	0.10	0.00	
Acute	Residential	1.36	2.40	1.10	1.36	0.94	
Hazard Index	Occupational	1.79	3.07	1.74	1.76	1.07	
	Recreational	1.79	3.07	1.74	1.76	1.07	1.0
	Sensitive	0.73	0.51	0.60	0.44	0.55	
	Student	0.44	0.42	0.31	0.29	0.24	

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents the proposed Project minus the CEQA baseline. The NEPA increment represents the proposed Project minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Data represent the receptor locations with the maximum impacts or increments. The impacts or increments at all other receptors would be less than these values.

The cancer risk values reported in this table for the residential receptor are based on the 80th percentile breathing rate.

For the acute hazard index, half the ships were assumed to use residual fuel oil with a 4.5% sulfur content and the other half were assumed to use the average residual fuel oil of 2.7% sulfur content

1 2

NEPA Impact Determination

3	Table 3.2-59 shows that the maximum NEPA cancer risk increment associated with
4	the unmitigated Alternative 1 is predicted to be 469 in a million (469×10^{-6}) , at a
5	recreational receptor. This risk value exceeds the significance criterion of 10 in a

1 2 3	million and would be considered a significant impact. The NEPA cancer risk increment would also exceed the threshold at occupational, sensitive, and residential receptors. These exceedances are considered significant impacts under NEPA.
4 5 6 7	The maximum chronic hazard index NEPA increment is predicted to be below significance for all receptor types. The acute hazard index NEPA increment is predicted to be above the significance threshold of 1.0 and is therefore considered significant for the occupational, residential, and recreational receptors.
8	Mitigation Measures
9	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
10	Residual Impacts
11 12 13 14 15	The maximum residential NEPA cancer risk increment after mitigation is predicted to be 46 in a million (46×10^{-6}) , at a recreational receptor. This risk value is above the significance threshold of 10 in a million. The NEPA cancer risk increment also would exceed the threshold at residential and occupational receptors. These exceedances are considered significant impacts under NEPA.
16 17 18 19	The maximum chronic hazard index NEPA increment is predicted to be below the significance threshold of 1.0. The acute hazard index NEPA increment is predicted to be above the significance threshold of 1.0 and is therefore considered significant for the occupational and recreational receptors.
20 21	Impact AQ-8: Alternative 1 would not conflict with or obstruct implementation of an applicable AQMP.
22 23 24	Similar to the proposed Project, this alternative would comply with SCAQMD rules and regulations and would be consistent with SCAG regional employment and population growth forecasts.
25	CEQA Impact Determination
26 27	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under CEQA are not anticipated.
28	Mitigation Measures
29	No mitigation is required.
30	Residual Impacts
31	Impacts would be less than significant.

1	NEPA Impact Determination
2 3	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under NEPA are not anticipated.
4	Mitigation Measures
5	No mitigation is required.
6	Residual Impacts
7	Impacts would be less than significant.
8 9	Impact AQ-9: Alternative 1 would produce GHG emissions that would exceed CEQA and NEPA baseline levels.
10 11 12	Table 3.2-61 summarizes the total GHG construction emissions associated with Alternative 1. Table 3.2-62 summarizes the annual GHG emissions that would occur within California from the operation of Alternative 1 without mitigation.

13 Table 3.2-61. Total GHG Emissions from Construction Activities—Alternative 1 without Mitigation

	Total Emissions (Metric Tons)			
Emission Source	CO_2	CH_4	N_2O	CO_2e
Catalina Express Terminal	387.96	0.05	0.00	390.31
Cruise ship terminal Berths 91–93	987.57	0.14	0.01	993.56
Cruise ship parking facilities	1,565.24	0.22	0.02	1,574.73
North Harbor	4,213.91	0.59	0.04	4,239.47
Maritime Office Building—Crowley	234.81	0.03	0.00	236.23
Maritime Office Building—Millennium	235.05	0.03	0.00	236.47
Maritime Office Building—Lane Victory	235.05	0.03	0.00	236.47
Downtown Harbor	1,886.65	0.27	0.02	1,898.09
7 th Street Harbor	1,319.76	0.19	0.01	1,327.76
7 th Street Pier	1,159.91	0.16	0.01	1,166.94
Downtown Square	167.73	0.02	0.00	168.74
Downtown water feature	117.95	0.02	0.00	118.66
John S. Gibson Jr. Park	173.87	0.02	0.00	174.92
Ralph J. Scott Fireboat Museum	372.10	0.05	0.00	374.35
Los Angeles Maritime Museum renovation	0.00	0.00	0.00	0.00
Los Angeles Maritime Institute	252.83	0.04	0.00	254.36

Total Emissions (Metric Tons)					
Emission Source	CO_2	CH_4	N_2O	CO_2e	
Maritime Office Building	0.00	0.00	0.00	0.00	
Ports O' Call Promenade—Phase 1	2,189.22	0.31	0.02	2,202.49	
Ports O' Call Promenade—Phase 2	2,386.10	0.34	0.02	2,400.57	
Ports O' Call Promenade—Phase 3	2,194.86	0.31	0.02	2,208.17	
Southern Pacific Railyard demolition	282.14	0.04	0.00	283.85	
Fishermen's Park	722.81	0.10	0.01	727.19	
Ports O' Call redevelopment without restaurant	0.00	0.00	0.00	0.00	
Ports O' Call Redevelopment Phase 1	2,163.88	0.30	0.02	2,177.00	
Ports O' Call Redevelopment Phase 2	3,325.88	0.47	0.03	3,346.05	
Ports O' Call Redevelopment with Restaurant	589.54	0.08	0.01	593.12	
Ports O' Call Redevelopment Phase 3	1,701.85	0.24	0.02	1,712.18	
Waterfront Red Car Maintenance Facility	615.44	0.09	0.01	619.17	
Westway Terminal demolition	857.21	0.12	0.01	862.41	
City Dock No. 1 promenade	2,448.96	0.34	0.02	2,463.82	
Outer Harbor Cruise Terminal	4,434.33	0.62	0.04	4,461.22	
Outer Harbor Park and promenade	1,090.88	0.15	0.01	1,097.50	
San Pedro Park	1,111.59	0.16	0.01	1,118.33	
Salinas De San Pedro/Youth Camp promenade	2,576.76	0.36	0.03	2,592.39	
Sampson Way road improvements	886.34	0.12	0.01	891.72	
Waterfront Red Car Line extension—Sampson Way	988.00	0.14	0.01	993.99	
Waterfront Red Car Line extension—Cabrillo Beach	1,064.12	0.15	0.01	1,070.58	
Waterfront Red Car Line extension—Outer Harbor	589.03	0.08	0.01	592.60	
Waterfront Red Car Line extension—City Dock No. 1	601.82	0.08	0.01	605.47	
Berth 240 fueling station	224.64	0.03	0.00	226.01	
Total Emissions	46,355.78	6.52	0.47	46,636.89	
NEPA Baseline	23,845.99	3.35	0.24	23,990.60	
Alternative 1 minus NEPA Baseline	22,509.79	3.16	0.23	22,646.29	

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate

Total Emissions (Metric Tons)				<i>;</i>)
Emission Source	CO_2	CH_4	N_2O	CO ₂ e
for each GHG represents the emission rate multiplied by N_2O .	its GWP. The	GWPs are 1 for	CO ₂ ; 21 for CH	4; and 310 for
Emissions may not add precisely due to rounding. For r	nore explanation	n, refer to the dis	scussion in Sect	ion 3.2.4.1.
The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.				
NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.			for	

1

2 **Table 3.2-62.** Annual Operational GHG Emissions—Alternative 1 without Mitigation

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		
Project Year 2011						
Vessel transit and maneuvering	52,118	0.3	2.4	52,858		
Vessel hoteling	18,464	0.1	0.8	18,726		
Harbor craft	25,571	0.1	1.2	25,934		
Motor vehicles	16,661	3.1	3.4	17,773		
Terminal equipment—fossil fueled	195	0.0	0.0	196		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839		
Total for Project Year 2011	136,807	3.9	7.9	139,326		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 1 minus CEQA baseline	7,538	-2.4	-1.5	7,018		
NEPA baseline	114,668	3.7	6.8	116,853		
Alternative 1 minus NEPA baseline	22,139	0.2	1.1	22,472		
Project Year 2015	·	·				
Vessel transit and maneuvering	52,728	0.3	2.4	53,476		
Vessel hoteling	18,876	0.1	0.9	19,144		
Harbor craft	23,083	0.1	1.0	23,411		
Motor vehicles	61,188	7.7	8.9	64,095		
Terminal equipment—fossil fueled	195	0.0	0.0	196		
AMP electricity usage	NA	NA	NA	NA		

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2015	179,868	8.5	13.3	184,160
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 1 minus CEQA baseline	50,598	2.2	3.9	51,852
NEPA baseline	170,307	8.3	12.0	174,215
Alternative 1 minus NEPA baseline	9,561	0.2	1.2	9,945
Project Year 2022	·	·		
Vessel transit and maneuvering	52,728	0.3	2.4	53,476
Vessel hoteling	18,876	0.1	0.9	19,144
Harbor craft	22,659	0.1	1.0	22,981
Motor vehicles	64,135	6.5	7.9	66,715
Terminal equipment—fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA NA	
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2022	182,391	7.3	12.3	186,350
CEQA baseline	129,270	6.3	6.3 9.4	
Alternative 1 minus CEQA baseline	53,121	1.0	2.9	54,042
NEPA baseline	173,145	7.1	11.1	176,731
Alternative 1 minus NEPA baseline	9,246	0.2	1.2	9,618
Project Year 2037	·	·		
Vessel transit and maneuvering	52,728	0.3	2.4	53,476
Vessel hoteling	18,876	0.1	0.9	19,144
Harbor craft	22,659	0.1	1.0	22,981
Motor vehicles	71,310	7.3	8.8	74,186
Terminal equipment—fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2037	189,566	8.1	13.2	193,820

	Metric Tons Per Year					
Project Scenario/Source Type	<i>CO</i> ₂ <i>CH</i> ₄ <i>N</i> ₂ <i>O CO</i> ₂ <i>e</i>					
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 1 minus CEQA baseline	60,296	1.8	3.8	61,513		
NEPA baseline	176,482	7.5	11.5	180,209		
Alternative 1 minus NEPA baseline	13,084	0.6	1.7	13,612		

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

- 3The data in Table 3.2-62 show that in each future project year except 2011, annual4operational CO2e emissions would increase from CEQA baseline levels. As a result,5Alternative 1 would produce significant levels of GHG emissions under CEQA.
- 6 <u>Mitigation Measures</u>
- 7 Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13,
 8 MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.

9 Residual Impacts

10Table 3.2-63 summarizes the annual GHG emissions that would occur within11California from the operation of Alternative 1 with mitigation. The data in Table123.2-63 show that in each future project year except 2011, annual operational CO2e13emissions would increase from CEQA baseline levels. As a result, Alternative 114would produce significant levels of GHG emissions under CEQA.

15 **Table 3.2-63.** Annual Operational GHG Emissions—Alternative 1 with Mitigation

	Metric Tons Per Year			
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Project Year 2011				

	Metric Tons Per Year			
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO_2e
Vessel transit and maneuvering	42,599	0.2	1.9	43,203
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	23,399	0.1	1.1	23,731
Motor vehicles	16,661	3.1	3.4	17,773
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	0	0.0	0.0	0
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2011	116,859	3.7	7.0	119,093
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 1 minus CEQA baseline	-12,410	-2.6	-2.4	-13,215
NEPA baseline	114,668	3.7	6.8	116,853
Alternative 1 minus NEPA baseline	2,192	0.0	0.2	2,239
Project Year 2015				
Vessel transit and maneuvering	43,065	0.3	2.0	43,676
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	61,188	7.7	8.9	64,095
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,229	0.1	0.1	11,247
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2015	170,294	8.5	12.4	174,307
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 1 minus CEQA baseline	41,024	2.2	3.0	41,999
NEPA baseline	170,307	8.3	12.0	174,215
Alternative 1 minus NEPA baseline	-13	0.1	0.3	92
Project Year 2022				
Vessel transit and maneuvering	43,065	0.3	2.0	43,676
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	20,612	0.1	0.9	20,904

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Motor vehicles	64,135	6.5	7.9	66,715
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,229	0.1	0.1	11,247
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2022	173,241	7.3	11.4	176,926
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 1 minus CEQA baseline	43,971	1.0	2.0	44,619
NEPA baseline	173,145	7.1	11.1	176,731
Alternative 1 minus NEPA baseline	95	0.1	0.3	195
Project Year 2037				
Vessel transit and maneuvering	43,065	0.3	2.0	43,676
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	71,310	7.3	8.8	74,186
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,229	0.1	0.1	11,247
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	23,798	0.2	0.1	23,839
Total for Project Year 2037	180,415	8.0	12.3	184,397
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 1 minus CEQA baseline	51,146	1.7	2.9	52,090
NEPA baseline	176,482	7.5	11.5	180,209
Alternative 1 minus NEPA baseline	3,934	0.5	0.8	4,189

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that

			Metric Tons Per Year					
	Project Scenario/S		CO_2	CH_4	N_2O	CO ₂ e		
	are not currently ava	iilable.						
	NEPA baseline emis	ssions include as proposed project elements	the same mitiga	tion measures id	lentified for Alte	ernative 5.		
1								
2		NEPA Impact Determination						
3 4		The data in Table 3.2-62 show th CO_2e emissions would increase f				verational		
5		Mitigation Measures						
6 7		Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.						
8		Residual Impacts						
9 10		Table 3.2-63 shows that in 2011 and 2037, annual operational CO_2e emissions would increase from NEPA baseline levels.						
11	3.2.4.3.3	Alternative 2—Altern	ative De	evelopmo	ent Scer	ario 2		
12 13 14 15 16 17 18 19		Alternative 2 has a similar cruise locates the parking for the Outer shuttling passengers from the Inn Boulevard to one lane southboun 13 th Street, and constructs the Cre Finally, this alternative involves a Red Car along Harbor Boulevard alignment along Shoshonean Roa	Harbor Term er Harbor. T d, cul-de-sac escent Street a modificatio , and modific	inal to the Ou The alternative king northbou Viaduct (simi n to the realig	tter Harbor in e reduces Har and Harbor B alar to Alterna gnment of the	nstead of bor soulevard at ative 1). e Waterfront		
20 21 22		Impact AQ-1: Alternative related emissions that e significance in Table 3.2	exceed an					
23 24 25		Although this alternative has less of the construction activities requ for this alternative.						
26 27 28 29 30		Table 3.2-64 presents a summary associated with construction of A peak daily construction emission significance determinations. Max determined by totaling the daily e	Iternative 2 v s for each pro ximum emiss	without mitigation piect year, as without be an arrival strain the second strain strai	ation. This ta well as CEQA construction	able contains A and NEPA phase were		

occur simultaneously in the proposed construction schedule (Table 2-5). Detailed tables of emissions for each proposed project activity can be found in Appendix D1. In addition, Appendix D6 contains data on emission levels for each construction equipment type in each proposed project activity.

5 **Table 3.2-64.** Summary of Peak Daily Construction Emissions—Alternative 2 without Mitigation

		Peak Daily	, Constructi	on Emissio	ns (lb/day)	
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
2009 Peak Daily Construction Emissions	465	1,887	6,025	5	885	359
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	49	332	971	2	65	22
NEPA Emissions (Alternative 2 minus non-Federal emissions)	416	1,555	5,054	3	820	337
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2010 Peak Daily Construction Emissions	1,266	5,665	17,006	15	3,308	1,171
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127
NEPA Emissions (Alternative 2 minus non-Federal emissions)	951	3,492	10,983	5	3,003	1,044
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2011 Peak Daily Construction Emissions	929	4,397	12,779	12	2,836	948
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122
NEPA Emissions (Alternative 2 minus non-Federal emissions)	629	2,340	7,070	2	2,541	826
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2012 Peak Daily Construction Emissions	694	3,080	9,129	8	1,867	646
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69
NEPA Emissions (Alternative 2 minus non-Federal emissions)	530	1,973	6,085	3	1,709	577
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes

		Peak Daily	, Constructi	on Emissio	ns (lb/day)	
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	82	542	1,447	2	106	43
NEPA Emissions (Alternative 2 minus non-Federal emissions)	237	733	2,445	1	939	286
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2014 Peak Daily Construction Emissions	267	1,018	3,166	3	373	170
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	62	396	1,038	1	37	24
NEPA Emissions (Alternative 2 minus non-Federal emissions)	205	622	2,128	2	336	146
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes

1

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

2 CEQA Impact Determination 3 Alternative 2 would exceed the daily construction emission thresholds for VOC, CO NO _X , PM10, and PM2.5 during construction. Therefore, significant impacts under CEQA would occur. 6 Mitigation Measures 7 Implement Mitigation Measures MM AQ-1 through AQ-8. 8 Residual Impacts 9 The residual air quality impacts would be temporary but significant. Despite implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 2 would still exceed the SCAQMD daily thresholds for VOC, CO, NO _X , PM10, and PM2.5.		
 4 NO_x, PM10, and PM2.5 during construction. Therefore, significant impacts under CEQA would occur. 6 <u>Mitigation Measures</u> 7 Implement Mitigation Measures MM AQ-1 through AQ-8. 8 <u>Residual Impacts</u> 9 The residual air quality impacts would be temporary but significant. Despite implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 2 would still exceed the SCAQMD 	2	CEQA Impact Determination
 7 Implement Mitigation Measures MM AQ-1 through AQ-8. 8 <u>Residual Impacts</u> 9 The residual air quality impacts would be temporary but significant. Despite implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 2 would still exceed the SCAQMD 	4	
8 <u>Residual Impacts</u> 9 The residual air quality impacts would be temporary but significant. Despite 10 implementation of mitigation and proposed compliance with SCAQMD Rule 403, 11 emissions from the construction of Alternative 2 would still exceed the SCAQMD	6	Mitigation Measures
9 The residual air quality impacts would be temporary but significant. Despite 10 implementation of mitigation and proposed compliance with SCAQMD Rule 403, 11 emissions from the construction of Alternative 2 would still exceed the SCAQMD	7	Implement Mitigation Measures MM AQ-1 through AQ-8.
implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 2 would still exceed the SCAQMD	8	Residual Impacts
	10 11	implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 2 would still exceed the SCAQMD

1	Table 3.2-65 presents a summary of the peak daily criteria pollutant emissions
2	associated with construction of Alternative 2 after the application of Mitigation
3	Measures MM AQ-1 through MM AQ-5. This table contains peak daily construction
4	emissions for each project year, as well as CEQA and NEPA significance
5	determinations. Maximum emissions for each construction phase were determined
6	by totaling the daily emissions from those construction activities that occur
7	simultaneously in the proposed construction schedule (Table 2-5). Detailed tables of
8	emissions for each proposed project activity can be found in Appendix D1. In
9	addition, Appendix D6 contains data on emission levels for each construction
10	equipment type in each proposed project activity.

11	Tablo 3 2-65	Summary of Peak D	aily Construction Emi	ssions—Alternative 2 with Mitigation
11	Table 3.2-05.	Summary of Feak L	ally construction Emis	ssions—Alternative z with withyation

	Peak Daily Construction Emissions (lb/day)					
Project Year	VOC CO NO_X SO_X $PM10$ PM					
2009 Peak Daily Construction Emissions	271	1,521	3,852	5	204	124
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	49	332	971	2	65	22
NEPA Emissions (Alternative 2 minus non- Federal emissions)	222	1,189	2,881	3	139	102
NEPA Significant?	Yes	Yes	Yes	No	No	Yes
2010 Peak Daily Construction Emissions	633	3,960	10,456	15	504	273
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127
NEPA Emissions (Alternative 2 minus non- Federal emissions)	318	1,787	4,433	5	199	146
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2011 Peak Daily Construction Emissions	415	2,782	7,614	12	374	174
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122
NEPA Emissions (Alternative 2 minus non- Federal emissions)	115	725	1,905	2	79	52
NEPA Significant?	Yes	Yes	Yes	No	No	No
2012 Peak Daily Construction Emissions	346	2,127	5,706	8	276	143
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69

San Pedro Waterfront Project EIS/EIR

	Peak Daily Construction Emissions (lb/day)							
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5		
NEPA Emissions (Alternative 2 minus non- Federal emissions)	182	1,020	2,662	3	118	74		
NEPA Significant?	Yes	Yes	Yes	No	No	Yes		
2013 Peak Daily Construction Emissions	191	1,057	2,708	3	164	87		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	82	542	1,447	2	106	43		
NEPA Emissions (Alternative 2 minus non- Federal emissions)	109	515	1,261	1	58	44		
NEPA Significant?	Yes	No	Yes	No	No	No		
2014 Peak Daily Construction Emissions	170	911	2,299	3	94	69		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	No	Yes		
Non-Federal Construction Emissions	62	396	1,038	1	37	24		
NEPA Emissions (Alternative 2 minus non- Federal emissions)	108	515	1,261	2	57	45		
NEPA Significant?	Yes	No	Yes	No	No	No		

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

3

4

5

6

8

NEPA Impact Determination

The NEPA incremental emissions for Alternative 2 are calculated by subtracting the
NEPA baseline emissions Alternative 2 would exceed the emission thresholds for

NEPA baseline emissions. Alternative 2 would exceed the emission thresholds for VOC, CO, NO_X, PM10, and PM2.5 during construction. Therefore, significant impacts under NEPA would occur.

7	Mitigation Measures

Implement Mitigation Measures MM AQ-1 through MM AQ-8.

1	Residual Impacts
2 3 4 5	The residual air quality impacts would be temporary but significant. Despite implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 2 would still exceed the SCAQMD daily thresholds for VOC, CO, NO _X , PM10, and PM2.5.
6 7 8	Table 3.2-65 presents a summary of the peak daily criteria pollutant emissions associated with construction of this alternative after the application of Mitigation Measures MM AQ-1 through MM AQ-5.
9 10 11	Impact AQ-2: Alternative 2 construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.
12 13 14 15	Dispersion modeling of onsite Alternative 2 construction emissions was performed to assess the impact of this alternative on local ambient air concentrations. A summary of the dispersion modeling results is presented here; the complete dispersion modeling report is included in Appendix D2.
16 17	Table 3.2-66 presents the maximum offsite ground-level concentrations of NO ₂ , CO, PM10, and PM2.5 from construction without mitigation.
18 19 20 21	Table 3.2-66 shows that the maximum 1-hour and 8-hour CO concentrations would not exceed the SCAQMD thresholds. The maximum offsite 1-hour NO_2 concentration and maximum offsite 24-hour increment increases of PM10 and PM2.5 would exceed the SCAQMD significance threshold for both CEQA and NEPA.

22 **Table 3.2-66.** Maximum Offsite Ambient Concentrations—Alternative 2 Construction without Mitigation

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without Background) (µg/m ³)	CEQA Impact $(\mu g/m^3)$	NEPA Impact $(\mu g/m^3)$	SCAQMD Threshold ^a (µg/m ³)
NO ₂	1-hour	263	2,681	2,944	2,944	338
СО	1-hour	4,809	10,811	15,620	15,620	23,000
	8-hour	4,008	2,085	6,093	6,093	10,000
PM10	24-hour	-	299.6	299.6	292.0	10.4
PM2.5	24-hour	-	92.2	92.2	72.2	10.4

Notes:

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO_2 thresholds represent the 2007 adopted CAAQS values.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

1

2

3

4

5

CEQA Impact Determination

- Without mitigation, maximum offsite ambient pollutant concentrations associated with construction would be significant for NO₂ (1-hour average) as well as for 24-hour PM10 and PM2.5. Therefore, significant impacts under CEQA would occur.
- 6 <u>Mitigation Measures</u>
- 7 Implement Mitigation Measures MM AQ-1 through MM AQ-8.
- 8 Residual Impacts

9	Table 3.2-67 presents the maximum offsite ground-level concentrations of NO ₂ , CO,
10	PM10, and PM2.5 from all construction phases after mitigation. With
11	implementation of these mitigation measures, offsite ambient concentrations from
12	construction activities would be significant for NO ₂ , PM10, and PM2.5 but would be
13	less than significant for CO.

14 **Table 3.2-67.** Maximum Offsite Ambient Concentrations—Alternative 2 Construction with Mitigation

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without background) (µg/m ³)	CEQA Impact $(\mu g/m^3)$	NEPA Impact $(\mu g/m^3)$	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	263	2,586	2,849	2,849	338
	1-hour	4,809	10,241	15,050	15,050	23,000
СО	8-hour	4,008	1,995	6,003	6,003	10,000
PM10	24-hour	-	58.0	58.0	36.7	10.4
PM2.5	24-hour	-	48.3	48.3	30.4	10.4

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO_2 thresholds represent the 2007 adopted CAAQS values.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

1

2

3

4

5

6

- Without mitigation, maximum offsite ambient pollutant concentrations associated with construction would be significant for NO₂ (1-hour average) as well as for 24-hour PM10 and PM2.5. Therefore, significant impacts under NEPA would occur.
- Mitigation Measures
- 7 Implement Mitigation Measures MM AQ-1 through MM AQ-8.

NEPA Impact Determination

- 8 Residual Impacts
- 9Table 3.2-67 presents the maximum offsite ground-level concentrations of NO2, CO,10PM10, and PM2.5 from all construction phases after mitigation. With11implementation of these mitigation measures, offsite ambient concentrations from12construction activities would be significant for NO2, PM10, and PM2.5 but would be13less than significant for CO.

14Impact AQ-3: Alternative 2 would result in operational15emissions that exceed 10 tons per year of VOCs or an16SCAQMD threshold of significance in Table 3.2-15.

17Tables 3.2-68 and 3.2-69 present the unmitigated average and peak daily criteria18pollutant emissions associated with operation of this alternative. Emissions were19estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to20the CEQA baseline (2006) and the NEPA baseline emissions are presented for21informational purposes in Table 3.2-68; actual CEQA and NEPA significance is

1 2	determined by the comparison of peak daily impacts to CEQA and NEPA thresholds in Table 3.2-69.
3 4 5	The operational emissions associated with this alternative assume the operation of berths at both the Inner and Outer Harbor Cruise Terminals and the following activity levels:
6	 Operation of three berths in 2011 at the Inner Harbor Cruise Terminal.
7 8	 Operation of two berths in 2015, 2022, and 2037 at the Inner Harbor Cruise Terminal.
9 10	 Operation of two berths in 2015, 2022, and 2037 at the Outer Harbor Cruise Terminal.
11 12	Annual ship calls under this alternative are estimated to be 269 calls in 2011, 275 calls in 2015, 282 calls in 2022, and 287 calls in 2037 and thereafter.
13	 Average emissions from cruise ships assume the use of 2.7% sulfur fuel.
14	 Peak emissions from cruise ships assume the use of 4.5% sulfur fuel.
15 16	Peak daily emissions assume that all available berths would be occupied on any given day.
17 18 19	 Harbor craft activity levels would not change from 2006 operations. However, since the Crawley and Millennium tugboats would be relocated to the Outer Harbor, their transit time to the harbor gate would be reduced.
20 21 22	 Environmental measures for cruise ships and harbor craft considered part of this alternative would be the same as those considered for the proposed Project (listed in Table 3.2-8).
23 24 25	Table 3.2-69 shows the peak daily operational emissions for Alternative 2. The peak daily emission estimates for operations include the following assumptions that were chosen to identify a maximum theoretical activity scenario:
26 27 28	 Ships at berth: The peak day scenario assumes the largest combination of ships in the proposed project fleet that could be simultaneously accommodated at the berths.
29 30	 Motor vehicles: Peak day truck trips generated by Alternative 2 were provided by the traffic study for each analysis year.
31 32 33 34	Terminal equipment: The terminal equipment data was provided by LAHD. It was assumed that approximately 38 pieces of terminal equipment (i.e., 11 diesel forklifts, 25 propane forklifts, and 2 fuel trucks) would operate during the peak period when all cruise ships are hoteling at the Port.
35 36 37	Tables 3.2-68 and 3.2-69 show that operational activities associated with this alternative would be similar to the proposed Project in 2011, and slightly less than the proposed Project for VOC, NO_X , SO_X , PM10, and PM2.5 in 2015, 2022, and 2037.

1 **Table 3.2-68.** Average Daily Operational Emissions without Mitigation—Alternative 2

	Average Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
Project Year 2011		·				
Vessel transit and maneuvering	144	300	3,670	3,195	411	329
Vessel hoteling	78	162	1,978	1,975	231	185
Harbor craft	53	480	1,719	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	1	12	11	0.01	0.5	0.4
Total—Project Year 2011	401	1,967	7,544	5,172	871	604
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 2 minus CEQA baseline	-51	-1,156	1,107	1,185	22	93
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Ye
<u>NEPA Impacts</u>	· · ·					
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Alternative 2 minus NEPA baseline	38	37	1,195	2,031	211	168
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Ye
Project Year 2015						
Vessel transit and maneuvering	143	299	3,644	3,179	410	328
Vessel hoteling	79	166	2,014	2,019	236	189
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	186	2,115	403	4	624	126
Terminal equipment	0.8	12	8	0.01	0.4	0.3
Total—Project Year 2015	455	3,131	7,413	5,203	1,322	69 1
CEQA Impacts	· · ·					
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 2 minus CEQA baseline	3	8	976	1,216	473	180
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Ye

		Aver	age Daily En	nissions (lb/d	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
NEPA Impacts						
NEPA baseline emissions	319	2,608	4,263	490	750	276
Alternative 2 minus NEPA baseline	136	523	3,150	4,713	572	415
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2022						
Vessel transit and maneuvering	147	307	3,713	3,260	420	330
Vessel hoteling	82	170	2,052	2,071	242	194
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	153	1,502	228	4	657	13
Terminal equipment	0.5	12	5	0.01	0.2	0.
Total—Project Year 2022	427	2,749	7,063	5,335	1,369	70
<u>CEQA Impacts</u>	· ·					
CEQA baseline emissions	452	3,123	6,437	3,987	849	51
Alternative 2 minus CEQA baseline	-25	-374	626	1,348	520	19
Thresholds	55	550	55	150	150	5
Significant?	No	No	Yes	Yes	Yes	Ye
NEPA Impacts	· ·					
NEPA baseline emissions	285	2,335	3,937	491	766	27
Alternative 2 minus NEPA baseline	142	414	3,127	4,844	603	43
Thresholds	55	550	55	150	150	5
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2037						
Vessel transit and maneuvering	149	312	3,757	3,293	424	33
Vessel hoteling	83	173	2,076	2,107	247	19
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	94	916	146	5	744	14
Terminal equipment	0.3	12	3	0.01	0.1	0.
Total—Project Year 2037	372	2,172	7,047	5,406	1,464	72
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	51

	Average Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Alternative 2 minus CEQA baseline	-80	-951	610	1,419	615	217
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	229	1,765	3,803	491	796	277
Alternative 2 minus NEPA baseline	143	407	3,244	4,915	668	451
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 **Table 3.2-69.** Peak Daily Operational Emissions without Mitigation—Alternative 2

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101	
Vessel hoteling	304	633	8,022	12,937	1,220	976	
Harbor craft	53	480	1,719	1	62	57	
Motor vehicles	126	1,013	166	1	166	33	
Terminal equipment	2	22	19	0.02	0.9	0.8	
Total—Project Year 2011	1,175	3,590	28,267	38,473	4,075	3,167	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 2 minus CEQA baseline	70	-913	4,332	6,384	513	485	

		Pea	ık Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
NEPA Impacts					I	
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969
Alternative 2 minus NEPA baseline	67	105	1,838	2,385	249	99
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2015						
Vessel transit and maneuvering	950	2,096	25,257	35,062	3,612	2,890
Vessel hoteling	431	897	11,374	18,177	1,723	1,378
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	186	2,115	403	4	624	120
Terminal equipment	1.4	22	15	0.02	0.7	0.0
Total—Project Year 2015	1,614	5,669	38,393	53,245	6,012	4,44
CEQA Impacts					I	
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 2 minus CEQA baseline	509	1,166	14,458	21,157	2,450	1,76
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Ye
<u>NEPA Impacts</u>						
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879
Alternative 2 minus NEPA baseline	736	1,894	19,329	33,235	3,258	2,564
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Ye
Project Year 2022						
Vessel transit and maneuvering	950	2,096	25,257	35,062	3,612	2,890
Vessel hoteling	431	897	11,374	18,177	1,723	1,37
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	153	1,502	228	4	657	13
Terminal equipment	0.8	22	9	0.02	0.3	0.
Total—Project Year 2022	1,580	5,276	37,933	53,245	6,041	4,444

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
<u>CEQA Impacts</u>								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 2 minus CEQA baseline	475	773	13,998	21,157	2,479	1,762		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>								
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875		
Alternative 2 minus NEPA baseline	736	1,773	19,175	33,234	3,271	2,569		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		
Project Year 2037								
Vessel transit and maneuvering	950	2,096	25,257	35,062	3,612	2,890		
Vessel hoteling	431	897	11,374	18,177	1,723	1,378		
Harbor craft	45	759	1,065	1	49	43		
Motor vehicles	94	916	146	5	744	146		
Terminal equipment	0.5	22	5	0.02	0.1	0.1		
Total—Project Year 2037	1,520	4,690	37,847	53,246	6,128	4,459		
CEQA Impacts	- I			I.	L. L			
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 2 minus CEQA baseline	415	187	13,912	21,158	2,566	1,777		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Yes		
NEPA Impacts								
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880		
Alternative 2 minus NEPA baseline	732	1,758	19,206	33,235	3,328	2,579		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Ye		

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

	Peak Daily Emissions (lb/day)						
Emission Source	VOC CO NO_X SO_X $PM10$ $PM2.5$						
Emissions might not precisely add to the give Section 3.2.4.1.	n total due to	rounding. For	r further expla	nation, refer t	o the discussion	on in	

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Due to a lengthy construction period, operational activities would overlap with construction. Table 3.2-70 shows the combined total of construction and operational emissions for 2011 during which construction and operation activities would occur simultaneously.

6 **Table 3.2-70.** Peak Daily Construction and Operational Emissions without Mitigation—Alternative 2

		Ped	nk Daily Emis	ssions (lb/da	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Peak Daily Construction Emissions	929	4,397	12,779	12	2,836	948
Peak Daily Operational Emissions	1,175	3,590	28,267	38,473	4,075	3,167
Total—Construction & Operation—Project Year 2011	2,104	7,987	41,046	38,485	6,911	4,115
CEQA Impacts						
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682
Project Year 2011 minus CEQA Baseline	999	3,484	17,111	6,396	3,349	1,433
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091
Project Year 2011 minus NEPA Baseline	696	2,445	8,908	2,387	2,790	1,025
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes

7

¹ 2 3 4 5

1	CEQA Impact Determination
2 3 4	Alternative 2 peak daily emissions minus the CEQA baseline would exceed CEQA thresholds and would therefore be significant under CEQA for all pollutants during all analysis years, with the exception of CO in years 2011 and 2037.
5 6 7	In year 2011, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant under CEQA for all pollutants.
8	Mitigation Measures
9	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
10	Residual Impacts
11 12 13 14	Tables 3.2-71 and 3.2-72 show that Alternative 2 peak daily mitigated emissions minus the CEQA baseline would exceed CEQA thresholds and would thus be significant under CEQA for VOC for years 2015 and 2022; NO _X and PM10 for all analysis years; and SO _X and PM2.5 for year 2011.
15 16 17	In year 2011, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant under CEQA for all pollutants.

		Avera	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5				
Project Year 2011		·								
Vessel transit and maneuvering	138	288	3,424	2,221	319	25				
Vessel hoteling	57	119	1,402	1,098	139	11				
Harbor craft	53	533	1,639	1	62	5				
Motor vehicles	126	1,013	166	1	166	3				
Terminal equipment	0.1	0.4	1	0.01	0.05	0.0				
Total—Project Year 2011	374	1,953	6,631	3,321	686	45				
CEQA Impacts										
CEQA baseline emissions	452	3,123	6,437	3,987	849	51				
Alternative 2 minus CEQA baseline	-78	-1,170	194	-666	-163	-5				
Thresholds	55	550	55	150	150	5:				
Significant?	No	No	Yes	No	No	N				

18 **Table 3.2-71.** Average Daily Operational Emissions with Mitigation—Alternative 2

		Avera	age Daily En	nissions (lb/d	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Alternative 2 minus NEPA baseline	11	24	283	180	26	20
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	No
Project Year 2015			·			
Vessel transit and maneuvering	98	205	2,272	366	119	95
Vessel hoteling	17	35	377	108	24	20
Harbor craft	44	617	1,191	1	50	46
Motor vehicles	186	2,115	403	4	624	126
Terminal equipment	0.1	0.3	1	0	0.03	0.03
Total—Project Year 2015	345	2,972	4,243	479	818	287
CEQA Impacts	· · ·		·			
CEQA baseline emissions	452	3,123	6,437	3,987	849	51
Alternative 2 minus CEQA baseline	-107	-151	-2,194	-3,508	-31	-224
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
NEPA Impacts			·			
NEPA baseline emissions	319	2,608	4,263	490	750	276
Alternative 2 minus NEPA baseline	26	364	-20	-11	68	11
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2022						
Vessel transit and maneuvering	101	210	2,315	375	122	98
Vessel hoteling	17	35	384	111	25	20
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	153	1,502	228	4	657	131
Terminal equipment	0.1	0.3	0.4	0	0.01	0.01
Total—Project Year 2022	311	2,518	3,935	491	846	288
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 2 minus CEQA	-141	-605	-2,502	-3,496	-3	-223

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
baseline								
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
NEPA Impacts	· · ·							
NEPA baseline emissions	285	2,335	3,937	491	766	272		
Alternative 2 minus NEPA baseline	26	182	-2	0	80	10		
Thresholds	55	550	55	150	150	5:		
Significant?	No	No	No	No	No	N		
Project Year 2037								
Vessel transit and maneuvering	102	214	2,342	382	124	10		
Vessel hoteling	17	36	389	113	25	2		
Harbor craft	40	770	1,008	1	42	3		
Motor vehicles	94	916	146	5	744	14		
Terminal equipment	0	0.3	0.1	0	0			
Total—Project Year 2037	254	1,936	3,885	500	936	30:		
CEQA Impacts			ľ		I			
CEQA baseline emissions	452	3,123	6,437	3,987	849	51		
Alternative 2 minus CEQA baseline	-198	-1,187	-2,552	-3,487	87	-20		
Thresholds	55	550	55	150	150	5		
Significant?	No	No	No	No	No	N		
<u>NEPA Impacts</u>								
NEPA baseline emissions	229	1,765	3,803	491	796	27		
Alternative 2 minus NEPA baseline	25	171	82	9	140	2		
Thresholds	55	550	55	150	150	5		
Significant?	No	No	Yes	No	No	N		

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
are not currently available.							
NEPA baseline emissions include as proposed	project eleme	ents the same	mitigation me	asures identif	ied for Alterna	ative 5.	

