SECTION SUMMARY

This section describes existing ground transportation within the Port and surrounding area associated with implementation of the proposed Project. An analysis of potential impacts on traffic and transportation associated with the alternatives is detailed in Chapter 6, Analysis of Alternatives.

Section 3.12, Traffic and Transportation, provides the following:

- A description of existing levels of traffic in the Port area;
- A discussion on the methodology used to determine whether the proposed Project results in an impact to ground transportation;
- An impact analysis of the proposed Project; and
- A description of any mitigation measures proposed to reduce any potential impacts, as applicable.

Key Points of Section 3.12:

In summary, the impact analysis concludes that no significant impacts to traffic and transportation would result from the implementation of the proposed Project and, therefore, no mitigation measures are required. Specifically:

- The proposed Project construction would not result in a short-term, temporary increase in truck and auto traffic that could result in decreases in roadway capacity, potential safety hazards, and disruption of travel for vehicular and nonmotorized travelers;
- Long-term vehicular traffic associated with the proposed Project would not result in a significant long-term increase in truck and auto traffic;
- An increase in on-site employees due to proposed Project operations would not result in an increase in related public transit use; and
- The proposed Project would not result in increases considered significant related to freeway congestion.
3.12.1 Introduction

This section provides a summary of the transportation/circulation impact analysis for the proposed Project. The transportation analysis of the proposed Project includes intersections (seven key intersections) that would be used by truck and automobile traffic to gain access to and from the proposed Project site. The Los Angeles County Metropolitan Transportation Authority Congestion Management Program (CMP) thresholds were assessed and it was determined that no monitoring stations would meet the thresholds for CMP Analysis (Los Angeles County, 2010). Of the seven intersections analyzed, none are CMP arterial monitoring intersections. The technical traffic impact data are included in Appendix G.

3.12.2 Environmental Setting

This section evaluates streets and intersections that would potentially be used by both automobile and truck traffic to gain access to and from the ALBS site, as well as those streets that would be used by construction traffic (i.e., equipment and commuting workers).

3.12.2.1 Regional and Local Access

Regional access to the harbor area is provided by a network of freeways and highways. The freeways in the network consist of the Harbor Freeway (Interstate I-110), the Long Beach Freeway (I-710), and the Terminal Island Freeway (State Route SR-47/103). The Pacific Coast Highway (PCH) is also a part of the network. Primary access to the freeways from Terminal Island is via the Terminal Island Freeway and Seaside Avenue/Ocean Boulevard. Three major highway bridges also connect Terminal Island to regional and local streets and highways: the Vincent Thomas Bridge (part of SR 47); the Commodore Schuyler F. Heim Bridge (part of SR 103); and the Gerald Desmond Bridge (part of Ocean Boulevard). The arteriel street network that serves the proposed Project area includes Seaside Avenue/Ocean Boulevard, New Dock Street, and Terminal Way. The local street network that provides access to Pier 400 includes Seaside Avenue/Ocean Boulevard, Navy Way, Terminal Way, and Reeves Avenue.

Long Beach Freeway (I-710) and Harbor Freeway (I-110) are north-south highways that extend from the port area to downtown Los Angeles. They each have six lanes in the vicinity of the harbor and widen to eight lanes to the north of the harbor.

Terminal Island Freeway (SR 47/SR 103) is a north-south highway grade separated from Ocean Boulevard that extends from Terminal Island across the Commodore Schuyler F. Heim Bridge and terminates at Willow Street approximately 800 feet east of the Southern Pacific Intermodal Container Transfer Facility (ICTF). It is six lanes wide on the southern segment, narrowing to four lanes at Anaheim Street.

Pacific Coast Highway (Route 1) is a four lane, east-west highway that runs through Wilmington and Long Beach. PCH has interchanges with the Terminal Island Freeway, the Long Beach Freeway, and the Harbor Freeway.