1 2

Table 3.2-72. Peak Daily Operational Emissions with Mitigation—Alternative 2

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	625	1,305	16,599	23,150	2,378	1,903
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	53	533	1,639	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	0.2	0.7	3	0	0.1	0.1
Total—Project Year 2011	1,108	3,485	26,429	36,088	3,826	2,969
CEQA Impacts	· · ·		<u>.</u>			
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 2 minus CEQA baseline	3	-1,018	2,494	4,000	264	287
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969
Alternative 2 minus NEPA baseline	-1	0	0	0	0	(
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	Ne
Project Year 2015						
Vessel transit and maneuvering	730	1,525	18,859	19,350	2,184	1,748
Vessel hoteling	238	496	6,211	9,298	901	720
Harbor craft	44	617	1,191	1	50	40
Motor vehicles	186	2,115	403	4	624	126
Terminal equipment	0.2	0.6	2	0	0.1	0.
Total—Project Year 2015	1,199	4,754	26,666	28,653	3,759	2,64

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 2 minus CEQA baseline	94	251	2,731	-3,435	197	-42
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	No	Yes	No
<u>NEPA Impacts</u>						
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879
Alternative 2 minus NEPA baseline	320	978	7,602	8,643	1,005	761
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Ye
Project Year 2022						
Vessel transit and maneuvering	730	1,525	18,859	19,350	2,184	1,748
Vessel hoteling	238	496	6,211	9,298	901	720
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	153	1,502	228	4	657	13
Terminal equipment	0.1	0.5	0.8	0	0.03	0.02
Total—Project Year 2022	1,162	4,294	26,307	28,653	3,784	2,638
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 2 minus CEQA baseline	57	-209	2,372	-3,435	222	-44
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	No	Yes	No
<u>NEPA Impacts</u>						
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,87
Alternative 2 minus NEPA baseline	318	790	7,549	8,642	1,014	763
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
Project Year 2037						
Vessel transit and maneuvering	730	1,525	18,859	19,350	2,184	1,748
Vessel hoteling	238	496	6,211	9,298	901	720
Harbor craft	40	770	1,008	1	42	39

		Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Motor vehicles	94	916	146	5	744	146	
Terminal equipment	0.1	0.5	0.2	0	0.01	0.01	
Total—Project Year 2037	1,103	3,708	26,224	28,654	3,871	2,653	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 2 minus CEQA baseline	-2	-795	2,289	-3,434	309	-29	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	No	Yes	No	
NEPA Impacts	i						
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880	
Alternative 2 minus NEPA baseline	315	775	7,583	8,643	1,071	773	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	Yes	Yes	Yes	Yes	Yes	

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

2 **Table 3.2-73.** Peak Daily Construction and Operational Emissions with Mitigation—Alternative 2

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Peak Daily Construction Emissions	415	2,782	7,614	12	374	174
Peak Daily Operational Emissions	1,108	3,485	26,429	36,088	3,826	2,969
Total—Construction & Operation—Project Year 2011	1,523	6,267	34,043	36,100	4,200	3,143
<u>CEQA Impacts</u>						

¹

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682
Project Year 2011 minus CEQA Baseline	418	1,764	10,108	4,012	638	461
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091
Project Year 2011 minus NEPA Baseline	114	725	1,905	2	79	52
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	No	No	No

1

2

3

4

5

6

7 8

NEPA Impact Determination

Alternative 2 peak daily emissions minus the NEPA baseline would exceed NEPA thresholds and would therefore be significant under NEPA for all pollutants during all analysis years, with the exception of CO in year 2011.

- In 2011, the combined construction and operational emissions minus the NEPA baseline would exceed NEPA emission thresholds and would therefore be significant under NEPA for all pollutants.
- 9 <u>Mitigation Measures</u>
- 10 Implement Mitigation Measures MM AQ-9 through MM AQ-24.
- 11 Residual Impacts

12Table 3.2-72 shows that Alternative 2 peak mitigated daily emissions minus the13NEPA baseline would exceed NEPA thresholds and would therefore be significant14under NEPA for all pollutants in years 2015, 2022, and 2037. All analyzed pollutants15would be below significance in 2011.

16In year 2011, the combined construction and operational emissions minus the NEPA17baseline would exceed NEPA emission thresholds and would therefore be significant18under NEPA for VOC, CO, and NO_X.

1Impact AQ-4: Alternative 2 operations would result in offsite2ambient air pollutant concentrations that exceed a SCAQMD3threshold of significance in Table 3.2-16.

4Dispersion modeling of onsite and offsite operational emissions for Alternative 2 was5performed to assess the impact of Alternative 2 on local ambient air concentrations.6A summary of the dispersion modeling results is presented here; the complete7dispersion modeling report is included in Appendix D2. Table 3.2-74 presents the8maximum offsite ground-level concentrations of NO2 and CO for Alternative 29without mitigation. Table 3.2-75 shows the maximum CEQA and NEPA PM10 and10PM2.5 concentration increments without mitigation.

Table 3.2-74. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 2
 without Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 2 $(\mu g/m^3)$	Background Concentration $(\mu g/m^3)$	Total Ground- Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	1,559	263	1,822	338
	Annual	62	53	115	56.4
СО	1-hour	6,205	4,809	11,014	23,000
	8-hour	2,353	4,008	6,361	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

13

14 **Table 3.2-75.** Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of

15 Alternative 2 without Mitigation

	Maximum Modeled Concentration of Alternative 2 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Maximum Modeled Concentration of NEPA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour	26.9	32.3	22.8	15.5	15.4	2.5
PM10 annual	7.3	4.3	6.5	3.0	1.7	1.0

	Maximum Modeled Concentration of Alternative 2 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Maximum Modeled Concentration of NEPA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
average						
PM2.5 24-hour	20.0	25.8	17.1	12.3	12.3	2.5

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.

The CEQA increment represents Alternative 2 minus the CEQA baseline. The NEPA increment represents Alternative 2 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

3

4

5

6

7

8

9

10

11

12

13

Operation of this altern for NO_2 (1-hour and an Therefore, significant i
Mitigation Measures
Implement Mitigation
Residual Impacts
Table 3.2-76 presents t CO for this alternative

CEQA Impact Determination

Operation of this alternative would produce significant offsite ambient concentrations for NO_2 (1-hour and annual), PM10 (24-hour and annual), and PM2.5 (24-hour). Therefore, significant impacts under CEQA would occur.

- Implement Mitigation Measures MM AQ-9 through MM AQ-24.
- Table 3.2-76 presents the maximum offsite ground-level concentrations of NO_2 and CO for this alternative after mitigation. Table 3.2-77 shows the maximum CEQA and NEPA PM10 and PM2.5 concentration increments after mitigation. Maximum offsite concentrations after mitigation are expected to remain significant for NO_2 (1-hour and annual), PM10 (24-hour and annual), and PM2.5 (24-hour).

Table 3.2-76. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 2 with Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 2 (µg/m ³)	Background Concentration $(\mu g/m^3)$	Total Ground-Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	771	263	1,034	338
	Annual	44	53	97	56.4
СО	1-hour	6,159	4,809	10,968	23,000
	8-hour	2,346	4,008	6,354	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

3

4 **Table 3.2-77.** Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of 5 Alternative 2 with Mitigation

	Maximum Modeled Concentration of Alternative 2 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Maximum Modeled Concentration of NEPA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour	18.9	32.3	22.8	8.3	8.2	2.5
PM10 annual average	6.6	4.3	6.5	2.4	1.1	1.0
PM2.5 24-hour	13.5	25.8	17.1	6.5	6.5	2.5

Notes:

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.

The CEQA increment represents Alternative 2 minus the CEQA baseline. The NEPA increment represents Alternative 2

		T	T			· · · · · · · · ·	
	$\begin{array}{c c} Maximum \\ Modeled \\ Concentration \\ of Alternative 2 \\ (\mu g/m^3) \\ \hline \end{array}$ minus the NEPA baseline. NE	MaximumModeledConcentrationof CEQABaseline $(\mu g/m^3)$	Maximum Modeled Concentration of NEPA Baseline $(\mu g/m^3)$ ns include as propose	Ground-Level Concentration CEQA Increment $(\mu g/m^3)$ ed project elements	Ground-Level Concentration NEPA Increment $(\mu g/m^3)$ the same mitigation r	$SCAQMD$ Threshold $(\mu g/m^{3})$ measures	
1	identified for Alternative 5.						
1 2	NEP	A Impact Deter	mination				
3 4 5	for N	tion of this altern O_2 , (1-hour and an fore, significant i	nual), PM10 (24	-hour and annua	l), and PM2.5 (24		
6	Mitiga	ation Measures					
7	Implement Mitigation Measures MM AQ-9 through MM AQ-24.						
8	Resid	lual Impacts					
9 10 11 12 13	CO fo and N offsite	3.2-76 presents the alternative EPA PM10 and Fe concentrations a and annual), PM1	after mitigation. PM2.5 concentrat fter mitigation a	Table 3.2-77 sh tion increments a re expected to re	ows the maximum after mitigation. main significant	m CEQA Maximum	
14 15 16	that	act AQ-5: Alt would contr our CO stand	ibute to an e	-			
17 18 19 20	gener conce	Iternative would ated by the propo ntrations related t of study year.	sed Project. As	discussed in the	proposed project	analysis, CO	
21	CEQ	A Impact Deter	mination				
22 23	e e	ficant impacts und ceeded.	ler CEQA are no	ot anticipated bec	cause CO standar	ds would not	
24	Mitig	ation Measures					
25	No m	itigation is require	ed.				

1	Residual Impacts
2	Impacts would be less than significant.
3	NEPA Impact Determination
4 5	Significant impacts under NEPA are not anticipated because CO standards would not be exceeded.
6	Mitigation Measures
7	No mitigation is required.
8	Residual Impacts
9	Impacts would be less than significant.
10 11	Impact AQ-6: Alternative 2 would not create an objectionable odor at the nearest sensitive receptor.
12 13 14 15 16 17	Similar to the proposed Project, the mobile nature of the emission sources associated with this alternative would help to disperse emissions. Additionally, the distance between proposed emission sources and the nearest residents would be far enough to allow for adequate dispersion of these emissions to below objectionable odor levels. Thus, the potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor.
18	CEQA Impact Determination
19 20 21	The potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor; therefore, significant odor impacts under CEQA are not anticipated.
22	Mitigation Measures
23	No mitigation is required.
24	Residual Impacts
25	Impacts would be less than significant.
26	NEPA Impact Determination
27 28 29	The potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor; therefore, significant odor impacts under NEPA are not anticipated.

1	Mitigation Measures
2	No mitigation is required.
3	Residual Impacts
4	Impacts would be less than significant.
5 6	Impact AQ-7: Alternative 2 would expose receptors to significant levels of toxic air contaminants.
7 8 9 10 11 12 13	Operational activities associated with this alternative would be similar to the proposed Project in 2011, and slightly less than the proposed Project in 2015, 2022, and 2037. The main sources of TACs from Alternative 2 operations would be DPM emissions from ships, harbor craft, terminal equipment, and motor vehicles. Similar to the HRA for the proposed Project, DPM, PM10, and VOC emissions were projected over a 70-year period, from 2009 through 2078. An HRA was performed over this 70-year exposure period.
14 15 16 17 18 19	Table 3.2-78 presents the maximum predicted health impacts associated with this alternative without mitigation. The table includes estimates of individual lifetime cancer risk, chronic noncancer hazard index, and acute noncancer hazard index at the maximally exposed receptors. Results are presented for this alternative, CEQA baseline, NEPA baseline, CEQA increment (alternative minus CEQA baseline), and NEPA increment (alternative minus the NEPA baseline).
20	CEQA Impact Determination
21 22 23 24 25 26 27 28 29 30	Alternative 2 would have the same source locations, same number of berths, and the same number of ships as the proposed Project. It would have less Inner Harbor parking but more parking in the Outer Harbor, leading to some decreases in air emissions in the Inner Harbor but increases in the Outer Harbor, thus shifting impacts the acute health index. Table 3.2-78 shows that the maximum CEQA cancer risk increment associated with the unmitigated Alternative 2 is predicted to be 270 in a million (270×10^{-6}) , at a recreational receptor. This risk value exceeds the significance criterion of 10 in a million. The CEQA cancer risk increment would also exceed the threshold at occupational, sensitive, and residential receptors. These exceedances are considered significant impacts under CEQA.
31 32 33 34	The maximum chronic hazard index CEQA increment is predicted to be less than the significance threshold of 1.0 at all receptors. The maximum acute hazard index CEQA increment is predicted to be greater than the significance threshold of 1.0 at occupational, residential, and recreational receptors.

			Maxim	um Predicted I	mpact		
Health Impact	Receptor Type	Alternative 2	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Cancer	Residential	340 x 10 ⁻⁶	379 x 10 ⁻⁶	112 x 10 ⁻⁶	139 x 10 ⁻⁶	202 x 10 ⁻⁶	10 × 10 ⁻⁶
Risk		(340 in a million)	(379 in a million)	(112 in a million)	(139 in a million)	(202 in a million)	(10 in a million)
	Occupational	387 x 10 ⁻⁶	992 x 10 ⁻⁶	176 x 10 ⁻⁶	171 x 10 ⁻⁶	251 x 10 ⁻⁶	
		(387 in a million)	(992 in a million)	(176 in a million)	(171 in a million)	(251 in a million)	
	Recreational	594 x 10 ⁻⁶	1,522 x	270 x 10 ⁻⁶	263 x 10 ⁻⁶	384 x 10 ⁻⁶	
		(594 in a million)	10 ⁻⁶ (1,522 in a million)	(270 in a million)	(263 in a million)	(384 in a million)	
	Sensitive	97 x 10 ⁻⁶	120 x 10 ⁻⁶	12 x 10 ⁻⁶	52 x 10 ⁻⁶	58 x 10 ⁻⁶	
		(97 in a million)	(120 in a million)	(12 in a million)	(52 in a million)	(58 in a million)	
	Student	6 x 10 ⁻⁶	8 x 10 ⁻⁶	1 x 10 ⁻⁶	2 x 10 ⁻⁶	4 x 10 ⁻⁶	
		(6 in a million)	(8 in a million)	(1 in a million)	(2 in a million)	(4 in a million)	
Chronic	Residential	0.53	0.69	0.09	0.44	0.12	1.0
Hazard Index	Occupational	1.16	1.72	0.37	1.04	0.42	
	Recreational	1.16	1.72	0.37	1.04	0.42	
	Sensitive	0.13	0.13	0.02	0.11	0.03	
	Student	0.13	0.11	0.02	0.10	0.03	
Acute	Residential	1.64	2.40	1.42	1.36	1.26	1.0
Hazard Index	Occupational	2.56	3.07	2.51	1.76	1.46	
	Recreational	2.56	3.07	2.51	1.76	1.46	
	Sensitive	0.86	0.51	0.73	0.44	0.68	
	Student	0.54	0.42	0.41	0.29	0.34	

1 Table 3.2-78. Maximum Health Impacts Associated with Alternative 2 without Mitigation, 2009–2078

Notes:

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents Alternative 2 minus the CEQA baseline. The NEPA increment represents Alternative 2 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures

			Maxim	um Predicted I	mpact		
Health Impact	Receptor Type	Alternative 2	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
identified	for Alternative 5.	1		I		•	1
	esent the receptor lo would be less than		naximum impa	cts or increments	s. The impacts	or increments a	t all other
The cance	r risk values report	ted in this table for	the residential	receptor are bas	ed on the 80 th J	percentile breath	ing rate.
	ute hazard index, h med to use the aver				l with a 4.5% s	ulfur content and	d the other half
	<u>Mitiq</u>	gation Measu	res				
	Impl	lement Mitigati	ion Measure	s MM AQ-9 t	hrough MM	AQ-24.	
	Res	idual Impacts					
	with redu 67%	Table 3.2-79 presents a summary of the maximum health impacts that would occur with operation of this alternative with mitigation. The mitigation measures would reduce the maximum residential cancer risk associated with this alternative by about 67%. The maximum residential chronic hazard index would be reduced by about 17%. The maximum residential acute hazard index would be reduced by about 10%.					
	pred is ab incre	data show that icted to be 25 i ove the signific ement would al redances are co	n a million (cance thresh so exceed th	25×10^{-6}), at old of 10 in a threshold at	a recreation million. Th an occupati	al receptor. The CEQA canonic construction of the ceptor o	This risk valu cer risk
	sign	maximum chro ificance thresho ement is predic idered significa	old of 1.0 at ted to be abo	all receptors.	The acute h cance thresh	hazard index (hold of 1.0 an	CEQA d, therefore,

Table 3.2-79. Maximum Health Impacts Associated with Alternative 2 with Mitigation, 2009–2078

			Maximum Predicted Impact				
Health Impact	Receptor Type	Alternative 2	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Cancer	Residential	111 x 10 ⁻⁶	379 x 10 ⁻⁶	<1 x 10 ⁻⁶	139 x 10 ⁻⁶	15 x 10 ⁻⁶	10×10^{-6}
Risk		(111 in a million)	(379 in a million)	(<1 in a million)	(139 in a million)	(15 in a million)	(10 in a million)
	Occupational	86 x 10 ⁻⁶	992 x 10 ⁻⁶	16 x 10 ⁻⁶	171 x 10 ⁻⁶	25 x 10 ⁻⁶	
		(86 in a million)	(992 in a million)	(16 in a million)	(171 in a million)	(25 in a million)	

			Maxim	um Predicted I	mpact		
Health Impact	Receptor Type	Alternative 2	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
	Recreational	131 x 10 ⁻⁶	1,522 x 10 ⁻⁶	25 x 10 ⁻⁶	263 x 10 ⁻⁶	38 x 10 ⁻⁶	
		(131 in a million)	(1,522 in a million)	(25 in a million)	(263 in a million)	(38 in a million)	
	Sensitive	47 x 10 ⁻⁶	120 x 10 ⁻⁶	<1 x 10 ⁻⁶	52 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(47 in a million)	(120 in a million)	(<1 in a million)	(52 in a million)	(<1 in a million)	
	Student	2 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(2 in a million)	(8 in a million)	(<1 in a million)	(2 in a million)	(<1 in a million)	
Chronic	Residential	0.44	0.69	0.04	0.44	0.05	1.0
Hazard Index	Occupational	1.04	1.72	0.19	1.04	0.12	
	Recreational	1.04	1.72	0.19	1.04	0.12	
	Sensitive	0.11	0.13	0.00	0.11	0.00	
	Student	0.10	0.11	0.00	0.10	0.00	
Acute	Residential	1.48	2.40	1.10	1.36	0.94	1.0
Hazard Index	Occupational	1.88	3.07	1.74	1.76	1.07	
	Recreational	1.88	3.07	1.74	1.76	1.07	
	Sensitive	0.73	0.51	0.60	0.44	0.55	
	Student	0.42	0.42	0.29	0.29	0.23	

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents Alternative 2 minus the CEQA baseline. The NEPA increment represents Alternative 2 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Data represent the receptor locations with the maximum impacts or increments. The impacts or increments at all other receptors would be less than these values.

The cancer risk values reported in this table for the residential receptor are based on the 80th percentile breathing rate.

For the acute hazard index, half the ships were assumed to use residual fuel oil with a 4.5% sulfur content and the other half were assumed to use the average residual fuel oil of 2.7% sulfur content

1

1	NEPA Impact Determination
2 3 4 5 6 7	Table 3.2-78 shows that the maximum NEPA cancer risk increment associated with the unmitigated Alternative 2 is predicted to be 384 in a million (384×10^{-6}) , at a recreational receptor. This risk value exceeds the significance criterion of 10 in a million. The NEPA cancer risk increment would also exceed the threshold at occupational, residential, and sensitive receptors. These exceedances are considered significant impacts under NEPA.
8 9 10 11	The maximum chronic hazard index NEPA increment is predicted to be less than the significance threshold of 1.0 at all receptors. The acute hazard index NEPA increment is predicted to be above the significance threshold of 1.0 and, therefore, is considered significant for occupational, residential, and recreational receptors.
12	Mitigation Measures
13	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
14	Residual Impacts
15 16 17 18 19	Table 3.2-79 presents a summary of the maximum health impacts that would occur with operation of this alternative with mitigation. The mitigation measures would reduce the maximum residential cancer risk associated with this alternative by about 67%. The maximum residential chronic hazard index would be reduced by about 17%. The maximum residential acute hazard index would be reduced by about 10%.
20 21 22 23 24	The maximum NEPA cancer risk increment after mitigation is predicted to be 38 in a million (38×10^{-6}) , at a recreational receptor. This risk value is above the significance threshold of 10 in a million. The NEPA cancer risk increment would also exceed the threshold at residential and occupational receptors. These exceedances are considered significant impacts under NEPA.
25 26 27 28	The maximum chronic hazard index NEPA increment is predicted to be below the significance threshold of 1.0 at all receptors. The acute hazard index NEPA increment is predicted to be above the significance threshold of 1.0 and, therefore, is considered significant for occupational and recreational receptors.
29 30	Impact AQ-8: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP.
31 32 33 34	Similar to the proposed Project, this alternative would comply with SCAQMD rules and regulations and would be consistent with SCAG regional employment and population growth forecasts. Thus, this alternative would not conflict with or obstruct implementation of the AQMP.

1	CEQA Impact Determination	
2 3	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under CEQA are not anticipated.	
4	Mitigation Measures	
5	No mitigation is required.	
6	Residual Impacts	
7	Impacts would be less than significant.	
8	NEPA Impact Determination	
9 10	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under NEPA are not anticipated.	
11	Mitigation Measures	
12	No mitigation is required.	
13	Residual Impacts	
14	Impacts would be less than significant.	
15	Impact AQ-9: Alternative 2 would produce GHG emissions	
16	that would exceed CEQA and NEPA baseline levels.	
17 18 19	Table 3.2-80 summarizes the total GHG construction emissions associated with Alternative 2. Table 3.2-80 summarizes the annual GHG emissions that would occ within California from the operation of Alternative 2 without mitigation.	ur
•		

20 Table 3.2-80. Total GHG Emissions from Construction Activities—Alternative 2 without Mitigation

	Total Emissions (Metric Tons)				
Emission Source	CO_2	CH_4	N_2O	CO ₂ e	
Catalina Express Terminal	387.96	0.05	0.00	390.31	
Cruise ship terminal Berths 91–93	0.00	0.00	0.00	0.00	
Cruise ship parking facilities	1,565.24	0.22	0.02	1,574.73	
North Harbor	4,213.91	0.59	0.04	4,239.47	
Maritime Office Building—Crowley	234.81	0.03	0.00	236.23	
Maritime Office Building—Millennium	235.05	0.03	0.00	236.47	
Maritime Office Building—Lane Victory	235.05	0.03	0.00	236.47	

	Total E	mission	s (Metri	c Tons)
Emission Source	CO_2	CH_4	N_2O	CO ₂ e
Downtown Harbor	1,886.65	0.27	0.02	1,898.09
7 th Street Harbor	1,319.76	0.19	0.01	1,327.76
7 th Street Pier	1,159.91	0.16	0.01	1,166.94
Downtown Square	167.73	0.02	0.00	168.74
Downtown water feature	117.95	0.02	0.00	118.66
John S. Gibson Jr. Park	173.87	0.02	0.00	174.92
Ralph J. Scott Fireboat Museum	372.10	0.05	0.00	374.35
Los Angeles Maritime Museum renovation	0.00	0.00	0.00	0.00
Los Angeles Maritime Institute	252.83	0.04	0.00	254.36
Maritime Office Building	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 1	2,189.22	0.31	0.02	2,202.49
Ports O' Call Promenade—Phase 2	2,386.10	0.34	0.02	2,400.57
Ports O' Call Promenade—Phase 3	2,194.86	0.31	0.02	2,208.17
Southern Pacific Railyard demolition	282.14	0.04	0.00	283.85
Fishermen's Park	722.81	0.10	0.01	727.19
Ports O' Call redevelopment without restaurant	0.00	0.00	0.00	0.00
Ports O' Call Redevelopment Phase 1	2,163.88	0.30	0.02	2,177.00
Ports O' Call Redevelopment Phase 2	3,325.88	0.47	0.03	3,346.05
Ports O' Call Redevelopment with Restaurant	589.54	0.08	0.01	593.12
Ports O' Call Redevelopment Phase 3	1,701.85	0.24	0.02	1,712.18
Waterfront Red Car Maintenance Facility	615.44	0.09	0.01	619.17
Westway Terminal demolition	857.21	0.12	0.01	862.41
City Dock No. 1 promenade	2,448.96	0.34	0.02	2,463.82
Outer Harbor Cruise Terminal	8,173.17	1.15	0.08	8,222.73
Outer Harbor Park and promenade	1,090.88	0.15	0.01	1,097.50
San Pedro Park	1,111.59	0.16	0.01	1,118.33
Salinas De San Pedro/Youth Camp promenade	2,576.76	0.36	0.03	2,592.39
Sampson Way road improvements	886.34	0.12	0.01	891.72
Waterfront Red Car Line extension—Sampson Way	988.00	0.14	0.01	993.99
Waterfront Red Car Line extension—Cabrillo Beach	1,064.12	0.15	0.01	1,070.58
Waterfront Red Car Line extension—Outer Harbor	589.03	0.08	0.01	592.60

	Total Emissions (Metric Tons)			
Emission Source	CO_2	CH_4 N_2O CO_2e		CO ₂ e
Waterfront Red Car Line extension—City Dock No. 1	601.82	0.08	0.01	605.47
Berth 240 fueling station	224.64	0.03	0.00	226.01
Total Emissions	49,107.05	6.90	0.49	49,404.85
NEPA Baseline	23,845.99	3.35	0.24	23,990.60
Alternative 2 minus NEPA Baseline	25,261.05	3.55	0.25	25,414.24

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 **Table 3.2-81.** Annual Operational GHG Emissions—Alternative 2 without Mitigation

	Metric Tons Per Year						
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO_2e			
Project Year 2011							
Vessel transit and maneuvering	52,118	0.3	2.4	52,858			
Vessel hoteling	18,464	0.1	0.8	18,726			
Harbor craft	25,571	0.1	1.2	25,934			
Motor vehicles	16,661	3.1	3.4	17,773			
Terminal equipment—fossil fueled	240	0.1	0.0	241			
AMP electricity usage	NA	NA	NA	NA			
Terminal equipment - electric	NA	NA	NA	NA			
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575			
Total for Project Year 2011	138,588	3.9	7.9	141,107			

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 2 minus CEQA baseline	9,319	-2.4	-1.5	8,799
NEPA baseline	114,668	3.7	6.8	116,853
Alternative 2 minus NEPA baseline	23,920	0.2	1.1	24,254
Project Year 2015	·	·		
Vessel transit and maneuvering	52,451	0.3	2.4	53,196
Vessel hoteling	18,876	0.1	0.9	19,144
Harbor craft	23,083	0.1	1.0	23,411
Motor vehicles	67,490	8.5	9.8	70,700
Terminal equipment—fossil fueled	240	0.1	0.0	241
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575
Total for Project Year 2015	187,674	9.4	14.2	192,266
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 2 minus CEQA baseline	58,404	3.1	4.8	59,958
NEPA baseline	170,307	8.3	12.0	174,215
Alternative 2 minus NEPA baseline	17,367	1.0	2.1	18,050
Project Year 2022				
Vessel transit and maneuvering	53,786	0.3	2.4	54,550
Vessel hoteling	19,356	0.1	0.9	19,631
Harbor craft	22,659	0.1	1.0	22,981
Motor vehicles	71,360	7.3	8.8	74,233
Terminal equipment—fossil fueled	240	0.0	0.0	241
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575
Total for Project Year 2022	192,936	8.1	13.2	197,211
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 2 minus CEQA baseline	63,667	1.8	3.9	64,903
NEPA baseline	173,145	7.1	11.1	176,731

		Metric Tons	Per Year	
Project Scenario/Source Type	CO ₂	CH ₄	N_2O	CO ₂ e
Alternative 2 minus NEPA baseline	19,791	1.0	2.2	20,479
Project Year 2037	·	·		
Vessel transit and maneuvering	54,497	0.3	2.5	55,271
Vessel hoteling	19,699	0.1	0.9	19,979
Harbor craft	22,659	0.1	1.0	22,981
Motor vehicles	80,806	8.3	10.0	84,067
Terminal equipment—fossil fueled	240	0.0	0.0	241
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575
Total for Project Year 2037	203,435	9.1	14.5	208,114
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 2 minus CEQA baseline	74,166	2.8	5.1	75,806
NEPA baseline	176,482	7.5	11.5	180,209
Alternative 2 minus NEPA baseline	26,954	1.6	3.0	27,905

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

3

4

5

CEQA Impact Determination

The data in Table 3.2-81 show that in each future project year, annual operational CO_2e emissions would increase from CEQA baseline levels. As a result, Alternative 2 would produce significant levels of GHG emissions under CEQA.

1	Mitigation Measures
2 3	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.
4	Residual Impacts
5 6 7 8 9	Table 3.2-82 summarizes the annual GHG emissions that would occur within California from the operation of Alternative 2 with mitigation. The data in Table 3.2-82 show that in each future project year except 2011, annual operational CO_2e emissions would increase from CEQA baseline levels. As a result, Alternative 2 would produce significant levels of GHG emissions under CEQA.

10 **Table 3.2-82.** Annual Operational GHG Emissions—Alternative 2 with Mitigation

	Metric Tons Per Year						
Project Scenario/Source Type	CO_2	CH ₄	N_2O	CO ₂ e			
Project Year 2011							
Vessel transit and maneuvering	42,599	0.2	1.9	43,203			
Vessel hoteling	10,106	0.1	0.5	10,249			
Harbor craft	23,399	0.1	1.1	23,731			
Motor vehicles	16,661	3.1	3.4	17,773			
Terminal equipment—fossil fueled	25	0.0	0.0	25			
AMP electricity usage	0	0.0	0.0	(
Terminal equipment - electric	340	0.0	0.0	341			
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575			
Total for Project Year 2011	118,665	3.7	7.0	120,899			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 2 minus CEQA baseline	-10,604	-2.6	-2.4	-11,409			
NEPA baseline	114,668	3.7	6.8	116,853			
Alternative 2 minus NEPA baseline	3,997	0.0	0.2	4,040			
Project Year 2015							
Vessel transit and maneuvering	43,065	0.3	2.0	43,676			
Vessel hoteling	10,106	0.1	0.5	10,249			
Harbor craft	20,612	0.1	0.9	20,904			
Motor vehicles	67,490	8.5	9.8	70,700			
Terminal equipment—fossil fueled	25	0.0	0.0	25			
AMP electricity usage	11,487	0.1	0.1	11,506			

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Terminal equipment - electric	340	0.0	0.0	341
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575
Total for Project Year 2015	178,660	9.3	13.3	182,977
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 2 minus CEQA baseline	49,390	3.0	3.9	50,669
NEPA baseline	170,307	8.3	12.0	174,215
Alternative 2 minus NEPA baseline	8,353	1.0	1.3	8,761
Project Year 2022				
Vessel transit and maneuvering	43,609	0.3	2.0	44,228
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	71,360	7.3	8.8	74,233
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,672	0.1	0.1	11,691
Terminal equipment - electric	340	0.0	0.0	341
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575
Total for Project Year 2022	183,259	8.0	12.3	187,247
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 2 minus CEQA baseline	53,990	1.7	2.9	54,940
NEPA baseline	173,145	7.1	11.1	176,731
Alternative 2 minus NEPA baseline	10,114	0.9	1.2	10,516
Project Year 2037				
Vessel transit and maneuvering	43,998	0.3	2.0	44,622
Vessel hoteling	10,106	0.1	0.5	10,249
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	80,806	8.3	10.0	84,067
Terminal equipment—fossil fueled	25	0.0	0.0	25
AMP electricity usage	11,672	0.1	0.1	11,691
Terminal equipment - electric	340	0.0	0.0	341
Electricity usage from commercial uses and Waterfront Red Car Line	25,534	0.2	0.1	25,575
Total for Project Year 2037	193,093	9.0	13.5	197,476

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 2 minus CEQA baseline	63,824	2.7	4.2	65,168		
NEPA baseline	176,482	7.5	11.5	180,209		
Alternative 2 minus NEPA baseline	16,612	1.5	2.0	17,267		

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely to the given total due to rounding. Values less than 0.5 for CO_2 and CO_2 e, and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

NEPA Impact Determination

- 3The data in Table 3.2-81 show that in each future project year, annual operational4CO2e emissions would increase from NEPA baseline levels.
- 5 <u>Mitigation Measures</u>
- Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13,
 MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.
- 8 Residual Impacts
- 9The data in Table 3.2-82 show that in each future project year, annual operational10CO2e emissions would increase from NEPA baseline levels.

113.2.4.3.4Alternative 3—Alternative Development Scenario 312(Reduced Project)

13Alternative 3 is an alternative development scenario that provides a similar cruise14ship berth as Alternative 1. Under this alternative, only one new 1,250-foot-long15cruise berth would be located in the Outer Harbor at Berths 45–47 (a reduction by16one berth as compared to the proposed Project).

2 3

5

6

7

9

11

Impact AQ-1: Alternative 3 would result in constructionrelated emissions that exceed an SCAQMD threshold of significance in Table 3.2-13.

4 Table 3.2-83 presents a summary of the peak daily criteria pollutant emissions associated with construction of Alternative 3 before mitigation. This table contains peak daily construction emissions for each project year, as well as CEQA and NEPA significance determinations. Maximum emissions for each construction phase were 8 determined by totaling the daily emissions from those construction activities that occur simultaneously in the proposed construction schedule (Table 2-5). Detailed 10 tables of emissions for each proposed project activity can be found in Appendix D1. In addition, Appendix D6 contains data on emission levels for each construction 12 equipment type in each proposed project activity.

		Peak Daily	Construction	n Emissio	ns (lb/day)	
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
2009 Peak Daily Construction Emissions	423	1,666	5,411	4	797	323
Thresholds	75	550	100	150	150	5:
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye
Non-Federal Construction Emissions	49	332	971	2	65	22
NEPA Emissions (Alternative 3 minus non- Federal emissions)	374	1,334	4,440	2	732	30
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye
2010 Peak Daily Construction Emissions	1,074	4,676	14,174	12	2,855	99
Thresholds	75	550	100	150	150	5
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye
Non-Federal Construction Emissions	315	2,173	6,023	10	305	12
NEPA Emissions (Alternative 3 minus non- Federal emissions)	759	2,503	8,151	2	2,550	872
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye
2011 Peak Daily Construction Emissions	699	3,214	9,359	8	2,273	73
Thresholds	75	550	100	150	150	5:
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122
NEPA Emissions (Alternative 3 minus non- Federal emissions)	399	1,157	3,650	-2	1,978	61
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye
2012 Peak Daily Construction Emissions	527	2,225	6,637	6	1,542	510

13 Table 3.2-83. Summary of Peak Daily Construction Emissions—Alternative 3 without Mitigation

		Peak Daily	Constructio	n Emissio	ns (lb/day)	
Project Year	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69
NEPA Emissions (Alternative 3 minus non- Federal emissions)	363	1,118	3,593	1	1,384	441
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2013 Peak Daily Construction Emissions	319	1,275	3,892	3	1,045	329
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	82	542	1,447	2	106	43
NEPA Emissions (Alternative 3 minus non- Federal emissions)	237	733	2,445	1	939	286
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes
2014 Peak Daily Construction Emissions	218	768	2,467	2	340	144
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	62	396	1,038	1	37	24
NEPA Emissions (Alternative 3 minus non- Federal emissions)	156	372	1,429	1	303	120
NEPA Significant?	Yes	No	Yes	No	Yes	Yes

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

2 3

CEQA Impact Determination

3Alternative 3 would exceed the daily construction emission thresholds for VOC, CO,4NO_X, PM10, and PM2.5 during construction. Therefore, significant impacts under5CEQA would occur.

¹

1	Mitigation Measures
2	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
3	Residual Impacts
4	The residual air quality impacts would be temporary but significant. Despite
5	implementation of mitigation and proposed compliance with SCAQMD Rule 403,
6	emissions from the construction of Alternative 3 would still exceed the SCAQMD
7	daily thresholds for VOC, CO, NO _X , PM10, and PM2.5.
8	Table 3.2-84 presents a summary of the peak daily criteria pollutant emissions
9	associated with construction of Alternative 3 after the application of Mitigation
10	Measures MM AQ-1 through MM AQ-5. This table contains peak daily construction
11	emissions for each project year, as well as CEQA and NEPA significance
12	determinations. Maximum emissions for each construction phase were determined
13	by totaling the daily emissions from those construction activities that occur
14	simultaneously in the proposed construction schedule (Table 2-5). Detailed tables of
15	emissions for each proposed project activity can be found in Appendix D1. In
16	addition, Appendix D6 contains data on emission levels for each construction
17	equipment type in each proposed project activity.

18 **Table 3.2-84.** Summary of Peak Daily Construction Emissions—Alternative 3 with Mitigation

	j	Peak Daily	Constructi	on Emissic	ons (lb/day))
Project Year	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
2009 Peak Daily Construction Emissions	256	1,404	3,538	4	194	119
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	49	332	971	2	65	22
NEPA Emissions (Alternative 3 minus non- Federal emissions)	207	1,072	2,567	2	129	97
NEPA Significant?	Yes	Yes	Yes	No	No	Yes
2010 Peak Daily Construction Emissions	562	3,429	8,990	13	448	247
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127
NEPA Emissions (Alternative 3 minus non- Federal emissions)	247	1,256	2,967	3	143	120
NEPA Significant?	Yes	Yes	Yes	No	No	Yes
2011 Peak Daily Construction Emissions	329	2,143	5,837	9	303	142
Thresholds	75	550	100	150	150	55

	Peak Daily Construction Emissions (lb/day)							
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122		
NEPA Emissions (Alternative 3 minus non- Federal emissions)	29	86	128	-1	8	20		
NEPA Significant?	No	No	Yes	No	No	No		
2012 Peak Daily Construction Emissions	282	1,658	4,407	6	232	121		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69		
NEPA Emissions (Alternative 3 minus non- Federal emissions)	118	551	1,363	1	74	52		
NEPA Significant?	Yes	Yes	Yes	No	No	No		
2013 Peak Daily Construction Emissions	191	1,057	2,708	3	164	87		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	82	542	1,447	2	106	43		
NEPA Emissions (Alternative 3 minus non- Federal emissions)	109	515	1,261	1	58	44		
NEPA Significant?	Yes	No	Yes	No	No	No		
2014 Peak Daily Construction Emissions	151	774	1,921	2	89	64		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	No	Yes		
Non-Federal Construction Emissions	62	396	1,038	1	37	24		
NEPA Emissions (Alternative 3 minus non- Federal emissions)	89	378	883	1	52	40		
NEPA Significant?	Yes	No	Yes	No	No	No		

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

1	NEPA Impact Determination
2 3 4 5	The NEPA incremental emissions for Alternative 3 are calculated by subtracting the NEPA baseline emissions. Alternative 3 would exceed the emission thresholds for VOC, CO, NO _X , PM10, and PM2.5 during construction. Therefore, significant impacts under NEPA would occur.
6	Mitigation Measures
7	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
8	Residual Impacts
9 10 11 12 13	The residual air quality impacts would be temporary but significant. After mitigation, emissions of PM10 would be reduced to a less-than-significant level. However, despite implementation of mitigation and proposed compliance with SCAQMD Rule 403, emissions from the construction of Alternative 3 would still exceed the SCAQMD daily thresholds for VOC, CO, NO _X , and PM2.5.
14 15 16	Table 3.2-84 presents a summary of the peak daily criteria pollutant emissions associated with construction of this alternative after the application of Mitigation Measures MM AQ-1 through MM AQ-5.
17 18 19	Impact AQ-2: Alternative 3 construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.
20 21 22	Peak construction activity for Alternative 3 is similar to Alternative 1. Therefore, Alternative 3 construction dispersion results are similar to Alternative 1. For results of those impacts, refer to Section 3.2.4.3.2 and Table 3.2-34.
23	CEQA Impact Determination
24 25	Maximum offsite ambient pollutant concentrations associated with construction would be significant for NO ₂ , PM10, and PM2.5.
26	Mitigation Measures
27	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
28	
20	Residual Impacts

1	NEPA Impact Determination
2	Maximum offsite ambient pollutant concentrations associated with construction
2 3	would be significant for NO_2 , PM10, and PM2.5.
4	Mitigation Measures
5	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
6	Residual Impacts
7	Despite implementation of Mitigation Measures MM AQ-1 through MM AQ-8,
8	offsite ambient concentrations from construction activities would remain significant
9	and unavoidable for NO ₂ , PM10, and PM2.5.
10	Impact AQ-3: Alternative 3 would result in operational
10 11	Impact AQ-3: Alternative 3 would result in operational emissions that exceed 10 tons per year of VOCs or an
	•
11	emissions that exceed 10 tons per year of VOCs or an
11 12 13 14	emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15. Tables 3.2-85 and 3.2-86 present the unmitigated average and peak daily criteria pollutant emissions associated with operation of this alternative. Emissions were
11 12 13 14 15	 emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15. Tables 3.2-85 and 3.2-86 present the unmitigated average and peak daily criteria pollutant emissions associated with operation of this alternative. Emissions were estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to
11 12 13 14 15 16	 emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15. Tables 3.2-85 and 3.2-86 present the unmitigated average and peak daily criteria pollutant emissions associated with operation of this alternative. Emissions were estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to the CEQA baseline (2006) and the NEPA baseline emissions are presented for
11 12 13 14 15 16 17	 emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15. Tables 3.2-85 and 3.2-86 present the unmitigated average and peak daily criteria pollutant emissions associated with operation of this alternative. Emissions were estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to the CEQA baseline (2006) and the NEPA baseline emissions are presented for information purposes in Table 3.2-85; actual CEQA and NEPA significance is
11 12 13 14 15 16	 emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15. Tables 3.2-85 and 3.2-86 present the unmitigated average and peak daily criteria pollutant emissions associated with operation of this alternative. Emissions were estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to the CEQA baseline (2006) and the NEPA baseline emissions are presented for

22 **Table 3.2-85.** Average Daily Operational Emissions without Mitigation—Alternative 3

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Vessel transit and maneuvering	144	300	3,670	3,195	411	329	
Vessel hoteling	78	162	1,978	1,975	231	185	
Harbor craft	53	480	1,719	1	62	57	
Motor vehicles	126	1,013	166	1	166	33	
Terminal equipment	0.8	9	9	0.01	0.4	0.4	
Total—Project Year 2011	401	1,964	7,542	5,172	871	604	
CEQA Impacts	•						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511	

		Aver	age Daily En	nissions (lb/d	lay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Alternative 3 minus CEQA baseline	-51	-1,159	1,105	1,185	22	93
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Alternative 3 minus NEPA baseline	38	34	1,193	2,031	211	168
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
Project Year 2015	• • • •					
Vessel transit and maneuvering	144	301	3,675	3,208	413	331
Vessel hoteling	79	166	2,014	2,019	236	189
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	136	1,383	283	3	438	89
Terminal equipment	0.6	9	7	0.01	0.3	0.3
Total—Project Year 2015	406	2,398	7,323	5,231	1,140	657
CEQA Impacts	<u> </u>		•			
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 3 minus CEQA baseline	-46	-725	886	1,244	291	146
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>	· · ·		·			
NEPA baseline emissions	319	2,608	4,263	490	750	276
Alternative 3 minus NEPA baseline	87	-209	3,060	4,741	390	381
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
Project Year 2022	i		h			
Vessel transit and maneuvering	144	301	3,647	3,208	413	331
Vessel hoteling	79	166	1,998	2,019	236	18
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	113	1,061	189	3	464	92

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Terminal equipment	0.4	9	4	0.01	0.2	0.1		
Total—Project Year 2022	382	2,296	6,903	5,231	1,163	657		
CEQA Impacts	<u> </u>							
CEQA baseline emissions	452	3,123	6,437	3,987	849	511		
Alternative 3 minus CEQA baseline	-70	-827	466	1,244	314	146		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>	<u> </u>							
NEPA baseline emissions	285	2,335	3,937	491	766	272		
Alternative 3 minus NEPA baseline	97	-39	2,966	4,740	397	385		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Ye		
Project Year 2037								
Vessel transit and maneuvering	144	301	3,623	3,208	413	33		
Vessel hoteling	79	166	1,986	2,019	236	189		
Harbor craft	45	759	1,065	1	49	4:		
Motor vehicles	70	653	104	3	530	104		
Terminal equipment	0.2	9	2	0.01	0.1	0.		
Total—Project Year 2037	339	1,888	6,780	5,231	1,229	669		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	51		
Alternative 3 minus CEQA baseline	-113	-1,235	343	1,244	380	158		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	Yes	Ye		
<u>NEPA Impacts</u>								
NEPA baseline emissions	229	1,765	3,803	491	796	27		
Alternative 3 minus NEPA baseline	110	124	2,977	4,740	433	392		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Ye		

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO _X	SO_X	PM10	PM2.5	
Emissions represent annual em	issions divided by 365 day	s per year of o	peration.				
Truck, ship, and worker comm	ute emissions include trans	port within the	e SCAB.				
Emissions might not precisely a	add due to rounding. For f	urther explana	tion, refer to tl	ne discussion	in Section 3.2.	4.1.	
The emission estimates present factors at the time this document are not currently available.	nt was prepared. Future stu	udies might us	e updated data	, assumptions	, and emission	factors that	
NEPA baseline emissions inclu	ide as proposed project elem	ments the same	e mitigation m	easures identi	fied for Altern	ative 5.	
Altern	3.2-86 shows the peal active 3. The peak dai ptions that were chose	ly emission	estimates for	or operation	is include th		
Altern assum Sh sh	ative 3. The peak dai	ly emission en to identif day scenar oject fleet tl	estimates for y a reasonal	or operation ole theoretic that the larg	is include the cal activity states gest combin	scenario: ation of	
Altern assum Sł sh w Tr	native 3. The peak dai options that were chosen nips at berth: The peak nips in the proposed pr	ly emission en to identif a day scenar oject fleet tl als. trips genera	estimates fo y a reasonal io assumes hat could be	or operation ble theoretic that the larg simultaneo	as include the cal activity s gest combin pusly accom	scenario: ation of imodated	

Table 3.2-86. Peak Daily Operational Emissions without Mitigation—Alternative 3

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101	
Vessel hoteling	304	633	8,022	12,937	1,220	976	
Harbor craft	53	480	1,719	1	62	57	
Motor vehicles	126	1,013	166	1	166	33	
Terminal equipment	1.5	17	16	0.02	0.7	0.7	
Total—Project Year 2011	1,174	3,585	28,264	38,473	4,075	3,167	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 3 minus CEQA baseline	69	-918	4,329	6,384	513	485	

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Yes	
NEPA Impacts	<u> </u>		·				
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969	
Alternative 3 minus NEPA baseline	66	100	1,835	2,385	248	199	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Ye	
Project Year 2015							
Vessel transit and maneuvering	714	1,564	18,964	26,346	2,713	2,170	
Vessel hoteling	321	669	8,474	13,556	1,284	1,027	
Harbor craft	46	539	1,344	1	52	48	
Motor vehicles	136	1,383	283	3	438	8	
Terminal equipment	1.2	17	13	0.02	0.6	0.:	
Total—Project Year 2015	1,218	4,172	29,078	39,906	4,488	3,33	
CEQA Impacts	<u> </u>		•				
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 3 minus CEQA baseline	113	-331	5,143	7,818	926	653	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Ye	
<u>NEPA Impacts</u>							
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879	
Alternative 3 minus NEPA baseline	339	396	10,014	19,896	1,734	1,450	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Ye	
Project Year 2022							
Vessel transit and maneuvering	714	1,564	18,964	26,346	2,713	2,170	
Vessel hoteling	321	669	8,474	13,556	1,284	1,02	
Harbor craft	45	759	1,065	1	49	4	
Motor vehicles	113	1,061	189	3	464	9	
Terminal equipment	0.7	17	7	0.02	0.3	0	
Total—Project Year 2022	1,193	4,070	28,699	39,906	4,510	3,33	

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
CEQA Impacts								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 3 minus CEQA baseline	88	-433	4,764	7,818	948	653		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>	· · ·	·						
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875		
Alternative 3 minus NEPA baseline	349	566	9,941	19,895	1,740	1,460		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		
Project Year 2037	· · ·	·						
Vessel transit and maneuvering	714	1,564	18,964	26,346	2,713	2,170		
Vessel hoteling	321	669	8,474	13,556	1,284	1,027		
Harbor craft	45	759	1,065	1	49	45		
Motor vehicles	70	653	104	3	530	104		
Terminal equipment	0.4	17	4	0.02	0.1	0.1		
Total—Project Year 2037	1,150	3,662	28,611	39,906	4,576	3,347		
CEQA Impacts		•						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 3 minus CEQA baseline	45	-841	4,676	7,818	1,014	665		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>		·						
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880		
Alternative 3 minus NEPA baseline	362	729	9,970	19,895	1,776	1,467		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

	Peak Daily Emissions (lb/day)									
Emission Source	VOC CO NO_X SO_X $PM10$ $PM2.5$									
Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.										
The emission estimates presented in this table were document was prepared. Future studies might use		0	· · · · · ·	1 /						
NEPA baseline emissions include as pro Alternative 5.	posed projec	t elements th	ne same mitig	gation measu	res identifie	d for				

2 3 Table 3.2-87 shows the combined construction and operational peak daily emissions and impacts associated with the year 2011.

4	Table 3.2-87. Peak Daily Construction and Operational Emissions without Mitigation—Alternative 3

		Ped	ık Daily Emi	ssions (lb/de	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Peak Daily Construction Emissions	699	3,214	9,359	8	2,273	737
Peak Daily Operational Emissions	1,174	3,585	28,264	38,473	4,075	3,167
Total—Construction & Operation—Project Year 2011	1,873	6,799	37,623	38,481	6,348	3,904
<u>CEQA Impacts</u>						
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682
Project Year 2011 minus CEQA Baseline	768	2,296	13,688	6,392	2,786	1,222
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>						
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091
Project Year 2011 minus NEPA Baseline	465	1,257	5,485	2,383	2,226	814
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes

5

6

7 8

9 10 **CEQA** Impact Determination

Alternative 3 peak daily emissions minus the CEQA baseline would exceed CEQA thresholds and would therefore be significant under CEQA for all pollutants during all analysis years, with the exception of CO in years 2011, 2015, 2022, and 2037; and VOC in 2037.

1 2 3	In 2011, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant under CEQA for all pollutants.
4	Mitigation Measures
5	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
6	Residual Impacts
7 8 9	Tables 3.2-88 and 3.2-89 show average and peak daily operational emissions and impacts associated with Alternative 3 after mitigation. Table 3.2-90 shows the combined construction and operational peak daily emissions for 2011.
10 11 12	Alternative 3 peak daily mitigated emissions minus the CEQA baseline would exceed CEQA thresholds and would thus be significant under CEQA for NO_X , SO_X , PM10, and PM2.5 in 2011.
13 14	In 2011, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant

16 **Table 3.2-88.** Average Daily Operational Emissions with Mitigation—Alternative 3

under CEQA for all pollutants.

		Avera	ige Daily En	nissions (lb/	'day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	138	288	3,424	2,221	319	256
Vessel hoteling	57	119	1,402	1,098	139	111
Harbor craft	53	533	1,639	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	0.1	0.4	1	0.01	0.05	0.05
Total—Project Year 2011	374	1,953	6,631	3,321	686	457
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 3 minus CEQA baseline	-78	-1,170	194	-666	-163	-54
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	No	No	No
<u>NEPA Impacts</u>		·	·			
NEPA baseline emissions	363	1,929	6,348	3,141	660	436
Alternative 3 minus NEPA baseline	11	24	283	180	26	20

		Avera	ige Daily En	nissions (lb/	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	No
Project Year 2015	·	·				
Vessel transit and maneuvering	99	207	2,299	371	121	97
Vessel hoteling	17	35	377	108	24	20
Harbor craft	44	617	1,191	1	50	46
Motor vehicles	136	1,383	283	3	438	89
Terminal equipment	0.1	0.3	1	0	0.03	0.03
Total—Project Year 2015	296	2,242	4,151	483	633	251
CEQA Impacts	·	·				
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 3 minus CEQA baseline	-156	-881	-2,286	-3,505	-216	-260
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
<u>NEPA Impacts</u>	·	·				
NEPA baseline emissions	319	2,608	4,263	490	750	276
Alternative 3 minus NEPA baseline	-23	-365	-112	-7	-117	-25
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2022	·	·				
Vessel transit and maneuvering	99	207	2,282	371	121	97
Vessel hoteling	17	35	374	108	24	20
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	113	1,061	189	3	464	92
Terminal equipment	0.1	0.3	0.4	0	0.01	0.01
Total—Project Year 2022	269	2,073	3,853	483	651	247
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 3 minus CEQA baseline	-183	-1,050	-2,584	-3,505	-198	-264
Thresholds	55	550	55	150	150	5
Significant?	No	No	No	No	No	No

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
NEPA baseline emissions	285	2,335	3,937	491	766	272		
Alternative 3 minus NEPA baseline	-16	-262	-83	-8	-115	-25		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
Project Year 2037								
Vessel transit and maneuvering	99	207	2,267	371	121	97		
Vessel hoteling	17	35	372	108	24	20		
Harbor craft	40	770	1,008	1	42	39		
Motor vehicles	70	653	104	3	530	104		
Terminal equipment	0	0.3	0.1	0	0	0		
Total—Project Year 2037	226	1,665	3,751	483	717	259		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	511		
Alternative 3 minus CEQA baseline	-226	-1,458	-2,686	-3,505	-132	-252		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
NEPA Impacts								
NEPA baseline emissions	229	1,765	3,803	491	796	277		
Alternative 3 minus NEPA baseline	-3	-99	-52	-8	-79	-18		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Hoteling emissions include regional power plant emissions from AMP electricity generation.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

1 **Table 3.2-89.** Peak Daily Operational Emissions with Mitigation—Alternative 3

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Vessel transit and maneuvering	625	1,305	16,599	23,150	2,378	1,903	
Vessel hoteling	304	633	8,022	12,937	1,220	976	
Harbor craft	53	533	1,639	1	62	57	
Motor vehicles	126	1,013	166	1	166	33	
Terminal equipment	0.2	0.7	3	0	0.1	0.1	
Total—Project Year 2011	1,108	3,485	26,429	36,088	3,826	2,969	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 3 minus CEQA baseline	3	-1,018	2,494	4,000	264	287	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Yes	
<u>NEPA Impacts</u>							
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969	
Alternative 3 minus NEPA baseline	-1	0	0	0	0	(
Thresholds	55	550	55	150	150	55	
Significant?	No	No	No	No	No	No	
Project Year 2015							
Vessel transit and maneuvering	547	1,142	14,116	14,461	1,633	1,306	
Vessel hoteling	178	369	4,628	6,934	671	537	
Harbor craft	44	617	1,191	1	50	46	
Motor vehicles	136	1,383	283	3	438	89	
Terminal equipment	0.2	0.6	2	0	0.1	0.1	
Total—Project Year 2015	905	3,512	20,219	21,400	2,792	1,979	
<u>CEQA Impacts</u>							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 3 minus CEQA baseline	-200	-991	-3,716	-10,689	-770	-703	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	No	No	No	No	
NEPA Impacts							
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879	

		Pea	k Daily Emi	ssions (lb/da	y)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Alternative 3 minus NEPA baseline	26	-264	1,156	1,390	38	99
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Yes
Project Year 2022						
Vessel transit and maneuvering	547	1,142	14,116	14,461	1,633	1,306
Vessel hoteling	178	369	4,628	6,934	671	53′
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	113	1,061	189	3	464	92
Terminal equipment	0.1	0.5	0.8	0	0.03	0.02
Total—Project Year 2022	877	3,343	19,941	21,400	2,810	1,97
<u>CEQA Impacts</u>						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 3 minus CEQA baseline	-228	-1,160	-3,994	-10,689	-752	-70
Thresholds	55	550	55	150	150	5:
Significant?	No	No	No	No	No	N
NEPA Impacts						
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,87
Alternative 3 minus NEPA baseline	33	-161	1,183	1,389	40	9
Thresholds	55	550	55	150	150	5:
Significant?	No	No	Yes	Yes	No	Ye
Project Year 2037						
Vessel transit and maneuvering	547	1,142	14,116	14,461	1,633	1,30
Vessel hoteling	178	369	4,628	6,934	671	53
Harbor craft	40	770	1,008	1	42	3
Motor vehicles	70	653	104	3	530	104
Terminal equipment	0.1	0.5	0.2	0	0.01	0.0
Total—Project Year 2037	834	2,935	19,856	21,400	2,876	1,98
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 3 minus CEQA baseline	-271	-1,568	-4,079	-10,689	-686	-69
Thresholds	55	550	55	150	150	5:
Significant?	No	No	No	No	No	N

	Peak Daily Emissions (lb/day)								
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5			
NEPA Impacts									
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880			
Alternative 3 minus NEPA baseline	46	2	1,214	1,389	76	106			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	Yes	Yes	No	Yes			

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 **Table 3.2-90.** Peak Daily Construction and Operational Emissions with Mitigation—Alternative 3

		Ped	uk Daily Emi	ssions (lb/da	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Peak Daily Construction Emissions	329	2,143	5,837	9	303	142
Peak Daily Operational Emissions	1,108	3,485	26,429	36,088	3,826	2,969
Total—Construction & Operation—Project Year 2011	1,437	5,628	32,266	36,097	4,129	3,111
CEQA Impacts						
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682
Project Year 2011 minus CEQA Baseline	332	1,125	8,331	4,009	567	429
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091
Project Year 2011 minus NEPA Baseline	28	86	128	-1	8	20
Thresholds	55	550	55	150	150	55

		Peak Daily Emissions (lb/day)						
	Emission Source		VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5
	Significant?		No	No	Yes	No	No	No
1			II					1
2		NEPA Impact De	terminatio	on				
3		Alternative 3 peak	daily emissi	ons minus 1	the NEPA b	aseline wo	ould exceed	NEPA
4		thresholds and wou	ld therefore	be signific	ant under N	EPA for a		
5		all analysis years, v	with the exce	eption of Co	O in 2011 a	nd 2015.		
6		In 2011, the combin						
7		baseline would exceed NEPA emission thresholds and would therefore be significant						
8		under NEPA for all	pollutants.					
9		Mitigation Measures						
10		Implement Mitigation Measures MM AQ-9 through MM AQ-24.						
11		Residual Impacts						
12		Tables 3.2-88 and 3	3.2-89 show	average an	d peak dail	y operatior	al emission	ns and
13		impacts associated						the
14		combined construct	tion and ope	erational pea	ak daily em	issions for	2011.	
15		Alternative 3 peak						
16		thresholds and wou		be signific	ant under N	EPA for N	O_X , SO_X , a	ind PM2.5
17		in years 2015, 2022	2, and 2037.					
18		In year 2011, the co						
19 20		baseline would exc		emission the	resholds and	d would the	erefore be s	significant
20		under NEPA for N	U _X .					
21		Impact AQ-4:	Alternati	ve 3 ope	erations	would r	esult in	offsite
22		ambient air po						
23		threshold of s						
24		Alternative 3 dispe	rsion results	are nearly	identical to	Alternativ	e 1. Refer	to Section
25		3.2.4.3.2 for discus					. The comp	plete
26		dispersion modelin	g report is in	ncluded in A	Appendix D	2.		
27		CEQA Impact De	eterminatio	on				
28		Operation of this al						
29		Therefore, significa						
30		average), PM10 (ar	nual and 24	-hour avera	age), and PI	M2.5 (24-h	our averag	e).

1	Mitigation Measures
2	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
3	Residual Impacts
4 5	Impacts would remain significant for NO ₂ (1-hour average and annual average), PM10 (annual and 24-hour average), and PM2.5 (24-hour average).
6	NEPA Impact Determination
7 8 9	Operation of this alternative would produce the same results as Alternative 1. Therefore, significant impacts under NEPA would occur for NO ₂ (1-hour and annual average), PM10 (annual and 24-hour average), and PM2.5 (24-hour average).
10	Mitigation Measures
11	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
12	Residual Impacts
13 14 15	Impacts would be reduced to a less than significant level for annual PM10, but would remain significant for NO_2 (1-hour and annual average), PM10 (24-hour average), and PM2.5 (24-hour average).
16 17 18	Impact AQ-5: Alternative 3 would not generate onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.
19 20 21 22	This alternative would generate traffic levels comparable to or less than the traffic generated by the proposed Project. As discussed in the proposed project analysis, CO concentrations related to onroad traffic would not exceed state CO standards for any project study year.
23	CEQA Impact Determination
24 25	Significant impacts under CEQA are not anticipated because CO standards would not be exceeded.
26	Mitigation Measures
27	No mitigation is required.
28	Residual Impacts
29	Impacts would be less than significant.

2

3

NEPA Impact Determination

- Significant impacts under NEPA are not anticipated because CO standards would not be exceeded.
- 4 <u>Mitigation Measures</u>
- 5 No mitigation is required.
- 6 Residual Impacts
- 7 Impacts would be less than significant.

8 Impact AQ-6: Alternative 3 would not create an 9 objectionable odor at the nearest sensitive receptor.

- 10Similar to the proposed Project, the mobile nature of the emission sources associated11with this alternative would help to disperse emissions. Additionally, the distance12between proposed emission sources and the nearest residents would be far enough to13allow for adequate dispersion of these emissions to below objectionable odor levels.14Thus, the potential is low for this alternative to produce objectionable odors that15would affect a sensitive receptor.
- 16 CEQA Impact Determination
- 17The potential is low for this alternative to produce objectionable odors that would18affect a sensitive receptor; therefore, significant odor impacts under CEQA are not19anticipated.
- 20 <u>Mitigation Measures</u>
- 21 No mitigation is required.
- 22 Residual Impacts
- 23 Impacts would be less than significant under CEQA.
- 24 NEPA Impact Determination
- 25The potential is low for this alternative to produce objectionable odors that would26affect a sensitive receptor; therefore, significant odor impacts under NEPA are not27anticipated.
- 28 <u>Mitigation Measures</u>
- 29 No mitigation is required.

1	Residual Impacts
2	Impacts would be less than significant under NEPA.
3 4	Impact AQ-7: Alternative 3 would expose receptors to significant levels of toxic air contaminants.
5 6 7 8	The main sources of TACs from Alternative 3 operations would be DPM emissions from ships, terminal equipment, and motor vehicles. Similar to the HRA for the proposed Project, PM10 and VOC emissions were projected over a 70-year period, from 2009 through 2078. An HRA was performed over this 70-year exposure period.
9 10 11 12 13 14	Table 3.2-91 presents the maximum predicted health impacts associated with this alternative without mitigation. The table includes estimates of individual lifetime cancer risk, chronic noncancer hazard index, and acute noncancer hazard index at the maximally exposed receptors. Results are presented for this alternative, CEQA baseline, NEPA baseline, CEQA increment (alternative minus CEQA baseline), and NEPA increment (alternative minus the NEPA baseline).

15 **Table 3.2-91.** Maximum Health Impacts Associated with Alternative 3 without Mitigation, 2009–2078

			Maximum Predicted Impact						
Health Impact	Receptor Type	Alternative 3	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold		
Cancer	Residential	357 x 10 ⁻⁶	379 x 10 ⁻⁶	45 x 10 ⁻⁶	139 x 10 ⁻⁶	219 x 10 ⁻⁶	10×10^{-6}		
Risk		(357 in a million)	(379 in a million)	(45 in a million)	(139 in a million)	(219 in a million)	(10 in a million)		
	Occupational	477 x 10 ⁻⁶	992 x 10 ⁻⁶	78 x 10 ⁻⁶	171 x 10 ⁻⁶	305 x 10 ⁻⁶			
		(477 in a million)	(992 in a million)	(78 in a million)	(171 in a million)	(305 in a million)			
	Recreational	731 x 10 ⁻⁶	$1,522 \times 10^{-1}$	119 x 10 ⁻⁶	263 x 10 ⁻⁶	468 x 10 ⁻⁶			
		(731 in a million)	(1,522 in a million)	(119 in a million)	(263 in a million)	(468 in a million)			
	Sensitive	99 x 10 ⁻⁶	120 x 10 ⁻⁶	3 x 10 ⁻⁶	52 x 10 ⁻⁶	60 x 10 ⁻⁶			
		(99 in a million)	(120 in a million)	(3 in a million)	(52 in a million)	(60 in a million)			
	Student	6 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶ (2	4 x 10 ⁻⁶			
		(6 in a million)	(8 in a million)	(<1 in a million)	in a million)	(4 in a million)			
Chronic	Residential	0.53	0.69	0.08	0.44	0.10	1.0		
Hazard	Occupational	1.16	1.72	0.21	1.04	0.42			

		Maximum Predicted Impact						
Health Impact	Receptor Type	Alternative 3	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold	
Index	Recreational	1.16	1.72	0.21	1.04	0.42		
	Sensitive	0.13	0.13	0.02	0.11	0.03		
	Student	0.13	0.11	0.02	0.10	0.03		
Acute	Residential	1.58	2.40	1.37	1.36	1.21	1.0	
Hazard Index	Occupational	2.56	3.07	2.51	1.76	1.46		
	Recreational	2.56	3.07	2.51	1.76	1.46		
	Sensitive	0.86	0.51	0.73	0.44	0.68		
	Student	0.52	0.42	0.39	0.29	0.32		

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents Alternative 3 minus the CEQA baseline. The NEPA increment represents Alternative 3 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Data represent the receptor locations with the maximum impacts or increments. The impacts or increments at all other receptors would be less than these values.

The cancer risk values reported in this table for the residential receptor are based on the 80th percentile breathing rate.

For the acute hazard index, half the ships were assumed to use residual fuel oil with a 4.5% sulfur content and the other half were assumed to use the average residual fuel oil of 2.7% sulfur content

1

CEQA Impact Determination

Table 3.2-91 shows that the maximum CEQA cancer risk increment associated with the unmitigated Alternative 3 is predicted to be 119 in a million (119×10^{-6}) , at a recreational receptor. This risk value exceeds the significance criterion of 10 in a million. The CEQA cancer risk increment would also exceed the threshold at residential and occupational receptors. These exceedances are considered significant impacts under CEQA.

9The maximum chronic hazard index CEQA increment is predicted to be less than the10significance threshold of 1.0 at all receptors. The maximum acute hazard index11CEQA increment is predicted to be greater than the significance threshold of 1.0 at12recreational, residential, and occupational receptors.

1	Mitigation Measures
2	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
3	Residual Impacts
4 5 6 7 8	Table 3.2-92 presents a summary of the maximum health impacts that would occur with operation of this alternative with mitigation. The mitigation measures would reduce the maximum residential cancer risk associated with this alternative by about 69%. The maximum residential chronic hazard index would be reduced by about 17%. The maximum residential acute hazard index would be reduced by about 14%.
9 10 11 12 13	The data show that the maximum CEQA cancer risk increment after mitigation is predicted to be 32 in a million (32×10^{-6}) at a recreational receptor. This risk value is above the significance threshold of 10 in a million. The CEQA cancer risk increment would also be exceeded at an occupational receptor. These exceedances are considered significant impacts under CEQA.
14 15 16 17	The maximum chronic hazard index CEQA increment is predicted to be below the significance threshold of 1.0 at all receptors. The acute hazard index CEQA increment is predicted to be above the significance threshold of 1.0 and is, therefore, considered significant for occupational, recreational, and residential receptors.

18 **Table 3.2-92.** Maximum Health Impacts Associated with Alternative 3 with Mitigation, 2009–2078

			Maximum Predicted Impact					
Health Impact	Receptor Type	Alternative 3	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold	
Cancer	Residential	112 x 10 ⁻⁶	379 x 10 ⁻⁶	<1 x 10 ⁻⁶	139 x 10 ⁻⁶	19 x 10 ⁻⁶	10×10^{-6}	
Risk		(112 in a million)	(379 in a million)	(<1 in a million)	(139 in a million)	(19 in a million)	(10 in a million)	
	Occupational	95 x 10 ⁻⁶	992 x 10 ⁻⁶	21 x 10 ⁻⁶	171 x 10 ⁻⁶	29 x 10 ⁻⁶		
		(95 in a million)	(992 in a million)	(21 in a million)	(171 in a million)	(29 in a million)		
	Recreational	146 x 10 ⁻⁶	1,522 x 10 ⁻⁶	32 x 10 ⁻⁶	263 x 10 ⁻⁶	45 x 10 ⁻⁶		
		(146 in a million)	(1,522 in a million)	(32 in a million)	(263 in a million)	(45 in a million)		
	Sensitive	48 x 10 ⁻⁶	120 x 10 ⁻⁶	<1 x 10 ⁻⁶	52 x 10 ⁻⁶	1 x 10 ⁻⁶		
		(48 in a million)	(120 in a million)	(<1 in a million)	(52 in a million)	(1 in a million)		
	Student	2 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶	<1 x 10 ⁻⁶		
		(2 in a million)	(8 in a million)	(<1 in a million)	(2 in a million)	(<1 in a million)		
Chronic	Residential	0.44	0.69	0.01	0.44	0.02	1.0	

Health Impact	Receptor Type	Alternative 3	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Hazard	Occupational	1.04	1.72	0.15	1.04	0.06	
Index	Recreational	1.04	1.72	0.15	1.04	0.06	
	Sensitive	0.11	0.13	0.00	0.11	0.00	
	Student	0.10	0.11	0.00	0.10	0.00	
Acute	Residential	1.36	2.40	1.07	1.36	0.91	1.0
Hazard Index	Occupational	1.79	3.07	1.74	1.76	1.05	
	Recreational	1.79	3.07	1.74	1.76	1.05	
	Sensitive	0.73	0.51	0.60	0.44	0.55	
	Student	0.41	0.42	0.28	0.29	0.22	

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents Alternative 3 minus the CEQA baseline. The NEPA increment represents Alternative 3 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

Data represent the receptor locations with the maximum impacts or increments. The impacts or increments at all other receptors would be less than these values.

The cancer risk values reported in this table for the residential receptor are based on the 80th percentile breathing rate.

For the acute hazard index, half the ships were assumed to use residual fuel oil with a 4.5% sulfur content and the other half were assumed to use the average residual fuel oil of 2.7% sulfur content

NEPA Impact Determination

Table 3.2-91 shows that the maximum NEPA cancer risk increment associated with the unmitigated Alternative 3 is predicted to be 468 in a million (468×10^{-6}) , at a recreational receptor. This risk value exceeds the significance criterion of 10 in a million and would be considered a significant impact. The NEPA cancer risk increment would also exceed the threshold at residential, sensitive, and occupational receptors. These exceedances are considered significant impacts under NEPA.

9The maximum chronic hazard index NEPA increment is predicted to be less than the10significance threshold of 1.0 at all receptors. The acute hazard index NEPA11increment is predicted to be above the significance threshold of 1.0 and is, therefore,12considered significant for occupational, recreational, and residential receptors.

1	Mitigation Measures
2	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
3	Residual Impacts
4 5 6 7 8	Table 3.2-92 presents a summary of the maximum health impacts that would occur with operation of this alternative with mitigation. The mitigation measures would reduce the maximum residential cancer risk associated with this alternative by about 69%. The maximum residential chronic hazard index would be reduced by about 17%. The maximum residential acute hazard index would be reduced by about 14%.
9 10 11 12 13	The maximum NEPA cancer risk increment after mitigation is predicted to be 45 in a million (45×10^{-6}) , at a recreational receptor. This risk value is above the significance threshold of 10 in a million. The NEPA cancer risk increment would also exceed the threshold at residential and occupational receptors. These exceedances are considered significant impacts under NEPA.
14 15 16 17	The maximum chronic hazard index NEPA increment is predicted to be below the significance threshold of 1.0 at all receptors. The acute hazard index NEPA increment is predicted to be above the significance threshold of 1.0 and is, therefore, considered significant for occupational and recreational receptors.
18 19	Impact AQ-8: Alternative 3 would not conflict with or obstruct implementation of an applicable AQMP.
20 21 22	Similar to the proposed Project, this alternative would comply with SCAQMD rules and regulations and would be consistent with SCAG regional employment and population growth forecasts.
23	CEQA Impact Determination
24 25	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under CEQA are not anticipated.
26	Mitigation Measures
27	No mitigation is required.
28	Residual Impacts
29	Impacts would be less than significant.
30	NEPA Impact Determination
31 32	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under NEPA are not anticipated.