Seaside Avenue/Ocean Boulevard runs east-west from downtown Long Beach, over the Gerald Desmond Bridge and includes a grade separated over-crossing to the terminus of...
the Terminal Island Freeway (SR 47/SR 103). Ocean Boulevard is designated as SR 47 between I-710 and SR 47. Ocean Boulevard/Seaside Avenue is designated SR 47 between I-110 and the Terminal Island Freeway. Ocean Boulevard has six lanes and left-turn lanes at intersections. Seaside Avenue is renamed Ocean Boulevard in Long Beach and continues to the east to the Gerald Desmond Bridge. Seaside Avenue/Ocean Boulevard is the primary access route to Terminal Island from the City of Los Angeles and San Pedro. Since the completion of the interchange at SR 47/SR 103, the only signalized intersection along Seaside Avenue/Ocean Boulevard is at Navy Way.

New Dock Street is a two lane, east-west street that connects Terminal Island and the Terminal Island Freeway. New Dock Street has interchanges (southbound off and northbound on-ramps) with the Terminal Island Freeway.

Terminal Way is a four to six lane, generally east-west street providing access to the proposed Project site and the U.S. Coast Guard Base. It turns into Ferry Street on its west end and Navy Way on its east end at Reeves Avenue.

Navy Way and Ferry Street are internal POLA roadways that provide local access to Pier 300 and Pier 400 from Seaside Avenue/Ocean Boulevard and the Terminal Island Freeway (SR 47/SR 103). Navy Way connects Upper Terminal Island to Pier 400.

The traffic setting for the proposed Project includes those streets and intersections that would be used by both automobile and truck operations traffic to gain access to and from the ALBS, as well as those streets that would be used by construction traffic (i.e., equipment and commuting workers). Seven study intersections that are located near the Project site or on routes serving the proposed Project site were chosen for analysis (refer to Figure 3.12-1). Project-related traffic on streets farther away from the proposed Project site is assumed to be diluted to less than the number of trips that would require analysis per the City of Los Angeles Department of Transportation (LADOT) Traffic Study Policies and Procedures (2010). The seven study intersections include the following:

- Ocean Boulevard/Terminal Island Freeway (Northbound)
- Ocean Boulevard/Terminal Island Freeway (Southbound)
- Seaside Avenue/Navy Way
- Ferry Street/SR-47 Ramps
- Pier S Avenue/Ocean Boulevard (Northbound)
- Pier S Avenue/Ocean Boulevard (Southbound)
- Ferry Street/Terminal Way

All other proposed Project traffic would utilize the freeway system or where they pass-through intersections, the number of Project trips would be less than five and thus would not warrant analysis.
Figure 3.12-1: Study Area and Study Intersections
Pursuant to the Los Angeles County CMP, administered by the Los Angeles County Metropolitan Transportation Authority (Metro), a traffic impact analysis is required at the following:

- CMP arterial monitoring intersections, including freeway on- or off-ramps, where the proposed project would add 50 or more trips during either the AM or PM weekday peak hours.
- CMP freeway monitoring locations where the proposed project would add 150 or more trips during either the AM or PM weekday peak hours.

However, no CMP arterial monitoring intersection is expected to experience 50 or more project related trips in a peak hour (maximum project trips in a peak hour are 30 trips), and furthermore, no CMP freeway monitoring station is expected to experience 150 or more project related trips in the AM or PM weekday peak hours. Therefore CMP analysis is not required for the proposed Project.

3.12.2.2 Existing Area Traffic Conditions

Existing truck and automobile traffic along study roadways and intersections, including automobiles, Port trucks, and other truck and regional traffic not related to the Port, was determined by collecting vehicle turning movement vehicle classification counts at some study locations and taking new counts as needed. These traffic counts consist of the measurement of all of the vehicles flowing through an intersection during the time period being studied (such as morning and evening peak commute periods), and noting the direction of travel and whether each vehicle proceeds straight through the intersections or turns right or left. In the Ports area, the traffic vehicle counts also include the notation of type of vehicle (classification), whether auto or truck and type of truck (bobtail power unit only, including chassis or including chassis and container).