1	Mitigation Measures
2	No mitigation is required.
3	Residual Impacts
4	Impacts would be less than significant.
5	Impact AQ-9: Alternative 3 would produce GHG emissions
5 6	Impact AQ-9: Alternative 3 would produce GHG emissions that would exceed CEQA and NEPA baseline levels.
5 6 7 8	• •

10	Table 3.2-93.	Total GHG Emissions from Construction Activities—Alternative 3 without Mitigation
----	---------------	---

		Total Emissions	(Metric Tons)	
Emission Source	CO_2	CH_4	N_2O	CO_2e
Catalina Express Terminal	387.96	0.05	0.00	390.31
Cruise ship terminal Berths 91–93	0.00	0.00	0.00	0.00
Cruise ship parking facilities	1,565.24	0.22	0.02	1,574.73
North Harbor	4,213.91	0.59	0.04	4,239.47
Maritime Office Building—Crowley	234.81	0.03	0.00	236.23
Maritime Office Building—Millennium	235.05	0.03	0.00	236.47
Maritime Office Building—Lane Victory	235.05	0.03	0.00	236.47
Downtown Harbor	1,886.65	0.27	0.02	1,898.09
7 th Street Harbor	1,319.76	0.19	0.01	1,327.76
7 th Street Pier	1,159.91	0.16	0.01	1,166.94
Downtown Square	167.73	0.02	0.00	168.74
Downtown water feature	117.95	0.02	0.00	118.66
John S. Gibson Jr. Park	173.87	0.02	0.00	174.92
Ralph J. Scott Fireboat Museum	372.10	0.05	0.00	374.35
Los Angeles Maritime Museum renovation	0.00	0.00	0.00	0.00
Los Angeles Maritime Institute	252.83	0.04	0.00	254.36
Maritime Office Building	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 1	2,189.22	0.31	0.02	2,202.49
Ports O' Call Promenade—Phase 2	2,386.10	0.34	0.02	2,400.57
Ports O' Call Promenade—Phase 3	2,194.86	0.31	0.02	2,208.17

San Pedro Waterfront Project EIS/EIR

Southern Pacific Railyard demolition	282.14	0.04	0.00	283.85
Fishermen's Park	722.81	0.10	0.01	727.19
Ports O' Call redevelopment without restaurant	0.00	0.00	0.00	0.00
Ports O' Call Redevelopment Phase 1	1,081.94	0.15	0.01	1,088.50
Ports O' Call Redevelopment Phase 2	1,662.94	0.23	0.02	1,673.02
Ports O' Call Redevelopment with Restaurant	589.54	0.08	0.01	593.12
Ports O' Call Redevelopment Phase 3	850.93	0.12	0.01	856.09
Waterfront Red Car Maintenance Facility	615.44	0.09	0.01	619.17
Westway Terminal demolition	857.21	0.12	0.01	862.41
City Dock No. 1 promenade	2,448.96	0.34	0.02	2,463.82
Outer Harbor Cruise Terminal	4,434.33	0.62	0.04	4,461.22
Outer Harbor Park and promenade	1,090.88	0.15	0.01	1,097.50
San Pedro Park	1,111.59	0.16	0.01	1,118.33
Salinas De San Pedro/Youth Camp promenade	2,576.76	0.36	0.03	2,592.39
Sampson Way road improvements	886.34	0.12	0.01	891.72
Waterfront Red Car Line extension—Sampson Way	988.00	0.14	0.01	993.99
Waterfront Red Car Line extension—Cabrillo Beach	1,064.12	0.15	0.01	1,070.58
Waterfront Red Car Line extension—Outer Harbor	589.03	0.08	0.01	592.60
Waterfront Red Car Line extension—City Dock No. 1	601.82	0.08	0.01	605.47
Berth 240 fueling station	224.64	0.03	0.00	226.01
Total Emissions	41,772.40	5.87	0.42	42,025.72
NEPA Baseline	23,845.99	3.35	0.24	23,990.60
Alternative 3 minus NEPA Baseline	17,926.41	2.52	0.18	18,035.12

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

Emissions may not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1 **Table 3.2-94.** Annual Operational GHG Emissions—Alternative 3 without Mitigation

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		
Project Year 2011						
Vessel transit and maneuvering	52,118	0.3	2.4	52,858		
Vessel hoteling	18,464	0.1	0.8	18,726		
Harbor craft	25,571	0.1	1.2	25,934		
Motor vehicles	16,661	3.1	3.4	17,773		
Terminal equipment—fossil fueled	195	1.0	0.0	210		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		
Total for Project Year 2011	133,291	4.8	7.8	135,821		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 3 minus CEQA baseline	4,022	-1.5	-1.5	3,513		
NEPA baseline	114,668	3.7	6.8	116,85.		
Alternative 3 minus NEPA baseline	18,623	1.1	1.0	18,968		
Project Year 2015						
Vessel transit and maneuvering	52,728	0.3	2.4	53,470		
Vessel hoteling	18,876	0.1	0.9	19,144		
Harbor craft	23,083	0.1	1.0	23,41		
Motor vehicles	105,033	6.0	6.9	107,288		
Terminal equipment—fossil fueled	195	0.0	0.0	190		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		
Total for Project Year 2015	220,196	6.8	11.3	223,828		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 3 minus CEQA baseline	90,927	0.5	1.9	91,52		
NEPA baseline	170,307	8.3	12.0	174,21.		
Alternative 3 minus NEPA baseline	49,889	-1.6	-0.8	49,61.		

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		
Project Year 2022						
Vessel transit and maneuvering	52,728	0.3	2.4	53,476		
Vessel hoteling	18,876	0.1	0.9	19,144		
Harbor craft	22,659	0.1	1.0	22,981		
Motor vehicles	111,577	6.0	6.9	113,832		
Terminal equipment—fossil fueled	195	0.0	0.0	196		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		
Total for Project Year 2022	226,317	6.8	11.2	229,943		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 3 minus CEQA baseline	97,047	0.4	1.9	97,635		
NEPA baseline	173,145	7.1	11.1	176,731		
Alternative 3 minus NEPA baseline	53,171	-0.4	0.2	53,211		
Project Year 2037	·	·				
Vessel transit and maneuvering	52,728	0.3	2.4	53,476		
Vessel hoteling	18,876	0.1	0.9	19,144		
Harbor craft	22,659	0.1	1.0	22,981		
Motor vehicles	127,549	5.9	7.1	129,873		
Terminal equipment—fossil fueled	195	0.0	0.0	196		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		
Total for Project Year 2037	242,289	6.6	11.5	245,984		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 3 minus CEQA baseline	113,019	0.3	2.1	113,676		
NEPA baseline	176,482	7.5	11.5	180,209		
Alternative 3 minus NEPA baseline	65,807	-0.9	0.0	65,775		

Project Scenario/S 1 metric ton equals 1					
1 metric ton equals 1	ource Type	CO_2	CH_4	N_2O	CO ₂ e
1	,000 kilograms, 2205 lbs,	or 1.1 U.S. (short) to	ons.		
	oxide equivalent emission the emission rate multipl				
AMP applies to cruis	e ship hoteling, and partia	lly to assist tug hote	ling, as a proposed J	project mitigation m	easure.
	dd precisely due to roundi zero. For more explanatio				05 for CH_4 and
	tes presented in this table v is document was prepared. available.				
NEPA baseline emis	sions include as proposed	project elements the	same mitigation me	easures identified fo	r Alternative 5.
	CEQA Impact De	etermination			
	The data in Table 3 operational CO ₂ e en Alternative 3 would	missions would i	ncrease from CH	EQA baseline lev	vels. As a resu
	Mitigation Measur	res			
	Mitigation Measure Implement Mitigati MM AQ-16 throug	on Measures MM			M AQ-13,
	Implement Mitigati	on Measures MM h MM AQ-20, ai			M AQ-13,

Table 3.2-95. Annual Operational GHG Emissions—Alternative 3 with Mitigation

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		
Project Year 2011						
Ships—transit	42,599	0.2	1.9	43,203		
Ships—hoteling	10,106	0.1	0.5	10,249		
Harbor craft	23,399	0.1	1.1	23,731		
Motor vehicles	16,661	3.1	3.4	17,773		
Terminal equipment—fossil fueled	25	0.0	0.0	25		

	Metric Tons Per Year					
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO ₂ e		
AMP electricity usage	0	0.0	0.0	0		
Terminal equipment - electric	271	0.0	0.0	271		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		
Total for Project Year 2011	113,343	3.7	6.9	115,569		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 3 minus CEQA baseline	-15,926	-2.6	-2.4	-16,739		
NEPA baseline	114,668	3.7	6.8	116,853		
Alternative 3 minus NEPA baseline	-1,324	0.0	0.1	-1,285		
Project Year 2015						
Ships—transit	43,065	0.3	2.0	43,676		
Ships—hoteling	10,106	0.1	0.5	10,249		
Harbor craft	20,612	0.1	0.9	20,904		
Motor vehicles	105,033	6.0	6.9	107,288		
Terminal equipment—fossil fueled	25	0.0	0.0	25		
AMP electricity usage	11,229	0.1	0.1	11,247		
Terminal equipment - electric	271	0.0	0.0	271		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		
Total for Project Year 2015	210,623	6.7	10.4	213,976		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 3 minus CEQA baseline	81,353	0.4	1.0	81,668		
NEPA baseline	170,307	8.3	12.0	174,215		
Alternative 3 minus NEPA baseline	40,316	-1.6	-1.7	39,760		
Project Year 2022	·					
Ships—transit	43,065	0.3	2.0	43,676		
Ships—hoteling	10,106	0.1	0.5	10,249		
Harbor craft	20,612	0.1	0.9	20,904		
Motor vehicles	111,577	6.0	6.9	113,832		
Terminal equipment—fossil fueled	25	0.0	0.0	25		
AMP electricity usage	11,229	0.1	0.1	11,247		
Terminal equipment - electric	271	0.0	0.0	27		
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315		

	Metric Tons Per Year						
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO ₂ e			
Total for Project Year 2022	217,166	6.7	10.4	220,519			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 3 minus CEQA baseline	87,897	0.4	1.0	88,212			
NEPA baseline	173,145	7.1	11.1	176,731			
Alternative 3 minus NEPA baseline	44,021	-0.4	-0.7	43,788			
Project Year 2037	·						
Ships—transit	43,065	0.3	2.0	43,676			
Ships—hoteling	10,106	0.1	0.5	10,249			
Harbor craft	20,612	0.1	0.9	20,904			
Motor vehicles	127,549	5.9	7.1	129,873			
Terminal equipment—fossil fueled	25	0.0	0.0	25			
AMP electricity usage	11,229	0.1	0.1	11,247			
Terminal equipment - electric	271	0.0	0.0	271			
Electricity usage from commercial uses and Waterfront Red Car Line	20,282	0.2	0.1	20,315			
Total for Project Year 2037	233,139	6.6	10.6	236,561			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 3 minus CEQA baseline	103,869	0.3	1.2	104,253			
NEPA baseline	176,482	7.5	11.5	180,209			
Alternative 3 minus NEPA baseline	56,657	-0.9	-0.9	56,352			

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1		NEPA Impact Determination
2 3		The data in Table 3.2-94 show that in each future project year, annual operational CO_2e emissions would increase from NEPA baseline levels.
4		Mitigation Measures
5 6		Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.
7		Residual Impacts
8 9		The data in Table 3.2-95 show that in each future project year except 2011, annual operational CO_2e emissions would increase from NEPA baseline levels.
10	3.2.4.3.5	Alternative 4—Alternative Development Scenario 4
11 12 13 14		Alternative 4 is an alternative development scenario that would eliminate the proposed North Harbor, modify the location of the associated uses that would have been located to the North Harbor (i.e., tugboats, S.S. Lane Victory), and eliminate the Outer Harbor cruise terminals.
15 16 17 18		Alternative 4 would keep the three existing cruise ship berths in the Inner Harbor. No new cruise ship berth would be located in the Outer Harbor. Therefore, Alternative 4 would be a reduction of two berths in the Outer Harbor as compared to the proposed Project.
19 20 21		The Crowley and Millennium Tugboat operations would be relocated to Berths 70–71 (at the existing Westway Terminal site) since the North Harbor would not be developed as part of Alternative 4.
22 23		Impact AQ-1: Alternative 4 would result in construction- related emissions that exceed an SCAQMD threshold of
24		significance in Table 3.2-13.
25 26 27 28 29		Table 3.2-96 presents a summary of the peak daily criteria pollutant emissions associated with construction of Alternative 4 before mitigation. This table contains peak daily construction emissions for each project year, as well as CEQA and NEPA significance determinations. Maximum emissions for each construction phase were determined by totaling the daily emissions from those construction activities that
30 31 32 33		occur simultaneously in the proposed construction schedule (Table 2-5). Detailed tables of emissions for each proposed project activity can be found in Appendix D1. In addition, Appendix D6 contains data on emission levels for each construction equipment type in each proposed project activity.

1 Table 3.2-96. Summary of Peak Daily Construction Emissions—Alternative 4 w	without Mitigation
---	--------------------

	Peak Daily Construction Emissions (lb/day)							
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5		
2009 Peak Daily Construction Emissions	361	1,334	4,491	4	664	270		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	49	332	971	2	65	22		
NEPA Emissions (Alternative 4 minus non-Federal emissions)	312	1,002	3,520	2	599	248		
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye		
2010 Peak Daily Construction Emissions	1,060	4,621	13,955	12	3,088	1,04		
Thresholds	75	550	100	150	150	5:		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye		
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127		
NEPA Emissions (Alternative 4 minus non-Federal emissions)	745	2,448	7,932	2	2,783	914		
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye		
2011 Peak Daily Construction Emissions	807	3,795	10,954	10	2,793	88		
Thresholds	75	550	100	150	150	5:		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye		
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122		
NEPA Emissions (Alternative 4 minus non-Federal emissions)	507	1,738	5,245	0	2,498	76		
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye		
2012 Peak Daily Construction Emissions	425	1,947	5,653	5	1,311	432		
Thresholds	75	550	100	150	150	5:		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye		
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69		
NEPA Emissions (Alternative 4 minus non-Federal emissions)	261	840	2,609	0	1,153	363		
NEPA Significant?	Yes	Yes	Yes	No	Yes	Ye		
2013 Peak Daily Construction Emissions	218	970	2,864	3	897	26		
Thresholds	75	550	100	150	150	5		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Ye		
Non-Federal Construction Emissions	82	542	1,447	2	106	4.		
NEPA Emissions (Alternative 4 minus	136	428	1,417	1	791	220		

	Peak Daily Construction Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5	
non-Federal emissions)							
NEPA Significant?	Yes	No	Yes	No	Yes	Yes	
2014 Peak Daily Construction Emissions	166	713	2,137	2	225	109	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes	
Non-Federal Construction Emissions	62	396	1,038	1	37	24	
NEPA Emissions (Alternative 4 minus non-Federal emissions)	104	317	1,099	1	188	85	
NEPA Significant?	Yes	No	Yes	No	Yes	Yes	

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

3

4

5

CEQA Impact Determination

Alternative 4 would exceed the daily construction emission thresholds for VOC, CO, NO_x, PM10, and PM2.5 during construction. Therefore, significant impacts under CEQA would occur.

- 6 <u>Mitigation Measures</u>
- 7 Implement Mitigation Measures MM AQ-1 through MM AQ-8.
- 8 Residual Impacts

9 The residual air quality impacts would be temporary but significant. Table 3.2-97 10 presents a summary of the peak daily criteria pollutant emissions associated with construction of Alternative 4 after the application of Mitigation Measures MM AO-1 11 through MM AO-5. This table contains peak daily construction emissions for each 12 13 project year, as well as CEQA and NEPA significance determinations. Maximum 14 emissions for each construction phase were determined by totaling the daily 15 emissions from those construction activities that occur simultaneously in the 16 proposed construction schedule (Table 2-5). Detailed tables of emissions for each proposed project activity can be found in Appendix D1. In addition, Appendix D6 17

contains data on emission levels for each construction equipment type in each proposed project activity.

3 **Table 3.2-97.** Summary of Peak Daily Construction Emissions—Alternative 4 with Mitigation

	Peak Daily Construction Emissions (lb/day)							
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5		
2009 Peak Daily Construction Emissions	234	1,230	3,067	3	179	112		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	49	332	971	2	65	22		
NEPA Emissions (Alternative 4 minus non- Federal emissions)	185	898	2,096	1	114	90		
NEPA Significant?	Yes	Yes	Yes	No	No	Yes		
2010 Peak Daily Construction Emissions	551	3,366	8,828	12	463	246		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	315	2,173	6,023	10	305	127		
NEPA Emissions (Alternative 4 minus non- Federal emissions)	236	1,193	2,805	2	158	119		
NEPA Significant?	Yes	Yes	Yes	No	Yes	Yes		
2011 Peak Daily Construction Emissions	363	2,421	6,615	10	353	156		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	300	2,057	5,709	10	295	122		
NEPA Emissions (Alternative 4 minus non- Federal emissions)	63	364	906	0	58	34		
NEPA Significant?	No	No	Yes	No	No	No		
2012 Peak Daily Construction Emissions	201	1,309	3,557	5	176	85		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes		
Non-Federal Construction Emissions	164	1,107	3,044	5	158	69		
NEPA Emissions (Alternative 4 minus non- Federal emissions)	37	202	513	0	18	16		
NEPA Significant?	No	No	Yes	No	No	No		
2013 Peak Daily Construction Emissions	116	736	1,919	3	124	58		
Thresholds	75	550	100	150	150	55		
CEQA Significant?	Yes	Yes	Yes	No	No	Yes		

	Peak Daily Construction Emissions (lb/day)						
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Non-Federal Construction Emissions	82	542	1,447	2	106	43	
NEPA Emissions (Alternative 4 minus non- Federal emissions)	34	194	472	1	18	15	
NEPA Significant?	No	No	Yes	No	No	No	
2014 Peak Daily Construction Emissions	96	590	1,510	2	54	39	
Thresholds	75	550	100	150	150	55	
CEQA Significant?	Yes	Yes	Yes	No	No	No	
Non-Federal Construction Emissions	62	396	1,038	1	37	24	
NEPA Emissions (Alternative 4 minus non- Federal emissions)	34	194	472	1	17	15	
NEPA Significant?	No	No	Yes	No	No	No	

CEQA significance is determined by comparing the peak daily construction emissions directly to the thresholds.

Non-Federal Construction Emissions include the peak daily construction emissions, construction truck trips, and workers vehicle trips associated with the no-federal-action project elements. There is no construction activity for the harbor cuts and promenades.

NEPA significance is determined first by subtracting the Non-Federal Construction Emissions (Table 3.2-10) from the peak daily construction emissions. The resulting NEPA increment represents the construction emissions beyond what would occur under a NEPA construction scenario. The NEPA increment is then compared to the thresholds.

Non-Federal Construction Emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

3

4

5

6

NEPA Impact Determination

The NEPA incremental emissions for Alternative 4 are calculated by subtracting the NEPA baseline emissions. Alternative 4 would exceed the emission thresholds for VOC, CO, NO_X , PM10, and PM2.5 during construction. Therefore, significant impacts under NEPA would occur.

- 7 <u>Mitigation Measures</u>
- 8 Implement Mitigation Measures MM AQ-1 through MM AQ-8.
- 9 Residual Impacts

10The residual air quality impacts would be temporary but significant. Table 3.2-9711presents the peak daily emissions associated with this alternative after mitigation.12Despite implementation of mitigation and compliance with SCAQMD Rule 403,13emissions from the construction of Alternative 4 would still exceed SCAQMD daily14thresholds for VOC, CO, NO_X, PM10, and PM2.5.

2

3

Impact AQ-2: Alternative 4 construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.

- Dispersion modeling of onsite construction emissions for Alternative 4 was
 performed to assess the impact of this alternative on local ambient air concentrations.
 A summary of the dispersion modeling results is presented here; the complete
 dispersion modeling report is included in Appendix D2.
- 8 Table 3.2-98 presents the maximum offsite ground-level concentrations of NO₂, CO,
 9 PM10, and PM2.5 from construction without mitigation.
- 10Table 3.2-98 shows that the maximum offsite 1-hour and 8-hour CO concentrations11would not exceed the SCAQMD thresholds. The maximum offsite 1-hour NO212concentration and the maximum 24-hour increment increases of PM10 and PM2.513concentrations would exceed the SCAQMD significance threshold under both CEQA14and NEPA.
- 15 **Table 3.2-98.** Maximum Offsite Ambient Concentrations—Alternative 4 Construction without Mitigation

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without Background) (µg/m ³)	CEQA Impact $(\mu g/m^3)$	NEPA Impact (µg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	263	2,676	2,939	2,939	338
СО	1-hour	4,809	10,709	15,518	15,518	23,000
	8-hour	4,008	2,074	6,082	6,082	10,000
PM10	24-hour	-	198.2	198.2	158.9	10.4
PM2.5	24-hour	-	91.8	91.8	61.5	10.4

Notes:

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO_2 thresholds represent the 2007 adopted CAAQS values.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

The NEPA Impact equals the total concentration (proposed Project plus background) for NO₂ and CO. The NEPA Impact equals the incremental concentration (proposed Project minus NEPA baseline) for PM10 and PM2.5.

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

Pollutant	Averaging Time	Background Concentration (µg/m ³)	Maximum Concentration (without Background) (µg/m ³)	CEQA Impact (µg/m³)	NEPA Impact (µg/m ³)	SCAQMD Threshold (µg/m³)			
	ntrations were calcula station. The conversion								
	CEQA	Impact Deter	mination						
	Without mitigation, maximum offsite ambient pollutant concentrations associated with construction would be significant for NO_2 (1-hour average) as well as for 24-hour PM10 and PM2.5. Therefore, significant impacts under CEQA would occur.								
	Mitigat	on Measures							
	Implem	ent Mitigation I	Measures MM A	Q-1 through M	M AQ-8.				
	Residu	al Impacts							
	PM10, a implem	and PM2.5 from entation of Miti	all construction gation Measures	n phases after m s MM AQ-1 thro	el concentrations itigation. With bugh MM AQ-8, ties would be sig	temporary			

Table 3.2-99. Maximum Offsite Ambient Concentrations—Alternative 4 Construction with Mitigation

Pollutan t	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without background) (µg/m ³)	CEQA Impact $(\mu g/m^3)$	NEPA Impact $(\mu g/m^3)$	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	263	2,579	2,842	2,842	338
СО	1-hour	4,809	10,158	14,967	14,967	23,000
	8-hour	4,008	1,986	5,994	5,994	10,000
PM10	24-hour	-	57.8	57.8	36.5	10.4
PM2.5	24-hour	-	48.2	48.2	30.4	10.4

Notes:

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO_2 thresholds represent the 2007 adopted CAAQS values.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO₂ and CO. The CEQA Impact

Pollutan t	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without background) (μg/m ³)	CEQA Impact (µg/m³)	NEPA Impact (µg/m ³)	SCAQMD Threshold (µg/m³)
is no constr	ruction for the CEC	tration (proposed Pro A baseline, the CEQ	A Impact for PM10			
	-	n (without backgrour total concentration (p		s background) for N	JO ₂ and CO The NI	EPA Impact
		tration (proposed Pro				Errimpuor
Constructio	on schedules are as	sumed to be 8 hours	per day for all const	ruction equipment a	nd vehicles.	
emissions a	and were not includ	guidance (SCAQM) led in the modeling. action site and onsite	However, tugboat e	missions associated	with barge tending a	
		ulated using the ozon ersion of NO _X to NO				
	NEP	A Impact Deter	rmination			
	with	out mitigation, m construction wou our PM10 and PM	ld be significant	for NO_2 (1-hour	r average) as wel	l as for
	Mitig	ation Measures				
	Imple	ement Mitigation	Measures MM A	AQ-1 through M	M AQ-8.	
	Resi	dual Impacts				
	PM10 imple offsit	e 3.2-99 presents 0, and PM2.5 from ementation of Mit e ambient concer PM10, and PM2	m all constructio tigation Measure ntrations from co	n phases after m s MM AQ-1 thr	itigation. Despirough MM AQ-8	te , temporary
	emi	act AQ-3: Al ssions that e AQMD thresh	exceed 10 to	ons per year	of VOCs or	an
	pollu estim the C	es 3.2-100 and 3.2 tant emissions as ated for four proj EQA baseline (20 mine CEQA and	sociated with op ject study years: 006) and the NE	eration of this al 2011, 2015, 202 PA baseline emi	ternative. Emiss 22, and 2037. Co ssions are preser	tions were omparisons to ted to

1 2	100; actual CEQA and NEPA significance is determined by the comparison of peak daily impacts to CEQA and NEPA thresholds in Table 3.2-101.
3 4	The operational emissions associated with this alternative assume the following activity levels:
5 6	 Operation of three berths at the Inner Harbor Cruise Terminal for the life of the proposed Project.
7 8	Annual ship calls under this alternative are estimated to be 269 calls in 2011 and 275 calls thereafter.
9	• Average emissions from cruise ships assume the use of 2.7% sulfur fuel.
10	Peak emissions from cruise ships assume the use of 4.5% sulfur fuel.
11 12	 Peak daily emissions assume that all available berths would be occupied on any given day.
13 14 15 16	 Harbor craft activity levels would not change from 2006 operations. However, since the Crawley and Millennium tugboats would be relocated to the Berths 70–71 (at the existing Westway Terminal site), their transit time to the harbor gate would be reduced in comparison to existing conditions.
17 18 19	Environmental measures for cruise ships and harbor craft considered part of this alternative would be the same as those considered for the proposed Project (listed in Table 3.2-8).
20 21 22 23	Table 3.2-101 shows the peak daily operational emissions and impacts associated with Alternative 4. The peak daily emission estimates for operations include the following assumptions that were chosen to identify a maximum theoretical activity scenario:
24 25 26	Ships at berth: The peak day scenario assumes that the largest combination of ships in the proposed project fleet that could be simultaneously accommodated at the wharf would call at the terminal.
27 28	 Trucks: Peak day truck trips generated by the proposed Project were provided by the traffic study for each analysis year.
29 30 31 32	Terminal equipment: The terminal equipment data was provided by the LAHD. It was assumed that approximately 29 pieces of terminal equipment (i.e., 8 diesel forklifts, 19 propane forklifts, and 2 fuel trucks) would operate during the peak period when all cruise ship are hoteling at the port.
33 34	Table 3.2-102 shows the combined construction and operational emissions and impacts in 2011 due to the overlap of construction and operational activities.

1 **Table 3.2-100.** Average Daily Operational Emissions without Mitigation—Alternative 4

		Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	<i>PM10</i>	PM2.5			
Project Year 2011									
Vessel transit and maneuvering	134	279	3,421	2,982	383	307			
Vessel hoteling	75	156	1,898	1,907	222	178			
Harbor craft	53	480	1,719	1	62	57			
Motor vehicles	126	1,013	166	1	166	33			
Terminal equipment	0.8	9	9	0.01	0.4	0.4			
Total—Project Year 2011	388	1,937	7,212	4,891	834	575			
CEQA Impacts		·							
CEQA baseline emissions	452	3,123	6,437	3,987	849	511			
Alternative 4 minus CEQA baseline	-64	-1,186	775	904	-15	64			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	Yes	Yes	No	Yes			
<u>NEPA Impacts</u>									
NEPA baseline emissions	363	1,929	6,348	3,141	660	436			
Alternative 4 minus NEPA baseline	25	8	864	1,750	174	138			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	Yes	Yes	No	Yes			
Project Year 2015									
Vessel transit and maneuvering	137	286	3,482	3,049	392	313			
Vessel hoteling	76	159	1,932	1,949	227	182			
Harbor craft	46	539	1,344	1	52	48			
Motor vehicles	158	1,763	361	4	559	113			
Terminal equipment	0.6	9	7	0.01	0.3	0.3			
Total—Project Year 2015	418	2,756	7,126	5,003	1,230	657			
CEQA Impacts	· · ·	·	<u>.</u>						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511			
Alternative 4 minus CEQA baseline	-34	-367	689	1,016	381	146			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	Yes	Yes	Yes	Yes			

		Aver	age Daily En	nissions (lb/	day)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
NEPA Impacts	· · ·					
NEPA baseline emissions	319	2,608	4,263	490	750	276
Alternative 4 minus NEPA baseline	99	148	2,863	4,513	480	381
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
Project Year 2022						
Vessel transit and maneuvering	137	286	3,455	3,049	392	313
Vessel hoteling	76	159	1,917	1,949	227	182
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	128	1,333	237	4	583	110
Terminal equipment	0.4	9	4	0.01	0.2	0.
Total—Project Year 2022	386	2,546	6,679	5,003	1,251	65
CEQA Impacts	· · ·					
CEQA baseline emissions	452	3,123	6,437	3,987	849	51
Alternative 4 minus CEQA baseline	-66	-577	242	1,016	402	14:
Thresholds	55	550	55	150	150	5:
Significant?	No	No	Yes	Yes	Yes	Ye
NEPA Impacts	· · ·					
NEPA baseline emissions	285	2,335	3,937	491	766	27
Alternative 4 minus NEPA baseline	101	210	2,742	4,512	485	38
Thresholds	55	550	55	150	150	5
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2037	· · ·					
Vessel transit and maneuvering	137	286	3,433	3,049	392	31
Vessel hoteling	76	159	1,905	1,949	227	18
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	72	756	120	4	613	12
Terminal equipment	0.2	9	2	0.01	0.1	0.
Total—Project Year 2037	330	1,969	6,525	5,003	1,281	66
CEQA Impacts	<u> </u>	I		I	I	
CEQA baseline emissions	452	3,123	6,437	3,987	849	51

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Alternative 4 minus CEQA baseline	-122	-1,154	88	1,016	432	150	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Yes	
NEPA Impacts							
NEPA baseline emissions	229	1,765	3,803	491	796	277	
Alternative 4 minus NEPA baseline	101	204	2,722	4,512	485	384	
Thresholds	55	550	55	150	150	55	
Significant?	Yes	No	Yes	Yes	Yes	Yes	

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add to the given total due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 **Table 3.2-101.** Peak Daily Operational Emissions without Mitigation—Alternative 4

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Project Year 2011							
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101	
Vessel hoteling	304	633	8,022	12,937	1,220	976	
Harbor craft	53	480	1,719	1	62	57	
Motor vehicles	126	1,013	166	1	166	33	
Terminal equipment	1.5	17	16	0.02	0.7	0.7	
Total—Project Year 2011	1,174	3,585	28,264	38,473	4,075	3,167	
CEQA Impacts							
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682	
Alternative 4 minus CEQA baseline	69	-918	4,329	6,384	513	485	

		Pea	ık Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Ye
<u>NEPA Impacts</u>						
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969
Alternative 4 minus NEPA baseline	66	100	1,835	2,385	248	199
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Ye
Project Year 2015						
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,10
Vessel hoteling	304	633	8,022	12,937	1,220	97
Harbor craft	46	539	1,344	1	52	43
Motor vehicles	158	1,763	361	4	559	11.
Terminal equipment	1.2	17	13	0.02	0.6	0.:
Total—Project Year 2015	1,199	4,394	28,081	38,476	4,457	3,23
CEQA Impacts	- -				I	
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,68
Alternative 4 minus CEQA baseline	94	-109	4,146	6,387	895	55
Thresholds	55	550	55	150	150	5:
Significant?	Yes	No	Yes	Yes	Yes	Ye
<u>NEPA Impacts</u>						
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,87
Alternative 4 minus NEPA baseline	321	618	9,017	18,466	1,703	1,359
Thresholds	55	550	55	150	150	5:
Significant?	Yes	Yes	Yes	Yes	Yes	Ye
Project Year 2022						
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,10
Vessel hoteling	304	633	8,022	12,937	1,220	97
Harbor craft	45	759	1,065	1	49	4
Motor vehicles	128	1,333	237	4	583	11
Terminal equipment	0.7	17	7	0.02	0.3	0
Total—Project Year 2022	1,168	4,184	27,672	38,476	4,478	3,23

		Pea	k Daily Emi	ssions (lb/da	iy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 4 minus CEQA baseline	63	-319	3,737	6,387	916	556
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
<u>NEPA Impacts</u>			·			
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875
Alternative 4 minus NEPA baseline	324	680	8,914	18,465	1,708	1,363
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes
Project Year 2037		·	·			
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	45	759	1,065	1	49	45
Motor vehicles	72	756	120	4	613	121
Terminal equipment	0.4	17	4	0.02	0.1	0.1
Total—Project Year 2037	1,111	3,607	27,552	38,476	4,508	3,243
CEQA Impacts		•	•		L	
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 4 minus CEQA baseline	6	-896	3,617	6,387	946	561
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880
Alternative 4 minus NEPA baseline	323	674	8,911	18,465	1,708	1,363
Thresholds	55	550	55	150	150	55
Significant?	Yes	Yes	Yes	Yes	Yes	Yes

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

	Peak Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.							
The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.							

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

Table 3.2-102. Peak Daily Construction and Operational Emissions without Mitigation—Alternative 4

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Peak Daily Construction Emissions	807	3,795	10,954	10	2,793	888		
Peak Daily Operational Emissions	1,174	3,585	28,264	38,473	4,075	3,167		
Total—Construction & Operation—Project Year 2011	1,981	7,380	39,218	38,483	6,868	4,055		
CEQA Impacts								
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Project Year 2011 minus CEQA Baseline	876	2,877	15,283	6,394	3,306	1,373		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>								
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091		
Project Year 2011 minus NEPA Baseline	573	1,838	7,080	2,385	2,746	965		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		

3

4

5 6

7

CEQA Impact Determination

Alternative 4 peak daily emissions minus the CEQA baseline would exceed CEQA thresholds and would therefore be significant under CEQA for all pollutants except CO during all analysis years and VOC in 2037.

8 In year 2011, the combined construction and operational emissions minus the CEQA
9 baseline would exceed CEQA emission thresholds and would therefore be significant
10 under CEQA for all pollutants.

1	Mitigation Measures
2	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
3	Residual Impacts
4 5 6	Tables 3.2-103 and 3.2-104 show average and peak daily operational emissions and impacts associated with Alternative 4 after mitigation. Table 3.2-105 shows the combined construction and operational peak daily emissions for 2011.
7 8 9	Alternative 4 peak daily mitigated emissions minus the CEQA baseline would exceed CEQA thresholds and would therefore be significant under CEQA for NO_X , SO_X , PM10, and PM2.5 in 2011.
10 11 12	In 2011, the combined construction and operational emissions minus the CEQA baseline would exceed CEQA emission thresholds and would therefore be significant under CEQA for all pollutants.

13	Table 3.2-103.	Average Daily Operational	Emissions with Mitigation—Alternative 4
----	----------------	---------------------------	---

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Vessel transit and maneuvering	129	269	3,196	2,077	298	239		
Vessel hoteling	55	114	1,345	1,062	134	107		
Harbor craft	53	533	1,639	1	62	57		
Motor vehicles	126	1,013	166	1	166	33		
Terminal equipment	0.1	0.4	1	0.01	0.05	0.05		
Total—Project Year 2011	363	1,929	6,348	3,141	660	436		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	511		
Alternative 4 minus CEQA baseline	-89	-1,194	-89	-846	-189	-75		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
<u>NEPA Impacts</u>								
NEPA baseline emissions	363	1,929	6,348	3,141	660	436		
Alternative 4 minus NEPA baseline	0	0	0	0	0	-1		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		

	Average Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2015						
Vessel transit and maneuvering	96	200	2,217	359	117	93
Vessel hoteling	22	45	497	127	31	25
Harbor craft	44	617	1,191	1	50	46
Motor vehicles	158	1,763	361	4	559	113
Terminal equipment	0.1	0.3	1	0	0.03	0.03
Total—Project Year 2015	320	2,626	4,267	491	756	27
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 4 minus CEQA baseline	-132	-497	-2,170	-3,497	-93	-234
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
NEPA Impacts						
NEPA baseline emissions	319	2,608	4,263	490	750	270
Alternative 4 minus NEPA baseline	1	18	4	1	6	-
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	N
Project Year 2022						
Vessel transit and maneuvering	96	200	2,200	359	117	93
Vessel hoteling	22	45	493	127	31	2:
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	128	1,333	237	4	583	116
Terminal equipment	0.1	0.3	0.4	0	0.01	0.0
Total—Project Year 2022	286	2,349	3,939	491	772	273
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	51
Alternative 4 minus CEQA baseline	-166	-774	-2,498	-3,497	-77	-23
Thresholds	55	550	55	150	150	5:
Significant?	No	No	No	No	No	N
NEPA Impacts	i					
NEPA baseline emissions	285	2,335	3,937	491	766	272

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Alternative 4 minus NEPA baseline	1	13	2	0	6]		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	N		
Project Year 2037								
Vessel transit and maneuvering	96	200	2,186	359	117	93		
Vessel hoteling	22	45	490	127	31	2:		
Harbor craft	40	770	1,008	1	42	39		
Motor vehicles	72	756	120	4	613	12		
Terminal equipment	0	0.3	0.1	0	0	(
Total—Project Year 2037	230	1,772	3,804	491	802	278		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	51		
Alternative 4 minus CEQA baseline	-222	-1,351	-2,633	-3,497	-47	-233		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	No	No	No	No		
NEPA Impacts								
NEPA baseline emissions	229	1,765	3,803	491	796	27		
Alternative 4 minus NEPA baseline	1	7	1	0	6			
Thresholds	55	550	55	150	150	5:		
Significant?	No	No	No	No	No	N		

Emissions represent annual emissions divided by 365 days per year of operation.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1 **Table 3.2-104.** Peak Daily Operational Emissions with Mitigation—Alternative 4

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	625	1,305	16,599	23,150	2,378	1,903
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	53	533	1,639	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	0.2	0.7	3	0	0.1	0.1
Total—Project Year 2011	1,108	3,485	26,429	36,088	3,826	2,969
CEQA Impacts			·	·		
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 4 minus CEQA baseline	3	-1,018	2,494	4,000	264	287
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
NEPA Impacts						
NEPA baseline emissions	1,108	3,485	26,429	36,088	3,826	2,969
Alternative 4 minus NEPA baseline	-1	0	0	0	0	(
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2015						
Vessel transit and maneuvering	509	1,063	13,129	13,384	1,513	1,210
Vessel hoteling	168	350	4,385	6,622	638	51
Harbor craft	44	617	1,191	1	50	40
Motor vehicles	158	1,763	361	4	559	113
Terminal equipment	0.2	0.6	2	0	0.1	0.1
Total—Project Year 2015	880	3,794	19,068	20,011	2,760	1,88
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 4 minus CEQA baseline	-225	-709	-4,867	- 12,077	-802	-802
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
NEPA Impacts						
NEPA baseline emissions	879	3,776	19,064	20,010	2,754	1,879
Alternative 4 minus NEPA baseline	1	18	4	1	6	1
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2022						
Vessel transit and maneuvering	509	1,063	13,129	13,384	1,513	1,210
Vessel hoteling	168	350	4,385	6,622	638	511
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	128	1,333	237	4	583	116
Terminal equipment	0.1	0.5	0.8	0	0.03	0.02
Total—Project Year 2022	845	3,517	18,760	20,011	2,776	1,876
CEQA Impacts	L				l	
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 4 minus CEQA baseline	-260	-986	-5,175	-12,077	-786	-806
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
NEPA Impacts						
NEPA baseline emissions	844	3,504	18,758	20,011	2,770	1,875
Alternative 4 minus NEPA baseline	1	13	2	0	6	1
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2037						
Vessel transit and maneuvering	509	1,063	13,129	13,384	1,513	1,210
Vessel hoteling	168	350	4,385	6,622	638	511
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	72	756	120	4	613	121
Terminal equipment	0.1	0.5	0.2	0	0.01	0.01
Total—Project Year 2037	789	2,940	18,642	20,011	2,806	1,881
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682

		Peak Daily Emissions (lb/day)				
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Alternative 4 minus CEQA baseline	-316	-1,563	-5,293	-12,077	-756	-801
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
NEPA baseline emissions	788	2,933	18,641	20,011	2,800	1,880
Alternative 4 minus NEPA baseline	16	-849	-316	149	114	17
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No

Emissions assume the simultaneous occurrence of maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 Table 3.2-105. Peak Daily Construction and Operational Emissions with Mitigation—Alternative 4

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Peak Daily Construction Emissions	363	2,421	6,615	10	353	156		
Peak Daily Operational Emissions	1,108	3,485	26,429	36,088	3,826	2,969		
Total—Construction & Operation—Project Year 2011	1,471	5,906	33,044	36,098	4,179	3,125		
CEQA Impacts								
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Project Year 2011 minus CEQA Baseline	366	1,403	9,109	4,010	617	443		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		
<u>NEPA Impacts</u>								
NEPA baseline emissions	1,408	5,542	32,138	36,098	4,121	3,091		
Project Year 2011 minus NEPA	62	364	906	0	58	34		

		Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5			
Baseline									
Thresholds	55	550	55	150	150	55			
Significant?	Yes	No	Yes	No	No	No			
Notes:	· ·								
Emissions assume the simultaneous occur rarely occur during day-to-day terminal		neoretical dai	ly equipment	activity level	s. Such level	ls would			

Truck, ship, and worker commute emissions include transport within the SCAB.

Emissions might not precisely add due to rounding. For further explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

2	NEPA Impact Determination
3 4 5	Alternative 4 peak daily emissions minus the NEPA baseline would exceed NEPA thresholds and would therefore be significant under NEPA for all pollutants during all analysis years, with the exception of CO in 2011.
6 7 8	In 2011, the combined construction and operational emissions minus the NEPA baseline would exceed NEPA emission thresholds and would therefore be significant under NEPA for all pollutants.
9	Mitigation Measures
10	Implement Mitigation Measures MM AQ-9 through MM AQ-24.
11	Residual Impacts
12 13 14 15 16	Tables 3.2-103 and 3.2-104 show average daily and peak daily criteria pollutant emissions for each study year and impacts associated with Alternative 4 after mitigation. Alternative 4 peak daily mitigated emissions minus the NEPA baseline would be below NEPA thresholds and thus not significant under NEPA for all pollutants during all analysis years.
17 18 19	In 2011, the combined construction and operational emissions minus the NEPA baseline would exceed NEPA emission thresholds and would thus be significant under NEPA for VOC and NO_X .

1Impact AQ-4: Alternative 4 operations would result in offsite2ambient air pollutant concentrations that exceed a SCAQMD3threshold of significance in Table 3.2-16.

4Dispersion modeling of onsite and offsite operational emissions for Alternative 4 was5performed to assess the impact of Alternative 4 on local ambient air concentrations.6A summary of the dispersion modeling results is presented here; the complete7dispersion modeling report is included in Appendix D2. Table 3.2-106 presents the8maximum offsite ground-level concentrations of NO2 and CO for Alternative 49without mitigation. Table 3.2-107 shows the maximum CEQA and NEPA PM10 and10PM2.5 concentration increments without mitigation.

Table 3.2-106. Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 4
 without Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 4 $(\mu g/m^3)$	Background Concentration $(\mu g/m^3)$	Total Ground-Level Concentration $(\mu g/m^3)$	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	1,131	263	1,394	338
	Annual	63	53	116	56.4
СО	1-hour	5,645	4,809	10,454	23,000
	8-hour	2,133	4,008	6,141	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

13

14 **Table 3.2-107.** Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of

15 Alternative 4 without Mitigation

	$Maximum$ $Modeled$ $Concentration$ $of Alternative$ 4 $(\mu g/m^3)$	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Maximum Modeled Concentration of NEPA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (μg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour	34.3	32.3	22.8	9.4	14.7	2.5
PM10 annual	6.8	4.3	6.5	2.5	1.3	1.0

	average						
	PM2.5 24-hour	26.9	25.8	17.1	7.0	11.8	2.5
	Notes:	1					1
		of the threshold are in tal concentration witho				incremental thresho	lds; therefore,
	concentration concentration	m increments presented as. This means that the as from the proposed p ject describes how the	e increments canr roject concentrati	not necessarily be de	etermined by simply s	subtracting the basel	ine
	minus the NE	EPA baseline. NEPA baseline. NEPA baseline.					
1							
2		CEQA In	npact Deterr	mination			
3 4 5		Operation of this alternative would produce significant offsite ambient concentrations for NO_2 (1-hour and annual), PM10 (24-hour and annual) and PM2.5 (24-hour). Therefore, significant impacts under CEQA would occur.					
6		Mitigation	n Measures				
7		Implemen	t Mitigation N	Measures MM A	Q-9 through MM	AQ-24.	
8		<u>Residual</u>	Impacts				
9 10 11 12 13 14		CO for Al NEPA PM offsite con CEQA for	ternative 4 aff 110 and PM2. Incentrations at NO_2 (1-hour	ter mitigation. T 5 concentration fter mitigation and and annual) and	fsite ground-leve Table 3.2-109 sho increments after r re expected to ren PM10 (24-hour to less than signi	ws the maximun mitigation. Max nain significant u and annual). Ma	n CEQA and imum under uximum
15 16	Table 3.2-10 with Mitigation	08. Maximum Offs on	site NO $_2$ and C	CO Concentration	ns Associated wit	h Operation of A	Iternative 4

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 4 $(\mu g/m^3)$	Background Concentration $(\mu g/m^3)$	Total Ground-Level Concentration $(\mu g/m^3)$	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	836	263	1,099	338
	Annual	45	53	98	56.4
СО	1-hour	5,580	4,809	10,389	23,000
	8-hour	2,120	4,008	6,128	10,000

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, and 2006 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

1

Table 3.2-109. Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of Alternative 4 with Mitigation

	Maximum Modeled Concentration of Alternative 4 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (µg/m ³)	Maximum Modeled Concentration of NEPA baseline (µg/m ³)	Ground- Level Concentratio n CEQA Increment (µg/m ³)	Ground-Level Concentration NEPA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour	21.4	32.3	22.8	3.5	0.1	2.5
PM10 annual average	5.6	4.3	6.5	1.4	<0.1	1.0
PM2.5 24-hour	15.8	25.8	17.1	2.1	0.1	2.5

Notes:

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.

The CEQA increment represents Alternative 4 minus the CEQA baseline. The NEPA increment represents Alternative 4 minus the NEPA baseline. NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

4

5 NEPA Impact Determination
6 Operation of this alternative would produce significant offsite ambient concentrations for NO₂ (1-hour and annual), PM10 (24-hour and annual), and PM2.5 (24-hour). Therefore, significant impacts under NEPA would occur.
9 <u>Mitigation Measures</u>
10 Implement Mitigation Measures MM AQ-9 through MM AQ-24.

1	Residual Impacts
2 3 4 5 6 7	Table 3.2-108 presents the maximum offsite ground-level concentrations of NO_2 and CO for Alternative 4 after mitigation. Table 3.2-109 shows the maximum CEQA and NEPA PM10 and PM2.5 concentration increments after mitigation. Maximum offsite concentrations after mitigation are expected to remain significant under NEPA for NO_2 (1-hour and annual). Impacts would be reduced to less-than-significant levels for PM10 (24-hour and annual) and PM2.5 (24-hour).
8 9 10	Impact AQ-5: Alternative 4 would not generate onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.
11 12 13 14	This alternative would generate less truck traffic than the proposed Project for all analysis years. As discussed in the proposed project analysis, CO concentrations related to onroad traffic would not exceed state CO standards for any project study year.
15	CEQA Impact Determination
16 17	Significant impacts under CEQA are not anticipated because CO standards would not be exceeded.
18	Mitigation Measures
19	No mitigation is required.
20	Residual Impacts
21	Impacts would be less than significant.
22	NEPA Impact Determination
23 24	Significant impacts under NEPA are not anticipated because CO standards would not be exceeded.
25	Mitigation Measures
26	No mitigation is required.
27	Residual Impacts
28	Impacts would be less than significant.

2	odor at the nearest sensitive receptor.
3 4 5 6 7 8	Similar to the proposed Project, the mobile nature of the emission sources associated with this alternative would help to disperse emissions. Additionally, the distance between proposed emission sources and the nearest residents would be far enough to allow for adequate dispersion of these emissions to below objectionable odor levels. Thus, the potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor.
9	CEQA Impact Determination
10 11 12	The potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor; therefore, significant odor impacts under CEQA are not anticipated.
13	Mitigation Measures
14	No mitigation is required.
15	Residual Impacts
16	Impacts would be less than significant.
17	NEPA Impact Determination
18 19 20	The potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor; therefore, significant odor impacts under NEPA are not anticipated.
21	Mitigation Measures
22	No mitigation is required.
23	Residual Impacts
24	Impacts would be less than significant.
25 26	Impact AQ-7: Alternative 4 would expose receptors to significant levels of toxic air contaminants.
27 28 20	The main sources of TACs from Alternative 4 operations would be DPM emissions from ships, harbor craft, terminal equipment, and motor vehicles. Similar to the

Impact AQ-6: Alternative 4 would not create an objectionable

29HRA for the proposed Project, DPM, PM10, and VOC emissions were projected over30a 70-year period, from 2009 through 2078. An HRA was performed over this 70-31year exposure period.

2

3

4

5

6

Table 3.2-110 presents the maximum predicted health impacts associated with this alternative without mitigation. The table includes estimates of individual lifetime cancer risk, chronic noncancer hazard index, and acute noncancer hazard index at the maximally exposed receptors. Results are presented for this alternative, CEQA baseline, NEPA baseline, CEQA increment (alternative minus CEQA baseline), and NEPA increment (alternative minus the NEPA baseline).

7 **Table 3.2-110.** Maximum Health Impacts Associated with Alternative 4 without Mitigation, 2009–2078

Health Impact	Receptor Type	Alternative 4	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Cancer	Residential	500 x 10 ⁻⁶	379 x 10 ⁻⁶	140 x 10 ⁻⁶	139 x 10 ⁻⁶	362 x 10 ⁻⁶	10 × 10 ⁻⁶
Risk		(500 in a million	(379 in a million)	(140 in a million)	(139 in a million)	(362 in a million)	(10 in a million)
	Occupational	925 x 10 ⁻⁶	992 x 10 ⁻⁶	82 x 10 ⁻⁶	171 x 10 ⁻⁶	754 x 10 ⁻⁶	
		(925 in a million	(992 in a million)	(82 in a million)	(171 in a million)	(754 in a million)	
	Recreational	1,419 x 10 ⁻⁶	1,522 x 10 ⁻⁶	126 x 10 ⁻⁶	263 x 10 ⁻⁶	1,156 x 10 ⁻⁶	
		(1,419 in a million	(1,522 in a million)	(126 in a million)	(263 in a million)	(1,156 in a million)	
	Sensitive	144 x 10 ⁻⁶	120 x 10 ⁻⁶	23 x 10 ⁻⁶	52 x 10 ⁻⁶	105 x 10 ⁻⁶	
		(144 in a million	(120 in a million)	(23 in a million)	(52 in a million)	(105 in a million)	
	Student	9 x 10 ⁻⁶	8 x 10 ⁻⁶ (8 in	1 x 10 ⁻⁶	2 x 10 ⁻⁶	7 x 10 ⁻⁶	
		(9 in a million	a million)	(1 in a million)	(2 in a million)	(7 in a million)	
Chronic	Residential	0.53	0.69	0.09	0.44	0.21	1.0
Hazard Index	Occupational	1.17	1.72	0.15	1.04	0.91	
	Recreational	1.17	1.72	0.15	1.04	0.91	
	Sensitive	0.13	0.13	0.02	0.11	0.06	
	Student	0.13	0.11	0.02	0.10	0.06	
Acute	Residential	1.64	2.40	1.42	1.36	1.26	1.0
Hazard Index	Occupational	2.56	3.07	2.51	1.76	1.46	
muvA	Recreational	2.56	3.07	2.51	1.76	1.46	
	Sensitive	0.86	0.51	0.73	0.44	0.68	
	Student	0.53	0.42	0.40	0.29	0.33	

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

			Maxim	um Predicted I	mpact		
Health Impact							Significance Threshold
the increa	nents cannot nec	s might not necessaril essarily be determine le 3.2-36 above illust	d by simply sub	tracting the baseli	ne impacts from		
	A baseline. NEP.	resents Alternative 3 A baseline emissions					
	esent the recepto less than these v	r locations with the n alues.	naximum impact	s or increments.	The impacts or	increments at all	other receptors
The cance	er risk values rep	orted in this table for	the residential r	eceptor are based	on the 80 th perc	centile breathing	rate.
		x, half the ships were residual fuel oil of			vith a 4.5% sulfu	ir content and the	e other half were
	C	EQA Impact De	eterminatior	ı			
	th re m re	able 3.2-110 show e unmitigated Alt sidential receptor illion. The CEQA creational, occupa onsidered significa	ernative 4 is p This risk va Cancer risk ational, and se	predicted to be lue exceeds th increment wou ensitive recept	e 140 in a mil e significanc ild also excee	lion $(140 \times 10^{\circ})$ e criterion of ed the threshol) ⁻⁶), at a 10 in a ld at
	The maximum chronic hazard index CEQA increment is predicted to be below the significance threshold of 1.0 at all receptors. The maximum acute hazard index CEQA increment is predicted to be greater than the significance threshold of 1.0 at the residential, occupational, and recreational receptors. These exceedances are considered significant impacts under CEQA.						index l of 1.0 at
	M	itigation Measur	res				
	In	nplement Mitigati	ion Measures	MM AQ-9 thr	ough MM A	Q-24.	
	Residual Impacts						
	wi re 72	able 3.2-111 prese ith operation of the duce the maximus 2%. The maximus 2%. The maximus	nis alternative m residential m residential	with mitigatic cancer risk ass chronic hazard	on. The mitig sociated with d index would	ation measure this alternativ d be reduced b	es would ye by about by about
	17%. The maximum residential acute hazard index would be reduced by about 17%. The data show that the maximum CEQA cancer risk increment after mitigation is predicted to be less than 1 in a million at all receptors. Therefore, the CEQA cancer risk increment would be less than significant.						

2

3

4

The maximum chronic hazard index CEQA increment is predicted to be below the significance threshold of 1.0 at all receptors. The acute hazard index CEQA increment is predicted to be above the significance threshold of 1.0 and is, therefore, considered significant for the residential, occupational, and recreational receptors.

5 **Table 3.2-111.** Maximum Health Impacts Associated with Alternative 4 with Mitigation, 2009–2078

			Maxim	um Predicted I	mpact		
Health Impact	Receptor Type	Alternative 4	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
Cancer	Residential	139 x 10 ⁻⁶	379 x 10 ⁻⁶	<1 x 10 ⁻⁶	139 x 10 ⁻⁶	3 x 10 ⁻⁶	10 × 10 ⁻⁶
Risk		(139 in a million)	(379 in a million)	(<1 in a million)	(139 in a million)	(3 in a million)	(10 in a million)
	Occupational	172 x 10 ⁻⁶	992 x 10 ⁻⁶	<1 x 10 ⁻⁶	171 x 10 ⁻⁶	2 x 10 ⁻⁶	
		(172 in a million)	(992 in a million)	(<1 in a million)	(171 in a million)	(2 in a million)	
	Recreational	263 x 10 ⁻⁶	1,522 x 10 ⁻⁶	<1 x 10 ⁻⁶	263 x 10 ⁻⁶	3 x 10 ⁻⁶	
		(263 in a million)	(1,522 in a million)	(<1 in a million)	(263 in a million)	(3 in a million)	
	Sensitive	53 x 10 ⁻⁶	120 x 10 ⁻⁶	<1 x 10 ⁻⁶	52 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(53 in a million)	(120 in a million)	(<1 in a million)	(52 in a million)	(<1 in a million)	
	Student	2 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	2 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(2 in a million)	(8 in a million)	(<1 in a million)	(2 in a million)	(<1 in a million)	
Chronic	Residential	0.44	0.69	0.04	0.44	0.01	1.0
Hazard Index	Occupational	1.04	1.72	0.13	1.04	0.05	
	Recreational	1.04	1.72	0.13	1.04	0.05	
	Sensitive	0.11	0.13	0.00	0.11	0.00	
	Student	0.10	0.11	0.00	0.10	0.00	
Acute	Residential	1.36	2.40	1.10	1.36	0.94	1.0
Hazard Index	Occupational	1.79	3.07	1.74	1.76	1.04	
	Recreational	1.79	3.07	1.74	1.76	1.04	ļ
	Sensitive	0.73	0.51	0.60	0.44	0.55	ļ
	Student	0.41	0.42	0.28	0.29	0.22	

Notes:

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact.

			Maxim	um Predicted I	mpact		
Health Impact	Receptor Type	Alternative 4	CEQA Baseline	CEQA Increment	NEPA Baseline	NEPA Increment	Significance Threshold
The examp	ple given in Table	e 3.2-36 above illus	strates how the ir	ncrements are cal	culated.		
the NEPA for Alterna Data repre	baseline. NEPA ative 5.	sents Alternative 3 baseline emissions	s include as prop	osed project elen	nents the same n	nitigation measu	res identified
•		rted in this table fo	r the residential	receptor are base	d on the 80 th per	centile breathing	o rate
For the act	ute hazard index,	half the ships were erage residual fuel	assumed to use	residual fuel oil			
	NE	PA Impact De	eterminatio	n			
	the rec: mil occ	ble 3.2-110 show unmitigated Al reational recept lion. The NEP upational, resid hificant impacts	ternative 4 is or. This risk A cancer risk ential, and se	predicted to b value exceeds increment also nsitive recepto	e 1,156 in a r the significa o would exce	million (1,156 nce criterion of ed the thresho	5×10^{-6}), at a of 10 in a old at
	sign	e maximum chro nificance thresh rement is predic sidered signific	old of 1.0 at a ted to be abo	all receptors. 7	The acute haz ance thresho	zard index NE	EPA is, therefore
	Mit	igation Measu	res				
	Imj	olement Mitigat	ion Measures	MM AQ-9 th	rough MM A	Q-24.	
	Re	sidual Impacts	<u>i</u>				
	wit red 729	ble 3.2-111 pres h operation of t uce the maximu 6. The maximu 6. The maximu	his alternative im residential im residential	with mitigati cancer risk as chronic hazar	on. The miti ssociated with d index would	gation measu n this alternati ld be reduced	res would ive by about by about
	pre bel inc	e data show that dicted to be 3 ir ow the significa rements are not nificant impacts	a million (3 ince threshold exceeded at a	\times 10 ⁻⁶), at a real of 10 in a milling receptors a	creational realist	ceptor. This i EPA cancer ri	risk value is isk

1 2 3 4	The maximum chronic hazard index NEPA increment is predicted to be below the significance threshold of 1.0 at all receptors. The acute hazard index NEPA increment is predicted to be above the significance threshold of 1.0 and is, therefore, considered significant for occupational and recreational receptors.
5 6	Impact AQ-8: Alternative 4 would not conflict with or obstruct implementation of an applicable AQMP.
7 8 9 10	Similar to the proposed Project, this alternative would comply with SCAQMD rules and regulations, and would be consistent with SCAG regional employment and population growth forecasts. Thus, this alternative would not conflict with or obstruct implementation of the AQMP.
11	CEQA Impact Determination
12 13	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under CEQA are not anticipated.
14	Mitigation Measures
15	No mitigation is required.
16	Residual Impacts
17	Impacts would be less than significant.
18	NEPA Impact Determination
19 20	This alternative would not conflict with or obstruct implementation of the AQMP; therefore, significant impacts under NEPA are not anticipated.
21	Mitigation Measures
22	No mitigation is required.
23	Residual Impacts
24	Impacts would be less than significant.
25 26	Impact AQ-9: Alternative 4 would produce GHG emissions that would exceed CEQA and NEPA baseline levels.
27 28 29	Table 3.2-112 summarizes the total GHG construction emissions associated with Alternative 4. Table 3.2-113 summarizes the annual GHG emissions that would occur within California from the operation of this alternative without mitigation.

1	Table 2 2 112	Total GHG Emissions from Construction Activities—Alternative 4 without Mitigation
1	Table 3.2-112.	Total GITG LITISSIONS NOTI CONSTRUCTION ACTIVITIES—Alternative 4 without witigation

		Total Emissions	(Metric Tons)	
Emission Source	CO_2	CH_4	N_2O	CO ₂ e
Catalina Express Terminal	387.96	0.05	0.00	390.31
Cruise ship terminal Berths 91–93	987.57	0.14	0.01	993.56
Cruise ship parking facilities	782.62	0.11	0.01	787.36
North Harbor	0.00	0.00	0.00	0.00
Maritime Office Building—Crowley	0.00	0.00	0.00	0.00
Maritime Office Building—Millennium	0.00	0.00	0.00	0.00
Maritime Office Building—Lane Victory	235.05	0.03	0.00	236.47
Downtown Harbor	1,886.65	0.27	0.02	1,898.09
7 th Street Harbor	1,319.76	0.19	0.01	1,327.76
7 th Street Pier	1,159.91	0.16	0.01	1,166.94
Downtown Square	167.73	0.02	0.00	168.74
Downtown water feature	117.95	0.02	0.00	118.66
John S. Gibson Jr. Park	173.87	0.02	0.00	174.92
Ralph J. Scott Fireboat Museum	372.10	0.05	0.00	374.35
Los Angeles Maritime Museum renovation	0.00	0.00	0.00	0.00
Los Angeles Maritime Institute	252.83	0.04	0.00	254.36
Maritime Office Building	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 1	2,189.22	0.31	0.02	2,202.49
Ports O' Call Promenade—Phase 2	2,386.10	0.34	0.02	2,400.57
Ports O' Call Promenade—Phase 3	2,194.86	0.31	0.02	2,208.17
Southern Pacific Railyard demolition	282.14	0.04	0.00	283.85
Fishermen's Park	722.81	0.10	0.01	727.19
Ports O' Call redevelopment without restaurant	0.00	0.00	0.00	0.00
Ports O' Call Redevelopment Phase 1	2,163.88	0.30	0.02	2,177.00
Ports O' Call Redevelopment Phase 2	3,325.88	0.47	0.03	3,346.05
Ports O' Call Redevelopment with Restaurant	589.54	0.08	0.01	593.12
Ports O' Call Redevelopment Phase 3	1,701.85	0.24	0.02	1,712.18
Waterfront Red Car Maintenance Facility	615.44	0.09	0.01	619.17
Westway Terminal demolition	857.21	0.12	0.01	862.41
City Dock No. 1 promenade	2,448.96	0.34	0.02	2,463.82
Outer Harbor Cruise Terminal	0.00	0.00	0.00	0.00

		Total Emissions	s (Metric Tons)	
Emission Source	CO_2	CH_4	N_2O	CO_2e
Outer Harbor Park and promenade	1,090.88	0.15	0.01	1,097.50
San Pedro Park	1,111.59	0.16	0.01	1,118.33
Salinas De San Pedro/Youth Camp promenade	2,576.76	0.36	0.03	2,592.39
Sampson Way road improvements	886.34	0.12	0.01	891.72
Waterfront Red Car Line extension—Sampson Way	988.00	0.14	0.01	993.99
Waterfront Red Car Line extension—Cabrillo Beach	1,064.12	0.15	0.01	1,070.58
Waterfront Red Car Line extension—Outer Harbor	589.03	0.08	0.01	592.60
Waterfront Red Car Line extension—City Dock No. 1	601.82	0.08	0.01	605.47
Berth 240 fueling station	224.64	0.03	0.00	226.01
Total Emissions	36,455.06	5.12	0.37	36,676.13
NEPA Baseline	23,845.99	3.35	0.24	23,990.60
Alternative 4 minus NEPA Baseline	12,609.07	1.77	0.13	12,685.53

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

Emissions may not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2 Table 3.2-113. Annual Operational GHG Emissions—Alternative 4 without Mitigation

	Metric Tons Per Year				
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO_2e	
Project Year 2011					
Vessel transit and maneuvering	48,486	0.3	2.2	49,174	
Vessel hoteling	17,791	0.1	0.8	18,043	
Harbor craft	25,571	0.1	1.2	25,934	
Motor vehicles	16,661	3.1	3.4	17,773	
Terminal equipment - fossil fueled	195	0.0	0.0	196	

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO_2e		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016		
Total for Project Year 2011	133,680	3.9	7.7	136,137		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 4 minus CEQA baseline	4,411	-2.5	-1.7	3,82		
NEPA baseline	114,668	3.7	6.8	116,853		
Alternative 4 minus NEPA baseline	19,013	0.2	0.9	19,284		
Project Year 2015						
Vessel transit and maneuvering	49,568	0.3	2.2	50,271		
Vessel hoteling	18,188	0.1	0.8	18,440		
Harbor craft	23,083	0.1	1.0	23,41		
Motor vehicles	57,615	7.6	8.7	60,459		
Terminal equipment - fossil fueled	195	0.0	0.0	19		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,01		
Total for Project Year 2015	173,625	8.3	12.9	177,79		
CEQA baseline	129,270	6.3	9.4	132,30		
Alternative 4 minus CEQA baseline	44,355	2.0	3.5	45,49		
NEPA baseline	170,307	8.3	12.0	174,21.		
Alternative 4 minus NEPA baseline	3,318	0.0	0.9	3,58.		
Project Year 2022						
Vessel transit and maneuvering	49,568	0.3	2.2	50,27		
Vessel hoteling	18,188	0.1	0.8	18,44		
Harbor craft	22,659	0.1	1.0	22,98		
Motor vehicles	63,278	6.5	7.8	65,82		
Terminal equipment - fossil fueled	195	0.0	0.0	19		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,010		

	Metric Tons Per Year					
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO ₂ e		
Total for Project Year 2022	178,864	7.2	12.0	182,735		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 4 minus CEQA baseline	49,594	0.9	2.6	50,427		
NEPA baseline	173,145	7.1	11.1	176,731		
Alternative 4 minus NEPA baseline	5,719	0.1	0.9	6,004		
Project Year 2037	- · ·					
Vessel transit and maneuvering	49,568	0.3	2.2	50,271		
Vessel hoteling	18,188	0.1	0.8	18,446		
Harbor craft	22,659	0.1	1.0	22,981		
Motor vehicles	66,613	6.8	8.2	69,301		
Terminal equipment - fossil fueled	195	0.0	0.0	196		
AMP electricity usage	NA	NA	NA	NA		
Terminal equipment - electric	NA	NA	NA	NA		
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016		
Total for Project Year 2037	182,199	7.6	12.4	186,211		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 4 minus CEQA baseline	52,929	1.3	3.1	53,903		
NEPA baseline	176,482	7.5	11.5	180,209		
Alternative 4 minus NEPA baseline	5,717	0.1	0.9	6,002		

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

1	CEQA Impact Determination
2 3 4	The data in Table 3.2-113 show that in each future project year after 2011, annual operational CO_2e emissions would increase from CEQA baseline levels. As a result, Alternative 4 would produce significant levels of GHG emissions under CEQA.
5	Mitigation Measures
6 7	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.
8	Residual Impacts
9 10 11 12 13	Table 3.2-114 summarizes the annual GHG emissions that would occur within California from the operation of Alternative 4 with mitigation. The data in Table 3.2-114 show that in each future project year except 2011, annual operational CO ₂ e emissions would increase from CEQA baseline levels. As a result, Alternative 4 would produce significant levels of GHG emissions under CEQA.

14 **Table 3.2-114.** Annual Operational GHG Emissions—Alternative 4 with Mitigation

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		
Project Year 2011						
Vessel transit and maneuvering	39,639	0.2	1.8	40,202		
Vessel hoteling	9,753	0.1	0.4	9,892		
Harbor craft	23,399	0.1	1.1	23,731		
Motor vehicles	16,661	3.1	3.4	17,773		
Terminal equipment - fossil fueled	25	0.0	0.0	25		
AMP electricity usage	0	0.0	0.0	(
Terminal equipment - electric	271	0.0	0.0	27		
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,010		
Total for Project Year 2011	114,725	3.7	6.8	116,91		
CEQA baseline	129,270	6.3	9.4	132,308		
Alternative 4 minus CEQA baseline	-14,544	-2.6	-2.6	-15,39		
NEPA baseline	114,668	3.7	6.8	116,853		
Alternative 4 minus NEPA baseline	58	0.0	0.0	58		

		Metric Tons I	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e
Vessel transit and maneuvering	40,071	0.2	1.8	40,640
Vessel hoteling	9,753	0.1	0.4	9,892
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	57,615	7.6	8.7	60,459
Terminal equipment - fossil fueled	25	0.0	0.0	25
AMP electricity usage	14,830	0.1	0.1	14,853
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016
Total for Project Year 2015	168,154	8.3	12.0	172,061
CEQA baseline	129,270	6.3	9.4	132,308
<i>Alternative 4 minus CEQA baseline</i>	38,884	2.0	2.7	39,753
NEPA baseline	170,307	8.3	12.0	174,215
<i>Alternative 4 minus NEPA baseline</i>	-2,153	0.0	0.0	-2,154
Project Year 2022				
Vessel transit and maneuvering	40,071	0.2	1.8	40,640
Vessel hoteling	9,753	0.1	0.4	9,892
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	63,278	6.5	7.8	65,825
Terminal equipment - fossil fueled	25	0.0	0.0	25
AMP electricity usage	14,830	0.1	0.1	14,853
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016
Total for Project Year 2022	173,817	7.2	11.2	177,428
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 4 minus CEQA baseline	44,547	0.9	1.8	45,120
NEPA baseline	173,145	7.1	11.1	176,731
<i>Alternative 4 minus NEPA baseline</i>	671	0.1	0.1	696
baseline Project Year 2037				

		Metric Ton	s Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO_2e
Vessel transit and maneuvering	40,071	0.2	1.8	40,640
Vessel hoteling	9,753	0.1	0.4	9,892
Harbor craft	20,612	0.1	0.9	20,904
Motor vehicles	66,613	6.8	8.2	69,301
Terminal equipment - fossil fueled	25	0.0	0.0	25
AMP electricity usage	14,830	0.1	0.1	14,853
Terminal equipment - electric	271	0.0	0.0	271
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016
Total for Project Year 2037	177,151	7.6	11.6	180,903
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 4 minus CEQA baseline	47,882	1.3	2.2	48,596
NEPA baseline	176,482	7.5	11.5	180,209
Alternative 4 minus NEPA baseline	670	0.1	0.1	694

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA baseline emissions include as proposed project elements the same mitigation measures identified for Alternative 5.

1

2

3 4

5

6 7

NEPA Impact Determination

The data in Table 3.2-113 show that in each future project year, annual operational CO_2e emissions would increase from NEPA baseline levels.

Mitigation Measures

Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.

1		Residual Impacts
2 3		The data in Table 3.2-114 show that in each future project year except 2015, annual operational CO_2e emissions would increase from NEPA baseline levels.
4	3.2.4.3.6	Alternative 5—No-Federal-Action Alternative
5 6 7		The No-Federal-Action Alternative (Alternative 5) includes the construction and operational impacts likely to occur absent USACE permits (i.e., air emissions and traffic likely to occur without issuance of permits to modify wharves or dredge).
8 9 10 11 12 13 14 15 16 17 18		The No-Federal-Action Alternative eliminates all of the proposed project elements that would require a federal permit or other substantial federal interest, such as property or funding. Such elements include all harbor cuts and dredging activities; removal of existing and construction of new bulkheads, wharves, pilings, piers, rock slope protection, floating docks, and promenades that cover waters of the United States; and ocean disposal of dredge material. Landside construction activities within 100 feet of the shoreline necessary to complete the in-water activities also would be within the USACE's regulatory purview. Additionally, the Outer Harbor cruise terminals, which are upland components, are included in the scope of federal review because they would not be constructed if a permit were not issued by the USACE for the cruise berth upgrades.
19 20 21		Impact AQ-1: Alternative 5 would result in construction- related emissions that exceed an SCAQMD threshold of significance in Table 3.2-13.
22 23		Construction of the No-Federal-Action Alternative would be similar to the proposed Project, except that the harbor and promenade components would not be built.
24 25 26 27 28 29 30 31 32		Table 3.2-115 presents a summary of the peak daily criteria pollutant emissions associated with construction of Alternative 5 without mitigation. This table contains peak daily construction emissions for each project year, as well as CEQA and NEPA significance determinations. Maximum emissions for each construction phase were determined by totaling the daily emissions from those construction activities that occur simultaneously in the proposed construction schedule (Table 2-5). Detailed tables of emissions for each proposed project activity can be found in Appendix D1. In addition, Appendix D6 contains data on emission levels for each construction equipment type in each proposed project activity.

33 Table 3.2-115. Summary of Peak Daily Construction Emissions—Alternative 5 without Mitigation

	Peak Daily Construction Emissions (lb/day)					
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
2009 Peak Daily Construction Emissions	126	631	1,826	2	340	120

		Peak Daily	Constructio	n Emissio	ns (lb/day)	
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2010 Peak Daily Construction Emissions	759	3,680	10,468	10	2,568	824
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2011 Peak Daily Construction Emissions	717	3,459	9,854	9	2,479	789
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2012 Peak Daily Construction Emissions	375	1,770	5,075	5	1,279	408
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2013 Peak Daily Construction Emissions	173	803	2,333	2	865	246
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2014 Peak Daily Construction Emissions	120	547	1,607	1	193	86
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	No	Yes	No	Yes	Yes

2 **CEQA** Impact Determination 3 Alternative 5 would exceed the daily construction emission thresholds for VOC, CO, NO_X, PM10, and PM2.5 without mitigation. Therefore, impacts would be 4 5 significant. 6 **Mitigation Measures** 7 Implement Mitigation Measures MM AQ-1 through MM AQ-8. 8 **Residual Impacts** 9 After mitigation and compliance with SCAQMD Rule 403, emissions from 10 Alternative 5 would continue to exceed SCAQMD daily thresholds for VOC, CO, NO_X, PM10, and PM2.5, as shown in Table 3.2-116. Impacts under CEQA would be 11 12 temporary but significant.

	Р	eak Daily (Construction	n Emissio	ns (lb/day))
Project Year	VOC	СО	NO_X	SO_X	PM10	PM2.5
2009 Peak Daily Construction Emissions	49	332	971	2	65	22
Thresholds	75	550	100	150	150	55
CEQA Significant?	No	No	Yes	No	No	No
2010 Peak Daily Construction Emissions	315	2,173	6,023	10	305	127
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2011 Peak Daily Construction Emissions	300	2,057	5,709	10	295	122
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2012 Peak Daily Construction Emissions	164	1,107	3,044	5	158	69
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	Yes	Yes	No	Yes	Yes
2013 Peak Daily Construction Emissions	82	542	1,447	2	106	43
Thresholds	75	550	100	150	150	55
CEQA Significant?	Yes	No	Yes	No	No	No
2014 Peak Daily Construction Emissions	62	396	1,038	1	37	24
Thresholds	75	550	100	150	150	55
CEQA Significant?	No	No	Yes	No	No	No

Because the No-Federal-Action Alternative is identical to the NEPA baseline, this

1 **Table 3.2-116.** Summary of Peak Daily Construction Emissions—Alternative 5 with Mitigation

Mitigation Measures

NEPA Impact Determination

alternative would have no impact under NEPA.

- 7 No mitigation is required.
- 8 Residual Impacts
- 9 No impacts would occur.

2

3

Impact AQ-2: Alternative 5 construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.

- 4 Dispersion modeling of onsite construction emissions was performed to assess the 5 impact of this alternative on local ambient air concentrations. A summary of the 6 dispersion modeling results is presented here; the complete dispersion modeling 7 report is included in Appendix D2.
- 8Table 3.2-117 presents the maximum offsite ground-level concentrations of NO2,9CO, PM10, and PM2.5 from construction without mitigation. The table shows that10the maximum offsite 1-hour and 8-hour CO concentrations would not exceed11SCAQMD thresholds. The maximum offsite 1-hour NO2 concentration and the12maximum offsite 24-hour increment increase in PM10 and PM2.5 concentrations13would exceed the SCAQMD significance thresholds.

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without Background) (µg/m ³)	CEQA Impact	SCAQMD Threshold (µg/m³)
NO ₂	1 hour	263	1,856	2,119	33
<u> </u>	1 hour	4,809	7,575	12,384	23,00
CO	8 hours	4,008	1,554	5,562	10,00

_

_

14 **Table 3.2-117.** Maximum Offsite Ambient Concentrations—Alternative 5 Construction without Mitigation

PM2.5 Notes:

PM10

24 hours

24 hours

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO_2 and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO_2 thresholds represent the 2007 adopted CAAQS values.

167.0

82.7

167.0

82.7

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

15

10.4

10.4

1	CEQA Impact Determination
2 3 4	Without mitigation, maximum offsite ambient pollutant concentrations associated with construction would be significant for NO_2 (1-hour average), PM10 and PM2.5 (24-hour) increment. Therefore, significant impacts under CEQA would occur.
5	Mitigation Measures
6	Implement Mitigation Measures MM AQ-1 through MM AQ-8.
7	Residual Impacts
8 9 10 11 12	Impacts would be significant and unavoidable. Table 3.2-118 presents the maximum offsite ground-level concentrations of NO ₂ , CO, PM10, and PM2.5 from all construction phases after mitigation. With implementation of these mitigation measures, offsite ambient concentrations from construction activities would be significant for NO ₂ , PM10, and PM2.5 but would be less than significant for CO.

13	Table 3.2-118.	Maximum Offsite Ambient Concentrations—Alternative 5 Construction with Mitigation
----	----------------	---

Pollutant	Averaging Time	Background Concentration $(\mu g/m^3)$	Maximum Concentration (without background) (µg/m ³)	CEQA Impact	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	263	1,812	2,075	338
СО	1-hour	4,809	6,989	11,798	23,000
0	8-hour	4,008	1,468	5,476	10,000
PM10	24-hour	-	46.1	46.1	10.4
PM2.5	24-hour	-	34.9	34.9	10.4

Exceedances of the thresholds are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the concentrations without background are compared to the thresholds. The thresholds for NO₂ and CO are absolute thresholds; therefore, the total concentrations (with background) are compared to the thresholds. NO₂ thresholds represent the 2007 adopted CAAQS values.

The CEQA Impact equals the total concentration (proposed Project plus background) for NO_2 and CO. The CEQA Impact equals the incremental concentration (proposed Project minus CEQA baseline) for PM10 and PM2.5. However, because there is no construction for the CEQA baseline, the CEQA Impact for PM10 and PM2.5 is equivalent to the maximum modeled proposed project concentration (without background).