The peak hour of a period is determined by assessing the highest volume of total traffic occurring during one consecutive hour at each location. Regional traffic occurring during the AM and PM peak hours is mainly due to commute trips, school trips, and other background trips. While the peak hour for port related truck traffic generally occurs sometime during the mid-day period, greater overall levels of traffic occur during the AM and PM peak hours due to the greater level of regional vehicular traffic combined with port-related traffic. Port traffic forecasts indicate a more even traffic distribution throughout the day in future years, thus minimizing the mid-day peak. For study intersections, the AM (7:00 a.m. to 9:00 a.m.) and PM (4:00 p.m. to 6:00 p.m.) peak hours represents the highest level of project-related traffic and therefore the “worst case” for purposes of the traffic operations analysis.

In Los Angeles, LADOT has adopted the use of the Critical Movement Analysis (CMA) method, as published in “Los Angeles Department of Transportation Traffic Study Policies and Procedures,” (December 2010). The CMA value is used to assess the intersections level of service. Level of Service (LOS) is a qualitative indication of an intersection's operating conditions as represented by traffic congestion and delay and the volume/capacity (V/C) ratio. For signalized intersections, it is measured from LOS A (excellent conditions) to LOS F (very poor conditions), with LOS D (V/C of 0.90, fair conditions) typically considered to be the threshold of acceptability. The relationship between V/C ratio and LOS for signalized intersections is shown in Table 3.12-1.
Table 3.12-1: Relationship Between Level of Service and V/C Ratio at Signalized Intersections

<table>
<thead>
<tr>
<th>V/C Ratio</th>
<th>LOS</th>
<th>Traffic Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 0.600</td>
<td>A</td>
<td>Excellent. No vehicle waits longer than one red light, and no approach phase is fully used.¹</td>
</tr>
<tr>
<td>>0.601 to 0.700</td>
<td>B</td>
<td>Very Good. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.</td>
</tr>
<tr>
<td>>0.701 to 0.800</td>
<td>C</td>
<td>Good. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.</td>
</tr>
<tr>
<td>>0.801 to 0.900</td>
<td>D</td>
<td>Fair. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.</td>
</tr>
<tr>
<td>>0.901 to 1.000</td>
<td>E</td>
<td>Poor. Represents the most vehicles that the intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.</td>
</tr>
<tr>
<td>> 1.000</td>
<td>F</td>
<td>Failure. Backups from nearby locations or cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths.</td>
</tr>
</tbody>
</table>

¹Approach Phase – the portion of the total traffic signal “green time” (time when traffic is allowed to move) that is allocated to one direction at an intersection. For example, the green time allocated to all “westbound” lanes at an intersection would be the approach phase for westbound traffic.

Source: TRB, 1980.

For signalized intersections, the LOS values were determined by using Critical Movement Analysis (CMA) methodology contained in the Transportation Research Board’s (TRB) Circular No. 212 – Interim Materials on Highway Capacity (TRB, 1980). A Passenger Car Equivalent (PCE) factor of 1.1 was applied to tractors, 2.0 was applied to chassis, and 2.0 was applied to the container truck volumes for the LOS calculations. These factors are consistent with factors applied in previous port studies including the Port of Los Angeles Baseline Transportation Study (Port of Los Angeles, 2004) and subsequent work conducted for the Ports. Many of the methodologies employed in this technical traffic analysis are based on, and consistent with, the methodologies developed for these previous studies.