Construction schedules are assumed to be 8 hours per day for all construction equipment and vehicles.

In accordance with SCAQMD guidance (SCAQMD 2005), offsite haul truck transport emissions are considered offsite emissions and were not included in the modeling. However, tugboat emissions associated with barge tending and dredging operations while at the construction site and onsite truck emissions were included in the modeling.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

1	
2	NEPA Impact Determination
3 4	Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.
5	Mitigation Measures
6	No mitigation is required.
7	Residual Impacts
8	No impacts would occur.
9	Impact AQ-3: Alternative 5 would result in operational
10	emissions that exceed 10 tons per year of VOCs or an
11	SCAQMD threshold of significance in Table 3.2-15.
12	Since this alternative would not include activities that require federal approval, such
12	as harbor cuts and construction of new wharves, the Outer Harbor Cruise Terminal
13	berths would not be built. The Inner Harbor Cruise Terminal would continue to
14	operate with three berths. Since the North Harbor would not be developed under this
16 17	alternative, the Crowley and Millennium tugboat operations would be relocated to
	Berths 70–71 (at the existing Westway Terminal site). Catalina Express would
18 19	relocate to Berth 95 as a result of the approved China Shipping Project, which displaces Catalina Express from Berth 96.
20	Tables 3.2-119 and 3.2-120 present the unmitigated average and peak daily criteria
21	pollutant emissions associated with operation of this alternative. Emissions were
22	estimated for four project study years: 2011, 2015, 2022, and 2037. Comparisons to
23	the CEQA baseline emissions are presented for information purposes in Table 3.2-
24	119; actual CEQA significance is determined by the comparison of peak daily
25	impacts to CEQA thresholds in Table 3.2-120.
26	The operational emissions associated with this alternative assume the operation of
27	three berths at the Inner Harbor Cruise Terminal and the following activity levels:
28	■ Annual ship calls would be 269 calls in 2011 and 275 calls thereafter.
29 30	Peak daily emissions assume that all three available berths would be occupied on any given day.
31	 Harbor craft activity levels would not change from 2006 operations; however,
32	since the Crowley and Millennium tugboats would be relocated to Berths 70–71,
33	their transit time to the harbor gate would be reduced.
34	 Environmental measures for cruise ships and harbor craft would be the same as
35	those considered for the proposed Project (listed in Table 3.2-8).

1 2 3 4	Tables 3.2-119 and 3.2-120 show average and peak daily operational emissions, respectively, for Alternative 5. Since Alternative 5 is equivalent to the NEPA baseline, the methodology for calculating Alternative 5 emissions is described in Section 3.2.4.1.15, "NEPA Impact Determination."
5 6 7 8	Due to a lengthy construction period, operational activities would overlap with construction. Table 3.2-121 shows the combined total of construction and operational emissions for year 2011, during which construction and operation activities would occur simultaneously.

9 **Table 3.2-119.** Average Daily Operational Emissions without Mitigation—Alternative 5

	Average Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Vessel transit and maneuvering	134	279	3,421	2,982	383	307		
Vessel hoteling	75	156	1,898	1,907	222	178		
Harbor craft	53	480	1,719	1	62	51		
Motor vehicles	126	1,013	166	1	166	33		
Terminal equipment	0.8	9	9	0.01	0.4	0.4		
Total—Project Year 2011	388	1,937	7,212	4,891	834	575		
CEQA Impacts								
CEQA baseline emissions	452	3,123	6,437	3,987	849	51		
Alternative 5 minus CEQA baseline	-64	-1,186	775	904	-15	64		
Thresholds	55	550	55	150	150	55		
Significant?	No	No	Yes	Yes	No	Ye		
Project Year 2015	·		·	·				
Vessel transit and maneuvering	137	286	3,482	3,049	392	31.		
Vessel hoteling	76	159	1,932	1,949	227	182		
Harbor craft	46	539	1,344	1	52	43		
Motor vehicles	157	1,745	357	3	553	112		
Terminal equipment	0.6	9	7	0.01	0.3	0.3		
Total—Project Year 2015	417	2,738	7,122	5,002	1,224	65		
CEQA Impacts			1					
CEQA baseline emissions	452	3,123	6,437	3,987	849	51		
Alternative 5 minus CEQA baseline	-35	-385	685	1,015	375	14:		

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
Thresholds	55	550	55	150	150	5:	
Significant?	No	No	Yes	Yes	Yes	Ye	
Project Year 2022			•	•			
Vessel transit and maneuvering	137	286	3,455	3,049	392	313	
Vessel hoteling	76	159	1,917	1,949	227	182	
Harbor craft	45	759	1,065	1	49	4	
Motor vehicles	127	1,320	235	4	577	11:	
Terminal equipment	0.4	9	4	0.01	0.2	0.	
Total—Project Year 2022	385	2,533	6,677	5,003	1,245	65	
CEQA Impacts	•		•	•			
CEQA baseline emissions	452	3,123	6,437	3,987	849	51	
Alternative 5 minus CEQA baseline	-67	-590	240	1,016	396	144	
Thresholds	55	550	55	150	150	55	
Significant?	No	No	Yes	Yes	Yes	Ye	
Project Year 2037							
Vessel transit and maneuvering	137	286	3,433	3,049	392	31.	
Vessel hoteling	76	159	1,905	1,949	227	182	
Harbor craft	45	759	1,065	1	49	4:	
Motor vehicles	71	749	119	4	607	12	
Terminal equipment	0.2	9	2	0.01	0.1	0.	
Total—Project Year 2011	329	1,962	6,524	5,003	1,275	66	
CEQA Impacts							
CEQA baseline emissions	452	3,123	6,437	3,987	849	51	
Alternative 5 minus CEQA baseline	-123	-1,161	87	1,016	426	149	
Thresholds	55	550	55	150	150	5:	
Significant?	No	No	Yes	Yes	Yes	Ye	

Emissions represent annual emissions divided by 365 days per year of operation.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and

	Average Daily Emissions (lb/day)						
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5	
emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.							

2 **Table 3.2-120.** Peak Daily Operational Emissions without Mitigation—Alternative 5

		Pe	ak Daily Emis	ssions (lb/day	<i>v</i>)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	53	480	1,719	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	1.5	17	16	0.02	0.7	0.7
Total—Project Year 2011	1,174	3,585	28,264	38,473	4,075	3,167
CEQA Impacts		•				
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 5 minus CEQA baseline	69	-918	4,329	6,384	513	485
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes
Project Year 2015		•	L. L.		L	
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	46	539	1,344	1	52	48
Motor vehicles	157	1,745	357	3	553	112
Terminal equipment	1.2	17	13	0.02	0.6	0.5
Total—Project Year 2015	1,198	4,376	28,077	38,475	4,451	3,237
CEQA Impacts						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 5 minus CEQA baseline	93	-127	4,142	6,386	889	555
Thresholds	55	550	55	150	150	55
Significant?	Yes	No	Yes	Yes	Yes	Yes

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2022								
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101		
Vessel hoteling	304	633	8,022	12,937	1,220	970		
Harbor craft	45	759	1,065	1	49	4:		
Motor vehicles	127	1,320	235	4	577	11:		
Terminal equipment	0.7	17	7	0.02	0.3	0.1		
Total—Project Year 2022	1,167	4,171	27,670	38,476	4,472	3,23		
CEQA Impacts								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 5 minus CEQA baseline	62	-332	3,735	6,387	910	55:		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Ye		
Project Year 2037	1 1							
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,10		
Vessel hoteling	304	633	8,022	12,937	1,220	97		
Harbor craft	45	759	1,065	1	49	4:		
Motor vehicles	71	749	119	4	607	12		
Terminal equipment	0.4	17	4	0.02	0.1	0.		
Total—Project Year 2011	1,110	3,600	27,551	38,476	4,502	3,242		
CEQA Impacts	<u> </u>		•	•				
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 5 minus CEQA baseline	5	-903	3,616	6,387	940	56		
Thresholds	55	550	55	150	150	5.		
Significant?	No	No	Yes	Yes	Yes	Ye		

Emissions assume maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

		Pea	k Daily Emi	ssions (lb/d	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Maximum daily construction emissions	717	3,459	9,854	9	2,479	78
Maximum daily operational emissions	1,174	3,585	28,264	38,473	4,075	3,16
Total—Construction & Operation— Project Year 2011	1,891	7,044	38,118	38,482	6,554	3,95
CEQA Impacts	·					
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,68
Project Year 2011 minus CEQA Baseline	786	2,541	14,183	6,393	2,992	1,27
Thresholds	55	550	55	150	150	5
Significant?	Yes	Yes	Yes	Yes	Yes	Ye

Table 3.2-121. Peak Daily Construction and Operational Emissions without Mitigation—Alternative 5 1

0
1
_

2							
3	CEQA Impact Deterr	nination					
4 5 6 7	Alternative 5 peak daily thresholds and would th all analysis years, with VOC in 2037.	erefore be	significar	nt under Cl	EQA for al	l pollutant	s during
8 9 10	In year 2011, the combi baseline would exceed (under CEQA for all pol	CEQA emis					~
11	Mitigation Measures						
12	Implement Mitigation N	leasures M	IM AQ-9	through M	IM AQ-24		
13	Residual Impacts						
14 15 16 17	Tables 3.2-122 and 3.2- respectively, for the mit minus the CEQA baseli under CEQA for NO _X , S	igated Alte	ernative 5. e above (. Alternati CEQA thre	ve 5 peak sholds and	daily emis	sions
18 19 20	In year 2011, the combi baseline would exceed 0 under CEQA for all pol	CEQA emis					

1 **Table 3.2-122.** Average Daily Operational Emissions with Mitigation—Alternative 5

	Average Daily Emissions (lb/day)								
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5			
Project Year 2011									
Vessel transit and maneuvering	129	269	3,196	2,077	298	239			
Vessel hoteling	55	114	1,345	1,062	134	107			
Harbor craft	53	533	1,639	1	62	57			
Motor vehicles	126	1,013	166	1	166	33			
Terminal equipment	0.1	0.4	1	0.01	0.05	0.05			
Total—Project Year 2011	363	1,929	6,348	3,141	660	436			
CEQA Impacts									
CEQA baseline emissions	452	3,123	6,437	3,987	849	511			
Alternative 5 minus CEQA baseline	-89	-1,194	-89	-846	-189	-75			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	No	No	No	No			
Project Year 2015									
Vessel transit and maneuvering	96	200	2,217	359	117	93			
Vessel hoteling	22	45	497	127	31	25			
Harbor craft	44	617	1,191	1	50	46			
Motor vehicles	157	1,745	357	3	553	112			
Terminal equipment	0.1	0.3	1	0	0.03	0.03			
Total—Project Year 2015	319	2,608	4,263	490	750	276			
CEQA Impacts									
CEQA baseline emissions	452	3,123	6,437	3,987	849	511			
Alternative 5 minus CEQA baseline	-133	-515	-2,174	-3,498	-99	-235			
Thresholds	55	550	55	150	150	55			
Significant?	No	No	No	No	No	No			
Project Year 2022									
Vessel transit and maneuvering	96	200	2,200	359	117	93			
Vessel hoteling	22	45	493	127	31	25			
Harbor craft	40	770	1,008	1	42	39			

		Aver	age Daily Em	issions (lb/dd	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Motor vehicles	127	1,320	235	4	577	115
Terminal equipment	0.1	0.3	0.4	0	0.01	0.01
Total—Project Year 2022	285	2,336	3,937	491	766	272
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 5 minus CEQA baseline	-167	-787	-2,500	-3,497	-83	-239
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2037		·		·		
Vessel transit and maneuvering	96	200	2,186	359	117	93
Vessel hoteling	22	45	490	127	31	25
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	71	749	119	4	607	120
Terminal equipment	0	0.3	0.1	0	0	0
Total—Project Year 2037	229	1,765	3,803	491	796	277
CEQA Impacts				•		
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 5 minus CEQA baseline	-223	-1,358	-2,634	-3,497	-53	-234
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No

Emissions represent annual emissions divided by 365 days per year of operation.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

2 **Table 3.2-123.** Peak Daily Operational Emissions with Mitigation—Alternative 5

	Peak Daily Emissions (lb/day)					
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Vessel transit and maneuvering	625	1,305	16,599	23,150	2,378	1,903

		Pec	ak Daily Emi	ssions (lb/da	ıy)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	53	533	1,639	1	62	57
Motor vehicles	126	1,013	166	1	166	33
Terminal equipment	0.2	0.7	3	0	0.1	0.1
Total—Project Year 2011	1,108	3,485	26,429	36,088	3,826	2,969
CEQA Impacts	· · ·					
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 5 minus CEQA baseline	3	-1,018	2,494	4,000	264	287
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
Project Year 2015						
Vessel transit and maneuvering	509	1,063	13,129	13,384	1,513	1,210
Vessel hoteling	168	350	4,385	6,622	638	511
Harbor craft	44	617	1,191	1	50	40
Motor vehicles	157	1,745	357	3	553	112
Terminal equipment	0.2	0.6	2	0	0.1	0.1
Total—Project Year 2015	879	3,776	19,064	20,010	2,754	1,879
<u>CEQA Impacts</u>						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 5 minus CEQA baseline	-226	-727	-4,871	12,078	-808	-803
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2022	· · ·					
Vessel transit and maneuvering	509	1,063	13,129	13,384	1,513	1,210
Vessel hoteling	168	350	4,385	6,622	638	51
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	127	1,320	235	4	577	115
Terminal equipment	0.1	0.5	0.8	0	0.03	0.02
Total—Project Year 2022	844	3,504	18,758	20,011	2,770	1,875
Total—Project Year 2022 CEQA Impacts	844	3,504	18,758	20,011	2,770	1,875

		Pe	ak Daily Em	issions (lb/de	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Alternative 5 minus CEQA baseline	-261	-999	-5,177	12,077	-792	-807
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No
Project Year 2037	· · · ·					
Vessel transit and maneuvering	509	1,063	13,129	13,384	1,513	1,210
Vessel hoteling	168	350	4,385	6,622	638	511
Harbor craft	40	770	1,008	1	42	39
Motor vehicles	71	749	119	4	607	120
Terminal equipment	0.1	0.5	0.2	0	0.01	0.01
Total—Project Year 2037	788	2,933	18,641	20,011	2,800	1,880
CEQA Impacts	· · · ·					
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 5 minus CEQA baseline	-317	-1,570	-5,294	- 12,077	-762	-802
Thresholds	55	550	55	150	150	55
Significant?	No	No	No	No	No	No

Emissions assume maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

2 Table 3.2-124. Peak Daily Construction and Operational Emissions with Mitigation—Alternative 5

Peak Daily Emissions (lb/day)				lay)		
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Project Year 2011						
Maximum daily construction emissions	300	2,057	5,709	10	295	122
Maximum daily operational emissions	1,108	3,485	26,429	36,088	3,826	2,969
Total: Construction & Operation— Project Year 2011	1,408	5,542	32,138	36,098	4,121	3,091
CEQA Impacts						

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
CEQA Baseline Emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Project Year 2011 minus CEQA Baseline	303	1,039	8,203	4,010	559	409		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	Yes	Yes	Yes	Yes	Yes		

2	NEPA Impact Determination
3 4	Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.
5	Mitigation Measures
6	No mitigation is required.
7	Residual Impacts
8	No impacts would occur.
9 10 11	Impact AQ-4: Alternative 5 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-16.
12 13 14 15 16 17 18	Dispersion modeling of onsite and offsite operational emissions for Alternative 5 was performed to assess the impact of Alternative 5 on local ambient air concentrations. A summary of the dispersion modeling results is presented here; the complete dispersion modeling report is included in Appendix D2. Table 3.2-125 presents the maximum offsite ground-level concentrations of NO ₂ and CO for Alternative 5 without mitigation. Table 3.2-126 shows the maximum CEQA PM10 and PM2.5 concentration increments without mitigation.
19	Table 3.2-125. Maximum Offsite NO ₂ and CO Concentrations Associated with Operation of Alternative 5

Table 3.2-125. Maximum Offsite NO₂ and CO Concentrations Associated with
 without Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 5 $(\mu g/m^3)$	Background Concentration (µg/m ³)	Total Ground- Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1 hour	1,131	263	1,394	338
	Annual	63	53	115	56.4
СО	1 hour	5,592	4,809	10,401	23,000

	8 hours	2,113	4,008	6,121	10,000	
Notes:						
Exceedances of the thresholds are indicated in bold.						
The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.						
NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.						

Table 3.2-126. Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of Alternative 5 without Mitigation

	Maximum Modeled Concentration of Alternative 5 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (μg/m ³)	Ground-Level Concentration CEQA Increment (µg/m ³)	SCAQMD Threshold (µg/m ³)
PM10 24-hour period	35.2	32.3	10.3	2.5
PM10 annual average	7.8	4.3	3.5	1.0
PM2.5 24-hour period	27.4	25.8	7.9	2.5

Notes:

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.

The CEQA increment represents Alternative 5 minus the CEQA baseline.

4

5

6

7

8

9

CEQA Impact Determination

Maximum offsite ambient pollutant concentrations associated with the operation of Alternative 5 would be significant for NO₂ (1-hour and annual average), PM10 (24-hour and annual average), and PM2.5 (24-hour average). Therefore, significant impacts under CEQA would occur.

1 Mitigation Measures 2 Implement Mitigation Measures MM AQ-9 through MM AQ-24. 3 **Residual Impacts** Table 3.2-127 presents the maximum offsite ground-level concentrations of NO₂ and 4 5 CO for Alternative 5 after mitigation. Table 3.2-128 shows the maximum PM10 and 6 PM2.5 concentration increments after mitigation. Maximum offsite concentrations 7 would remain significant for NO₂ (1-hour and annual average), PM10 (24-hour and 8 annual average), and PM2.5 (24-hour average).

9 **Table 3.2-127.** Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 5 10 with Mitigation

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 5 $(\mu g/m^3)$	Background Concentration (µg/m ³)	Total Ground- Level Concentration (μg/m ³)	SCAQMD Threshold (µg/m ³)
NO ₂	1 hour	836	263	1,099	338
	Annual	45	50	95	56
СО	1 hour	5,528	4,809	10,337	23,000
	8 hours	2,099	4,008	6,107	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach monitoring station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method that uses ozone data from the North Long Beach monitoring station. The conversion of NO_X to NO_2 is dependent on the hourly ozone concentration and hourly NO_X emission rates.

11

Table 3.2-128. Maximum Offsite PM10 and PM2.5 Concentrations Associated with Operation of Alternative 5 with Mitigation

	Maximum Modeled Concentration of Alternative 5 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (µg/m ³)	Ground- Level Concentration CEQA Increment (µg/m ³)	SCAQMD Threshold $(\mu g/m^3)$
PM10 24-hour period	22.8	32.3	5.0	2.5
PM10 annual average	6.5	4.3	2.3	1.0

	PM2.5 24-hour period	17.1	25.8	3.5	2.5				
	Notes:	Notes:							
		Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.							
	concentrat	The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the proposed Project describes how the increments are calculated.							
	The CEQA	increment represents Alterna	ative 5 minus the CEQA base	ine.					
1									
2		NEPA Impa	ct Determination						
3 4	Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.								
5		Mitigation Measures							
6		No mitigation is required.							
7		Residual Impacts							
8		No impacts would occur.							
9		Impact AQ-5: Alternative 5 would not generate onroad traffic							
10		that would contribute to an exceedance of the 1-hour or							
11		8-hour CO standards.							
12			ve would generate traffic						
13 14					sed project analysis, CO				
14		concentrations related to onroad traffic would not exceed state CO standards for any project study year.							
16		CEQA Impact Determination							
17 18		Significant impacts under CEQA are not anticipated because CO standards would not be exceeded.							
19		Mitigation M	easures						
20	No mitigation is required.								

1	Residual Impacts
2	No impacts would occur.
3	NEPA Impact Determination
4 5	Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.
6	Mitigation Measures
7	No mitigation is required.
8	Residual Impacts
9	No impacts would occur.
10 11	Impact AQ-6: Alternative 5 would not create an objectionable odor at the nearest sensitive receptor.
12 13 14 15 16 17	Similar to the proposed Project, the mobile nature of the emission sources associated with Alternative 5 would help to disperse emissions. Additionally, the distance between proposed emission sources and the nearest residents would be far enough to allow for adequate dispersion of these emissions to below objectionable odor levels. Thus, the potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor.
18	CEQA Impact Determination
19 20	The potential is low for Alternative 5 to produce objectionable odors that would affect a sensitive receptor; therefore, impacts would be less than significant.
21	Mitigation Measures
22	No mitigation is required.
23	Residual Impacts
24	No impacts would occur.
25	NEPA Impact Determination
26 27	Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.

1	Mitigation Measures
2	No mitigation is required.
3	Residual Impacts
4	No impacts would occur.
5 6	Impact AQ-7: Alternative 5 would expose receptors to significant levels of toxic air contaminants.
7 8 9 10 11	The main sources of TACs from Alternative 5 operations would be DPM emissions from increased ship activity in the Inner Harbor and the additional emissions from motor vehicles using the new Inner Harbor parking structure. DPM, PM10, and VOC emissions were projected over a 70-year period, from 2009 through 2078. An HRA was performed over this 70-year exposure period.
12 13 14 15 16	Table 3.2-129 presents the maximum predicted health impacts associated with this alternative. The table includes estimates of individual lifetime cancer risk, chronic noncancer hazard index, and acute noncancer hazard index at the maximally exposed receptors. Results are presented for this alternative, the CEQA baseline, and the CEQA increment (alternative minus CEQA baseline).

Health	Receptor	Ma	Significance			
Impact	Туре	Alternative 5 CEQA Baseline		CEQA Increment	Threshold	
Cancer Risk	Residential	500 x 10 ⁻⁶	379 x 10 ⁻⁶	139 x 10 ⁻⁶	10×10^{-6}	
		(500 in a million)	(379 in a million)	(139 in a million)	10 in a million	
	Occupational	925 x 10 ⁻⁶	992 x 10 ⁻⁶	82 x 10 ⁻⁶		
		(925 in a million)	(992 in a million)	(82 in a million)		
	Recreational	1,419 x 10 ⁻⁶	1522 x 10 ⁻⁶	126 x 10 ⁻⁶		
		(1,419 in a million)	(1,522 in a million)	(126 in a million)		
	Sensitive	144 x 10 ⁻⁶	120 x 10 ⁻⁶	23 x 10 ⁻⁶		
		(144 in a million)	(120 in a million)	(23 in a million)		
	Student	9 x 10 ⁻⁶	8 x 10 ⁻⁶	1 x 10 ⁻⁶		
		(9 in a million)	(8 in a million)	(1 in a million)		
Chronic	Residential	0.53	0.69	0.08	1.0	
Hazard Index	Occupational	1.17	1.72	0.14		
	Recreational	1.17	1.72	0.14		

17 **Table 3.2-129.** Maximum Health Impacts Associated with Alternative 5 without Mitigation, 2009–2078

Health	Receptor	eceptor Maximum Predicted Impact					
Impact Type		Alternative 5	CEQA Baseline	CEQA Increment	Significance Threshold		
	Sensitive	ve 0.13 0.13 0.02					
	Student	0.13	0.11	0.02			
Acute	Residential	1.36	2.40	0.59	1.0		
Hazard Index	Occupational	1.87	3.07	1.81			
	Recreational	1.87	3.07	1.81			
	Sensitive	0.44	0.51	0.28			
	Student	0.29	0.42	0.15			

Exceedances of the significance criteria are in bold. The significance thresholds apply to the CEQA and NEPA increments only.

The maximum increments might not necessarily occur at the same receptor locations as the maximum impacts. This means that the increments cannot necessarily be determined by simply subtracting the baseline impacts from the proposed project impact. The example given in Table 3.2-36 above illustrates how the increments are calculated.

The CEQA increment represents Alternative 5 minus the CEQA baseline.

Data represent the receptor locations with the maximum impacts or increments. The impacts or increments at all other receptors would be less than these values.

The cancer risk values reported in this table for the residential receptor are based on the 80th percentile breathing rate.

For the acute hazard index, half the ships were assumed to use residual fuel oil with a 4.5% sulfur content and the other half were assumed to use the average residual fuel oil of 2.7% sulfur content

1

2

3

4

5

6

7

8

CEQA Impact Determination

Table 3.2-129 shows that the maximum CEQA cancer risk increment associated with Alternative 5 is predicted to be 139 in a million (139×10^{-6}) , at a residential receptor. This risk value is above the significance criterion of 10 in a million. The CEQA cancer risk increment would also exceed the threshold at occupational, recreational, and sensitive receptors. These exceedances are considered significant impacts under CEQA.

9 The maximum chronic hazard index CEQA increment is predicted to be below the 10 significance threshold of 1.0 at all receptors. The maximum acute hazard index 11 CEQA increment is predicted to be greater than the significance threshold of 1.0 at 12 the occupational and recreational receptors. These exceedances are considered 13 significant impacts under CEQA.

- 14 Mitigation Measures
- 15 Implement Mitigation Measures MM AQ-9 through MM AQ-24.

1	Residual Impacts
2	Table 3.2-130 presents a summary of the maximum health impacts that would occur
3	with operation of this alternative with mitigation. The mitigation measures would
4	reduce the maximum residential cancer risk associated with this alternative by about
5	72%. The maximum residential chronic hazard index would be reduced by about
6	17%. The maximum residential acute hazard index would be reduced by about 6%.
7	The data show that the maximum CEQA cancer risk increment after mitigation is
8	predicted to be less than 1 in a million ($<1 \times 10^{-6}$) at all receptors. Therefore, the
9	CEQA cancer risk increment would be less than significant.
10	The maximum chronic hazard index CEQA increment is predicted to be below the
11	significance threshold of 1.0 at all receptors. The acute hazard index CEQA
12	increment is predicted to be above the significance threshold of 1.0 and is, therefore,
13	considered significant for occupational and recreational receptors.

Health	Receptor	Ма	Significance		
Impact	Туре	Alternative 5	CEQA Baseline	CEQA Increment	Threshold
Cancer Risk	Residential	139 x 10 ⁻⁶	379 x 10 ⁻⁶	<1 x 10 ⁻⁶	10×10^{-6}
		(139 in a million)	(379 in a million)	(<1 in a million)	10 in a million
	Occupational	171 x 10 ⁻⁶	992 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(171 in a million)	(992 in a million)	(<1 in a million)	
	Recreational	263 x 10 ⁻⁶	1,522 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(263 in a million)	1,522 in a million	<1 in a million	
	Sensitive	52 x 10 ⁻⁶	120 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(52 in a million)	(120 in a million)	(<1 in a million)	
	Student	2 x 10 ⁻⁶	8 x 10 ⁻⁶	<1 x 10 ⁻⁶	
		(2 in a million)	(8 in a million)	(<1 in a million)	
Chronic	Residential	0.44	0.69	0.03	1.0
Hazard Index	Occupational	1.04	1.72	0.13	
	Recreational	1.04	1.72	0.13	
	Sensitive	0.11	0.13	0.00	
	Student	0.10	0.11	0.00	
Acute	Residential	1.36	2.40	0.38	1.0
Hazard Index	Occupational	1.76	3.07	1.14	
	Recreational	1.76	3.07	1.14	
	Sensitive	0.44	0.51	0.16	

14 **Table 3.2-130.** Maximum Health Impacts Associated with Alternative 5 with Mitigation, 2009–2078

Health	Receptor	eceptor Maximum Predicted Impact							
Impact	Туре	Alternative 5	CEQA Baseline	CEQA Increment	Significance Threshold				
	Student	0.29	0.42	0.09					
Notes:									
Exceedances	s of the significance	criteria are in bold. Th	e significance thresholds	apply to the CEQA only	у.				
that the incre	ements cannot neces	sarily be determined by	at the same receptor locat simply subtracting the b trates how the increments	aseline impacts from the					
The CEQA i	ncrement represents	Alternative 5 minus th	e CEQA baseline.						
	ent the receptor locate build be less than the		impacts or increments.	The impacts or increme	nts at all other				
The cancer r	isk values reported	in this table for the resid	dential receptor are based	on the 80 th percentile b	reathing rate.				
		the ships were assumed residual fuel oil of 2.79	to use residual fuel oil w % sulfur content	with a 4.5% sulfur conter	nt and the other half				
	NEPA	Impact Determin	nation						
		-							
			ction Alternative is i impact under NEPA		A baseline, this				
	Mitigat	ion Measures							
	No mit	igation is required.							
	<u>Residu</u>	al Impacts							
	No imp	acts would occur.							
			native 5 would						
	obstr	uct implemen	tation of an ap	plicable AQMI	<i>.</i>				
	consist	ent with SCAG reg	nply with SCAQMD ional employment ar	nd population growt	h forecasts.				
	Therefore, this alternative would not conflict with or obstruct implementation of the AQMP.								
	CEQA Impact Determination								
	~		nation						

1	Mitigation Measures
2	No mitigation is required.
3	Residual Impacts
4	No impacts would occur.
5	NEPA Impact Determination
6 7	Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.
8	Mitigation Measures
9	No mitigation is required.
10	Residual Impacts
11	No impacts would occur.
12	Impact AQ-9: Alternative 5 would produce GHG emissions
13	that would exceed the CEQA baseline.
14	Table 3.2-131 summarizes the total GHG construction emissions associated with
15	Alternative 5. Table 3.2-132 summarizes the annual GHG emissions that would
16	occur in California from the operation of Alternative 5 without mitigation.

17 **Table 3.2-131.** Total GHG Emissions from Construction Activities—Alternative 5 without Mitigation

		Total Emissions (Metric Tons)				
Emission Source	CO_2	CH_4	N_2O	CO_2e		
Catalina Express Terminal	0.00	0.00	0.00	0.00		
Cruise ship terminal Berths 91–93	987.57	0.14	0.01	993.56		
Cruise ship parking facilities	782.62	0.11	0.01	787.36		
North Harbor	0.00	0.00	0.00	0.00		
Maritime Office Building—Crowley	0.00	0.00	0.00	0.00		
Maritime Office Building—Millennium	0.00	0.00	0.00	0.00		
Maritime Office Building—Lane Victory	0.00	0.00	0.00	0.00		
Downtown Harbor	0.00	0.00	0.00	0.00		
7 th Street Harbor	0.00	0.00	0.00	0.00		
7 th Street Pier	0.00	0.00	0.00	0.00		

	2	Total Emissions ((Metric Tons)	
Emission Source	CO_2	CH_4	N_2O	CO_2e
Downtown Square	167.73	0.02	0.00	168.74
Downtown water feature	117.95	0.02	0.00	118.66
John S. Gibson Jr. Park	173.87	0.02	0.00	174.92
Ralph J. Scott Fireboat Museum	0.00	0.00	0.00	0.00
Los Angeles Maritime Museum renovation	0.00	0.00	0.00	0.00
Los Angeles Maritime Institute	0.00	0.00	0.00	0.00
Maritime Office Building	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 1	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 2	0.00	0.00	0.00	0.00
Ports O' Call Promenade—Phase 3	0.00	0.00	0.00	0.00
Southern Pacific Railyard demolition	282.14	0.04	0.00	283.85
Fishermen's Park	722.81	0.10	0.01	727.19
Ports O' Call redevelopment without restaurant	0.00	0.00	0.00	0.00
Ports O' Call Redevelopment Phase 1	2,163.88	0.30	0.02	2,177.00
Ports O' Call Redevelopment Phase 2	3,325.88	0.47	0.03	3,346.05
Ports O' Call Redevelopment with Restaurant	589.54	0.08	0.01	593.12
Ports O' Call Redevelopment Phase 3	1,701.85	0.24	0.02	1,712.18
Waterfront Red Car Maintenance Facility	615.44	0.09	0.01	619.17
Westway Terminal demolition	857.21	0.12	0.01	862.41
City Dock No. 1 promenade	2,448.96	0.34	0.02	2,463.82
Outer Harbor Cruise Terminal	0.00	0.00	0.00	0.00
Outer Harbor Park and promenade	1,090.88	0.15	0.01	1,097.50
San Pedro Park	1,111.59	0.16	0.01	1,118.33
Salinas De San Pedro/Youth Camp promenade	2,576.76	0.36	0.03	2,592.39
Sampson Way road improvements	886.34	0.12	0.01	891.72
Waterfront Red Car Line extension—Sampson Way	988.00	0.14	0.01	993.99
Waterfront Red Car Line extension—Cabrillo Beach	1,064.12	0.15	0.01	1,070.58
Waterfront Red Car Line extension—Outer Harbor	589.03	0.08	0.01	592.60
Waterfront Red Car Line extension—City Dock No. 1	601.82	0.08	0.01	605.47
Berth 240 fueling station	0.00	0.00	0.00	0.00

	Total Emissions (Metric Tons)				
Emission Source	CO_2	CH_4	N_2O	CO ₂ e	
Total Emissions	23,845.99	3.35	0.24	23,990.60	

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

Emissions may not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

2 Table 3.2-132. Annual Operational GHG Emissions—Alternative 5 without Mitigation

		Metric Tons	Per Year	
Project Scenario/Source Type	CO_2	CH ₄	N_2O	CO_2e
Project Year 2011				
Vessel transit and maneuvering	48,486	0.3	2.2	49,174
Vessel hoteling	17,791	0.1	0.8	18,043
Harbor craft	25,571	0.1	1.2	25,934
Motor vehicles	16,661	3.1	3.4	17,773
Terminal equipment - fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016
Total for Project Year 2011	133,680	3.9	7.7	136,137
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 5 minus CEQA baseline	4,411	-2.5	-1.7	3,829
Project Year 2015				
Vessel transit and maneuvering	49,568	0.3	2.2	50,271
Vessel hoteling	18,188	0.1	0.8	18,446
Harbor craft	23,083	0.1	1.0	23,411
Motor vehicles	57,615	7.6	8.7	60,459
Terminal equipment - fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA

	Metric Tons Per Year						
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO_2e			
Terminal equipment - electric	NA	NA	NA	NA			
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,016			
Total for Project Year 2015	173,625	8.3	12.9	177,798			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 5 minus CEQA baseline	44,355	2.0	3.5	45,492			
Project Year 2022							
Vessel transit and maneuvering	49,568	0.3	2.2	50,27			
Vessel hoteling	18,188	0.1	0.8	18,446			
Harbor craft	22,659	0.1	1.0	22,981			
Motor vehicles	63,278	6.5	7.8	65,825			
Terminal equipment - fossil fueled	195	0.0	0.0	19			
AMP electricity usage	NA	NA	NA	NA			
Terminal equipment - electric	NA	NA	NA	NA			
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,010			
Total for Project Year 2022	178,864	7.2	12.0	182,73			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 5 minus CEQA baseline	49,594	0.9	2.6	50,42			
Project Year 2037							
Vessel transit and maneuvering	49,568	0.3	2.2	50,27			
Vessel hoteling	18,188	0.1	0.8	18,446			
Harbor craft	22,659	0.1	1.0	22,98			
Motor vehicles	66,613	6.8	8.2	69,30			
Terminal equipment - fossil fueled	195	0.0	0.0	19			
AMP electricity usage	NA	NA	NA	NA			
Terminal equipment - electric	NA	NA	NA	NA			
Electricity usage from commercial uses and Waterfront Red Car Line	24,976	0.2	0.1	25,01			
Total for Project Year 2037	182,199	7.6	12.4	186,21			
CEQA baseline	129,270	6.3	9.4	132,30			
Alternative 5 minus CEQA baseline	52,929	1.3	3.1	53,90.			

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

	Metric Tons Per Year					
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e		

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

2

3

4

5

CEQA Impact Determination

The data in Table 3.2-132 show that in each future project year after 2011, annual operational CO_2e emissions would increase from CEQA baseline levels. As a result, Alternative 5 would produce significant levels of GHG emissions under CEQA.

- 6 <u>Mitigation Measures</u>
- 7 Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13,
 8 MM AQ-16 through MM AQ-20, and MM AQ-25 through MM AQ-30.
- 9 Residual Impacts

10Table 3.2-133 summarizes the annual GHG emissions that would occur within11California from the operation of Alternative 5 with mitigation. The data in Table123.2-133 show that in each future project year except 2011, annual operational CO2e13emissions would increase from CEQA baseline levels. As a result, Alternative 514would produce significant levels of GHG emissions under CEQA.

15 **Table 3.2-133.** Annual Operational GHG Emissions—Alternative 5 with Mitigation

	Metric Tons Per Year								
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e					
Project Year 2011									
Vessel transit and maneuvering	39,639	0.2	1.8	40,202					
Vessel hoteling	9,753	0.1	0.4	9,892					
Harbor craft	23,399	0.1	1.1	23,731					
Motor vehicles	16,661	3.1	3.4	17,773					
Terminal equipment - fossil fueled	25	0.0	0.0	25					
AMP electricity usage	0	0.0	0.0	0					
Terminal equipment - electric	271	0.0	0.0	271					

	Metric Tons Per Year						
Project Scenario/Source Type	CO ₂	CH_4	N_2O	CO ₂ e			
Electricity usage from commercial uses and Waterfront Red Car Line	24,918	0.2	0.1	24,958			
Total for Project Year 2011	114,668	3.7	6.8	116,853			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 5 minus CEQA baseline	-14,602	-2.6	-2.6	-15,454			
Project Year 2015							
Vessel transit and maneuvering	40,071	0.2	1.8	40,640			
Vessel hoteling	9,753	0.1	0.4	9,892			
Harbor craft	20,612	0.1	0.9	20,904			
Motor vehicles	59,826	7.6	8.7	62,671			
Terminal equipment - fossil fueled	25	0.0	0.0	25			
AMP electricity usage	14,830	0.1	0.1	14,853			
Terminal equipment - electric	271	0.0	0.0	27			
Electricity usage from commercial uses and Waterfront Red Car Line	24,918	0.2	0.1	24,958			
Total for Project Year 2015	170,307	8.3	12.0	174,215			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 5 minus CEQA baseline	41,038	2.0	2.7	41,908			
Project Year 2022							
Vessel transit and maneuvering	40,071	0.2	1.8	40,640			
Vessel hoteling	9,753	0.1	0.4	9,892			
Harbor craft	20,612	0.1	0.9	20,904			
Motor vehicles	62,665	6.4	7.7	65,187			
Terminal equipment - fossil fueled	25	0.0	0.0	2:			
AMP electricity usage	14,830	0.1	0.1	14,853			
Terminal equipment - electric	271	0.0	0.0	27			
Electricity usage from commercial uses and Waterfront Red Car Line	24,918	0.2	0.1	24,958			
Total for Project Year 2022	173,145	7.1	11.1	176,731			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 5 minus CEQA baseline	43,876	0.8	1.7	44,424			

	Metric Tons Per Year						
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO ₂ e			
Vessel transit and maneuvering	40,071	0.2	1.8	40,640			
Vessel hoteling	9,753	0.1	0.4	9,892			
Harbor craft	20,612	0.1	0.9	20,904			
Motor vehicles	66,001	6.8	8.1	68,664			
Terminal equipment - fossil fueled	25	0.0	0.0	25			
AMP electricity usage	14,830	0.1	0.1	14,853			
Terminal equipment - electric	271	0.0	0.0	271			
Electricity usage from commercial uses and Waterfront Red Car Line	24,918	0.2	0.1	24,958			
Total for Project Year 2037	176,482	7.5	11.5	180,209			
CEQA baseline	129,270	6.3	9.4	132,308			
Alternative 5 minus CEQA baseline	47,212	1.2	2.1	47,901			

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

NEPA Impact Determination

Because the No-Federal-Action Alternative is identical to the NEPA baseline, this alternative would have no impact under NEPA.