Levels of Service Analysis

Based on peak-hour traffic volumes and V/C ratios, the corresponding LOS at study area intersections has been determined and is summarized in Table 3.12-2. The data in the table indicate that all of the existing study intersections currently operate at LOS B or better during the peak hours.
Table 3.12-2: Baseline Intersection Level of Service

<table>
<thead>
<tr>
<th>Int #</th>
<th>Analysis Intersection</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOS</td>
</tr>
<tr>
<td>1</td>
<td>Ocean Blvd / Terminal Island Fwy (N)</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Ocean Blvd / Terminal Island Fwy (S)</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Seaside Ave / Navy Way</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>Ferry St / SR-47 Ramps</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Pier S Ave / Ocean Blvd (N)</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>Pier S Ave / Ocean Blvd (S)</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>Ferry St / Terminal Way</td>
<td>A</td>
</tr>
</tbody>
</table>

3.12.2.3 Baseline Transit Service

Two transit agencies provide service in the vicinity of the proposed Project site: Metro and LADOT. Together, these transit agencies operate two transit routes within and/or near the proposed Project and are summarized in Table 3.12-3.

Table 3.12-3: Baseline Transit Service

<table>
<thead>
<tr>
<th>Transit Agency</th>
<th>Line</th>
<th>Route Name</th>
<th>Days of Operation</th>
<th>Headways/Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metro Express</td>
<td>445</td>
<td>San Pedro–Artesia Transit Center–Patsaouras Transit Plaza/Union Station Express</td>
<td>Monday–Friday AM – PM</td>
<td>30–60 minutes 60 minutes</td>
</tr>
<tr>
<td>LADOT Commuter Express</td>
<td>142</td>
<td>San Pedro–Long Beach</td>
<td>Monday–Friday AM – PM</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

Following is a description of the two transit routes within and/or near the proposed Project:

- **Metro Express Line 445 (San Pedro–Artesia Transit Center-Patsaouras Transit Plaza/Union Station Express).** Metro Transit Line 445 provides express bus service from downtown Los Angeles to San Pedro via the Harbor Freeway. Line 445 starts at Patsaouras Transit Plaza/Union Station in downtown Los Angeles and travels south to its final destination in San Pedro at Pacific and 21st Street. Days of operation are Monday through Sunday, including all major holidays. The AM and PM peak period headway ranges between 30 and one hour. Saturday mid-day peak period is one hour.
• LADOT Commuter Express Line 142 (Ports O’Call-Long Beach Transit Mall). LADOT Commuter Express Line 142 runs east-west along Ocean Boulevard through the study area from downtown Long Beach to San Pedro. The AM and PM peak period headway is approximately 30 minutes. Saturday peak period headway is 30 minutes.

3.12.3 Applicable Regulations

Traffic analysis in the state of California is guided by policies and standards set at the state level by the California Department of Transportation (Caltrans) and by local jurisdictions. Since the proposed Project is located in the City of Los Angeles, the proposed Project should adhere to the adopted City transportation policies. The City of Los Angeles has established threshold criteria to determine significant traffic impacts of a proposed project in its jurisdiction.

3.12.3.1 Intersection Operations

The City of Los Angeles has established threshold criteria to determine significant traffic impacts of a proposed project in its jurisdiction. Under LADOT guidelines (LADOT, 2010), an intersection would be significantly impacted if a project results in an increase in V/C ratio equal to or greater than 0.04 for intersections operating at LOS C; equal to or greater than 0.02 for intersections operating at LOS D; and equal to or greater than 0.01 for intersections operating at LOS E or F. Intersections operating at LOS A or B after the addition of the project traffic are not considered significantly impacted regardless of the increase in V/C ratio. Table 3.12-4 summarizes intersection impact criteria.

<table>
<thead>
<tr>
<th>LOS</th>
<th>Final V/C Ratio</th>
<th>Project-related Increase in V/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>> 0.700 – 0.800</td>
<td>equal to or greater than 0.040</td>
</tr>
<tr>
<td>D</td>
<td>> 0.800 – 0.900</td>
<td>equal to or greater than 0.020</td>
</tr>
<tr>
<td>E/F</td>
<td>> 0.900</td>
<td>equal to or greater than 0.010</td>
</tr>
</tbody>
</table>