- Mitigation Measures
- 6 No mitigation is required.
- 7 Residual Impacts
- 8 No impacts would occur.

3.2.4.3.7 Alternative 6—No-Project Alternative

2 This alternative considers what would reasonably be expected to occur on the site if 3 no LAHD or federal action would occur. LAHD would not issue any permits or 4 discretionary approvals and would take no further action to construct or permit the 5 construction of any portion of the proposed Project. The USACE would not issue 6 any permits or discretionary approvals for dredge or fill actions, transport or ocean 7 disposal of dredged material, or construction of wharves, and there would be no 8 significance determinations under NEPA. This alternative would not allow 9 implementation of the proposed Project or other physical improvements associated 10 with the proposed Project. Under this alternative, no construction impacts would 11 occur. No environmental controls beyond those imposed by local, state, and federal 12 regulatory agencies would be implemented.

Impact AQ-1: Alternative 6 would not result in construction related emissions that exceed an SCAQMD threshold of significance in Table 3.2-13.

- 16 Construction would not occur for this alternative.
- 17 CEQA Impact Determination
- 18 No impacts would occur.
- 19
 Mitigation Measures
- 20 No mitigation is required.
- 21 Residual Impacts
- 22 No impacts would occur.
- 23 NEPA Impact Determination
- 24 This alternative is not applicable to NEPA.
- 25 <u>Mitigation Measures</u>
- 26 Not applicable.
- 27 Residual Impacts
- 28 Not applicable.

1 2 3	Impact AQ-2: Alternative 6 construction would not result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.
4	Construction would not occur for this alternative.
5	CEQA Impact Determination
6	No impacts would occur.
7	Mitigation Measures
8	No mitigation is required.
9	Residual Impacts
10	No impacts would occur.
11	NEPA Impact Determination
12	This alternative is not applicable to NEPA.
13	Mitigation Measures
14	Not applicable.
15	Residual Impacts
16	Not applicable.
17	Impact AQ-3: Alternative 6 would not result in operational
18	emissions that exceed 10 tons per year of VOCs or an
19	SCAQMD threshold of significance in Table 3.2-15.
20 21	Alternative 6 would not allow implementation of the proposed Project or other physical improvements associated with the proposed Project or Alternatives 1–5.
22	The cruise ship facilities would continue to operate three berths in the Inner Harbor
23	and would be brought under CAAP compliance as leases renew. Catalina Express
24	would relocate to Berth 95 as a result of the approved China Shipping Project, which
25	would displace Catalina Express from Berth 96.
26	The operational emissions associated with this alternative assume the operation of
27	three berths at the Inner Harbor Cruise Terminal and the following activity levels:
28	Annual ship calls would be 269 calls in 2011 and 275 calls thereafter.

1 2	 Peak daily emissions assume that all three available berths would be occupied on any given day.
3 4 5	 Harbor craft activity levels would not change from 2006 operations. However, since the Crowley and Millennium tugboats would be relocated to Berths 70–71, their transit time to the harbor gate would be reduced.
6 7 8	Environmental measures for cruise ships and harbor craft, considered part of Alternative 6, would be the same as those considered for the proposed Project (listed in Table 3.2-8).
9 10	Tables 3.2-134 and 3.2-135 show average and peak daily emissions, respectively, for Alternative 6.

	Average Daily Emissions (lb/day)								
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5			
Project Year 2011									
Vessel transit and maneuvering	134	279	3,421	2,982	383	30			
Vessel hoteling	75	156	1,898	1,907	222	173			
Harbor craft	53	480	1,721	1	62	5			
Motor vehicles	126	1,013	166	1	166	3			
Terminal equipment	0.8	9	9	0.01	0.4	0.			
Total—Project Year 2011	388	1,937	7,214	4,891	834	57			
CEQA Impacts									
CEQA baseline emissions	452	3,123	6,437	3,987	849	51			
Alternative 6 minus CEQA baseline	-64	-1,186	777	904	-15	6			
Thresholds	55	550	55	150	150	5			
Significant?	No	No	Yes	Yes	No	Ye			
Project Year 2015			·	·	·				
Vessel transit and maneuvering	137	286	3,482	3,049	392	31			
Vessel hoteling	76	159	1,932	1,949	227	18			
Harbor craft	53	614	1,561	1	61	5			
Motor vehicles	99	932	192	2	297	6			
Terminal equipment	0.6	9	7	0.01	0.3	0.			
Total—Project Year 2015	366	2,000	7,174	5,001	977	61			

11 **Table 3.2-134.** Average Daily Operational Emissions—Alternative 6

		Aver	age Daily Em	issions (lb/de	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 6 minus CEQA baseline	-86	-1,123	737	1,014	128	101
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Yes
Project Year 2022						
Vessel transit and maneuvering	137	286	3,455	3,049	392	313
Vessel hoteling	76	159	1,917	1,949	227	182
Harbor craft	52	869	1,229	1	57	52
Motor vehicles	83	719	129	2	316	63
Terminal equipment	0.4	9	4	0.01	0.2	0.1
Total—Project Year 2022	348	2,042	6,735	5,001	992	610
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 6 minus CEQA baseline	-104	-1,081	298	1,014	143	99
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	No	Yes
Project Year 2037						
Vessel transit and maneuvering	137	286	3,433	3,049	392	313
Vessel hoteling	76	159	1,905	1,949	227	182
Harbor craft	52	869	1,229	1	57	52
Motor vehicles	49	428	68	2	349	69
Terminal equipment	0.2	9	2	0.01	0.1	0.1
Total—Project Year 2011	314	1,751	6,637	5,001	1,025	616
CEQA Impacts						
CEQA baseline emissions	452	3,123	6,437	3,987	849	511
Alternative 6 minus CEQA baseline	-138	-1,372	200	1,014	176	105
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes

	Average Daily Emissions (lb/day)						
Emission Source	VOC CO NO_X SO_X $PM10$ $PM2.5$						
Notes:							

Emissions represent annual emissions divided by 365 days per year of operation.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

2 **Table 3.2-135.** Peak Daily Operational Emissions—Alternative 6

	Peak Daily Emissions (lb/day)							
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5		
Project Year 2011								
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101		
Vessel hoteling	304	633	8,022	12,937	1,220	976		
Harbor craft	53	480	1,721	1	62	57		
Motor vehicles	126	1,013	166	1	166	33		
Terminal equipment	1.5	17	16	0.02	0.7	0.7		
Total—Project Year 2011	1,174	3,585	28,266	38,473	4,075	3,167		
CEQA Impacts								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 6 minus CEQA baseline	69	-918	4,331	6,384	513	485		
Thresholds	55	550	55	150	150	55		
Significant?	Yes	No	Yes	Yes	Yes	Yes		
Project Year 2015								
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101		
Vessel hoteling	304	633	8,022	12,937	1,220	976		
Harbor craft	53	614	1,561	1	61	56		
Motor vehicles	99	932	192	2	297	60		
Terminal equipment	1.2	17	13	0.02	0.6	0.5		
Total—Project Year 2015	1,147	3,638	28,129	38,474	4,204	3,193		
<u>CEQA Impacts</u>								
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682		
Alternative 6 minus CEQA baseline	42	-865	4,194	6,385	642	511		

		Pea	k Daily Emi	issions (lb/d	ay)	
Emission Source	VOC	СО	NO_X	SO_X	PM10	PM2.5
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
Project Year 2022						
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	52	869	1,229	1	57	52
Motor vehicles	83	719	129	2	316	63
Terminal equipment	0.7	17	7	0.02	0.3	0.3
Total—Project Year 2022	1,130	3,680	27,728	38,474	4,219	3,192
CEQA Impacts	<u>.</u>					
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 6 minus CEQA baseline	25	-823	3,793	6,385	657	510
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes
Project Year 2037	<u>.</u>					
Vessel transit and maneuvering	690	1,442	18,341	25,534	2,626	2,101
Vessel hoteling	304	633	8,022	12,937	1,220	976
Harbor craft	52	869	1,229	1	57	52
Motor vehicles	49	428	68	2	349	69
Terminal equipment	0.4	17	4	0.02	0.1	0.1
Total—Project Year 2011	1,095	3,389	27,664	38,474	4,252	3,198
<u>CEQA Impacts</u>						
CEQA baseline emissions	1,105	4,503	23,935	32,088	3,562	2,682
Alternative 6 minus CEQA baseline	-10	-1,114	3,729	6,385	690	516
Thresholds	55	550	55	150	150	55
Significant?	No	No	Yes	Yes	Yes	Yes

Emissions assume maximum theoretical daily equipment activity levels. Such levels would rarely occur during day-to-day terminal operations.

Emissions might not add precisely due to rounding. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

1	CEQA Impact Determination
2 3 4	Alternative 6 peak daily emissions minus the CEQA baseline would be above CEQA thresholds for NO_X , SO_X , PM10, and PM2.5 for all analysis years; and for VOC in 2011. Impacts under Alternative 6 are provided for comparison purposes with
5	respect to the proposed Project and other alternatives. While impacts for Alternative
6	6 under may exceed CEQA thresholds, this alternative represents no action on behalf
7	of the LAHD. Therefore, this alternative is not subject to significance determinations
8	under CEQA as there are no discretionary approvals triggering CEQA compliance.
9	Mitigation Measures
10 11	Mitigation measures are not applicable to Alternative 6 operations because this alternative would not introduce new uses.
12	Residual Impacts
13	No impacts would occur
14	NEPA Impact Determination
15	This alternative is not applicable to NEPA.
16	Mitigation Measures
17	Not applicable.
18	Residual Impacts
19	Not applicable.
20	Impact AQ-4: Alternative 6 operations would not result in
21	offsite ambient air pollutant concentrations that exceed a
22	SCAQMD threshold of significance in Table 3.2-16.
23	Dispersion modeling of onsite and offsite operational emissions for Alternative 6 was
24	performed to assess the impact of Alternative 6 on local ambient air concentrations.
25	A summary of the dispersion modeling results is presented here; the complete
26	dispersion modeling report is included in Appendix D2. Table 3.2-136 presents the
27	maximum offsite ground-level concentrations of NO_2 and CO for Alternative 6
24 25 26 27 28 29	without mitigation. Table 3.2-137 shows the maximum CEQA PM10 and PM2.5 concentration increments without mitigation.
30	CEQA Impact Determination
31	Maximum offsite ambient pollutant concentrations associated with the operation of
32	Alternative 6 would exceed thresholds for NO ₂ (1-hour and annual average), PM10

1	(24-hour average), and PM2.5 (24-hour average). Impacts under Alternative 6 are
2	provided for comparison purposes with respect to the proposed Project and other
3	alternatives. While impacts for Alternative 6 under may exceed CEQA thresholds,
4	this alternative represents no action on behalf of the LAHD. Therefore, this
5	alternative is not subject to significance determinations under CEQA as there are no
6	discretionary approvals triggering CEQA compliance.

7 **Table 3.2-136.** Maximum Offsite NO₂ and CO Concentrations Associated with Operation of Alternative 6

Pollutant	Averaging Time	Maximum Modeled Concentration of Alternative 6 (µg/m ³)	Background Concentration $(\mu g/m^3)$	Total Ground-Level Concentration $(\mu g/m^3)$	SCAQMD Threshold (µg/m ³)
NO ₂	1-hour	1,129	263	1,392	338
	Annual	56	53	109	56.4
СО	1-hour	3,634	4,809	8,443	23,000
	8-hour	1,361	4,008	5,369	10,000

Notes:

Exceedances of the thresholds are indicated in bold.

The background concentrations were obtained from the North Long Beach Monitoring Station. The maximum concentrations during the years of 2004, 2005, 2006, and 2007 were used.

 NO_2 concentrations were calculated using the ozone limiting method using ozone data from the North Long Beach monitor. The conversion of NO_X to NO_2 is dependent upon the hourly ozone concentration and hourly NO_X emission rates.

8

9 Table 3.2-137. Maximum Offsite PM10 Concentrations Associated with Operation of Alternative 6

	Maximum Modeled Concentration of Alternative 6 (µg/m ³)	Maximum Modeled Concentration of CEQA Baseline (µg/m ³)	Ground-Level Concentration CEQA Increment ^c (µg/m ³)	SCAQMD Threshold (µg/m³)
PM10 24-hour	33.2	32.3	7.7	2.5
PM10 annual average	5.1	4.3	0.8	1.0
PM2.5 24-hour	26.2	25.8	6.0	1.0

Notes:

Exceedances of the threshold are indicated in bold. The thresholds for PM10 and PM2.5 are incremental thresholds; therefore, the incremental concentration without background is compared to the threshold.

The maximum increments presented in this table do not necessarily occur at the same receptor location as the maximum concentrations. This means that the increments cannot necessarily be determined by simply subtracting the baseline concentrations from the proposed project concentration in the table. Table 3.2-36 in the discussion of Impact AQ-7 for the

	proposed Project describes how the increments are calculated.
	The CEQA increment represents Alternative 6 minus CEQA baseline.
1	
2	Mitigation Measures
3 4	Mitigation measures are not applicable to Alternative 6 during operations because this alternative would not introduce new uses.
5	Residual Impacts
6	No impacts would occur.
7	NEPA Impact Determination
8	This alternative is not applicable to NEPA.
9	Mitigation Measures
10	Not applicable.
11	Residual Impacts
12	Not applicable.
13	Impact AQ-5: Alternative 6 would not generate onroad traffic
14 15	that would contribute to an exceedance of the 1-hour or 8-hour CO standards.
16 17 18 19	This alternative would generate traffic levels comparable to or less than traffic generated by the proposed Project. As discussed in the proposed Project analysis, CO concentrations related to onroad traffic would not exceed state CO standards for any project study year.
20	CEQA Impact Determination
21 22	CO standards would not be exceeded; therefore, impacts would be less than significant.
23	Mitigation Measures
24	No mitigation is required.
25	Residual Impacts
26	Impacts would be less than significant.

1	NEPA Impact Determination
2	This alternative is not applicable to NEPA.
3	Mitigation Measures
4	Not applicable.
5	Residual Impacts
6	Not applicable.
7 8	Impact AQ-6: Alternative 6 would not create an objectionable odor at the nearest sensitive receptor.
9 10 11 12 13 14	Similar to the proposed Project, the mobile nature of the emission sources associated with Alternative 6 would help to disperse emissions. Additionally, the distance between Alternative 6 emission sources and the nearest residents would be far enough to allow for adequate dispersion of these emissions to below objectionable odor levels. Thus, the potential is low for this alternative to produce objectionable odors that would affect a sensitive receptor.
15	CEQA Impact Determination
16 17	The potential is low for Alternative 6 to produce objectionable odors that would affect a sensitive receptor; therefore, impacts would be less than significant.
18	Mitigation Measures
19	No mitigation is required.
20	Residual Impacts
21	Impacts would be less than significant.
22	NEPA Impact Determination
23	This alternative is not applicable to NEPA.
24	Mitigation Measures
25	Not applicable.
26	Residual Impacts
27	Not applicable.

1Impact AQ-7: Alternative 6 would not expose receptors to2significant levels of toxic air contaminants.

The main source of TACs from Alternative 6 operations would be DPM emissions from ship operations. PM10 and VOC emissions were projected over a 70-year period, from 2009 to 2078. An HRA was performed over this 70-year exposure period.

7Table 3.2-138 presents the maximum predicted health impacts associated with8Alternative 6. The table includes estimates of individual lifetime cancer risk, chronic9noncancer hazard index, and acute noncancer hazard index at the maximally exposed10receptors. Results are presented for Alternative 6, the CEQA baseline, and the11CEQA increment (Alternative 6 minus the CEQA baseline).

Maximum Predicted Impact Receptor Significance Health Impact Туре Alternative 6 **CEOA** Baseline **CEOA** Increment Threshold 396 x 10⁻⁶ 379 x 10⁻⁶ 10×10^{-6} 18 x 10⁻⁶ Cancer Risk Residential 10 in a million (396 in a (379 in a (18 in a million) million) million) 955 x 10⁻⁶ 18 x 10⁻⁶ 992 x 10⁻⁶ Occupational (955 in a (992 in a (18 in a million) million) million) 1,465 x 10⁻⁶ 27 x 10⁻⁶ $1,522 \ge 10^{-6}$ Recreational (1,465 in a (27 in a million) (1,522 in a million) million) 127 x 10⁻⁶ 120 x 10⁻⁶ 7 x 10⁻⁶ Sensitive (127 in a (120 in a (7 in a million) million) million) 8 x 10⁻⁶ 8 x 10⁻⁶ <1 x 10⁻⁶ Student (8 in a million) (8 in a million) (<1 in a million) Chronic Hazard Residential 0.31 0.81 < 0.01 1.0 Index 0.94 Occupational 2.58 < 0.01 Recreational 0.06 0.15 < 0.01 Sensitive 0.05 0.09 < 0.01 0.94 Student 2.58 < 0.01 Acute Hazard Residential 0.66 1.67 0.23 1.0 Index 0.85 Occupational 2.19 0.36 0.35 Recreational 1.24 0.20

12 **Table 3.2-138.** Maximum Health Impacts Associated With Alternative 6

		Receptor	Ma	ximum Predicted In	ipact	Significance
	Health Impact	Туре	Alternative 6	CEQA Baseline	CEQA Increment	Threshold
		Sensitive	0.35	0.93	0.20	
		Student	0.85	2.19	0.36	
1	The maximum increm increments cannot nec given in the text, befo The CEQA increment Data represent the rec less than these values.	eents might not neces sessarily be determine re the CEQA Impact represents the Alterr eptor locations with t	ed by simply subtracting Determination, illustrate native 6 minus CEQA bas the maximum impacts or	eceptor locations as the r the baseline impacts from s how the increments are seline. increments. The impact	maximum impacts. This m n the impact for Alternativ	e 6. The example
2		CEQA Imp	oact Determinat	ion		
3 4 5 6 7 8 9 10 11	Table 3.2-138 shows that the maximum CEQA cancer risk increment associated with Alternative 6 is predicted to be greater than the SCAQMD significance threshold level of 10 in a million (10×10^{-6}) for residential, occupational, and recreational receptors. The maximum incremental risk is 27 in a million, at a recreational receptor. Impacts under Alternative 6 are provided for comparison purposes with respect to the proposed Project and other alternatives. While impacts for Alternative 6 under may exceed CEQA thresholds, this alternative represents no action on behalf of the LAHD. Therefore, this alternative is not subject to significance determinations under CEQA as there are no discretionary approvals triggering CEQA compliance.					nce threshold recreational creational purposes with its for Alternative o action on behalf nce determinations
12 13		The maximum chronic and acute hazard index increments associated with Alternative 6 are predicted to be less than significant for all receptors.				
14		Mitigation Measures				
15		Not applical	ble.			
16		<u>Residual Ir</u>	<u>npacts</u>			
17			would occur.			
18		NEPA Imp	act Determinati	on		
19		This alterna	tive is not applical	ole to NEPA.		
20		Mitigation I	<u>Measures</u>			
21		Not applica	ıble.			

1	Residual Impacts
2	Not applicable.
3 4	Impact AQ-8: Alternative 6 would not conflict with or obstruct implementation of an applicable AQMP.
5 6 7 8	This alternative would comply with SCAQMD rules and regulations and would be consistent with SCAG regional employment and population growth forecasts. Therefore, this alternative would not conflict with or obstruct implementation of the AQMP.
9	CEQA Impact Determination
10 11	Alternative 6 would not conflict with or obstruct implementation of the AQMP; therefore, no impacts would occur.
12	Mitigation Measures
13	No mitigation is required.
14	Residual Impacts
15	No impacts would occur.
16	NEPA Impact Determination
17	This alternative is not applicable to NEPA.
18	Mitigation Measures
19	Not applicable.
20	Residual Impacts
21	Not applicable.
22 23	Impact AQ-9: Alternative 6 would produce GHG emissions that would exceed CEQA baseline.
24 25	Table 3.2-139 summarizes the annual GHG emissions that would occur in California from the operation of Alternative 6.

1 **Table 3.2-139.** Annual Operational GHG Emissions—Alternative 6

	Metric Tons Per Year			
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO_2e
Project Year 2011				
Vessel transit and maneuvering	48,486	0.3	2.2	49,174
Vessel hoteling	17,791	0.1	0.8	18,043
Harbor craft	26,423	0.1	1.2	26,786
Motor vehicles	16,661	3.1	3.4	17,773
Terminal equipment - fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	21,383	0.2	0.1	21,417
Total for Project Year 2011	130,939	3.8	7.6	133,391
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 6 minus CEQA baseline	1,670	-2.5	-1.7	1,083
Project Year 2015				
Vessel transit and maneuvering	49,568	0.3	2.2	50,271
Vessel hoteling	18,188	0.1	0.8	18,446
Harbor craft	25,593	0.1	1.2	25,956
Motor vehicles	32,054	4.1	4.6	33,579
Terminal equipment - fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	21,383	0.2	0.1	21,417
Total for Project Year 2015	146,980	4.8	9.0	149,865
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 6 minus CEQA baseline	17,710	-1.5	-0.4	17,557
Project Year 2022				
Vessel transit and maneuvering	49,568	0.3	2.2	50,271
Vessel hoteling	18,188	0.1	0.8	18,446
Harbor craft	25,169	0.1	1.1	25,526

		Metric Tons I	Per Year	
Project Scenario/Source Type	CO_2	CH_4	N_2O	CO_2e
Motor vehicles	34,261	3.5	4.2	35,642
Terminal equipment - fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	21,383	0.2	0.1	21,417
Total for Project Year 2022	148,763	4.3	8.5	151,498
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 6 minus CEQA baseline	19,494	-2.1	-0.8	19,190
Project Year 2037				
Vessel transit and maneuvering	49,568	0.3	2.2	50,271
Vessel hoteling	18,188	0.1	0.8	18,446
Harbor craft	25,169	0.1	1.1	25,526
Motor vehicles	37,870	3.9	4.7	39,400
Terminal equipment—fossil fueled	195	0.0	0.0	196
AMP electricity usage	NA	NA	NA	NA
Terminal equipment - electric	NA	NA	NA	NA
Electricity usage from commercial uses and Waterfront Red Car Line	21,383	0.2	0.1	21,417
Total for Project Year 2037	152,372	4.6	9.0	155,256
CEQA baseline	129,270	6.3	9.4	132,308
Alternative 6 minus CEQA baseline	23,103	-1.7	-0.4	22,948

1 metric ton equals 1,000 kilograms, 2205 lbs, or 1.1 U.S. (short) tons.

 $CO_2e =$ the carbon dioxide equivalent emissions of all GHGs combined. The carbon dioxide equivalent emission rate for each GHG represents the emission rate multiplied by its GWP. The GWPs are 1 for CO_2 ; 21 for CH_4 ; and 310 for N_2O .

AMP applies to cruise ship hoteling, and partially to assist tug hoteling, as a proposed project mitigation measure.

Emissions may not add precisely due to rounding. Values less than 0.5 for CO_2 and CO_2e , and less than 0.05 for CH_4 and N_2O , are rounded to zero. For more explanation, refer to the discussion in Section 3.2.4.1.

The emission estimates presented in this table were calculated using the latest available data, assumptions, and emission factors at the time this document was prepared. Future studies might use updated data, assumptions, and emission factors that are not currently available.

1

1		CEQA Impact Determination
2 3 4 5 6 7 8		The data in Table 3.2-139 show that in each future project year, except 2011, annual operational CO_2e emissions would increase from CEQA baseline levels. Impacts under Alternative 6 are provided for comparison purposes with respect to the proposed Project and other alternatives. While impacts for Alternative 6 under may exceed CEQA thresholds, this alternative represents no action on behalf of the LAHD. Therefore, this alternative is not subject to significance determinations under CEQA as there are no discretionary approvals triggering CEQA compliance.
9		Mitigation Measures
10 11		Mitigation measures are not applicable to Alternative 6 because this alternative would not introduce new uses.
12		Residual Impacts
13		No impacts would occur.
14		NEPA Impact Determination
15		This alternative is not applicable to NEPA.
16		Mitigation Measures
17		Not applicable.
18		Residual Impacts
19		Not applicable.
20	3.2.4.3.8	Summary of Impact Determinations
21 22 23 24 25 26 27		Table 3.2-140 summarizes the CEQA and NEPA impact determinations of the proposed Project and its alternatives related to air quality, as described in the detailed discussion in Sections 3.2.4.3.1 through 3.2.4.3.7. This table is meant to allow easy comparison between the potential impacts of the proposed Project and its alternatives with respect to this resource. Identified potential impacts may be based on federal, state, and City of Los Angeles significance criteria, LAHD criteria, and the scientific judgment of the report preparers.
28		For each type of potential impact, the table describes the impact, notes the CEQA and

Pol each type of potential impact, the table describes the impact, notes the CEQA and
 NEPA impact determinations, describes any applicable mitigation measures, and
 notes the residual impacts (i.e., the impact remaining after mitigation). All impacts,
 whether significant or not, are included in this table.

Table 3.2-140. Summary Matrix of Potential Impacts and Mitigation Measures for Air Quality and Meteorology Associated with the Proposed
 Project and Alternatives

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
		3.2 Air Qualit	ty and Meteorology	
Proposed Project	Impact AQ-1: The proposed Project would result in construction- related emissions that exceed an SCAQMD threshold of significance in Table 3.2-13.	CEQA: Significant	MM AQ-1. Harbor Craft Engine Standards. All harbor craft used during the construction phase of the proposed Project shall, at a minimum, be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2. Additionally, where available, harbor craft shall meet the proposed EPA Tier 3 (which are proposed to be phased-in beginning 2009) or cleaner marine engine emission standards.	
			 MM AQ-2. Dredging Equipment Electrification. The proposed Project shall use electric dredging equipment. MM AQ-3. Fleet Modernization for Onroad Trucks. 	
			 Trucks hauling materials such as debris or fill shall be fully covered while operating off Port property. 	
			 Idling shall be restricted to a maximum of 5 minutes when not in use. 	
			3. Tier Specifications:	
			January 1, 2009 to December 31, 2011: All onroad heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with EPA 2004 onroad PM emission	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			respect to NO_X (0.10g/bhp-hr PM10 and 2.0 g/bhp-hr NO_X). In addition, all onroad trucks shall be outfitted with the BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.	
			Post-January 2011: All onroad heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with 2010 emission standards, where available. In addition, all onroad trucks shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.	
			A copy of each unit's certified EPA rating, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment	
			MM AQ-4. Fleet Modernization for Construction Equipment.	
			1. Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			5 minutes when not in use.	
			3. Tier Specifications:	
			January 1, 2009, to December 31, 2011: All offroad diesel-powered construction	
			equipment greater than 50 hp, except derrick	
			barges and marine vessels, shall meet Tier 2	
			offroad emissions standards. In addition, all	
			construction equipment shall be outfitted with	
			the BACT devices certified by CARB. Any	
			emissions control device used by the contractor shall achieve emissions reductions	
			that are no less than what could be achieved	
			by a Level 2 or Level 3 diesel emissions	
			control strategy for a similarly sized engine as	
			defined by CARB regulations.	
			January 1, 2012, to December 31, 2014: All offroad diesel-powered construction	
			equipment greater than 50 hp, except derrick	
			barges and marine vessels, shall meet Tier 3	
			offroad emissions standards. In addition, all	
			construction equipment shall be outfitted with	
			BACT devices certified by CARB. Any	
			emissions control device used by the	
			contractor shall achieve emissions reductions that are no less than what could be achieved	
			by a Level 3 diesel emissions control strategy	
			for a similarly sized engine as defined by	
			CARB regulations.	
			Post-January 1, 2015: All offroad diesel-	
			powered construction equipment greater than	
			50 hp shall meet the Tier 4 emission	
			standards, where available. In addition, all	
			construction equipment shall be outfitted with BACT devices certified by CARB. Any	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.	
			A copy of each unit's certified tier specification, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment.	
			Construction equipment shall incorporate, where feasible, emissions-saving technology such as hybrid drives and specific fuel economy standards.	
			MM AQ-5. Additional Fugitive Dust Controls. The calculation of fugitive dust (PM10) from unmitigated proposed project earth-moving activities assumes a 75% reduction from uncontrolled levels to simulate rigorous watering of the site and use of other measures (listed below) to ensure proposed project compliance with SCAQMD Rule 403.	
			The construction contractor shall further reduce fugitive dust emissions to 90% from uncontrolled levels. The construction contractor shall designate personnel to monitor the dust control program and to order increased watering or other dust control measures, as necessary, to ensure a 90% control level. Their duties shall include holiday and weekend periods when work may not be in progress.	
			The following measures, at minimum, must	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			be part of the contractor Rule 403 dust control	
			plan:	
			• Active grading sites shall be watered one additional time per day beyond that required by Rule 403;	
			• Contractors shall apply approved nontoxic chemical soil stabilizers to all inactive construction areas or replace groundcover in disturbed areas;	
			• Construction contractors shall provide temporary wind fencing around sites being graded or cleared;	
			• Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard in accordance with Section 23114 of the California Vehicle Code;	
			• Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads or wash off tires of vehicles and any equipment leaving the construction site;	
			• The grading contractor shall suspend all soil disturbance activities when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction is delayed; and	
			• Trucks hauling materials such as debris or fill shall be fully covered while operating off LAHD property.	
			MM AQ-6. Best Management Practices.	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			The following types of measures are required on construction equipment (including onroad trucks):	
			1. Use diesel oxidation catalysts and catalyzed diesel particulate traps.	
			2. Maintain equipment according to manufacturers' specifications	
			3. Restrict idling of construction equipment to a maximum of 5 minutes when not in use	
			4. Install high-pressure fuel injectors on construction equipment vehicles	
			LAHD shall implement a process by which to select additional BMPs to further reduce air emissions during construction. The LAHD shall determine the BMPs once the contractor identifies and secures a final equipment list.	
			MM AQ-7. General Mitigation Measure. For any of the above mitigation measures (MM AQ-1 through AQ-6), if a CARB-certified technology becomes available and is shown to be as good as or better in terms of emissions performance than the existing measure, the technology could replace the existing measure pending approval by the LAHD.	
			MM AQ-8. Special Precautions near Sensitive Sites. When construction activities are planned within 1,000 feet of sensitive receptors (defined as schools, playgrounds, day care centers, and hospitals), the construction contractor shall notify each of these sites in writing at least 30 days before	

	Impact Determination	Mitigation Measures	Impacts after Mitigation
		construction activities begin.	
	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
project construction would	CEQA: Significant	Implement Mitigation Measures AQ-1 through AQ-8.	CEQA: Significant and unavoidable
	NEPA: Significant	Implement Mitigation Measures AQ-1 through AQ-8.	NEPA: Significant and unavoidable
Impact AQ-3: The proposed Project would result in operational emissions that exceed 10 tons per year of VOCs or an	CEQA: Significant	MM AQ-9. Alternative Maritime Power (AMP) for Cruise Vessels. Cruise vessels calling at the Inner Harbor Cruise Terminal shall use AMP at the following percentages while hoteling in the Port:	CEQA: Significant and unavoidable
		• 30% of all calls in 2009, and	
15.		• 80% of all calls in 2013 and thereafter to accommodate existing lease agreements and home ported vessels. This portion of the mitigation measure is not quantified.	
		Ships calling at the Outer Harbor Cruise Terminal shall use AMP while hoteling at the Port as follows (minimum percentage):	
		• 97% of all calls in 2013 and thereafter.	
		Additionally, by 2013, all ships retrofitted for AMP shall be required to use AMP while hoteling, with a compliance rate of 100%, with the exception of circumstances when an AMP-capable berth is unavailable due to utilization by another AMP-capable ship.	
	 project construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14. Impact AQ-3: The proposed Project would result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2- 	Impact AQ-2: Proposed project construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.CEQA: SignificantImpact AQ-3: The proposed Project would result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-CEQA: Significant	Impact AQ-2: Proposed project construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.CEQA: SignificantImplement Mitigation Measures AQ-1 through AQ-8.Impact AQ-3: The proposed Project would result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.CEQA: SignificantImplement Mitigation Measures AQ-1 through AQ-8.Impact AQ-3: The proposed Project would result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.CEQA: SignificantMM AQ-9. Alternative Maritime Power (AMP) for Cruise Vessels. Cruise vessels calling at the Inner Harbor Cruise Terminal shall use AMP at the following percentages while hoteling in the Port: • 30% of all calls in 2009, and • 80% of all calls in 2013 and thereafter to accommodate existing lease agreements and home ported vessels. This portion of the mitigation measure is not quantified. Ships calling at the Outer Harbor Cruise Terminal shall use AMP while hoteling at the Port as follows (minimum percentage): • 97% of all calls in 2013 and thereafter. Additionally, by 2013, all ships retrofitted for AMP shall be required to use AMP while hoteling, with a compliance rate of 100%, with the exception of circumstances when an AMP-capable berth is unavailable due to

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			(100%) calling at the Inner and Outer Harbor Cruise Terminals shall use low-sulfur fuel (maximum sulfur content of 0.2 percent) in auxiliary engines, main engines, and boilers within 40 nm of Point Fermin (including hoteling for non-AMP ships) beginning on Day 1 of operation. Ships with mono-tank systems or having technical issues prohibiting use of low sulfur fuel would be exempt from this requirement. The tenant shall notify the Port of such vessels prior to arrival and shall make every effort to retrofit such ships within one year.	
			The following minimum annual participation rates were assumed in the air quality analysis:	
			Inner Harbor	
			• 30% of all calls in 2009, and	
			• 90% of all calls in 2013 and thereafter.	
			Outer Harbor:	
			• 90% of all calls in 2013.	
			Low-sulfur fuel requirements shall apply independently of AMP participation.	
			MM AQ-11. Vessel Speed-Reduction Program. Ships calling at the Inner Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule:	
			• 30% of all calls in 2009, and	
			• 100% of all calls in 2013 and thereafter.	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			Ships calling at the Outer Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule:	
			• 100% of all calls in 2013 and thereafter.	
			MM AQ-12. New Vessel Builds. The purchaser shall confer with the ship designer and engine manufacture to determine the feasibility of incorporating all emission reduction technology and/or design options and when ordering new ships bound for the Port of Los Angeles. Such technology shall be designed to reduce criteria pollutant emissions (NO _X , SO _X , and PM) and GHG emission (CO, CH ₄ , N ₂ O, and HFCs). Design considerations and technology shall include, but is not limited to:	
			1. Selective Catalytic Reduction Technology	
			2. Exhaust Gas Recirculation	
			3. In-line fuel emulsification technology	
			4. Diesel Particulate Filters (DPFs) or exhaust scrubbers	
			5. Medium Speed Marine Engine (Common Rail) Direct Fuel Injection	
			6. Low NO _X Burners for Boilers	
			7. Implement fuel economy standards by vessel class and engine	
			8. Diesel-electric pod propulsion systems	
			MM AQ-13. Clean Terminal Equipment.	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			All terminal equipment shall be electric, where available.	
			All terminal equipment other than electric forklifts at the cruise terminal building shall implement the following measures:	
			 Beginning in 2009, all non-yard tractor purchases shall be either (1) the cleanest available NO_X alternative-fueled engine meeting 0.015 g/bhp-hr for PM or (2) the cleanest available NO_X diesel-fueled engine meeting 0.015 g/bhp-hr for PM. I there are no engines available that meet 0.015 g/bhp-hr for PM, the new engines shall be the cleanest available (either fuel type) and shall have the cleanest VDEC; 	f
			• By the end of 2012, all non-yard tractor terminal equipment less than 750 hp shall meet the EPA Tier 4 nonroad engine standards; and	
			• By the end of 2014, all terminal equipment shall meet EPA Tier 4 nonroad engine standards.	1
			MM AQ-14. LNG-Powered Shuttle Busses. All shuttle buses from parking lots to cruise ship terminals shall be LNG powered.	
			MM AQ-15. Truck Emission Standards. Onroad heavy-duty diesel trucks (above 14,000 pounds) entering the cruise terminal building shall achieve EPA's 2007 Heavy- Duty Highway Diesel Rule emission standards for onroad heavy-duty diesel engines (EPA 2001a) in the following percentages: 20% in 2009, 40% in 2012, and	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			80% in 2015 and thereafter.	
			MM AQ-16. Truck Idling-Reduction Measure. The cruise terminal building operator shall ensure that heavy-duty truck idling is reduced at both the Inner and Outer Harbor Cruise Terminal. Potential methods to reduce idling include, but are not limited to, the following: (1) operator shall maximize the times when the gates are left open, including during off-peak hours, (2) operator shall implement an appointment-based truck delivery and pick-up system to minimize truck queuing, and (3) operator shall design gate to exceed truck-flow capacity to ensure queuing is minimized.	
			MM AQ-17. AMP for Tugboats. Crowley and Millennium tugboats calling at the North Harbor cut shall use AMP while hoteling at the Port as follows (minimum percentage):	
			 100% compliance in 2014. MM AQ-18. Engine Standards for Tugboats. Tugboats calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages): 	
			• 30% in 2010, and	
			• 100% in 2014.	
			Tugs calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 3 as follows (minimum percentages):	