3.12.3.2 CMP Guidelines

According to the CMP Traffic Impact Analysis Guidelines, an increase of 0.02 or more in the demand-to-capacity (D/C) ratio with a resulting LOS F at a CMP freeway monitoring station is deemed a significant impact. This applies only if the project meets the minimum CMP thresholds for including the location in the analysis, which are 50 trips at a CMP intersection and 150 trips on a freeway segment. At non-CMP freeway segments, an increase of 0.02 or more in the demand-to-capacity (D/C) ratio with a resulting LOS F at a CMP freeway monitoring station is deemed a significant impact.
3.12.4 Impacts and Mitigation Measures

3.12.4.1 Methodology

Impacts were assessed by quantifying differences between baseline conditions and baseline plus project conditions under the proposed Project alternative and the other study alternatives. For the analysis, baseline conditions are year 2009 traffic volumes.

Distribution of proposed Project-related trips is derived from the origin and destination data contained in the Port Travel Demand Model that was developed for the Ports of Long Beach and Los Angeles Transportation Study (Meyer, Mohaddes Associates, Inc., 2001). The model is a tool that is based on the Southern California Association of Governments’ (SCAG) Regional Travel Demand Forecasting Model. The Port Travel Demand Model data is owned by the Port and housed and operated at consultant offices.

3.12.4.2 Thresholds of Significance

The criteria to determine if a project at the Port is considered to have a significant transportation/circulation impact is based on the L.A. CEQA Thresholds Guide (City of Los Angeles, 2006), LADOT Traffic Study Policies and Procedures (December 2010), and other criteria applied to projects within the Port. Therefore, a project would have a significant transportation/circulation impact if the project would result in one or more of the following occurrences:

TRANS-1 A project would have a significant impact if construction of the project would result in a short-term, temporary increase in construction-related truck and auto traffic that could result in decreases in roadway capacity, potential safety hazards, and disruption of travel for vehicular and nonmotorized travelers.

TRANS-2 A project would have a significant long-term impact on transportation/circulation upon operation of the project if it increases an intersection’s V/C ratio in accordance with LADOT’s guidelines.

TRANS-3 A project would have a significant impact if an increase in on-site employees due to proposed project operations would result in a significant increase in related public transit use beyond the supply of such services anticipated at project build-out.

TRANS-4 A project would have a significant impact if operations would result in increases considered significant related to freeway congestion (i.e., a significant impact on a CMP facility).
3.12.4.3 Impact Determination

Impact TRANS-1: The proposed Project would not result in a short-term, temporary increase in construction-related truck and auto traffic that could result in decreases in roadway capacity, potential safety hazards, and disruption of travel for vehicular and nonmotorized travelers.

Construction staging would be placed on-site during the construction period (which would commence in 2012 and last for approximately three years). The analysis is based on the following peak number in order to provide for a conservative analysis scenario:

Construction Workers

- Phase 1: 12 months with 30 workers (2012)
- Phase 2: 6 to 10 months with 30 workers (2013)
- Phase 3: 6 months with 20 workers (2014)

The peak levels of traffic generated by the construction activities and hours of construction operation is estimated for the construction of the proposed Project, as shown below. These construction estimates are based on information contained in the Project applicant data, which in turn based on construction phasing estimates, construction worker needs, truck traffic estimates by type, grading quantity estimates, materials quantity estimates and other construction quantity estimates for a typical project of this scope.

Construction Traffic

- Auto Trips per Peak Hour: 30 for Phase 1 and Phase 2 construction, 20 for Phase 3 construction.
- Construction Truck Trips\(^1\) per Peak Hour: 9 for Phase 1 construction, 21 for Phase 2 construction and 26 for Phase 3 construction (worst case).
- Concrete Truck Trips per Peak Hour: cement trucks would be needed during the cement stabilization process of construction Phases 1 and 2. Phase 1 would have one truck per day for a period of two days and Phase 2 would have two trucks per day for two days. All would occur in off-peak hours.
- Total Peak Hour Traffic: 30 autos and 9 trucks for Phase 1 construction; 30 autos and 21 trucks for Phase 2 construction; and 20 autos and 26 trucks for Phase 3 construction.