	 20% in 2015, 50% in 2018, and 100% in 2020. MM AQ-19. Tugboats Idling Reduction. The tug companies shall ensure that tug idling is reduced at the cruise terminal building. This measure is not quantified. MM AQ-20. Catalina Express Ferry Idling Deduction Measure Cataling 	g
	 100% in 2020. MM AQ-19. Tugboats Idling Reduction. The tug companies shall ensure that tug idling is reduced at the cruise terminal building. This measure is not quantified. MM AQ-20. Catalina Express Ferry 	3
	 MM AQ-19. Tugboats Idling Reduction. The tug companies shall ensure that tug idling is reduced at the cruise terminal building. This measure is not quantified. MM AQ-20. Catalina Express Ferry 	5
	The tug companies shall ensure that tug idling is reduced at the cruise terminal building.This measure is not quantified.MM AQ-20. Catalina Express Ferry	2
	Idling Reduction Measure. Catalina Express shall ensure that ferry idling is reduced at the cruise terminal building. This measure is not quantified.	
	MM AQ-21. Catalina Express Ferry Engine Standards. Ferries calling at the Catalina Express Terminal shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages):	1
	• 30% in 2010, and	
	• 100% in 2014.	
	MM AQ-22. Periodic Review of New Technology and Regulations. LAHD shall require the cruise terminal and tug company tenants to review, in terms of feasibility, any LAHD-identified or other new emissions- reduction technology, and report to LAHD. Such technology feasibility reviews shall take place at the time of LAHD's consideration of any lease amendment or facility modification for the cruise terminal and tug company property. If the technology is determined by	
		 MM AQ-21. Catalina Express Ferry Engine Standards. Ferries calling at the Catalina Express Terminal shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages): 30% in 2010, and 100% in 2014. MM AQ-22. Periodic Review of New Technology and Regulations. LAHD shall require the cruise terminal and tug company tenants to review, in terms of feasibility, any LAHD-identified or other new emissions- reduction technology, and report to LAHD. Such technology feasibility reviews shall take place at the time of LAHD's consideration of any lease amendment or facility modification

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			technical, and operational feasibility, the tenant shall work with LAHD to implement such technology.	
			MM AQ-23. Throughput Tracking. If the proposed Project exceeds project throughput assumptions/projections (in terms of cruise terminal passenger numbers) anticipated through the years 2011, 2015, 2022, or 2037, LAHD staff shall evaluate the effects of this on the emissions sources (ship and truck calls) relative to the EIS/EIR. If it is determined that these emissions sources exceed EIS/EIR assumptions, staff shall evaluate actual air emissions for comparison with the EIS/EIR and if the criteria pollutant emissions exceed those in the EIS/EIR, then new or additional mitigations would be applied.	
			MM AQ-24. General Mitigation Measure. For any of the above mitigation measures (MM AQ-9 through AQ-23), if any kind of technology becomes available and is shown to be as good or as better in terms of emissions reduction performance than the existing measure, the technology could replace the existing measure pending approval by LAHD. The technology's emissions reductions must be verifiable through EPA, CARB, or other reputable certification and/or demonstration studies to LAHD's satisfaction.	
		NEPA: Significant	Implement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-4: Proposed	CEQA: Significant	Implement Mitigation Measures MM AQ-9	CEQA: Significant and

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	project operations would		through MM AQ-24.	unavoidable
	result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-16.	NEPA: Significant	Implement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	proposed Project would not	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-6: The proposed Project would not create an objectionable odor at the nearest sensitive receptor.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-7: The proposed Project would	CEQA: Significant	Implement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	expose receptors to significant levels of TACs.	NEPA: Significant	Implement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-8: The proposed Project would not	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
	conflict with or obstruct implementation of an applicable AQMP.	NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-9: The proposed Project would produce GHG emissions that would exceed CEQA and NEPA baseline levels.	CEQA: Significant	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, and MM AQ-16 through MM AQ-20. MM AQ-25. Recycling. The terminal buildings shall achieve a minimum recycling	CEQA: Significant and unavoidable

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			Recycled materials shall include	
			• white and colored paper;	
			• Post-it notes;	
			• magazines;	
			• newspaper;	
			• file folders;	
			 all envelopes, including those with plastic windows; 	
			• all cardboard boxes and cartons;	
			• all metal and aluminum cans;	
			• glass bottles and jars; and	
			• all plastic bottles.	
			MM AQ-26. Leadership in Energy and Environmental Design. The cruise terminal building shall obtain the Leadership in Energy and Environmental Design (LEED) gold certification level. LEED certification is made at one of the following four levels, in ascending order of environmental sustainability: certified, silver, gold, and platinum. The certification level is determined on a point-scoring basis where various points are given for design features that address the following areas (U.S. Green Building Council 2005):	
			• sustainable sites,	
			• water efficiency,	
			• energy and atmosphere,	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			• materials and resources,	
			• indoor environmental quality, and	
			• innovation and design process.	
			MM AQ-27. Compact Fluorescent Light Bulbs. All interior terminal buildings shall use compact fluorescent light bulbs. Fluorescent light bulbs produce less waste heat and use substantially less electricity than incandescent light bulbs. Although not quantified in this analysis, implementation of this measure is expected to reduce the proposed project's GHG emissions by less than 0.1%.	
			MM AQ-28: Energy Audit. The tenant shall conduct a third-party energy audit every 5 years and install innovative power-saving technology where feasible, such as power- factor correction systems and lighting power regulators. Such systems help maximize usable electric current and eliminate wasted electricity, thereby lowering overall electricity use.	
			MM AQ-29. Solar Panels. Solar panels shall be installed on the cruise terminal building. Solar panels will provide the cruise terminal building with a clean source of electricity and replace some of its fossil-fuel- generated electricity use. Although not quantified in this analysis, implementation of this measure is expected to reduce the proposed project's GHG emissions by less than 0.1%.	

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
			 shall be planted around the cruise terminal building. Trees act as insulators from weather, thereby decreasing energy requirements. Onsite trees also provide carbon storage (AEP 2007). Although not quantified, implementation of this measure is expected to reduce the proposed project's GHG emissions by less than 0.1%. Future Port-wide GHG emission reductions are also anticipated through AB 32 rule promulgation. However, such reductions have not yet been quantified because AB 32 implementation is still under development by CARB. 	
		NEPA: Not applicable	Not applicable.	NEPA: Not applicable
Alternative 1	Impact AQ-1: Alternative 1 would result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.2- 13.	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
		NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-2: Alternative 1 construction would result	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-3: Alternative 1 would result in	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in	NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	Table 3.2-15.			
	1 operations would result in offsite ambient air pollutant	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant
	Impact AQ-5: Alternative 1 would not generate onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-6: Alternative 1 would not create an objectionable odor at the nearest sensitive receptor.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-7: Alternative 1 would expose receptors to	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	significant levels of TACs.	NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-8: Alternative 1 would not conflict with or	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
	obstruct implementation of an applicable AQMP.	NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-9: Alternative 1 would produce GHG emissions that would exceed CEQA and NEPA	CEQA: Significant	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, MM AQ- 16 through MM AQ-20, and MM AQ-25 through MM AQ-30.	CEQA: Significant and unavoidable

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	baseline levels.	NEPA: Not applicable	Not applicable.	NEPA: Not applicable
Alternative 2	Impact AQ-1: Alternative 2 would result in construction-related emissions that exceed an SCAQMD threshold of	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	significance in Table 3.2- 13.	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-2: Alternative 2 construction would result	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-3: Alternative 2 would result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-4: Alternative 2 operations would result in	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2- 16.	NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-5: Alternative 2 would not generate	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
	onroad traffic that would contribute to an exceedance	NEPA: Less than significant	No mitigation is required.	NEPA: Less than

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	of the 1-hour or 8-hour CO standards.			significant
	2 would not create an objectionable odor at the nearest sensitive receptor.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
		CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	 Impact AQ-8: Alternative 2 would not conflict with or obstruct implementation of an applicable AQMP. Impact AQ-9: Alternative 2 would produce GHG emissions that would 	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
		CEQA: Significant	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, and MM AQ-16 through MM AQ-30.	CEQA: Significant and unavoidable
	exceed CEQA and NEPA baseline levels.	NEPA: Not applicable	Not applicable.	NEPA: Not applicable
Alternative 3	Impact AQ-1: Alternative 3 would result in	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.2- 13.	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-2: Alternative 3 construction would result	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	in offsite ambient air pollutant concentrations that exceed a SCAQMD	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	threshold of significance in Table 3.2-14.			
	Impact AQ-3: Alternative 3 would result in	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.	NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-4: Alternative 3 operations would result in	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2- 16.	NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	Impact AQ-5: Alternative 3 would not generate onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-6: Alternative 3 would not create an	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
	objectionable odor at the nearest sensitive receptor.	NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	3 would expose receptors to significant levels of TACs.	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
		CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	obstruct implementation of an applicable AQMP.	NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-9: Alternative 3 would produce GHG emissions that would	CEQA: Significant	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, and MM AQ-16 through MM AQ-30	CEQA: Significant and unavoidable
	exceed CEQA and NEPA baseline levels.	NEPA: Not applicable	Not applicable.	NEPA: Not applicable
Alternative 4	Impact AQ-1: Alternative 4 would result in	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.2- 13.	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-2: Alternative 4 construction would result	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.	NEPA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	NEPA: Significant and unavoidable
	Impact AQ-3: Alternative 4 would result in	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.	NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable
	4 operations would result in	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Significant and unavoidable

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	significance in Table 3.2- 16.			
	Impact AQ-5: Alternative 4 would not generate	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
	onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.	NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-6: Alternative 4 would not create an objectionable odor at the nearest sensitive receptor.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-7: Alternative 4 would expose receptors to significant levels of TACs.	CEQA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: Significant	Impement Mitigation Measures MM AQ-9 through MM AQ-24.	NEPA: Less than significant
	Impact AQ-8: Alternative 4 would not conflict with or obstruct implementation of an applicable AQMP.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: Less than significant	No mitigation is required.	NEPA: Less than significant
	Impact AQ-9: Alternative 4 would produce GHG emissions that would exceed CEQA and NEPA baseline levels.	CEQA: Significant	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, and MM AQ-16 through MM AQ-30	CEQA: Significant and unavoidable
		NEPA: Not applicable	Not applicable.	NEPA: Not applicable
Alternative 5	Impact AQ-1: Alternative 5 would result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.2-	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
		NEPA: No impact	No mitigation is required.	NEPA: No impact

llternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	13.			
	Impact AQ-2: Alternative 5 construction would result	CEQA: Significant	Implement Mitigation Measures MM AQ-1 through MM AQ-8.	CEQA: Significant and unavoidable
	in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.	NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-3: Alternative 5 would result in	CEQA: Significant	Implement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
	operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.	NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-4: Alternative 5 operations would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2- 16.	CEQA: Significant	Implement Mitigation Measures MM AQ-9 through MM AQ-24.	CEQA: Significant and unavoidable
		NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-5: Alternative 5 would not generate	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
	onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.	NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-6: Alternative 5 would not create an objectionable odor at the nearest sensitive receptor.	CEQA: Less than significant	No mitigation is required.	CEQA: Less than significant
		NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-7: Alternative	CEQA: Significant	Implement Mitigation Measures MM AQ-9	CEQA: Less than

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	5 would expose receptors to significant levels of TACs.		through MM AQ-24.	significant
		NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-8: Alternative 5 would not conflict with or	CEQA: Less than significant	Mitigation not required	CEQA: Less than significant
	obstruct implementation of an applicable AQMP.	NEPA: No impact	No mitigation is required.	NEPA: No impact
	Impact AQ-9: Alternative 5 would produce GHG emissions that would	CEQA: Significant	Implement Mitigation Measures MM AQ-9, MM AQ-11 through MM AQ-13, and MM AQ-16 through MM AQ-30.	CEQA: Significant and unavoidable
	exceed the CEQA baseline.	NEPA: No impact	No mitigation is required.	NEPA: No impact
Alternative 6	Impact AQ-1: Alternative	CEQA: No impact	No mitigation is required.	CEQA: No impact
	6 would not result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.2- 13.	NEPA: Not applicable [†]	No mitigation is required.	NEPA: Not applicable
6 re p tł tł	6 construction would not	CEQA: No impact	No mitigation is required.	CEQA: No impact
		NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
	Impact AQ-3: Alternative	CEQA: No impact	No mitigation is required.	CEQA: No impact
	6 would not result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.	NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
	Impact AQ-4: Alternative	CEQA: No impact	No mitigation is required.	CEQA: No impact

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
	6 operations would not result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-16.	NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
	Impact AQ-5: Alternative	CEQA: No impact	No mitigation is required.	CEQA: No impact
	6 would not generate onroad traffic that would contribute to an exceedance of the 1-hour or 8-hour CO standards.	NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
	Impact AQ-6: Alternative 6 would not create an objectionable odor at the nearest sensitive receptor.	CEQA: No impact	No mitigation is required.	CEQA: No impact
		NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
	Impact AQ-7: Alternative 6 would not expose receptors to significant levels of TACs.	CEQA: No impact	No mitigation is required.	CEQA: No impact
		NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
	Impact AQ-8: Alternative	CEQA: No impact	Mitigation not required	CEQA: No impact
	 6 would not conflict with or obstruct implementation of an applicable AQMP. Impact AQ-9: Alternative 6 would not produce GHG emissions that would exceed the CEQA baseline. 	NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable
		CEQA: No impact	No mitigation is required.	CEQA: No impact
		NEPA: Not applicable	No mitigation is required.	NEPA: Not applicable

Alternative	Environmental Impacts*	Impact Determination	Mitigation Measures	Impacts after Mitigation
Notes:				
* Impact descriptions for each of the alternatives are the same as for the proposed project, unless otherwise noted.				
	[†] The term <i>not applicable</i> is used in cases where a particular impact is not identified as a CEQA- or NEPA-related issue in the threshold of significance criteria, or where there is no federal action requiring a NEPA determination of significance.			

1

3.2.4.4 Mitigation Monitoring

2 **Table 3.2-141.** Mitigation Monitoring for Air Quality and Meteorology

Impact AQ-1: The proposed Project would result in construction-related emissions that exceed an SCAQMD threshold of significance in Table 3.2-13. (Also applies to Impact AQ-1 for Alternatives 1-5.) Mitigation Measure MM AQ-1. Harbor Craft Engine Standards. All harbor craft used during the construction phase of the proposed Project shall, at a minimum, be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2. Additionally, where available, harbor craft shall meet the proposed EPA Tier 3 (which are proposed to be phased-in beginning 2009) or cleaner marine engine emission standards. Timing During specified construction phases. Methodology LAHD will include MM AQ-1 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction. **Responsible Parties** LAHD Mitigation Measure MM AQ-2. Dredging Equipment Electrification. The proposed Project shall use electric dredging equipment. During specified construction phases. Timing Methodology LAHD will include MM AQ-2 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction. **Responsible Parties** LAHD Mitigation Measure MM AO-3. Fleet Modernization for Onroad Trucks. 1. Trucks hauling materials such as debris or fill shall be fully covered while operating off Port property. 2. Idling shall be restricted to a maximum of 5 minutes when not in use. 3. Tier Specifications: January 1, 2009 to December 31, 2011: All onroad heavy-duty diesel trucks with a gross vehicle weight rating (GVWR) of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with EPA 2004 onroad PM emission standards and be the cleanest available with respect to NO_X (0.10g/bhp-hr PM10 and 2.0 $g/bhp-hr NO_x$). In addition, all onroad trucks shall be outfitted with the BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations. Post-January 2011: All onroad heavy-duty diesel trucks with a GVWR of 19,500 pounds or greater used on site or to transport materials to and from the site shall comply with 2010 emission standards, where available. In addition, all onroad trucks shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.

	A copy of each unit's certified EPA rating, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment
Timing	During specified construction phases.
Methodology	LAHD will include MM AQ-3 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction.
Responsible Parties	LAHD
Mitigation Measure	MM AQ-4. Fleet Modernization for Construction Equipment.
	1. Construction equipment shall incorporate, where feasible, emissions savings technology such as hybrid drives and specific fuel economy standards.
	2. Idling shall be restricted to a maximum of 5 minutes when not in use.
	3. Tier Specifications:
	January 1, 2009, to December 31, 2011: All offroad diesel-powered construction equipment greater than 50 hp, except derrick barges and marine vessels, shall meet Tier 2 offroad emissions standards. In addition, all construction equipment shall be outfitted with the BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 2 or Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
	January 1, 2012, to December 31, 2014: All offroad diesel-powered construction equipment greater than 50 hp, except derrick barges and marine vessels, shall meet Tier 3 offroad emissions standards. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
	<u>Post-January 1, 2015:</u> All offroad diesel-powered construction equipment greater than 50 hp shall meet the Tier 4 emission standards, where available. In addition, all construction equipment shall be outfitted with BACT devices certified by CARB. Any emissions control device used by the contractor shall achieve emissions reductions that are no less than what could be achieved by a Level 3 diesel emissions control strategy for a similarly sized engine as defined by CARB regulations.
	A copy of each unit's certified tier specification, BACT documentation, and CARB or SCAQMD operating permit shall be provided at the time of mobilization of each applicable unit of equipment.
Timing	During specified construction phases.
Methodology	LAHD will include MM AQ-4 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction.
Responsible Parties	LAHD
Residual Impacts	Significant
Mitigation Measure	MM AQ-5. Additional Fugitive Dust Controls. The calculation of fugitive dust (PM10) from unmitigated proposed project earth-moving activities assumes a 75% reduction from uncontrolled levels to simulate rigorous watering of the site and use of other measures (listed below) to ensure proposed project compliance with SCAQMD

	Rule 403.
	The construction contractor shall further reduce fugitive dust emissions to 90% from uncontrolled levels. The construction contractor shall designate personnel to monitor the dust control program and to order increased watering, as necessary, to ensure a 90% control level. Their duties shall include holiday and weekend periods when work may not be in progress.
	The following measures, at minimum, must be part of the contractor Rule 403 dust control plan:
	• Active grading sites shall be watered one additional time per day beyond that required by Rule 403;
	• Contractors shall apply approved nontoxic chemical soil stabilizers to all inactive construction areas or replace groundcover in disturbed areas;
	• Construction contractors shall provide temporary wind fencing around sites being graded or cleared;
	• Trucks hauling dirt, sand, or gravel shall be covered or shall maintain at least 2 feet of freeboard in accordance with Section 23114 of the California Vehicle Code;
	• Construction contractors shall install wheel washers where vehicles enter and exit unpaved roads onto paved roads or wash off tires of vehicles and any equipment leaving the construction site;
	• The grading contractor shall suspend all soil disturbance activities when winds exceed 25 mph or when visible dust plumes emanate from a site; disturbed areas shall be stabilized if construction is delayed; and
	• Trucks hauling materials such as debris or fill shall be fully covered while operating off LAHD property.
Timing	During specified construction phases.
Methodology	LAHD will include MM AQ-5 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction.
Responsible Parties	LAHD
Mitigation Measure	MM AQ-6. Best Management Practices. The following types of measures are required on construction equipment (including onroad trucks):
	1. Use diesel oxidation catalysts and catalyzed diesel particulate traps.
	2. Maintain equipment according to manufacturers' specifications
	3. Restrict idling of construction equipment to a maximum of 5 minutes when not in use
	4. Install high-pressure fuel injectors on construction equipment vehicles
	LAHD shall implement a process by which to select additional BMPs to further reduce air emissions during construction. The LAHD shall determine the BMPs once the contractor identifies and secures a final equipment list.
Timing	During specified construction phases.
Methodology	LAHD will include MM AQ-6 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction.

Responsible Parties	LAHD
Mitigation Measure	MM AQ-7. General Mitigation Measure. For any of the above mitigation measures (MM AQ-1 through AQ-6), if a CARB-certified technology becomes available and is shown to be as good as or better in terms of emissions performance than the existing measure, the technology could replace the existing measure pending approval by the LAHD.
Timing	During specified construction phases.
Methodology	LAHD will include MM AQ-7 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction.
Responsible Parties	LAHD
Mitigation Measure	MM AQ-8. Special Precautions near Sensitive Sites. When construction activities are planned within 1,000 feet of sensitive receptors (defined as schools, playgrounds, day care centers, and hospitals), the construction contractor shall notify each of these sites in writing at least 30 days before construction activities begin.
Timing	During specified construction phases.
Methodology	LAHD will include MM AQ-8 in the contract specifications for construction. LAHD will monitor implementation of mitigation measures during construction.
Responsible Parties	LAHD
Residual Impacts	Significant

Impact AQ-2: Proposed project construction would result in offsite ambient air pollutant concentrations that exceed a SCAQMD threshold of significance in Table 3.2-14.

(Also applies to Impact AQ-2 for Alternatives 1-5.)

Mitigation Measure	See Mitigation Measures MM AQ-1 through MM AQ-8 above.
Residual Impacts	Significant

Impact AQ-3: The proposed Project would result in operational emissions that exceed 10 tons per year of VOCs or an SCAQMD threshold of significance in Table 3.2-15.

(Also applies to Impact AQ-3 for Alternatives 1-5.)

Mitigation Measure	MM AQ-9. Alternative Maritime Power (AMP) for Cruise Vessels. Cruise vessels calling at the Inner Harbor Cruise Terminal shall use AMP at the following percentages while hoteling in the Port:
	• 30% of all calls in 2009, and
	• 80% of all calls in 2013 and thereafter to accommodate existing lease agreements and home ported vessels. This portion of the mitigation measure is not quantified.
	Ships calling at the Outer Harbor Cruise Terminal shall use AMP while hoteling at the Port as follows (minimum percentage):
	• 97% of all calls in 2013 and thereafter.
	Additionally, by 2013, all ships retrofitted for AMP shall be required to use AMP while hoteling, with a compliance rate of 100%, with the exception of circumstances when an

	AMP-capable berth is unavailable due to utilization by another AMP-capable ship.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, LAHD
Mitigation Measure	MM AQ-10. Low-Sulfur Fuel. All ships (100%) calling at the Inner and Outer Harbor Cruise Terminals shall use low-sulfur fuel (maximum sulfur content of 0.2 percent) in auxiliary engines, main engines, and boilers within 40 nm of Point Fermin (including hoteling for non-AMP ships) beginning on Day 1 of operation. Ships with mono-tank systems or having technical issues prohibiting use of low sulfur fuel would be exempt from this requirement. The tenant shall notify the Port of such vessels prior to arrival and shall make every effort to retrofit such ships within one year.
	The following minimum annual participation rates were assumed in the air quality analysis:
	Inner Harbor
	• 30% of all calls in 2009, and
	• 90% of all calls in 2013 and thereafter.
	Outer Harbor:
	• 90% of all calls in 2013.
	Low-sulfur fuel requirements shall apply independently of AMP participation.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, LAHD
Mitigation Measure	MM AQ-11. Vessel Speed-Reduction Program. Ships calling at the Inner Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule:
	• 30% of all calls in 2009, and
	• 100% of all calls in 2013 and thereafter.
	Ships calling at the Outer Harbor Cruise Terminal shall comply with the expanded VSRP of 12 knots between 40 nm from Point Fermin and the Precautionary Area in the following implementation schedule:
	• 100% of all calls in 2013 and thereafter.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, LAHD

Mitigation Measure	 MM AQ-12. New Vessel Builds. The purchaser shall confer with the ship designer and engine manufacture to determine the feasibility of incorporating all emission reduction technology and/or design options and when ordering new ships bound for the Port of Los Angeles. Such technology shall be designed to reduce criteria pollutant emissions (NO_X, SO_X and PM) and GHG emission (CO, CH₄, N₂O, and HFCs). Design considerations and technology shall include, but is not limited to: 1. Selective Catalytic Reduction Technology 2. Exhaust Gas Recirculation 3. In-line fuel emulsification technology 4. Diesel Particulate Filters (DPFs) or exhaust scrubbers 5. Medium Speed Marine Engine (Common Rail) Direct Fuel Injection 6. Low NO_X Burners for Boilers
	 7. Implement fuel economy standards by vessel class and engine 8. Diesel-electric pod propulsion systems
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, Crawley and Millennium Tugboat Operators, Catalina Express, LAHD
Mitigation Measure	MM AQ-13. Clean Terminal Equipment. All terminal equipment shall be electric, where available.
	All terminal equipment other than electric forklifts at the cruise terminal building shall implement the following measures:
	• Beginning in 2009, all non-yard tractor purchases shall be either (1) the cleanest available NO_X alternative-fueled engine meeting 0.015 g/bhp-hr for PM or (2) the cleanest available NO_X diesel-fueled engine meeting 0.015 g/bhp-hr for PM. If there are no engines available that meet 0.015 g/bhp-hr for PM, the new engines shall be the cleanest available (either fuel type) and shall have the cleanest VDEC;
	• By the end of 2012, all non-yard tractor terminal equipment less than 750 hp shall meet the EPA Tier 4 nonroad engine standards; and
	• By the end of 2014, all terminal equipment shall meet EPA Tier 4 nonroad engine standards.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, LAHD
Mitigation Measure	MM AQ-14. LNG-Powered Shuttle Busses. All shuttle buses from parking lots to cruise ship terminals shall be LNG powered.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship terminal operators, LAHD
Mitigation Measure	MM AQ-15. Truck Emission Standards. Onroad heavy-duty diesel trucks (above 14,000 pounds) entering the cruise terminal building shall achieve EPA's 2007 Heavy-

	Duty Highway Diesel Rule emission standards for onroad heavy-duty diesel engines (EPA 2001a) in the following percentages: 20% in 2009, 40% in 2012, and 80% in 2015 and thereafter.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship terminal operators, LAHD
Mitigation Measure	MM AQ-16. Truck Idling-Reduction Measure. The cruise terminal building operator shall ensure that heavy-duty truck idling is reduced at both the Inner and Outer Harbor Cruise Terminal. Potential methods to reduce idling include, but are not limited to, the following: (1) operator shall maximize the times when the gates are left open, including during off-peak hours, (2) operator shall implement an appointment-based truck delivery and pick-up system to minimize truck queuing, and (3) operator shall design gate to exceed truck-flow capacity to ensure queuing is minimized.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship terminal operators, LAHD
Mitigation Measure	MM AQ-17. AMP for Tugboats. Crowley and Millennium tugboats calling at the North Harbor cut shall use AMP while hoteling at the Port as follows (minimum percentage):
	• 100% compliance in 2014.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship terminal operators, LAHD
Mitigation Measure	MM AQ-18. Engine Standards for Tugboats. Tugboats calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages):
	• 30% in 2010, and
	• 100% in 2014.
	Tugs calling at the North Harbor cut shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 3 as follows (minimum percentages):
	• 20% in 2015,
	• 50% in 2018, and
	• 100% in 2020.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Crawley and Millennium Tugboat operators, LAHD
Mitigation Measure	MM AQ-19. Tugboats Idling Reduction. The tug companies shall ensure that tug
	idling is reduced at the cruise terminal building. This measure is not quantified.

Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Crawley and Millennium Tugboat operators, LAHD
Mitigation Measure	MM AQ-20. Catalina Express Ferry Idling Reduction Measure. Catalina Express shall ensure that ferry idling is reduced at the cruise terminal building. This measure is not quantified.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Crawley and Millennium Tugboat operators, LAHD
Mitigation Measure	MM AQ-21. Catalina Express Ferry Engine Standards. Ferries calling at the Catalina Express Terminal shall be repowered to meet the cleanest existing marine engine emission standards or EPA Tier 2 as follows (minimum percentages):
	• 30% in 2010, and
	• 100% in 2014.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Crawley and Millennium Tugboat operators, LAHD
Mitigation Measure	MM AQ-22. Periodic Review of New Technology and Regulations. LAHD shall require the cruise terminal and tug company tenants to review, in terms of feasibility, any LAHD-identified or other new emissions-reduction technology, and report to LAHD. Such technology feasibility reviews shall take place at the time of LAHD's consideration of any lease amendment or facility modification for the cruise terminal and tug company property. If the technology is determined by LAHD to be feasible in terms of cost, technical, and operational feasibility, the tenant shall work with LAHD to implement such technology.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Catalina Express, LAHD
Mitigation Measure	MM AQ-23. Throughput Tracking. If the proposed Project exceeds project throughput assumptions/projections (in terms of cruise terminal passenger numbers) anticipated through the years 2011, 2015, 2022, or 2037, LAHD staff shall evaluate the effects of this on the emissions sources (ship and truck calls) relative to the EIS/EIR. If it is determined that these emissions sources exceed EIS/EIR assumptions, staff shall evaluate actual air emissions for comparison with the EIS/EIR and if the criteria pollutant emissions exceed those in the EIS/EIR, then new or additional mitigations would be applied.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Catalina Express, LAHD
Mitigation Measure	MM AQ-24. General Mitigation Measure. For any of the above mitigation measures (MM AQ-9 through AQ-23), if any kind of technology becomes available and is shown to be as good or as better in terms of emissions reduction performance than the existing measure, the technology could replace the existing measure pending approval by

	LAHD. The technology's emissions reductions must be verifiable through EPA,
	CARB, or other reputable certification and/or demonstration studies to LAHD's satisfaction.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, Crawley and Millennium Tugboat operators, Catalina Express, LAHD
Residual Impacts	Significant
	d project operations would result in offsite ambient air pollutant concentrations that exceed of significance in Table 3.2-16.
(Also applies to Impact	AQ-4 for Alternatives 1-5.)
Mitigation Measure	See Mitigation Measures MM AQ-9 through MM AQ-24 above.
Residual Impacts	Significant
Impact AO-7. The prov	posed Project would expose receptors to significant levels of TACs.
•	AQ-7 for Alternatives 1-5.)
Mitigation Measure	See Mitigation Measures MM AQ-9 through MM AQ-24 above.
Residual Impacts	Significant
Residual impacts	Significant
Impact AQ-9: The probaseline levels.	posed Project would produce GHG emissions that would exceed CEQA and NEPA
	AQ-9 for Alternatives 1-5.)
Mitigation Measure	See Mitigation Measures MM AQ-9 through MM AQ-24 above.
Residual Impacts	Significant
Mitigation Measure	MM AQ-25. Recycling. The terminal buildings shall achieve a minimum recycling rate of 40% by 2012 and 60% by 2015. Recycled materials shall include
	• white and colored paper;
	• Post-it notes;
	• magazines;
	• newspaper;
	• file folders;
	• all envelopes, including those with plastic windows;
	 all cardboard boxes and cartons;
	 all metal and aluminum cans;
	 glass bottles and jars; and
	 all plastic bottles.
	- un plusite obtiles.

Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, Crawley and Millennium Tugboat operators, Catalina Express, Ports O'Call tenants, LAHD
Mitigation Measure	MM AQ-26. Leadership in Energy and Environmental Design. The cruise terminal building shall obtain the Leadership in Energy and Environmental Design (LEED) gold certification level. LEED certification is made at one of the following four levels, in ascending order of environmental sustainability: certified, silver, gold, and platinum. The certification level is determined on a point-scoring basis where various points are given for design features that address the following areas (U.S. Green Building Council 2005):
	• sustainable sites,
	• water efficiency,
	• energy and atmosphere,
	• materials and resources,
	• indoor environmental quality, and
	innovation and design process.
Timing	During construction and operation
Methodology	LAHD will include LEED designs in construction design specifications. Operation of the cruise terminal building consistent with LEED standards shall be included as a mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, LAHD
Mitigation Measure	MM AQ-27. Compact Fluorescent Light Bulbs. All interior terminal buildings shall use compact fluorescent light bulbs. Fluorescent light bulbs produce less waste heat and use substantially less electricity than incandescent light bulbs. Although not quantified in this analysis, implementation of this measure is expected to reduce the proposed project's GHG emissions by less than 0.1%.
Timing	During construction and operation
Methodology	LAHD will include compact fluorescent bulbs in construction specifications. Use and replacement of such bulbs shall be included as a mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, LAHD
Mitigation Measure	MM AQ-28: Energy Audit. The tenant shall conduct a third-party energy audit every 5 years and install innovative power-saving technology where feasible, such as power-factor correction systems and lighting power regulators. Such systems help maximize usable electric current and eliminate wasted electricity, thereby lowering overall electricity use.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, Crawley and Millennium tugboat operators, Catalina Express, Ports O'Call tenants, LAHD

Mitigation Measure	MM AQ-29. Solar Panels. Solar panels shall be installed on the cruise terminal building. Solar panels will provide the cruise terminal building with a clean source of electricity and replace some of its fossil-fuel-generated electricity use. Although not quantified in this analysis, implementation of this measure is expected to reduce the proposed project's GHG emissions by less than 0.1%.
Timing	During construction
Methodology	LAHD will include solar panels in construction specifications.
Responsible Parties	LAHD
Mitigation Measure	MM AQ-30. Tree Planting . Shade trees shall be planted around the cruise terminal building. Trees act as insulators from weather, thereby decreasing energy requirements. Onsite trees also provide carbon storage (AEP 2007). Although not quantified, implementation of this measure is expected to reduce the proposed project's GHG emissions by less than 0.1%. Future Port-wide GHG emission reductions are also anticipated through AB 32 rule promulgation. However, such reductions have not yet been quantified because AB 32 implementation is still under development by CARB.
Timing	During operation
Methodology	LAHD will include this mitigation measure in lease agreements with tenants.
Responsible Parties	Cruise ship lines, Crawley and Millennium Tugboat operators, Catalina Express, Ports O'Call tenants, LAHD

2 3.2.5 Significant Unavoidable Impacts

3 4 5 6 7 8 9	Emissions from proposed Project construction would increase relative to CEQA and NEPA baseline emissions for VOC, CO, NO _X , PM10, and PM2.5. After mitigation, the proposed Project and Alternatives 1, 2, and 4 would result in significant and unavoidable impacts for VOC, CO, NO _X , PM10, and PM2.5 emissions under CEQA and NEPA. Alternative 3 after mitigation would result in significant and unavoidable impacts for VOC, CO, NO _X , PM10, and PM2.5 emissions under CEQA and NEPA. Alternative 3 after mitigation would result in significant and unavoidable impacts for VOC, CO, NO _X , PM10, and PM2.5 emissions under CEQA, and for VOC, CO, NO _X , and PM2.5 emissions under NEPA. Alternative 5 would result in
10	significant and unavoidable impacts for VOC, CO, NO _X , PM10, and PM2.5 after
11	mitigation under CEQA (no NEPA impacts would occur).
12	Construction of the proposed Project and Alternatives 1 through 5 construction would
13	exceed the SCAQMD 1-hour NO ₂ and 24-hour PM10 ambient thresholds. Therefore,
14	construction emissions would result in significant and unavoidable impacts due to
15	increased NO ₂ , PM10, and PM2.5 levels under CEQA and NEPA.
16	Peak daily emissions from the proposed Project and Alternatives 1 through 5 would
17	increase relative to CEQA baseline emissions for VOC, CO, NO _X , SO _X , PM10, and
18	PM2.5 during one or more project analysis years. The proposed Project and
19	Alternatives 1 through 5 would result in significant and unavoidable impacts for
20	VOC, NO_X , SO_X , and PM10 emissions under CEQA. Alternative 6 would increase
20	relative to CEQA baseline emissions for VOC, NO_x , SO_x , PM10, and PM2.5 during
$\angle 1$	relative to CEQA basefine emissions for VOC , NO_X , SO_X , FW10, and FW2.5 during

1 2 3 4 5 6 7 8 9	one or more project analysis years. The proposed Project and Alternatives 1 and 2 would increase relative to NEPA baseline emissions for all project analysis years for all analyzed pollutants. Alternative 3 (mitigated) would decrease relative to NEPA baseline emissions for all project analysis years for VOC, CO and PM10. Alternative 4 (mitigated) would decrease relative to NEPA baseline emissions for all project analysis years for CO, SO _X , PM10, and PM2.5. Therefore, emissions from the proposed Project and Alternatives 1 through 4 would result in significant and unavoidable impacts for NO _X under NEPA. No NEPA Impacts would occur for Alternative 5.
10 11 12 13 14	Impacts from operation of the proposed Project and Alternatives 1 through 6 would result in significant and unavoidable impacts from exceeding SCAQMD ambient thresholds for NO ₂ , PM10, and PM2.5 levels under CEQA, and the proposed Project and Alternatives 1 through 5 would result in significant and unavoidable impacts under NEPA, with the exception of PM2.5 for Alternative 4.
15	Construction and operational emissions of TACs under the proposed Project and
16	Alternatives 1 through 5 would not increase cancer risks from CEQA Baseline levels
17	to above the significance criterion of 10 in a million (10×10^{-6}) risk to offsite
18	residential, occupational, sensitive, and recreational receptors. The construction and
19	operational emissions of TACs under the proposed Project and Alternatives 1, 2, and
20	3 would increase cancer risks from NEPA Baseline levels to above the significance
21	criterion to offsite residential, occupational, and recreational receptors. Impacts
22	would be significant and unavoidable under NEPA.
23	Construction and operational emissions of TACs from the proposed Project and
24	Alternatives 1 through 3 would increase acute noncancer effects from CEQA
25	Baseline levels to above the 1.0 hazard index significance criterion at occupational
26	and recreational receptors in proximity to the Project terminal. The proposed project
27	would not increase acute non-cancer effects from NEPA Baseline levels to above the
28	significance criterion at the analyzed receptors.
29	The proposed Project and Alternatives 1 through 5 would contribute to significant
30	and unavoidable impacts to global climate change under CEQA. No significance
31	determination has been made for NEPA.
32	