\(^1\) “Construction Truck Trips” include trucks exporting and importing soil.
Hours of Construction Operation

- Monday through Friday: 7:00 a.m. to 3:30 p.m.

In order to perform a conservative construction period analysis, it is assumed that worker trips are expected to affect the surrounding street network during the AM peak period from 7:00 a.m. to 9:00 a.m. and the PM peak period from 4:00 p.m. to 6:00 p.m.

As required in permit conditions for tenant construction, the LAHD requires contractors to prepare a detailed traffic management plan for Port projects, which includes, as applicable, the following: detour plans, coordination with emergency services and transit providers, coordination with adjacent property owners and tenants, advanced notification of temporary bus stop loss and/or bus line relocation, identify temporary alternative bus routes, advanced notice of temporary parking loss, identify temporary parking replacement or alternative adjacent parking within a reasonable walking distance, use of designated haul routes, use of truck staging areas, observance of hours of operation restrictions and appropriate signing for construction activities. The traffic management plans are submitted to LAHD for approval before beginning construction. The ALBS facility will remain in operation for the duration of the construction period, increasing its capacity during construction. This procedure would also be applied to construction activities for all the Project alternatives (as analyzed in Chapter 6, Analysis of Alternatives).

Truck Trips

During construction, a worst case scenario has been assumed in which half of the trucks enter and then leave the site within the same hour (producing two trips for each truck in the peak hour). Under this assumption, Phase 3 construction produces the greatest number of truck trips during the peak hour (26 total).

Construction Period Traffic Handling Assumptions

The following standard construction period traffic handling measures are required as part of the permitting of the Project by the LAHD and, therefore, are assumed for the analysis:

- **Designated Truck Routes**: Trucks delivering materials to and from the construction site must stay on designated truck routes determined by Caltrans and LADOT.

- **Traffic Control**: In the event that a temporary road and/or lane closure would be necessary during construction, the contractor shall provide traffic control activities and personnel, as necessary and as required by LADOT, to minimize traffic impacts. This may include detour signage, cones, construction area signage, flagmen, and other measures as required for safe traffic handling in the construction zone.

Approved emergency equipment access standards would be incorporated into the proposed Project construction plans, ensuring provisions for adequate roadway width, turning radii, and staging areas. Additionally, it is expected that any proposed lane closures would be modified as the design team refines the construction plans and traffic strategies.

There would be increased travel on the study area roadway system during construction of the proposed Project associated with construction workers’ vehicles to and from the site.
The increased traffic would span a period of three years for various on-site construction activities. Table 3.12-5 shows the anticipated intersection LOS during construction with the peak number of workers (30) and trucks (26) on the area roadway system during the AM and PM peak hours. However, as can be seen in Table 3.12-5, significant impacts would not occur.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.
Table 3.12-5: Intersection Level of Service Analysis – Baseline vs. Proposed Project Construction

<table>
<thead>
<tr>
<th>Int#</th>
<th>Study Intersection</th>
<th>Baseline AM Peak</th>
<th>Baseline PM Peak</th>
<th>Baseline LOS</th>
<th>Baseline V/C</th>
<th>Proposed Project Construction AM Peak</th>
<th>Proposed Project Construction PM Peak</th>
<th>Changes in V/C AM Peak</th>
<th>Changes in V/C PM Peak</th>
<th>Significant Impact AM Peak</th>
<th>Significant Impact PM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ocean Blvd / Terminal Island Fwy (N)</td>
<td>A 0.396</td>
<td>A 0.433</td>
<td>A</td>
<td>0.396</td>
<td>A 0.401</td>
<td>A 0.438</td>
<td>0.005</td>
<td>0.005</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Ocean Blvd / Terminal Island Fwy (S)</td>
<td>A 0.191</td>
<td>A 0.321</td>
<td>A</td>
<td>0.191</td>
<td>A 0.197</td>
<td>A 0.335</td>
<td>0.006</td>
<td>0.014</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Seaside Ave / Navy Way</td>
<td>A 0.473</td>
<td>B 0.616</td>
<td>A</td>
<td>0.473</td>
<td>A 0.478</td>
<td>B 0.624</td>
<td>0.005</td>
<td>0.008</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Ferry St / SR-47 Ramps</td>
<td>A 0.242</td>
<td>A 0.329</td>
<td>A</td>
<td>0.242</td>
<td>A 0.259</td>
<td>A 0.373</td>
<td>0.017</td>
<td>0.044</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Pier S Ave / Ocean Blvd (N)</td>
<td>A 0.238</td>
<td>A 0.256</td>
<td>A</td>
<td>0.238</td>
<td>A 0.243</td>
<td>A 0.259</td>
<td>0.005</td>
<td>0.003</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Pier S Ave / Ocean Blvd (S)</td>
<td>A 0.116</td>
<td>A 0.262</td>
<td>A</td>
<td>0.116</td>
<td>A 0.120</td>
<td>A 0.268</td>
<td>0.004</td>
<td>0.006</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Ferry St / Terminal Way</td>
<td>A 0.427</td>
<td>A 0.248</td>
<td>A</td>
<td>0.427</td>
<td>A 0.462</td>
<td>A 0.265</td>
<td>0.035</td>
<td>0.017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Impact TRANS-2: Operation of the proposed Project would not result in a long-term increase in truck and auto traffic that would result in a significant impact on transportation/circulation.

The proposed Project site currently services on average 120 to 130 ships/vessels per year and has between 70 and 100 employees on-site depending on the workload. The hours of operation currently span two shifts from 7:45 a.m. to 4:15 p.m. and from 3:30 p.m. to 11:00 p.m.

Upon completion of the proposed Project, the number of employees on-site would increase to between 90 and 130, depending on work load. The number of shifts and hours of operation would remain the same. More employees would be on-site during the morning shift, with approximately 80 employees, while approximately 15 employees would be on-site during the evening shift.

The proposed Project would increase the automobile trips to/from the site by 20 to 30 per day. The Impact TRANS-2 analyzes the most conservation conditions for opening year (2013) conditions: 30 additional workers arriving in the AM peak hour and departing in the PM peak hour.

There would be increased travel on the study area roadway system during operation of the proposed Project associated with workers’ vehicles to and from the site. Table 3.12-6 shows the anticipated intersection Levels of Service during operation of the proposed Project with the peak number of additional workers (30) on the area roadway system during the AM and PM peak hours. However, as can be seen in Table 3.12-6, significant impacts would not occur.

Mitigation Measures

No mitigation is required.

Residual Impacts

Impacts would be less than significant.
Table 3.12-6: Intersection Level of Service Analysis – Baseline vs. Proposed Project Conditions

<table>
<thead>
<tr>
<th>Int #</th>
<th>Study Intersection</th>
<th>Baseline</th>
<th>With Proposed Project</th>
<th>Changes in V/C</th>
<th>Significant Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM Peak</td>
<td>PM Peak</td>
<td>AM Peak</td>
<td>PM Peak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOS V/C</td>
<td>LOS V/C</td>
<td>LOS V/C</td>
<td>LOS V/C</td>
</tr>
<tr>
<td>1</td>
<td>Ocean Blvd / Terminal Island Fwy (N)</td>
<td>A 0.396</td>
<td>A 0.433</td>
<td>A 0.399</td>
<td>A 0.436</td>
</tr>
<tr>
<td>2</td>
<td>Ocean Blvd / Terminal Island Fwy (S)</td>
<td>A 0.191</td>
<td>A 0.321</td>
<td>A 0.191</td>
<td>A 0.326</td>
</tr>
<tr>
<td>3</td>
<td>Seaside Ave / Navy Way</td>
<td>A 0.473</td>
<td>B 0.616</td>
<td>A 0.473</td>
<td>B 0.620</td>
</tr>
<tr>
<td>4</td>
<td>Ferry St / SR-47 Ramps</td>
<td>A 0.242</td>
<td>A 0.329</td>
<td>A 0.253</td>
<td>A 0.350</td>
</tr>
<tr>
<td>5</td>
<td>Pier S Ave / Ocean Blvd (N)</td>
<td>A 0.238</td>
<td>A 0.256</td>
<td>A 0.241</td>
<td>A 0.256</td>
</tr>
<tr>
<td>6</td>
<td>Pier S Ave / Ocean Blvd (S)</td>
<td>A 0.116</td>
<td>A 0.262</td>
<td>A 0.116</td>
<td>A 0.265</td>
</tr>
<tr>
<td>7</td>
<td>Ferry St / Terminal Way</td>
<td>A 0.427</td>
<td>A 0.248</td>
<td>A 0.448</td>
<td>A 0.258</td>
</tr>
</tbody>
</table>
Impact TRANS-3: Operation of the proposed Project would not result in a significant increase in related public transit use beyond the supply of such services anticipated at Project build-out.

Although construction and operation of the proposed Project would result in additional on-site employees, the increase in work-related trips using public transit is not anticipated to occur or would be negligible. The primary reason that proposed Project workers generally would not use public transit is their work shift schedule. Most workers working shifts prefer to use a personal automobile to facilitate timely commuting. In addition, parking at the proposed Project site is readily available and free for employees and construction workers, which encourages workers to drive to work. Finally, although there are three existing transit routes that serve the general area surrounding the proposed Project, none of the existing routes stop within one mile of the proposed Project site. Consequently, it is not anticipated that additional demand would occur on local transit services.

Mitigation Measures
No mitigation is required.

Residual Impacts
There would be no impacts.

Impact TRANS-4: The proposed Project would not result in increases considered significant related to freeway congestion.

Construction and operation of the proposed Project would not increase AM or PM peak hour traffic volumes at a CMP intersection or freeway link beyond the minimums required for analysis (50 for an arterial intersection and 150 for a freeway link). Therefore, no CMP analysis is required.

Mitigation Measures
No mitigation is required.

Residual Impacts
There would be no impacts.

3.12.4.4 Summary of Impact Determinations

The following Table 3.12-7 summarizes the impact determinations of the proposed Project related to traffic and transportation as described in detail above. Identified potential impacts are based on federal, state, or City of Los Angeles significance criteria, Port criteria, and the scientific judgment of the report preparers, as applicable.
Table 3.12-7: Summary Matrix of Potential Impacts and Mitigation Measures for Traffic and Transportation Associated with the Proposed Project

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Impact Determination</th>
<th>Mitigation Measures</th>
<th>Impacts after Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANS-1: The proposed Project would not result in a short-term, temporary increase in construction-related truck and auto traffic that could result in decreases in roadway capacity, potential safety hazards, and disruption of travel for vehicular and nonmotorized travelers.</td>
<td>Less than significant</td>
<td>No mitigation is required</td>
<td>Less than significant</td>
</tr>
<tr>
<td>TRANS-2: Operation of the proposed Project would not result in a long-term increase in truck and auto traffic that would result in a significant impact on transportation/circulation.</td>
<td>Less than significant</td>
<td>No mitigation is required</td>
<td>Less than significant</td>
</tr>
<tr>
<td>TRANS-3: Operation of the proposed Project would not result in a significant increase in related public transit use beyond the supply of such services anticipated at Project build-out.</td>
<td>No impact</td>
<td>No mitigation is required</td>
<td>No impact</td>
</tr>
<tr>
<td>TRANS-4: The proposed Project would not result in increases considered significant related to freeway congestion.</td>
<td>No impact</td>
<td>No mitigation is required</td>
<td>No impact</td>
</tr>
</tbody>
</table>

3.12.4.5 Mitigation Monitoring

In the absence of significant impacts, mitigation measures are not required.

3.12.5 Significant Unavoidable Impacts

No significant unavoidable impacts on Traffic and Transportation would occur during construction or operation of the proposed Project.
This page left intentionally blank